Validation of Satellite Aerosol Retrievals from AERONET Ground-Based Measurements
NASA Technical Reports Server (NTRS)
Holben, Brent; Remer, Lorraine; Torres, Omar; Zhao, Tom; Smith, David E. (Technical Monitor)
2001-01-01
Accurate and comprehensive assessment of the parameters that control key atmospheric and biospheric processes including assessment of anthropogenic effects on climate change is a fundamental measurement objective of NASA's EOS program (King and Greenstone, 1999). Satellite assessment programs and associated global climate models require validation and additional parameterization with frequent reliable ground-based observations. A critical and highly uncertain element of the measurement program is characterization of tropospheric aerosols requiring basic observations of aerosols optical and microphysical properties. Unfortunately as yet we do not know the aerosol burden man is contributing to the atmosphere and thus we will have no definitive measure of change for the future. This lack of aerosol assessment is the impetus for some of the EOS measurement activities (Kaufman et al., 1997; King et al., 1999) and the formation of the AERONET program (Holben et al., 1998). The goals of the AERONET program are to develop long term monitoring at globally distributed sites providing critical data for multiannual trend changes in aerosol loading and optical properties with the specific goal of providing a data base for validation of satellite derived aerosol optical properties. The AERONET program has evolved into an international federated network of approximately 100 ground-based remote sensing monitoring stations to characterize the optical and microphysical properties of aerosols.
Program Models A Laser Beam Focused In An Aerosol Spray
NASA Technical Reports Server (NTRS)
Barton, J. P.
1996-01-01
Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).
NPOESS Preparatory Project Validation Program for Atmsophere Data Products from VIIRS
NASA Astrophysics Data System (ADS)
Starr, D.; Wong, E.
2009-12-01
The National Polar-orbiting Operational Environmental Satellite Suite (NPOESS) Program, in partnership with National Aeronautical Space Administration (NASA), will launch the NPOESS Preparatory Project (NPP), a risk reduction and data continuity mission, prior to the first operational NPOESS launch. The NPOESS Program, in partnership with Northrop Grumman Aerospace Systems (NGAS), will execute the NPP Validation program to ensure the data products comply with the requirements of the sponsoring agencies. Data from the NPP Visible/Infrared Imager/Radiometer Suite (VIIRS) will be used to produce Environmental Data Records (EDR's) for aerosol and clouds, specifically Aerosol Optical Thickness (AOT), Aerosol Particle Size Parameter (APSP), and Suspended Matter (SM); and Cloud Optical Thickness (COT), Cloud Effective Particle Size (CEPS), Cloud Top Temperature (CTT), Height (CTH) and Pressure (CTP), and Cloud Base Height (CBH). The Aerosol and Cloud EDR Validation Program is a multifaceted effort to characterize and validate these data products. The program involves systematic comparison to heritage data products, e.g., MODIS, and ground-based correlative data, such as AERONET and ARM data products, and potentially airborne field measurements. To the extent possible, the domain is global. The program leverages various investments that have and are continuing to be made by national funding agencies in such resources, as well as the operational user community and the broad Earth science user community. This presentation will provide an overview of the approaches, data and schedule for the validation of the NPP VIIRS Aerosol and Cloud environmental data products.
Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ternes, MP
A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use ofmore » the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.« less
ARM-Led Improvements Aerosols in Climate and Climate Models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghan, Steven J.; Penner, Joyce E.
2016-07-25
The DOE ARM program has played a foundational role in efforts to quantify aerosol effects on climate, beginning with the early back-of-the-envelope estimates of direct radiative forcing by anthropogenic sulfate and biomass burning aerosol (Penner et al., 1994). In this chapter we review the role that ARM has played in subsequent detailed estimates based on physically-based representations of aerosols in climate models. The focus is on quantifying the direct and indirect effects of anthropogenic aerosol on the planetary energy balance. Only recently have other DOE programs applied the aerosol modeling capability to simulate the climate response to the radiative forcing.
Gravitational Agglomeration of Post-HCDA LMFBR Nonspherical Aerosols.
1980-12-01
equations for two particle motions are developed . A computer program NGCEFF is constructed., the Navier-Stokes equation is solved by the finite difference...dynamic equations for two particle motions are developed . A computer program NGCEFF I is constructed, the Navier-Stokes equation is solved by the...spatial inhomogeneities for the aerosol. Thus, following an HCDA, an aerosol mixture of sodium compounds, fuel and core structural materials will
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gregson, Michael Warren; Mo, Tin; Sorenson, Ken Bryce
The authors provide a detailed overview of an on-going, multinational test program that is developing aerosol data for some spent fuel sabotage scenarios on spent fuel transport and storage casks. Experiments are being performed to quantify the aerosolized materials plus volatilized fission products generated from actual spent fuel and surrogate material test rods, due to impact by a high-energy-density device. The program participants in the United States plus Germany, France and the United Kingdom, part of the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC) have strongly supported and coordinated this research program. Sandia National Laboratoriesmore » has the lead role for conducting this research program; test program support is provided by both the US Department of Energy and the US Nuclear Regulatory Commission. The authors provide a summary of the overall, multiphase test design and a description of all explosive containment and aerosol collection test components used. They focus on the recently initiated tests on 'surrogate' spent fuel, unirradiated depleted uranium oxide and forthcoming actual spent fuel tests, and briefly summarize similar results from completed surrogate tests that used non-radioactive, sintered cerium oxide ceramic pellets in test rods.« less
A Decade of Field Changing Atmospheric Aerosol Research: Outcomes of EPA’s STAR Program
Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seinfeld, John H.
Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratorymore » chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.« less
Over the past decade there has been interest in exploring possible relationships between atmospheric visibility (extinction of light) and the chemical form of aerosols in the atmosphere. ser-friendly, menu-driven program for the personal computer (AT 286 with math co-processor or...
NASA Astrophysics Data System (ADS)
Alvarado, M. J.; Macintyre, H. L.; Bian, H.; Chin, M.; Wang, C.
2012-12-01
The scattering and absorption of ultraviolet and visible radiation by aerosols can significantly alter actinic fluxes and photolysis rates. Accurate modeling of aerosol optical properties is thus essential to simulating atmospheric chemistry, air quality, and climate. Here we evaluate the aerosol optical property predictions of the Aerosol Simulation Program (ASP) with in situ data on aerosol scattering and absorption gathered during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The model simulations are initialized with in situ data on the aerosol size distribution and composition. We perform a set of sensitivity studies (e.g., internal vs. external mixture, core-in-shell versus Maxwell-Garnett, fraction of the organic carbon mass that is light-absorbing "brown carbon," etc.) to determine the model framework and parameters most consistent with the observations. We compare the ASP results to the aerosol optical property lookup tables in FAST-JX and suggest improvements that will better enable FAST-JX to simulate the impact of aerosols on photolysis rates and atmospheric chemistry.
Gopalakrishnan, V; Subramanian, V; Baskaran, R; Venkatraman, B
2015-07-01
Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.
2015-07-15
Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in amore » preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.« less
The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research
NASA Technical Reports Server (NTRS)
Lau, William K. M.
2008-01-01
Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).
Effectiveness of a Reduced-Risk Insecticide Based Bed Bug Management Program in Low-Income Housing.
Singh, Narinderpal; Wang, Changlu; Cooper, Richard
2013-11-28
Bed bug (Cimex lectularius L.) infestations are becoming increasingly common in low-income communities. Once they are introduced, elimination is very difficult. As part of the efforts to develop effective and safe bed bug management programs, we conducted a laboratory study evaluating the efficacy of a reduced-risk insecticide-Alpine aerosol (0.5% dinotefuran). We then conducted a field evaluation of a reduced-risk insecticide based integrated pest management (IPM) program in low-income family apartments with young children. In laboratory evaluations, direct spray and 5 min exposure to dry Alpine aerosol residue caused 100.0 ± 0.0 and 91.7 ± 8.3% mortality to bed bug nymphs, respectively. Direct Alpine aerosol spray killed 91.3 ± 4.3% of the eggs. The IPM program included education, steam, bagging infested linens, placing intercepting devices under furniture legs and corners of rooms, applying Alpine aerosol and Alpine dust (0.25% dinotefuran, 95% diatomaceous earth dust), and regularly scheduled monitoring and re-treatment. Nine apartments ranging from 1-1,428 (median: 29) bed bugs based on visual inspection and Climbup interceptor counts were included. Over a 6-month period, an average 172 g insecticide (Alpine aerosol + Alpine dust) was used in each apartment, a 96% reduction in pesticide usage compared to chemical only treatment reported in a similar environment. The IPM program resulted in an average of 96.8 ± 2.2% reduction in the number of bed bugs. However, elimination of bed bugs was only achieved in three lightly infested apartments (<30 bed bugs at the beginning). Elimination success was closely correlated with the level of bed bug populations.
Effectiveness of a Reduced-Risk Insecticide Based Bed Bug Management Program in Low-Income Housing
Singh, Narinderpal; Wang, Changlu; Cooper, Richard
2013-01-01
Bed bug (Cimex lectularius L.) infestations are becoming increasingly common in low-income communities. Once they are introduced, elimination is very difficult. As part of the efforts to develop effective and safe bed bug management programs, we conducted a laboratory study evaluating the efficacy of a reduced-risk insecticide—Alpine aerosol (0.5% dinotefuran). We then conducted a field evaluation of a reduced-risk insecticide based integrated pest management (IPM) program in low-income family apartments with young children. In laboratory evaluations, direct spray and 5 min exposure to dry Alpine aerosol residue caused 100.0 ± 0.0 and 91.7 ± 8.3% mortality to bed bug nymphs, respectively. Direct Alpine aerosol spray killed 91.3 ± 4.3% of the eggs. The IPM program included education, steam, bagging infested linens, placing intercepting devices under furniture legs and corners of rooms, applying Alpine aerosol and Alpine dust (0.25% dinotefuran, 95% diatomaceous earth dust), and regularly scheduled monitoring and re-treatment. Nine apartments ranging from 1–1,428 (median: 29) bed bugs based on visual inspection and Climbup interceptor counts were included. Over a 6-month period, an average 172 g insecticide (Alpine aerosol + Alpine dust) was used in each apartment, a 96% reduction in pesticide usage compared to chemical only treatment reported in a similar environment. The IPM program resulted in an average of 96.8 ± 2.2% reduction in the number of bed bugs. However, elimination of bed bugs was only achieved in three lightly infested apartments (<30 bed bugs at the beginning). Elimination success was closely correlated with the level of bed bug populations. PMID:26462533
The Joint Aerosol-Monsoon Experiment (JAMEX): A Core Element for the Asian Monsoon Year (2008-2009)
NASA Technical Reports Server (NTRS)
Lau, WIlliam K. M.
2007-01-01
The objective of the Joint Aerosol-Monsoon Experiment (JAMEX) is to unravel the physical mechanisms and multi-scale interactions associated with aerosol-monsoon water cycle in the Asian Indo-Paczj?c region towards improved prediction of rainfall in land regions of the Asian monsoon. JAMEX will be planned as a five-year (2007-201 1) multi-national aerosol-monsoon research project, aimed at promoting collaboration, partnership and alignment of ongoing and planned national and international programs. Two coordinated special observing periods (SOP), covering the pre-monsoon (April-May) and the monsoon (June-August) periods is tentatively targeted for 2008 and 2009. The major work on validation and reference site coordination will take place in 2007 through the spring of 2008. A major science workshop is planned after SOP-I1 in 2010. Modeling and satellite data utilization studies will continue throughout the entire period to help in design of the observation arrays and measurement platforms for SOPS. The tentative time schedule, including milestones and research activities is shown in Fig. 1. One of the unique aspects of JAMEX is that it stems from grass-root scientific and societal imperatives, and it bridges a gap in existing national and international research programs. Currently we have identified 10 major national and international projects/programs separately for aerosols and monsoon research planned in the next five years in China, India, Japan, Italy, and the US, that could be potential contributors or partners with JAMEX. These include the Asian-Indo- Pacific Ocean (AIPO) Project and Aerosol Research Project from China, Monsoon Asian Hydro- Atmospheric Science Research and predication Initiative (MAHASRI) from Japan, Continental Tropical Convergence Zone (CTCZ) and Severe Thunderstorm: Observations and Regional Modeling (STORM) from India, Share-Asia from Italy, Atmospheric Brown Cloud (ABC), Pacific Aerosol-Cloud-Dust Experiment (PACDEX), East Asia Study of Tropospheric Aerosol: an International Regional Experiment (East-AIRE), and Radiation Aerosol Joint Observations - Monsoon Experiments over the Gangetic Himalayas Area (Rajo-Megha: dust cloud in Sanskrit) from the US, and Monsoon Asia Integrated Regional Study (MAIR) under the Earth Systems Science Partnership (ESSP) and WCRP. For JAMEX to succeed, it is crucial for an international body, such as CEOP or an organization under WCRP to provide the science oversight, data policy and stewardship, and to promote collaboration and partnership among national programs. It makes eminent sense for WCRP to expand the concept and the prototype proposed by JAMEX to include all monsoon countries to expand AMY08-09 into an International Monsoon Era (2008- 2013). Such an establishment followed by establishment of an international body for science oversight, and data stewardship will go a long way in promoting coordination and connection among various existing monsoon research programs within WCRP, and with burgeoning national programs on monsoon and aerosol research.
The Joint Aerosol-Monsoon Experiment (JAMEX): A Core Element for the Asian Monsoon Year (2008-2009)
NASA Technical Reports Server (NTRS)
Lau, William K.M.
2007-01-01
The objective of the Joint Aerosol-Monsoon Experiment (JAMEX) is to unravel the physical mechanisms and multi-scale interactions associated with aerosol-monsoon water cycle in the Asian Indo-Pacific region towards improved prediction of rainfall in land regions of the Asian monsoon. JAMEX will be planned as a five-year (2007-201 1) multi-national aerosol-monsoon research project, aimed at promoting collaboration, partnership and alignment of ongoing and planned national and international programs. Two coordinated special observing periods (SOP), covering the pre-monsoon (April-May) and the monsoon (June-August) periods is tentatively targeted for 2008 and 2009. The major work on validation and reference site coordination will take place in 2007 through the spring of 2008. A major science workshop is planned after SOP-I1 in 2010. Modeling and satellite data utilization studies will continue throughout the entire period to help in design of the observation arrays and measurement platforms for SOPS. The tentative time schedule, including milestones and research activities is shown in Fig. 1. One of the unique aspects of JAMEX is that it stems from grass-root scientific and societal imperatives, and it bridges a gap in existing national and international research programs. Currently we have identified 10 major national and international projects/programs separately for aerosols and monsoon research planned in the next five years in China, India, Japan, Italy, and the US, that could be potential contributors or partners with JAMEX. These include the Asian-Indo- Pacific Ocean (AIPO) Project and Aerosol Research Project from China, Monsoon Asian Hydro- Atmospheric Science Research and predication Initiative (MAHASRI) from Japan, Continental Tropical Convergence Zone (CTCZ) and Severe Thunderstorm: Observations and Regional Modeling (STORM) from India, Share-Asia from Italy, Atmospheric Brown Cloud (ABC), Pacific Aerosol-Cloud-Dust Experiment (PACDEX), East Asia Study of Tropospheric Aerosol: an International Regional Experiment (East-AIRE), and Radiation Aerosol Joint Observations - Monsoon Experiments over the Gangetic Himalayas Area (Rajo-Megha: dust cloud in Sanskrit) from the US, and Monsoon Asia Integrated Regional Study (MAIR) under the Earth Systems I Science Partnership (ESSP) and WCRP. For JAMEX to succeed, it is crucial for an international body, such as CEOP or an organization under WCRP to provide the science oversight, data policy and stewardship, and to promote collaboration and partnership among national programs. It makes eminent sense for WCRP to expand the concept and the prototype proposed by JAMEX to include all monsoon countries to expand AMY08-09 into an International Monsoon Era (2008- 2013). Such an establishment followed by establishment of an international body for science oversight, and data stewardship will go a long way in promoting coordination and connection among various existing monsoon research programs within WCRP, and with burgeoning national programs on monsoon and aerosol research.
AEROSOL SAMPLING AND ANALYSIS, PHOENIX, ARIZONA
An atmospheric sampling program was carried out in the greater Phoenix, Arizona metropolitan area in November, 1975. Objectives of the study were to measure aerosol mass flux through Phoenix and to characterize the aerosol according to particle type and size. The ultimate goal of...
Atmospheric Aerosol Properties and Climate Impacts
NASA Technical Reports Server (NTRS)
Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip;
2009-01-01
This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.
Spectral Absorption Properties of Atmospheric Aerosols
NASA Technical Reports Server (NTRS)
Bergstrom, R. W.; Pilewskie, P.; Russell, P. B.; Redemann, J.; Bond, T. C.; Quinn, P. K.; Sierau, B.
2007-01-01
We have determined the solar spectral absorption optical depth of atmospheric aerosols for specific case studies during several field programs (three cases have been reported previously; two are new results). We combined airborne measurements of the solar net radiant flux density and the aerosol optical depth with a detailed radiative transfer model for all but one of the cases. The field programs (SAFARI 2000, ACE Asia, PRIDE, TARFOX, INTEX-A) contained aerosols representing the major absorbing aerosol types: pollution, biomass burning, desert dust and mixtures. In all cases the spectral absorption optical depth decreases with wavelength and can be approximated with a power-law wavelength dependence (Absorption Angstrom Exponent or AAE). We compare our results with other recent spectral absorption measurements and attempt to briefly summarize the state of knowledge of aerosol absorption spectra in the atmosphere. We discuss the limitations in using the AAE for calculating the solar absorption. We also discuss the resulting spectral single scattering albedo for these cases.
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
Fierce, Laura; McGraw, Robert L.
2017-07-26
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
Multivariate quadrature for representing cloud condensation nuclei activity of aerosol populations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fierce, Laura; McGraw, Robert L.
Here, sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the quadrature method of moments. Given a set of moment constraints, we show how linear programming, combined with an entropy-inspired cost function, can be used to construct optimized quadrature representations of aerosol distributions. The sparse representations derived from this approach accurately reproduce cloud condensation nuclei (CCN) activity for realistically complex distributions simulated by a particleresolved model. Additionally, the linear programming techniques described in this study can be used to bound key aerosolmore » properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy approach described here is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a particle-based aerosol scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.« less
NASA Technical Reports Server (NTRS)
Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.
1993-01-01
This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).
Comparative Optical Measurements of Airspeed and Aerosols on a DC-8 Aircraft
NASA Technical Reports Server (NTRS)
Bogue, Rodney; McGann, Rick; Wagener, Thomas; Abbiss, John; Smart, Anthony
1997-01-01
NASA Dryden supported a cooperative flight test program on the NASA DC-8 aircraft in November 1993. This program evaluated optical airspeed and aerosol measurement techniques. Three brassboard optical systems were tested. Two were laser Doppler systems designed to measure free-stream-referenced airspeed. The third system was designed to characterize the natural aerosol statistics and airspeed. These systems relied on optical backscatter from natural aerosols for operation. The DC-8 aircraft carried instrumentation that provided real-time flight situation information and reference data on the aerosol environment. This test is believed to be the first to include multiple optical airspeed systems on the same carrier aircraft, so performance could be directly compared. During 23 hr of flight, a broad range of atmospheric conditions was encountered, including aerosol-rich layers, visible clouds, and unusually clean (aerosol-poor) regions. Substantial amounts of data were obtained. Important insights regarding the use of laser-based systems of this type in an aircraft environment were gained. This paper describes the sensors used and flight operations conducted to support the experiments. The paper also briefly describes the general results of the experiments.
INTEGRATED PROTECTIVE FABRIC SYSTEM (IPFS) PHASE III PROGRAM: AEROSOL PROTECTION REPORT
2017-08-16
one layer control. It was observed that aerosol swatch measurements showed no correlation to aerosol system test performance for the materials and...the BRHA model employed. It was observed that aerosol swatch measurements showed no correlation to aerosol system test performance for the...Testing” (McVeety et al., 2015). This report includes a description of the materials and material controls, a description of the IPFS configurations
This article is the preface or editors note to a dedicated issue of Aerosol Science and Technology, journal of the American Association for Aerosol Research. It includes a selection of scientific papers from the specialty conference entitled, "Particulate Matter Supersites ...
Kahn, Ralph A; Berkoff, Tim A; Brock, Charles; Chen, Gao; Ferrare, Richard A; Ghan, Steven; Hansico, Thomas F; Hegg, Dean A; Martins, J Vanderlei; McNaughton, Cameron S; Murphy, Daniel M; Ogren, John A; Penner, Joyce E; Pilewskie, Peter; Seinfeld, John H; Worsnop, Douglas R
2017-10-01
A modest operational program of systematic aircraft measurements can resolve key satellite-aerosol-data-record limitations. Satellite observations provide frequent, global aerosol-amount maps, but offer only loose aerosol property constraints needed for climate and air quality applications. We define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ . The flight program could characterize major aerosol air-mass types statistically, at a level-of-detail unobtainable from space. It would: (1) enhance satellite aerosol retrieval products with better climatology assumptions, and (2) improve translation between satellite-retrieved optical properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space, improve aerosol constraints on climate modeling , help interrelate remote-sensing, in situ, and modeling aerosol-type definitions , and contribute to future satellite aerosol missions. Fifteen Required Variables are identified, and four Payload Options of increasing ambition are defined, to constrain these quantities. "Option C" could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration, and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable , even if aerosol loading varies.
NASA Astrophysics Data System (ADS)
Arshinov, Mikhail Yu.; Belan, Boris D.; Paris, Jean-Daniel; Machida, Toshinobu; Kozlov, Alexandr; Malyskin, Sergei; Simonenkov, Denis; Davydov, Denis; Fofonov, Alexandr
2016-04-01
Knowledge of the vertical distribution of aerosols particles is very important when estimating aerosol radiative effects. To date there are a lot of research programs aimed to study aerosol vertical distribution, but only a few ones exist in such insufficiently explored region as Siberia. Monthly research flights and several extensive airborne campaigns carried out in recent years in Siberian troposphere allowed the vertical distribution of aerosol number concentration to be summarized. In-situ aerosol measurements were performed in a wide range of particle sizes by means of improved version of the Novosibirsk-type diffusional particle sizer and GRIMM aerosol spectrometer Model 1.109. The data on aerosol vertical distribution enabled input parameters for the empirical equation of Jaenicke (1993) to be derived for Siberian troposphere up to 7 km. Vertical distributions of aerosol number concentration in different size ranges averaged for the main seasons of the year will be presented. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); and Russian Foundation for Basic Research (grant No. 14-05-00526). Jaenicke R. Tropospheric aerosols, in Aerosol-Cloud-Climate Interactions, edited by P.V. Hobs. -Academic Press, San Diego, CA, 1993.- P. 1-31.
Physical and chemical properties of aerosols at a coastal site Paposo (Chile) during VOCALS campaign
NASA Astrophysics Data System (ADS)
Cordova, A. M.; Chand, D.; Wood, R.; Wallace, D.; Hegg, D. A.; Shaw, G. E.; Krejci, R.; Fochesatto, G. J.; Gallardo, L.
2009-12-01
One of the primary goals of the VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) Regional Experiment (REx) and associated modeling program is an improved understanding of aerosol indirect effects over the southeast Pacific (SEP). Details on the program are available online at www.eol.ucar.edu/projects/vocals/. To this end, detailed aerosol physical and chemical measurements were made during REx at a coastal land site at Paposo (25o 0.4' S, 70o 27.011' W, 690 masl) in northern Chile, a site ideally positioned for studying continental aerosol sources advecting over the SEP. We present initial analysis of data from Paposo. Detailed measurements of aerosol properties were made from mid October to mid November 2008. Observations from optical particle counters (OPC), nephelometers, aethalometer, scanning mobility particle sizer (SMPS) and the chemical analysis of the submicron aerosols samples collected on teflon filters are being used in this study. Large variations in aerosols parameters were observed which corresponded with changes in meteorology, as determined using trajectory analysis. Ion Chromatograph (IC) analysis of submicron aerosol samples shows that about 41% of submicron mass is sulfate. The light scattering coefficient shows a strong non-linear correlation with aerosol size observed using an OPC. Detailed results will be presented in the AGU meeting.
NASA Technical Reports Server (NTRS)
Deepak, Adarsh; Wang, Pi-Huan
1985-01-01
The research program is documented for developing space and ground-based remote sensing techniques performed during the period from December 15, 1977 to March 15, 1985. The program involved the application of sophisticated radiative transfer codes and inversion methods to various advanced remote sensing concepts for determining atmospheric constituents, particularly aerosols. It covers detailed discussions of the solar aureole technique for monitoring columnar aerosol size distribution, and the multispectral limb scattered radiance and limb attenuated radiance (solar occultation) techniques, as well as the upwelling scattered solar radiance method for determining the aerosol and gaseous characteristics. In addition, analytical models of aerosol size distribution and simulation studies of the limb solar aureole radiance technique and the variability of ozone at high altitudes during satellite sunrise/sunset events are also described in detail.
Fire-protection research for energy technology: Fy 80 year end report
NASA Astrophysics Data System (ADS)
Hasegawa, H. K.; Alvares, N. J.; Lipska, A. E.; Ford, H.; Priante, S.; Beason, D. G.
1981-05-01
This continuing research program was initiated in order to advance fire protection strategies for Fusion Energy Experiments (FEE). The program expanded to encompass other forms of energy research. Accomplishments for fiscal year 1980 were: finalization of the fault-free analysis of the Shiva fire management system; development of a second-generation, fire-growth analysis using an alternate model and new LLNL combustion dynamics data; improvements of techniques for chemical smoke aerosol analysis; development and test of a simple method to assess the corrosive potential of smoke aerosols; development of an initial aerosol dilution system; completion of primary small-scale tests for measurements of the dynamics of cable fires; finalization of primary survey format for non-LLNL energy technology facilities; and studies of fire dynamics and aerosol production from electrical insulation and computer tape cassettes.
This collection of papers, which is the first coordinated publication of results from the Phase II Supersites Program, reflects the objectives of the program - to characterize particulate matter, to provide information, such as source-receptor relationships, that support health...
2015-01-05
CAPE CANAVERAL, Fla. –In the Kennedy Space Center’s Press Site auditorium, agency leaders spoke to members of the news media on the Cloud-Aerosol Transport System. CATS will monitor cloud and aerosol coverage that directly impacts global climate. From left are: Mike Curie of NASA Public Affairs, Julie Robinson, ISS Program chief scientist at NASA’s Johnson Space Center, Robert Swap, program scientist at NASA Headquarters' Earth Science Division, and Matthew McGill, CATS principal investigator at Goddard. Photo credit: NASA/Kim Shiflett
NASA Technical Reports Server (NTRS)
Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.
2012-01-01
Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles
A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less
Kahn, Ralph A.; Berkoff, Tim A.; Brock, Charles; ...
2017-10-30
A modest operational program of systematic aircraft measurements can resolve key satellite aerosol data record limitations. Satellite observations provide frequent global aerosol amount maps but offer only loose aerosol property constraints needed for climate and air quality applications. In this paper, we define and illustrate the feasibility of flying an aircraft payload to measure key aerosol optical, microphysical, and chemical properties in situ. The flight program could characterize major aerosol airmass types statistically, at a level of detail unobtainable from space. It would 1) enhance satellite aerosol retrieval products with better climatology assumptions and 2) improve translation between satellite-retrieved opticalmore » properties and species-specific aerosol mass and size simulated in climate models to assess aerosol forcing, its anthropogenic components, and other environmental impacts. As such, Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM) could add value to data records representing several decades of aerosol observations from space; improve aerosol constraints on climate modeling; help interrelate remote sensing, in situ, and modeling aerosol-type definitions; and contribute to future satellite aerosol missions. Fifteen required variables are identified and four payload options of increasing ambition are defined to constrain these quantities. “Option C” could meet all the SAM-CAAM objectives with about 20 instruments, most of which have flown before, but never routinely several times per week, and never as a group. Aircraft integration and approaches to data handling, payload support, and logistical considerations for a long-term, operational mission are discussed. Finally, SAM-CAAM is feasible because, for most aerosol sources and specified seasons, particle properties tend to be repeatable, even if aerosol loading varies.« less
METCOR4: A program to simulate METSAT data
NASA Technical Reports Server (NTRS)
Johnson, W. R.
1983-01-01
The METCOR4 program extracts radiation data from computer tapes and computes radiance as would be recorded by the NOAA6 and NOAA7 meteorological satellites (METSAT). Three different atmospheres, each with different aerosol concentration, are considered with the viewing geometry of the satellites and the expected solar geomtry. The FORTRAN program is provided.
Lessons learned from case studies of inhalation exposures of workers to radioactive aerosols
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoover, M.D.; Fencl, A.F.; Newton, G.J.
1995-12-01
Various Department of Energy requirements, rules, and orders mandate that lessons learned be identified, evaluated, shared, and incorporated into current practices. The recently issued, nonmandatory DOE standard for Development of DOE Lessons Learned Program states that a DOE-wide lessons learned program will {open_quotes}help to prevent recurrences of negative experiences, highlight best practices, and spotlight innovative ways to solve problems or perform work more safely, efficiently, and cost effectively.{close_quotes} Additional information about the lessons learned program is contained in the recently issued DOE handbook on Implementing U.S. Department of Energy Lessons Learned Programs and in October 1995 DOE SAfety Notice onmore » Lessons Learned Programs. This report summarizes work in progress at ITRI to identify lessons learned for worker exposures to radioactive aerosols, and describes how this work will be incorporated into the DOE lessons learned program, including a new technical guide for measuring, modeling, and mitigating airborne radioactive particles. Follow-on work is focusing on preparation of {open_quotes}lessons learned{close_quotes} training materials for facility designers, managers, health protection professionals, line supervisors, and workers.« less
ENVIRONMENTAL MONITORING OF A WASTEWATER TREATMENT PLANT
A wastewater aerosol monitoring program was conducted at an advanced wastewater treatment facility using the activated sludge process. This plant was recently constructed next to an elementary school in Tigard, Oregon. Wastewater aerosols containing pathogenic organisms are gener...
1980-09-02
laser or searchlight measurements . The study program consisted of three basic tasks: (1) a review of existing techniques for measuring aerosol extinction ...to aerosol extinction along a path can be deduced. Solutions to this problcaii fall into several classes. One class of solutions invoLves measuring ...employed such a windowless system to measure the absorption of an artificial aerosol consisting of quartz particles, using a CO 2 laser in the
AMF3 ARM's Research Facility and MAOS at Oliktok Point Alaska
NASA Astrophysics Data System (ADS)
Helsel, F.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Lucero, D. A.; Roesler, E. L.
2016-12-01
Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data to determine the impact that clouds and aerosols have on solar radiation. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. A Mobile Aerosol Observing System (MAOS) has been added to AMF3 in 2016 more details of the instrumentation at www.arm.gov/sites/amf/mobile-aos. Data from these instruments are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at the ARM Program's AMF3 and highlight the newest addition to AMF3, the Mobile Aerosol Observing System (MAOS).
Middle Atmosphere Program. Handbook for MAP. Volume 13: Ground-based Techniques
NASA Technical Reports Server (NTRS)
Vincent, R. A. (Editor)
1984-01-01
Topics of activities in the middle Atmosphere program covered include: lidar systems of aerosol studies; mesosphere temperature; upper atmosphere temperatures and winds; D region electron densities; nitrogen oxides; atmospheric composition and structure; and optical sounding of ozone.
Overview of aerosolized Florida red tide toxins: exposures and effects.
Fleming, Lora E; Backer, Lorraine C; Baden, Daniel G
2005-05-01
Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins.
Stratospheric Aerosol Measurements
NASA Technical Reports Server (NTRS)
Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)
1998-01-01
Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses implicating manmade fluorocarbons as cause of the --'ozone hole'; (5) The current soot loading is too small to be of environmental (radiative and chemical) consequence. However, the fractal nature of soot distinguishes it aerodynamically and radiatively from sulfuric acid droplets such that its stratospheric residence time is longer, mainly because of vertical transport against gravity due to gravito-photophoretic forces. Thus it may accumulate and become of environmental concern in the future.
DOE Office of Scientific and Technical Information (OSTI.GOV)
SA Edgerton; LR Roeder
The Earth’s surface temperature is determined by the balance between incoming solar radiation and thermal (or infrared) radiation emitted by the Earth back to space. Changes in atmospheric composition, including greenhouse gases, clouds, and aerosols can alter this balance and produce significant climate change. Global climate models (GCMs) are the primary tool for quantifying future climate change; however, there remain significant uncertainties in the GCM treatment of clouds, aerosol, and their effects on the Earth’s energy balance. The 2007 assessment (AR4) by the Intergovernmental Panel on Climate Change (IPCC) reports a substantial range among GCMs in climate sensitivity to greenhousemore » gas emissions. The largest contributor to this range lies in how different models handle changes in the way clouds absorb or reflect radiative energy in a changing climate (Solomon et al. 2007). In 1989, the U.S. Department of Energy (DOE) Office of Science created the Atmospheric Radiation Measurement (ARM) Program within the Office of Biological and Environmental Research (BER) to address scientific uncertainties related to global climate change, with a specific focus on the crucial role of clouds and their influence on the transfer of radiation in the atmosphere. To address this problem, BER has adopted a unique two-pronged approach: * The ARM Climate Research Facility (ACRF), a scientific user facility for obtaining long-term measurements of radiative fluxes, cloud and aerosol properties, and related atmospheric characteristics in diverse climate regimes. * The ARM Science Program, focused on the analysis of ACRF data to address climate science issues associated with clouds, aerosols, and radiation, and to improve GCMs. This report describes accomplishments of the BER ARM Program toward addressing the primary uncertainties related to climate change prediction as identified by the IPCC.« less
Overview of Aerosolized Florida Red Tide Toxins: Exposures and Effects
Fleming, Lora E.; Backer, Lorraine C.; Baden, Daniel G.
2005-01-01
Florida red tide is caused by Karenia brevis, a dinoflagellate that periodically blooms, releasing its potent neurotoxin, brevetoxin, into the surrounding waters and air along the coast of the Gulf of Mexico. Exposure to Florida red tide toxins has been associated with adverse human health effects and massive fish and marine mammal deaths. The articles in this mini-monograph describe the ongoing interdisciplinary and interagency research program that characterizes the exposures and health effects of aerosolized Florida red tide toxins (brevetoxins). The interdisciplinary research program uses animal models and laboratory studies to develop hypotheses and apply these findings to in situ human exposures. Our ultimate goal is to develop appropriate prevention measures and medical interventions to mitigate or prevent adverse health effects from exposure to complex mixtures of aerosolized red tide toxins. PMID:15866773
Recent Rainfall and Aerosol Chemistry From Bermuda
NASA Astrophysics Data System (ADS)
Landing, W. M.; Shelley, R.; Kadko, D. C.
2014-12-01
This project was devoted to testing the use of Be-7 as a tracer for quantifying trace element fluxes from the atmosphere to the oceans. Rainfall and aerosol samples were collected between June 15, 2011 and July 27, 2013 at the Bermuda Institute of Ocean Sciences (BIOS) located near the eastern end of the island of Bermuda. Collectors were situated near ground level, clear of surrounding vegetation, at a meteorological monitoring station in front of the BIOS laboratory, about 10 m above sea level. This is a Bermuda Air Quality Program site used for ambient air quality monitoring. To quantify the atmospheric deposition of Be-7, plastic buckets were deployed for collection of fallout over ~3 week periods. Wet deposition was collected for trace element analysis using a specially modified "GEOTRACES" N-CON automated wet deposition collector. Aerosol samples were collected with a Tisch TE-5170V-BL high volume aerosol sampler, modified to collect 12 replicate samples on acid-washed 47mm diameter Whatman-41 filters, using procedures identical to those used for the US GEOTRACES aerosol program (Morton et al., 2013). Aerosol and rainfall samples were analyzed for total Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Zr, Cd, Sb, Ba, La, Ce, Nd, Pb, Th, and U using ICPMS. Confirming earlier data from Bermuda, strong seasonality in rainfall and aerosol loading and chemistry was observed, particularly for aerosol and rainfall Fe concentrations when Saharan dust arrives in July/August with SE trajectories.
An Overview of the Tropospheric Aerosol Radiative Forcing Observational Experiment
NASA Technical Reports Server (NTRS)
Russell, P. B.; Chan, K. Roland (Technical Monitor)
1997-01-01
Aerosol effects on atmospheric radiation are a leading source of uncertainty in predicting future climate. As a result, the International Global Atmospheric Chemistry Program has established a Focus on Atmospheric Aerosols (IGAC/FAA) and endorsed a series of aerosol field campaigns. TARFOX, the second in the IGAC/FAA series, was designed to reduce this uncertainty by measuring aerosol properties and effects in the US eastern seaboard, where one of the world's major plumes of industrial haze moves from the continent over the Atlantic Ocean. TARFOX's objectives are to: 1. Make simultaneous measurements of: (a) aerosol effects on radiation fields, and (b) the chemical, physical, and optical properties of the aerosols causing those effects. 2. Perform a variety of closure studies by using overdetermined data sets to test the mutual consistency of measurements and calculations of a wide range of aerosol properties and effects. 3. Use the results of the closure studies to assess and reduce uncertainties in estimates of aerosol radiative forcing, as well as to guide future field programs. An important subset of the closure studies is tests and improvements of algorithms used to derive aerosol properties and radiative effects from satellite measurements. The TARFOX Intensive Field Period (IFP) was conducted July 10-31, 1996. It included coordinated measurements from four satellites (GOES-8, NOAA-14, ERS-2, LANDSAT), four aircraft (ER-2, C-130, C-131, and a modified Cessna), land sites, and ships. A variety of aerosol conditions was sampled, ranging from relatively clean behind frontal passages to moderately polluted with aerosol optical depths exceeding 0.5 at mid-visible wavelengths. The latter conditions included separate incidents of enhancements caused primarily by anthropogenic sources and another incident of enhancement apparently influenced by recent fog processing. Spatial gradients of aerosol optical thickness were sampled to aid in isolating aerosol effects from other radiative effects and to more tightly constrain closure tests, including those of satellite retrievals. This talk gives an overview of TARFOX goals, rationale, methods, and initial key findings.
INTEGRATION OF SATELLITE-DERIVED AEROSOL DATA INTO THE AIR QUALITY APPLICATIONS
Historically, the only source of aerosol air quality data available on an ongoing and systematic basis at national levels was generated by ambient air monitoring networks put in place for the US EPA's Air Quality Programs. Over the past several years, the remote sensing of aeros...
NASA/DERA Collaborative Program
NASA Technical Reports Server (NTRS)
Whitefield, Phillip D.; Hagen, Donald E.; Wormhoudt, Jody C.; Miake-Lye, Richard C.; Brundish, Kevin; Wilson, Christopher W.; Wey, Chowen (Technical Monitor)
2002-01-01
This report is an interim report. The work reported are the results from the combustor testing, the first phase of testing in the DERA/NASA collaborative program. A program of work was developed by DERA and NASA utilizing specialist facilities within the UK, and specialist measurement techniques developed within the U.S. Under a Memorandum of Understanding (MoU) between the UK and U.S. governments, the joint UK/U.S. funded program commenced. The objective of the program was to make combustor and engine exit plane emissions measurements, including particulate and sulphur measurements, for kerosene fuels with different sulphur levels. The combustor test program was performed in August/September 2000. Although probe issues complicated the test program, a consistent set of data, including CO, NO(x), NO, NO2, CO2, O2, smoke number, particulate number density and size distribution, SO2, SO3 and HONO were collected at the exit plane of the DERA TRACE engine combustor. A second probe was utilized to measure spatial location of CO, NO(x), NO, NO2 and CO2 concentrations. Data are therefore available for development of aerosol, particulate and aerosol precursor chemistry sub-models for inclusion into CFD. Inlet boundary conditions have been derived at the exit of the combustion system for the modelling of the DERA TRACE engine. The second phase of the program is to perform identical measurements at the engine exit, to allow a full data set to be available. This will be performed in July 2001 at the Glenn test facility, DERA Pyestock.
NASA Technical Reports Server (NTRS)
Deepak, A.; Becher, J.
1979-01-01
Advanced remote sensing techniques and inversion methods for the measurement of characteristics of aerosol and gaseous species in the atmosphere were investigated. Of particular interest were the physical and chemical properties of aerosols, such as their size distribution, number concentration, and complex refractive index, and the vertical distribution of these properties on a local as well as global scale. Remote sensing techniques for monitoring of tropospheric aerosols were developed as well as satellite monitoring of upper tropospheric and stratospheric aerosols. Computer programs were developed for solving multiple scattering and radiative transfer problems, as well as inversion/retrieval problems. A necessary aspect of these efforts was to develop models of aerosol properties.
Aerosol Remote Sensing from AERONET, the Ground-Based Satellite
NASA Technical Reports Server (NTRS)
Holben, Brent N.
2012-01-01
Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.
NASA Astrophysics Data System (ADS)
Iarlori, Marco; Rizi, Vincenzo; D'Amico, Giuseppe; Freudenthaler, Volker; Wandinger, Ulla; Grillo, Aurelio
L'Aquila (Italy) lidar station is part of the EARLINET (European Aerosol Research Lidar Network) since its beginning in the 2000. In the EARLINET community great efforts are devoted to the quality-assurance of the aerosol optical properties inserted in the database. To this end, each lidar station performed intercomparisons with reference instruments, a series of internal hardware checks in order to assess the quality of their instruments and exercises to test the algorithms used to retrieve the aerosol optical parameters. In this paper we give an overview of our experience within EARLINET qualityassurance (QA) program, which was adopted for the Raman lidar (RL) operated in the AUGER Observatory. This program could be systematically adopted for the lidar systems needed for the current and upcoming UHECR experiments, like CTA (Cherenkov Telescope Array).
NASA Technical Reports Server (NTRS)
Schmid, B.; Michalsky, J.; Halthore, R.; Beauharnois, M.; Harrison, L.; Livingston, J.; Russell, P.; Holben, B.; Eck, T.; Smirnov, A.
2000-01-01
In the Fall of 1997 the Atmospheric Radiation Measurement (ARM) program conducted an Intensive Observation Period (IOP) to study aerosols. Five sun-tracking radiometers were present to measure the total column aerosol optical depth. This comparison performed on the Southern Great Plains (SGP) demonstrates the capabilities and limitations of modern tracking sunphotometers at a location typical of where aerosol measurements are required. The key result was agreement in aerosol optical depth measured by 4 of the 5 instruments within 0.015 (rms). The key to this level of agreement was meticulous care in the calibrations of the instruments.
Impact of intensive dust outbreaks on marine primary production as seen by satellites
NASA Astrophysics Data System (ADS)
Papadimas, Christos; Hatzianastassiou, Nikos; Mihalopoulos, Nikos; Kanakidou, Maria
2016-04-01
The impact of intensive dust outbreaks from the African continent on the marine primary production of the Mediterranean sea is here investigated using MODIS satellite observations of atmospheric aerosol optical depth and chlorophyll-a in the seawater. Dust outbreak episodes in the area are detected based on aerosol relevant satellite observations over a 12-year period from 2003 to 2014. For a total of 167 identified episodes, correlations between aerosol optical depth and chlorophyll-a are investigated both on regional and on a pixel by pixel basis as well as for simultaneous or time-lagged satellite observations. The identified co-variations are thoroughly discussed in view of the impact of nutrient atmospheric deposition on the marine biology in the Mediterranean Sea ecosystem. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA - PANOPLY (Pollution Alters Natural Aerosol Composition: implications for Ocean Productivity, cLimate and air qualitY) grant.
NASA Technical Reports Server (NTRS)
Campbell, James R.; Hlavka, Dennis L.; Welton, Ellsworth J.; Flynn, Connor J.; Turner, David D.; Spinhirne, James D.; Scott, V. Stanley, III; Hwang, I. H.; Einaudi, Franco (Technical Monitor)
2001-01-01
Atmospheric radiative forcing, surface radiation budget, and top of the atmosphere radiance interpretation involves a knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of Energy through I the Atmospheric Radiation Measurement (ARM) program has constructed four long- term atmospheric observing sites in strategic climate regimes (north central Oklahoma, In Barrow. Alaska, and Nauru and Manus Islands in the tropical western Pacific). Micro Pulse Lidar (MPL) systems provide continuous, autonomous observation of all significant atmospheric cloud and aerosol at each of the central ARM facilities. Systems are compact and transmitted pulses are eye-safe. Eye-safety is achieved by expanding relatively low-powered outgoing Pulse energy through a shared, coaxial transmit/receive telescope. ARM NIPL system specifications, and specific unit optical designs are discussed. Data normalization and calibration techniques are presented. A multiple cloud boundary detection algorithm is also described. These techniques in tandem represent an operational value added processing package used to produce normalized data products for Cloud and aerosol research and the historical ARM data archive.
NASA Astrophysics Data System (ADS)
Malm, William C.; Schichtel, Bret A.; Hand, Jenny L.; Collett, Jeffrey L.
2017-10-01
Recent modeling and field studies have highlighted a relationship between sulfate concentrations and secondarily formed organic aerosols related to isoprene and other volatile biogenic gaseous emissions. The relationship between these biogenic emissions and sulfate is thought to be primarily associated with the effect of sulfate on aerosol acidity, increased aerosol water at high relative humidities, and aerosol volume. The Interagency Monitoring of Protected Visual Environments (IMPROVE) program provides aerosol concentration levels of sulfate (SO4) and organic carbon (OC) at 136 monitoring sites in rural and remote areas of the United States over time periods of between 15 and 28 years. This data set allows for an examination of relationships between these variables over time and space. The relative decreases in SO4 and OC were similar over most of the eastern United States, even though concentrations varied dramatically from one region to another. The analysis implied that for every unit decrease in SO4 there was about a 0.29 decrease in organic aerosol mass (OA = 1.8 × OC). This translated to a 2 μg/m3 decrease in biogenically derived secondary organic aerosol over 15 years in the southeastern United States. The analysis further implied that 35% and 27% in 2001 and 2015, respectively, of average total OA may be biogenically derived secondary organic aerosols and that there was a small but significant decrease in OA not linked to changes in SO4 concentrations. The analysis yields a constraint on ambient SO4-OC relationships that should help to refine and improve regional-scale chemical transport models.
Hwang, S-K; Jin, H; Kwon, J T; Chang, S-H; Kim, T H; Cho, C-S; Lee, K H; Young, M R; Colburn, N H; Beck, G R; Yang, H-S; Cho, M-H
2007-09-01
The long-term survival of lung cancer patients treated with conventional therapies remains poor and therefore the need for novel approaches remains high. This has led to the re-emergence of aerosol delivery as a therapeutic intervention. In this study, glucosylated polyethylenimine (GPEI) was used as carrier to investigate programmed cell death 4 (PDCD4) and PDCD4 mutant (D418A), an eIF4A-binding mutant, on PDCD4-related signaling and activator protein-1 (AP-1) activity in the lungs of AP-1 luciferase reporter mice. After confirming the efficiency of GPEI as a carrier in lungs, the effects of aerosol-delivered PDCD4 were investigated in AP-1 luciferase reporter mice. Aerosol delivery of GPEI/PDCD4 through a nose-only inhalation facilitated the apoptosis of lungs whereas aerosol PDCD4 mutant did not. Also, such aerosol delivery regulated proteins relevant to cell-cycle control and suppressed AP-1 activity. Results obtained by western blot analysis, immunohistochemistry, luciferase assay and deoxynucleotidyl-transferase-mediated nick end labeling study suggest that combined actions such as facilitating apoptosis, controlling cell cycle and suppression of AP-1 activity by PDCD4 may provide useful tool for designing lung tumor prevention and treatment by which PDCD4 functions as a transformation suppressor in the future.
Aerosol transport over Siberia: analysis of the summer 2013 YAK-AEROSIB aircraft campaign
NASA Astrophysics Data System (ADS)
Ancellet, Gerard; Penner, Johannes; Kokhanenko, Grigorii; Arshinov, Mikhail; Chernov, Dimitry; Kozlov, Valery; Paris, Jean Daniel; Pruvost, Arnaud; Belan, Boris; Nedelec, Philippe; Pelon, Jacques; Law, Kathy
2014-05-01
Transport and transformation of aerosols related to forest fires and Eastern Asia anthropogenic emissions have been identified as very important questions to understand the Arctic climate. Two aircraft campaigns have been conducted over Siberia in summer 2012 and 2013 with in-situ measurements by aerosol spectrometers and also by a 532 nm backscatter lidar in 2013. The aerosol data can be also combined with CO measurements measured on-board the aircraft to identify the aerosol pollution sources. The analysis of the transport processes has been performed with the FLEXPART Lagrangian model run either in the forward or backward mode. While the 2012 campaign is characterized by anticyclonic conditions and strong forest fire emissions, the 2013 campaign corresponds to upward lifting of Northern China emissions. Comparisons with satellite data obtained with the CALIPSO mission for the two summer periods will be presented to identify the spatial extent and the temporal evolution of the pollution plumes and also to test the ability of the satellite data to derive the aerosol types. This work was funded by CNRS (France), the French Ministry of Foreign Affairs, CEA (France), Presidium of RAS (Program No. 4), Brunch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5), Interdisciplinary integration projects of Siberian Branch of RAS (No. 35, No. 70, No. 131), Russian Foundation for Basic Research (grants No 14-05-00526, 14-05-00590).
Chemistry of Atmospheric Aerosols at Pacifichem 2015 Congress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nizkorodov, Sergey
This grant was used to provide participant support for a symposium entitled “Chemistry of Atmospheric Aerosols” at the 2015 International Chemical Congress of Pacific Basin Societies (Pacifichem) that took place in Honolulu, Hawaii, USA, on December 15-20, 2015. The objective was to help attract both distinguished scientists as well as more junior researchers, including graduate students, to this international symposium by reducing the financial barrier for its attendance. It was the second time a symposium devoted to Atmospheric Aerosols was part of the Pacifichem program. This symposium provided a unique opportunity for the scientists from different countries to gather inmore » one place and discuss the cutting edge advances in the cross-disciplinary areas of aerosol research. To achieve the highest possible impact, the PI and the symposium co-organizers actively advertised the symposium by e-mail and by announcements at other conferences. A number of people responded, and the end result was a very busy program with about 100 oral and poster presentation described in the attached PDF file. Presentations by invited speakers occupied approximately 30% of time in each of the sessions. In addition to the invited speakers, each session also had contributed presentations, including those by graduate students and postdoctoral researchers. This symposium gathered established aerosol chemists from a number of countries including United States, Canada, China, Japan, Korea, Australia, Brazil, Hongkong, Switzerland, France, and Germany. There were plenty of time for the attendees to discuss new ideas and potential collaborations both during the oral sessions and at the poster sessions of the symposium. The symposium was very beneficial to graduate student researchers, postdoctoral fellows, and junior researchers whose prior exposure to international aerosol chemistry science had been limited. The symposium provided junior researchers with a much broader perspective of aerosol chemistry than that afforded by attending a national meeting. The oral and platform presentation abstracts from the symposium were published in the Pacifichem Congress program.« less
Airborne Solar Radiant Flux Measurements During ACE-2
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Russell, Philip B.; Jonsson, Haflidi
2000-01-01
Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. In the ACE 2 program the solar radiant fluxes were measured on the Pelican aircraft and the UK Met Office C130. This poster will show results from the measurements for the aerosol effects during the clear column days. We will compare the results with calculations of the radiant fluxes.
Identification and validation of nebulized aerosol devices for sputum induction
Davidson, Warren J; Dennis, John; The, Stephanie; Litoski, Belinda; Pieron, Cora; Leigh, Richard
2014-01-01
Induced sputum cell count measurement has proven reliability for evaluating airway inflammation in patients with asthma and other airway diseases. Although the use of nebulizer devices for sputum induction is commonplace, they are generally labelled as single-patient devices by the manufacturer and, therefore, cannot be used for multiple patients in large clinical sputum induction programs due to infect ion-control requirements. Accordingly, this study investigated the aerosol characteristics of alternative devices that could be used in such programs. BACKGROUND: Induced sputum cell counts are a noninvasive and reliable method for evaluating the presence, type and degree of airway inflammation in patients with asthma. Currently, standard nebulizer devices used for sputum induction in multiple patients are labelled as single-patient devices by the manufacturer, which conflicts with infection prevention and control requirements. As such, these devices cannot feasibly be used in a clinical sputum induction program. Therefore, there is a need to identify alternative nebulizer devices that are either disposable or labelled for multi-patient use. OBJECTIVE: To apply validated rigorous, scientific testing methods to identify and validate commercially available nebulizer devices appropriate for use in a clinical sputum induction program. METHODS: Measurement of nebulized aerosol output and size for the selected nebulizer designs followed robust International Organization for Standardization methods. Sputum induction using two of these nebulizers was successfully performed on 10 healthy adult subjects. The cytotechnologist performing sputum cell counts was blinded to the type of nebulizer used. RESULTS: The studied nebulizers had variable aerosol outputs. The AeroNeb Solo (Aerogen, Ireland), Omron NE-U17 (Omron, Japan) and EASYneb II (Flaem Nuova, Italy) systems were found to have similar measurements of aerosol size. There was no significant difference in induced sputum cell results between the AeroNeb Solo and EASYneb II devices. DISCUSSION: There is a need for rigorous, scientific evaluation of nebulizer devices for clinical applications, including sputum induction, for measurement of cell counts. CONCLUSION: The present study was the most comprehensive analysis of different nebulizer devices for sputum induction to measure cell counts, and provides a framework for appropriate evaluation of nebulizer devices for induced sputum testing. PMID:24288700
Aerosol physical properties in the stratosphere (APPS) radiometer design
NASA Technical Reports Server (NTRS)
Gray, C. R.; Woodin, E. A.; Anderson, T. J.; Magee, R. J.; Karthas, G. W.
1977-01-01
The measurement concepts and radiometer design developed to obtain earth-limb spectral radiance measurements for the Aerosol Physical Properties in the Stratosphere (APPS) measurement program are presented. The measurements made by a radiometer of this design can be inverted to yield vertical profiles of Rayleigh scatterers, ozone, nitrogen dioxide, aerosol extinction, and aerosol physical properties, including a Junge size-distribution parameter, and a real and imaginary index of refraction. The radiometer design provides the capacity for remote sensing of stratospheric constituents from space on platforms such as the space shuttle and satellites, and therefore provides for global measurements on a daily basis.
Theoretical Investigations of Clouds and Aerosols in the Stratosphere and Upper Troposphere
NASA Technical Reports Server (NTRS)
Toon, Owen B.
2005-01-01
support of the Atmospheric Chemistry Modeling and Data Analysis Program. We investigated a wide variety of issues involving ambient stratospheric aerosols, polar stratospheric clouds or heterogeneous chemistry, analysis of laboratory data, and particles in the upper troposphere. The papers resulting from these studies are listed below. In addition, I participated in the 1999-2000 SOLVE mission as one of the project scientists and in the 2002 CRYSTAL field mission as one of the project scientists. Several CU graduate students and research associates also participated in these mission, under support from the ACMAP program, and worked to interpret data. During the past few years my group has completed a number of projects under the
NASA Technical Reports Server (NTRS)
Prospero, J. M.; Savoie, D.; Snowdon, T.; Ewbank, P.
1983-01-01
A network of six sun photometers was placed in the central and northeast United States during the months of July through October, 1931. The objective of the program was to obtain measurements of atmospheric turbidity which can be related to the concentration of visibility-degrading pollutants in the atmosphere. These measurements serve as ground truth for a program to develop remote sensing techniques for measuring the vertically integrated aerosol concentrations in pollution episodes. The sun photometers measure the direct solar radiation in four passbands: 380 nm, 500 nm, 875 nm and 940 nm. The first three passbands will be used for measuring the aerosol optical depth and the last for measuring precipitable water.
Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO)
NASA Technical Reports Server (NTRS)
McCormick, M. Patrick; Winker, David M.
1998-01-01
This paper will describe the planned 3-year Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations (PICASSO) mission, its instrumentation and implementation. It will use LITE and other data, plus analyses, to show the feasibility of such a mission. PICASSO is being proposed for NASA's Earth System Science Pathfinder (ESSP) program with launch predicted in 2003.
International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects
NASA Technical Reports Server (NTRS)
Pueschel, Rudolf F. (Editor)
1991-01-01
Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).
NASA Technical Reports Server (NTRS)
1979-01-01
Research to help develop better understanding of the role of aerosols in the Earth's radiative balance is summarized. Natural volcanic injections of aerosols into the stratosphere to understand and model any resultant evidence of climate change are considered. The approach involves: (1) measurements from aircraft, balloon and ground based platforms which complement and enhance the aerosol information derived from satellite data; (2) development of instruments required for some of these measurements; (3) theoretical and laboratory work to aid in interpreting and utilizing space based and in situ data; and (4) preparation for and execution of concentrated observations of stratospheric aerosols following a future large volcanic eruption.
NASA Astrophysics Data System (ADS)
Robinson, D. Q.; Maggi, B. H.; Krumm, D. K.
2004-12-01
NASA places great emphasis on developing partnerships with education communities, including collaborations with university scientists, K-16 science educators and students. Two universities contributing to this effort through their involvement with NASA satellite based research missions, CALIPSO and CloudSat, are Hampton University and Colorado State University. Both universities provide atmospheric research scientists for the missions and leadership for the Education and Outreach Programs developed for CALIPSO and CloudSat. These satellite-based research missions are co-manifested for launch during the spring 2004 and are included in the Afternoon Constellation also known as the "A-Train" satellite formation. The A-Train will consist of six missions flying in close proximity, providing combined detailed observations about the Earth's atmosphere allowing scientists to make better predictions related to climate change. CloudSat will use radar and provide a global survey of cloud properties to aid with improving cloud models and the accuracy of weather forecasts. CALIPSO will use Lidar to detect size and distribution of aerosols that will aid in improving our understanding of the role aerosols and clouds play in Earth's climate system. Each of the A-Train missions has a unique education and outreach program for students and teachers. Included in the CALIPSO and CloudSat education and outreach is a partnership with the GLOBE Program. GLOBE involves students worldwide in data collection and mission observations. The GLOBE program is a network of K-14 schools, science centers, after school programs, and environmental clubs from over 105 countries. Students participating in GLOBE collect scientific data according to precise protocols and enter the data into a central database allowing both scientists and students to utilize the information collected. The CALIPSO and CloudSat partnership with GLOBE involves the enlistment of student assistance worldwide for data collection that will be used by both missions. Students use the existing GLOBE protocols on aerosols and clouds to collect data as the satellites pass over their schools. CloudSat scientists will involve students by having them report visual observations related to cloud cover, cloud type and precipitation. This information will be compared to the CloudSat radar data to determine the accuracy of the satellite radar unit. CALIPSO will have students collect and report on aerosol measurements taken with a handheld sun photometer. These measurements will then be compared to those taken with the lidar riding on the satellite. Climate change and the effects aerosols have on climate are current topics in schools today. It now appears likely that anthropogenic aerosols resulting from industrial activities and agricultural burning are affecting weather and climate in some regions of the world. The data collected by students internationally for CALIPSO and CloudSat will allow them to better understand the impacts made by humans on Earth's atmosphere and how these impacts are global in scope. In return, scientists gain a valuable resource giving them ground-based data in more locations than would be possible using established weather stations and research laboratories. The partnership established by the CALIPSO and CloudSat missions with the GLOBE program will provide an opportunity to enrich earth science education in schools with a sustainable connection to NASA education.
A 3-D Model Study of Aerosol Composition and Radiative Forcing in the Asian-Pacific Region
NASA Technical Reports Server (NTRS)
Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xuepeng; Einaudi, Franco (Technical Monitor)
2000-01-01
The Georgia Tech/Goddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model will be used in analyzing the aerosol data in the ACE-Asia program. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosol and the processes that control these properties over the Asian-Pacific region, (2) to determine the aerosol radiative forcing over the Asian-Pacific region, and (3) to investigate the interaction between aerosol and tropospheric chemistry. We will present the GOCART aerosol simulations of sulfate, dust, carbonaceous, and sea salt concentrations, their optical thicknesses, and their radiative effects. We will also show the comparisons of model results with data taken from previous field campaigns, ground-based sun photometer measurements, and satellite observations. Finally, we will present our plan for the ACE-Asia study.
LANDSAT-D investigations in snow hydrology
NASA Technical Reports Server (NTRS)
Dozier, J.
1983-01-01
The atmospheric radiative transfer calculation program (ATARD) and its supporting programs (setting up atmospheric profile, making Mie tables and an exponential-sum-fitting table) were completed. More sophisticated treatment of aerosol scattering (including angular phase function or asymmetric factor) and multichannel analysis of results from ATRAD are being developed. Some progress was made on a Monte Carlo program for examining two dimensional effects, specifically a surface boundary condition that varies across a scene. The MONTE program combines ATRAD and the Monte Carlo method together to produce an atmospheric point spread function. Currently the procedure passes monochromatic tests and the results are reasonable.
The first near-infrared reflectance spectrum of an exoplanet
NASA Astrophysics Data System (ADS)
Desert, Jean-Michel
2017-08-01
Amongst the important results that came out in the field of exoplanetology is that clouds and hazes in exoplanet atmospheres seem to be ubiquitous. Their presence provides important information on the chemistry and composition of atmospheres, and have major impact on planets' energy budgets and evolutions. Aerosols are also important observationally because they prevent probing deeper atmospheric composition, and they have been the common interpretation in a long list of published featureless transmission spectra. However, none of these indirect detections can definitely confirm or deny the presence of aerosols; thus, we propose a program that will change our view on aerosols by looking at their reflectivity.Theoretical models and laboratory experiments have long speculated on the origins and properties of aerosols in exoplanet atmospheres. More recent studies have shown that photochemical hazes can be very reflective in the near-Infrared (NIR) for planets cooler than 900 K. We propose to tackle this revolutionizing idea by pioneering an observational program that will both test these new models and provide a novel way to study atmospheres of exoplanets.We will look for reflective hazes in the NIR with WFC3 and deliver the first geometric albedo spectrum (Ag) of an exoplanet: WASP-80b. We will measure expected reflectivity (Ag=0.5) at high level of confidence (7-Sigma), and put stringent limits on haze models. This program will provide a pathway towards the study of exoplanets around low mass-stars through their reflectivity, which is urgent since these will be the golden targets for JWST. Only HST can provide the required precision for such an experiment.
Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring
DOE Office of Scientific and Technical Information (OSTI.GOV)
Newton, G.J.; Hoover, M.D.; Grace, A.C. III
1995-12-01
From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and resultsmore » of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.« less
Vertical Transport of Aerosol Particles across Mountain Topography near the Los Angeles Basin
NASA Astrophysics Data System (ADS)
Murray, J. J.; Schill, S.; Freeman, S.; Bertram, T. H.; Lefer, B. L.
2015-12-01
Transport of aerosol particles is known to affect air quality and is largely dependent on the characteristic topography of the surrounding region. To characterize this transport, aerosol number distributions were collected with an Ultra-High Sensitivity Aerosol Spectrometer (UHSAS, DMT) during the 2015 NASA Student Airborne Research Program (SARP) in and around the Los Angeles Basin in Southern California. Increases in particle number concentration and size were observed over mountainous terrain north of Los Angeles County. Chemical analysis and meteorological lagrangian trajectories suggest orographic lifting processes, known as the "chimney effect". Implications for spatial transport and distribution will be discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seinfeld, John H.
This project addressed the following research need in the Atmospheric System Research (ASR) Science and Program Plan: "Measurements downwind of urban sources of aerosol particles and precursor gases have shown that the mass concentration of secondary organic aerosol (SOA) can be several-fold greater than can be explained on the basis of current model calculations using observed precursor concentrations. ASR will continue conducting laboratory experiments on both gas-phase and aqueous-phase SOA formation to characterize the particle formation and the organic gases that react to form new organic aerosol material on aerosol seeds. ASR will use these experiments to guide the developmentmore » of comprehensive chemical mechanisms... to guide the development of parameterizations that are simple enough to be applied to aerosol life cycle models."« less
NASA Astrophysics Data System (ADS)
Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.
2015-12-01
Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.
1993-04-01
not to be construed as an official Department of the Army position unless so designated by other authorizing documents. REPORT DOCUMENTATION PAGE...parameter sensitivity studies, and test procedure design . An experimental system providing reaL data on the parametters relevant to the calculations has been...experimental program was designed to exploit as much of the existing capabilities of the Ventilation Kinetics group as possible while keeping in mind
Overview of the NASA tropospheric environmental quality remote sensing program
NASA Technical Reports Server (NTRS)
Allario, F.; Ayers, W. G.; Hoell, J. M.
1979-01-01
This paper will summarize the current NASA Tropospheric Environmental Quality Remote Sensing Program for studying the global and regional troposphere from space, airborne and ground-based platforms. As part of the program to develop remote sensors for utilization from space, NASA has developed a series of passive and active remote sensors which have undergone field test measurements from airborne and ground platforms. Recent measurements with active lidar and passive gas filter correlation and infrared heterodyne techniques will be summarized for measurements of atmospheric aerosols, CO, SO2, O3, and NH3. These measurements provide the data base required to assess the sensitivity of remote sensors for applications to urban and regional field measurement programs. Studies of Earth Observation Satellite Systems are currently being performed by the scientific community to assess the capability of satellite imagery to detect regions of elevated pollution in the troposphere. The status of NASA sponsored research efforts in interpreting satellite imagery for determining aerosol loadings over land and inland bodies of water will be presented, and comments on the potential of these measurements to supplement in situ and airborne remote sensors in detecting regional haze will be made.
Scattering by randomly oriented ellipsoids: Application to aerosol and cloud problems
NASA Technical Reports Server (NTRS)
Asano, S.; Sato, M.; Hansen, J. E.
1979-01-01
A program was developed for computing the scattering and absorption by arbitrarily oriented and randomly oriented prolate and oblate spheroids. This permits examination of the effect of particle shape for cases ranging from needles through spheres to platelets. Applications of this capability to aerosol and cloud problems are discussed. Initial results suggest that the effect of nonspherical particle shape on transfer of radiation through aerosol layers and cirrus clouds, as required for many climate studies, can be readily accounted for by defining an appropriate effective spherical particle radius.
Particle nucleation in the tropical boundary layer and its coupling to marine sulfur sources
Clarke; Davis; Kapustin; Eisele; Chen; Paluch; Lenschow; Bandy; Thornton; Moore; Mauldin; Tanner; Litchy; Carroll; Collins; Albercook
1998-10-02
New particle formation in a tropical marine boundary layer setting was characterized during NASA's Pacific Exploratory Mission-Tropics A program. It represents the clearest demonstration to date of aerosol nucleation and growth being linked to the natural marine sulfur cycle. This conclusion was based on real-time observations of dimethylsulfide, sulfur dioxide, sulfuric acid (gas), hydroxide, ozone, temperature, relative humidity, aerosol size and number distribution, and total aerosol surface area. Classic binary nucleation theory predicts no nucleation under the observed marine boundary layer conditions.
NASA Astrophysics Data System (ADS)
Sciare, Jean; Dulac, François; Crenn, Vincent; Hamonou, Eric; Baisnée, Dominique; Nicolas, José B.; Pont, Véronique; Lambert, Dominique; Gheusi, François; Mallet, Marc; Tison, Emmanuel; Sauvage, Stéphane; Bourrianne, Thierry; Roberts, Gregory; Colomb, Aurélie; Pichon, Jean-Marc; Sellegri, Karine; Savelli, Jean-Luc
2015-04-01
As part of the MISTRALS/ChArMEx (Mediterranean Integrated Studies aT Regional And Local Scales/the Chemistry-Aerosol Mediterranean Experiment; http://www.mistrals-home.org; http://charmex.lsce.ipsl.fr) and the CORSiCA (http://www.obs-mip.fr/corsica) programs, 2-year continuous observations of near real-time chemical composition of submicron aerosols were performed between June 2012 & July 2014 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042), a remote marine site in the Western Mediterranean. Submicron organic aerosols (OA) and the major inorganic salts (sulfate, ammonium, nitrate) were monitored every 30 min using a Quadripole Aerosol Chemical Speciation Monitor (Q-ACSM; Aerodyne Res. Inc. MA, USA). Quality control of this large dataset (24-month continuous observations) was performed through closure studies (using co-located SMPS and TEOM-FDMS measurements), direct comparisons with other on-line / off-line instruments running in parallel (filter sampling, OPC, nephelometer …), and large intercomparison of 13 Q-ACSM performed within the EU-FP7 ACTRIS program (http://www.actris.net/). Source apportionment of OA was then performed on a monthly basis using the SourceFinder software (SoFi, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively). This monthly resolved source apportionment was first compared with co-located real-time tracer measurements (NOx, BC, CO, VOC …) available at the Cape Corsica station. Seasonal patterns of the various properties of (secondary) OOA (OSc, O/C ratio …) were then investigated from monthly resolved source apportionment results (monthly OOA mass spectra) obtained over the period June 2012 - July 2014. Acknowledgements: Atmospheric measurements performed at Cape Corsica Station were funded by CNRS-INSU, ADEME, CEA, and METEO-FRANCE. This work was carried out in the framework of the CORSiCA project funded by the Collectivité Territoriale de Corse through the Fonds Européen de Développement Régional of the European Operational Program 2007-2013 and the Contrat de Plan Etat Région.
Indian aerosols: present status.
Mitra, A P; Sharma, C
2002-12-01
This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuehne, David Patrick; Lattin, Rebecca Renee
The Rad-NESHAP program, part of the Air Quality Compliance team of LANL’s Compliance Programs group (EPC-CP), and the Radiation Instrumentation & Calibration team, part of the Radiation Protection Services group (RP-SVS), frequently partner on issues relating to characterizing air flow streams. This memo documents the most recent example of this partnership, involving performance testing of sulfur hexafluoride detectors for use in stack gas mixing tests. Additionally, members of the Rad-NESHAP program performed a functional trending test on a pair of optical particle counters, comparing results from a non-calibrated instrument to a calibrated instrument. Prior to commissioning a new stack samplingmore » system, the ANSI Standard for stack sampling requires that the stack sample location must meet several criteria, including uniformity of tracer gas and aerosol mixing in the air stream. For these mix tests, tracer media (sulfur hexafluoride gas or liquid oil aerosol particles) are injected into the stack air stream and the resulting air concentrations are measured across the plane of the stack at the proposed sampling location. The coefficient of variation of these media concentrations must be under 20% when evaluated over the central 2/3 area of the stack or duct. The instruments which measure these air concentrations must be tested prior to the stack tests in order to ensure their linear response to varying air concentrations of either tracer gas or tracer aerosol. The instruments used in tracer gas and aerosol mix testing cannot be calibrated by the LANL Standards and Calibration Laboratory, so they would normally be sent off-site for factory calibration by the vendor. Operational requirements can prevent formal factory calibration of some instruments after they have been used in hazardous settings, e.g., within a radiological facility with potential airborne contamination. The performance tests described in this document are intended to demonstrate the reliable performance of the test instruments for the specific tests used in stack flow characterization.« less
NASA Astrophysics Data System (ADS)
Smirnov, A.; Holben, B. N.; Kinne, S.; Nelson, N. B.; Stenchikov, G. L.; Broccardo, S. P.; Sowers, D.; Lobecker, E.; Ondrusek, M.; Zielinski, T. P.; Gray, L. M.; Frouin, R.; Radionov, V. F.; Smyth, T. J.; Zibordi, G.; Heller, M. I.; Slabakova, V.; Krüger, K.; Reid, E. A.; Istomina, L.; Vandermeulen, R. A.; O'Neill, N. T.; Levy, G.; Giles, D. M.; Slutsker, I.; Sorokin, M. G.; Eck, T. F.
2016-02-01
Sea-salt aerosol plays an important role in radiation balance and chemistry of marine atmosphere. Sea-salt production depends on various factors. There is a significant uncertainty in the parametrization of the sea-salt production and budget. Ship-based aerosol optical depth (AOD) measurements can be used as an important validation tool for various global models and in-situ measurements. The paper presents the current status of the Maritime Aerosol Network (MAN) which is a component of Aerosol Robotic Network. Since 2006 over 300 cruises were completed and data archive of more than 5500 measurement days is accessible at http://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . AOD measurements from ships of opportunity complemented island-based AERONET measurements and provided important reference points for satellite retrieved and modelled AOD climatology over the oceans. The program exemplifies mutually beneficial international, multi-agency effort in atmospheric aerosol optical studies over the oceans.
THAI Multi-Compartment Containment Test Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanzleiter, T.; Poss, G.; Funke, F.
2006-07-01
The THAI experimental programme includes combined-effect investigations on thermal hydraulics, hydrogen, and fission product (iodine and aerosols) behaviour in LWR containments under severe accident conditions. An overview on the experiments performed up to now and on the future test program is presented, in combination with a selection of typical results to illustrate the versatility of the test facility and the broad variety of topics investigated. (authors)
Aerosol formation and distribution in the Arctic during AGASP-II, March-April 1986
NASA Technical Reports Server (NTRS)
Schnell, Russell C.; Kahl, Jonathan D.; Herbert, Gary A.; Bodhaine, B. A.; Bridgman, Howard A.
1988-01-01
The Arctic Gas and Aerosol Sampling Program has undertaken the determination of the distribution, transport, chemistry, aerosol physics, and radiative effects of the 'Arctic haze' air-pollution phenomenon. Attention has been given the April 2-3, 1986 haze zone, with large condensation nuclei, SO2, and soot-carbon concentrations, which appeared near the Barrow Baseline Station. The composite trajectory of the haze zone has been determined, as has its probable source region. After travelling 10,000 km, the haze still had SO2, aerosol black carbon, and condensation nuclei concentrations in excess of those measured off the East Coast of the U.S. in January of the same year.
Metagenomic analysis of the airborne environment in urban spaces.
Be, Nicholas A; Thissen, James B; Fofanov, Viacheslav Y; Allen, Jonathan E; Rojas, Mark; Golovko, George; Fofanov, Yuriy; Koshinsky, Heather; Jaing, Crystal J
2015-02-01
The organisms in aerosol microenvironments, especially densely populated urban areas, are relevant to maintenance of public health and detection of potential epidemic or biothreat agents. To examine aerosolized microorganisms in this environment, we performed sequencing on the material from an urban aerosol surveillance program. Whole metagenome sequencing was applied to DNA extracted from air filters obtained during periods from each of the four seasons. The composition of bacteria, plants, fungi, invertebrates, and viruses demonstrated distinct temporal shifts. Bacillus thuringiensis serovar kurstaki was detected in samples known to be exposed to aerosolized spores, illustrating the potential utility of this approach for identification of intentionally introduced microbial agents. Together, these data demonstrate the temporally dependent metagenomic complexity of urban aerosols and the potential of genomic analytical techniques for biosurveillance and monitoring of threats to public health.
NASA Astrophysics Data System (ADS)
Sciare, Jean; Dulac, Francois; Feron, Anais; Crenn, Vincent; Sarda Esteve, Roland; Baisnee, Dominique; Bonnaire, Nicolas; Hamonou, Eric; Mallet, Marc; Lambert, Dominique; Nicolas, Jose B.; Bourrianne, Thierry; Petit, Jean-Eudes; Favez, Olivier; Canonaco, Francesco; Prevot, Andre; Mocnik, Grisa; Drinovec, Luka; Marpillat, Alexandre; Serrie, Wilfrid
2014-05-01
As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/), the CORSiCA (http://www.obs-mip.fr/corsica) and the ANR-ADRIMED programs, a large set of real-time measurements of carbonaceous aerosols was deployed in June 2013 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042). Submicron organic aerosols (OA) were monitored every 30 min using an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Res. Inc. MA, USA); Fine (PM2.5) Organic Carbon (OC) and Elemental Carbon (EC) were measured every 2h using an OCEC Sunset Field Instrument (Sunset Lab, OR, USA) and every 12h using a low-vol (Leckel) filter sampler running at 2.3m3/h. Equivalent Black Carbon (BC) was monitored using two Aethalometers (models AE31 and AE33, Magee Scientific, US & Aerosol d.o.o., Slovenia) and a MAAP instrument (Thermo). Quality control of this large dataset was performed through chemical mass closure studies (using co-located SMPS and TEOM-FDMS) and direct comparisons with other real-time instruments running in parallel (Particle-Into-Liquid-Sampler-Ion-Chromatograph for ions, filter sampling, ...). Source apportionment of OA was then performed using the SourceFinder software (SoFi v4.5, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively) and highlighting the major contribution of secondary OA in the Western Mediterranean during summer. Using this time-resolved chemical information, reconstruction of the optical aerosol properties were performed and compared with integrating nephelometer (Model 3563, TSI, US) and photoacoustic extinctiometer (PAX, DMT, US) measurements performed in parallel. Results of these different closure studies (chemical/physical/optical) are presented and discussed here in details. They highlight the central role of carbonaceous aerosols on the optical properties of aerosols at ground level in the Western Mediterranean Sea during summertime. Acknowledgements: Aerosol measurements performed at Cape Corsica Station were mainly funded by ANR, CNRS-INSU, ADEME, Collectivité Territoriale de Corse through EU-FEDER Operational program 2007-2013, CEA, METEO-FRANCE, MGR-KROP, AEROSOL D.O.O., ECOMESURE, and ENVICONTROL
CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars
NASA Technical Reports Server (NTRS)
Thorsen, Tyler; Fu, Qiang
2016-01-01
Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.
"Atmospheric Radiation Measurement (ARM) Research Facility at Oliktok Point Alaska"
NASA Astrophysics Data System (ADS)
Helsel, F.; Ivey, M.; Hardesty, J.; Roesler, E. L.; Dexheimer, D.
2017-12-01
Scientific Infrastructure To Support Atmospheric Science, Aerosol Science and UAS's for The Department Of Energy's Atmospheric Radiation Measurement Programs At The Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site designed to collect data and help determine the impact that clouds and aerosols have on solar radiation. AMF3 provides a scientific infrastructure to support instruments and collect arctic data for the international arctic research community. The infrastructure at AMF3/Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF3's present base line instruments include: scanning precipitation Radars, cloud Radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL) Along with all the standard metrological measurements. In addition AMF3 provides aerosol measurements with a Mobile Aerosol Observing System (MAOS). Ground support for Unmanned Aerial Systems (UAS) and tethered balloon flights. Data from these instruments and systems are placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments and systems are at the ARM Research Facility at Oliktok Point Alaska.
Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE)
NASA Technical Reports Server (NTRS)
Winker, D. M.; McCormick, M. P.
1994-01-01
The Lidar In-space Technology Experiment (LITE) is a multi-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. The LITE instrument is built around a three-wavelength ND:YAG laser and a 1-meter diameter telescope. The laser operates at 10 Hz and produces about 500 mJ per pulse at 1064 nm and 532 nm, and 150 mJ per pulse at 355 nm. The objective of the LITE program is to develop the engineering processes required for space lidar and to demonstrate applications of space-based lidar to remote sensing of the atmosphere. The LITE instrument was designed to study a wide range of cloud and aerosol phenomena. To this end, a comprehensive program of scientific investigations has been planned for the upcoming mission. Simulations of on-orbit performance show the instrument has sufficient sensitivity to detect even thin cirrus on a single-shot basis. Signal averaging provides the capability of measuring the height and structure of the planetary boundary layer, aerosols in the free troposphere, the stratospheric aerosol layer, and density profiles to an altitude of 40 km. The instrument has successfully completed a ground-test phase and is scheduled to fly on the Space Shuttle Discovery for a 9-day mission in September 1994.
Aerosol in the Pacific troposphere
NASA Technical Reports Server (NTRS)
Clarke, Antony D.
1989-01-01
The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.
NASA Astrophysics Data System (ADS)
Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.
2003-10-01
During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T>550ºC) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) mass concentrations were on average respectively 1.19±0.56 and 3.62±1.08 mgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 mgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope=1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these two methods for determining BC brings here new insights on the origin of carbonaceous aerosols in a complex mixture of different sources. It brings also to our attention that important deviations in BC levels are observed using three widely used EGA's techniques and most probably none of the EGA tested here are well adapted to fully characterize this aerosol mixture. Spherical, smooth and silico-aluminated fly-ash observed by an Analytical Scanning Electron Microscope (ASEM) confirm the influence of coal combustion on the carbonaceous aerosol load throughout the campaign. A rough calculation based on a BC/nss-SO4 mass ratio suggests that biomass burning could be responsible for half of the BC concentration recorded during the MINOS campaign. From the plot of BC as a function of TC, two linear correlations were observed corresponding to 2 times series (before and after 12 August). Such good correlations suggest, from a first look, that both BC and OC have similar origin and atmospheric transport. On the other hand, the plot of BC as a function of TC obtained from the 2-step thermal method applied to DEKATI Low Pressure Cascade Impactor samples does not show a similar correlation and points out a non conservative distribution of this ratio with 2 super micron modes enriched in OC, correlated with sea salt aerosols and probably originating from gas-to-particle conversion.
NASA Astrophysics Data System (ADS)
Sciare, J.; Cachier, H.; Oikonomou, K.; Ausset, P.; Sarda-Estève, R.; Mihalopoulos, N.
2003-07-01
During the major part of the Mediterranean Intensive Oxidant Study (MINOS) campaign (summer 2001, Crete Isl.), the Marine Boundary Layer (MBL) air was influenced by long range transport of biomass burning from the northern and western part of the Black Sea. During this campaign, carbonaceous aerosols were collected on quartz filters at a Free Tropospheric (FT) site, and at a MBL site together with size-resolved distribution of aerosols. Three Evolution Gas Analysis (EGA) protocols have been tested in order to better characterize the collected aged biomass burning smoke: A 2-step thermal method (Cachier et al., 1989) and a thermo-optical technique using two different temperature programs. The later temperature programs are those used for IMPROVE (Interagency Monitoring of Protected Visual Environments) and NIOSH 5040 (National Institute of Occupational Safety and Health). Artifacts were observed using the NIOSH temperature program and identified as interactions between carbon and dust deposited on the filter matrix at high temperature (T=550°C) under the pure helium step of the analysis. During the MINOS campaign, Black Carbon (BC) and Organic Carbon (OC) concentrations were on average respectively 1.19±0.56 and 3.62±1.08 μgC/m3 for the IMPROVE temperature program, and 1.09±0.36 and 3.75±1.24 μgC/m3 for the thermal method. Though these values compare well on average and the agreement between the Total Carbon (TC) measurements sample to sample was excellent (slope = 1.00, r2=0.93, n=56), important discrepancies were observed in determining BC concentrations from these two methods (average error of 33±22%). BC from the IMPROVE temperature program compared well with non-sea-salt potassium (nss-K) pointing out an optical sensitivity to biomass burning. On the other hand, BC from the thermal method showed a better agreement with non-sea-salt sulfate (nss-SO4), considered as a tracer for fossil fuel combustion during the MINOS campaign. The coupling between these two methods for determining BC brings here new insights on the origin of carbonaceous aerosols in a complex mixture of different sources. It brings also to our attention that important deviations in BC levels are observed using three widely used EGA techniques and most probably none of the EGA tested here are well adapted to fully characterize this aerosol mixture. Spherical, smooth and silico-aluminated fly-ash observed by Analytical Scanning Electron Microscope (ASEM) confirm the influence of coal combustion on the carbonaceous aerosol load throughout the campaign. A raw calculation based on BC/nss-SO4 mass ratio suggests that biomass burning could be responsible for half of the BC concentration recorded during the MINOS campaign. From the plot of BC as a function of TC, two linear correlations were observed corresponding to 2 times series (before and after 12 August). Such good correlations suggest, from a first look, that both BC and OC have similar origin and atmospheric transport. On the other hand, the plot of BC as a function of TC obtained from the 2-step thermal method applied to DEKATI Low Pressure Cascade Impactor samples does not show a similar correlation and points out a non conservative distribution of this ratio with 2 super micron modes enriched in OC, correlated with sea salt aerosols and probably originating from gas-to-particle conversion.
The international fine aerosol networks
NASA Astrophysics Data System (ADS)
Cahill, Thomas A.
1993-04-01
The adoption by the United States of a PIXE-based protocol for its fine aerosol network, after open competitions involving numerous laboratories and methods, has encouraged cooperation with other countries possessing similar capabilities and similar needs. These informal cooperative programs, involving about a dozen countries at the end of 1991, almost all use PIXE as a major component of the analytical protocols. The University of California, Davis, Air Quality Group assisted such programs through indefinite loans of a quality assurance sampler, the IMPROVE Channel A, and analyses at no cost of a small fraction of the samples taken in a side-by-side configuration. In December 1991, the World Meteorological Organization chose a protocol essentially identical to IMPROVE for the Global Atmospheric Watch (GAW) network and began deploying units, the IMPROVE Channel A, to sites around the world. Preferred analyses include fine (less than about 2.5 μm) mass, ions by ion chromatography and elements by PIXE + PESA (or, lacking that, XRF). This paper will describe progress in both programs, giving examples of the utility of the data and projecting the future expansion of the network to about 20 GAW sites by 1994.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wichner, R.P.
The program was designed to determine fission product and aerosol release rates from irradiated fuel under accident conditions, to identify the chemical forms of the released material, and to correlate the results with experimental and specimen conditions with the data from related experiments. These tests of PWR fuel were conducted and fuel specimen and test operating data are presented. The nature and rate of fission product vapor interaction with aerosols were studied. Aerosol deposition rates and transport in the reactor vessel during LWR core-melt accidents were studied. The Nuclear Safety Pilot Plant is dedicated to developing an expanded data basemore » on the behavior of aerosols generated during a severe accident.« less
Aerosol Filter Loading Data for a Simulated Jet Engine Test Cell Aerosol.
1979-08-01
media. M SECTION II TEST PROGRAM I. TESTING PROCEDURE Sheets of the filter media were obtained from Owens - Corning Fiberglas Corporation. Ten centimeter...loading cycle. 2. TEST FILTERS The four following glass fiber filter medias were obtained from Owens - Corning Fiberglas Corporation (OCF) and tested both...shown in Table 22. Filters were washed from the back side. 5. ONCLUSIONS Four glass fiber filters, specified in the contract, were obtained from Owens
Raman Lidar Measurements of Aerosol Optical Properties Performed at CNR- IMAA
NASA Astrophysics Data System (ADS)
Mona, L.; Amodeo, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Pandolfi, M.; Pappalardo, G.
2005-12-01
The lidar system for tropospheric aerosol study, located at CNR-IMAA in Tito Scalo, Potenza (40 °36'N, 15°44' E, 760 m above sea level), is a Raman/elastic lidar system operational since May 2000 in the framework of EARLINET (European Aerosol Research LIdar NETwork), the first lidar network for tropospheric aerosol study on continental scale. It provides independent measurements of aerosol extinction and backscatter coefficient profiles at 355 nm and aerosol backscatter profiles at 532 nm. Both the IMAA aerosol lidar system and the used algorithms for the retrieval of aerosol optical parameters have been successfully tested with different intercomparison exercises in the frame of the EARLINET quality assurance program. In the frame of EARLINET, regular measurements are performed three times per week, allowing to study the aerosol content typically present in the planetary boundary layer over Potenza. Particular attention is devoted to Saharan dust intrusions in Europe, and Saharan dust forecasts are distributed to all EARLINET stations. The large dataset of Saharan dust optical properties profiles collected at IMAA allowed to study the contribution of dust particles to the aerosol load typically present in our area as well as to investigate transformations of aerosol optical properties during the transport. Several intensive measurement campaigns have been performed at IMAA with this system to study optical properties of different types of aerosol, and how the transport and modification mechanisms and the water content affect these optical properties. In particular, direct transport of volcanic aerosol emitted in 2002 during the Etna eruptions was observed, and in summer 2004, aerosol layers related to forest fires smoke or pollution plume transported from Alaska, Canada and North America were observed at IMAA during the International Consortium for Atmospheric Research on Transport and Transformation (ICARTT) field campaign. Moreover, this system has been used during the Italian phase of the European AQUA Thermodynamic Experiment (EAQUATE) measurements campaign (6-10 September 2005) together with a water vapor Raman lidar for an integrated study of aerosol, water vapor and clouds. In order to obtain more information about microphysical properties of the particles, the IMAA lidar system for aerosol has been upgraded to increase the number of retrievable parameters. In particular, since July 2005, this system can provide independent measurements of aerosol extinction and backscatter profiles at 355 and 532 nm, and of aerosol backscatter profiles at 1064 nm. Moreover, other receiving channels were added to perform depolarization ratio measurements in order to obtain information about shape and orientation of aerosolic particles. Starting from October 2005, this upgraded system will be employed in the validation program of aerosol data products from the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite mission. ACKNOWLEDGMENTS The support of this work by the European Commission under grant EVRI-CT1999-40003 is gratefully acknowledged. The CNR-IMAA ground based facility for Earth Observation has been partly funded by PON 2000-2006, Misura II.1, MIUR.
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND... Volatile Organic Compounds (VOC) in Consumer Products and Reactive Organic Compounds in Aerosol Coating...
NASA Technical Reports Server (NTRS)
Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.;
2014-01-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.
CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars
NASA Technical Reports Server (NTRS)
Thorsen, Tyler; Fu, Qiang
2015-01-01
Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at mid-latitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30â€"50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.
Development of a global backscatter model for NASA's laser atmospheric wind sounder
NASA Technical Reports Server (NTRS)
Bowdle, David; Collins, Laurie; Mach, Douglas; Mcnider, Richard; Song, Aaron
1992-01-01
During the Contract Period April 1, 1989, to September 30, 1992, the Earth Systems Science Laboratory (ESSL) in the Research Institute at the University of Alabama in Huntsville (UAH) conducted a program of basic research on atmospheric backscatter characteristics, leading to the development of a global backscatter model. The ESSL research effort was carried out in conjunction with the Earth System Observing Branch (ES43) at the National Aeronautics and Space Administration (NASA) Marshall Space Flight Center, as part of NASA Contract NAS8-37585 under the Atmospheric Dynamics Program at NASA Headquarters. This research provided important inputs to NASA's GLObal Backscatter Experiment (GLOBE) program, especially in the understanding of global aerosol life cycles, and to NASA's Doppler Lidar research program, especially the development program for their prospective space-based Laser Atmospheric Wind Sounder (LAWS).
NASA Astrophysics Data System (ADS)
Nehrir, A. R.; Hoffman, D. S.; Repasky, K. S.; Todt, B.; Sharpe, T.; Half Red, C.; Carlsten, J. L.
2009-12-01
Coupled atmospheric components of the lower troposphere including aerosols and water vapor have a large affect on the chemical processes that drive the earth’s complex climate system. Aerosols can affect the earth’s global radiation budget directly by absorbing or reflecting incoming solar radiation, and indirectly by changing the microphysical properties of clouds by serving as cloud condensation nuclei (CCN). An increase in CCN results in higher cloud droplet concentration which has been shown to suppress drizzle formation and lead to more reflective clouds. The changes in the cloud microphysical structure due to the interaction of aerosols and water vapor result in more incoming solar radiation being reflected back into space, leading to a net negative radiative forcing in the global radiation budget. The uncertainty in this radiative forcing reflects the uncertainty in the understanding of the aerosol indirect effect and its role in the climate system. To better understand the aerosol direct and indirect effects, lidar measurements of aerosol properties and water vapor distributions can provide important information to enhance our understanding of the role of aerosols in the climate system. The LIDAR group at Montana State University has initiated a program to simultaneously study aerosols, water vapor, and cloud formation with high spatial and temporal resolution using both active and passive sensors. Aerosol distributions and radiative properties are currently being studied with a two-color LIDAR system at 1064 and 532 nm. In addition, a three color, high spectral resolution LIDAR system at 1064,532, and 355 nm has also been developed and is starting to take initial data. Daytime and nighttime boundary layer water vapor number density profiles are also currently being studied with an external cavity diode oscillator/diode amplifier based micro-pulsed differential absorption lidar (DIAL) instrument at the 830 nm water vapor absorption band. Cloud formation studies are being conducted by a simultaneous, spatially correlated digital sky imaging camera system where aerosol loading and water vapor distributions are monitored as a function of lateral distance to clouds. Furthermore, a commercially purchased sun/sky scanning solar radiometer (CIMEL 318) as part of the NASA run AERONET program is also being used to study aerosol loading and radiative transfer through the atmosphere. A brief description of these instruments will be presented as well as initial simultaneous results showing correlated data between lower tropospheric aerosols and boundary layer water vapor distributions over extended periods if time.
A Meteorological (humidity, temperature, aerosols)) mobile dial system: Concepts and design
NASA Technical Reports Server (NTRS)
Cahen, C.; Lesne, J. L.; Benard, J.; Ponsardin, P.
1986-01-01
Since 1982 a program was conducted to develop a mobile meteorological (humidity, temperature, aerosols) Differential Absorption Lidar (DIAL) devoted to the studies of the nuclear power plant atmospheric surroundings. The measurement objectives are defined according to the user needs and the lidar feasibility. The concepts and design adopted to meet both the requirement and the measurement objectives are described. Each sub-system is addressed sequentially: transmitting system, receiving system, detection system, and post detection.
A Decade of Field Changing Atmospheric Aerosol Research ...
Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri W. Hunt31Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT2AAAS Science and Technology Policy Fellow hosted by U.S. Environmental Protection Agency, National Center for Environmental Research3U.S. Environmental Protection Agency, National Center for Environmental ResearchA number of studies in the past decade have transformed the way we think about atmospheric aerosols. The advances include, but are not limited to, source apportionment of organics using aerosol mass spectrometer data, the volatility basis set approach, quantifying isoprene oxidation, and understanding the role of aqueous oxidation of organics on SOA formation. A series of grants funded by EPA just under ten years ago supported many of these advances. These projects make up the body of work awarded under two solicitations released by the EPA’s Science to Achieve Results (STAR) program: “Measurement, Modeling, and Analysis Methods for Airborne Carbonaceous Fine Particulate Matter” (2003) and “Source Apportionment of Particulate Matter” (2004). Our goal is to present the impact of the STAR solicitations and to show how they have pushed the field forward and led to new questions.In particular
NASA Technical Reports Server (NTRS)
Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.
2006-01-01
A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic properties of particles within a size distribution mode that accompanied changes in the sizes of those particles. This model was used to examine three specific cases in which the sampled aerosol evolved slowly over a period of hours or days.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Fengfei; Zhou, Tianjun; Qian, Yun
2014-01-31
In this study, we examined the responses of East Asian Summer Monsoon (EASM) to natural (solar variability and volcanic aerosols) and anthropogenic (greenhouse gasses and aerosols) forcings simulated in the 17 latest Coupled Model Intercomparison Program phase 5 (CMIP5) models with 105 realizations. The observed weakening trend of low-level EASM circulation during 1958-2001 is partly reproduced under all-forcing runs. A comparison of separate forcing experiments reveals that the aerosol-forcing plays a primary role in driving the weakened low-level monsoon circulation. The preferential cooling over continental East Asia caused by aerosol affects the monsoon circulation through reducing the land-sea thermal contrastmore » and results in higher sea level pressure over northern China. In the upper-level, both natural-forcing and aerosol-forcing contribute to the observed southward shift of East Asian subtropical jet through changing the meridional temperature gradient.« less
NASA Technical Reports Server (NTRS)
Prospero, Joseph M.; Maring, Hal; Savoie, Dennis
2003-01-01
The goal of the University of Miami Aerosol Group (UMAG) in this project was to make measurements of vertical profiles of aerosol properties and aerosol optical depth using a light aircraft. The UMAG developed a light aircraft aerosol package (LAAP) that was used in light aircraft (Cessna 172) during the Puerto Rico Dust Experiment (PRIDE). This field campaign took place on Puerto Rico during July 2000. Design details and results from the use of the LAAP were presented at TOMS Science team meetings on April 1998, April 1999, and May 2000. Results from the LAAP collected during the PRIDE Experiment were presented at the Fall Meeting of the American Geophysical Union, December 2000. Some of the results from the LAAP collected during the PRIDE Experiment have been accepted for publication in the Journal of Geophysical Research in a "topical section" made up of papers from the PRIDE Program.
2003-07-01
CH4, N2O, O3, etc. Aerosols Clouds ATMOSPHERIC COMPOSITION WATER CYCLE LAND-USE/ LAND-COVER CHANGE HUMAN CONTRIBUTIONS AND RESPONSES CARBON...Oceanographic Institution. Climate Variability and Change ATMOSPHERIC COMPOSITION CLIMATE VARIABILITY AND CHANGE GLOBAL WATER CYCLE LAND-USE/LAND-COVER CHANGE...their access to and use of water. CCSP-supported research on the global water cycle focuses on how natural processes and human activities influence the
Arctic Haze: Natural or Pollution?
1980-08-01
any of the four GMCC sites (the others are at Mauna Loa , American Samoa, and the South Pole), and has a program of research second in importance only...to Mauna Loa . Similarly, cooperation with Dr. Neal Brown of Poker Flat Research Range will continue. We expect our program at Poker Flat to last many...energetics and mass balance of the 1976 Augustine Volcano eruptions, J. Volcan . Geother. Res., Vol. 6, pp. 139-164, 1979. Shaw, G. E., Aerosols at Mauna
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy
2006-01-01
A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.
Design of the aerosol sampling manifold for the Southern Great Plains site
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leifer, R.; Knuth, R.H.; Guggenheim, S.F.
1995-04-01
To meet the needs of the ARM program, the Environmental Measurements Laboratory (EML) has the responsibility to establish a surface aerosol measurements program at the Southern Great Plains (SGP) site in Lamont, OK. At the present time, EML has scheduled installation of five instruments at SGP: a single wavelength nephelometer, an optical particle counter (OPC), a condensation particle counter (CPC), an optical absorption monitor (OAM), and an ozone monitor. ARM`s operating protocol requires that all the observational data be placed online and sent to the main computer facility in real time. EML currently maintains a computer file containing back trajectorymore » (BT) analyses for the SGP site. These trajectories are used to characterize air mass types as they pass over the site. EML is continuing to calculate and store the resulting trajectory analyses for future use by the ARM science team.« less
NASA Technical Reports Server (NTRS)
Dibb, Jack E.; Talbot, Robert W.; Gregory, Gerald L.
1992-01-01
Concentrations of the natural radionuclides Be-7 and Pb-210 in the Western Hemisphere Arctic atmosphere were determined during the recent NOAA Arctic Gas and Aerosol Sampling Program (AGASP 3) and NASA Global Tropospheric Experiment/Arctic Boundary Layer Expeditions (GTE/ABLE 3A and ABLE 3B) missions. Be-7 concentrations measured during the AGASP 3 mission north and west of Norway are in accord with previous results for high northern latitudes, but suggest that the 'stratospheric' air masses sampled at the highest elevations reached were significantly diluted with tropospheric air. Higher resolution sampling in the free troposphere of the North American Arctic during ABLE 3B revealed a layer of elevated Be-7 concentrations near 5 km. The distribution of Pb-210 in the high-altitude troposphere of North America during the summer was quite similar to distributions of more frequently measured aerosol species.
NASA Technical Reports Server (NTRS)
Menzel, Paul; Prins, Elaine
1995-01-01
This study attempts to assess the extent of burning and associated aerosol transport regimes in South America and the South Atlantic using geostationary satellite observations, in order to explore the possible roles of biomass burning in climate change and more directly in atmospheric chemistry and radiative transfer processes. Modeling and analysis efforts have suggested that the direct and indirect radiative effects of aerosols from biomass burning may play a major role in the radiative balance of the earth and are an important factor in climate change calculations. One of the most active regions of biomass burning is located in South America, associated with deforestation in the selva (forest), grassland management, and other agricultural practices. As part of the NASA Aerosol Interdisciplinary Program, we are utilizing GOES-7 (1988) and GOES-8 (1995) visible and multispectral infrared data (4, 11, and 12 microns) to document daily biomass burning activity in South America and to distinguish smoke/aerosols from other multi-level clouds and low-level moisture. This study catalogues the areal extent and transport of smoke/aerosols throughout the region and over the Atlantic Ocean for the 1988 (July-September) and 1995 (June-October) biomass burning seasons. The smoke/haze cover estimates are compared to the locations of fires to determine the source and verify the haze is actually associated with biomass burning activities. The temporal resolution of the GOES data (half-hourly in South America) makes it possible to determine the prevailing circulation and transport of aerosols by considering a series of visible and infrared images and tracking the motion of smoke, haze and adjacent clouds. The study area extends from 40 to 70 deg W and 0 to 40 deg S with aerosol coverage extending over the Atlantic Ocean when necessary. Fire activity is estimated with the GOES Automated Biomass Burning Algorithm (ABBA). To date, our efforts have focused on GOES-7 and GOES-8 ABBA development, algorithm development for aerosol monitoring, data acquisition and archiving, and participation in the SCAR-C and SCAR-B field programs which have provided valuable information for algorithm testing and validation. Implementation of the initial version of the GEOS-8 ABBA on case studies in North, Central, and South America has demonstrated the improved capability for monitoring diurnal fire activity and smoke/aerosol transport with the GOES-8 throughout the Western Hemisphere.
Evaluation of Aerosol-cloud Interaction in the GISS Model E Using ARM Observations
NASA Technical Reports Server (NTRS)
DeBoer, G.; Bauer, S. E.; Toto, T.; Menon, Surabi; Vogelmann, A. M.
2013-01-01
Observations from the US Department of Energy's Atmospheric Radiation Measurement (ARM) program are used to evaluate the ability of the NASA GISS ModelE global climate model in reproducing observed interactions between aerosols and clouds. Included in the evaluation are comparisons of basic meteorology and aerosol properties, droplet activation, effective radius parameterizations, and surface-based evaluations of aerosol-cloud interactions (ACI). Differences between the simulated and observed ACI are generally large, but these differences may result partially from vertical distribution of aerosol in the model, rather than the representation of physical processes governing the interactions between aerosols and clouds. Compared to the current observations, the ModelE often features elevated droplet concentrations for a given aerosol concentration, indicating that the activation parameterizations used may be too aggressive. Additionally, parameterizations for effective radius commonly used in models were tested using ARM observations, and there was no clear superior parameterization for the cases reviewed here. This lack of consensus is demonstrated to result in potentially large, statistically significant differences to surface radiative budgets, should one parameterization be chosen over another.
NASA Astrophysics Data System (ADS)
Hanley, J. T.; Mack, E. J.
1985-05-01
The overall objective of the program is the development of an effective screening agent to both visible and IR wavelengths utilizing pyrotechnically-generated hygroscopic aerosol. In pursuit of an effective IR wavelength screen and an increased understanding of the particle formation mechanisms and resultant size distribution, the primary objective of this year's effort was to evaluate the influence of an energetic binder (GAP) on the performance of two pyrotechnics, one which produced a KCL aerosol, the other a mixed aerosol, the other a mixed aerosol of MgCl2 and carbon. Comparison tests were run, in Calspan's 600 cu m test chamber, in which the performance of the energetic vs. non-energetic pyrotechnics was compared in terms of mass yield, payload mass extinction coefficient, aerosol decay rate and size distribution. A secondary objective of limited scope was to investigate the potential of using IR absorbing surface active agents to coat the smoke aerosol so as to enhance the smoke's IR wavelength absorption as well as inhibit subsequent aerosol evaporation upon exposure to decreasing humidity.
Development of the Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) Instrument
NASA Astrophysics Data System (ADS)
DeLand, M. T.; Colarco, P. R.; Kowalewski, M. G.; Gorkavyi, N.; Ramos-Izquierdo, L.
2017-12-01
Aerosol particles in the stratosphere ( 15-25 km altitude), both produced naturally and perturbed by volcanic eruptions and anthropogenic emissions, continue to be a source of significant uncertainty in the Earth's energy budget. Stratospheric aerosols can offset some of the warming effects caused by greenhouse gases. These aerosols are currently monitored using measurements from the Ozone Mapping and Profiling Suite (OMPS) Limb Profiler (LP) instrument on the Suomi NPP satellite. In order to improve the sensitivity and spatial coverage of these aerosol data, we are developing an aerosol-focused compact version of the OMPS LP sensor called Multi-Angle Stratospheric Aerosol Radiometer (MASTAR) to fly on a 3U Cubesat satellite, using a NASA Instrument Incubator Program (IIP) grant. This instrument will make limb viewing measurements of the atmosphere in multiple directions simultaneously, and uses only a few selected wavelengths to reduce size and cost. An initial prototype version has been constructed using NASA GSFC internal funding and tested in the laboratory. Current design work is targeted towards a preliminary field test in Spring 2018. We will discuss the scientific benefits of MASTAR and the status of the project.
NASA Technical Reports Server (NTRS)
Bergstrom, Robert W.; Russell, P. B.
2000-01-01
We estimate solar radiative flux changes due to aerosols over the mid-latitude North Atlantic by combining optical depths from AVHRR measurements with aerosol properties from the recent TARFOX program. Results show that, over the ocean the aerosol decreases the net radiative flux at the tropopause and therefore has a cooling effect. Cloud-free, 24-hour average flux changes range from -9 W/sq m near the eastern US coast in summer to -1 W/sq m in the mid-Atlantic during winter. Cloud-free North Atlantic regional averages range from -5.1 W/sq m in summer to -1.7 W/sq m in winter, with an annual average of -3.5 W/sq m. Cloud effects estimated from ISCCP data, reduce the regional annual average to -0.8 W/sq m. All values are for the moderately absorbing TARFOX aerosol (omega(0.55 microns) = 0.9); values for a nonabsorbing aerosol are approx. 30% more negative. We compare our results to a variety of other calculations of aerosol radiative effects.
Final Report for High Latitude Climate Modeling: ARM Takes Us Beyond Case Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Russell, Lynn M; Lubin, Dan
2013-06-18
The main thrust of this project was to devise a method by which the majority of North Slope of Alaska (NSA) meteorological and radiometric data, collected on a daily basis, could be used to evaluate and improve global climate model (GCM) simulations and their parameterizations, particularly for cloud microphysics. Although the standard ARM Program sensors for a less complete suite of instruments for cloud and aerosol studies than the instruments on an intensive field program such as the 2008 Indirect and Semi-Direct Aerosol Campaign (ISDAC), the advantage they offer lies in the long time base and large volume of datamore » that covers a wide range of meteorological and climatological conditions. The challenge has been devising a method to interpret the NSA data in a practical way, so that a wide variety of meteorological conditions in all seasons can be examined with climate models. If successful, climate modelers would have a robust alternative to the usual “case study” approach (i.e., from intensive field programs only) for testing and evaluating their parameterizations’ performance. Understanding climate change on regional scales requires a broad scientific consideration of anthropogenic influences that goes beyond greenhouse gas emissions to also include aerosol-induced changes in cloud properties. For instance, it is now clear that on small scales, human-induced aerosol plumes can exert microclimatic radiative and hydrologic forcing that rivals that of greenhouse gas–forced warming. This project has made significant scientific progress by investigating what causes successive versions of climate models continue to exhibit errors in cloud amount, cloud microphysical and radiative properties, precipitation, and radiation balance, as compared with observations and, in particular, in Arctic regions. To find out what is going wrong, we have tested the models' cloud representation over the full range of meteorological conditions found in the Arctic using the ARM North Slope of Alaska (NSA) data.« less
NASA Astrophysics Data System (ADS)
Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent
2013-04-01
The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.
Measurements of Aerosol Size Distributions in the Lower Troposphere over Northern Europe.
1981-06-01
ADAG 7 SCRIPPS INSTITUTION OF OCEANOGRAPHY LA JOLLA CA VISA--ETC F/6 4/ 1 MEASUREMENTS OF AEROSOL SIZE DISTRIBUTIONS IN THE LOWER TROPOSP--ETC(U) JUN... 1 I"’Zt J~ 9 PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK University of California, San Diego ARA 62101F 7...AIR FORCE HANSCOM AFB, MASSACHUSETTS 0 1731 k i J 1 Summary Airborne measurements of particle size distributions were made at several altitudes within
2011-03-01
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the United States Air...Breiman, T. Hennessy, E. T. Umland, and others. (1995). Evaluation of the Magnitude of the 1993 Hantavirus Outbreak in the Southwestern United States. The...Retention of Aerosol Particles in Two Different Collection Media 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S
2008-12-01
5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 6. AUTHOR( S ) 7...PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR...MONITOR’S ACRONYM( S ) 11. SPONSOR/MONITOR’S REPORT NUMBER( S ) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15
NASA Technical Reports Server (NTRS)
Jeong, Myeong-Jae; Li, Zhanqing
2010-01-01
Aerosol optical thickness (AOT) is one of aerosol parameters that can be measured on a routine basis with reasonable accuracy from Sun-photometric observations at the surface. However, AOT-derived near clouds is fraught with various real effects and artifacts, posing a big challenge for studying aerosol and cloud interactions. Recently, several studies have reported correlations between AOT and cloud cover, pointing to potential cloud contamination and the aerosol humidification effect; however, not many quantitative assessments have been made. In this study, various potential causes of apparent correlations are investigated in order to separate the real effects from the artifacts, using well-maintained observations from the Aerosol Robotic Network, Total Sky Imager, airborne nephelometer, etc., over the Southern Great Plains site operated by the U.S. Department of Energy's Atmospheric Radiation Measurement Program. It was found that aerosol humidification effects can explain about one fourth of the correlation between the cloud cover and AOT. New particle genesis, cloud-processed particles, atmospheric dynamics, and aerosol indirect effects are likely to be contributing to as much as the remaining three fourth of the relationship between cloud cover and AOT.
NEW TECHNOLOGY FOR THE CONTROL OF AEROSOLS FROM STATIONARY SOURCES
The paper discusses an EPA program to develop new technologies for controlling particulate matter from stationary sources, including both electrostatically augmented fabric filtration (ESFF) and electrostatic precipitators (ESPs). The first generation ESFF system, using an electr...
A mobile App for military operational entomology pesticide applications
USDA-ARS?s Scientific Manuscript database
Multiple field studies conducted for the Deployed War Fighter Protection (DWFP) research program have generated over 80 specific guidance points for innovative combinations of pesticide application equipment, pesticide formulations, and application techniques for aerosol and residual pesticide treat...
Energy and Environment Division annual report, 1978
DOE Office of Scientific and Technical Information (OSTI.GOV)
Camp, J.A.
1978-01-01
Research activities of this Division are reported under nine separate programs, namely: Energy Analysis; Solar Energy; Energy-Efficient Buildings; Chemical Process Research and Development; Environmental Research; Atmospheric Aerosol Research; Oil Shale Research; Instrumentation Development; and Combustion Research. A separate abstract was prepared for each of the nine programs, each of which contained several individual research summaries, with responsible researchers listed. All of the abstracts will appear in Energy Research Abstracts (ERA), and five will appear in Energy Abstracts for Policy Analysis (EAPA).
Stratospheric CCN sampling program
NASA Technical Reports Server (NTRS)
Rogers, C. F.
1981-01-01
When Mt. St. Helens produced several major eruptions in the late spring of 1980, there was a strong interest in the characterization of the cloud condensation nuclei (CCN) activity of the material that was injected into the troposphere and stratosphere. The scientific value of CCN measurements is two fold: CCN counts may be directly applied to calculations of the interaction of the aerosol (enlargement) at atmospherically-realistic relative humidities or supersaturations; and if the chemical constituency of the aerosol can be assumed, the number-versus-critical supersaturation spectrum may be converted into a dry aerosol size spectrum covering a size region not readily measured by other methods. The sampling method is described along with the instrumentation used in the experiments.
Aerosol Retrievals Using Channel 1 and 2 AVHRR Data
NASA Technical Reports Server (NTRS)
Mishchenko, Michael I.; Geogdzhayev, Igor V.; Cairns, Brian; Rossow, William B.
1999-01-01
The effect of tropospheric aerosols on global climate via the direct and indirect radiative forcings is one of the largest remaining uncertainties in climate change studies. Current assessments of the direct aerosol radiative effect mainly focus on sulfate aerosols. It has become clear, however, that other aerosol types like soil dust and smoke from biomass burning are also likely to be important climate forcing factors. The magnitude and even the sign of the climate forcing caused by these aerosol types is still unknown. General circulation models (GCMs) can be used to estimate the climatic effect of the direct radiative forcing by tropospheric and stratospheric aerosols. Aerosol optical properties are already parameterized in the Goddard Institute for Space Studies GCM. Once the global distribution of aerosol properties (optical thickness, size distribution, and chemical composition) is available, the calculation of the direct aerosol forcing is rather straighfforward. However, estimates of the indirect aerosol effect require additional knowledge of the physics and chemistry of aerosol-cloud interactions which are still poorly understood. One of the main objectives of the Global Aerosol Climatology Project, established in 1998 as a joint initiative of NASA's Radiation Science Program and GEWEX, is to infer the global distribution of aerosols, their properties, and their seasonal and interannual variations for the full period of available satellite data. This will be accomplished primarily through a systematic application of multichannel aerosol retrieval algorithms to existing satellite data and advanced 3-dimensional aerosol chemistry/transport models. In this paper we outline the methodology of analyzing channel 1 and 2 AVHRR radiance data over the oceans and describe preliminary retrieval results.
NASA Technical Reports Server (NTRS)
Sheridan, Patrick J.
1999-01-01
Herein is reported activities to support the characterization of the aerosol in the upper troposphere (UT) and lower stratosphere (LS) collected during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) missions in 1994. Through a companion proposal, another group was to measure the size distribution of aerosols in the 0.008 to 2 micrometer diameter range and to collect for us impactor samples of particles larger than about 0.02 gm. In the first year, we conducted laboratory studies related to particulate deposition patterns on our collection substrates, and have performed the analysis of many ASHOE/MAESA aerosol samples from 1994 using analytical electron microscopy (AEM). We have been building an "aerosol climatology" with these data that documents the types and relative abundances of particles observed at different latitudes and altitudes. The second year (and non-funded extension periods) saw continued analyses of impactor aerosol samples, including more ASHOE/MAESA samples, some northern hemisphere samples from the NASA Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) program for comparison, and a few aerosol samples from the NASA Stratospheric TRacers of Atmospheric Transport (STRAT) program. A high-resolution field emission microscope was used for the analysis and re-analysis of a number of samples to determine if this instrument was superior in performance to our conventional electron microscope. In addition, some basic laboratory studies were conducted to determine the minimum detectable and analyzable particle size for different types of aerosols. In all, 61 aerosol samples were analyzed, with a total of over 30,000 individual particle analyses. In all analyzed samples, sulfate particles comprised the major aerosol number fraction. It must be stressed that particles composed of more than one species, for example sulfate and organic carbon, were classified according to the major fraction. Thus, many of the particles classified as sulfate may have contained significant mass fractions of carbonaceous or other material. These particles for the most part did not show two physical phases, however. Nonsulfate particles were classified according to the physical and chemical characteristics of each particle, and were grouped into the major nonsulfate particle classes, including C-rich, crustal, metallic, and salts. Our UT and LS sample analyses indicate a maximum for crustal and C-rich particle abundance in the Northern Hemisphere upper troposphere, and a salt particle maximum in the Southern Hemisphere upper troposphere. Metallic particles are clearly more prevalent in the troposphere than in the stratosphere, but interhemispheric differences appear small.
Testing the MODIS Satellite Retrieval of Aerosol Fine-Mode Fraction
NASA Technical Reports Server (NTRS)
Anderson, Theodore L.; Wu, Yonghua; Chu, D. Allen; Schmid, Beat; Redemann, Jens; Dubovik, Oleg
2005-01-01
Satellite retrievals of the fine-mode fraction (FMF) of midvisible aerosol optical depth, tau, are potentially valuable for constraining chemical transport models and for assessing the global distribution of anthropogenic aerosols. Here we compare satellite retrievals of FMF from the Moderate Resolution Imaging Spectroradiometer (MODIS) to suborbital data on the submicrometer fraction (SMF) of tau. SMF is a closely related parameter that is directly measurable by in situ techniques. The primary suborbital method uses in situ profiling of SMF combined with airborne Sun photometry both to validate the in situ estimate of ambient extinction and to take into account the aerosol above the highest flight level. This method is independent of the satellite retrieval and has well-known accuracy but entails considerable logistical and technical difficulties. An alternate method uses Sun photometer measurements near the surface and an empirical relation between SMF and the Angstrom exponent, A, a measure of the wavelength dependence of optical depth or extinction. Eleven primary and fifteen alternate comparisons are examined involving varying mixtures of dust, sea salt, and pollution in the vicinity of Korea and Japan. MODIS ocean retrievals of FMF are shown to be systematically higher than suborbital estimates of SMF by about 0.2. The most significant cause of this discrepancy involves the relationship between 5 and fine-mode partitioning; in situ measurements indicate a systematically different relationship from what is assumed in the satellite retrievals. Based on these findings, we recommend: (1) satellite programs should concentrate on retrieving and validating since an excellent validation program is in place for doing this, and (2) suborbital measurements should be used to derive relationships between A and fine-mode partitioning to allow interpretation of the satellite data in terms of fine-mode aerosol optical depth.
Climate Literacy Through Student-Teacher-Scientist Research Partnerships
NASA Astrophysics Data System (ADS)
Niepold, F.; Brooks, D.; Lefer, B.; Linsley, A.; Duckenfield, K.
2006-12-01
Expanding on the GLOBE Program's Atmosphere and Aerosol investigations, high school students can conduct Earth System scientific research that promotes scientific literacy in both content and the science process. Through the use of Student-Teacher-Scientist partnerships, Earth system scientific investigations can be conducted that serve the needs of the classroom as well as participating scientific investigators. During the proof-of-concept phase of this partnership model, teachers and their students developed science plans, through consultation with scientists, and began collecting atmospheric and aerosol data in support of the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) campaign in Houston Texas. This effort uses some pre-existing GLOBE materials, but draws on a variety of other resources to tailor the teacher development activities and intended student participation in a way that addresses local and regional problems. Students and teachers have learned about best practices in scientific inquiry and they also helped to expand the pipeline of potential future scientists and researchers for industry, academia, and government. This work began with a Student-Teacher-Scientist partnership started in 2002 during a GLOBE Aerosol Protocol Cross- Ground Validation of AERONET with MODIS Satellite Aerosol Measurements. Several other GLOBE schools, both national and international, have contributed to this research. The current project support of the intensive GoMACCS air quality and atmospheric dynamics field campaign during September and October of 2006. This model will be evaluated for wider use in other project-focused partnerships led by NOAA's Climate Program Office.
Large-Scale Aerosol Modeling and Analysis
2010-09-30
Application of Earth Sciences Products” supports improvements in NAAPS physics and model initialization. The implementation of NAAPS, NAVDAS-AOD, FLAMBE ...Forecasting of Biomass-Burning Smoke: Description of and Lessons From the Fire Locating and Modeling of Burning Emissions ( FLAMBE ) Program, IEEE Journal of
Middle Atmosphere Program. Handbook for MAP. Volume 18: Extended abstracts
NASA Technical Reports Server (NTRS)
Kato, S. (Editor)
1985-01-01
Various topics related to middle atmosphere research are discussed. Variability of the middle atmosphere during winter, climatology, gravity waves, atmospheric turbulence, transport processes of trace species and aerosols, and research in the Antarctic are among the topics covered.
Enhancement to Hitran to Support the NASA EOS Program
NASA Technical Reports Server (NTRS)
Kirby, Kate P.; Rothman, Laurence S.
1998-01-01
The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.
Enhancement to HITRAN to Support the NASA EOS Program
NASA Technical Reports Server (NTRS)
Kirby, Kate P.; Rothman, Laurence S.
1999-01-01
The HITRAN molecular database has been enhanced with the object of providing improved capabilities for the EOS program scientists. HITRAN itself is the database of high-resolution line parameters of gaseous species expected to be observed by the EOS program in its remote sensing activities. The database is part of a larger compilation that includes IR cross-sections, aerosol indices of refraction, and software for filtering and plotting portions of the database. These properties have also been improved. The software has been advanced in order to work on multiple platforms. Besides the delivery of the compilation on CD-ROM, the effort has been directed toward making timely access of data and software on the world wide web.
NASA Astrophysics Data System (ADS)
Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.
2014-12-01
We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.
NASA Technical Reports Server (NTRS)
Chew, Boo Ning; Campbell, James; Hyer, Edward J.; Salinas, Santo V.; Reid, Jeffrey S.; Welton, Ellsworth J.; Holben, Brent N.; Liew, Soo Chin
2016-01-01
As part of the Seven Southeast Asian Studies (7SEAS) program, an Aerosol Robotic Network (AERONET) sun photometer and a Micro-Pulse Lidar Network (MPLNET) instrument have been deployed at Singapore to study the regional aerosol environment of the Maritime Continent (MC). In addition, the Navy Aerosol Analysis and Prediction System (NAAPS) is used to model aerosol transport over the region. From 24 September 2009 to 31 March 2011, the relationships between ground-, satellite- and model-based aerosol optical depth (AOD) and particulate matter with aerodynamic equivalent diameters less than 2.5 microns (PM2.5) for air quality applications are investigated. When MPLNET-derived aerosol scale heights are applied to normalize AOD for comparison with surface PM2.5 data, the empirical relationships are shown to improve with an increased 11%, 10% and 5% in explained variances, for AERONET, MODIS and NAAPS respectively. The ratios of root mean square errors to standard deviations for the relationships also show corresponding improvements of 8%, 6% and 2%. Aerosol scale heights are observed to be bimodal with a mode below and another above the strongly-capped/deep near-surface layer (SCD; 0-1.35 km). Aerosol extinctions within the SCD layer are well-correlated with surface PM2.5 concentrations, possibly due to strong vertical mixing in the region.
Cloud Condensation Nuclei Activity of Aerosols during GoAmazon 2014/15 Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, J.; Martin, S. T.; Kleinman, L.
2016-03-01
Aerosol indirect effects, which represent the impact of aerosols on climate through influencing the properties of clouds, remain one of the main uncertainties in climate predictions (Stocker et al. 2013). Reducing this large uncertainty requires both improved understanding and representation of aerosol properties and processes in climate models, including the cloud activation properties of aerosols. The Atmospheric System Research (ASR) science program plan of January 2010 states that: “A key requirement for simulating aerosol-cloud interactions is the ability to calculate cloud condensation nuclei and ice nuclei (CCN and IN, respectively) concentrations as a function of supersaturation from the chemical andmore » microphysical properties of the aerosol.” The Observations and Modeling of the Green Ocean Amazon (GoAmazon 2014/15) study seeks to understand how aerosol and cloud life cycles are influenced by pollutant outflow from a tropical megacity (Manaus)—in particular, the differences in cloud-aerosol-precipitation interactions between polluted and pristine conditions. One key question of GoAmazon2014/5 is: “What is the influence of the Manaus pollution plume on the cloud condensation nuclei (CCN) activities of the aerosol particles and the secondary organic material in the particles?” To address this question, we measured size-resolved CCN spectra, a critical measurement for GoAmazon2014/5.« less
Measurement of the Vertical Distribution of Aerosol by Globally Distributed MP Lidar Network Sites
NASA Technical Reports Server (NTRS)
Spinhirne, James; Welton, Judd; Campbell, James; Starr, David OC. (Technical Monitor)
2001-01-01
The global distribution of aerosol has an important influence on climate through the scattering and absorption of shortwave radiation and through modification of cloud optical properties. Current satellite and other data already provide a great amount of information on aerosol distribution. However there are critical parameters that can only be obtained by active optical profiling. For aerosol, no passive technique can adequately resolve the height profile of aerosol. The aerosol height distribution is required for any model for aerosol transport and the height resolved radiative heating/cooling effect of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched by 2002. GLAS will provide global measurements of the height distribution of aerosol. The sampling will be limited by nadir only coverage. There is a need for local sites to address sampling, and accuracy factors. Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently six sites in operation and over a dozen planned. At all sites there are a complement of passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The aerosol measurements, retrievals and data products from the network sites will be discussed. The current and planned application of data to supplement satellite aerosol measurements is covered.
High-Resolution Spectroscopic Database for the NASA Earth Observing System Program
NASA Technical Reports Server (NTRS)
Rothman, Laurence S.; Starr, David (Technical Monitor)
2002-01-01
The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The data requirements of these programs in terms of spectroscopy are varied, but usually call for additional spectral parameters or improvements to existing molecular bands. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.
An overview of mesoscale aerosol processes, comparisons, and validation studies from DRAGON networks
NASA Astrophysics Data System (ADS)
Holben, Brent N.; Kim, Jhoon; Sano, Itaru; Mukai, Sonoyo; Eck, Thomas F.; Giles, David M.; Schafer, Joel S.; Sinyuk, Aliaksandr; Slutsker, Ilya; Smirnov, Alexander; Sorokin, Mikhail; Anderson, Bruce E.; Che, Huizheng; Choi, Myungje; Crawford, James H.; Ferrare, Richard A.; Garay, Michael J.; Jeong, Ukkyo; Kim, Mijin; Kim, Woogyung; Knox, Nichola; Li, Zhengqiang; Lim, Hwee S.; Liu, Yang; Maring, Hal; Nakata, Makiko; Pickering, Kenneth E.; Piketh, Stuart; Redemann, Jens; Reid, Jeffrey S.; Salinas, Santo; Seo, Sora; Tan, Fuyi; Tripathi, Sachchida N.; Toon, Owen B.; Xiao, Qingyang
2018-01-01
Over the past 24 years, the AErosol RObotic NETwork (AERONET) program has provided highly accurate remote-sensing characterization of aerosol optical and physical properties for an increasingly extensive geographic distribution including all continents and many oceanic island and coastal sites. The measurements and retrievals from the AERONET global network have addressed satellite and model validation needs very well, but there have been challenges in making comparisons to similar parameters from in situ surface and airborne measurements. Additionally, with improved spatial and temporal satellite remote sensing of aerosols, there is a need for higher spatial-resolution ground-based remote-sensing networks. An effort to address these needs resulted in a number of field campaign networks called Distributed Regional Aerosol Gridded Observation Networks (DRAGONs) that were designed to provide a database for in situ and remote-sensing comparison and analysis of local to mesoscale variability in aerosol properties. This paper describes the DRAGON deployments that will continue to contribute to the growing body of research related to meso- and microscale aerosol features and processes. The research presented in this special issue illustrates the diversity of topics that has resulted from the application of data from these networks.
Under EPA's Environmental Technology Verification Program, Research Triangle Institute (RTI) will operate the Air Pollution Control Technology Center to verify the filtration efficiency and bioaerosol inactivation efficiency of heating, ventilation and air conditioning air cleane...
NASA Astrophysics Data System (ADS)
Schmid, Beat; Flynn, Connor J.; Newsom, Rob K.; Turner, David D.; Ferrare, Richard A.; Clayton, Marian F.; Andrews, Elisabeth; Ogren, John A.; Johnson, Roy R.; Russell, Philip B.; Gore, Warren J.; Dominguez, Roseanne
2009-11-01
The accuracy with which vertical profiles of aerosol extinction σep(λ) can be measured using routine Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) measurements and was assessed using data from two airborne field campaigns, the ARM Aerosol Intensive Operation Period (AIOP, May 2003), and the Aerosol Lidar Validation Experiment (ALIVE, September 2005). This assessment pertains to the aerosol at its ambient concentration and thermodynamic state (i.e., σep(λ) either free of or corrected for sampling artifacts) and includes the following ACRF routine methods: Raman lidar, micropulse lidar (MPL), and in situ aerosol profiles (IAP) with a small aircraft. Profiles of aerosol optical depth τp(λ), from which the profiles of σep(λ) are derived through vertical differentiation, were measured by the NASA Ames Airborne Tracking 14-channel Sun photometer (AATS-14); these data were used as benchmark in this evaluation. The ACRF IAP σep(550 nm) were lower by 11% (during AIOP) and higher by 1% (during ALIVE) when compared to AATS-14. The ACRF MPL σep(523 nm) measurements were higher by 24% (AIOP) and 19-21% (ALIVE) compared to AATS-14, but the correlation improved significantly during ALIVE. In the AIOP, a second MPL operated by NASA showed a smaller positive bias (13%) with respect to AATS-14. The ACRF Raman lidar σep(355 nm) measurements were larger by 54% (AIOP) and by 6% (ALIVE) compared to AATS-14. The large bias in the Raman lidar measurements during AIOP stemmed from a gradual loss of Raman lidar sensitivity starting about the end of 2001 going unnoticed until after AIOP. A major refurbishment and upgrade of the instrument and improvements to a data processing algorithm led to the significant improvement and very small bias in ALIVE. Finally, we find that during ALIVE the Raman lidar water vapor densities ρw are 8% larger when compared to AATS-14, whereas in situ measured ρw aboard two different aircraft are smaller than the AATS-14 values by 0.3-3%.
Department of Defense Chemical and Biological Defense Programs. Annual Report to Congress 2007
2007-04-01
Bio aerosol Detection GREEN CB.37 CB agent Water monitor AMBER CB.42 environmental Fate of agents GREEN CB.45 Self -Detoxifying materials AMBER CB.46...nano-Closure Systems • Self -Detoxifying Surfaces/materials 32 C h a P t e r 2 C he m ic al a nd B io lo gi ca l D ef en se r eq ui re m en ts...resistant, selective permeable materials, and aerosol and vapor-resistant breathable materials. The addition of a self -detoxification component is
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vogelmann, A. M.
OAK-B135 Final report from the University of California San Diego for an ongoing research project that was moved to Brookhaven National Laboratory where proposed work will be completed. The research uses measurements made by the Atmospheric Radiation Measurement (ARM) Program to quantify the effects of aerosols and clouds on the Earth's energy balance in the climatically important Tropical Western Pacific.
Aerosol and cloud observations from the Lidar In-space Technology Experiment
NASA Technical Reports Server (NTRS)
Winker, D. M.
1995-01-01
The Lidar In-Space Technology Experiment (LITE) is a backscatter lidar built by NASA Langley Research Center to fly on the Space Shuttle. The purpose of the program was to develop the engineering processes required for space lidar and to demonstrate applications of space lidar to remote sensing of the atmosphere. The instrument was flown on Discovery in September 1994. Global observations of clouds and aerosols were made between the latitudes of 57 deg N and 57 deg S during 10 days of the mission.
Regional aerosol radiative and hydrological effects over the mid-Atlantic corridor
NASA Astrophysics Data System (ADS)
Creekmore, Torreon N.
A thorough assessment of direct, indirect, and semi-direct influences of aerosols on Earth's energy budget is required to better understand climate and estimate how it may change in the future. Clear-sky surface broadband (measured and modeled) irradiance, spectral aerosol optical depth, heating rate profiles, and non-radiative flux measurements were conducted at a state-of-the-art site, developed by the NOAA-Howard University Center for Atmospheric Sciences (NCAS) program, providing a best estimate of aerosol radiative atmosphere-surface interactions. Methods developed by the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program were applied to: (1) temporally quantify regional aerosol forcing, (2) to derive an empirical equation describing a relationship between aerosol optical depth and normalized diffuse ratio, (3) evaluate aerosol impacts on atmospheric heating, and (4) evaluate how aerosol forcing impacts may possibly reduce latent and sensible fluxes. Measurements were obtained during the period of May--September for the years of 2005, 2006, and 2007. Atmospheric aerosols are among the key uncertainties affecting the Earth's climate and atmospheric radiative processes. Present-day increases in aerosol concentrations directly, indirectly, and semi-directly impact the Earth's energy budget (i.e., cooling the surface and heating the atmosphere), thereby contributing to climate change. The Howard University Beltsville Site (HUBS) has experienced a greater loss in mean normalized aerosol radiative forcing with time, as observations show a decrease from --0.9 in 2005 to --3.1 and --3.4 W/m2 for 2006 and 2007 respectively, in mean net surface irradiance. The mean normalized aerosol radiative forcing estimated for the period considered was --2.5 W/m2. The reduction in surface solar insolation is due to increased scattering and absorption related to increased aerosol burdens v for the period, promoting surface cooling and atmospheric heating. Calculation of radiative flux and heating rates profiles, which are constrained by HUBS observations, were performed by the 1-D Fu-Liou radiative transfer model to investigate the effect of polluted and pristine aerosol conditions on the surface energy budget and hydrological cycle. For HUBS the surface forcing (--14.2 W/m2) and atmospheric forcing (9.9 W/m2) were significantly larger than the TOA (--4.3 W/m2) radiative forcing. Associated aerosol heating, as well as reduced surface insolation, may lead to increasing near surface static stability, and reduced vertical transport of moisture into the atmospheric boundary layer, and over time, a possible spin-down of the hydrological cycle. It is shown that HUBS provides an ideal opportunity for improving measurements and datasets, thus allowing for both the study and understanding of aerosol impacts on the climate system. Further, results show that in order to provide reference quality data and constrain aerosol radiative effects over land, ground-based research sites must conform to HUBS standards of: (1) instrumentation (e.g. passive and active sensors); (2) operational protocols (e.g. calibration and routine cleaning); (3) rigorous cloud screening protocols; and (4) incorporation of ARM QC and modified FFA algorithms. HUBS surface measurements provides the reference quality data necessary and capability required to help enhance measurements and constrain current uncertainties in estimates of aerosol direct effects over land. Incorporating a combined technique of both active and passive instruments reduced the direct radiative forcing estimates by ˜82 W/m2. The analysis of aerosol effects over HUBS helps continue in bridging the gap of applying measurements for improvement of climate simulations by generating observational products, which describes aerosol and radiation field characteristics in detail.
Algorithm for Atmospheric Corrections of Aircraft and Satellite Imagery
NASA Technical Reports Server (NTRS)
Fraser, Robert S.; Kaufman, Yoram J.; Ferrare, Richard A.; Mattoo, Shana
1989-01-01
A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 micron. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.
Algorithm for atmospheric corrections of aircraft and satellite imagery
NASA Technical Reports Server (NTRS)
Fraser, R. S.; Ferrare, R. A.; Kaufman, Y. J.; Markham, B. L.; Mattoo, S.
1992-01-01
A simple and fast atmospheric correction algorithm is described which is used to correct radiances of scattered sunlight measured by aircraft and/or satellite above a uniform surface. The atmospheric effect, the basic equations, a description of the computational procedure, and a sensitivity study are discussed. The program is designed to take the measured radiances, view and illumination directions, and the aerosol and gaseous absorption optical thickness to compute the radiance just above the surface, the irradiance on the surface, and surface reflectance. Alternatively, the program will compute the upward radiance at a specific altitude for a given surface reflectance, view and illumination directions, and aerosol and gaseous absorption optical thickness. The algorithm can be applied for any view and illumination directions and any wavelength in the range 0.48 micron to 2.2 microns. The relation between the measured radiance and surface reflectance, which is expressed as a function of atmospheric properties and measurement geometry, is computed using a radiative transfer routine. The results of the computations are presented in a table which forms the basis of the correction algorithm. The algorithm can be used for atmospheric corrections in the presence of a rural aerosol. The sensitivity of the derived surface reflectance to uncertainties in the model and input data is discussed.
Aircraft vortex marking program
NASA Technical Reports Server (NTRS)
Pompa, M. F.
1979-01-01
A simple, reliable device for identifying atmospheric vortices, principally as generated by in-flight aircraft and with emphasis on the use of nonpolluting aerosols for marking by injection into such vortex (-ices) is presented. The refractive index and droplet size were determined from an analysis of aerosol optical and transport properties as the most significant parameters in effecting vortex optimum light scattering (for visual sighting) and visual persistency of at least 300 sec. The analysis also showed that a steam-ejected tetraethylene glycol aerosol with droplet size near 1 micron and refractive index of approximately 1.45 could be a promising candidate for vortex marking. A marking aerosol was successfully generated with the steam-tetraethylene glycol mixture from breadboard system hardware. A compact 25 lb/f thrust (nominal) H2O2 rocket chamber was the key component of the system which produced the required steam by catalytic decomposition of the supplied H2O2.
Gold, Kenneth; Cheng, Yung Sung; Holmes, Thomas D
2007-04-01
These tests were conducted to develop a database that could be used to assess risks to soldiers from exposure to aerosolized metallic particulates when the crew compartment of an Abrams tank is perforated by a kinetic energy penetrator. Quantitative data are reported for aerosols produced by kinetic energy penetrators containing tungsten, nickel, and cobalt. The following are addressed: (1) concentrations and rates of particle settling inside the vehicle, (2) particle size distribution, (3) inhalable and respirable particulates, (4) distribution of aerosol particles by mass, and (5) particle shapes. The scenario described in this report simulates a rare occurrence. The lessons learned, however, highlight a requirement for developing protocols for analyses of metals in body fluids and urine as soon as practical, and also for implementing targeted postdeployment medical surveillance programs that monitor both body burden for respired metals and pulmonary function.
Particulate and Gaseous Emissions Measurement System (PAGEMS) Project
NASA Technical Reports Server (NTRS)
Kostic, Milivoje
2003-01-01
Professor Kostic will work on the current UEET program of the Aerosol and Particulate task. This task will focus on: how to acquire experimental data through Labview software how to make the data acquisition system more efficient trouble existing problem of the labview software recommend a better system improve existing system with better data and usually friendly.Three different assignments in this project included:Particle-Size Distribution Data Presentation;Error or Uncertainty Analysis of Measurement Results; and Enhancement of LabVlRN Data Acquisition Program for GRC PAGEMS Project.
NASA Technical Reports Server (NTRS)
Pagnutti, Mary; Ryan, Robert E.; Holekamp, Kara; Harrington, Gary; Frisbie, Troy
2006-01-01
A simple and cost-effective, hyperspectral sun photometer for radiometric vicarious remote sensing system calibration, air quality monitoring, and potentially in-situ planetary climatological studies, was developed. The device was constructed solely from off the shelf components and was designed to be easily deployable for support of short-term verification and validation data collects. This sun photometer not only provides the same data products as existing multi-band sun photometers but also the potential of hyperspectral optical depth and diffuse-to-global products. As compared to traditional sun photometers, this device requires a simpler setup, less data acquisition time and allows for a more direct calibration approach. Fielding this instrument has also enabled Stennis Space Center (SSC) Applied Sciences Directorate personnel to cross-calibrate existing sun photometers. This innovative research will position SSC personnel to perform air quality assessments in support of the NASA Applied Sciences Program's National Applications program element as well as to develop techniques to evaluate aerosols in a Martian or other planetary atmosphere.
Weiss, Martin M; Weiss, Peter D; Mathisen, Glenn; Guze, Phyllis
2004-12-01
The potential consequences of a competently executed smallpox attack have not been adequately considered by policy makers. The possibility of release of an aerosolized and/or bioengineered virus must be anticipated and planned for. The transmission and infectivity of variola virus are examined. Arguments for and against pre-event vaccination are offered. The likely morbidity and mortality that would ensue from implementation of a mass pre-event vaccination program, within reasonable boundaries, are known. The extent of contagion that could result from an aerosolized release of virus is unknown and may have been underestimated. Pre-event vaccination of first responders is urged, and voluntary vaccination programs should be offered to the public. Two defenses against a vaccine-resistant, engineered variola virus are proposed for consideration. Methisazone, an overlooked drug, is reported to be effective for prophylaxis only. The extent of reduction in the incidence of smallpox with use of this agent is uncertain. It is useless for treatment of clinical smallpox. N-100 respirators (face masks) worn by uninfected members of the public may prevent transmission of the virus.
NASA Astrophysics Data System (ADS)
Miller, W. F.; Kato, S.; Rose, F. G.; Sun-Mack, S.
2009-12-01
Under the NASA Energy and Water Cycle System (NEWS) program, cloud and aerosol properties derived from CALIPSO, CloudSat, and MODIS data then matched to the CERES footprint are used for irradiance profile computations. Irradiance profiles are included in the publicly available product, CCCM. In addition to the MODIS and CALIPSO generated aerosol, aerosol optical thickness is calculated over ocean by processing MODIS radiance through the Stowe-Ignatov algorithm. The CERES cloud mask and properties algorithm are use with MODIS radiance to provide additional cloud information to accompany the actively sensed data. The passively sensed data is the only input to the standard CERES radiative flux products. The combined information is used as input to the NASA Langley Fu-Liou radiative transfer model to determine vertical profiles and Top of Atmosphere shortwave and longwave flux for pristine, all-sky, and aerosol conditions for the special data product. In this study, the three sources of aerosol optical thickness will be compared directly and their influence on the calculated and measured TOA fluxes. Earlier studies indicate that the largest uncertainty in estimating direct aerosol forcing using aerosol optical thickness derived from passive sensors is caused by cloud contamination. With collocated CALIPSO data, we are able to estimate frequency of occurrence of cloud contamination, effect on the aerosol optical thickness and direct radiative effect estimates.
Investigating the Spectral Dependence of Biomass Burning Aerosol Optical Properties
NASA Astrophysics Data System (ADS)
Odwuor, A.; Corr, C.; Pusede, S.
2016-12-01
Aerosol optical properties, such as light absorption and scattering, are important for understanding how aerosols affect the global radiation budget and for comparison with data gathered from remote sensing. It has been established that the optical properties of aerosols are wavelength dependent, although some remote sensing measurements do not consider this. Airborne measurements of these optical properties were used to calculate the absorption Angstrom exponent, a parameter that characterizes the wavelength dependence of light absorption by aerosols, and single scattering albedo, which measures the relative magnitude of light scattering to total extinction (scattering and absorption combined). Aerosols produced by biomass burning in Saskatchewan, Canada in July 2008 and a forest fire in Southern California, U.S. in June 2016 were included in this analysis. These wildfires were sampled by the NASA DC-8 aircraft during the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) and NASA Student Airborne Research Program (SARP) missions, respectively. Aerosol absorption was measured using a particle soot photometer (PSAP) at 470, 532 and 660 nm. Scattering was measured using a 3-wavelength (450, 550 and 700 nm) nephelometer. Absorption Angstrom exponents were calculated at 470 and 660 nm and single scattering albedos were calculated at 450 and 550 nm. Results of this study indicate that disregarding the wavelength dependence of organic aerosol can understate the positive radiative forcing (warming) associated with aerosol absorption.
Analysis and interpretation of the 1985 Sequoia transport experiment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myrup, L.; Flocchini, R.
1987-10-01
An analysis and interpretation is presented of the 1985 Aerosol Transport and Characterization Program at Sequoia National Park, sponsored by the California Air Resources Board. Overall, it was found that the Program produced unique data sets and interesting new results relating particulate air quality and meteorology in the context of complex terrain. The major conclusion is that the meso-scale wind field, as modulated by synoptic-scale fluctuations, is the chief factor acting to cause variation in particulate concentrations in the Park. Areas for future work are discussed. In addition, it was recommended that in future measurement programs, greater effort be mademore » to locate sites completely unaffected by local sources of pollutants.« less
Aerosol Measurements by the Globally Distributed Micro Pulse Lidar Network
NASA Technical Reports Server (NTRS)
Spinhirne, James; Welton, Judd; Campbell, James; Berkoff, Tim; Starr, David (Technical Monitor)
2001-01-01
Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide full time profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently eight sites in operation and over a dozen planned. At all sited there are also passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The network operation includes instrument operation and calibration and the processing of aerosol measurements with standard retrievals and data products from the network sites. Data products include optical thickness and extinction cross section profiles. Application of data is to supplement satellite aerosol measurements and to provide a climatology of the height distribution of aerosol. The height distribution of aerosol is important for aerosol transport and the direct scattering and absorption of shortwave radiation in the atmosphere. Current satellite and other data already provide a great amount of information on aerosol distribution, but no passive technique can adequately resolve the height profile of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched in early 2002. GLAS will provide global measurements of the height distribution of aerosol. The MP lidar network will provide ground truth and analysis support for GLAS and other NASA Earth Observing System data. The instruments, sites, calibration procedures and standard data product algorithms for the MPL network will be described.
40 CFR 59.510 - What records am I required to maintain?
Code of Federal Regulations, 2010 CFR
2010-07-01
... PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.510 What records... providing the written certification to the Administrator in accordance with § 59.511(g), the certifying...
FORMATION MECHANISMS FOR SECONDARY ORGANIC AEROSOL IN AMBIENT AIR
An laboratory and field research program is underway at the NERL to characterize secondary organic carbon in PM2.5 which is formed through chemical reactions in the atmosphere. Information from this study will provide critical data needed to improve the treatment of SO...
NASA Technical Reports Server (NTRS)
Hair, Jonathan W.; Browell, Edward V.; McGee, Thomas; Butler, Carolyn; Fenn, Marta; Os,ao (. Sued); Notari, Anthony; Collins, James; Cleckner, Craig; Hostetler, Chris
2010-01-01
A compact ozone (O3) and aerosol lidar system is being developed for conducting global atmospheric investigations from the NASA Global Hawk Uninhabited Aerial Vehicle (UAV) and for enabling the development and test of a space-based O3 and aerosol lidar. GOLD incorporates advanced technologies and designs to produce a compact, autonomously operating O3 and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. The GOLD system leverages advanced Nd:YAG and optical parametric oscillator laser technologies and receiver optics, detectors, and electronics. Significant progress has been made toward the development of the GOLD system, and this paper describes the objectives of this program, basic design of the GOLD system, and results from initial ground-based atmospheric tests.
PREFACE TO SPECIAL SECTION: SOUTHERN OXIDANTS STUDY 1999 ATLANTA SUPERSITE PROJECT (SOS3)
The Atlanta Supersites Project consisted of a one-month intensive field program to compare advanced methods for measurement of PM2.5 mass, chemical composition, including single particle composition in real-time, and aerosol precursor species. The project was the first of EPA's ...
Detecting Bioterrorism: Is Chemistry Enough?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Omberg, Kristin M.
2014-03-13
This slide shows how most bioaerosol detection systems work. There is a lot of concern in the biothreat community, and in the federal government, about a large-scale aerosolized attack. Because of that, we’ve implemented environmental monitoring programs that use aerosol collectors to continuously monitor for the presence of threat agents in the air. Air samples are usually analyzed using PCR, which is one of the most effective analytical techniques we have for identifying DNA. Experiments and modeling have shown these systems are effective, and can warn public health of an impending crisis in time to mount an effective response.
Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Papathakos, L. C.
1978-01-01
The Global Atmospheric Sampling Program (GASP) is collecting and analyzing data on gaseous and aerosol trace contaminants in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei, and mass concentration of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to identify the source of the air mass as being typically tropospheric or stratospheric.
NASA Astrophysics Data System (ADS)
Gao, R. S.; Elkins, J. W.; Frost, G. J.; McComiskey, A. C.; Murphy, D. M.; Ogren, J. A.; Petropavlovskikh, I. V.; Rosenlof, K. H.
2014-12-01
Inverse modeling using measurements of ozone (O3) and aerosol is a powerful tool for deriving pollutant emissions. Because they have relatively long lifetimes, O3 and aerosol are transported over large distances. Frequent and globally spaced vertical profiles rather than ground-based measurements alone are therefore highly desired. Three requirements necessary for a successful global monitoring program are: Low equipment cost, low operation cost, and reliable measurements of known uncertainty. Conventional profiling using aircraft provides excellent data, but is cost prohibitive on a large scale. Here we describe a new platform and instruments meeting all three global monitoring requirements. The platform consists of a small balloon and an auto-homing glider. The glider is released from the balloon at about 5 km altitude, returning the light instrument package to the launch location, and allowing for consistent recovery of the payload. Atmospheric profiling can be performed either during ascent or descent (or both) depending on measurement requirements. We will present the specifications for two instrument packages currently under development. The first measures O3, RH, p, T, dry aerosol particle number and size distribution, and aerosol optical depth. The second measures dry aerosol particle number and size distribution, and aerosol absorption coefficient. Other potential instrument packages and the desired spatial/temporal resolution for the GOA2HEAD monitoring initiative will also be discussed.
Regression model for estimating inactivation of microbial aerosols by solar radiation.
Ben-David, Avishai; Sagripanti, Jose-Luis
2013-01-01
The inactivation of pathogenic aerosols by solar radiation is relevant to public health and biodefense. We investigated whether a relatively simple method to calculate solar diffuse and total irradiances could be developed and used in environmental photobiology estimations instead of complex atmospheric radiative transfer computer programs. The second-order regression model that we developed reproduced 13 radiation quantities calculated for equinoxes and solstices at 35(°) latitude with a computer-intensive and rather complex atmospheric radiative transfer program (MODTRAN) with a mean error <6% (2% for most radiation quantities). Extending the application of the regression model from a reference latitude and date (chosen as 35° latitude for 21 March) to different latitudes and days of the year was accomplished with variable success: usually with a mean error <15% (but as high as 150% for some combination of latitudes and days of year). This accuracy of the methodology proposed here compares favorably to photobiological experiments where the microbial survival is usually measured with an accuracy no better than ±0.5 log10 units. The approach and equations presented in this study should assist in estimating the maximum time during which microbial pathogens remain infectious after accidental or intentional aerosolization in open environments. © Published 2013. This article is a U.S. Government work and is in the public domain in the USA. Photochemistry and Photobiology © 2013 The American Society of Photobiology.
Properties of meso-Erythritol; phase state, accommodation coefficient and saturation vapour pressure
NASA Astrophysics Data System (ADS)
Emanuelsson, Eva; Tschiskale, Morten; Bilde, Merete
2016-04-01
Introduction Saturation vapour pressure and the associated temperature dependence (enthalpy ΔH), are key parameters for improving predictive atmospheric models. Generally, the atmospheric aerosol community lack experimentally determined values of these properties for relevant organic aerosol compounds (Bilde et al., 2015). In this work we have studied the organic aerosol component meso-Erythritol. Methods Sub-micron airborne particles of meso-Erythritol were generated by nebulization from aqueous solution, dried, and a mono disperse fraction of the aerosol was selected using a differential mobility analyser. The particles were then allowed to evaporate in the ARAGORN (AaRhus Atmospheric Gas phase OR Nano particle) flow tube. It is a temperature controlled 3.5 m long stainless steel tube with an internal diameter of 0.026 m (Bilde et al., 2003, Zardini et al., 2010). Changes in particle size as function of evaporation time were determined using a scanning mobility particle sizer system. Physical properties like air flow, temperature, humidity and pressure were controlled and monitored on several places in the setup. The saturation vapour pressures were then inferred from the experimental results in the MATLAB® program AU_VaPCaP (Aarhus University_Vapour Pressure Calculation Program). Results Following evaporation, meso-Erythriol under some conditions showed a bimodal particle size distribution indicating the formation of particles of two different phase states. The issue of physical phase state, along with critical assumptions e.g. the accommodation coefficient in the calculations of saturation vapour pressures of atmospheric relevant compounds, will be discussed. Saturation vapour pressures from the organic compound meso-Erythritol will be presented at temperatures between 278 and 308 K, and results will be discussed in the context of atmospheric chemistry. References Bilde, M. et al., (2015), Chemical Reviews, 115 (10), 4115-4156. Bilde, M. et. al., (2003), Environmental Science and Technology 37(7), 1371-1378. Zardini, A. A. et al., (2010), Journal of Aerosol Science, 41, 760-770.
Aerosol measurements over the Pacific Ocean in support of the IR aerosol backscatter program
NASA Technical Reports Server (NTRS)
Prospero, Joseph M.; Savoie, Dennis L.
1995-01-01
The major efforts under NASA contract NAG8-841 included: (1) final analyses of the samples collected during the first GLOBE survey flight that occurred in November 1989 and collections and analysis of aerosol samples during the second GLOBE survey flight in May and June 1990. During the first GLOBE survey flight, daily samples were collected at four stations (Midway, Rarotonga, American Samoa, and Norfolk Island) throughout the month of November 1989. Weekly samples were collected at Shemya, Alaska, and at Karamea, New Zealand. During the second GLOBE survey flight, daily samples were collected at Midway, Oahu, American Samoa, Rarotonga, and Norfolk Island; weekly samples were collected at Shemya. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate, and methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island (under a subcontract). (2) Samples continued to be collected on a weekly basis at all stations during the periods between and after the survey flights. These weekly samples were also analyzed at the University of Miami for the suite of water-soluble species. (3) In August 1990, the results obtained from the above studies were submitted to the appropriate personnel at NASA Marshall Space Flight Center to become part of the GLOBE data base for comparison with data from instruments used aboard the aircraft. In addition, the data will be compared with data previously obtained at these stations as part of the Sea-Air Exchange (SEAREX) Program. This comparison will provide valuable information on the representativeness of the periods in terms of the longer term aerosol climatology over the Pacific Ocean. (4) Several publications have been written using data from this grant. The data will continue to be used in the future as part of a continuing investigation of the long-term trends and interannual variations in aerosol species concentrations over the Pacific Ocean.
Transoceanic transport of metals and deposition in the Southeastern United States
NASA Astrophysics Data System (ADS)
Holmes, C. W.
2003-12-01
Saharan dust is persistently being transported and deposited in ecosystems of the western Atlantic Ocean. Satellite photos reveal that this dust is transported in tropospheric low-pressure waves that cross the central Atlantic Ocean. This dust is an aggregate of clay and quartz particles cemented with iron oxides. Analysis of dust samples collected from Mali (central Africa), the Azores, the Caribbean and the Eastern United States show that metal concentrations are significantly higher than average crustal rocks. Over the past decade, there has been a significant effort to understand the cycling of mercury in south Florida, but other metals has received very little attention. Trace metal measurements on the ombrogeneous sediment formed during the last decade in south Florida indicates that metals can be correlated with aluminum, which is considered a proxy for dust. The largest available aerosol data set is provided by the IMPROVE (Interagency Monitoring of Protected Visual Environments) program. Focusing on arsenic as an example, the average concentration in aerosols collected during this program range from 17 mg/kg in the Virgin Islands to 79 mg/kg at Chassahowitzka, Florida. At Chassahowitzka, most of the arsenic appears to be associated with organic carbon. If it is assumed that the concentrations in Mali dust and in the aerosols in the Virgin Islands are indicative of soil dust, then the higher values at Chassahowitzka are most likely derived from local or regional sources. A simple calculation indicates that African dust supplies about 25 % of the arsenic deposited from aerosols in the southeastern United States. Comparison of the average yearly arsenic concentrations measured in the Virgin Islands and Everglades shows a negative relationship with the North Atlantic Oscillation Index (NAO). This relationship demonstrates the influence of climate on the transport and deposition of aerosols with associated metals to the southeastern United States.
Lidar Measurements of Tropospheric Wind Profiles with the Double Edge Technique
NASA Technical Reports Server (NTRS)
Gentry, Bruce M.; Li, Steven X.; Korb, C. Laurence; Mathur, Savyasachee; Chen, Huailin
1998-01-01
Research has established the importance of global tropospheric wind measurements for large scale improvements in numerical weather prediction. In addition, global wind measurements provide data that are fundamental to the understanding and prediction of global climate change. These tasks are closely linked with the goals of the NASA Earth Science Enterprise and Global Climate Change programs. NASA Goddard has been actively involved in the development of direct detection Doppler lidar methods and technologies to meet the wind observing needs of the atmospheric science community. A variety of direct detection Doppler wind lidar measurements have recently been reported indicating the growing interest in this area. Our program at Goddard has concentrated on the development of the edge technique for lidar wind measurements. Implementations of the edge technique using either the aerosol or molecular backscatter for the Doppler wind measurement have been described. The basic principles have been verified in lab and atmospheric lidar wind experiments. The lidar measurements were obtained with an aerosol edge technique lidar operating at 1064 nm. These measurements demonstrated high spatial resolution (22 m) and high velocity sensitivity (rms variances of 0.1 m/s) in the planetary boundary layer (PBL). The aerosol backscatter is typically high in the PBL and the effects of the molecular backscatter can often be neglected. However, as was discussed in the original edge technique paper, the molecular contribution to the signal is significant above the boundary layer and a correction for the effects of molecular backscatter is required to make wind measurements. In addition, the molecular signal is a dominant source of noise in regions where the molecular to aerosol ratio is large since the energy monitor channel used in the single edge technique measures the sum of the aerosol and molecular signals. To extend the operation of the edge technique into the free troposphere we have developed a variation of the edge technique called the double edge technique. In this paper a ground based aerosol double edge lidar is described and the first measurements of wind profiles in the free troposphere obtained with this lidar will be presented.
NASA Astrophysics Data System (ADS)
Showstack, Randy
2004-04-01
Public comments on the draft guidelines for the synthesis and assessment products being prepared by the U.S. Climate Change Science Program are being accepted through 7 May; The long-anticipated preliminary report of the U.S. Commission on Ocean Policy is being released on 20 April. The comment period extends through 21 May; Determining the most hazardous chemical components and other characteristics of aerosol particulate matter should be a focus of research by the U.S. Environmental Protection Agency, according to a 24 March report by the National Academies' National Research Council.
NASA Astrophysics Data System (ADS)
Wilcox, William Edward, Jr.
1995-01-01
A computer program (LIDAR-PC) and associated atmospheric spectral databases have been developed which accurately simulate the laser remote sensing of the atmosphere and the system performance of a direct-detection Lidar or tunable Differential Absorption Lidar (DIAL) system. This simulation program allows, for the first time, the use of several different large atmospheric spectral databases to be coupled with Lidar parameter simulations on the same computer platform to provide a real-time, interactive, and easy to use design tool for atmospheric Lidar simulation and modeling. LIDAR -PC has been used for a range of different Lidar simulations and compared to experimental Lidar data. In general, the simulations agreed very well with the experimental measurements. In addition, the simulation offered, for the first time, the analysis and comparison of experimental Lidar data to easily determine the range-resolved attenuation coefficient of the atmosphere and the effect of telescope overlap factor. The software and databases operate on an IBM-PC or compatible computer platform, and thus are very useful to the research community for Lidar analysis. The complete Lidar and atmospheric spectral transmission modeling program uses the HITRAN database for high-resolution molecular absorption lines of the atmosphere, the BACKSCAT/LOWTRAN computer databases and models for the effects of aerosol and cloud backscatter and attenuation, and the range-resolved Lidar equation. The program can calculate the Lidar backscattered signal-to-noise for a slant path geometry from space and simulate the effect of high resolution, tunable, single frequency, and moderate line width lasers on the Lidar/DIAL signal. The program was used to model and analyze the experimental Lidar data obtained from several measurements. A fixed wavelength, Ho:YSGG aerosol Lidar (Sugimoto, 1990) developed at USF and a tunable Ho:YSGG DIAL system (Cha, 1991) for measuring atmospheric water vapor at 2.1 μm were analyzed. The simulations agreed very well with the measurements, and also yielded, for the first time, the ability to easily deduce the atmospheric attentuation coefficient, alpha, from the Lidar data. Simulations and analysis of other Lidar measurements included that of a 1.57 mu m OPO aerosol Lidar system developed at USF (Harrell, 1995) and of the NASA LITE (Laser-in-Space Technology Experiment) Lidar recently flown in the Space shuttle. Finally, an extensive series of laboratory experiments were made with the 1.57 μm OPO Lidar system to test calculations of the telescope/laser overlap and the effect of different telescope sizes and designs. The simulations agreed well with the experimental data for the telescope diameter and central obscuration test cases. The LIDAR-PC programs are available on the Internet from the USAF Lidar Home Page Web site, http://www.cas.usf.edu/physics/lidar.html/.
NASA Technical Reports Server (NTRS)
Gregory, G. L.; Beck, S. M.; Mathis, J. J., Jr.
1981-01-01
In situ correlative measurements were obtained with a NASA aircraft in support of two NASA airborne remote sensors participating in the Environmental Protection Agency's 1980persistent elevated pollution episode (PEPE) and Northeast regional oxidant study (NEROS) field program in order to provide data for evaluating the capability of two remote sensors for measuring mixing layer height, and ozone and aerosol concentrations in the troposphere during the 1980 PEPE/NEROS program. The in situ aircraft was instrumented to measure temperature, dewpoint temperature, ozone concentrations, and light scattering coefficient. In situ measurements for ten correlative missions are given and discussed. Each data set is presented in graphical and tabular format aircraft flight plans are included.
Experiment to Characterize Aircraft Volatile Aerosol and Trace-Species Emissions (EXCAVATE)
NASA Technical Reports Server (NTRS)
Anderson, B. E.; Branham, H.-S.; Hudgins, C. H.; Plant, J. V.; Ballenthin, J. O.; Miller, T. M.; Viggiano, A. A.; Blake, D. R.; Boudries, H.; Canagaratna, M.
2005-01-01
The Experiment to Characterize Aircraft Volatile and Trace Species Emissions (EXCAVATE) was conducted at Langley Research Center (LaRC) in January 2002 and focused upon assaying the production of aerosols and aerosol precursors by a modern commercial aircraft, the Langley B757, during ground-based operation. Remaining uncertainty in the postcombustion fate of jet fuel sulfur contaminants, the need for data to test new theories of particle formation and growth within engine exhaust plumes, and the need for observations to develop air quality models for predicting pollution levels in airport terminal areas were the primary factors motivating the experiment. NASA's Atmospheric Effects of Aviation Project (AEAP) and the Ultra Effect Engine Technology (UEET) Program sponsored the experiment which had the specific objectives of determining ion densities; the fraction of fuel S converted from S(IV) to S(VI); the concentration and speciation of volatile aerosols and black carbon; and gas-phase concentrations of long-chain hydrocarbon and PAH species, all as functions of engine power, fuel composition, and plume age.
The Glory Program: Global Science from a Unique Spacecraft Integration
NASA Technical Reports Server (NTRS)
Bajpayee Jaya; Durham, Darcie; Ichkawich, Thomas
2006-01-01
The Glory program is an Earth and Solar science mission designed to broaden science community knowledge of the environment. The causes and effects of global warming have become a concern in recent years and Glory aims to contribute to the knowledge base of the science community. Glory is designed for two functions: one is solar viewing to monitor the total solar irradiance and the other is observing the Earth s atmosphere for aerosol composition. The former is done with an active cavity radiometer, while the latter is accomplished with an aerosol polarimeter sensor to discern atmospheric particles. The Glory program is managed by NASA Goddard Space Flight Center (GSFC) with Orbital Sciences in Dulles, VA as the prime contractor for the spacecraft bus, mission operations, and ground system. This paper will describe some of the more unique features of the Glory program including the integration and testing of the satellite and instruments as well as the science data processing. The spacecraft integration and test approach requires extensive analysis and additional planning to ensure existing components are successfully functioning with the new Glory components. The science mission data analysis requires development of mission unique processing systems and algorithms. Science data analysis and distribution will utilize our national assets at the Goddard Institute for Space Studies (GISS) and the University of Colorado's Laboratory for Atmospheric and Space Physics (LASP). The Satellite was originally designed and built for the Vegetation Canopy Lidar (VCL) mission, which was terminated in the middle of integration and testing due to payload development issues. The bus was then placed in secure storage in 2001 and removed from an environmentally controlled container in late 2003 to be refurbished to meet the Glory program requirements. Functional testing of all the components was done as a system at the start of the program, very different from a traditional program. The plan for Glory is to minimize any changes to the spacecraft in order to meet the Glory requirements. This means that the instrument designs must adhere to the existing interfaces and capabilities as much as possible. Given Glory's unique history and the potential science return, the program is one of significant value to both the science community and the world. The findings Glory promises will improve our understanding of the drivers for global climate change for a minimal investment. The program hopes to show that reuse of existing government assets can result in a lower cost, and fully successful mission.
NASA Astrophysics Data System (ADS)
Nikolaou, Panagiota; Mihalopoulos, Nikolaos; Kanakidou, Maria
2015-04-01
Atmospheric input of aerosols is recognized, as an important source of nutrients, for the oceans. The chemical interactions between aerosols and varying composition of air masses lead to different coating of their surfaces with sulfate, nitrate and organic compounds, increasing their solubility and their role as a carrier of nutrients and pollutants in ecosystems. Recent works have highlighted that atmospheric inputs of nutrients and trace metals can considerably influence the marine ecosystem functioning at semi-enclosed or enclosed water bodies such as the eastern Mediterranean. The current work aims to determine the sources and the factors controlling the variability of nutrients in the eastern Mediterranean. Special focus has been given on trace elements solubility, considered either as key nutrients for phytoplankton growth such as iron (Fe), phosphorus (P) or inhibitors such as copper (Cu). This has been accomplished by analyzing size segregated aerosol samples collected at the background site of Finokalia in Crete for an entire year. Phosphorus concentrations indicate important increases in air masses influenced both by anthropogenic activities in the northeast European countries and by dust outbreaks. The last is confirmed by the correlation observed between total P and dust concentrations and by the air mass backward trajectories computed by running the NOAA Hysplit Model (Hybrid Single - Particle Langrangian Integrated Trajectory (http://www.arl.noaa.gov/ready/hysplit4.html). Overall 73% of total P has been found to be associated with anthropogenic sources. The solubility of P and Fe has been found to be closely related to the acidity (pH) and dust amount in aerosols. The aerosol pH was predicted using thermodynamic modeling (ISORROPIA-II), meteorological observations (RH, T), and gas/particle observations. More specifically P and Fe solubility appears to be inversely related to the crustal elements levels, while it increases in acidic environment. The significance of our findings for the eastern Mediterranean Sea is thoroughly discussed. This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: ARISTEIA - PANOPLY (Pollution Alters Natural Aerosol Composition: implications for Ocean Productivity, cLimate and air qualitY) grant.
NASA Astrophysics Data System (ADS)
Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; Easter, Richard C.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Liu, Ying; Ortega, Ivan; Sedlacek, Arthur; Shilling, John E.; Shrivastava, Manish; Springston, Stephen R.; Tomlinson, Jason M.; Volkamer, Rainer; Wilson, Jacqueline; Zaveri, Rahul A.; Zelenyuk, Alla
2016-08-01
The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurements during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.
NASA Technical Reports Server (NTRS)
Winker, David M.
1999-01-01
Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.
Anderson, Chastain; Majeste, Andrew; Hanus, Jakub; Wang, Shusheng
2016-12-01
Cigarette smoking remains one of the leading causes of preventable death worldwide. Vascular cell death and dysfunction is a central or exacerbating component in the majority of cigarette smoking related pathologies. The recent development of the electronic nicotine delivery systems known as e-cigarettes provides an alternative to conventional cigarette smoking; however, the potential vascular health risks of e-cigarette use remain unclear. This study evaluates the effects of e-cigarette aerosol extract (EAE) and conventional cigarette smoke extract (CSE) on human umbilical vein endothelial cells (HUVECs). A laboratory apparatus was designed to produce extracts from e-cigarettes and conventional cigarettes according to established protocols for cigarette smoking. EAE or conventional CSE was applied to human vascular endothelial cells for 4-72 h, dependent on the assay. Treated cells were assayed for reactive oxygen species, DNA damage, cell viability, and markers of programmed cell death pathways. Additionally, the anti-oxidants α-tocopherol and n-acetyl-l-cysteine were used to attempt to rescue e-cigarette induced cell death. Our results indicate that e-cigarette aerosol is capable of inducing reactive oxygen species, causing DNA damage, and significantly reducing cell viability in a concentration dependent fashion. Immunofluorescent and flow cytometry analysis indicate that both the apoptosis and programmed necrosis pathways are triggered by e-cigarette aerosol treatment. Additionally, anti-oxidant treatment provides a partial rescue of the induced cell death, indicating that reactive oxygen species play a causal role in e-cigarette induced cytotoxicity. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Pikridas, Michael; Sciare, Jean; Vrekoussis, Mihalis; Oikonomou, Konstantina; Merabet, Hamza; Mihalopoulos, Nikos; Yassaa, Nouredine; Savvides, Chrysanthos
2016-04-01
As part of MISTRALS-ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/), and MISTRALS-ENVI-Med "CyAr" (Cyprus Aerosols and gas precursors) programs, a 1-month intensive field campaign has been performed in December 2014 at an urban background site of Nicosia (Cyprus) - a typical European city of the Eastern Mediterranean - with the objective to document the major (local versus imported) sources responsible for wintertime particulate (PM1) pollution. Several near real-time analyzers were deployed for that purpose (TEOM 1400, OPC Grimm 1.108, Q-ACSM, Aethalometer AE31) allowing to investigate in near-real time the major chemical components of submicron aerosols (Black Carbon, Organics, Sulphate, Nitrate, Ammonium). Quality control of Q-ACSM and Aethalometer datasets was performed through closure studies (using co-located TEOM / OPC Grimm). Comparisons were also performed with other on-line / off-line measurements performed by the local Air quality network (DLI) at other locations in Nicosia with the objective to check the consistency and representativeness of our observations. Very high levels of Black Carbon and OA were systematically observed every night (with maximum concentrations around 22:00 local time) pointing to local combustion sources most probably related to domestic heating. Source apportionment of organic aerosols (OA) was performed using the SourceFinder software (SoFi, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between various primary/secondary OA sources and helped us to better characterize the combustion sources being responsible for the observed elevated nighttime PM1 levels. Acknowledgements: This campaign has been funded by MISTRALS (ChArMEx et ENVI-Med CyAr programs), CNRS-INSU, CEA, CyI, DLI, CDER and ECPL.
Climatology of Aerosol Optical Properties in Southern Africa
NASA Technical Reports Server (NTRS)
Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee
2011-01-01
A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with significant dominance of fine mode particles.
High-Resolution Spectroscopic Database for the NASA Earth Observing System Program
NASA Technical Reports Server (NTRS)
Rothman, Laurence
2003-01-01
The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.
High Resolution Spectroscopic Database for the NASA Earth Observing System Program
NASA Technical Reports Server (NTRS)
Rothman, Laurence
2004-01-01
The purpose of this project has been to develop and enhance the HITRAN molecular spectroscopic database and associated software to support the observational programs of the Earth Observing System (EOS). Emphasis has been on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition, cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use of HITRAN functional to the EOS program.
High-Resolution Spectroscopic Database for the NASA Earth Observing System Program
NASA Technical Reports Server (NTRS)
Rothman, Laurence S.
2004-01-01
The purpose of this project is to develop and enhance the HITRAN molecular spectroscopic database and associated - software to support the observational programs of the Earth observing System (EOS). In particular, the focus is on the EOS projects: the Atmospheric Infrared Sounder (AIRS), the High-Resolution Dynamics Limb Sounder (HIRDLS), Measurements of Pollution in the Troposphere (MOPITT), the Tropospheric Emission Spectrometer (TES), and the Stratospheric Aerosol and Gas Experiment (SAGE III). The HITRAN program is also involved in the Ozone Monitoring Experiment (OMI). The data requirements of these programs in terms of spectroscopy are varied with respect to constituents being observed, required remote-sensing parameters, and spectral coverage. A general requisite is for additional spectral parameters and improvements to existing molecular bands sufficient for the simulation of the observations leading to retrieval of the atmospheric state. In addition cross-section data for heavier molecular species must be expanded and made amenable to modeling in remote sensing. The effort in the project also includes developing software and distribution to make access, manipulation, and use HITRAN functional to the EOS program.
NASA Technical Reports Server (NTRS)
Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat
2006-01-01
Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.
On the Stratospheric Aerosol and Gas Experiment III on the International Space Station
NASA Technical Reports Server (NTRS)
Hernandez, Gloria; Zawodny, Joseph M.; Cisewski, Michael S.; Thornton, Brooke M.; Panetta, Andrew D,; Roell, Marilee M.; Vernier, Jean-Paul
2014-01-01
The Stratospheric Aerosol and Gas Experiment III on International Space Station (SAGE3/ISS) is anticipated to be delivered to Cape Canaveral in the spring of 2015. This is the fourth generation, fifth instrument, of visible/near-IR solar occultation instruments operated by the National Aeronautics and Space Agency (NASA) to investigate the Earth's upper atmosphere. The instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. The nominal science products include vertical profiles of trace gases, such as ozone, nitrogen dioxide and water vapor, along with multi-wavelength aerosol extinction. The SAGE3/ISS validation program will be based upon internal consistency of the measurements, detailed analysis of the retrieval algorithm, and comparisons with independent correlative measurements. The Instrument Payload (IP), mission architecture, and major challenges are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Boer, Gijs; Lawrence, Dale; Palo, Scott
The Evaluation of Routine Atmospheric Sounding Measurements using Unmanned Systems (ERASMUS) campaign was proposed with two central goals; to obtain scientifically relevant measurements of quantities related to clouds, aerosols, and radiation, including profiles of temperature, humidity, and aerosol particles, the structure of the arctic atmosphere during transitions between clear and cloudy states, measurements that would allow us to evaluate the performance of retrievals from U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility remote sensors in the Arctic atmosphere, and information on the spatial variability of heat and moisture fluxes from the arctic surface; and to demonstratemore » unmanned aerial system (UAS) capabilities in obtaining measurements relevant to the ARM and ASR programs, particularly for improving our understanding of Arctic clouds and aerosols.« less
40 CFR Table 1 to Subpart E of... - Product-Weighted Reactivity Limits by Coating Category
Code of Federal Regulations, 2011 CFR
2011-07-01
... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings... primers ABP 1.55 Automotive Bumper and Trim Products ABT 1.75 Aviation or Marine Primers AMP 2.00 Aviation...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
40 CFR 59.505 - How do I demonstrate compliance with the reactivity limits?
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) AIR PROGRAMS (CONTINUED) NATIONAL VOLATILE ORGANIC COMPOUND EMISSION STANDARDS FOR CONSUMER AND COMMERCIAL PRODUCTS National Volatile Organic Compound Emission Standards for Aerosol Coatings § 59.505 How..., 2B, or 2C. WFi = weight fraction of component i in the product, (2) Calculate the PWR of each product...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-16
... sectors: Refrigeration and air-conditioning, foam blowing, aerosols, and sterilants. The majority of the... additional refrigerant alternatives as acceptable will provide users in the refrigeration and air... alternatives to HCFCs other than HCFC-22, HCFC-142b, and blends thereof? D. In servicing existing refrigeration...
Source and long-term behavior of transuranic aerosols in the WIPP environment.
Thakur, P; Lemons, B G
2016-10-01
Source and long-term behavior transuranic aerosols ((239+240)Pu, (238)Pu, and (241)Am) in the ambient air samples collected at and near the Waste Isolation Pilot Plant (WIPP) deep geologic repository site were investigated using historical data from an independent monitoring program conducted by the Carlsbad Environmental Monitoring and Research Center and an oversight monitoring program conducted by the management and operating contractor for WIPP at and near the facility. An analysis of historical data indicates frequent detections of (239+240)Pu and (241)Am, whereas (238)Pu is detected infrequently. Peaks in (239+240)Pu and (241)Am concentrations in ambient air generally occur from March to June timeframe, which is when strong and gusty winds in the area frequently give rise to blowing dust. Long-term measurements of plutonium isotopes (1985-2015) in the WIPP environment suggest that the resuspension of previously contaminated soils is likely the primary source of plutonium in the ambient air samples from WIPP and its vicinity. There is no evidence that WIPP is a source of environmental contamination that can be considered significant by any health-based standard.
NASA Astrophysics Data System (ADS)
Husar, R. B.; Hoijarvi, K.; Westphal, D. L.; Scheffe, R.; Keating, T.; Frank, N.; Poirot, R.; DuBois, D. W.; Bleiweiss, M. P.; Eberhard, W. L.; Menon, R.; Sethi, V.; Deshpande, A.
2012-12-01
Near-real-time (NRT) aerosol characterization, forecasting and decision support is now possible through the availability of (1) surface-based monitoring of regional PM concentrations, (2) global-scale columnar aerosol observations through satellites; (3) an aerosol model (NAAPS) that is capable of assimilating NRT satellite observations; and (4) an emerging cyber infrastructure for processing and distribution of data and model results (DataFed) for a wide range of users. This report describes the evolving NRT aerosol analysis and forecasting system and its applications at Federal and State and other AQ Agencies and groups. Through use cases and persistent real-world applications in the US and abroad, the report will show how satellite observations along with surface data and models are combined to aid decision support for AQ management, science and informing the public. NAAPS is the U.S. Navy's global aerosol and visibility forecast model that generates operational six-day global-scale forecasts for sulfate, dust, sea salt, and smoke aerosol. Through NAVDAS-AOD, NAAPS operationally assimilates filtered and corrected MODIS MOD04 aerosol optical depths and uses satellite-derived FLAMBÉ smoke emissions. Washington University's federated data system, DataFed, consist of a (1) data server which mediates the access to AQ datasets from distributed providers (NASA, NOAA, EPA, etc.,); (2) an AQ Data Catalog for finding and accessing data; and (3) a set of application programs/tools for browsing, exploring, comparing, aggregating, fusing data, evaluating models and delivering outputs through interactive visualization. NAAPS and DataFed are components of the Global Earth Observation System of Systems (GEOSS). Satellite data support the detection of long-range transported wind-blown dust and biomass smoke aerosols on hemispheric scales. The AQ management and analyst communities use the satellite/model data through DataFed and other channels as evidence for Exceptional Events (EE) as defined by EPA; i.e., Sahara dust impact on Texas and Florida, local dusts events in the Southwestern U.S. and Canadian smoke events over the Northeastern U.S. Recent applications include the impact analysis of a major Saudi Arabian dust event on Mumbai, India air quality. The NAAPS model and the DataFed tools can visualize the dynamic AQ events as they are manifested through the different sensors. Satellite-derived aerosol observations assimilated into NAAPS provide estimates of daily emission rates for dust and biomass fire sources. Tuning and reconciliation of the observations, emissions and models constitutes a key and novel contribution yielding a convergence toward the true five-dimensional (X, Y, Z, T, Composition) characterization of the atmospheric aerosol data space. This observation-emission-model reconciliation effort is aided by model evaluation tools and supports the international HTAP program. The report will also discuss some of the challenges facing multi-disciplinary, multi-agency, multi-national applications of integrated observation-modeling system of systems that impede the incorporation of satellite observations into AQ management decision support systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sena, Elisa T.; McComiskey, Allison; Feingold, Graham
Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less
MGS TES Measurements of Dust and Ice Aerosol Behaviors
NASA Astrophysics Data System (ADS)
Clancy, R. T.; Wolff, M. J.; Christensen, P. R.
2000-10-01
The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.
Aerosol Chemistry over a High Altitude Station at Northeastern Himalayas, India
Chatterjee, Abhijit; Adak, Anandamay; Singh, Ajay K.; Srivastava, Manoj K.; Ghosh, Sanjay K.; Tiwari, Suresh; Devara, Panuganti C. S.; Raha, Sibaji
2010-01-01
Background There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. Methodology/Principal Findings An extensive aerosol sampling program was conducted in Darjeeling (altitude ∼2200 meter above sea level (masl), latitude 27°01′N and longitude 88°15′E), a high altitude station in northeastern Himalayas, during January–December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5±20.8 µg m−3 and 19.6±11.1 µg m−3 respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH4NO3 in fine mode aerosol during winter and as NaNO3 in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO2 during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO4 2− in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. Conclusions/Significance The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to policy makers in making control strategies. PMID:20585397
Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles
Wang, Yuan; Vogel, Jonathan M.; Lin, Yun; ...
2018-01-10
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. Surface temperature changes closely follow the modulation of the surface radiation fluxes.« less
Aerosol Microphysical and Radiative Effects on Continental Cloud Ensembles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Yuan; Vogel, Jonathan M.; Lin, Yun
Aerosol-cloud-radiation interactions represent one of the largest uncertainties in the current climate assessment. Much of the complexity arises from the non-monotonic responses of clouds, precipitation and radiative fluxes to aerosol perturbations under various meteorological conditions. Here, an aerosol-aware Weather Research and Forecasting (WRF) model is used to investigate the microphysical and radiative effects of aerosols in three weather systems during the March 2000 Cloud Intensive Observational Period campaign at the Southern Great Plains site of the US Atmospheric Radiation Measurement Program. Three cloud ensembles with different meteorological conditions are simulated, including a low-pressure deep convective cloud system, a series ofmore » lessprecipitating stratus and shallow cumulus, and a cold frontal passage. The WRF simulations are evaluated by the available observations of cloud fraction, liquid water path, precipitation, and surface temperature. The microphysical properties of cloud hydrometeors, such as their mass and number concentrations, generally show monotonic trends as a function of cloud condensation nuclei concentrations. Aerosol radiative effects do not interfere the trends of cloud microphysics, except for the stratus and shallow cumulus cases where aerosol semi-direct effects are identified. The precipitation changes by aerosols vary with the cloud types and their evolving stages, with more prominent aerosol invigoration effect and associated enhanced precipitation from the convective sources. Furthermore, the simulated aerosol direct effect suppresses precipitation in all three cases but does not overturn the direction of precipitation changes by the aerosol indirect effect. Cloud fraction exhibits much smaller sensitivity (typically less than 2%) to aerosol perturbations than the cloud microphysics, and the responses vary with aerosol concentrations and cloud regimes. The surface shortwave radiation shows a monotonic decrease by increasing aerosols, while the magnitude of the decrease depends on the cloud type. Surface temperature changes closely follow the modulation of the surface radiation fluxes.« less
Aerosol chemistry over a high altitude station at northeastern Himalayas, India.
Chatterjee, Abhijit; Adak, Anandamay; Singh, Ajay K; Srivastava, Manoj K; Ghosh, Sanjay K; Tiwari, Suresh; Devara, Panuganti C S; Raha, Sibaji
2010-06-16
There is an urgent need for an improved understanding of the sources, distributions and properties of atmospheric aerosol in order to control the atmospheric pollution over northeastern Himalayas where rising anthropogenic interferences from rapid urbanization and development is becoming an increasing concern. An extensive aerosol sampling program was conducted in Darjeeling (altitude approximately 2200 meter above sea level (masl), latitude 27 degrees 01'N and longitude 88 degrees 15'E), a high altitude station in northeastern Himalayas, during January-December 2005. Samples were collected using a respirable dust sampler and a fine dust sampler simultaneously. Ion chromatograph was used to analyze the water soluble ionic species of aerosol. The average concentrations of fine and coarse mode aerosol were found to be 29.5+/-20.8 microg m(-3) and 19.6+/-11.1 microg m(-3) respectively. Fine mode aerosol dominated during dry seasons and coarse mode aerosol dominated during monsoon. Nitrate existed as NH(4)NO(3) in fine mode aerosol during winter and as NaNO(3) in coarse mode aerosol during monsoon. Gas phase photochemical oxidation of SO(2) during premonsoon and aqueous phase oxidation during winter and postmonsoon were the major pathways for the formation of SO(4)(2-) in the atmosphere. Long range transport of dust aerosol from arid regions of western India was observed during premonsoon. The acidity of fine mode aerosol was higher in dry seasons compared to monsoon whereas the coarse mode acidity was higher in monsoon compared to dry seasons. Biomass burning, vehicular emissions and dust particles were the major types of aerosol from local and continental regions whereas sea salt particles were the major types of aerosol from marine source regions. The year-long data presented in this paper provide substantial improvements to the heretofore poor knowledge regarding aerosol chemistry over northeastern Himalayas, and should be useful to policy makers in making control strategies.
SAGE III Educational Outreach and Student's On-Line Atmospheric Research
NASA Astrophysics Data System (ADS)
Woods, D. C.; Moore, S. W.; Walters, S. C.
2002-05-01
Students On-Line Atmospheric Research (SOLAR) is a NASA-sponsored educational outreach program aimed at raising the level of interest in science among elementary, middle, and high school students. SOLAR is supported by, and closely linked to, NASA's Stratospheric Aerosol and Gas Experiment III (SAGE III). SAGE III, launched on a Russian METEOR 3M spacecraft in December 2001, is a key component of NASA's Earth Observing System. It will monitor the quantity and distribution of aerosols, ozone, clouds, and other important trace gases in the upper atmosphere. Early data from SAGE III indicate that the instrument is performing as expected. SAGE III measurements will extend the long-term data record established by its predecessors, SAGE I and SAGE II, which spans from 1979 to the present. In addition, SAGE III's added measurement capabilities will provide more detailed data on certain atmospheric species. SOLAR selects interesting topics related to the science issues addressed by the SAGE III experiments, and develops educational materials and projects to enhance science teaching, and to help students realize the relevance of these issues to our lives on Earth. For example, SOLAR highlights some of the major questions regarding the health of the atmosphere such as possible influences of aerosols on global climate, and atmospheric processes related to ozone depletion. The program features projects to give students hands-on experience with scientific equipment and help develop skills in collecting, analyzing, and reporting science results. SOLAR focuses on helping teachers become familiar with current research in the atmospheric sciences, helping teachers integrate SOLAR developed educational materials into their curriculum. SOLAR gives special presentations at national and regional science teacher conferences and conducts a summer teacher workshop at the NASA Langley Research Center. This poster will highlight some of the key features of the SOLAR program and will present descriptions of student projects, teacher workshops, and SOLAR resources.
Wide area restoration following biological contamination
NASA Astrophysics Data System (ADS)
Yang, Lynn; Hibbard, Wilthea; Edwards, Donna; Franco, David; Fruetel, Julie; Tucker, Mark; Einfeld, Wayne; Knowlton, Robert; Brown, Gary; Brockmann, John; Greenwalt, Robert; Miles, Robin; Raber, Ellen; Carlsen, Tina; Krauter, Paula; Dillon, Michael; MacQueen, Don; Intrepido, Tony; Hoppes, Bill; Wilson, Wendy; Mancieri, Sav
2008-04-01
Current understanding of how to restore a wide area that has been contaminated following a large biological attack is limited. The Department of Homeland Security and Department of Defense are executing a four-year collaborative program named the Interagency Biological Restoration Demonstration (IBRD) program. This program is aimed at developing technologies, methods, plans and policies necessary to restore a wide area, including military installations and critical infrastructures, in the event of a large outdoor aerosol release of anthrax. The IBRD program partner pilot city is the Seattle Urban Area to include Fort Lewis, WA and McChord Air Force Base. A front-end systems analysis was conducted as part of IBRD, to: 1) assess existing technologies and processes for wide area restoration; from this, 2) develop an "as-is" decision framework for wide area restoration; and 3) identify and prioritize capability gaps. Qualitative assessments and quantitative analyses, including sensitivity, timeline and case study analyses, were conducted to evaluate existing processes and rank capability gaps. This paper describes the approach and results from this front-end systems analysis.
Pulsed Discharge in Aerosol for Waste Water Clean-up.
NASA Astrophysics Data System (ADS)
Bystritskii, V. M.; Gonzales, A.; Olson, T.; Puchkarev, V.; Rosocha, L.; Wessel, F.; Yankelevich, Y.
1996-11-01
Aerosol (drop diameter of 10-100 μm) is injected into a discharge reactor with a repetitively pulsed voltage of 40--60 kV, 50--150 ns, 10^2--10^3 Hz. The relatively large water dielectric constant and high degree of atomization result in efficient degradation of organic molecules. Results on the characterization of operational parameters of the device and on degradation performance for a variety of organic pollutants (paranitrophenol, di-Chlorophenol, per-chloro-ethylene) are discussed. Work was supported by the Los Alamos National Laboratories 96 LACOR Program. ^AUniversity of Southern California, Los Angeles, CA 94007 ^BLos Alamos National Laboratory, Los Alamos, NM 87545
Ultraviolet Studies of Jupiter's Hydrocarbons and Aerosols from Galileo
NASA Technical Reports Server (NTRS)
Gladstone, G. Randall
2001-01-01
This is the final report for this project. The purpose of this project was to support PI Wayne Pryor's effort to reduce and analyze Galileo UVS (Ultraviolet Spectrometer) data under the JSDAP program. The spectral observations made by the Galileo UVS were to be analyzed to determine mixing ratios for important hydrocarbon species (and aerosols) in Jupiter's stratosphere as a function of location on Jupiter. Much of this work is still ongoing. To date, we have concentrated on analyzing the variability of the auroral emissions rather than the absorption signatures of hydrocarbons, although we have done some work in this area with related HST-STIS data.
Long term aerosol and trace gas measurements in Central Amazonia
NASA Astrophysics Data System (ADS)
Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.
2016-04-01
The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported biomass burning alters atmospheric composition very significantly. AOT can reach values as high as 2-3 at 550 nm, and concentrations of aerosol species and trace gases are strongly enriched.
NASA Technical Reports Server (NTRS)
Zhangqing, Li; Li, C.; Chen, H.; Tsay, S.-C.; Holben, B.; Huang, J.; Li, B.; Maring, H.; Qian, Y.; Shi, G.;
2011-01-01
As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas, Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC), The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF-China), the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE), The former two are U,S,-China collaborative projects, and the latter is a part of the China's National Basic Research program (or often referred to as "973 project"), Routine meteorological data of China are also employed in some studies, The wealth of general and speCIalized measurements lead to extensive and close-up investigations of the optical, physical, and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation, and transport mechanisms; horizontal, vertical, and temporal variations; direct and indirect effects; and interactions with the East Asian monsoon system, Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc, In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.
An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean
NASA Astrophysics Data System (ADS)
Lee, Kwon Ho
2016-04-01
The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).
NASA Technical Reports Server (NTRS)
Detwiler, Andrew G.
1997-01-01
This work was accomplished primarily by Allison G. Wozniak, a graduate research assistant who has completed the Master of Science in Meteorology program at the South Dakota School of Mines and Technology. Ms. Wozniak was guided and assisted in her work by L. R. Johnson and the principal investigator. Invaluable guidance was supplied by Dr. James Holdeman, NASA Lewis, the manager of the Global Atmospheric Sampling Program (GASP). Dr. Gregory Nastrom, St. Cloud (Minnesota) State University, who has used the GASP data set to provide unique views of the distribution of ozone, clouds, and atmospheric waves and turbulence, in the upper troposphere/lower stratosphere region, was also extremely helpful. Finally, Dr. Terry Deshler, University of Wyoming, supplied observations from the university's upper atmospheric monitoring program for comparison to GASP data.
Estimation of particulate matter from simulation and measurements
NASA Astrophysics Data System (ADS)
Nakata, Makiko; Nakano, Tomio; Okuhara, Takaaki; Sano, Itaru; Mukai, Sonoyo
2011-11-01
The particulate matter is a typical indicator of small particles in the atmosphere. In addition to providing impacts on climate and environment, these small particles can bring adverse effects on human health. Then an accurate estimation of particulate matter is an urgent subject. We set up SPM sampler attached to our AERONET (Aerosol Robotics Network) station in urban city of Higashi-Osaka in Japan. The SPM sampler provides particle information about the concentrations of various SPMs (e.g., PM10 and PM2.5) separately. The AEROENT program is world wide ground based sunphotometric observation networks by NASA and provides the spectral information about aerosol optical thickness (AOT) and Angstrom exponent (α). Simultaneous measurements show that a linear correlation definitely exists between AOT and PM2.5. These results indicate that particulate matter can be estimated from AOT. However AOT represents integrated values of column aerosol amount retrieved from optical property, while particulate matter concentration presents in-situ aerosol loading on the surface. Then simple way using linear correlation brings the discrepancy between observed and estimated particulate matter. In this work, we use cluster information about aerosol type to reduce the discrepancy. Our improved method will be useful for retrieving particulate matter from satellite measurements.
Indirect and Semi-Direct Aerosol Campaign: The Impact of Arctic Aerosols on Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
McFarquhar, Greg; Ghan, Steven J.; Verlinde, J.
2011-02-01
A comprehensive dataset of microphysical and radiative properties of aerosols and clouds in the arctic boundary layer in the vicinity of Barrow, Alaska was collected in April 2008 during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) sponsored by the Department of Energy Atmospheric Radiation Measurement (ARM) and Atmospheric Science Programs. The primary aim of ISDAC was to examine indirect effects of aerosols on clouds that contain both liquid and ice water. The experiment utilized the ARM permanent observational facilities at the North Slope of Alaska (NSA) in Barrow. These include a cloud radar, a polarized micropulse lidar, and an atmosphericmore » emitted radiance interferometer as well as instruments specially deployed for ISDAC measuring aerosol, ice fog, precipitation and spectral shortwave radiation. The National Research Council of Canada Convair-580 flew 27 sorties during ISDAC, collecting data using an unprecedented 42 cloud and aerosol instruments for more than 100 hours on 12 different days. Data were obtained above, below and within single-layer stratus on 8 April and 26 April 2008. These data enable a process-oriented understanding of how aerosols affect the microphysical and radiative properties of arctic clouds influenced by different surface conditions. Observations acquired on a heavily polluted day, 19 April 2008, are enhancing this understanding. Data acquired in cirrus on transit flights between Fairbanks and Barrow are improving our understanding of the performance of cloud probes in ice. Ultimately the ISDAC data will be used to improve the representation of cloud and aerosol processes in models covering a variety of spatial and temporal scales, and to determine the extent to which long-term surface-based measurements can provide retrievals of aerosols, clouds, precipitation and radiative heating in the Arctic.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, Jerome D.; Berg, Larry K.; Zhang, Kai
2016-08-22
The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy’s Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surfacemore » measurements during July, and two days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. While a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less
Fast, Jerome D.; Berg, Larry K.; Zhang, Kai; ...
2016-08-22
The ability of the Weather Research and Forecasting model with chemistry (WRF-Chem) version 3.7 and the Community Atmosphere Model version 5.3 (CAM5) in simulating profiles of aerosol properties is quantified using extensive in situ and remote sensing measurements from the Two-Column Aerosol Project (TCAP) conducted during July of 2012. TCAP was supported by the U.S. Department of Energy's Atmospheric Radiation Measurement program and was designed to obtain observations within two atmospheric columns; one fixed over Cape Cod, Massachusetts, and the other several hundred kilometers over the ocean. The performance is quantified using most of the available aircraft and surface measurementsmore » during July, and 2 days are examined in more detail to identify the processes responsible for the observed aerosol layers. The higher-resolution WRF-Chem model produced more aerosol mass in the free troposphere than the coarser-resolution CAM5 model so that the fraction of aerosol optical thickness above the residual layer from WRF-Chem was more consistent with lidar measurements. We found that the free troposphere layers are likely due to mean vertical motions associated with synoptic-scale convergence that lifts aerosols from the boundary layer. The vertical displacement and the time period associated with upward transport in the troposphere depend on the strength of the synoptic system and whether relatively high boundary layer aerosol concentrations are present where convergence occurs. In conclusion, while a parameterization of subgrid scale convective clouds applied in WRF-Chem modulated the concentrations of aerosols aloft, it did not significantly change the overall altitude and depth of the layers.« less
Development of programs for computing characteristics of ultraviolet radiation
NASA Technical Reports Server (NTRS)
Dave, J. V.
1972-01-01
Efficient programs were developed for computing all four characteristics of the radiation scattered by a plane-parallel, turbid, terrestrial atmospheric model. They were developed (FORTRAN 4) and tested on the IBM /360 computers with 2314 direct access storage facility. The storage requirement varies between 200K and 750K bytes depending upon the task. The scattering phase matrix (or function) is expanded in a Fourier series whose number of terms depend upon the zenith angles of the incident and scattered radiations, as well as on the nature of aerosols. A Gauss-Seidel procedure is used for obtaining the numerical solution of the transfer equation.
Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidovits, Paul
Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign andmore » much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a) two well-characterized source of soot particles and (b) a flow reactor for controlled OH and/or O3 oxidation of relevant gas phase species to produce well-characterized SOA particles. After formation, the aerosol particles are subjected to physical and chemical processes that simulate aerosol growth and aging. A suite of instruments in our laboratory is used to characterize the physical and chemical properties of aerosol particles before and after processing. The Time of Flight Aerosol Mass Spectrometer (ToF-AMS) together with a Scanning Mobility Particle Sizer (SMPS) measures particle mass, volume, density, composition (including black carbon content), dynamic shape factor, and fractal dimension. The–ToF-AMS was developed at ARI with Boston College participation. About 120 AMS instruments are now in service (including 5 built for DOE laboratories) performing field and laboratory studies world-wide. Other major instruments include a thermal denuder, two Differential Mobility Analyzers (DMA), a Cloud Condensation Nuclei Counter (CCN), a Thermal desorption Aerosol GC/MS (TAG) and the new Soot Particle Aerosol Mass Spectrometer (SP-AMS). Optical instrumentation required for the studies have been brought to our laboratory as part of ongoing and planned collaborative projects with colleagues from DOE, NOAA and university laboratories. Optical instruments that will be utilized include a Photoacoustic Spectrometer (PAS), a Cavity Ring Down Aerosol Extinction Spectrometer (CRD-AES), a Photo Thermal Interferometer (PTI), a new 7-wavelength Aethalometer and a Cavity Attenuated Phase Shift Extinction Monitor (CAPS). These instruments are providing aerosol absorption, extinction and scattering coefficients at a range of atmospherically relevant wavelengths. During the past two years our work has continued along the lines of our original proposal. We report on 12 completed and/or continuing projects conducted during the period 08/14 to 0814/2015. These projects are described in 17 manuscripts published in refereed journals.« less
The Climate Variability & Predictability (CVP) Program at NOAA - Recent Program Advancements
NASA Astrophysics Data System (ADS)
Lucas, S. E.; Todd, J. F.
2015-12-01
The Climate Variability & Predictability (CVP) Program supports research aimed at providing process-level understanding of the climate system through observation, modeling, analysis, and field studies. This vital knowledge is needed to improve climate models and predictions so that scientists can better anticipate the impacts of future climate variability and change. To achieve its mission, the CVP Program supports research carried out at NOAA and other federal laboratories, NOAA Cooperative Institutes, and academic institutions. The Program also coordinates its sponsored projects with major national and international scientific bodies including the World Climate Research Programme (WCRP), the International and U.S. Climate Variability and Predictability (CLIVAR/US CLIVAR) Program, and the U.S. Global Change Research Program (USGCRP). The CVP program sits within NOAA's Climate Program Office (http://cpo.noaa.gov/CVP). The CVP Program currently supports multiple projects in areas that are aimed at improved representation of physical processes in global models. Some of the topics that are currently funded include: i) Improved Understanding of Intraseasonal Tropical Variability - DYNAMO field campaign and post -field projects, and the new climate model improvement teams focused on MJO processes; ii) Climate Process Teams (CPTs, co-funded with NSF) with projects focused on Cloud macrophysical parameterization and its application to aerosol indirect effects, and Internal-Wave Driven Mixing in Global Ocean Models; iii) Improved Understanding of Tropical Pacific Processes, Biases, and Climatology; iv) Understanding Arctic Sea Ice Mechanism and Predictability;v) AMOC Mechanisms and Decadal Predictability Recent results from CVP-funded projects will be summarized. Additional information can be found at http://cpo.noaa.gov/CVP.
Global Monitoring of Clouds and Aerosols Using a Network of Micro-Pulse Lidar Systems
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Spinhirne, James D.; Scott, V. Stanley
2000-01-01
Long-term global radiation programs, such as AERONET and BSRN, have shown success in monitoring column averaged cloud and aerosol optical properties. Little attention has been focused on global measurements of vertically resolved optical properties. Lidar systems are the preferred instrument for such measurements. However, global usage of lidar systems has not been achieved because of limits imposed by older systems that were large, expensive, and logistically difficult to use in the field. Small, eye-safe, and autonomous lidar systems are now currently available and overcome problems associated with older systems. The first such lidar to be developed is the Micro-pulse lidar System (MPL). The MPL has proven to be useful in the field because it can be automated, runs continuously (day and night), is eye-safe, can easily be transported and set up, and has a small field-of-view which removes multiple scattering concerns. We have developed successful protocols to operate and calibrate MPL systems. We have also developed a data analysis algorithm that produces data products such as cloud and aerosol layer heights, optical depths, extinction profiles, and the extinction-backscatter ratio. The algorithm minimizes the use of a priori assumptions and also produces error bars for all data products. Here we present an overview of our MPL protocols and data analysis techniques. We also discuss the ongoing construction of a global MPL network in conjunction with the AERONET program. Finally, we present some early results from the MPL network.
2010-01-01
of Defense, project number ZZ0001_06_RD_B. This project was supported in part by appointments to the Internship /Research Participation Program for...Francisella novicida) associated with human disease. Journal of clinical microbiology 1989, 27(7):1601-1608. doi:10.1186/1476-8518-8-2 Cite this article
USDA-ARS?s Scientific Manuscript database
The navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), is a key pest of almonds and pistachios and is sometimes controlled using mating disruption as part of a program of integrated management. The formulation used has a single, non-attractive compound [(Z,Z)-11-13-hexadecadie...
Climate and atmospheric modeling studies
NASA Technical Reports Server (NTRS)
1992-01-01
The climate and atmosphere modeling research programs have concentrated on the development of appropriate atmospheric and upper ocean models, and preliminary applications of these models. Principal models are a one-dimensional radiative-convective model, a three-dimensional global model, and an upper ocean model. Principal applications were the study of the impact of CO2, aerosols, and the solar 'constant' on climate.
Determining atmospheric deposition in Wyoming with IMPROVE and other national programs
Karl Zeller; Debra Youngblood Harrington; Richard Fisher; Evgeny Donev
2000-01-01
Atmospheric deposition is the result of air pollution gases and aerosols leaving the atmosphere as "dry" or "wet" deposition. Little is known about just how much pollution is deposited onto soils, lakes and streams. To determine the extent and trends of forest exposure to air pollution, various types of monitoring have been conducted. In this study...
The Phoretic Motion Experiment (PME) definition phase
NASA Technical Reports Server (NTRS)
Eaton, L. R.; Neste, S. L. (Editor)
1982-01-01
The aerosol generator and the charge flow devices (CFD) chamber which were designed for zero-gravity operation was analyzed. Characteristics of the CFD chamber and aerosol generator which would be useful for cloud physics experimentation in a one-g as well as a zero-g environment are documented. The Collision type of aerosol generator is addressed. Relationships among the various input and output parameters are derived and subsequently used to determine the requirements on the controls of the input parameters to assure a given error budget of an output parameter. The CFD chamber operation in a zero-g environment is assessed utilizing a computer simulation program. Low nuclei critical supersaturation and high experiment accuracies are emphasized which lead to droplet growth times extending into hundreds of seconds. The analysis was extended to assess the performance constraints of the CFD chamber in a one-g environment operating in the horizontal mode.
NASA Astrophysics Data System (ADS)
Zhou, Cheng; Penner, Joyce E.
2017-01-01
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.
NASA Astrophysics Data System (ADS)
Mona, Lucia; Benedetti, Angela; D'Amico, Giuseppe; Myhre, Cathrine Lund; Schulz, Michael; Wandinger, Ulla; Laj, Paolo; Pappalardo, Gelsomina
2016-04-01
The ACTRIS-2 project, funded by Horizon 2020, addresses the scope of integrating state-of-the-art European ground-based stations for long term observations of aerosols, clouds and short lived gases, capitalizing on the work of FP7-ACTRIS. It aims at achieving the construction of a user-oriented RI, unique in the EU-RI landscape for providing 4-D integrated high-quality data from near-surface to high altitude (vertical profiles and total-column) which are relevant to climate and air-quality research. ACTRIS-2 develops and implements, in a large network of stations in Europe and beyond, observational protocols that permit the harmonization of collected data and their dissemination. ACTRIS secures provision and dissemination of a unique set of data and data-products that would not otherwise be available with the same level of quality and standardization. This results from a 10-year plus effort in constructing a research infrastructure capable of responding to community needs and requirements, and has been engaged since the start of the FP5 EU commission program. ACTRIS ensures compliance with reporting requirements (timing, format, traceability) defined by the major global observing networks. EARLINET (European Aerosol research Lidar NETwork), the aerosol vertical profiling component of ACTRIS, is providing since May 2000 vertical profiles of aerosol extinction and backscatter over Europe. A new structure of the EARLINET database has been designed in a more user oriented approach reporting new data products which are more effective for specific uses of different communities. In particular, a new era is starting with the Copernicus program during which the aerosol vertical profiling capability will be fundamental for assimilation and validation purposes. The new data products have been designed thanks to a strong link with EARLINET data users, first of all modeling and satellite communities, established since the beginning of EARLINET and re-enforced within ACTRIS2. The potentiality of the new EARLINET data products and first examples of integrated studies with models will be presented at the conference. Acknowledgments: ACTRIS2 Research Infrastructure Project is funded by the European Union's Horizon 2020 research and innovation programme under the grant agreement n. 654169 and previously under FP7 grant agreement n. 262254.
Aerosol-Cloud-Precipitation Interactions over Indo-Gangetic Basin
NASA Technical Reports Server (NTRS)
Tsay, S.-C.; Lau, K. .; Holben, B. N.; Hsu, N. C.; Bhartia, P. K.
2005-01-01
About 60% of world population reside in Asia, in term of which sheer population density presents a major environmental stress. Economic expansion in this region is, in fact, accompanied by increases in bio-fuel burning, industrial pollution, and land cover and land use changes. With a growth rate of approx. 8%/yr for Indian economy, more than 600 million people from Lahore, Pakistan to Calcutta, India over the Indo-Gangetic Basin have particularly witnessed increased frequencies of floods and droughts as well as a dramatic increase in atmospheric loading of aerosols (i.e., anthropogenic and natural aerosol) in recent decades. This regional change (e.g., aerosol, cloud, precipitation, etc.) will constitute a vital part of the global change in the 21st century. Better understanding of the impacts of aerosols in affecting monsoon climate and water cycles is crucial in providing the physical basis to improve monsoon climate prediction and for disaster mitigation. Based on climate model simulations, absorbing aerosols (dust and black carbon) play a critical role in affecting interannual and intraseasonal variability of the Indian monsoon. An initiative on the integrated (aerosols, clouds, and precipitation) measurements approach over the Indo-Gangetic Basin will be discussed. An array of ground-based (e.g., AERONET, MPLNET, SMART-COMMIT, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors will be utilized to acquire aerosol characteristics, sources/sinks, and transport processes during the pre-monsoon (April-May, aerosol forcing) season, and to obtain cloud and precipitation properties during the monsoon (May-June, water cycle response) season. Close collaboration with other international programs, such as ABC, CLIVAR, GEWEX, and CEOP in the region is anticipated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhanqing; Li, C.; Chen, H.
2011-02-01
As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas. Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate (EAST-AIRC). The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF10 China), the East Asian Study of Tropospheric Aerosols: an Internationalmore » Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE). The former two are US-China collaborative projects and the latter is a part of the China’s National Basic Research program (or often referred to as “973 project”). Routine meteorological data of China are also employed in some studies. The wealth of general and specialized measurements lead to extensive and close-up investigations of the optical, physical and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation and transport mechanisms; horizontal, vertical and temporal variations; direct and indirect effects and interactions with the East Asian monsoon system. Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc. In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.« less
Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Matsui, Toshihisa; Ichoku, Charles; Randles, Cynthia; Yuan, Tianle; Da Silva, Arlindo M.; Colarco, Peter R.; Kim, Dongchul; Levy, Robert; Sayer, Andrew; Chin, Mian;
2014-01-01
Aerosols are tiny atmospheric particles that are emitted from various natural and anthropogenic sources. They affect climate through direct and indirect interactions with solar and thermal radiation, clouds, and atmospheric circulation (Solomon et al. 2007). The launch of a variety of sophisticated satellite-based observing systems aboard the Terra, Aqua, Aura, SeaWiFS (see appendix for all acronym expansions), CALIPSO, and other satellites in the late 1990s to mid-2000s through the NASA EOS and other U.S. and non-U.S. programs ushered in a golden era in aerosol research. NASA has been a leader in providing global aerosol characterizations through observations from satellites, ground networks, and field campaigns, as well as from global and regional modeling. AeroCenter (http://aerocenter.gsfc.nasa.gov/), which was formed in 2002 to address the many facets of aerosol research in a collaborative manner, is an interdisciplinary union of researchers (200 members) at NASA GSFC and other nearby institutions, including NOAA, several universities, and research laboratories. AeroCenter hosts a web-accessible regular seminar series and an annual meeting to present up-to-date aerosol research, including measurement techniques; remote sensing algorithms; modeling development; field campaigns; and aerosol interactions with radiation, clouds, precipitation, climate, biosphere, atmospheric chemistry, air quality, and human health. The 2013 annual meeting was held at the NASA GSFC Visitor Center on 31 May 2013, which coincided with the seventh anniversary of the passing of Yoram Kaufman, a modern pioneer in satellite-based aerosol science and the founder of AeroCenter. The central theme of this year's meeting was "current and future perspectives" of NASA's aerosol science and satellite missions.
Column and Near-surface Aerosol Properties during TCAP: Temporal Changes in a Coastal Region
NASA Astrophysics Data System (ADS)
Kassianov, E.; Barnard, J.; Pekour, M. S.; Berg, L. K.; Shilling, J. E.; Fast, J. D.; Michalsky, J. J.; Lantz, K. O.; Hodges, G.
2013-12-01
An important problem facing climate-related studies is to separate the impacts of naturally occurring and anthropogenic aerosol. This problem is even more challenging in coastal regions located downwind of large metropolitan areas. Cape Cod situated on the easternmost portion of Massachusetts (along the east coast of the United States) is an example of one of these regions. The Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/) was designed to study the evolution of optical, microphysical and chemical properties of both marine aerosol and aerosol transported from North America to the Atlantic as well as their impact on the radiation energy budget. The TCAP has been recently conducted (2012-2013) on Cape Cod with support from the U.S. Department of Energy's (DOE's) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). During the TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod. The AMF site (at 41.87°N; 70.28°W) was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), a three-wavelength nephelometer, and suite of instruments to measure the aerosol chemical composition. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and in situ measurements (SMPS, APS, nephelometer, chemical composition), respectively. The importance of this variability to direct aerosol radiative forcing at different time scales and its relation to the long-range transport will be discussed. Some regional model results will also be presented.
NASA Technical Reports Server (NTRS)
1977-01-01
A program was developed in which asteroids and two planets, namely, Saturn and Uranus, were investigated. This included: (1) asteroid spectrophotometry; (2) the nature of the Trojan asteroids; (3) an investigation to determine asteroid masses; (4) the photometry, structure, and dynamics of the rings surrounding the planet Saturn; and (5) aerosol distribution in the atmosphere of Uranus. Plans were finalized to obtain observations of the nucleus of the dying comet P/Arend-Rigaux. Further work was accomplished in asteroid data reduction. Data were entered into the TRIAD data file and a program generated classifications for over 560 different asteroids. A photoelectric area scanner was used to obtain UBV scans of the disk of the planet Saturn on several winter and spring nights in 1977. Intensity profiles show pronounced limb brightening in U, moderate limb brightening in B, and limb darkening in V. Narrow band photoelectric area-scanning photometry of the Uranus disk is also reported. Results are given.
NASA Astrophysics Data System (ADS)
DeCarlo, P. F.; Jetter, J.; Khan, B.; Zhao, Y.; Yelverton, T.; Hays, M. D.
2011-12-01
Nearly half of the world's population relies on inefficient open fire or rudimentary cookstoves to prepare their food. Combustion of biomass or other fuels results in not only high indoor air pollution, but is also a large source of climate forcing species such as black and organic carbon species to the earth's atmosphere. Large-scale intervention programs are now underway to replace inefficient cooking methods with newer technologies. These intervention programs have as a goal the improvement of indoor air pollution and reduction of negative climate impacts. To characterize the current available alternatives, a major cookstove testing program was conducted at the US EPA. This presentation will focus on the characterization of the emission measurements for a variety of different cookstoves, fuels and cooking cycles. The work will focus on the aerosol optical properties measured with a PASS-3, and the climate impacts of various intervention pathways will be discussed.
MacMartin, Douglas G.; Kravitz, Ben; Long, Jane C. S.; ...
2016-11-17
Any well-informed future decision on whether and how to deploy solar geoengineering requires balancing the impacts (both intended and unintended) of intervening in the climate against the impacts of not doing so. In spite of the tremendous progress in the last decade, the current state of knowledge remains insufficient to support an assessment of this balance, even for stratospheric aerosol geoengineering (SAG), arguably the best understood (practical) geoengineering method. We then articulate key unknowns associated with SAG, including both climate-science and design questions, as an essential step toward developing a future strategic research program that could address outstanding uncertainties.
1980-11-01
the rapid, partial removal or covering of contamination to reduce the radiation exposure rate as quickly as practicable to a point where priority work ...should be responsible for planning and implementing all decontamination activities. He could be a city en- gineer, public works engineer, industrial safety...responsibility for a local civil defense or emergency preparedness program. DisaterAnalysis - A review and determination of the extent of damage sufere bya
Size selective isocyanate aerosols personal air sampling using porous plastic foams
NASA Astrophysics Data System (ADS)
Khanh Huynh, Cong; Duc, Trinh Vu
2009-02-01
As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.
Sena, Elisa T.; McComiskey, Allison; Feingold, Graham
2016-09-13
Empirical estimates of the microphysical response of cloud droplet size distribution to aerosol perturbations are commonly used to constrain aerosol–cloud interactions in climate models. Instead of empirical microphysical estimates, here macroscopic variables are analyzed to address the influence of aerosol particles and meteorological descriptors on instantaneous cloud albedo and the radiative effect of shallow liquid water clouds. Long-term ground-based measurements from the Atmospheric Radiation Measurement (ARM) program over the Southern Great Plains are used. A broad statistical analysis was performed on 14 years of coincident measurements of low clouds, aerosol, and meteorological properties. Here two cases representing conflicting results regardingmore » the relationship between the aerosol and the cloud radiative effect were selected and studied in greater detail. Microphysical estimates are shown to be very uncertain and to depend strongly on the methodology, retrieval technique and averaging scale. For this continental site, the results indicate that the influence of the aerosol on the shallow cloud radiative effect and albedo is weak and that macroscopic cloud properties and dynamics play a much larger role in determining the instantaneous cloud radiative effect compared to microphysical effects. On a daily basis, aerosol shows no correlation with cloud radiative properties (correlation = -0.01 ± 0.03), whereas the liquid water path shows a clear signal (correlation = 0.56 ± 0.02).« less
NASA Astrophysics Data System (ADS)
Kokkalis, Panos; Papayannis, Alex; Tsaknakis, George; Mamouri, RodElise; Argyrouli, Athina
2013-04-01
Aerosols play an important role in earth's atmospheric radiation balance, which is enhanced in areas where dust is mostly present (e.g. the Mediterranean region), as in the case of the city of Athens. The focus of this paper is to provide a comprehensive analysis of the seasonal variability of optical and geometrical properties, as well as the mass concentration of Saharan dust over the city of Athens, Greece, for a 10-years time period: 2002-2012 based on the laser remote sensing (lidar) technique. More specifically, the aerosol optical properties concern the extinction and the backscatter coefficient, as well as the lidar ratio, while the geometrical properties concern the dust layer thickness and center of mass. The calculations of the aerosol extinction coefficient and of the so-called lidar ratio (defined as the ratio of the aerosol extinction coefficient over the aerosol backscatter coefficient) are made by using the Raman lidar technique, only under cloud-free conditions. The calculation of the dust mass concentration was retrieved by a applying a conversion factor (the so-called dust extinction cross section; mean value of the order of 0.64 m2g-1) and by combining sun photometric measurements and modeled dust loading values. Our data analysis was based on monthly-mean values, and only in time periods under cloud-free conditions and for lidar signals with signal to noise ratios (SNR) greater than 1.5 under dusty conditions. The mean value of the lidar ratio at 355 nm was found to be 62±20sr, while the mean dust mass concentration was of the order of 240 μgm-3. The data analyzed were obtained by systematic aerosol lidar measurements performed by the EOLE Raman lidar system of the National Technical University of Athens (NTUA), in the frame of the European Aerosol Research Lidar network (EARLINET). EOLE is able to provide the vertical profiles of the aerosol backscatter (at 355, 532, 1064 nm) and extinction coefficients (at 355 and 532 nm), as well as the water vapor mixing ratio, from about 700 m up to 10000 m, with high temporal (< 5 min.) and spatial (7.5 m) resolution. Acknowledgements: This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Heracleitus II - Investing in knowledge society through the European Social Fund. This research was also financially supported by ITARS (www.itars.net), European Union Seventh Framework Programme (FP7/2007-2013): People, ITN Marie Curie Actions Programme (2012-2016) under grant agreement no 289923.
Rohr, Annette; McDonald, Jacob
2016-02-01
Air pollution is a complex mixture of gas-, vapor-, and particulate-phase materials comprised of inorganic and organic species. Many of these components have been associated with adverse health effects in epidemiological and toxicological studies, including a broad spectrum of carbonaceous atmospheric components. This paper reviews recent literature on the health impacts of organic aerosols, with a focus on specific sources of organic material; it is not intended to be a comprehensive review of all the available literature. Specific emission sources reviewed include engine emissions, wood/biomass combustion emissions, biogenic emissions and secondary organic aerosol (SOA), resuspended road dust, tire and brake wear, and cooking emissions. In addition, recent findings from large toxicological and epidemiological research programs are reviewed in the context of organic PM, including SPHERES, NPACT, NERC, ACES, and TERESA. A review of the extant literature suggests that there are clear health impacts from emissions containing carbon-containing PM, but difficulty remains in apportioning responses to certain groupings of carbonaceous materials, such as organic and elemental carbon, condensed and gas phases, and primary and secondary material. More focused epidemiological and toxicological studies, including increased characterization of organic materials, would increase understanding of this issue.
Airborne UV DIAL Measurements of Ozone and Aerosols
NASA Technical Reports Server (NTRS)
Grant, William B.; Browell, Edward V.
2000-01-01
The NASA Langley Research Center's airborne UV Differential Absorption Lidar (DIAL) system measures vertical profiles of ozone and aerosols above and below the aircraft along its flight track. This system has been used in over 20 airborne field missions designed to study the troposphere and stratosphere since 1980. Four of these missions involved tropospheric measurement programs in the Pacific Ocean with two in the western North Pacific and two in the South Pacific. The UV DIAL system has been used in these missions to study such things as pollution outflow, long-range transport, and stratospheric intrusions; categorize the air masses encountered; and to guide the aircraft to altitudes where interesting features can be studied using the in situ instruments. This paper will highlight the findings with the UV DIAL system in the Pacific Ocean field programs and introduce the mission planned for the western North Pacific for February-April 2001. This will be an excellent opportunity for collaboration between the NASA airborne mission and those with ground-based War systems in Asia Pacific Rim countries to make a more complete determination of the transport of air from Asia to the western Pacific.
NASA Astrophysics Data System (ADS)
Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.
2016-12-01
This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and Engineering Research Council (NSERC) of Canada, the Canadian Space Agency (CSA), and Environment and Climate Change Canada (ECCC). In addition, the Alert GAW Observatory is supported by ECCC.
Evaluation of cloud-resolving modeling of haboobs using in-situ and remotely sensed observations
NASA Astrophysics Data System (ADS)
Anisimov, Anatolii; Axisa, Duncan; Mostamandi, Suleiman; Kucera, Paul A.; Stenchikov, Georgiy
2017-04-01
Arabian Peninsula is one of the major dust generation regions that at present is severely under-sampled. In this study, we combine unique aircraft observations of aerosol and fine-resolution simulations to better quantify dust generation and transport in deep convective storms called haboobs. The aerosol observations were obtained during the "Kingdom of Saudi Arabia Assessment of Rainfall Augmentation" research program that was conducted in the Central and Southwest regions of Saudi Arabia for the years of 2006 through 2009. We ingest the observations from the first phase of the project conducted in the central Arabian Peninsula near Riyadh in April 2007 and focus on the observational cases when the aircraft sampled high concentrations of dust within haboobs. These data are indispensable for assessment of dust properties during periods of extreme aerosol loading. We perform cloud-resolving 2-km simulations using the coupled meteorology-chemistry WRF-Chem model with 8-bin MOSAIC aerosol microphysics scheme that accounts for direct and indirect aerosol effects. The model is validated using observations from surface weather stations, Doppler weather radar network, AERONET stations, MODIS and SEVIRI satellite aerosol sensors. We also compare the model results with recent MERRA-2 reanalysis that assimilates aerosols and chemical components. The model captures the spatiotemporal variability of atmospheric circulation and aerosol properties and calculates contributions of different aerosol species. We specifically compare the simulated aerosols with the aircraft measurements to evaluate the vertical extent and the structure of dust layers in haboobs. The simulated column-averaged dust size distribution compares reasonably well with AERONET and aircraft measurement. Despite total aerosol optical depth in simulations and MERRA2 reanalysis are quite similar, the vertical distribution and regional dust emission fluxes in the model and reanalysis differ significantly. The presentation will provide insights on differences between the observations and simulations.
NASA Technical Reports Server (NTRS)
Wang, Sheng-Hsiang; Tsay, Si-Chee; Lin, Neng-Huei; Chang, Shuenn-Chin; Li, Can; Welton, Ellsworth J.; Holben, Brent N.; Hsu, N. Christina; Lau, William K. M.; Lolli, Simone;
2012-01-01
During the spring of 2010, comprehensive in situ measurements were made for the first time on a small atoll (Dongsha Island) in the northern South China Sea (SCS), a key region of the 7-SEAS (the Seven South East Asian Studies) program. This paper focuses on characterizing the source origins, transport processes, and vertical distributions of the Asian continental outflows over the region, using measurements including mass concentration, optical properties, hygroscopicity, and vertical distribution of the aerosol particles, as well as the trace gas composition. Cluster analysis of backward trajectories classified 52% of the air masses arriving at ground level of Dongsha Island as having a continental origin, mainly from northern China to the northern SCS, passing the coastal area and being confined in the marine boundary layer (0-0.5 km). Compared to aerosols of oceanic origin, the fine mode continental aerosols have a higher concentration, extinction coefficient, and single-scattering albedo at 550 nm (i.e., 19 vs. 14 microg per cubic meter in PM(sub 2.5); 77 vs. 59 M per meter in beta(sub e); and 0.94 vs. 0.90 in omega, respectively). These aerosols have a higher hygroscopicity (f at 85% RH = 2.1) than those in the upwind inland regions, suggesting that the aerosols transported to the northern SCS were modified by the marine environment. In addition to the near-surface aerosol transport, a significant upper-layer (3-4 km) transport of biomass-burning aerosols was observed. Our results suggest that emissions from both China and Southeast Asia could have a significant impact on the aerosol loading and other aerosol properties over the SCS. Furthermore, the complex vertical distribution of aerosols-coinciding-with-clouds has implications for remote-sensing observations and aerosol-cloud-radiation interactions.
Carbonaceous Aerosol Removal During Precipitation Events: Climate Implications
NASA Astrophysics Data System (ADS)
Gaffney, J. S.; Marley, N. A.; Bridges, G. L.; Marchany-Rivera, A.; Begum, M.
2009-12-01
Atmospheric aerosols and their links to clouds are one of the main focus areas of the Department of Energy’s Atmospheric Systems Research, due to the fact that aerosols and clouds constitute the major uncertainties in radiative forcing that need to be reduced for more accurate modeling of climate, particularly regional climate. The impact of absorbing aerosols on radiative balance of the atmosphere will depend on their atmospheric lifetimes as well as their UV-visible absorption profiles. Aerosol lifetimes depend on the aerosols ability to take up water and grow to sufficient size to be either removed by gravitational settling or to act as cloud condensation nuclei and be removed by precipitation scavenging. The investigation of uv-visible absorbing aerosols is underway using a seven-channel aethalometer to evaluate the change in aerosol optical absorption during precipitation events. Angstrom absorption exponents (AAEs) are determined before, during, and after rain events to examine the impact on the aerosol absorption profiles anticipated by removal of the water soluble short-wave absorbing species (i.e. HULIS) that can be produced by photochemical oxidation of biogenic emissions (isoprene, monoterpenes, sesquiterpenes). Aerosol absorption data are presented from observations made at the University of Arkansas at Little Rock and other sites, which clearly show that a significant amount of absorbing carbon is not removed during rain events, and that the organic matter removed is likely secondary organics produced from biogenic precursors. The dissolved organic carbon measured in precipitation samples along with determinations of natural radionuclide tracers are also used to help examine the extent of carbonaceous aerosol removal by precipitation. The data are discussed in terms of the potential impacts of anthropogenic enhancement of aerosol absorption by secondary organic aerosols adding to atmospheric heating and changes in atmospheric dynamics. The potential impacts of these organic aerosol species as sources of organic carbon in surface waters is also addressed. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 and Grant No. DE-FG02-07-ER64329 as part of the Atmospheric Science Program.
NASA Astrophysics Data System (ADS)
Odwuor, A.; Corr, C.; Griffin, R. J.; Pusede, S.; Anderson, B.; Beyersdorf, A. J.; Campuzano Jost, P.; Chen, G.; Day, D. A.; Diskin, G. S.; Jimenez, J. L.; Moore, R.; Nault, B.; Schwarz, J. P.; Shook, M.; Thornhill, K. L., II; Winstead, E.; Armin, W.; Ziemba, L. D.
2017-12-01
Climate models and satellite aerosol classification retrievals rely on well-characterized aerosol optical properties (e.g., scattering and absorption coefficients) that vary with aerosol type. However, generalized parameterizations of aerosol optical properties are weakened by actual variability in aerosol chemical and physical properties that arises from factors independent of aerosol source (e.g., meteorology). This is particularly true for biomass burning (BB) aerosol, which can vary in composition and size depending on burn conditions (e.g., smoldering versus flaming) and fuel. This work investigates the relationships between BB aerosol chemical, physical, and optical properties and fuel. We compare BB aerosol measured in fire plumes associated with distinct fuel types sampled during three NASA airborne research campaigns: boreal forest fires during the Arctic Research of the Troposphere from Aircraft and Satellites (ARCTAS) mission in Saskatchewan, Canada in July 2008; agricultural fires during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) over the continental U.S. in August/September 2013; and scrubland fires during the Student Airborne Research Program (SARP) mission in Southern California, U.S. in June 2016. Mean modified combustion efficiency values between 0.9 and 0.92 for the agricultural plumes and between 0.92 and 0.99 for the boreal and scrubland plumes indicate a significant flaming component to these fires. Despite similarities in burn conditions, SSA at 550nm was consistently lower for the agricultural and scrubland fires ( 0.92) compared to the boreal forest ( 0.96). While the ratio of black carbon to organic aerosol (OA) was similar among fires, differences in the OA were noted; f44/f60 ratios derived from Aerosol Mass Spectrometer OA measurements were consistently higher (>5) in scrubland and agricultural fires compared to boreal forest fires (<5). This suggests the amount of oxidized OA relative to fresh BB aerosol in fire plumes under flaming conditions may vary with fuel type and influence plume optical properties. The relationship between size distributions and optical properties is also explored in this work, with particular attention on the role of the coarse mode in aerosol absorption.
NASA Astrophysics Data System (ADS)
Dulac, Francois
2013-04-01
The Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/) is a French initiative supported by the MISTRALS program (Mediterranean Integrated Studies at Regional And Locals Scales, http://www.mistrals-home.org). It aims at a scientific assessment of the present and future state of the atmospheric environment in the Mediterranean Basin, and of its impacts on the regional climate, air quality, and marine biogeochemistry. The major stake is an understanding of the future of the Mediterranean region in a context of strong regional anthropogenic and climatic pressures. The target of ChArMEx is short-lived particulate and gaseous tropospheric trace species which are the cause of poor air quality events, have two-way interactions with climate, or impact the marine biogeochemistry. In order to fulfill these objectives, important efforts have been put in 2012 in order to implement the infrastructure and instrumentation for a fully equipped background monitoring station at Ersa, Cape Corsica, a key location at the crossroads of dusty southerly air masses and polluted outflows from the European continent. The observations at this station began in June 2012 (in the context of the EMEP / ACTRIS / PEGASOS / ChArMEx campaigns). A broad spectrum of aerosol properties is also measured at the station, from the chemical composition (off-line daily filter sampling in PM2.5/PM10, on-line Aerosol Chemical Speciation Monitor), ground optical properties (extinction/absorption/light scattering coeff. with 1-? CAPS PMex monitor, 7-? Aethalometer, 3-? Nephelometer), integrated and vertically resolved optical properties (4-? Cimel sunphotometer and LIDAR, respective), size distribution properties (N-AIS, SMPS, APS, and OPS instruments), mass (PM1/PM10 by TEOM/TEOM-FDMS), hygroscopicity (CCN), as well as total insoluble deposition. So far, real-time measurement of reactive gases (O3, CO, NO, NO2), and off-line VOC measurements (cylinders, cartridges) are also performed. A Kipp and Zonen system for monitoring direct and diffuse broadband radiative fluxes will also be in operation soon, as well as an ICOS/RAMCES CO2 and CH4 monitoring instrument. Through this unprecedented effort and with the support from ChArMEx, ADEME, and CORSiCA programs (http://www.obs-mip.fr/corsica), this observatory represents so far the most achieved French atmospheric station having the best set of instruments for measuring in-situ reactive gases and aerosols. It stands out as the station of not one laboratory but of a large number (see list of co-authors). It provides "real time" information useful to the local air quality network (Qualitair Corse, http://www.qualitaircorse.org/) concerning EU regulated parameters (O3, PMx). This station aims providing quality controlled climatically relevant gas/aerosol database following the recommendations of the EU-FP7 ACTRIS infrastructure, EMEP and WMO-GAW programs. Atmospheric datasets are currently available at the MISTRALS database (http://mistrals.sedoo.fr/ChArMEx/) and soon at the ACTRIS & GAW databases. After a brief presentation of the Cape Corsica Station (location, climatology, instrumental settings ...), we present here the first months of aerosols properties (optical / chemical / particle size) obtained at this station. Acknowledgements: the station is mainly supported by ADEME, CNRS-INSU, CEA, CTC, EMD, FEDER, and Météo-France.
NASA Technical Reports Server (NTRS)
Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.
1995-01-01
The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.
Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wood, R.
2016-01-01
The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiativemore » cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.« less
Hitchcock, Penny J; Mair, Michael; Inglesby, Thomas V; Gross, Jonathan; Henderson, D A; O'Toole, Tara; Ahern-Seronde, Joa; Bahnfleth, William P; Brennan, Terry; Burroughs, H E Barney; Davidson, Cliff; Delp, William; Ensor, David S; Gomory, Ralph; Olsiewski, Paula; Samet, Jonathan M; Smith, William M; Streifel, Andrew J; White, Ronald H; Woods, James E
2006-01-01
The prospect of biological attacks is a growing strategic threat. Covert aerosol attacks inside a building are of particular concern. In the summer of 2005, the Center for Biosecurity of the University of Pittsburgh Medical Center convened a Working Group to determine what steps could be taken to reduce the risk of exposure of building occupants after an aerosol release of a biological weapon. The Working Group was composed of subject matter experts in air filtration, building ventilation and pressurization, air conditioning and air distribution, biosecurity, building design and operation, building decontamination and restoration, economics, medicine, public health, and public policy. The group focused on functions of the heating, ventilation, and air conditioning systems in commercial or public buildings that could reduce the risk of exposure to deleterious aerosols following biological attacks. The Working Group's recommendations for building owners are based on the use of currently available, off-the-shelf technologies. These recommendations are modest in expense and could be implemented immediately. It is also the Working Group's judgment that the commitment and stewardship of a lead government agency is essential to secure the necessary financial and human resources and to plan and build a comprehensive, effective program to reduce exposure to aerosolized infectious agents in buildings.
A New Cloud and Aerosol Layer Detection Method Based on Micropulse Lidar Measurements
NASA Astrophysics Data System (ADS)
Wang, Q.; Zhao, C.; Wang, Y.; Li, Z.; Wang, Z.; Liu, D.
2014-12-01
A new algorithm is developed to detect aerosols and clouds based on micropulse lidar (MPL) measurements. In this method, a semi-discretization processing (SDP) technique is first used to inhibit the impact of increasing noise with distance, then a value distribution equalization (VDE) method is introduced to reduce the magnitude of signal variations with distance. Combined with empirical threshold values, clouds and aerosols are detected and separated. This method can detect clouds and aerosols with high accuracy, although classification of aerosols and clouds is sensitive to the thresholds selected. Compared with the existing Atmospheric Radiation Measurement (ARM) program lidar-based cloud product, the new method detects more high clouds. The algorithm was applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu site. At SGP, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring, and shows bi-modal vertical distributions with maximum frequency at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. By contrast, the cloud frequency at Taihu shows no clear seasonal variation and the maximum frequency is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at SGP.
NASA Astrophysics Data System (ADS)
Cecil, L.; Young, D. F.; Parker, P. A.; Eckman, R. S.
2006-12-01
The NASA Applied Sciences Program extends the results of Earth Science Division (ESD) research and knowledge beyond the scientific and research communities to contribute to national priority applications with societal benefits. The Applied Sciences Program focuses on, (1) assimilation of NASA Earth-science research results and their associated uncertainties to improve decision support systems and, (2) the transition of NASA research results to evolve improvements in future operational systems. The broad range of Earth- science research results that serve as inputs to the Applied Sciences Program are from NASA's Research and Analysis Program (R&A) within the ESD. The R&A Program has established six research focus areas to study the complex processes associated with Earth-system science; Atmospheric Composition, Carbon Cycle and Ecosystems, Climate Variability and Change, Earth Surface and Interior, Water and Energy Cycle, and Weather. Through observations-based Earth-science research results, NASA and its partners are establishing predictive capabilities for future projections of natural and human perturbations on the planet. The focus of this presentation is on the use of research results and their associated uncertainties from several of NASA's nine next generation missions for societal benefit. The newly launched missions are, (1) CloudSat, and (2) CALIPSO (Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observations), both launched April 28, 2006, and the planned next generation missions include, (3) the Orbiting Carbon Observatory (OCO), (4) the Global Precipitation Mission (GPM), (5) the Landsat Data Continuity Mission (LDCM), (6) Glory, for measuring the spatial and temporal distribution of aerosols and total solar irradiance for long-term climate records, (7) Aquarius, for measuring global sea surface salinity, (8) the Ocean Surface Topography Mission (OSTM), and (9) the NPOESS Preparatory Project (NPP) for measuring long-term climate trends and global biological productivity. NASA's Applied Sciences Program is taking a scientifically rigorous systems engineering approach to facilitate rapid prototyping of potential uses of the projected research capabilities of these new missions into decision support systems. This presentation includes an example of a prototype experiment that focuses on two of the Applied Sciences Program's twelve National Applications focus areas, Water Management and Energy Management. This experiment is utilizing research results and associated uncertainties from existing Earth-observation missions as well as from several of NASA's nine next generation missions. This prototype experiment is simulating decision support analysis and research results leading to priority management and/or policy issues concentrating on climate change and uncertainties in alpine areas on the watershed scale.
Remote sensing of mineral dust aerosol using AERI during the UAE2: A modeling and sensitivity study
NASA Astrophysics Data System (ADS)
Hansell, R. A.; Liou, K. N.; Ou, S. C.; Tsay, S. C.; Ji, Q.; Reid, J. S.
2008-09-01
Numerical simulations and sensitivity studies have been performed to assess the potential for using brightness temperature spectra from a ground-based Atmospheric Emitted Radiance Interferometer (AERI) during the United Arab Emirates Unified Aerosol Experiment (UAE2) for detecting/retrieving mineral dust aerosol. A methodology for separating dust from clouds and retrieving the dust IR optical depths was developed by exploiting differences between their spectral absorptive powers in prescribed thermal IR window subbands. Dust microphysical models were constructed using in situ data from the UAE2 and prior field studies while composition was modeled using refractive index data sets for minerals commonly observed around the UAE region including quartz, kaolinite, and calcium carbonate. The T-matrix, finite difference time domain (FDTD), and Lorenz-Mie light scattering programs were employed to calculate the single scattering properties for three dust shapes: oblate spheroids, hexagonal plates, and spheres. We used the Code for High-resolution Accelerated Radiative Transfer with Scattering (CHARTS) radiative transfer program to investigate sensitivity of the modeled AERI spectra to key dust and atmospheric parameters. Sensitivity studies show that characterization of the thermodynamic boundary layer is crucial for accurate AERI dust detection/retrieval. Furthermore, AERI sensitivity to dust optical depth is manifested in the strong subband slope dependence of the window region. Two daytime UAE2 cases were examined to demonstrate the present detection/retrieval technique, and we show that the results compare reasonably well to collocated AERONET Sun photometer/MPLNET micropulse lidar measurements. Finally, sensitivity of the developed methodology to the AERI's estimated MgCdTe detector nonlinearity was evaluated.
NASA Astrophysics Data System (ADS)
Von Randow, Celso; Sanches, Marcos B.; Santos, Rosa Maria N.; Chamecki, Marcelo; Fuentes, Jose D.
2017-04-01
A detailed field experiment measuring turbulent properties, trace gases and BVOCs was carried out from April 2014 to January 2015 within and above a central Amazonian rainforest, with the objective of understanding the role of emissions and reactions of BVOCs, formation and transport of aerosols out of the boundary layer on cloud formation and precipitation triggers. Our measurements show two-way aspects of connectivity: mesoscale convective systems transport ozone down from the middle troposphere, enriching the atmospheric boundary layer as well as the forest canopy and surface layer, and, through multiple chemical transformations, an ozone-enriched atmospheric surface layer that can oxidize rainforest-emitted hydrocarbons and generate aerosols that subsequently activate into cloud condensation nuclei, thereby possibly influencing the formation of new convective precipitation. Qualitatively, we address the connectivity between emissions of BVOCs near the surface and rainfall generation, using the technique of Genetic Programing (GP), introduced by Koza (1992), based on the concepts of natural selection and genetics. The technique involves finding a mathematical expression that fits a given set of data, and constructing a population of mathematical models from different combinations of variables, constants and operators. An advantage of GP is that it can flexibly incorporate multivariate non-linear relations, and obtained numeric solutions are possibly interpreted and checked for physical consistency. A number of state variables (for example, surface fluxes, meteorological conditions, boundary layer stability conditions, BVOC and Ozone vertical profiles, etc), representing possible influences on BVOC emissions and their interrelations along the way through secondary organic aerosol and CCN formation to rainfall will be used.
We Don't Need a "Geoengineering" Research Program
NASA Astrophysics Data System (ADS)
Caldeira, K.
2011-12-01
Most approaches commonly labeled as 'geoengineering' can be divided into two categories: approaches that attempt to reduce the change in atmospheric composition caused by anthropogenic emissions (commonly labeled CDR, for Carbon Dioxide Removal), and approaches that attempt to reduce the change in climate caused by changes in atmospheric composition (commonly labeled SRM, for Sunlight Reflection Methods or Solar Radiation Management). CDR is relatively uncontroversial (apart from ocean fertilization), and the primary issues are typically cost, effectiveness, local environmental consequences, and verification. In contrast, SRM has provoked much controversy, because large-scale SRM deployments necessarily would affect everyone on this planet. Several proposals have been tabled for SRM-specific or geoengineering-specific research and governance structures, treating SRM or geoengineering research as a thing apart. We should instead view CDR and SRM research as part of a broader continuum of activities aimed at understanding Earth system dynamics and reducing risks associated with climate change. The scope of existing research efforts should be broadened so that CDR and SRM approaches are, at this stage in development, treated as an extension of what we are already doing. What is 'geoengineering research'? A primary need at this time is for expansion of scope of and funding for existing climate-related research efforts. For examples: Scientists studying the role of aerosols in clouds or stratospheric processes can expand the domain of concern to consider effects of intentionally introduced aerosols (and not just natural aerosols and aerosols we introduce as a byproduct of civilization's normal functioning). Scientists studying effects of land-surface change on global and regional climates can expand the domain of concern beyond inadvertent effects to consider effects of land-surface changes undertaken with the intent to affect these climates. Research programs aimed at removing carbon dioxide from power plant flue gases can be broadened to consider industrial approaches to remove carbon dioxide that has already been released to the atmosphere. There appears to be little need for new overarching research structures or institutions at this time for activities for which there are no plans for deployment. Defining the scope of reference of 'geoengineering' and related terms (eg, 'geoengineering experiment') is a linguistic distraction and a waste of time. We should focus instead on substantive issues of primary concern. If our goal is to reduce risk from scientific experiments, then let's develop approaches aimed at governing risky experiments. Governance efforts can be aimed at eliminating unjustified risk independently of whether some people might want to apply labels like 'geoengineering' to those activities. We do not need 'a geoengineering research program'. We need to expand existing research programs to consider a broader range of activities and conditions. We do not need efforts to govern 'geoengineering experiments' although we may need efforts to govern scientific experiments that pose unjustified risks. Let's focus on gaining knowledge and managing risks, and not let our brains be addled by emotionally-charged language.
NASA Astrophysics Data System (ADS)
Weinzierl, B.; Dollner, M.; Schuh, H.; Brock, C. A.; Bui, T. V.; Gasteiger, J.; Froyd, K. D.; Schwarz, J. P.; Spanu, A.; Murphy, D. M.; Katich, J. M.; Kupc, A.; Williamson, C.
2016-12-01
Although coarse-mode aerosol (>1 µm diameter), composed mainly of mineral dust and sea-salt, is highly abundant over large regions of the world, these particles form a particularly poorly understood and characterized subset of atmospheric aerosol constituents. The NASA-sponsored Atmospheric Tomography Mission (ATom) is an unprecedented field program that investigates how human emissions affect air quality and climate change. ATom provides a singular opportunity to characterize the global coarse-mode size distribution by continuously profiling between 0.2 and 13 km with the NASA DC-8 research aircraft while traveling from the high Arctic down south the middle of the Pacific Ocean, to the Southern Ocean and back north over the Atlantic Ocean basin in four seasons. For ATom, the DC-8 aircraft has been equipped with multiple instruments to observe the composition of the air. The coarse mode and cloud particle size distribution is measured in-situ with a Cloud, Aerosol, and Precipitation Spectrometer (CAPS) mounted under the wing of the DC-8 research aircraft. The CAPS consists of an optical spectrometer providing size distributions in the size range between 0.5 and 50 µm and an imager detecting number concentration, size and shape of particles between 15 and 930 µm diameter. Early ATom flights indicated complicated vertical layering: over the sea, we regularly observed sea salt aerosol which extended from the ground up to 0.6-1 km altitude. In addition - depending on the location of the measurements - we frequently found layers with coarse mode aerosol originating from deserts and biomass burning aerosol aloft. In this study, we will present first results of coarse mode aerosol observations from the entire first ATom deployment in summer 2016. We will show vertical profiles of coarse mode aerosol number concentration, discuss their interhemispheric differences, and look into the question how frequently coarse-mode aerosol is externally mixed with submicron black carbon and other anthropogenic aerosol components. Furthermore, we will compare sequences with mineral dust observations made during ATom with results from the Saharan Aerosol Long-range Transport and Aerosol Cloud Interaction Experiment (SALTRACE) that took place around the tropical and northern Atlantic basin in 2013.
NASA Astrophysics Data System (ADS)
Redemann, J.; Wood, R.; Zuidema, P.; Haywood, J. M.; Piketh, S.; Formenti, P.; Abel, S.
2016-12-01
Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical stratocumulus (Sc) cloud decks in the world. The SE Atlantic stratocumulus deck interacts with the dense layers of BB aerosols that initially overlay the cloud deck, but later subside and may mix into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects, and their global representation in climate models remains one of the largest uncertainties in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for regional and global climate change predictions. Our understanding of aerosol-cloud interactions in the SE Atlantic is severely limited. Most notably, we are missing knowledge on the absorptive and cloud nucleating properties of aerosols, including their vertical distribution relative to clouds, on the locations and degree of aerosol mixing into clouds, on the processes that govern cloud property adjustments, and on the importance of aerosol effects on clouds relative to co-varying synoptic scale meteorology. We describe first results from various synergistic, international research activities aimed at studying aerosol-cloud interactions in the region: NASA's airborne ORACLES (ObseRvations of Aerosols Above Clouds and Their IntEractionS) deployment in August/September of 2016, the DoE's LASIC (Layered Atlantic Smoke Interactions with Clouds) deployment of the ARM Mobile Facility to Ascension Island (June 2016 - October 2017), the ground-based components of CNRS' AEROCLO-sA (Aerosols Clouds and Fog over the west coast of southern Africa), and ongoing regional-scale integrative, process-oriented science efforts as part of SEALS-sA (Sea Earth Atmosphere Linkages Study in southern Africa). We expect to describe experimental setups as well as showcase initial aerosol and cloud property distributions. Furthermore, we discuss the implementation of future activities in these programs in coordination with the UK Met Office's CLARIFY (CLoud-Aerosol-Radiation Interactions and Forcing) experiment in 2017.
Holmes, Thomas D; Guilmette, Raymond A; Cheng, Yung Sung; Parkhurst, Mary Ann; Hoover, Mark D
2009-03-01
The Capstone Depleted Uranium (DU) Aerosol Study was undertaken to obtain aerosol samples resulting from a large-caliber DU penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post perforation, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the crew locations in the test vehicles. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for measurement of chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for DU concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung-Sung
2009-03-01
The Capstone Depleted Uranium Aerosol Study was undertaken to obtain aerosol samples resulting from a kinetic-energy cartridge with a large-caliber depleted uranium (DU) penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post-impact, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used tomore » achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the vehicle commander, loader, gunner, and driver. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for depleted uranium concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol.« less
Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment
Wood, Robert; Luke, Ed; Wyant, Matthew; ...
2014-04-27
The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less
A mini backscatter lidar for airborne measurements in the framework of DACCIWA
NASA Astrophysics Data System (ADS)
Chazette, Patrick; Totems, Julien; Flamant, Cyrille; Shang, Xiaoxia; Denjean, Cyrielle; Meynadier, Rémi; Perrin, Thierry; Laurens, Marc
2017-04-01
During the international campaign of the European program Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa (DACCIWA), investigating the relationship between weather, climate and air pollution in southern West Africa, a mini backscatter lidar was embedded on the French research aircraft (ATR42) of the Service des Avions Français Instrumentés pour la Recherche en Environnement (SAFIRE). This implementation was made possible thanks to the support of the Centre National d'Etude Spatial (CNES), with the aim of assessing the relative relevance of airborne or spaceborne (e.g. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, CALIPSO) remote sensing instruments. The lidar complemented the various in-situ observations carried out on the plane, by identifying the aerosol layers in the atmospheric column below the aircraft, and bringing strong constraints for the validation of other measurements. The field campaign took place from 27 to 16 July 2016 from Lomé, Togo. The aircraft conducted flights between 1 km and 5 km above the mean sea level (amsl), allowing the coupling of in situ and remote sensing data to assess the properties of the aerosol layers. Aerosol plumes of different origins were identified using the coupling between the lidar cross-polarized channels, satellite observations and a set of back trajectories analyses. During several flights, depolarizing aerosol layers from the northeast were observed between 2.5 and 4 km amsl, which highlight the significant contribution of dust-like particles to the aerosol load in the coastal region. Conversely, air masses originating from the east-southeast were loaded with a mixing of biomass burning and pollution aerosols. The former originated from Central Africa and the latter from human activities in and around large cities (Lomé). The flight sampling strategy and related lidar investigations will be presented and discussed.
Estimation of black carbon content for biomass burning aerosols from multi-channel Raman lidar data
NASA Astrophysics Data System (ADS)
Talianu, Camelia; Marmureanu, Luminita; Nicolae, Doina
2015-04-01
Biomass burning due to natural processes (forest fires) or anthropical activities (agriculture, thermal power stations, domestic heating) is an important source of aerosols with a high content of carbon components (black carbon and organic carbon). Multi-channel Raman lidars provide information on the spectral dependence of the backscatter and extinction coefficients, embedding information on the black carbon content. Aerosols with a high content of black carbon have large extinction coefficients and small backscatter coefficients (strong absorption), while aerosols with high content of organic carbon have large backscatter coefficients (weak absorption). This paper presents a method based on radiative calculations to estimate the black carbon content of biomass burning aerosols from 3b+2a+1d lidar signals. Data is collected at Magurele, Romania, at the cross-road of air masses coming from Ukraine, Russia and Greece, where burning events are frequent during both cold and hot seasons. Aerosols are transported in the free troposphere, generally in the 2-4 km altitude range, and reaches the lidar location after 2-3 days. Optical data are collected between 2011-2012 by a multi-channel Raman lidar and follows the quality assurance program of EARLINET. Radiative calculations are made with libRadTran, an open source radiative model developed by ESA. Validation of the retrievals is made by comparison to a co-located C-ToF Aerosol Mass Spectrometer. Keywords: Lidar, aerosols, biomass burning, radiative model, black carbon Acknowledgment: This work has been supported by grants of the Romanian National Authority for Scientific Research, Programme for Research- Space Technology and Advanced Research - STAR, project no. 39/2012 - SIAFIM, and by Romanian Partnerships in priority areas PNII implemented with MEN-UEFISCDI support, project no. 309/2014 - MOBBE
Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)
NASA Technical Reports Server (NTRS)
Zaveri, R. A.; Shaw, W. J.; Cahill, J. F.; Cairns, Brian; Cappa, C. D.; Ottaviani, Matteo; Cziczo, D. J.; Ferrare, Richard A.; Alexander, M. L.; Alexandrov, Mikhail Dmitrievic;
2012-01-01
Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climaterelated properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.
Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.
2012-08-01
Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes and properties in climate models.
Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)
NASA Astrophysics Data System (ADS)
Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Langford, A. O.; Laskin, A.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.
2012-01-01
Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data analyses and focused modeling efforts that will facilitate the integration of new knowledge into improved representations of key aerosol processes in climate models.
NASA Astrophysics Data System (ADS)
Gaffney, J. S.; Marley, N. A.; Begum, M.; Sturchio, N. C.; Guilderson, T. P.
2011-12-01
High volume size-fractionated aerosol samples were obtained in Cool, CA during the Carbonaceous Aerosol and Radiative Effects Study (CARES) in June of 2010. This site was chosen to study the regional impacts of carbonaceous aerosols originating from the Sacramento area. Samples were collected for 6 to 24 hour time periods on quartz fiber filters by using slotted impactors to allow for collection of sample size cuts above and below one micron. Both total carbon content and carbon isotopic composition, including 13C/12C and 14C, were determined on the samples. In addition, Ångstrom absorption exponents (AAEs) were determined for the region of 300-900 nm on the sub-micron size cut by using state of the art diffuse reflectance UV-visible spectroscopy with integrating sphere technology. The overall carbonaceous aerosol loadings were found to be quite low and relatively constant during the study, suggesting that most of the aerosols at the site were locally formed background aerosols. The 14C data is consistent with a substantial fraction (~80 %) being from modern carbon sources and 13C/12C results indicate that the carbon source was from C-3 plants. This is consistent with a significant fraction of the aerosols in the area arising from secondary formation from biogenic precursor emissions from trees, most likely mono- and sesquiterpenes. These results are compared to past results obtained in Mexico City and discussed in terms of the potential importance of biogenic emissions to UV absorbing aerosols as these are anticipated to increase with climate change. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 and Grant No. DE-FG02-07-ER64329 as part of the Atmospheric Systems Research program.
The Installation Restoration Program Toxicology Guide. Volume 1
1989-07-01
affinity for adipose tissue , which is more prevalent in women and would result in less unchanged chloroform and more carbon dioxide exhaled. This...magnesium, potassium, sodium, tin, zinc , and their alloys. ADI Acceptable daily intake ADL Arthur D. Little, Inc. Adenocarcinoma A malignant tumor...originating in glandular or ductal epithelium. Adenoma A benign growth of glandular tissue . ae Acid equivalent Aerosol A suspension or dispersion of small
Nozzles for Focusing Aerosol Particles
2009-10-01
Fabrication of the nozzle with the desired shape was accomplished using EDM technology. First, a copper tungsten electrode was turned on a CNC lathe . The...small (0.9-mm diameter). The external portions of the nozzles were machined in a more conventional manner using computer numerical control ( CNC ... lathes and milling machines running programs written by computer aided machining (CAM) software. The close tolerance of concentricity of the two
Middle Atmosphere Program. Handbook for MAP. Volume 15: Balloon techniques
NASA Technical Reports Server (NTRS)
Murcray, D. G. (Editor)
1985-01-01
Some techniques employed by investigators using balloons to obtain data on the properties of the middle atmosphere are discussed. Much effort has gone into developing instruments which could be used on small balloons to measure temperature and variable species. These efforts are discussed. Remote sensing techniques used to obtain data on atmospheric composition are described. Measurement of stratospheric ions and stratospheric aerosols are also discussed.
NASA Astrophysics Data System (ADS)
Farrah, S.; Al Yazidi, O.
2016-12-01
The UAE Research Program for Rain Enhancement Science (UAEREP) is an international research initiative designed to advance the science and technology of rain enhancement. It comes from an understanding of the needs of countries suffering from scarcity of fresh water, and its will to support innovation globally. The Program focuses on the following topics: Climate change, Climate modelling, Climatology, Atmospheric physics, Atmospheric dynamics, Weather modification, Cloud physics, Cloud dynamics, Cloud seeding, Weather radars, Dust modelling, Aerosol physics , Aerosol chemistry, Aerosol/cloud interactions, Water resources, Physics, Numerical modelling, Material science, Nanotechnology, Meteorology, Hydrology, Hydrogeology, Rocket technology, Laser technology, Water sustainability, Remote sensing, Environmental sciences... In 2015, three research teams from Japan, Germany and the UAE led by Prof. Masataka Murakami, Volker Wulfmeyer and Linda Zou have been respectively awarded. Together, they are addressing the issue of water security through innovative ideas: algorithms and sensors, land cover modification, and nanotechnologies to accelerate condensation. These three projects are undergoing now with extensive research and progresses. This session will be an opportunity to present their latest results as well as to detail the evolution of research in rain enhancement. In 2016 indeed, the Program saw a remarkable increase in participation, with 91 pre-proposals from 398 scientists, researchers and technologists affiliated to 180 institutes from 45 countries. The projects submitted are now focusing on modelling to predict weather, autonomous vehicles, rocket technology, lasers or new seeding materials… The science of rain enhancement offers considerable potential in terms of research, development and innovation. Though cloud seeding has been pursued since the late 1940s, it has been viewed as a relatively marginal field of interest for scientists. This benign neglect has been recently replaced by a new drive to solve the technical obstacles impeding its potential. There is now a real prospect that this science will come of age and play its rightful part in boosting sustainable water supplies for people at risk in arid and semi-arid regions of the world.
Development of a UAV-based Global Ozone Lidar Demonstrator (GOLD)
NASA Astrophysics Data System (ADS)
Browell, E. V.; Deyoung, R. J.; Hair, J. W.; Ismail, S.; McGee, T.; Hardesty, R. M.; Brewer, W. A.; McDermid, I. S.
2006-12-01
Global ozone measurements are needed across the troposphere with high vertical resolution to enable comprehensive studies of continental and intercontinental atmospheric chemistry and dynamics, which are affected by diverse natural and human-induced processes. The development of a unattended aerial vehicle (UAV) based Global Ozone Lidar Demonstrator (GOLD) is an important step in enabling a space-based ozone and aerosol lidar and for conducting unique UAV-based large-scale atmospheric investigations. The GOLD system will incorporate the most advanced technology developed under the NASA Laser Risk Reduction Program (LRRP) and the Small Business Innovative Research (SBIR) program to produce a compact, autonomously operating ozone and aerosol Differential Absorption Lidar (DIAL) system for a UAV platform. This system will leverage advanced Nd:YAG and optical parametric oscillator (OPO) laser technologies being developed by ITT Industries under the LRRP and the autonomously operating ozone DIAL system being developed by Science and Engineering Services Inc. (SESI) under an SBIR Phase-3 contract. Laser components from ITT will be integrated into the SESI DIAL system, and the resulting GOLD system will be flight tested on a NASA UAV. The development of the GOLD system was initiated as part of the NASA Instrument Incubator Program in December 2005, and great progress has been made towards completing major GOLD subsystems. ITT has begun construction of the high-power Nd:YAG pump laser and the ultraviolet OPO for generating the ozone DIAL wavelengths of 290 and 300 nm and the aerosol visible wavelength at 532 nm. SESI is completing the Phase-3 SBIR contract for the delivery and demonstration of the ozone DIAL receiver and data system, and NOAA is completing detector evaluations for use in the GOLD system. Welch Mechanical is examining system designs for integrating GOLD into the external pod that will be hung under the new IKANA (Predator-B) UAV that NASA Dryden is acquiring. Details of the GOLD system design and development will be presented in this paper, and science applications for a UAV-based and space-based ozone lidar will be discussed.
Satellite global monitoring of environmental quality
NASA Technical Reports Server (NTRS)
Schiffer, R. A.
1975-01-01
The missions of two NASA satellites for the monitoring of environmental quality are described: Nimbus G, the Air Pollution and Oceanographic Observing Satellite, and the Applications Explorer Mission (AEM) satellite to be used in the Stratospheric Aerosol and Gas Experiment (SAGE). The scientific payload of Nimbus G is described in detail with a discussion of limb infrared monitoring of the stratosphere, the stratospheric and mesospheric sounder, stratospheric aerosol measurement, the solar and backscatter UV spectrometer for ozone mapping, the earth radiation budget experiment, the scanning multichannel microwave radiometer, the coastal zone color scanner and the temperature-humidity infrared radiometer. A brief description is given of the SAGE program and future NASA plans relating to the global monitoring of environmental quality are outlined.
Aliabadi, Amir A.; Rogak, Steven N.; Bartlett, Karen H.; Green, Sheldon I.
2011-01-01
Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk. PMID:22162813
DOE Office of Scientific and Technical Information (OSTI.GOV)
Penner, Joyce E.; Zhou, Cheng
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 05/27/2011 at the Southern Great Plains (SGP) measurement site established by Department of Energy's Atmospheric Radiation Measurement (ARM) Program using a single column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP in CAMmore » is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near cloud top, resulting in an overall decrease in LWP. Our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
Aliabadi, Amir A; Rogak, Steven N; Bartlett, Karen H; Green, Sheldon I
2011-01-01
Health care facility ventilation design greatly affects disease transmission by aerosols. The desire to control infection in hospitals and at the same time to reduce their carbon footprint motivates the use of unconventional solutions for building design and associated control measures. This paper considers indoor sources and types of infectious aerosols, and pathogen viability and infectivity behaviors in response to environmental conditions. Aerosol dispersion, heat and mass transfer, deposition in the respiratory tract, and infection mechanisms are discussed, with an emphasis on experimental and modeling approaches. Key building design parameters are described that include types of ventilation systems (mixing, displacement, natural and hybrid), air exchange rate, temperature and relative humidity, air flow distribution structure, occupancy, engineered disinfection of air (filtration and UV radiation), and architectural programming (source and activity management) for health care facilities. The paper describes major findings and suggests future research needs in methods for ventilation design of health care facilities to prevent airborne infection risk.
NASA Astrophysics Data System (ADS)
Liu, J.; Li, Z.; Mauzerall, D. L.; Fan, S.; Horowitz, L. W.; He, C.; Yi, K.; Tao, S.
2015-12-01
Knowledge on the spatiotemporal distribution of black carbon aerosol over the Northern Pacific is limited by a deficiency of observations. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 is the most comprehensive data source available and it reveals a 2 to 10 times overestimates of BC by current global models. Incorporation and assimilation of more data sources is needed to increase our understanding of the spatiotemporal distribution of black carbon aerosol and its corresponding climate effects. Based on measurements from aircraft campaigns and satellites, a robust association is observed between BC concentrations and satellite retrieved CO, tropospheric NO2, and aerosol optical depth (AOD) (R2 > 0.7). Such robust relationships indicate that BC aerosols share a similar emission sources, evolution processes and transport characteristics with other pollutants measured by satellite observations. It also establishes a basis to derive a satellite-based proxy (BC*) over remote oceans. The inferred satellite-based BC* shows that Asian export events in spring bring much more BC aerosols to the mid-Pacific than occurs in other seasons. In addition, inter-annual variability of BC* is seen over the Northern Pacific, with abundances correlated to the springtime Pacific/North American (PNA) index. The inferred BC* dataset also indicates a widespread overestimation of BC loadings by models over most remote oceans beyond the Pacific. Our method presents a novel approach to infer BC concentrations by combining satellite and aircraft observations.
Characteristics of Aerosol Transport from Asia to the West Coast of North America
NASA Astrophysics Data System (ADS)
Brock, C. A.; Bahreini, R.; Middlebrook, A. M.; Atlas, E. L.; Blake, D. R.; Brioude, J.; Cooper, O. R.; de Gouw, J. A.; Holloway, J. S.; Lack, D. A.; Langridge, J. M.; Meinardi, S.; Nowak, J. B.; Peischl, J.; Perring, A.; Pollack, I. B.; Roberts, J. M.; Ryerson, T. B.; Schwarz, J. P.; Spackman, J. R.; Trainer, M.; Trytko, J.; Warneke, C.
2010-12-01
During the CalNex field program of May and June 2010, the NOAA WP-3D aircraft observed several layers of enhanced trace gas mixing ratios and aerosol concentrations at altitudes ranging from 1 to 4 km over southern and central California. The submicron aerosol composition within these layers was dominated by partially neutralized sulfate, while nitrate, organic matter and black carbon were only minor constituents. The particle layers were associated with trace gases, such as benzene and sulfur dioxide, consistent with anthropogenic fossil fuel emissions, and were not associated with enhancements of the biomass burning tracer acetonitrile. The particle size distribution was dominated by a single accumulation mode that is characteristic of a well aged aerosol. Transport modeling indicates an Asian source for these layers of pollution. Dew point temperatures within the layers were less than -15 degrees Celsius, indicating desiccation by precipitation during transport. Taken together, these observations are consistent with those from earlier studies in which was diagnosed the removal of primary and organic particles by precipitation scavenging during uplift from the polluted Asian boundary layer into the free troposphere. Oxidation of residual sulfur dioxide that remained following transport through the cloud system may have resulted in the observed sulfate-rich aerosol. The repeated observation of such layers suggests that wet scavenging frequently modifies the chemical and optical characteristics of aerosols emitted in urban regions in Asia and transported in the free troposphere across the Pacific.
Optical Properties of Aerosols from Long Term Ground-Based Aeronet Measurements
NASA Technical Reports Server (NTRS)
Holben, B. N.; Tanre, D.; Smirnov, A.; Eck, T. F.; Slutsker, I.; Dubovik, O.; Lavenu, F.; Abuhassen, N.; Chatenet, B.
1999-01-01
AERONET is an optical ground-based aerosol monitoring network and data archive supported by NASA's Earth Observing System and expanded by federation with many non-NASA institutions including AEROCAN (AERONET CANada) and PHOTON (PHOtometrie pour le Traiteinent Operatonnel de Normalisation Satellitaire). The network hardware consists of identical automatic sun-sky scanning spectral radiometers owned by national agencies and universities purchased for their own monitoring and research objectives. Data are transmitted hourly through the data collection system (DCS) on board the geostationary meteorological satellites GMS, GOES and METEOSAT and received in a common archive for daily processing utilizing a peer reviewed series of algorithms thus imposing a standardization and quality control of the product data base. Data from this collaboration provides globally distributed near real time observations of aerosol spectral optical depths, aerosol size distributions, and precipitable water in diverse aerosol regimes. Access to the AERONET data base has shifted from the interactive program 'demonstrat' (reserved for PI's) to the AERONET homepage allowing faster access and greater development for GIS object oriented retrievals and analysis with companion geocoded data sets from satellites, LIDAR and solar flux measurements for example. We feel that a significant yet under utilized component of the AERONET data base are inversion products made from hourly principal plane and almucanter measurements. The current inversions have been shown to retrieve aerosol volume size distributions. A significant enhancement to the inversion code has been developed and is presented in these proceedings.
NASA Astrophysics Data System (ADS)
Scally, Lawrence J.
This program was implemented by Lawrence J. Scally for a Ph.D. under the EECE department at the University of Colorado at Boulder with most funding provided by the U.S. Army. Professor Gasiewski is the advisor and guider for the entire program; he has a strong history decades ago in this type of program. This program is developing a more advanced than previous years transmissometer, called Terahertz Atmospheric and Ionospheric Propagation, Absorption and Scattering System (TAIPAS), on an open path between the University of Colorado EE building roof and the mesa on owned by National Institute of Standards and Technology (NIST); NIST has invested money, location and support for the program. Besides designing and building the transmissometer, that has never be accomplished at this level, the system also analyzes the atmospheric propagation of frequencies by scanning between 320 GHz and 340 GHz, which includes the peak absorption frequency at 325.1529 GHz due to water absorption. The processing and characterization of the deterministic and random propagation characteristics of the atmosphere in the real world was significantly started; this will be executed with varies aerosols for decades on the permanently mounted system that is accessible 24/7 via a network over the CU Virtual Private Network (VPN).
Zhou, Cheng; Penner, Joyce E.
2017-01-02
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP inmore » CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Lastly, our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, Cheng; Penner, Joyce E.
Observation-based studies have shown that the aerosol cloud lifetime effect or the increase of cloud liquid water path (LWP) with increased aerosol loading may have been overestimated in climate models. Here, we simulate shallow warm clouds on 27 May 2011 at the southern Great Plains (SGP) measurement site established by the Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) program using a single-column version of a global climate model (Community Atmosphere Model or CAM) and a cloud resolving model (CRM). The LWP simulated by CAM increases substantially with aerosol loading while that in the CRM does not. The increase of LWP inmore » CAM is caused by a large decrease of the autoconversion rate when cloud droplet number increases. In the CRM, the autoconversion rate is also reduced, but this is offset or even outweighed by the increased evaporation of cloud droplets near the cloud top, resulting in an overall decrease in LWP. Lastly, our results suggest that climate models need to include the dependence of cloud top growth and the evaporation/condensation process on cloud droplet number concentrations.« less
Bruns, Emily A.; El Haddad, Imad; Slowik, Jay G.; Kilic, Dogushan; Klein, Felix; Baltensperger, Urs; Prévôt, André S. H.
2016-01-01
Organic gases undergoing conversion to form secondary organic aerosol (SOA) during atmospheric aging are largely unidentified, particularly in regions influenced by anthropogenic emissions. SOA dominates the atmospheric organic aerosol burden and this knowledge gap contributes to uncertainties in aerosol effects on climate and human health. Here we characterize primary and aged emissions from residential wood combustion using high resolution mass spectrometry to identify SOA precursors. We determine that SOA precursors traditionally included in models account for only ~3–27% of the observed SOA, whereas for the first time we explain ~84–116% of the SOA by inclusion of non-traditional precursors. Although hundreds of organic gases are emitted during wood combustion, SOA is dominated by the aging products of only 22 compounds. In some cases, oxidation products of phenol, naphthalene and benzene alone comprise up to ~80% of the observed SOA. Identifying the main precursors responsible for SOA formation enables improved model parameterizations and SOA mitigation strategies in regions impacted by residential wood combustion, more productive targets for ambient monitoring programs and future laboratories studies, and links between direct emissions and SOA impacts on climate and health in these regions. PMID:27312480
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hostetler, Chris; Ferrare, Richard
Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectralmore » Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL to characterize the planetary boundary layer height (PBL) and the transition zone thickness, for the RACORO and CARES and CalNex campaigns as we have done for previous campaigns. 4. Investigated how optical properties measured by HSRL vary near clouds. 5. Assessed model simulations of aerosol spatial distributions and optical and microphysical properties.« less
NASA Technical Reports Server (NTRS)
Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.;
2016-01-01
Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9- 02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 percent, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GCRT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.
NASA Astrophysics Data System (ADS)
Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien
2016-07-01
Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction throughout the aerosol size distribution. Using a core-shell mixing rule in ASP overestimates aerosol absorption, especially for the fresh biomass burning aerosol measured in ARCTAS-B, suggesting the need for modeling the time-varying mixing states of aerosols in future versions of ASP.
NASA Technical Reports Server (NTRS)
da Silva, Arlindo M.; Alpert, Pinhas
2016-01-01
In the late 1990's, prior to the launch of the Terra satellite, atmospheric general circulation models (GCMs) did not include aerosol processes because aerosols were not properly monitored on a global scale and their spatial distributions were not known well enough for their incorporation in operational GCMs. At the time of the first GEOS Reanalysis (Schubert et al. 1993), long time series of analysis increments (the corrections to the atmospheric state by all available meteorological observations) became readily available, enabling detailed analysis of the GEOS-1 errors on a global scale. Such analysis revealed that temperature biases were particularly pronounced in the Tropical Atlantic region, with patterns depicting a remarkable similarity to dust plumes emanating from the African continent as evidenced by TOMS aerosol index maps. Yoram Kaufman was instrumental encouraging us to pursue this issue further, resulting in the study reported in Alpert et al. (1998) where we attempted to assess aerosol forcing by studying the errors of a the GEOS-1 GCM without aerosol physics within a data assimilation system. Based on this analysis, Alpert et al. (1998) put forward that dust aerosols are an important source of inaccuracies in numerical weather-prediction models in the Tropical Atlantic region, although a direct verification of this hypothesis was not possible back then. Nearly 20 years later, numerical prediction models have increased in resolution and complexity of physical parameterizations, including the representation of aerosols and their interactions with the circulation. Moreover, with the advent of NASA's EOS program and subsequent satellites, atmospheric aerosols are now monitored globally on a routine basis, and their assimilation in global models are becoming well established. In this talk we will reexamine the Alpert et al. (1998) hypothesis using the most recent version of the GEOS-5 Data Assimilation System with assimilation of aerosols. We will explicitly calculate the impact of aerosols on the temperature analysis increments in the tropical Atlantic and assess the extent to which inclusion of atmospheric aerosols have reduced these increments.
Science Overview Document Indirect and Semi-Direct Aerosol Campaign (ISDAC) April 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
SJ Ghan; B Schmid; JM Hubbe
2007-11-01
The ARM Climate Research Facility’s (ACRF) Aerial Vehicle Program (AVP) will deploy an intensive cloud and aerosol observing system to the ARM North Slope of Alaska (NSA) locale for a five week Indirect and Semi-Direct Aerosol Campaign (ISDAC) during period 29 March through 30 April 2008. The deployment period is within the International Polar Year, thus contributing to and benefiting from the many ancillary observing systems collecting data synergistically. We will deploy the Canadian National Research Council Convair 580 aircraft to measure temperature, humidity, total particle number, aerosol size distribution, single particle composition, concentrations of cloud condensation nuclei and icemore » nuclei, optical scattering and absorption, updraft velocity, cloud liquid water and ice contents, cloud droplet and crystal size distributions, cloud particle shape, and cloud extinction. In addition to these aircraft measurements, ISDAC will deploy two instruments at the ARM site in Barrow: a spectroradiometer to retrieve cloud optical depth and effective radius, and a tandem differential mobility analyzer to measure the aerosol size distribution and hygroscopicity. By using many of the same instruments used during Mixed-Phase Arctic Cloud Experiment (M-PACE), conducted in October 2004, we will be able to contrast the arctic aerosol and cloud properties during the fall and spring transitions. The aerosol measurements can be used in cloud models driven by objectively analyzed boundary conditions to test whether the cloud models can simulate the aerosol influence on the clouds. The influence of aerosol and boundary conditions on the simulated clouds can be separated by running the cloud models with all four combinations of M-PACE and ISDAC aerosol and boundary conditions: M-PACE aerosol and boundary conditions, M-PACE aerosol and ISDAC boundary conditions, ISDAC aerosol and M-PACE boundary conditions, and ISDAC aerosol and boundary conditions. ISDAC and M-PACE boundary conditions are likely to be very different because of the much more extensive ocean water during M-PACE. The uniformity of the surface conditions during ISDAC greatly simplifies the objective analysis (surface fluxes and precipitation are very weak), so that it can largely rely on the European Centre for Medium-Range Weather Forecasts analysis. The aerosol measurements can also be used as input to the cloud models and to evaluate the aerosol retrievals. By running the cloud models with and without solar absorption by the aerosols, we can determine the semidirect effect of the aerosol on the clouds.« less
MODTRAN6: a major upgrade of the MODTRAN radiative transfer code
NASA Astrophysics Data System (ADS)
Berk, Alexander; Conforti, Patrick; Kennett, Rosemary; Perkins, Timothy; Hawes, Frederick; van den Bosch, Jeannette
2014-06-01
The MODTRAN6 radiative transfer (RT) code is a major advancement over earlier versions of the MODTRAN atmospheric transmittance and radiance model. This version of the code incorporates modern software ar- chitecture including an application programming interface, enhanced physics features including a line-by-line algorithm, a supplementary physics toolkit, and new documentation. The application programming interface has been developed for ease of integration into user applications. The MODTRAN code has been restructured towards a modular, object-oriented architecture to simplify upgrades as well as facilitate integration with other developers' codes. MODTRAN now includes a line-by-line algorithm for high resolution RT calculations as well as coupling to optical scattering codes for easy implementation of custom aerosols and clouds.
NASA Astrophysics Data System (ADS)
Creamean, Jessie M.; Maahn, Maximilian; de Boer, Gijs; McComiskey, Allison; Sedlacek, Arthur J.; Feng, Yan
2018-01-01
The Arctic is warming at an alarming rate, yet the processes that contribute to the enhanced warming are not well understood. Arctic aerosols have been targeted in studies for decades due to their consequential impacts on the energy budget, both directly and indirectly through their ability to modulate cloud microphysics. Even with the breadth of knowledge afforded from these previous studies, aerosols and their effects remain poorly quantified, especially in the rapidly changing Arctic. Additionally, many previous studies involved use of ground-based measurements, and due to the frequent stratified nature of the Arctic atmosphere, brings into question the representativeness of these datasets aloft. Here, we report on airborne observations from the US Department of Energy Atmospheric Radiation Measurement (ARM) program's Fifth Airborne Carbon Measurements (ACME-V) field campaign along the North Slope of Alaska during the summer of 2015. Contrary to previous evidence that the Alaskan Arctic summertime air is relatively pristine, we show how local oil extraction activities, 2015's central Alaskan wildfires, and, to a lesser extent, long-range transport introduce aerosols and trace gases higher in concentration than previously reported in Arctic haze measurements to the North Slope. Although these sources were either episodic or localized, they serve as abundant aerosol sources that have the potential to impact a larger spatial scale after emission.
Creamean, Jessie M.; Maahn, Maximilian; de Boer, Gijs; ...
2017-07-06
The Arctic is warming at an alarming rate, yet the processes that contribute to enhanced warming are not well understood. Arctic aerosols have been targeted in studies for decades due to their consequential impacts on the energy budget directly and indirectly through their ability to modulate cloud microphysics. Even with the breadth of knowledge afforded from these previous studies, aerosols and their effects remain poorly quantified, especially in the rapidly-changing Arctic. Additionally, many previous studies involved use of ground-based measurements, and due to the frequent stratified nature of the Arctic atmosphere, brings into question the representativeness of these datasets aloft.more » Here, we report on airborne observations from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program's Fifth Airborne Carbon Measurements (ACME-V) campaign along the North Slope of Alaska during the summer of 2015. Contrary to previous evidence that the Alaskan Arctic summertime air is relatively pristine, we show how local oil extraction activities, 2015’s central Alaskan wildfires, and to a lesser extent, long-range transport introduce aerosols and trace gases higher in concentration than previously reported in Arctic haze measurements to the North Slope. Although these sources were either episodic or localized, they serve as abundant aerosol sources that have the potential to impact a larger spatial scale after emission.« less
Creamean, Jessie M.; Maahn, Maximilian; de Boer, Gijs; ...
2018-01-18
Here, the Arctic is warming at an alarming rate, yet the processes that contribute to the enhanced warming are not well understood. Arctic aerosols have been targeted in studies for decades due to their consequential impacts on the energy budget, both directly and indirectly through their ability to modulate cloud microphysics. Even with the breadth of knowledge afforded from these previous studies, aerosols and their effects remain poorly quantified, especially in the rapidly changing Arctic. Additionally, many previous studies involved use of ground-based measurements, and due to the frequent stratified nature of the Arctic atmosphere, brings into question the representativenessmore » of these datasets aloft. Here, we report on airborne observations from the US Department of Energy Atmospheric Radiation Measurement (ARM) program's Fifth Airborne Carbon Measurements (ACME-V) field campaign along the North Slope of Alaska during the summer of 2015. Contrary to previous evidence that the Alaskan Arctic summertime air is relatively pristine, we show how local oil extraction activities, 2015's central Alaskan wildfires, and, to a lesser extent, long-range transport introduce aerosols and trace gases higher in concentration than previously reported in Arctic haze measurements to the North Slope. Although these sources were either episodic or localized, they serve as abundant aerosol sources that have the potential to impact a larger spatial scale after emission.« less
AERONET's Development and Contributions through Two Decades of Aerosol Research
NASA Astrophysics Data System (ADS)
Holben, B. N.
2016-12-01
The name Brent Holben has been synonymous with AERONET since it's inception nearly two and a half decades ago. Like most scientific endeavors, progress relies on collaboration, persistence and the occasional good idea at the right time. And so it is with AERONET. I will use this opportunity to trace the history of AERONET's development and the scientific achievements that we, as a community, have developed and profited from in our research and understanding of aerosols, describe measurements from this simple instrument applied on a grand scale that created new research opportunities and most importantly acknowledge those that have been and continue to be key in AERONET contributions to aerosol science. Born from a need to remove atmospheric effects in remotely sensed data in the 1980's, molded at a confluence of ideas and shaped as a public domain database, the program has grown from a prototype instrument in 1992 designed to routinely monitor biomass burning aerosol optical depth to over 600 globally distributed sites providing near real-time aerosol properties for satellite validation, assimilation in models and access for numerous research projects. Although standardization and calibration are fundamental elements for scientific success, development for the scientific needs of the community drive new approaches for reprocessing archival data and making new measurements. I'll discuss these and glimpse into the future for AERONET.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creamean, Jessie M.; Maahn, Maximilian; de Boer, Gijs
The Arctic is warming at an alarming rate, yet the processes that contribute to enhanced warming are not well understood. Arctic aerosols have been targeted in studies for decades due to their consequential impacts on the energy budget directly and indirectly through their ability to modulate cloud microphysics. Even with the breadth of knowledge afforded from these previous studies, aerosols and their effects remain poorly quantified, especially in the rapidly-changing Arctic. Additionally, many previous studies involved use of ground-based measurements, and due to the frequent stratified nature of the Arctic atmosphere, brings into question the representativeness of these datasets aloft.more » Here, we report on airborne observations from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program's Fifth Airborne Carbon Measurements (ACME-V) campaign along the North Slope of Alaska during the summer of 2015. Contrary to previous evidence that the Alaskan Arctic summertime air is relatively pristine, we show how local oil extraction activities, 2015’s central Alaskan wildfires, and to a lesser extent, long-range transport introduce aerosols and trace gases higher in concentration than previously reported in Arctic haze measurements to the North Slope. Although these sources were either episodic or localized, they serve as abundant aerosol sources that have the potential to impact a larger spatial scale after emission.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Creamean, Jessie M.; Maahn, Maximilian; de Boer, Gijs
Here, the Arctic is warming at an alarming rate, yet the processes that contribute to the enhanced warming are not well understood. Arctic aerosols have been targeted in studies for decades due to their consequential impacts on the energy budget, both directly and indirectly through their ability to modulate cloud microphysics. Even with the breadth of knowledge afforded from these previous studies, aerosols and their effects remain poorly quantified, especially in the rapidly changing Arctic. Additionally, many previous studies involved use of ground-based measurements, and due to the frequent stratified nature of the Arctic atmosphere, brings into question the representativenessmore » of these datasets aloft. Here, we report on airborne observations from the US Department of Energy Atmospheric Radiation Measurement (ARM) program's Fifth Airborne Carbon Measurements (ACME-V) field campaign along the North Slope of Alaska during the summer of 2015. Contrary to previous evidence that the Alaskan Arctic summertime air is relatively pristine, we show how local oil extraction activities, 2015's central Alaskan wildfires, and, to a lesser extent, long-range transport introduce aerosols and trace gases higher in concentration than previously reported in Arctic haze measurements to the North Slope. Although these sources were either episodic or localized, they serve as abundant aerosol sources that have the potential to impact a larger spatial scale after emission.« less
Comparison of Sunphotometric Measurements During the Fall 1997 ARM Intensive Observation Period
NASA Technical Reports Server (NTRS)
Michalsky, J. J.; Schmid, B.; Halthore, R. N.; Pavloski, C. F.; Ackerman, T. P.; Beauharnois, M. C.; Harrison, L. C.; Livingston, J. M.; Russell, P. B.
2000-01-01
In the Fall of 1997 the Atmospheric Radiation Measurement (ARM) program held an intensive observation period (IOP) to study atmospheric aerosols using in situ and remote sensing techniques at its Southern Great Plains (SGP) site near Lamont, Oklahoma. As part of this experiment five automated, tracking sunphotometers were present to measure total column aerosol optical depth over the three-week period. which included many clear days or parts of days that were clear. The World Meteorological Organization (WMO 1993) has recommended a comparison of tracking sunphotometers to assess the ability of different instruments to arrive at similar aerosol optical depths. It was further recommended that the comparison be staged at a clean mountain site. In fact, this comparison has not occurred, but the comparison that we describe in this paper is representative of what contemporary instruments may accomplish in an environment more typical of sites where aerosols measurements will be required. The measurements were made over the period 15 September to 5 October 1997. The aerosol loading varied from extremely clean to moderately turbid conditions. In the next section the instruments will be described along with a brief explanation of the calibration techniques. The third section contains the results compared graphically on moderately turbid and fairly clean days and in a table representing the whole period. The paper ends with a section of discussion and a summary of the results.
Ortiz-Montalvo, Diana L; Häkkinen, Silja A K; Schwier, Allison N; Lim, Yong B; McNeill, V Faye; Turpin, Barbara J
2014-01-01
Glyoxal is an important precursor to secondary organic aerosol (SOA) formed through aqueous chemistry in clouds, fogs, and wet aerosols, yet the gas-particle partitioning of the resulting mixture is not well understood. This work characterizes the volatility behavior of the glyoxal precursor/product mix formed after aqueous hydroxyl radical oxidation and droplet evaporation under cloud-relevant conditions for 10 min, thus aiding the prediction of SOA via this pathway (SOACld). This work uses kinetic modeling for droplet composition, droplet evaporation experiments and temperature-programmed desorption aerosol-chemical ionization mass spectrometer analysis of gas-particle partitioning. An effective vapor pressure (p'L,eff) of ∼10(-7) atm and an enthalpy of vaporization (ΔHvap,eff) of ∼70 kJ/mol were estimated for this mixture. These estimates are similar to those of oxalic acid, which is a major product. Addition of ammonium until the pH reached 7 (with ammonium hydroxide) reduced the p'L,eff to <10(-9) atm and increased the ΔHvap,eff to >80 kJ/mol, at least in part via the formation of ammonium oxalate. pH 7 samples behaved like ammonium oxalate, which has a vapor pressure of ∼10(-11) atm. We conclude that ammonium addition has a large effect on the gas-particle partitioning of the mixture, substantially enhancing the yield of SOACld from glyoxal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bota, K.B.
1991-01-01
The primary objective of this research program is to expose students in the Historically Black Colleges and Universities (HBCU) Fossil Energy Consortium Institutions to energy and fossil fuels research, to stimulate their interest in the sciences and engineering and to encourage them to pursue graduate studies. This report provides the research accomplishment of the various students who participated in the program. Research results are presented on the following topics: Energy Enhancement and Pollutant Reduction in Coal by Cryogenic Diminution; Competition of NO and SO[sub 2] for OH Generated witin Electrical Aerosol Analyzers; Dispersed Iron Catalysts for Coal Gasification; NQR/NMR Studiesmore » of Copper-Cobalt Catalysts for Syngas Concersion; Catalytic gasification of Coal Chars by Potassium Sulfate and Ferrous Sulfate Mixtures; A New Method for Cleaning and Beneficiation of Ultrafine Coal; Characterization Studies of Coal-Derived Liquids; Study of Coal Liquefaction Catalysts and Removal of Certain Toxic Heavy Metal Ions from Coal Conversion Process Wastewaters.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bota, K.B.
1991-12-31
The primary objective of this research program is to expose students in the Historically Black Colleges and Universities (HBCU) Fossil Energy Consortium Institutions to energy and fossil fuels research, to stimulate their interest in the sciences and engineering and to encourage them to pursue graduate studies. This report provides the research accomplishment of the various students who participated in the program. Research results are presented on the following topics: Energy Enhancement and Pollutant Reduction in Coal by Cryogenic Diminution; Competition of NO and SO{sub 2} for OH Generated witin Electrical Aerosol Analyzers; Dispersed Iron Catalysts for Coal Gasification; NQR/NMR Studiesmore » of Copper-Cobalt Catalysts for Syngas Concersion; Catalytic gasification of Coal Chars by Potassium Sulfate and Ferrous Sulfate Mixtures; A New Method for Cleaning and Beneficiation of Ultrafine Coal; Characterization Studies of Coal-Derived Liquids; Study of Coal Liquefaction Catalysts and Removal of Certain Toxic Heavy Metal Ions from Coal Conversion Process Wastewaters.« less
Bien, Elizabeth Ann; Gillespie, Gordon Lee; Betcher, Cynthia Ann; Thrasher, Terri L; Mingerink, Donna R
2016-12-01
International travel and infectious respiratory illnesses worldwide place health care workers (HCWs) at increasing risk of respiratory exposures. To ensure the highest quality safety initiatives, one health care system used a quality improvement model of Plan-Do-Study-Act and guidance from Occupational Safety and Health Administration's (OSHA) May 2015 Hospital Respiratory Protection Program (RPP) Toolkit to assess a current program. The toolkit aided in identification of opportunities for improvement within their well-designed RPP. One opportunity was requiring respirator use during aerosol-generating procedures for specific infectious illnesses. Observation data demonstrated opportunities to mitigate controllable risks including strap placement, user seal check, and reuse of disposable N95 filtering facepiece respirators. Subsequent interdisciplinary collaboration resulted in other ideas to decrease risks and increase protection from potentially infectious respiratory illnesses. The toolkit's comprehensive document to evaluate the program showed that while the OSHA standards have not changed, the addition of the toolkit can better protect HCWs. © 2016 The Author(s).
NASA Technical Reports Server (NTRS)
Anderson, James G.
2001-01-01
This grant provided partial support for participation in the SAGE III Ozone Loss and Validation Experiment. The NASA-sponsored SOLVE mission was conducted Jointly with the European Commission-sponsored Third European Stratospheric Experiment on Ozone (THESEO 2000). Researchers examined processes that control ozone amounts at mid to high latitudes during the arctic winter and acquired correlative data needed to validate the Stratospheric Aerosol and Gas Experiment (SAGE) III satellite measurements that are used to quantitatively assess high-latitude ozone loss. The campaign began in September 1999 with intercomparison flights out of NASA Dryden Flight Research Center in Edwards. CA. and continued through March 2000. with midwinter deployments out of Kiruna. Sweden. SOLVE was co-sponsored by the Upper Atmosphere Research Program (UARP). Atmospheric Effects of Aviation Project (AEAP). Atmospheric Chemistry Modeling and Analysis Program (ACMAP). and Earth Observing System (EOS) of NASA's Earth Science Enterprise (ESE) as part of the validation program for the SAGE III instrument.
California's program: Indoor air problems aren't amenable to regulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wesolowski, J.
In 1982, California's legislature established an Indoor Air Quality Program (CIAQP) in the Department of Health Services to carry out research on the nature and extent of the indoor air problem (excluding industrial worksites), to find appropriate mitigation measures, and to promote and coordinate the efforts of other state agencies. Since indoor air problems usually are not amenable to regulatory solutions, regulatory authority was not included in the mandate. The program conducts research into a wide range of contaminants--radon, asbestos, formaldehyde, carbon monoxide, volatile organic compounds, environmental tobacco smoke (ETS), as well as into biological aerosols that cause such diseasesmore » as Legionnaires disease, tuberculosis, allergies, and asthma. Studies are also carried out to better understand the Sick Building Syndrome. The research includes field surveys to determine the exposure of the population to specific contaminants and experiments in the laboratory to develop protocols for reducing exposures. The research emphasizes measurement of exposure--concentration multiplied by the time a person is exposed--as opposed to measurement of concentration only.« less
Research Evaluation Management Services for The Chemistry and Life Sciences Program
2005-11-30
EMIM nitrate " 1:30 Tomas Baer (U. North Carolina) "Rapid evaporation mass spectrometry of aerosolized ionic liquids" 2:00 Bill Larson/Angelo Alfano...Modeling of Adaptive Choice Behavior W. Gray, Rensselaer Polytechnic Institute 0900 The Economics of Cognition; Resource Allocation in Simple Command...Crossing Cognitive Borders: Working with Differences Helen Altman Klein, Wright State University 14:00 BREAK 14:20 Cross-Cultural Variations in Economic
2006-01-01
Aerosol Lidar ........................................................................ 14 3.3 Selection of Target Toxic Release Inventory (TRI...initiated in 2001 to respond to SERDP Statement of Need (SON) CPSON-01-01 to develop and apply an approach to measure emission factors of Toxic Release...businesses are required to submit reports each year on the amount of toxic chemicals their facilities release into the environment, either routinely or
Climate and health impacts of clean cookstove implementation programs in Africa
NASA Astrophysics Data System (ADS)
Lacey, F.; Marais, E. A.; Wiedinmyer, C.; Coffey, E.; Muvandimwe, D.; Hannigan, M.; Henze, D. K.
2016-12-01
In Africa, 77% of the population (646 million people in 2010) use solid fuels as the main cooking source. These cooking methods are often inefficient and result in significant burdens to both climate and human health, particularly for women and children. In order to fully understand the impacts of clean cookstove implementation programs, a better understanding of the background concentrations of aerosols, aerosol precursors, and ozone precursors are needed, along with improved information on the changes in emissions from transitions to newer technologies. Through the use of the GEOS-Chem adjoint model, we have calculated species-specific climate and health sensitivities using a range of African emissions estimates including EDGAR-HTAP and a more recent improved emissions inventory, DICE-Africa. These sensitivities account for the spatial heterogeneity of emissions with respect to their impacts and allow for efficient estimation of the impacts of various clean cookstove implementation emissions scenarios that are based on laboratory and field measurements of emissions factors, along with realistic adoption and usage rates from field surveys. The resulting estimates of premature deaths and global surface temperature change are then aggregated to the national scale in order to provide policy makers with improved information regarding the implementation of clean cookstoves throughout continental Africa.
Aerosol Optical Properties and Chemical Composition Measured on the Ronald H. Brown During ACE-Asia
NASA Astrophysics Data System (ADS)
Quinn, P. K.; Bates, T. S.; Miller, T. L.; Coffman, D.
2001-12-01
Measurements of aerosol chemical, physical, and optical properties were made onboard the NOAA R/V Ronald H. Brown during the ACE-Asia Intensive Field Program to characterize Asian aerosol as it was transported across the Pacific Ocean. The ship traveled across the Pacific from Hawaii to Japan and into the East China Sea and the Sea of Japan. Trajectories indicate that remote marine air masses were sampled on the transit to Japan. In the ACE-Asia study region air masses from Japan, China, Mongolia, and the Korea Peninsula were sampled. A variety of aerosol types were encountered including those of marine, volcanic, crustal, and industrial origin. Presented here, for the different air masses encountered, are aerosol optical properties (scattering and absorption coefficients, single scattering albedo, Angstrom Exponent, and aerosol optical depth) and chemical composition (major ions, total organic and black carbon, and trace elements). Scattering by submicron aerosol (55 % RH and 550 nm) was less than 20 1/Mm during the transit from Hawaii to Japan. In continental air masses, values ranged from 60 to 320 1/Mm with the highest submicron scattering coefficients occurring during prefrontal conditions with a low marine boundary layer height and trajectories from Japan. For the continental air masses, the ratio of scattering by submicron to sub-10 micron aerosol during polluted conditions averaged 0.8 and during a dust event 0.41. Aerosol optical depth (500 nm) ranged from 0.08 during the Pacific transit to 1.3 in the prefrontal conditions described above. Optical depths during dust events ranged from 0.2 to 0.6. Submicron non-sea salt (nss) sulfate concentrations ranged from 0.5 ug/m-3 during the Pacific transit to near 30 ug/m-3 during the prefrontal conditions described above. Black carbon to total carbon mass ratios in air masses from Asia averaged 0.18 with highest values (0.32) corresponding to trajectories crossing the Yangtze River valley.
CO2 lidar backscatter experiment
NASA Technical Reports Server (NTRS)
Jarzembski, Maurice A.; Rothermel, Jeffry; Bowdle, David A.; Srivastava, Vandana; Cutten, Dean; Mccaul, Eugene W., Jr.
1993-01-01
The Aerosol/Lidar Science Group of the Remote Sensing Branch engages in experimental and theoretical studies of atmospheric aerosol scattering and atmospheric dynamics, emphasizing Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts by in-house personnel, coordinated with similar efforts by university and government institutional researchers. The primary focus of activities related to understanding aerosol scattering is the GLObal Backscatter Experiment (GLOBE) program. GLOBE was initiated by NASA in 1986 to support the engineering design, performance simulation, and science planning for the prospective NASA Laser Atmospheric Wind Sounder (LAWS). The most important GLOBE scientific result has been identified of a background aerosol mode with a surprisingly uniform backscatter mixing ratio (backscatter normalized by air density) throughout a deep tropospheric layer. The backscatter magnitude of the background mode evident from the MSFC CW lidar measurements is remarkably similar to that evident from ground-based backscatter profile climatologies obtained by JPL in Pasadena CA, NOAA/WPL in Boulder CO, and by the Royal Signals and Radar Establishment in the United Kingdom. Similar values for the background mode have been inferred from the conversion of in situ aerosol microphysical measurements to backscatter using Mie theory. Little seasonal or hemispheric variation is evident in the survey mission data, as opposed to large variation for clouds, aerosol plums, and the marine boundary layer. Additional features include: localized aerosol residues from dissipated clouds, occasional regions having mass concentrations of nanograms per cubic meter and very low backscatter, and aerosol plumes extending thousands of kilometers and several kilometers deep. Preliminary comparison with meteorological observations thus far indicate correlation between backscatter and water vapor under high humidity conditions. Limited intercomparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) limb extinction sounder shows differences in the troposphere, however, it should be noted that in general SAGE measurements have not yet been validated in the troposphere.
Majlessi, Laleh; Brodin, Priscille; Brosch, Roland; Rojas, Marie-Jésus; Khun, Huot; Huerre, Michel; Cole, Stewart T; Leclerc, Claude
2005-03-15
The chromosomal locus encoding the early secreted antigenic target, 6 kDa (ESAT-6) secretion system 1 of Mycobacterium tuberculosis, also referred to as "region of difference 1 (RD1)," is absent from Mycobacterium bovis bacillus Calmette-Guerin (BCG). In this study, using low-dose aerosol infection in mice, we demonstrate that BCG complemented with RD1 (BCG::RD1) displays markedly increased virulence which albeit does not attain that of M. tuberculosis H37Rv. Nevertheless, phenotypic and functional analyses of immune cells at the site of infection show that the capacity of BCG::RD1 to initiate recruitment/activation of immune cells is comparable to that of fully virulent H37Rv. Indeed, in contrast to the parental BCG, BCG::RD1 mimics H37Rv and induces substantial influx of activated (CD44highCD45RB(-)CD62L(-)) or effector (CD45RB(-)CD27(-)) T cells and of activated CD11c(+)CD11bhigh cells to the lungs of aerosol-infected mice. For the first time, using in vivo analysis of transcriptome of inflammatory cytokines and chemokines of lung interstitial CD11c+ cells, we show that in a low-dose aerosol infection model, BCG::RD1 triggered an activation/inflammation program comparable to that induced by H37Rv while parental BCG, due to its overattenuation, did not initiate the activation program in lung interstitial CD11c+ cells. Thus, products encoded by the ESAT-6 secretion system 1 of M. tuberculosis profoundly modify the interaction between mycobacteria and the host innate and adaptive immune system. These modifications can explain the previously described improved protective capacity of BCG::RD1 vaccine candidate against M. tuberculosis challenge.
NASA Astrophysics Data System (ADS)
Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc
2016-09-01
In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and ship emissions. As a result, the aerosol direct forcing efficiency, more dependent to absorption than the absolute forcing, has no marked gradient.
Jung, Jinsang; Lee, Hanlim; Kim, Young J; Liu, Xingang; Zhang, Yuanhang; Gu, Jianwei; Fan, Shaojia
2009-08-01
Optical and chemical aerosol measurements were obtained from 2 to 31 July 2006 at an urban site in the metropolitan area of Guangzhou (China) as part of the Program of Regional Integrated Experiment of Air Quality over Pearl River Delta (PRIDE-PRD2006) to investigate aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing. During the PRIDE-PRD2006 campaign, the average contributions of ammonium sulfate, organic mass by carbon (OMC), elemental carbon (EC), and sea salt (SS) to total PM(2.5) mass were measured to be 36.5%, 5.7%, 27.1%, 7.8%, and 3.7%, respectively. Compared with the clean marine period, (NH(4))(2)SO(4), NH(4)NO(3), and OMC were all greatly enhanced (by up to 430%) during local haze periods via the accumulation of a secondary aerosol component. The OMC dominance increased when high levels of biomass burning influenced the measurement site while (NH(4))(2)SO(4) and OMC did when both biomass burning and industrial emissions influenced it. The effect of aerosol water content on the total light-extinction coefficient was estimated to be 34.2%, of which 25.8% was due to aerosol water in (NH(4))(2)SO(4), 5.1% that in NH(4)NO(3), and 3.3% that in SS. The average mass-scattering efficiency (MSE) of PM(10) particles was determined to be 2.2+/-0.6 and 4.6+/-1.7m(2)g(-1) under dry (RH<40%) and ambient conditions, respectively. The average single-scattering albedo (SSA) was 0.80+/-0.08 and 0.90+/-0.04 under dry and ambient conditions, respectively. Not only are the extinction and scattering coefficients greatly enhanced by aerosol water content, but MSE and SSA are also highly sensitive. It can be concluded that sulfate and carbonaceous aerosol, as well as aerosol water content, play important roles in the processes that determine visibility impairment and radiative forcing in the ambient atmosphere of the Guangzhou urban area.
iSPEX: everybody can measure atmospheric aerosols with a smartphone spectropolarimeter
NASA Astrophysics Data System (ADS)
Snik, F.; Heikamp, S.; de Boer, J.; Keller, C. U.; van Harten, G.; Smit, J. M.; Rietjens, J. H. H.; Hasekamp, O.; Stam, D. M.; Volten, H.; iSPEX Team
2012-04-01
An increasing amount people carry a mobile phone with internet connection, camera and large computing power. iSPEX, a spectropolarimetric add-on with complementary app, instantly turns a smartphone into a scientific instrument to measure dust and other aerosols in our atmosphere. A measurement involves scanning the blue sky, which yields the angular behavior of the degree of linear polarization as a function of wavelength, which can unambiguously be interpreted in terms of size, shape and chemical composition of the aerosols in the sky directly above. The measurements are tagged with location and pointing information, and submitted to a central database where they will be interpreted and compiled into an aerosol map. Through crowdsourcing, many people will thus be able to contribute to a better assessment of health risks of particulate matter and of whether or not volcanic ash clouds are dangerous for air traffic. It can also contribute to the understanding of the relationship between atmospheric aerosols and climate change. We will give a live presentation of the first iSPEX prototype. Furthermore, we will present the design and the plans for producing the iSPEX add-on, app and website. We aim to distribute thousands of iSPEX units, such that a unique network of aerosol measurement equipment is created. Many people will thus contribute to the solution of several urgent social and scientific problems, and learn about the nature of light, remote sensing and the issues regarding atmospheric aerosols in the process. In particular we focus on school classes where smartphones are usually considered a nuisance, whereas now they can be a crucial part of various educational programs in science class.
NASA Astrophysics Data System (ADS)
Sholkovitz, Edward R.; Sedwick, Peter N.; Church, Thomas M.
2009-07-01
The results of several recent studies challenge the reigning paradigm that continental soil dust provides the only significant atmospheric source of dissolved iron to the surface ocean. This evidence includes correlations between the operational solubility of aerosol iron and atmospheric loadings of black carbon and aluminum-normalized vanadium and nickel, each of which are associated with emissions from the combustion of fossil fuel oil. These observations suggest that the relative solubility of aerosol iron, hence the eolian flux of soluble iron to the surface ocean, may be significantly impacted by anthropogenic oil combustion products. Using recent field data from the Bermuda region, we have developed an empirical method to estimate the solubility of aerosol iron using bulk aerosol concentrations of Fe, V and Al. We apply this method to a large body of published data from the AEROCE program for North Atlantic island sites on Tenerife, Barbados, Bermuda and Ireland, where the relative proportions of anthropogenic aerosols range from minor to major, respectively. Our aerosol iron solubility estimates suggest that anthropogenic emissions contribute approximately 70% and 85% of the annual dry deposition of soluble iron to the surface ocean near Bermuda and Ireland, respectively, implying that human activities have profoundly affected the iron budget of the North Atlantic region. The annual mean dry deposition of soluble iron at Barbados and Izana is dominated by soil dust. The anthropogenic contribution at these two sites ranges from 12% to 30% and is highly dependent on the soil dust solubility of Fe employed in the model. The low end (˜12%) estimate appears to be more representative of these high-dust sites.
INTEX-NA: Intercontinental Chemical Transport Experiment - North America
NASA Technical Reports Server (NTRS)
Singh, Hanwant B.; Jacob, D.; Pfister, L.; Hipskind, R. Stephen (Technical Monitor)
2002-01-01
INTEX-NA is an integrated atmospheric chemistry field experiment to be performed over North America using the NASA DC-8 and P-3B aircraft as its primary platforms. It seeks to understand the exchange of chemicals and aerosols between continents and the global troposphere. The constituents of interest are ozone and its precursors (hydrocarbons, NOX and HOX), aerosols, and the major greenhouse gases (CO2, CH4, N2O). INTEX-NA will provide the observational database needed to quantify inflow, outflow, and transformations of chemicals over North America. INTEX-NA is to be performed in two phases. Phase A will take place during the period of May-August 2004 and Phase B during March-June 2006. Phase A is in summer when photochemistry is most intense and climatic issues involving aerosols and carbon cycle are most pressing, and Phase B is in spring when Asian transport to North America is at its peak. INTEX-NA will coordinate its activities with concurrent measurement programs including satellites (e. g. Terra, Aura, Envisat), field activities undertaken by the North American Carbon Program (NACP), and other U.S. and international partners. However, it is being designed as a 'stand alone' mission such that its successful execution is not contingent on other programs. Synthesis of the ensemble of observation from surface, airborne, and space platforms, with the help of global/regional models is an important It is anticipated that approximately 175 flight hours for each of the aircraft (DC-8 and P-3B) will be required for each Phase. Principal operational sites are tentatively selected to be Bangor, ME; Wallops Island, VA; Seattle, WA; Rhinelander, WI; Lancaster, CA; and New Orleans, LA. These coastal and continental sites can support large missions and are suitable for INTEX-NA objectives. The experiment will be supported by forecasts from meteorological and chemical models, satellite observations, surface networks, and enhanced O3,-sonde releases. In addition to characterizing Atlantic-outflow and Pacific-inflow, INTEX-NA will characterize air masses transported between the U.S., Canada, and Mexico. INTEX-NA will be the first continental scale inflow, outflow, and transformation experiment to be performed over North America. It will provide the most comprehensive observational data set to date to understand the O3/NOX/HOX/aerosol photochemical system and the carbon cycle. One of the critical needs of the carbon cycle research is to obtain large-scale vertical and horizontal concentration gradients of CO2, throughout the troposphere over continental source/sink regions. INTEX-NA is ideally suited to perform this role. Coastal and continental operational sites will allow us to develop a curtain profile of greenhouse gases (e. g. CO2,) and other key pollutants across North America. Such information is central to our quantitative understanding of chemical budgets on the continental scale. We expect to provide a number of satellite under-flights over land and water to test and validate observations from the appropriate satellite platform (e. g. Aura). We plan to develop strong collaborations with other national and international observational programs. Results from INTEX-NA should directly benefit the development of environmental policy for air quality and climate change.
NASA Technical Reports Server (NTRS)
Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.
1985-01-01
A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Qi
Organic aerosols (OA) are an important but poorly characterized component of the earth’s climate system. Enormous complexities commonly associated with OA composition and life cycle processes have significantly complicated the simulation and quantification of aerosol effects. To unravel these complexities and improve understanding of the properties, sources, formation, evolution processes, and radiative properties of atmospheric OA, we propose to perform advanced and integrated analyses of multiple DOE aerosol mass spectrometry datasets, including two high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) datasets from intensive field campaigns on the aerosol life cycle and the Aerosol Chemical Speciation Monitor (ACSM) datasets from long-term routinemore » measurement programs at ACRF sites. In this project, we will focus on 1) characterizing the chemical (i.e., composition, organic elemental ratios), physical (i.e., size distribution and volatility), and radiative (i.e., sub- and super-saturated growth) properties of organic aerosols, 2) examining the correlations of these properties with different source and process regimes (e.g., primary, secondary, urban, biogenic, biomass burning, marine, or mixtures), 3) quantifying the evolutions of these properties as a function of photochemical processing, 4) identifying and characterizing special cases for important processes such as SOA formation and new particle formation and growth, and 5) correlating size-resolved aerosol chemistry with measurements of radiative properties of aerosols to determine the climatically relevant properties of OA and characterize the relationship between these properties and processes of atmospheric aerosol organics. Our primary goal is to improve a process-level understanding of the life cycle of organic aerosols in the Earth’s atmosphere. We will also aim at bridging between observations and models via synthesizing and translating the results and insights generated from this research into data products and formulations that may be directly used to inform, improve, and evaluate regional and global models. In addition, we will continue our current very active collaborations with several modeling groups to enhance the use and interpretation of our data products. Overall, this research will contribute new data to improve quantification of the aerosol’s effects on climate and thus the achievement of ASR’s science goal of – “improving the fidelity and predictive capability of global climate models”.« less
Cold and transition season cloud condensation nuclei measurements in western Colorado
NASA Astrophysics Data System (ADS)
Ward, D. S.; Cotton, W. R.
2011-05-01
Recent studies have shown that orographic precipitation and the water resources that depend on it in the Colorado Rocky Mountains are sensitive to the variability of the region's aerosols, whether emitted locally or from distant sources. However, observations of cloud droplet nucleating aerosols in western Colorado, climatologically upwind of the Colorado Rocky Mountains, have been limited to a few studies at a single, northern site. To address this knowledge gap, atmospheric aerosols were sampled at a ground site in southwestern Colorado and in low-level north to south transects of the Colorado Western Slope as part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III) field campaign. Total particle and cloud condensation nuclei (CCN) number concentrations were measured for a 24-day period in Mesa Verde National Park, in September and October 2009. Regression analysis showed a positive relationship between mid-troposphere atmospheric pressure to the west of the site and the total particle count at the ground site, but no similar statistically significant relationship was found for the observed CCN. These data were supplemented with particle and CCN number concentration, as well as particle size distribution measurements collected aboard the King Air platform during December 2009. A CCN closure attempt was performed and suggested that the sampled aerosol may have had a low hygroscopicity that changed little with the large-scale wind direction. Together, the sampled aerosols from these field programs were characteristic of a rural continental environment with CCN number concentrations that varied slowly in time, and little in space along the Western Slope.
Cold and transition season cloud condensation nuclei measurements in western Colorado
NASA Astrophysics Data System (ADS)
Ward, D. S.; Cotton, W. R.
2010-11-01
Recent research has shown that orographic precipitation and the water resources that depend on it in the Colorado Rocky Mountains are sensitive to the variability of the region's aerosols, whether emitted locally or from distant sources. However, observations of cloud-active aerosols in western Colorado, climatologically upwind of the Colorado Rocky Mountains, have been limited to a few studies at a single, northern site. To address this knowledge gap, atmospheric aerosols were sampled at a ground site in southwestern Colorado and in low-level north to south transects of the Colorado Western Slope as part of the Inhibition of Snowfall by Pollution Aerosols (ISPA-III) field campaign. Total particle and cloud condensation nuclei (CCN) number concentration were measured for a 24-day period in Mesa Verde National Park, climatologically upwind of the San Juan Mountains, in Sept. and Oct. 2009. Regression analysis showed a positive relationship between mid-troposphere atmospheric pressure to the west of the site and the total particle count at the ground site, but no similar statistically significant relationship for the observed CCN. These data were supplemented with particle and CCN number concentration, as well as particle size distribution measurements aboard the KingAir platform during December 2009. A CCN closure attempt was performed using the size distribution information and suggested that the sampled aerosol in general had low hygroscopicity that changed slightly with the large-scale wind direction. Together, the sampled aerosols from these field programs were characteristic of a rural continental environment with a cloud active portion that varied slowly in time, and little in space along the Western Slope.
Bobrov, S V; Shpagina, L A; Kuznetsova, G V; Burganova, M R
2011-01-01
Examination of workers engaged into major industrial enterprises of Novosibirsk demonstrated high prevalence of bronchial obstruction in individuals contacting industrial aerosol. The workers with long length of service proved high level of tobacco addiction and marked psychologic dependence on smoking. Based on the data obtained, the authors specified a program for early diagnosis and prevention of occupational bronchitis among the workers of major industrial enterprises.
FY04 IRAD-funded GSFC Lambda Network (L-Net) Web Pages and Related Presentations
NASA Technical Reports Server (NTRS)
Gary, J. Patrick
2005-01-01
This presentation discusses the advances in Networking Technology combining the Global Lambda Integrated Facility (GLIF) cooperation with the National Lambda Rail (NLR) implementation. It also focuses on New NASA science needing Gigbit per second networks (Gbps) with coordinated Earth Observing Program, hurricane predictions, global aerosols, remote viewing and manipulation of large Earth Science Data Sets, integration of laser and radar topographic data with land cover data.
Assessment of Techniques for Measuring Tropospheric H Sub x O Sub y
NASA Technical Reports Server (NTRS)
Hoell, J. M. (Editor)
1984-01-01
In its continuing efforts to direct its applications programs towards relevant national needs, NASA is conducting the Tropospheric Chemistry Program, the long-range objective of which is to apply NASA's space technology to assess and predict human impact on the troposphere, particularly on the regional to global scale. One area of required research is instrumentation development, which is aimed at improving the capability to measure important trace gases and aerosols which are key species in the major atmospheric biogeochemical cycles. To focus on specific needs, the Instrumentation Worksphop for H(x)O(y) Tropospheric Species was conducted in August 1982. The workshop discussed current measurement needs and instrument capabilities for H(x)O(y) species, including OH, HO2, and H2O2. The workshop activities and conclusions are documented.
NASA Astrophysics Data System (ADS)
Phillips, G.; Dimarco, C.; Misztal, P.; Nemitz, E.; Farmer, D.; Kimmel, J.; Jimenez, J.
2008-12-01
The emission of organic compounds in the troposphere is important factor in the formation of secondary organic aerosol (SOA). A very large proportion of organic material emitted globally is estimated to arise from biogenic sources, with almost half coming from tropical and sub-tropical forests. Preliminary analyses of leave cuvette emission studies suggest that oil palm (Elaeis guineensis) is a significantly larger source of isoprene than tropical forest. Much larger sources of isoprene over oil palm allied with a larger anthropogenic component of local emissions contrast greatly with the remote tropical forest environment and therefore the character of SOA formed may differ significantly. These issues, allied with the high price of palm oil on international markets leading to increased use of land for oil palm production, could give rise to rapidly changing chemical and aerosol regimes in the tropics. It is therefore important to understand the current emissions and composition of organic aerosol over all important land-uses in the tropical environment. This in turn will lead to a greater understanding of the present, and to an improvement in predictive capacity for the future system. To help address these issues, a high resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) was deployed in the Sabahmas (PPB OIL) oil palm plantation near Lahad Datu, in Eastern Sabah, as part of the field component of the Aerosol Coupling in the Earth System (ACES) project, part of the UK NERC APPRAISE program. This project was allied closely with measurements made of similar chemical species and aerosol components at a forest site in the Danum Valley as part of the UK Oxidant and Particle Photochemical Processes above a Southeast Asian tropical rainforest (OP3) project. Measurements of submicron non- refractory aerosol composition are presented along with some preliminary analysis of chemically resolved aerosol fluxes made with a new eddy covariance system, based on the HR-ToF-AMS. The measurements are interpreted in the context of the measurements over tropical rain forest at Danum and aircraft measurements across Sabah.
NASA Astrophysics Data System (ADS)
Li, Zhongshu; Liu, Junfeng; Mauzerall, Denise L.; Li, Xiaoyuan; Fan, Songmiao; Horowitz, Larry W.; He, Cenlin; Yi, Kan; Tao, Shu
2017-03-01
Black carbon (BC) aerosol strongly absorbs solar radiation, which warms climate. However, accurate estimation of BC’s climate effect is limited by the uncertainties of its spatiotemporal distribution, especially over remote oceanic areas. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 intercepted multiple snapshots of BC profiles over Pacific in various seasons, and revealed a 2 to 5 times overestimate of BC by current global models. In this study, we compared the measurements from aircraft campaigns and satellites, and found a robust association between BC concentrations and satellite-retrieved CO, tropospheric NO2, and aerosol optical depth (AOD) (R2 > 0.8). This establishes a basis to construct a satellite-based column BC approximation (sBC*) over remote oceans. The inferred sBC* shows that Asian outflows in spring bring much more BC aerosols to the mid-Pacific than those occurring in other seasons. In addition, inter-annual variability of sBC* is seen over the Northern Pacific, with abundances varying consistently with the springtime Pacific/North American (PNA) index. Our sBC* dataset infers a widespread overestimation of BC loadings and BC Direct Radiative Forcing by current models over North Pacific, which further suggests that large uncertainties exist on aerosol-climate interactions over other remote oceanic areas beyond Pacific.
Li, Zhongshu; Liu, Junfeng; Mauzerall, Denise L; Li, Xiaoyuan; Fan, Songmiao; Horowitz, Larry W; He, Cenlin; Yi, Kan; Tao, Shu
2017-03-07
Black carbon (BC) aerosol strongly absorbs solar radiation, which warms climate. However, accurate estimation of BC's climate effect is limited by the uncertainties of its spatiotemporal distribution, especially over remote oceanic areas. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 intercepted multiple snapshots of BC profiles over Pacific in various seasons, and revealed a 2 to 5 times overestimate of BC by current global models. In this study, we compared the measurements from aircraft campaigns and satellites, and found a robust association between BC concentrations and satellite-retrieved CO, tropospheric NO 2 , and aerosol optical depth (AOD) (R 2 > 0.8). This establishes a basis to construct a satellite-based column BC approximation (sBC*) over remote oceans. The inferred sBC* shows that Asian outflows in spring bring much more BC aerosols to the mid-Pacific than those occurring in other seasons. In addition, inter-annual variability of sBC* is seen over the Northern Pacific, with abundances varying consistently with the springtime Pacific/North American (PNA) index. Our sBC* dataset infers a widespread overestimation of BC loadings and BC Direct Radiative Forcing by current models over North Pacific, which further suggests that large uncertainties exist on aerosol-climate interactions over other remote oceanic areas beyond Pacific.
NASA Astrophysics Data System (ADS)
Min, K. E.; Dube, W. P.; Washenfelder, R. A.; Langford, A. O.; Brown, S. S.; Broch, S.; Fuchs, H.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Hu, M.; Huey, L. G.; Kubik, K.; Li, X.; Liu, X.; Lu, K.; Rohrer, F.; Shao, M.; Sjostedt, S. J.; Tan, Z.; Zhu, T.; Wahner, A.; Wang, B.; Wang, M.; Wang, Y.; Zeng, L.; Zhang, Y.
2014-12-01
The Northern China Plain has experienced visibility degradation and detrimental health impacts due to aerosol and photochemical pollution. To examine these air quality issues, CAREBEIJING-NCP2014 (Care Beijing - Northern China Plain 2014) was held in WangDu, Hebei province, China from 6 June to 15 July 2014. We deployed our newly developed instrument, ACES (Airborne Cavity Enhanced Spectrometer), for high time resolution in-situ measurement of glyoxal (CHOCHO), nitrous acid (HONO) and other trace gases (NO2, H2O) to investigate mechanisms of oxidation processes and secondary organic aerosol (SOA) formation. The in situ measurements of CHOCHO provide observational constraints on secondary organic aerosol formation and oxidation processes, since this molecule has been proposed to play a crucial role in forming aerosol due to its high water solubility, isomerization, and abundant production from the oxidation of many different volatile organic compounds (VOCs). A box model analysis incorporating secondary glyoxal sources from VOC oxidation and sinks to OH reaction, photolysis and heterogeneous uptake will be used to determine a budget and potential for SOA formation. This work was supported by the National Natural Science Foundation of China (21190052), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05010500) and the U.S. National Science Foundation Atmospheric (AGS-1405805).
NASA Astrophysics Data System (ADS)
Beegum S, N.; Ben Romdhane, H.; Ghedira, H.
2013-12-01
Atmospheric aerosols are known to affect the radiation balance of the Earth-Atmospheric system directly by scattering and absorbing the solar and terrestrial radiation, and indirectly by affecting the lifetime and albedo of the clouds. Continuous and simultaneous measurements of short wave global irradiance in combination with synchronous spectral aerosol optical depth (AOD) measurements (from 340 nm to 1640 nm in 8 channels), for a period of 1 year from June 2012 to May 2013, were used for the determination of the surface direct aerosol radiative forcing and forcing efficiencies under cloud free conditions in Abu Dhabi (24.42°N, 54.61o E, 7m MSL), a coastal location in United Arab Emirates (UAE) in the Arabian Peninsula. The Rotating Shadow band Pyranometer (RSP, LI-COR) was used for the irradiance measurements (in the spectral region 400-1100 nm), whereas the AOD measurements were carried out using CIMEL Sunphotometer (CE 318-2, under AERONET program). The differential method, which is neither sensitive to calibration uncertainties nor model assumptions, has been employed for estimating forcing efficiencies from the changes in the measured fluxes. The forcing efficiency, which quantifies the net change in irradiance per unit change in AOD, is an appropriate parameter for the characterization of the aerosol radiative effects even if the microphysical and optical properties of the aerosols are not completely understood. The corresponding forcing values were estimated from the forcing efficiencies. The estimated radiative forcing and forcing efficiencies exhibited strong monthly variations. The forcing efficiencies (absolute magnitudes) were highest during March, and showed continuous decrease thereafter to reach the lowest value during September. In contrast, the forcing followed a slightly different pattern of variability, with the highest solar dimming during April ( -60 W m-2) and the minimum during February ( -20 W m-2). The results indicate that the aerosol microphysics as well as the types of aerosol undergo significant seasonal variations.
NASA Astrophysics Data System (ADS)
Reid, J. S.; Westphal, D. L.; Christopher, S. A.; Prins, E. M.; Gasso, S.; Reid, E.; Theisen, M.; Schmidt, C. C.; Hunter, J.; Eck, T.
2002-05-01
The Fire Locating and Modeling of Burning Emissions (FLAMBE') project is a joint Navy, NOAA, NASA and university project to integrate satellite products with numerical aerosol models to produce a real time fire and emissions inventory. At the center of the program is the Wildfire Automated Biomass Burning Algorithm (WF ABBA) which provides real-time fire products and the NRL Aerosol Analysis and Prediction System to model smoke transport. In this presentation we give a brief overview of the system and methods, but emphasize new estimations of smoke coverage and emission fluxes from the South American continent. Temporal and smoke patterns compare reasonably well with AERONET and MODIS aerosol optical depth products for the 2000 and 2001 fire seasons. Fluxes are computed by relating NAAPS output fields and MODIS optical depth maps with modeled wind fields. Smoke emissions and transport fluxes out of the continent can then be estimated by perturbing the modeled emissions to gain agreement with the satellite and wind products. Regional smoke emissions are also presented for grass and forest burning.
Chow, Judith C; Watson, John G; Robles, Jerome; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Kohl, Steven D; Tropp, Richard J; Fung, Kochy K
2011-12-01
Accurate, precise, and valid organic and elemental carbon (OC and EC, respectively) measurements require more effort than the routine analysis of ambient aerosol and source samples. This paper documents the quality assurance (QA) and quality control (QC) procedures that should be implemented to ensure consistency of OC and EC measurements. Prior to field sampling, the appropriate filter substrate must be selected and tested for sampling effectiveness. Unexposed filters are pre-fired to remove contaminants and acceptance tested. After sampling, filters must be stored in the laboratory in clean, labeled containers under refrigeration (<4 °C) to minimize loss of semi-volatile OC. QA activities include participation in laboratory accreditation programs, external system audits, and interlaboratory comparisons. For thermal/optical carbon analyses, periodic QC tests include calibration of the flame ionization detector with different types of carbon standards, thermogram inspection, replicate analyses, quantification of trace oxygen concentrations (<100 ppmv) in the helium atmosphere, and calibration of the sample temperature sensor. These established QA/QC procedures are applicable to aerosol sampling and analysis for carbon and other chemical components.
Global Long-Term SeaWiFS Deep Blue Aerosol Products available at NASA GES DISC
NASA Technical Reports Server (NTRS)
Shen, Suhung; Sayer, A. M.; Bettenhausen, Corey; Wei, Jennifer C.; Ostrenga, Dana M.; Vollmer, Bruce E.; Hsu, Nai-Yung; Kempler, Steven J.
2012-01-01
Long-term climate data records about aerosols are needed in order to improve understanding of air quality, radiative forcing, and for many other applications. The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) provides a global well-calibrated 13- year (1997-2010) record of top-of-atmosphere radiance, suitable for use in retrieval of atmospheric aerosol optical depth (AOD). Recently, global aerosol products derived from SeaWiFS with Deep Blue algorithm (SWDB) have become available for the entire mission, as part of the NASA Making Earth Science data records for Use in Research for Earth Science (MEaSUREs) program. The latest Deep Blue algorithm retrieves aerosol properties not only over bright desert surfaces, but also vegetated surfaces, oceans, and inland water bodies. Comparisons with AERONET observations have shown that the data are suitable for quantitative scientific use [1],[2]. The resolution of Level 2 pixels is 13.5x13.5 km2 at the center of the swath. Level 3 daily and monthly data are composed by using best quality level 2 pixels at resolution of both 0.5ox0.5o and 1.0ox1.0o. Focusing on the southwest Asia region, this presentation shows seasonal variations of AOD, and the result of comparisons of 5-years (2003- 2007) of AOD from SWDB (Version 3) and MODIS Aqua (Version 5.1) for Dark Target (MYD-DT) and Deep Blue (MYD-DB) algorithms.
A quantitative method for optimized placement of continuous air monitors.
Whicker, Jeffrey J; Rodgers, John C; Moxley, John S
2003-11-01
Alarming continuous air monitors (CAMs) are a critical component for worker protection in facilities that handle large amounts of hazardous materials. In nuclear facilities, continuous air monitors alarm when levels of airborne radioactive materials exceed alarm thresholds, thus prompting workers to exit the room to reduce inhalation exposures. To maintain a high level of worker protection, continuous air monitors are required to detect radioactive aerosol clouds quickly and with good sensitivity. This requires that there are sufficient numbers of continuous air monitors in a room and that they are well positioned. Yet there are no published methodologies to quantitatively determine the optimal number and placement of continuous air monitors in a room. The goal of this study was to develop and test an approach to quantitatively determine optimal number and placement of continuous air monitors in a room. The method we have developed uses tracer aerosol releases (to simulate accidental releases) and the measurement of the temporal and spatial aspects of the dispersion of the tracer aerosol through the room. The aerosol dispersion data is then analyzed to optimize continuous air monitor utilization based on simulated worker exposure. This method was tested in a room within a Department of Energy operated plutonium facility at the Savannah River Site in South Carolina, U.S. Results from this study show that the value of quantitative airflow and aerosol dispersion studies is significant and that worker protection can be significantly improved while balancing the costs associated with CAM programs.
Volatility of methylglyoxal cloud SOA formed through OH radical oxidation and droplet evaporation
NASA Astrophysics Data System (ADS)
Ortiz-Montalvo, Diana L.; Schwier, Allison N.; Lim, Yong B.; McNeill, V. Faye; Turpin, Barbara J.
2016-04-01
The volatility of secondary organic aerosol (SOA) formed through cloud processing (aqueous hydroxyl radical (radOH) oxidation and droplet evaporation) of methylglyoxal (MGly) was studied. Effective vapor pressure and effective enthalpy of vaporization (ΔHvap,eff) were determined using 1) droplets containing MGly and its oxidation products, 2) a Vibrating Orifice Aerosol Generator (VOAG) system, and 3) Temperature Programmed Desorption Aerosol-Chemical Ionization Mass Spectrometry (TPD Aerosol-CIMS). Simulated in-cloud MGly oxidation (for 10-30 min) produces an organic mixture of higher and lower volatility components with an overall effective vapor pressure of (4 ± 7) × 10-7 atm at pH 3. The effective vapor pressure decreases by a factor of 2 with addition of ammonium hydroxide (pH 7). The fraction of organic material remaining in the particle-phase after drying was smaller than for similar experiments with glycolaldehyde and glyoxal SOA. The ΔHvap,eff of pyruvic acid and oxalic acid + methylglyoxal in the mixture (from TPD Aerosol-CIMS) were smaller than the theoretical enthalpies of the pure compounds and smaller than that estimated for the entire precursor/product mix after droplet evaporation. After 10-30 min of aqueous oxidation (one cloud cycle) the majority of the MGly + radOH precursor/product mix (even neutralized) will volatilize during droplet evaporation; neutralization and at least 80 min of oxidation at 10-12 M radOH (or >12 h at 10-14 M) is needed before low volatility ammonium oxalate exceeds pyruvate.
Shipboard Measurements During ACE-Asia: an Overview
NASA Astrophysics Data System (ADS)
Bates, T. S.; Uematsu, M.; Miura, K.
2001-12-01
Shipboard measurements of aerosol properties and related parameters were conducted from the US NOAA R/V Ronald H. Brown and the Japanese R/V Mirai (MR01-K02) during the ACE-Asia Intensive Field Program (http://saga.pmel.noaa.gov/aceasia/). The R/V Brown cruise (14 March - 20 April 2001), with scientists from 22 research institutions, included measurements across the Pacific Ocean from Hawaii to Japan, in the East China Sea and in the Sea of Japan. Measurements were coordinated with the US NSF/NCAR C-130, US CIRPAS Twin Otter, and the Australian ARA King Air Aircraft, Terra and SeaWiFS satellite overpasses, and the ground station at Hachijo, Japan. Distinct aerosol and trace gas signatures were observed from the Miyakejima volcano, the deserts of China and Mongolia, the Chang Jiang Basin, the Korean Peninsula and the islands of Japan. The R/V Mirai cruise (14 - 28 May 2001), with scientists from 10 research institutions, focused on the region east of Japan along 146.5 E from 30 N to 38 N. Enhanced concentrations of radon and super-micron aerosol were measured in a post-frontal air mass along the 146.5 E transect. Observations from a Kytoon and the NIES two-wavelength (1064 nm and 532 nm) dual-polarization lidar detected dust and sulfate aerosol plumes from the Asian continent. The vertical distribution patterns of the dust and sulfate aerosols qualitatively agreed with the model prediction by the Chemical Weather Forecasting System (CFORS).
A new cloud and aerosol layer detection method based on micropulse lidar measurements
NASA Astrophysics Data System (ADS)
Zhao, Chuanfeng; Wang, Yuzhao; Wang, Qianqian; Li, Zhanqing; Wang, Zhien; Liu, Dong
2014-06-01
This paper introduces a new algorithm to detect aerosols and clouds based on micropulse lidar measurements. A semidiscretization processing technique is first used to inhibit the impact of increasing noise with distance. The value distribution equalization method which reduces the magnitude of signal variations with distance is then introduced. Combined with empirical threshold values, we determine if the signal waves indicate clouds or aerosols. This method can separate clouds and aerosols with high accuracy, although differentiation between aerosols and clouds are subject to more uncertainties depending on the thresholds selected. Compared with the existing Atmospheric Radiation Measurement program lidar-based cloud product, the new method appears more reliable and detects more clouds with high bases. The algorithm is applied to a year of observations at both the U.S. Southern Great Plains (SGP) and China Taihu sites. At the SGP site, the cloud frequency shows a clear seasonal variation with maximum values in winter and spring and shows bimodal vertical distributions with maximum occurrences at around 3-6 km and 8-12 km. The annual averaged cloud frequency is about 50%. The dominant clouds are stratiform in winter and convective in summer. By contrast, the cloud frequency at the Taihu site shows no clear seasonal variation and the maximum occurrence is at around 1 km. The annual averaged cloud frequency is about 15% higher than that at the SGP site. A seasonal analysis of cloud base occurrence frequency suggests that stratiform clouds dominate at the Taihu site.
Field Trial of an Aerosol-Based Enclosure Sealing Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harrington, Curtis; Springer, David
2015-09-01
This report presents the results from several demonstrations of a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at UC Davis. The process involves pressurizing a building while applying an aerosol sealant to the interior. As air escapes through leaks in the building envelope, the aerosol particles are transported to the leaks where they collect and form a seal that blocks the leak. Standard blower door technology is used to facilitate the building pressurization, which allows the installer to track the sealing progress during the installation and automaticallymore » verify the final building tightness. Each aerosol envelope sealing installation was performed after drywall was installed and taped, and the process did not appear to interrupt the construction schedule or interfere with other trades working in the homes. The labor needed to physically seal bulk air leaks in typical construction will not be replaced by this technology. However, this technology is capable of bringing the air leakage of a building that was built with standard construction techniques and HERS-verified sealing down to levels that would meet DOE Zero Energy Ready Homes program requirements. When a developer is striving to meet a tighter envelope leakage specification, this technology could greatly reduce the cost to achieve that goal by providing a simple and relatively low cost method for reducing the air leakage of a building envelope with little to no change in their common building practices.« less
Aerosol Measurements of the Fine and Ultrafine Particle Content of Lunar Regolith
NASA Technical Reports Server (NTRS)
Greenberg, Paul S.; Chen, Da-Ren; Smith, Sally A.
2007-01-01
We report the first quantitative measurements of the ultrafine (20 to 100 nm) and fine (100 nm to 20 m) particulate components of Lunar surface regolith. The measurements were performed by gas-phase dispersal of the samples, and analysis using aerosol diagnostic techniques. This approach makes no a priori assumptions about the particle size distribution function as required by ensemble optical scattering methods, and is independent of refractive index and density. The method provides direct evaluation of effective transport diameters, in contrast to indirect scattering techniques or size information derived from two-dimensional projections of high magnification-images. The results demonstrate considerable populations in these size regimes. In light of the numerous difficulties attributed to dust exposure during the Apollo program, this outcome is of significant importance to the design of mitigation technologies for future Lunar exploration.
NASA Technical Reports Server (NTRS)
Fargion, Giulietta S.; Barnes, Robert; McClain, Charles
2001-01-01
The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project Office activities on in situ aerosol optical thickness (i.e., protocols, and data QC and analysis). This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.
NASA Technical Reports Server (NTRS)
Soreide, David C.; Bogue, Rodney K.; Ehernberger, L. J.; Hannon, Stephen M.; Bowdle, David A.
2000-01-01
The purpose of the ACLAIM program is ultimately to establish the viability of light detection and ranging (lidar) as a forward-looking sensor for turbulence. The goals of this flight test are to: 1) demonstrate that the ACLAIM lidar system operates reliably in a flight test environment, 2) measure the performance of the lidar as a function of the aerosol backscatter coefficient (beta), 3) use the lidar system to measure atmospheric turbulence and compare these measurements to onboard gust measurements, and 4) make measurements of the aerosol backscatter coefficient, its probability distribution and spatial distribution. The scope of this paper is to briefly describe the ACLAIM system and present examples of ACLAIM operation in flight, including comparisons with independent measurements of wind gusts, gust-induced normal acceleration, and the derived eddy dissipation rate.
Condensation nuclei measurement in the stratosphere for the NASA ACE program
NASA Astrophysics Data System (ADS)
Wilson, James Charles
1994-11-01
A condensation nucleus counter which operated at stratospheric pressures was developed, designed, and constructed. It was calibrated in the laboratory. Its response as a function of particle size and concentration was reported. This was the first time that the response of such an instrument was verified in the laboratory. An inlet was constructed which provided near isokinetic sampling. The resulting instrument, the U-2 CNC, was deployed on NASA U-2 aircraft in the study of the climatic effects of aerosol. These studies occurred in March, April, May, July, November, and December of 1992 and in April, May, June, and December of 1983. The U-2 CNC was used in the study of the aerosol cloud resulting from the eruption of El Chichon. It permitted the observation of new particle formation in the stratosphere.
Condensation nuclei measurement in the stratosphere for the NASA ACE program
NASA Technical Reports Server (NTRS)
Wilson, James Charles
1994-01-01
A condensation nucleus counter which operated at stratospheric pressures was developed, designed, and constructed. It was calibrated in the laboratory. Its response as a function of particle size and concentration was reported. This was the first time that the response of such an instrument was verified in the laboratory. An inlet was constructed which provided near isokinetic sampling. The resulting instrument, the U-2 CNC, was deployed on NASA U-2 aircraft in the study of the climatic effects of aerosol. These studies occurred in March, April, May, July, November, and December of 1992 and in April, May, June, and December of 1983. The U-2 CNC was used in the study of the aerosol cloud resulting from the eruption of El Chichon. It permitted the observation of new particle formation in the stratosphere.
Global sensing of gaseous and aerosol trace species using automated instrumentation on 747 airliners
NASA Technical Reports Server (NTRS)
Perkins, P. J.; Papathakos, L. C.
1977-01-01
The Global Atmospheric Sampling Program (GASP) by NASA is collecting and analyzing data on gaseous and aerosol trace species in the upper troposphere and lower stratosphere. Measurements are obtained from automated systems installed on four 747 airliners flying global air routes. Advances were made in airborne sampling instrumentation. Improved instruments and analysis techniques are providing an expanding data base for trace species including ozone, carbon monoxide, water vapor, condensation nuclei and mass concentrations of sulfates and nitrates. Simultaneous measurements of several trace species obtained frequently can be used to uniquely identify the source of the air mass as being typically tropospheric or stratospheric. A quantitative understanding of the tropospheric-stratospheric exchange processes leads to better knowledge of the atmospheric impact of pollution through the development of improved simulation models of the atmosphere.
Discovery of Host Factors and Pathways Utilized in Hantaviral Infection
2015-09-01
STATEMENT: Approved for Public Release; Distribution Unlimited The views, opinions and/or findings contained in this report are those of the author ...NUMBER 5b. GRANT NUMBER W81XWH-14-1-0204 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR (S) Paul Bates 5d. PROJECT NUMBER PR130590 5e. TASK NUMBER E-Mail...Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Hantaviruses are negative-sense RNA enveloped viruses that are transmitted to humans in aerosols of rodent
Final Technical Report for Grant # DE-FG02-06ER64169
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dr. Beat Schmid, PI
2007-07-13
The Atmospheric Radiation Measurement (ARM) program is funding this project to improve the methodology of ground-based remote sensing of the vertical distribution of aerosol and cloud optical properties, and their effect on atmospheric radiative transfer. Remotely-sensed and in situ observed aerosol, cloud physical, and optical properties collected during the May 2003 Aerosol Intensive Operational Period (AIOP) and the Aerosol Lidar Validation Experiment (ALIVE), conducted from September 11-22, 2005, are the basis for the investigation. We have used ground-based lidar, airborne sunphotometer and in situ measurements and other data to evaluate the vertical profile of aerosol properties. We have been pursuingmore » research in the following three areas: (1) Aerosol Best Estimate Product--Sensitivity Study: ARM is developing an Aerosol Best Estimate (ABE) Value Added Product (VAP) to provide aerosol optical properties at all times and heights above its sites. The ABE is used as input for the Broadband Heating Rate Profile (BBHRP) VAP, whose output will be used to evaluate the radiative treatment of aerosols and clouds in climate models. ARM has a need to assess how much detail is required for the ABE and if a useful ABE can be derived for the tropical and arctic climate research facilities (CRFs) where only limited aerosol information in the vertical is available. We have been determining the sensitivity of BBHRP to the vertical profile of aerosol optical properties used in ABE. (2) Vertically Resolved Aerosol and Cloud Radiative Properties over the Southern Great Plains (SGP): The AIOP delivered an unprecedented airborne radiometric and in situ data set related to aerosols and clouds. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS's) Twin Otter aircraft carried solar pointing, up- and down-looking radiometers (spectral and broadband, visible, and infrared) with the uplooking radiometers mounted on a stabilized platform. We are performing an integrated analysis of the largely unexploited radiometric data set to provide observation-based quantification of the effect of aerosols and clouds on the radiation field. We will link aerosol and cloud properties measured in situ with the observed radiative fluxes using radiative transfer models. This over-determined dataset will provide validation of the BBHRP VAP. (3) Integrated Analysis of Data from the Aerosol Lidar Validation Experiment: The ABE VAP relies on continuous lidar observations to provide the vertical distribution of the aerosols above the ARM sites. The goal of ALIVE, conducted in September 2005, was the validation of the aerosol extinction profiles obtained from the SGP Raman lidar, which has been recently refurbished/updated, and the Micro Pulse Lidar, for which a new algorithm to retrieve aerosol profiles has recently been developed, using the National Aeronautics and Space Administration (NASA) Ames Airborne Tracking 14 channel Sun photometer. We are performing and publishing the integrated analysis of the ALIVE data set.« less
The DRAGON scale concept and results for remote sensing of aerosol properties
NASA Astrophysics Data System (ADS)
Holben, B. N.; Eck, T. F.; Schafer, J.; Giles, D. M.; Kim, J.; Sano, I.; Mukai, S.; Kim, Y. J.; Reid, J. S.; Pickering, K. E.; Crawford, J. H.; Smirnov, A.; Sinyuk, A.; Slutsker, I.; Sorokin, M.; Rodriguez, J.; Liew, S.; Trevino, N.; Lim, H.; Lefer, B. L.; Nadkarni, R.; Macke, A.; Kinne, S. A.; Anderson, B. E.; Russell, P. B.; Maring, H. B.; Welton, E. J.; da Silva, A.; Toon, O. B.; Redemann, J.
2013-12-01
Aerosol processes occur at microscales but are typically observed and reported at continental to global scales. Often observable aerosol processes that have significant anthropogenic impact occur on spatial scales of tens to a few hundred km, representative of convective cloud processing, urban/megacity sources, anthropogenic burning and natural wildfires, dry lakebed dust sources etc. Historically remote sensing of aerosols has relied on relatively coarse temporal and spatial resolution satellite observations or high temporal resolution point observations from ground-based monitoring sites from networks such as AERONET, SKYNET, MPLNET and many other surface observation platforms. Airborne remote and in situ observations combined with assimilation models were/are to be the mesoscale link between the ground- and space-based RS scales. However clearly the in situ and ground-based RS characterizations of aerosols require a convergence of thought, parameterization and actual scale measurements in order to advance this goal. This has been served by periodic multidisciplinary field campaigns yet only recently has a concerted effort been made to establish these ground-based networks in an effort to capture the mesoscale processes through measurement programs such as DISCOVER AQ and NASA AERONET's effort to foster such measurements and analysis through the Distributed Regional Aerosol Gridded Observation Networks (DRAGON), short term meso-networks, with partners in Asia and Europe and N. America. This talk will review the historical need for such networks and discuss some of the results and in some cases unexpected findings from the eight DRAGON campaigns conducted the last several years. Emphasis will be placed on the most recent DISCOVER AQ campaign conducted in Houston TX and the synergism with a regional to global network plan through the SEAC4RS US campaign.
NASA Astrophysics Data System (ADS)
Fairlie, T. D.; Vernier, J. P.; Deshler, T.; Pandit, A. K.; Ratnam, M. V.; Gadhavi, H. S.; Liu, H.; Natarajan, M.; Jayaraman, A.; Kumar, S.; Singh, A. K.; Stenchikov, G. L.; Wienhold, F.; Vignelles, D.; Bedka, K. M.; Avery, M. A.
2017-12-01
We present in situ balloon observations of the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with Asian Summer Monsoon (ASM). The ATAL was first revealed by CALIPSO satellite data, and has been linked with deep convection of boundary layer pollution into the UTLS. The ATAL has potential implications for regional cloud properties, radiative transfer, and chemical processes in the UTLS. The "Balloon measurements of the Asian Tropopause Aerosol Layer (BATAL)" field campaigns to India and Saudi Arabia in were designed to characterize the physical and optical properties of the ATAL, to explore its composition, and its relationship with clouds in the UTLS. We launched 55 balloon flights from 4 locations, in summers 2014-2016. We return to India to make more balloon flights in summer 2017. Balloon payloads range from 500g to 50 kg, making measurements of meteorological parameters, ozone, water vapor, aerosol optical properties, concentration, volatility, and composition in the UTLS region. This project represents the most important effort to date to study UTLS aerosols during the ASM, given few in situ observations. We complement the in situ data presented with 3-d chemical transport simulations, designed to further explore the ATAL's chemical composition, the sensitivity of such to scavenging in parameterized deep convection, and the relative contribution of regional vs. rest-of-the-world pollution sources. The BATAL project has been a successful partnership between institutes in the US, India, Saudi Arabia, and Europe, and continues for the next 3-4 years, sponsored by the NASA Upper Atmosphere Research program. This partnership may provide a foundation for potential high-altitude airborne measurement studies during the ASM in the future.
A Comprehensive Analysis about the Aerosol's Albedo Effect at SGP Site
NASA Astrophysics Data System (ADS)
Qiu, Y.
2016-12-01
Positive relationship between cloud droplet effective radius (DER) and aerosol amount has been found in early studies based on limited observation samples over the Southern Great Plain (SGP) in Oklahoma of US. Using 8-year cloud and aerosol observations by the Atmospheric Radiation Measurement (ARM) program, We here carry out a comprehensive analysis about the seasonal variation of aerosol effect on cloud DER at the SGP site. It shows that cloud DER is larger under polluted conditions than that under clean conditions in all seasons other than summer, indicating a positive aerosol first indirect effect (also called Twomey effect) only in summer. Note that the pollution conditions are classified based on the surface observation of aerosol optical depth (AOD). Different factors that influence the AOD-DER relationship have been shown in many early studies, we analyze the potential effects of various factors on the AOD-DER relationship and find that cloud types and precipitable water vapor (PWV) play more important roles.We limit our study to clouds with bases below 1 km and tops about 3 km which make sure what we study are low liquid clouds. The correlation between AOD and DER is negative in all seasons in lower one-third of PWV, and positive in other seasons except negative in summer under higher one-third of PWV. It suggests the increase of PWV could promote the relationship of AOD-Re from negative to positive. Restricting NCEP reanalysis data to limit the variation in the meteorological conditions, the correlation of AOD-Re is -0.3054 in lower PWV and -0.2327 in higher PWV( p<0.05 in two cases), which shows that the increase of PWV can weaken the Twomey effect.
NASA Technical Reports Server (NTRS)
Holben, B. N.; Eck, T.; Smirnov, A.; Sinyuk, A.; Dubovik, O.; Slutsker, I.; Giles, D.; Sorokine, M.; Chin, L.; Remer, P.;
2007-01-01
The AERONET program has operated in E. Asia since 1995 providing time continuous and time averaged ground-based column-integrated aerosol optical properties in a variety of aerosol regimes In the last four years the distribution has greatly increased in Siberia, China, SE Asia and India in particular. Commensurate with that, significant improvement in data processing algorithms (Version 2.0) and access to ancillary data products through the WWW have become available to the scientific community. At this writing the following distribution represents E and S. Asia: 5 sites operate in Siberia (2 years), 1 in Mongolia (9 years), 3 in Korea (3 to 6 years), 3 in Japan (2 to 7 years), China 11 (6 to 0 years), Taiwan 4 (7 to 2 yrs), Viet Nam 2 (4 years), Thailand 2 to 5 (4 years), and Singapore 1 (4 months), India 1 to 3 (7 to 1 years), Pakistan 2 (1 year), and UAE 3 (3 years). An analysis of the aerosol optical depth at 500 nm using annual average quality assured AERONET data (pre 2006) was used to estimate the mean annual aerosol loading by continent, sub continent and ocean. The individual site data were assumed representative of regional aerosol loading and aggregated to the sub-continental, continental and oceanic areas and presented. This analysis will be updated with more recent data with particular emphasis on seasonal results for Asia and the addition of single scattering albedo retrievals. The ground based results will be compared to MODIS collection 5 results and model estimates for E. Asia using the AERONET Synergy Tool.
Sentinel-5 instrument: status of design, performance, and development
NASA Astrophysics Data System (ADS)
Gühne, T.; Keim, C.; Bartsch, P.; Weiß, S.; Melf, M.; Seefelder, W.
2017-09-01
The Sentinel-5 instrument is currently under development by a consortium led by Airbus Defence and Space in the frame of the European Union Copernicus program. It is a customer furnished item to the MetOp Second Generation satellite platform, which will provide operational meteorological data for the coming decades. Mission objective of the Sentinel-5 is to monitor the composition of the Earth atmosphere for Copernicus Atmosphere Services by taking measurements of trace gases and aerosols impacting air quality and climate with high resolution and daily global coverage. Therefore the Sentinel-5 provides five dispersive spectrometers covering the UV-VIS (270…500 nm), NIR (685 …773 nm) and SWIR (1590…1675 and 2305…2385 nm) spectral bands with resolutions <=1nm. Spatially the Sentinel-5 provides a 108° field of view with a ground sampling of 7.5 x 7 km2 at Nadir. The development program is post PDR and the build-up of the industrial team is finalised. We report on the instrument architecture and design derived from the driving requirements, the predicted instrument performance, and the general status of the program.
NASA Technical Reports Server (NTRS)
Redemann, Jens; Wood, R.; Zuidema, P.; Haywood, J.; Luna, B.; Abel, S.
2015-01-01
Southern Africa produces almost a third of the Earth's biomass burning (BB) aerosol particles, yet the fate of these particles and their influence on regional and global climate is poorly understood. Particles lofted into the mid-troposphere are transported westward over the South-East (SE) Atlantic, home to one of the three permanent subtropical Stratocumulus (Sc) cloud decks in the world. The stratocumulus "climate radiators" are critical to the regional and global climate system. They interact with dense layers of BB aerosols that initially overlay the cloud deck, but later subside and are mixed into the clouds. These interactions include adjustments to aerosol-induced solar heating and microphysical effects. As emphasized in the latest IPCC report, the global representation of these aerosol-cloud interaction processes in climate models is one of the largest uncertainty in estimates of future climate. Hence, new observations over the SE Atlantic have significant implications for global climate change scenarios. We discuss the current knowledge of aerosol and cloud property distributions based on satellite observations and sparse suborbital sampling, and describe planned field campaigns in the region. Specifically, we describe the scientific objectives and implementation of the following four synergistic, international research activities aimed at providing a process-level understanding of aerosol-cloud interactions over the SE Atlantic: 1) ORACLES (Observations of Aerosols above Clouds and their interactions), a five-year investigation between 2015 and 2019 with three Intensive Observation Periods (IOP), recently funded by the NASA Earth-Venture Suborbital Program, 2) CLARIFY-2016 (Cloud-Aerosol-Radiation Interactions and Forcing: Year 2016), a comprehensive observational and modeling programme funded by the UK's Natural Environment Research Council (NERC), and supported by the UK Met Office. 3) LASIC (Layered Atlantic Smoke Interactions with Clouds), a funded deployment of the DOE (Department of Energy) ARM Mobile Facility (AMF1) to Ascension Island, nominally for April 1 2016 - March 31 2017, and 4) ONFIRE (Observations of Fire's Impact on the southeast Atlantic Region), a proposed deployment of the NCAR C-130 aircraft to Sao Tome Island in 2017.
Aerosol, cloud, and precipitation interactions in Eastern North Atlantic
NASA Astrophysics Data System (ADS)
Wang, J.; Wood, R.; Dong, X.
2017-12-01
With their extensive coverage, marine low clouds greatly impact global climate. Presently, marine low clouds are poorly represented in global climate models, and the response of marine low clouds to changes in atmospheric greenhouse gases and aerosols remains the major source of uncertainty in climate simulations. The Eastern North Atlantic (ENA) is a region of persistent but diverse subtropical marine boundary layer clouds, whose albedo and precipitation are highly susceptible to perturbations in aerosol properties. In addition, ENA is periodically impacted by anthropogenic aerosol both from North American and from continental Europe, making it an excellent location to study the CCN budget in a remote marine region periodically perturbed by anthropogenic emissions, and to investigate the impacts of long-range transport of aerosols on remote marine clouds. Aerosol and Cloud Experiments in Eastern North Atlantic (ACE-ENA), funded by DOE Atmospheric Radiation Measurement (ARM) program, is designed to improve the understanding of marine boundary CCN budget, cloud and drizzle microphysics, and the impact of aerosol on marine low cloud and precipitation in the ENA by combining airborne observations and long term surface based measurements. The study has two airborne deployments. The first deployment took place from June 15 to July 25, 2017, and the second one will take place from January 10 to February 20, 2018. Flights during the first deployment were carried out in the Azores, near the ARM ENA site on Graciosa Island. The long term measurements at the ENA site provide important Climatological context for the airborne observations during the two deployments, and the cloud structures provided by the scanning radars at the ENA site put the detailed in-situ measurements into mesoscale and cloud lifecycle contexts. Another important aspect of this study is to provide high quality in-situ measurements for validating and improving ground-based retrieval algorithms at the ENA site. This presentation will describe the setup and strategies of the study, early results from the first deployment on vertical structures and horizontal variabilities of aerosol properties, cloud and drizzle microphysics, and insights into the processes that drive the properties and interactions of aerosol and marine low clouds.
OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Poellot, Michael
The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Aerial Facility (AAF) Counterflow Spectrometer and Impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Olympic Mountain Experiment (OLYMPEX). The field campaign took place from November 12 through December 19, 2015, over the Olympic Mountains and coastal waters of Washington State as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) validation campaign. The CSI was added to the Citation instrument suite to support the NASA Aerosol-Cloud Ecosystem (ACE) satellite program and flights ofmore » the NASA Lockheed Earth Resources (ER-2) aircraft. ACE funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the DOE Atmospheric System Research (ASR) program.« less
Three-dimensional reconstruction for coherent diffraction patterns obtained by XFEL.
Nakano, Miki; Miyashita, Osamu; Jonic, Slavica; Song, Changyong; Nam, Daewoong; Joti, Yasumasa; Tama, Florence
2017-07-01
The three-dimensional (3D) structural analysis of single particles using an X-ray free-electron laser (XFEL) is a new structural biology technique that enables observations of molecules that are difficult to crystallize, such as flexible biomolecular complexes and living tissue in the state close to physiological conditions. In order to restore the 3D structure from the diffraction patterns obtained by the XFEL, computational algorithms are necessary as the orientation of the incident beam with respect to the sample needs to be estimated. A program package for XFEL single-particle analysis based on the Xmipp software package, that is commonly used for image processing in 3D cryo-electron microscopy, has been developed. The reconstruction program has been tested using diffraction patterns of an aerosol nanoparticle obtained by tomographic coherent X-ray diffraction microscopy.
Development and Evaluation of a High Sensitivity DIAL System for Profiling Atmospheric CO2
NASA Technical Reports Server (NTRS)
Ismail, Syed; Koch, Grady J.; Refaat, Tamer F.; Abedin, M. N.; Yu, Jirong; Singh, Upendra N.
2008-01-01
A ground-based 2-micron Differential Absorption Lidar (DIAL) CO2 profiling system for atmospheric boundary layer studies and validation of space-based CO2 sensors is being developed and tested at NASA Langley Research Center as part of the NASA Instrument Incubator Program. To capture the variability of CO2 in the lower troposphere a precision of 1-2 ppm of CO2 (less than 0.5%) with 0.5 to 1 km vertical resolution from near surface to free troposphere (4-5 km) is one of the goals of this program. In addition, a 1% (3 ppm) absolute accuracy with a 1 km resolution over 0.5 km to free troposphere (4-5 km) is also a goal of the program. This DIAL system leverages 2-micron laser technology developed under NASA's Laser Risk Reduction Program (LRRP) and other NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements. This presentation describes the capabilities of this system for atmospheric CO2 and aerosol profiling. Examples of atmospheric measurements in the lidar and DIAL mode will be presented.
NASA Astrophysics Data System (ADS)
Nilsson, E. Douglas; Barr, Sumner
2001-12-01
The atmospheric program on the Arctic Ocean Expedition of July through September 1996 (AOE-96) was focused on aerosol climate feedback. The expedition took place close to the saddle point between a semipersistent anticyclonic ridge from near Scandinavia to the Arctic coast of eastern Siberia and a trough from the Canadian archipelago across the pole to north central Siberia. The weather varied from anticyclonic clear-sky conditions to cyclonic cloudy conditions, and 13 identifiable migratory features (frontal bands, wave disturbances) clearly influenced local weather, clouds, atmospheric transport, and chemistry. This includes an explosive polar cyclone, born at the lateral heat gradient between Greenland and the pack ice rather than between open sea and the pack ice. The synoptic scale weather systems caused the strongest variability in trace gases (O3 in particular) and aerosols, and also strong variability in the cloud cover. The formation of air masses over the pack ice primarily depends on if there is cyclonic (convergent) or anticyclonic (divergent) flow. Cyclonic flow resulted in a modified marine air mass loaded with vapor, but with low aerosol number concentrations owing to frequent clouds and fogs and efficient cloud scavenging of the aerosol. Anticyclonic flow resulted in almost continental air masses with clear sky, long residence time over the pack ice and subsidence slowly replacing the boundary layer with free tropospheric air, low vapor concentrations, but large aerosol number in lack of efficient cloud scavenging. The synoptic variability and advection from south of the ice edge were weaker than during the predecessor International Arctic Ocean Expedition in 1991 (IAOE-91), when on average the sampled air spent 55 hours over the pack ice compared to more than 120 hours during AOE-96, owing to exceptionally high cyclone activity in 1991. This caused a large difference in atmospheric transport, chemistry, and aerosols between the two expeditions.
An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet
NASA Astrophysics Data System (ADS)
Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.
2008-02-01
This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used for both validation of satellite measurements as well as regional aerosol and ultraviolet transmission studies.
Aerosol Transport Over Equatorial Africa
NASA Technical Reports Server (NTRS)
Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.
1999-01-01
Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El Nino.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhatia, S.C.; Cardelino, B.H.; Hall, J.H. Jr.
1990-01-31
This report consists of five quarterly progress reports from four participating universities. The titles of the projects are: Competition of NO and SO{sub 2} for OH generated within electrical aerosol analyzers; Dispersed iron catalysts for coal gasification; Catalytic gasification of coal chars by potassium sulfate and ferrous sulfate mixtures; Removal of certain toxic heavy metal ions in coal conversion process wastewaters; and Study of coal liquefaction catalysts. All reports have been indexed separately for inclusion on the data base. (CK)
In-Plume Emission Test Stand 2: Emission Factors for 10- to 100-kW U.S. Military Generators
2009-12-01
dards, local communities near military bases must con - form to the National Ambient Air Quality Standards. Mil- itary diesel generators are widely used...Strategic En- vironmental Research and Development Program ( con - tract CP-1336). The USMC provided extraordinary coop- eration and assistance in providing...Aerosol. Sci. 2006, 37, 63-87. 37. Maricq, M.M.; Xu, N. The Effective Density and Fractal Dimension of Soot Particles from Premixed Flames and Motor
NASA Astrophysics Data System (ADS)
Gulde, S. T.; Kolm, M. G.; Smith, D. J.; Maurer, R.; Bazalgette Courrèges-Lacoste, G.; Sallusti, M.; Bagnasco, G.
2017-11-01
SENTINEL 4 is an imaging UVN (UV-VIS-NIR) spectrometer, developed by Airbus Defence and Space under ESA contract in the frame of the joint European Union (EU)/ESA COPERNICUS program. The mission objective is the operational monitoring of trace gas concentrations for atmospheric chemistry and climate applications. To this end SENTINEL 4 will provide accurate measurements of key atmospheric constituents such as ozone, nitrogen dioxide, sulfur dioxide, formaldehyde, as well as aerosol and cloud properties.
2014-03-01
potential toxicological effects of tungsten-compounds are often attributed to the presence of cobalt and or chromium which are frequently contained in...rat test subjects.4 These claims were later put in doubt because of the substantial presents of chromium and cobalt in the tungsten alloy. Very little...biokinetics of aluminum follow similar trends as other trivalent metals. Of specific importance to this work, Priest made the assertion that
NASA Technical Reports Server (NTRS)
Shiokari, T.
1975-01-01
The feasibility and cost savings of using flight-proven components in designing spacecraft were investigated. The components analyzed were (1) large space telescope, (2) stratospheric aerosol and gas equipment, (3) mapping mission, (4) solar maximum mission, and (5) Tiros-N. It is concluded that flight-proven hardware can be used with not-too-extensive modification, and significant savings can be realized. The cost savings for each component are presented.
Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX)
NASA Technical Reports Server (NTRS)
Nelson, D.L.; Garay, M.J.; Kahn, Ralph A.; Dunst, Ben A.
2013-01-01
The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra satellite acquires imagery at 275-m resolution at nine angles ranging from 0deg (nadir) to 70deg off-nadir. This multi-angle capability facilitates the stereoscopic retrieval of heights and motion vectors for clouds and aerosol plumes. MISR's operational stereo product uses this capability to retrieve cloud heights and winds for every satellite orbit, yielding global coverage every nine days. The MISR INteractive eXplorer (MINX) visualization and analysis tool complements the operational stereo product by providing users the ability to retrieve heights and winds locally for detailed studies of smoke, dust and volcanic ash plumes, as well as clouds, at higher spatial resolution and with greater precision than is possible with the operational product or with other space-based, passive, remote sensing instruments. This ability to investigate plume geometry and dynamics is becoming increasingly important as climate and air quality studies require greater knowledge about the injection of aerosols and the location of clouds within the atmosphere. MINX incorporates features that allow users to customize their stereo retrievals for optimum results under varying aerosol and underlying surface conditions. This paper discusses the stereo retrieval algorithms and retrieval options in MINX, and provides appropriate examples to explain how the program can be used to achieve the best results.
NASA Astrophysics Data System (ADS)
Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.; Machado, Luiz A. T.; Albrecht, Rachel; Schlager, Hans; Rosenfeld, Daniel; Krämer, Martina
2015-04-01
An extensive airborne/ground-based measurement campaign to study tropical convective clouds is introduced. It was performed in Brazil with focus on the Amazon rainforest from 1 September to 4 October 2014. The project combined the joint German-Brazilian ACRIDICON (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems) and CHUVA (Machado et al.2014) projects. ACRIDICON aimed at the quantification of aerosol-cloud-precipitation interactions and their thermodynamic, dynamic and radiative effects in convective cloud systems by in-situ aircraft observations and indirect measurements (aircraft, satellite, and ground-based). The ACRIDICON-CHUVA campaign was conducted in cooperation with the second Intensive Operational Phase (IOP) of the GOAmazon (Green Ocean Amazon) program. The focus in this presentation is on the airborne observations within ACRIDICON-CHUVA. The German HALO (High Altitude and Long-Range Research Aircraft) was based in Manaus (Amazonas State); it carried out 14 research flights (96 flight hours in total). HALO was equipped with remote sensing and in-situ instrumentation for meteorological, trace gas, aerosol, cloud, and precipitation measurements. Five mission objectives were pursued: (1) cloud vertical evolution (cloud profiling), (2) aerosol processing (inflow and outflow), (3) satellite validation, (4) vertical transport and mixing (tracer experiment), and (5) clouds over forested and deforested areas. The five cloud missions collected data in clean atmospheric conditions and in contrasting polluted (urban and biomass burning) environments.
Integrated Modeling of Aerosol, Cloud, Precipitation and Land Processes at Satellite-Resolved Scales
NASA Technical Reports Server (NTRS)
Peters-Lidard, Christa; Tao, Wei-Kuo; Chin, Mian; Braun, Scott; Case, Jonathan; Hou, Arthur; Kumar, Anil; Kumar, Sujay; Lau, William; Matsui, Toshihisa;
2012-01-01
In this talk, I will present recent results from a project led at NASA/GSFC, in collaboration with NASA/MSFC and JHU, focused on the development and application of an observation-driven integrated modeling system that represents aerosol, cloud, precipitation and land processes at satellite-resolved scales. The project, known as the NASA Unified WRF (NU-WRF), is funded by NASA's Modeling and Analysis Program, and leverages prior investments from the Air Force Weather Agency and NASA's Earth Science Technology Office (ESTO). We define "satellite-resolved" scales as being within a typical mesoscale atmospheric modeling grid (roughly 1-25 km), although this work is designed to bridge the continuum between local (microscale), regional (mesoscale) and global (synoptic) processes. NU-WRF is a superset of the standard NCAR Advanced Research WRF model, achieved by fully integrating the GSFC Land Information System (LIS, already coupled to WRF), the WRF/Chem enabled version of the Goddard Chemistry Aerosols Radiation Transport (GOCART) model, the Goddard Satellite Data Simulation Unit (SDSU), and boundary/initial condition preprocessors for MERRA and GEOS-5 into a single software release (with source code available by agreement with NASA/GSFC). I will show examples where the full coupling between aerosol, cloud, precipitation and land processes is critical for predicting local, regional, and global water and energy cycles, including some high-impact phenomena such as floods, hurricanes, mesoscale convective systems, droughts, and monsoons.
Li, Zhongshu; Liu, Junfeng; Mauzerall, Denise L.; Li, Xiaoyuan; Fan, Songmiao; Horowitz, Larry W.; He, Cenlin; Yi, Kan; Tao, Shu
2017-01-01
Black carbon (BC) aerosol strongly absorbs solar radiation, which warms climate. However, accurate estimation of BC’s climate effect is limited by the uncertainties of its spatiotemporal distribution, especially over remote oceanic areas. The HIAPER Pole-to-Pole Observation (HIPPO) program from 2009 to 2011 intercepted multiple snapshots of BC profiles over Pacific in various seasons, and revealed a 2 to 5 times overestimate of BC by current global models. In this study, we compared the measurements from aircraft campaigns and satellites, and found a robust association between BC concentrations and satellite-retrieved CO, tropospheric NO2, and aerosol optical depth (AOD) (R2 > 0.8). This establishes a basis to construct a satellite-based column BC approximation (sBC*) over remote oceans. The inferred sBC* shows that Asian outflows in spring bring much more BC aerosols to the mid-Pacific than those occurring in other seasons. In addition, inter-annual variability of sBC* is seen over the Northern Pacific, with abundances varying consistently with the springtime Pacific/North American (PNA) index. Our sBC* dataset infers a widespread overestimation of BC loadings and BC Direct Radiative Forcing by current models over North Pacific, which further suggests that large uncertainties exist on aerosol-climate interactions over other remote oceanic areas beyond Pacific. PMID:28266532
Observed Aerosol Influence on Ice Water Content of Arctic Mixed-Phase Clouds
NASA Astrophysics Data System (ADS)
Norgren, M.; de Boer, G.; Shupe, M.
2016-12-01
The response of ice water content (IWC) in Arctic mixed-phase stratocumulus to atmospheric aerosols is observed. IWC retrievals from ground based radars operated by the Atmospheric Radiation Measurement (ARM) program in Barrow, Alaska are used to construct composite profiles of cloud IWC from a 9-year radar record starting in January of 2000. The IWC profiles for high (polluted) and low (clean) aerosol loadings are compared. Generally, we find that clean clouds exhibit statistically significant higher levels of IWC than do polluted clouds by a factor of 2-4 at cloud base. For springtime clouds, with a maximum relative humidity with respect to ice (RHI) above 110% in the cloud layer, the IWC at cloud base was a factor of 3.25 times higher in clean clouds than it was in polluted clouds. We infer that the aerosol loading of the cloud environment alters the liquid drop size distribution within the cloud, with larger drops being more frequent in clean clouds. Larger cloud drops promote riming within the cloud layer, which is one explanation for the higher IWC levels in clean clouds. The drop size distribution may also be a significant control of ice nucleation events within mixed-phase clouds. Whether the high IWC levels in clean clouds are due to increased riming or nucleation events is unclear at this time.
Chemical composition and sources of atmospheric aerosols at Djougou (Benin)
NASA Astrophysics Data System (ADS)
Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel
2017-06-01
In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.
Optical properties of Southern Hemisphere aerosols: Report of the joint CSIRO/NASA study
NASA Technical Reports Server (NTRS)
Gras, John L.; Platt, C. Martin; Huffaker, R. Milton; Jones, William D.; Kavaya, Michael J.; Gras, John L.
1988-01-01
This study was made in support of the LAWS and GLOBE programs, which aim to design a suitable Doppler lidar system for measuring global winds from a satellite. Observations were taken from 5 deg S to 45 deg S along and off the E and SE Australian coast, thus obtaining representative samples over a large latitude range. Observations were made between 0 and 6 km altitude of aerosol physical and chemical properties in situ from the CSIRO F-27 aircraft; of lidar backscatter coefficients at 10.6 micron wavelength from the F-27 aircraft; of lidar backscatter profiles at 0.694 microns at Sale, SE Australia; and of lidar backscatter profiles at 0.532 microns at Cowley Beach, NE Australia. Both calculations and observations in the free troposphere gave a backscatter coefficient of 1-2 x 10 to the -11/m/sr at 10.6 microns, although the accuracies of the instruments were marginal at this level. Equivalent figures were 2-8 x 10 to the -9/m/sr (aerosol) and 9 x 10 to the -9 to 2 x 10 to the -8/m/sr (lidar) at 0.694 microns wavelength at Sale; and 3.7 x 10 to the -9/m/sr (aerosol) and 10 to the -8 to 10 to the -7/m/sr (lidar) at 0.532 microns wavelength at Cowley Beach. The measured backscatter coefficients at 0.694 and 0.532 microns were consistently higher than the values calculated from aerosol size distributions by factors of typically 2 to 10.
NASA Astrophysics Data System (ADS)
Taylor, Thomas E.; L'Ecuyer, Tristan; Slusser, James; Stephens, Graeme; Krotkov, Nick; Davis, John; Goering, Christian
2005-08-01
Extensive sensitivity and error characteristics of a recently developed optimal estimation retrieval algorithm which simultaneously determines aerosol optical depth (AOD), aerosol single scatter albedo (SSA) and total ozone column (TOC) from ultra-violet irradiances are described. The algorithm inverts measured diffuse and direct irradiances at 7 channels in the UV spectral range obtained from the United States Department of Agriculture's (USDA) UV-B Monitoring and Research Program's (UVMRP) network of 33 ground-based UV-MFRSR instruments to produce aerosol optical properties and TOC at all seven wavelengths. Sensitivity studies of the Tropospheric Ultra-violet/Visible (TUV) radiative transfer model performed for various operating modes (Delta-Eddington versus n-stream Discrete Ordinate) over domains of AOD, SSA, TOC, asymmetry parameter and surface albedo show that the solutions are well constrained. Realistic input error budgets and diagnostic and error outputs from the retrieval are analyzed to demonstrate the atmospheric conditions under which the retrieval provides useful and significant results. After optimizing the algorithm for the USDA site in Panther Junction, Texas the retrieval algorithm was run on a cloud screened set of irradiance measurements for the month of May 2003. Comparisons to independently derived AOD's are favorable with root mean square (RMS) differences of about 3% to 7% at 300nm and less than 1% at 368nm, on May 12 and 22, 2003. This retrieval method will be used to build an aerosol climatology and provide ground-truthing of satellite measurements by running it operationally on the USDA UV network database.
NASA Astrophysics Data System (ADS)
Baylon, P.; Jaffe, D. A.; Hall, S. R.; Ullmann, K.; Alvarado, M. J.; Lefer, B. L.
2018-02-01
In this paper, we examine biomass burning (BB) events at the Mt. Bachelor Observatory (MBO) during the summer of 2015. We explored the photochemical environment in these BB plumes, which remains poorly understood. Because we are interested in understanding the effect of aerosols only (as opposed to the combined effect of aerosols and clouds), we carefully selected three cloud-free days in August and investigate the photochemistry in these plumes. At local midday (solar zenith angle (SZA) = 35°), j(NO2) values were slightly higher (0.2-1.8%) in the smoky days compared to the smoke-free day, presumably due to enhanced scattering by the smoke aerosols. At higher SZA (70°), BB aerosols decrease j(NO2) by 14-21%. We also observe a greater decrease in the actinic flux at 310-350 nm, compared to 360-420 nm, presumably due to absorption in the UV by brown carbon. We compare our measurements with results from the Tropospheric Ultraviolet-Visible v.5.2 model. As expected, we find a good agreement (to within 6%) during cloud-free conditions. Finally, we use the extended Leighton relationship and a photochemical model (Aerosol Simulation Program v.2.1) to estimate midday HO2 and RO2 concentrations and ozone production rates (P(O3)) in the fire plumes. We observe that Leighton-derived HO2 and RO2 values (49-185 pptv) and instantaneous P(O3) (2.0-3.6 ppbv/h) are higher than the results from the photochemical model.
Morin, Jean-Paul; Hasson, Virginie; Fall, Mamadou; Papaioanou, Eleni; Preterre, David; Gouriou, Frantz; Keravec, Veronika; Konstandopoulos, Athanasios; Dionnet, Frédéric
2008-06-01
Diesel engine emission aerosol-induced toxicity patterns were compared using both in vitro (organotypic cultures of lung tissue) and in vivo experimentations mimicking the inhalation situation with continuous aerosol flow exposure designs. Using liquid media resuspended diesel particles, we show that toxic response pattern is influenced by the presence of tensioactive agent in the medium which alter particle-borne pollutant bioavailability. Using continuous aerosol exposure in vitro, we show that with high sulfur fuel (300ppm) in the absence of oxidation catalysis, particulate matter was the main toxic component triggering DNA damage and systemic inflammation, while a very limited oxidant stress was evidenced. In contrast, with ultra-low sulfur fuel in the presence of strong diesel oxidation catalysis, the specific role of particulate matter is no longer evidenced and the gas phase then becomes the major component triggering strong oxidant stress, increased NO(2) being the most probable trigger. In vivo, plasma tumor necrosis factor alpha (TNFalpha), lung superoxide dismutase (SOD), catalase and glutathione peroxidase (GPx) activity levels varied in agreement with in vitro observations. Diesel emission treatment with oxycat provokes a marked systemic oxidant stress. Again NO(2) proved to account for a major part of these impacts. In conclusion, similar anti-oxidant responses were observed in in vitro and in vivo experiments after diesel emission aerosol continuous flow exposures. The lung slice organotypic culture model-exposed complex aerosol appears to be a very valuable alternative to in vivo inhalation toxicology experimentations in rodents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
This report presents the results from several demonstrations of a new method for sealing building envelope air leaks using an aerosol sealing process developed by the Western Cooling Efficiency Center at UC Davis. The process involves pressurizing a building while applying an aerosol sealant to the interior. As air escapes through leaks in the building envelope, the aerosol particles are transported to the leaks where they collect and form a seal that blocks the leak. Standard blower door technology is used to facilitate the building pressurization, which allows the installer to track the sealing progress during the installation and automaticallymore » verify the final building tightness. Each aerosol envelope sealing installation was performed after drywall was installed and taped, and the process did not appear to interrupt the construction schedule or interfere with other trades working in the homes. The labor needed to physically seal bulk air leaks in typical construction will not be replaced by this technology. However, this technology is capable of bringing the air leakage of a building that was built with standard construction techniques and HERS-verified sealing down to levels that would meet DOE Zero Energy Ready Homes program requirements. When a developer is striving to meet a tighter envelope leakage specification, this technology could greatly reduce the cost to achieve that goal by providing a simple and relatively low cost method for reducing the air leakage of a building envelope with little to no change in their common building practices.« less
Chemistry of Titan's Aerosols : Correlation of The C/n &C/h Ratios To Pressure and Temperature
NASA Astrophysics Data System (ADS)
Bernard, J.-M.; Coll, P.; Raulin, F.
The gas present in Titan's atmosphere are forming organics aerosols under action of the solar radiations and of electrons from Saturn's magnetosphere. Many experimental simulations are been realised by irradiating N2/CH4 gas mixtures with different en- ergy sources in order to reproduce the chemistry of gas and particulate phases (Thomp- son et al, 1991; Mc Donald et al, 1994; de Vanssay et al, 1995; McKay, 1996; Coll et al, 1997, 1998a,b; and Refs. included). Until very recently, only one organics re- mains detected in Titan but not in laboratory simulation : C4N2. A full program of experimental research has been developed at LISA, which was able to provide a com- plete identification of a wide range of compounds, proposed to be present in Titan's atmosphere, including C4N2. The composition of aerosol on Titan is not known, due to its complexity. Especially its building molecules are difficult to identify. Only functional groups of analogues have been determined using spectroscopy and pyrolysis. However this chemical composi- tion is a key parameter for Cassini-Huygens experiments and atmospheric modeling : even the optical properties of aerosols are related to C/N and C/H ratios. We will present the results of the variation of C/N and C/H ratios according to the temperature and the pressure in Titan's atmosphere simulations. This data will allow to constraint photochemical models, in order for them to be more realistic. Then the comprehension of the mechanism of aerosols formation on Titan as function of altitude will be easier.
SAGE-III Ready for Ozone Checkup
2017-02-15
A third-generation investigation into the state of the ozone layer of Earth’s atmosphere is scheduled for launch to the International Space Station on the SpaceX-10 cargo ship. Marilee Roell of NASA’s Langley Research Center explains how the third iteration of the Stratospheric Aerosol and Gas Experiment will measure ozone, aerosols and other components of the atmosphere for scientists who hope to see an improvement in the atmosphere’s ability to protect the planet—and everyone and everything on it—from harmful ultraviolet radiation. For more on ISS science, visit us online: https://www.nasa.gov/mission_pages/station/research/index.html www.twitter.com/iss_research HD download link: https://archive.org/details/TheSpaceProgram _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/ YouTube: https://youtu.be/HQdMZ5OAU3U
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eatough, Delbert
This international conference will provide a technical forum on advances in the scientific understanding of the effects of aerosols on urban, regional, continental, and global-scale haze and the radiative balance. The conference will take a multipronged approach and address scientific topics (e.g., related to measurements, modeling, etc.) as well as regulatory and policy issues. There will be sessions on black and brown carbon, as recent research has shown the importance of these particles for radiative forcing. In addition, there will be sessions related to the synergistic and increasing concerns of the effects of atmospheric nitrogen and carbonaceous material on haze,more » climate change, and nitrogen deposition on ecosystems. Conference learning will be enhanced with a half day excursion and hikes in Grand Teton National Park and a Night Sky Program.« less
Evaluation of a disposable diesel exhaust filter for permissible mining machines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambs, J.L.; Cantrell, B.K.; Watts, W.F.
1994-01-01
The US Bureau of Mines (USBM) Diesel Research Program emphasizes the development and evaluation of emission control devices to reduce exposure of miners to diesel exhaust pollutants. Studies by the USBM have shown that diesel exhaust aerosol (DEA) contributes a substantial portion of the respirable aerosol in underground coal mines using diesel equipment not equipped with emission controls. The USBM and the Donaldson Co., Inc., Minneapolis, MN, have developed a low-temperature, disposable diesel exhaust filter (DDEF) for use on permissible diesel haulage vehicles equipped with waterbath exhaust conditioners. These were evaluated in three underground mines to determine their effectiveness inmore » reducing DEA concentrations. The DDEF reduced DEA concentrations from 70 to 90% at these mines. The usable life of the filter ranged from 10 to 32 h, depending on factors that affect DEA output, such as mine altitude, engine type, and duty-cycle. Cost per filter is approximately $40.« less
Aerosol size distribution at Nansen Ice Sheet Antarctica
NASA Astrophysics Data System (ADS)
Belosi, F.; Contini, D.; Donateo, A.; Santachiara, G.; Prodi, F.
2012-04-01
During austral summer 2006, in the framework of the XXII Italian Antarctic expedition of PNRA (Italian National Program for Research in Antarctica), aerosol particle number size distribution measurements were performed in the 10-500 range nm over the Nansen Ice Sheet glacier (NIS, 74°30' S, 163°27' E; 85 m a.s.l), a permanently iced branch of the Ross Sea. Observed total particle number concentrations varied between 169 and 1385 cm- 3. A monomodal number size distribution, peaking at about 70 nm with no variation during the day, was observed for continental air mass, high wind speed and low relative humidity. Trimodal number size distributions were also observed, in agreement with measurements performed at Aboa station, which is located on the opposite side of the Antarctic continent to the NIS. In this case new particle formation, with subsequent particle growth up to about 30 nm, was observed even if not associated with maritime air masses.
Improving the indoor air quality of respiratory type of medical facility by zeolite filtering.
Shen, Jyun-Hong; Wang, Yeoung-Sheng; Lin, Jhan-Ping; Wu, Sheng-Hung; Horng, Jao-Jia
2014-01-01
This study investigated the indoor air quality (IAQ) conditions of carbon dioxide (CO2), carbon monoxide (CO), ozone (O3), formaldehyde (HCHO), total volatile organic compounds (TVOCs), and bio-aerosols (bacteria and fungi) in a respiratory type of medical facility in Chia-Yi County in southern Taiwan. Among those IAQ conditions, the concentrations of CO, O3, and HCHO exceeded the regulation values of the Taiwan Environmental Protection Administration (EPA) mostly in the morning. The concentrations of bacteria and fungi did not exceed the regulation values but still posed potential health and environment problems for workers, patients, and visitors. Therefore, self-made silver-coated zeolite (AgZ) was used as a filter material in air cleaners to remove bio-aerosols in the respiratory care ward (RCW), and the removals were still effective after 120 hr. The cumulative bio-aerosol removals for bacteria and fungi were 900 and 1,088 colony-forming units (CFU) g(-1) after 24 hr and were above 3,100 and 2,700 CFU g(-1) after 120 hr. From the research results, it is suggested that AgZ filtering could be used as a feasible engineering measure for hospitals to control their bacteria and fungi parameters in IAQ management. Hospitals should maintain their environmental management and monitoring programs and use different engineering measures to improve different IAQ parameters. This study investigated the IAQ conditions in the field at a hospital in Chia-Yi County in southern Taiwan. Although concentrations of most parameters were still within the regulation values, the concentrations of CO, O3, and HCHO were partially exceeded. We propose a method using an air cleaner with silver-coated zeolite (AgZ) as a possible engineering measure, and there were effective reductions of bacteria and fungi to lower levels with antibacterial effects after 120 hr. Furthermore, this study implies that hospitals should continuously maintain environmental monitoring programs and adopt optimal engineering measures for different needs.
Esposito, Susanna; Brivio, Anna; Tagliabue, Claudia; Galeone, Carlotta; Tagliaferri, Laura; Serra, Domenico; Foà, Michela; Patria, Maria Francesca; Marchisio, Paola; Principi, Nicola
2011-06-01
Oxygen administration, aerosol devices and drugs, or the use of chest physiotherapy are common practices in pediatrics; however, little is known about the knowledge of pediatric healthcare workers concerning the right utilization of these tools. The aim of this study was to fill this gap as a preliminary step in the implementation of appropriate educational programs. This cross-sectional survey of a nationally representative sample of Italian pediatricians and nurses was carried out between September 1 and October 8, 2008. A self-administered, anonymous questionnaire concerning the approach to respiratory disease in infants and children was distributed to all of the participants at the Annual Congress of the Italian Society of Pediatrics, together with a stamped envelope addressed to the trained study researchers. Of the 900 distributed questionnaires, 76.7% were completed and returned by 606 physicians (199 primary care pediatricians, 245 hospital pediatricians, and 162 pediatric residents) and 84 pediatric nurses. The vast majority of the respondents did not know the percentage of hemoglobin saturation indicating hypoxemia that requires oxygen administration. Most of the nurses admitted to overusing mucolytics and inhalatory corticosteroids, did not know the role of ipratropium bromide, were unable to indicate the first-line drug for respiratory distress, and did not know the correct dose of salbutamol. Only a minority of the respondents were able to specify the indications for chest physiotherapy. The nurses gave the fewest correct answers regardless of their age, gender, work setting, or the frequency with which they cared for children with respiratory distress in a year cared. The knowledge of primary care pediatricians, hospital pediatricians, and pediatric nurses in Italy concerning the use of pulse oximetry, aerosol devices and drugs, and chest physiotherapy is far from satisfactory and should be improved. Educational programs are therefore required for both nurses and pediatricians.
Pacific Exploratory Mission in the tropical Pacific: PEM-Tropics A, August-September 1996
NASA Astrophysics Data System (ADS)
Hoell, J. M.; Davis, D. D.; Jacob, D. J.; Rodgers, M. O.; Newell, R. E.; Fuelberg, H. E.; McNeal, R. J.; Raper, J. L.; Bendura, R. J.
1999-03-01
The NASA Pacific Exploratory Mission to the Pacific tropics (PEM-Tropics) is the third major field campaign of NASA's Global Tropospheric Experiment (GTE) to study the impact of human and natural processes on the chemistry of the troposphere over the Pacific basin. The first two campaigns, PEM-West A and B were conducted over the northwestern regions of the Pacific and focused on the impact of emissions from the Asian continent. The broad objectives of PEM-Tropics included improving our understanding of the oxidizing power of the tropical atmosphere as well as investigating oceanic sulfur compounds and their conversion to aerosols. Phase A of the PEM-Tropics program, conducted between August-September 1996, involved the NASA DC-8 and P-3B aircraft. Phase B of this program is scheduled for March/April 1999. During PEM-Tropics A, the flight tracks of the two aircraft extended zonally across the entire Pacific Basin and meridionally from Hawaii to south of New Zealand. Both aircraft were instrumented for airborne measurements of trace gases and aerosols and meteorological parameters. The DC-8, given its long-range and high-altitude capabilities coupled with the lidar instrument in its payload, focused on transport issues and ozone photochemistry, while the P-3B, with its sulfur-oriented instrument payload and more limited range, focused on detailed sulfur process studies. Among its accomplishments, the PEM-Tropics A field campaign has provided a unique set of atmospheric measurements in a heretofore data sparse region; demonstrated the capability of several new or improved instruments for measuring OH, H2SO4, NO, NO2, and actinic fluxes; and conducted experiments which tested our understanding of HOx and NOx photochemistry, as well as sulfur oxidation and aerosol formation processes. In addition, PEM-Tropics A documented for the first time the considerable and widespread influence of biomass burning pollution over the South Pacific, and identified the South Pacific Convergence Zone as a major barrier for atmospheric transport in the southern hemisphere.
Developing and diagnosing climate change indictors of regional aerosol optical properties
NASA Astrophysics Data System (ADS)
Sullivan, Ryan C.; Levy, Robert C.; da Silva, Arlindo M.; Pryor, Sara C.
2017-04-01
The US Global Change Research Program has developed climate indicators (CIs) to track changes in the physical, chemical, biological, and societal components of the climate system. Given the importance of atmospheric aerosol particles to clouds and radiative forcing, human mortality and morbidity, and biogeochemical cycles, we propose new aerosol particle CIs applicable to the US National Climate Assessment (NCA). Here we define these aerosol CIs and use them to quantify temporal trends in each NCA region. Furthermore, we use a synoptic classification (e.g., meteorological variables), and gas and particle emissions inventories to diagnose and attribute causes of observed changes. Our CIs are derived using output from the satellite-constrained Modern-Era Retrospective Analysis for Research and Application, Version 2 (MERRA-2) reanalysis. MERRA-2 provides estimates of column-integrated aerosol optical properties at 0.625° by 0.5° resolution, including aerosol optical depth (AOD), Ångström exponent (AE), and single scattering albedo (SSA), which are related to aerosol loading, relative particle size, and chemical composition, respectively. For each NCA region, and for each aerosol variable, we derive statistics that describe mean and extreme values, as well as two metrics (spatial autocorrelation and coherence) that describe the spatial scales of aerosol variability. Consistent with previous analyses of aerosol precursor emissions and near-surface fine aerosol mass concentrations in the US, analyses of our aerosol CIs show that since 2000, both mean and extreme AOD have decreased over most NCA regions. There are significant (α = 0.05, using the non-parametric Kendall's tau) decreases in AOD for the Northeast (NE), Southeast (SE), Midwest (MW), and lower Great Plains (GPl) regions, and notable but not significant decreases in the Southwest (SW). AOD has increased for the Northwest (NW; significant) and upper Great Plains (GPu; not significant). Over all regions, there is a significant positive trend in AE (relative decrease in aerosol size) along with significant negative trend in SSA (relative decrease in scattering versus absorption extinction). Negative trends in AOD and SSA are consistent with documented decreases in sulfur dioxide emissions. Conversely, increased AOD in NW and GPu may reflect a lower impact of emissions standards in more remote regions, and/or that other aerosol and precursor sources (e.g., gas and oil extraction, wildfire frequency, long-range transport) may be increasing. Low AOD days are associated with dry, cool synoptic conditions. Since 2000, the structure of the aerosol field has changed. Using the Moran's I test, all regions exhibit declining spatial autocorrelation, suggesting AOD has become less uniform. At the same time, semivariogram models show that in many regions (NW, GPl, MW, SE) spatial coherence is increasing, and is consistent with an increase in the intensity of certain synoptic conditions. These results suggest that it is the variability in local emissions that accounts for the spatial structure of the AOD fields. However, more intense synoptic features are associated with more intense regional aerosol events.
A Climatologically Significant Aerosol Longwave Indirect Effect in the Arctic
NASA Astrophysics Data System (ADS)
Lubin, D.; Vogelmann, A.
2006-12-01
Analysis of Atmospheric Emitted Radiance Interferometer (AERI) data from the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Program North Slope of Alaska (NSA) site confirms a pervasive first indirect effect of aerosols in low-level stratiform clouds, which are the prevailing meteorological condition throughout the Arctic. The AERI longwave emission spectra under clouds of low to moderate optical depth (<8) are sensitive to both the effective droplet radius and the liquid water path, and can be used to retrieve both quantities. When supplemented by additional NSA sensor data, these AERI retrievals reveal a longwave surface flux enhancement of 8.2 Watts per square meter under liquid water clouds subject to aerosol entrainment versus similar clouds in clean air. Of this total enhancement revealed by co-located pyrgeometer data, 3.4 Watts per square meter can be readily attributed to the first indirect effect. This observed indirect effect occurs frequently during spring, but rarely during summer. The indirect effect's manifestation in the longwave is climatologically significant given that this part of the spectrum dominates the radiation budget at high latitudes throughout most of the year. Lubin, D., and A. M. Voglemann, Nature, 439, 453-456 (2006).
NASA Astrophysics Data System (ADS)
Malakar, N. K.; Lary, D. J.; Gencaga, D.; Albayrak, A.; Wei, J.
2013-08-01
Measurements made by satellite remote sensing, Moderate Resolution Imaging Spectroradiometer (MODIS), and globally distributed Aerosol Robotic Network (AERONET) are compared. Comparison of the two datasets measurements for aerosol optical depth values show that there are biases between the two data products. In this paper, we present a general framework towards identifying relevant set of variables responsible for the observed bias. We present a general framework to identify the possible factors influencing the bias, which might be associated with the measurement conditions such as the solar and sensor zenith angles, the solar and sensor azimuth, scattering angles, and surface reflectivity at the various measured wavelengths, etc. Specifically, we performed analysis for remote sensing Aqua-Land data set, and used machine learning technique, neural network in this case, to perform multivariate regression between the ground-truth and the training data sets. Finally, we used mutual information between the observed and the predicted values as the measure of similarity to identify the most relevant set of variables. The search is brute force method as we have to consider all possible combinations. The computations involves a huge number crunching exercise, and we implemented it by writing a job-parallel program.
Assessing the Rayleigh Intensity Remote Leak Detection Technique
NASA Technical Reports Server (NTRS)
Clements, Sandra
2001-01-01
Remote sensing technologies are being considered for efficient, low cost gas leak detection. An exploratory project to identify and evaluate remote sensing technologies for application to gas leak detection is underway. During Phase 1 of the project, completed last year, eleven specific techniques were identified for further study. One of these, the Rayleigh Intensity technique, would make use of changes in the light scattered off of gas molecules to detect and locate a leak. During the 10-week Summer Faculty Fellowship Program, the scatter of light off of gas molecules was investigated. The influence of light scattered off of aerosols suspended in the atmosphere was also examined to determine if this would adversely affect leak detection. Results of this study indicate that in unconditioned air, it will be difficult, though perhaps not impossible, to distinguish between a gas leak and natural variations in the aerosol content of the air. Because information about the particle size distribution in clean room environments is incomplete, the applicability in clean rooms is uncertain though more promising than in unconditioned environments. It is suggested that problems caused by aerosols may be overcome by using the Rayleigh Intensity technique in combination with another remote sensing technique, the Rayleigh Doppler technique.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bucknor, M.; Farmer, M.; Grabaskas, D.
The U.S. Nuclear Regulatory Commission has stated that mechanistic source term (MST) calculations are expected to be required as part of the advanced reactor licensing process. A recent study by Argonne National Laboratory has concluded that fission product scrubbing in sodium pools is an important aspect of an MST calculation for a sodium-cooled fast reactor (SFR). To model the phenomena associated with sodium pool scrubbing, a computational tool, developed as part of the Integral Fast Reactor (IFR) program, was utilized in an MST trial calculation. This tool was developed by applying classical theories of aerosol scrubbing to the decontamination ofmore » gases produced as a result of postulated fuel pin failures during an SFR accident scenario. The model currently considers aerosol capture by Brownian diffusion, inertial deposition, and gravitational sedimentation. The effects of sodium vapour condensation on aerosol scrubbing are also treated. This paper provides details of the individual scrubbing mechanisms utilized in the IFR code as well as results from a trial mechanistic source term assessment led by Argonne National Laboratory in 2016.« less
NASA Astrophysics Data System (ADS)
Richter, Dale A.; Higdon, N. S.; Ponsardin, Patrick L.; Sanchez, David; Chyba, Thomas H.; Temple, Doyle A.; Gong, Wei; Battle, Russell; Edmondson, Mika; Futrell, Anne; Harper, David; Haughton, Lincoln; Johnson, Demetra; Lewis, Kyle; Payne-Baggott, Renee S.
2002-01-01
ITTs Advanced Engineering and Sciences Division and the Hampton University Center for Lidar and Atmospheric Sciences Students (CLASS) team have worked closely to design, fabricate and test an eye-safe, scanning aerosol-lidar system that can be safely deployed and used by students form a variety of disciplines. CLASS is a 5-year undergraduate- research training program funded by NASA to provide hands-on atmospheric-science and lidar-technology education. The system is based on a 1.5 micron, 125 mJ, 20 Hz eye-safe optical parametric oscillator (OPO) and will be used by the HU researchers and students to evaluate the biological impact of aerosols, clouds, and pollution a variety of systems issues. The system design tasks we addressed include the development of software to calculate eye-safety levels and to model lidar performance, implementation of eye-safety features in the lidar transmitter, optimization of the receiver using optical ray tracing software, evaluation of detectors and amplifiers in the near RI, test of OPO and receiver technology, development of hardware and software for laser and scanner control and video display of the scan region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Michalsky, J.; Harrison, L.
1995-04-26
The authors goal in the ARM program is the improvement of radiation models used in GCMs, especially in the shortwave, (1) by providing improved shortwave radiometric measurements for the testing of models and (2) by developing methods for retrieving climatologically sensitive parameters that serve as input to shortwave and longwave models. They are acquiring downwelling direct and diffuse spectral irradiance, at six wavelengths, plus downwelling broadband longwave, and upwelling and downwelling broadband shortwave irradiances that they combined with surface and upper air data from the Albany airport as a test data set for ARM modelers. They have also developed algorithmsmore » to improve shortwave measurements made at the Southern Great Plains (SGP) ARM site by standard thermopile instruments and by the multifolter rotating shadowband radiometer (MFRSR). However, the major objective of the program has been the development of two spectral versions of the rotating shadowband radiometer. The MFRSR, has become a workhose at the CART site in Oklahoma and Kansas, and it is widely deployed in other climate programs. They have spent most of their effort this year developing techniques to retrieve column aerosol, water vapor, and ozone from direct beam spectral measurements of the MFRSR. Additionally, they have had success in calculating shortwave surface albedo and aerosol optical depth from the ratio of direct to diffuse spectral irradiance. Using the surface albedo and the global irradiance, they have calculated cloud optical depths. From cloud optical depth and liquid water measured with the microwave radiometer, they have calculated effective liquid cloud particle radii. In each case the authors have attempted to validate the approach using independent measurements or retrievals of the parameters under investigation. With the exception of the ozone intercomparison, the corroborative measurements have been made at the SGP CART site. This report highlights these results.« less
NASA Astrophysics Data System (ADS)
Reid, J.; Hyer, E. J.; Lagrosas, N.; Salinas Cortijo, S. V.; Campbell, J. R.; Chew, B.; Cook, J.; Di Girolamo, L.; Kuciauskas, A. P.; Johnson, R. S.; Jonsson, H.; Lynch, P.; Sessions, W.; Simpas, J. B.; Turk, F. J.; Wang, J.
2012-12-01
Southeast Asia faces numerous climate change issues, and the interaction between aerosol particles, clouds, and precipitation is thought to impact the environment in this region at both weather and climate scales. Aerosol particles have direct radiative effects, indirect effects through interaction with clouds and precipitation, and also act as a tracer for other processes affecting the carbon cycle or atmospheric chemistry. Southeast Asia also hosts some of the most complex meteorological phenomenon of the world, challenging in situ, remote sensing and modeling systems. Indeed, there is more diversity in satellite based aerosol, fire, cloud, and precipitation products in Southeast Asia than perhaps anywhere else in the world outside of the poles. In addition to serious direct challenges to aerosol observability in Southeast Asia, such as persistent ubiquitous cloud cover, there are also contextual biases (such as for aerosol retrievals the classic clear sky bias). Contextual bias affects the representativeness of nearly all aerosol assessments in Southeast Asia. As part of the 7 Southeast Asian Studies (7SEAS) program, a small intensive study was conducted in Singapore and the Palawan Archipelago in September 2011 to study the flow of biomass burning smoke through the South China/East Sea and into the summertime monsoonal trough. Analysis of field data coupled with multiple satellite and model products allowed us to investigate questions on the representativeness of data and to what extent they capture the 'true' state of the meteorological and aerosol environment. Four specific representativeness issues are presented based on IOP examples: 1) Individual biases in retrievals or model simulations; 2) Sampling biases at short time scales based on product coverage; 3) Temporal and spatial scale biases inherent in large and point based measurements; 4) Contextual biases that develop from the aggregation of data products. Considering all four of these issues we conclude with a discussion of strategies for hypothesis testing and the development of regional state vectors with realistic uncertainties.
Global Particle Size Distributions: Measurements during the Atmospheric Tomography (ATom) Project
NASA Astrophysics Data System (ADS)
Brock, C. A.; Williamson, C.; Kupc, A.; Froyd, K. D.; Richardson, M.; Weinzierl, B.; Dollner, M.; Schuh, H.; Erdesz, F.
2016-12-01
The Atmospheric Tomography (ATom) project is a three-year NASA-sponsored program to map the spatial and temporal distribution of greenhouse gases, reactive species, and aerosol particles from the Arctic to the Antarctic. In situ measurements are being made on the NASA DC-8 research aircraft, which will make four global circumnavigations of the Earth over the mid-Pacific and mid-Atlantic Oceans while continuously profiling between 0.2 and 13 km altitude. In situ microphysical measurements will provide an unique and unprecedented dataset of aerosol particle size distributions between 0.004 and 50 µm diameter. This unbiased, representative dataset allows investigation of new particle formation in the remote troposphere, placing strong observational constraints on the chemical and physical mechanisms that govern particle formation and growth to cloud-active sizes. Particles from 0.004 to 0.055 µm are measured with 10 condensation particle counters. Particles with diameters from 0.06 to 1.0 µm are measured with one-second resolution using two ultra-high sensitivity aerosol size spectrometers (UHSASes). A laser aerosol spectrometer (LAS) measures particle size distributions between 0.12 and 10 µm in diameter. Finally, a cloud, aerosol and precipitation spectrometer (CAPS) underwing optical spectrometer probe sizes ambient particles with diameters from 0.5 to 50 µm and images and sizes precipitation-sized particles. Additional particle instruments on the payload include a high-resolution time-of-flight aerosol mass spectrometer and a single particle laser-ablation aerosol mass spectrometer. The instruments are calibrated in the laboratory and on the aircraft. Calibrations are checked in flight by introducing four sizes of polystyrene latex (PSL) microspheres into the sampling inlet. The CAPS probe is calibrated using PSL and glass microspheres that are aspirated into the sample volume. Comparisons between the instruments and checks with the calibration aerosol indicate flight performance within uncertainties expected from laboratory calibrations. Analysis of data from the first ATom circuit in August 2016 shows high concentrations of newly formed particles in the tropical middle and upper troposphere and Arctic lower troposphere.
Remote sensing of chlorophyll in an atmosphere-ocean environment: a theoretical study.
Kattawar, G W; Humphreys, T J
1976-01-01
A Monte Carlo program was written to compute the effect of chlorophyll on the ratio of upwelling to down-welling radiance and irradiance as a function of wavelength, height above the ocean, and depth within the ocean. This program simulates the actual physical situation, since a real atmospheric model was used, i.e., one that contained both aerosol and Rayleigh scattering as well as ozone absorption. The complete interaction of the radiation field with the ocean was also taken into account. The chlorophyll was assumed to be uniformly mixed in the ocean and was also assumed to act only as an absorbing agent. For the ocean model both scattering and absorption by hydrosols was included. Results have been obtained for both a very clear ocean and a medium turbid ocean. Recommendations are made for optimum techniques for remotely sensing chlorophyll both in situ and in vitro.
Preface: Electromagnetic and Light Scattering by Nonspherical Particles XIV
NASA Technical Reports Server (NTRS)
Dubovik, Oleg; Labonnete, Laurent; Litvinov, Pavel; Parol, Frederic; Mischenko, Michael
2014-01-01
The 14th Electromagnetic and Light Scattering Conference (ELS-XIV) was held at the Universit de Lille 1, Villeneuve d'Ascq, France on 17-21 June 2013. The conference was attended by 200 scientists from 26 countries. The scientific program included one plenary lecture, 12 invited reviews, 100 contributed oral talks, and 86 poster presentations. The program, the abstracts, and the slides of the oral presentations are available at the conference web site http:www-loa.univ-lille1.frELS-XIV. To highlight one of the traditional ELS themes, the ELS-XIV featured a special session on Remote sensing of aerosols and clouds using polarimetric observations. This session was sponsored and co-organized by the French space agency CNES and attracted representatives from nearly all research teams word-wide involved in the development and active use of space-borne, in situ, and ground-based polarimetric observations.
Whitsel, Laurie P; Benowitz, Neal; Bhatnagar, Aruni; Bullen, Chris; Goldstein, Fred; Matthias-Gray, Lena; Grossmeier, Jessica; Harris, John; Isaac, Fikry; Loeppke, Ron; Manley, Marc; Moseley, Karen; Niemiec, Ted; OʼBrien, Vince; Palma-Davis, LaVaughn; Pronk, Nico; Pshock, Jim; Stave, Gregg M; Terry, Paul
2015-03-01
In recent years, new products have entered the marketplace that complicate decisions about tobacco control policies and prevention in the workplace. These products, called electronic cigarettes (e-cigarettes) or electronic nicotine delivery systems, most often deliver nicotine as an aerosol for inhalation, without combustion of tobacco. This new mode of nicotine delivery raises several questions about the safety of the product for the user, the effects of secondhand exposure, how the public use of these products should be handled within tobacco-free and smoke-free air policies, and how their use affects tobacco cessation programs, wellness incentives, and other initiatives to prevent and control tobacco use. In this article, we provide a background on e-cigarettes and then outline key policy recommendations for employers on how the use of these new devices should be managed within worksite tobacco prevention programs and control policies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vaughan, W.M.
Because of the increased concern for the regional nature of secondary air pollutants (e.g., sulfates and oxidants) the U.S. Environmental Protection Agency (EPA) sponsored a major field program in the northeastern United States during the summer of 1980. Two EPA field programs were actually carried out simultaneously. One addressed persistent elevated pollution episodes, and the other continued the 1979 northeast regional oxidant study in developing part of the data base for the regional oxidant model. Field activities were based in Columbus, OH. Ten research aircraft and several mobile and stationary surface-monitoring platforms from three EPA contractors, seven Federal Agencies, andmore » four Universities participated in the intensive measurement program between 16 July and 15 August 1980. Pollutants measured included SO/sub 2/, NO, NOx, O/sub 3/, sulfate, nitrate, and aerosols. This report describes the contractors activities. Their aircraft logged over 350 flight hours in 100 missions ranging as far east as Laconia, NH, as far south as Montgomery, AL, as far west as Texarkana, AR, and as far north as Saginaw, MI. Descriptive analyses are summarized for urban plume missions and regional missions. The quality assurance program is described, showing the efforts made to develop a well coordinated data base. Sources for reports and data are provided.« less
Atmospheric System Research Marine Low Clouds Workshop Report, January 27-29,2016
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, M.; Wang, J.; Wood, R.
Marine low clouds are a major determinant of the Earth?s albedo and are a major source of uncertainty in how the climate responds to changing greenhouse gas levels and anthropogenic aerosol. Marine low clouds are particularly difficult to simulate accurately in climate models, and their remote locations present a significant observational challenge. A complex set of interacting controlling processes determine the coverage, condensate loading, and microphysical and radiative properties of marine low clouds. Marine low clouds are sensitive to atmospheric aerosol in several ways. Interactions at microphysical scales involve changes in the concentration of cloud droplets and precipitation, which inducemore » cloud dynamical impacts including changes in entrainment and mesoscale organization. Marine low clouds are also impacted by atmospheric heating changes due to absorbing aerosols. The response of marine low clouds to aerosol perturbations depends strongly upon the unperturbed aerosol-cloud state, which necessitates greater understanding of processes controlling the budget of aerosol in the marine boundary layer. Entrainment and precipitation mediate the response of low clouds to aerosols but these processes also play leading roles in controlling the aerosol budget. The U.S. Department of Energy Atmospheric Radiation Measurement (ARM) Climate Research Facility and Atmospheric System Research (ASR) program are making major recent investments in observational data sets from fixed and mobile sites dominated by marine low clouds. This report provides specific action items for how these measurements can be used together with process modeling to make progress on understanding and quantifying the key cloud and aerosol controlling processes in the next 5-10 years. Measurements of aerosol composition and its variation with particle size are needed to advance a quantitative, process-level understanding of marine boundary-layer aerosol budget. Quantitative precipitation estimates that combine radar and lidar measurements are becoming available, and these could be used to test process models, quantify precipitation responses to aerosol, and constrain climate models. Models and observations can be used to constrain how clouds respond dynamically to changing precipitation. New measurements of turbulence from ground-based remote sensing could be used to attempt to relate entrainment to the vertical and horizontal structure of turbulence in the boundary layer. Cloud-top entrainment plays a major role in modulating how low clouds respond to both aerosols and to greenhouse gases, so investment in promising new observational estimates would be beneficial. Precipitation formation and radiative cooling both help marine low clouds to organize on the mesoscale. More work is needed to develop metrics to characterize mesoscale organization, to elucidate mechanisms that determine the type and spatial scale of mesoscale cellular convection, and to understand the role of mesoscale structures in the stratocumulus-to-cumulus transition.« less
Satellite Ocean Color Validation Using Merchant Ships. Chapter 10
NASA Technical Reports Server (NTRS)
Frouin, Robert; Cutchin, David L.; Deschamps, Pierre-Yves
2001-01-01
A collaborative measurement program for evaluating satellite-derived ocean color has been developed based on ships of opportunity (merchant, oceanographic) and specific instrumentation, the SIMBAD radiometer. The purpose of the measurement program is to complement, in a cost-effective way, dedicated evaluation experiments at sea, which are expensive, cannot be carried out over the full range of expected oceanic and atmospheric conditions, and generally provide a few match-ups. Ships participate in the program on a volunteer basis or at a very small cost, and measurement procedures do not interfere with other ship activities. The SIMBAD radiometer is a portable, easy-to-operate instrument that measures the basic ocean color variables, namely aerosol optical thickness and water-leaving radiance, in typical spectral bands of ocean-color sensors, i.e., 443, 490, 560, 670, and 870 nm. Measuring these variables at the time of satellite overpass is usually sufficient to verify satellite-derived ocean color and to evaluate atmospheric correction algorithms. Any ordinary crew can learn quickly how to make measurements. Importantly, the ship is not required to stop, making it possible to collect data along regular routes traveled by merchant ships in the world's oceans.
Biomass Burning Emissions of Black Carbon from African Sources
NASA Astrophysics Data System (ADS)
Aiken, A. C.; Leone, O.; Nitschke, K. L.; Dubey, M. K.; Carrico, C.; Springston, S. R.; Sedlacek, A. J., III; Watson, T. B.; Kuang, C.; Uin, J.; McMeeking, G. R.; DeMott, P. J.; Kreidenweis, S. M.; Robinson, A. L.; Yokelson, R. J.; Zuidema, P.
2016-12-01
Biomass burning (BB) emissions are a large source of carbon to the atmosphere via particles and gas phase species. Carbonaceous aerosols are emitted along with gas-phase carbon monoxide (CO) and carbon dioxide (CO2) that can be used to determine particulate emission ratios and modified combustion efficiencies. Black carbon (BC) aerosols are potentially underestimated in global models and are considered to be one of the most important global warming factors behind CO2. Half or more BC in the atmosphere is from BB, estimated at 6-9 Tg/yr (IPCC, 5AR) and contributing up to 0.6 W/m2 atmospheric warming (Bond et al., 2013). With a potential rise in drought and extreme events in the future due to climate change, these numbers are expected to increase. For this reason, we focus on BC and organic carbon aerosol species that are emitted from forest fires and compare their emission ratios, physical and optical properties to those from controlled laboratory studies of single-source BB fuels to understand BB carbonaceous aerosols in the atmosphere. We investigate BC in concentrated BB plumes as sampled from the new U.S. DOE ARM Program campaign, Layered Atlantic Smoke Interactions with Clouds (LASIC). The ARM Aerosol Mobile Facility 1 (AMF1) and Mobile Aerosol Observing System (MAOS) are currently located on Ascension Island in the South Atlantic Ocean, located midway between Angola and Brazil. The location was chosen for sampling maximum aerosol outflow from Africa. The far-field aged BC from LASIC is compared to BC from indoor generation from single-source fuels, e.g. African grass, sampled during Fire Lab At Missoula Experiments IV (FLAME-IV). BC is measured with a single-particle soot photometer (SP2) alongside numerous supporting instrumentation, e.g. particle counters, CO and CO2 detectors, aerosol scattering and absorption measurements, etc. FLAME-IV includes both direct emissions and well-mixed aerosol samples that have undergone dilution, cooling, and condensation. BC physical and optical properties change as particles are transported in the atmosphere due to oxidation, coagulation, and condensation which is observed in the laboratory BC data. Laboratory BC emissions and emission ratios are compared with those from LASIC to improve model treatment of BB BC emissions and aging in global climate models.
NASA Astrophysics Data System (ADS)
Mahon, Brendan; Giorio, Chiara; Gallimore, Peter J.; Zielinski, Arthur T.; Tapparo, Andrea; Kalberer, Markus
2016-04-01
The Po Valley in Northern Italy represents one of the most polluted environments in Europe, with PM2.5 and ozone concentrations regularly exceeding 100μg/m3 and 50ppb respectively. Particularly during winter, prolonged inversion conditions together with biomass burning and anthropogenic emissions regularly lead to severe air pollution events. Over the course of several months in 2013-14, we carried out a sampling program at a city-centre site in Padova, Italy, collecting 24-hour high-volume aerosol filter samples, 18 in winter (mid December - mid March) and 20 in summer (late May - late July). Utilising high-resolution Orbitrap mass spectrometry techniques, we have characterised these sample sets to examine the long-term variation in aerosol composition over the sampling campaign and to determine the effect of anthropogenic gaseous pollutants such as NOx and SO2 on the composition of organic particle components. The results showed that between ca. 450-700 ions were measured in each sample in both the summer and winter sample sets, however the majority (90%) of ions in the winter samples were below 300m/z and below 380m/z in the summer samples. A much higher percentage of CHO-only ions were found in winter (ca. 27%) compared to the summer samples (ca. 6%), indicating a higher degree of photochemical reactions taking place involving pollutants such as NOx and SO2 in summer. Our results represent the first long term data set of high-resolution measurements of aerosol composition and demonstrate that this technique is an important tool in evaluating the composition of aerosol particles in complex polluted urban areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamarque, J. F.; Bond, Tami C.; Eyring, Veronika
2010-08-11
We present and discuss a new dataset of gridded emissions covering the historical period (1850-2000) in decadal increments at a horizontal resolution of 0.5° in latitude and longitude. The primary purpose of this inventory is to provide consistent gridded emissions of reactive gases and aerosols for use in chemistry model simulations needed by climate models for the Climate Model Intercomparison Program #5 (CMIP5) in support of the Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment report. Our best estimate for the year 2000 inventory represents a combination of existing regional and global inventories to capture the best information available atmore » this point; 40 regions and 12 sectors were used to combine the various sources. The historical reconstruction of each emitted compound, for each region and sector, was then forced to agree with our 2000 estimate, ensuring continuity between past and 2000 emissions. Application of these emissions into two chemistry-climate models is used to test their ability to capture long-term changes in atmospheric ozone, carbon monoxide and aerosols distributions. The simulated long-term change in the Northern mid-latitudes surface and mid-troposphere ozone is not quite as rapid as observed. However, stations outside this latitude band show much better agreement in both present-day and long-term trend. The model simulations consistently underestimate the carbon monoxide trend, while capturing the long-term trend at the Mace Head station. The simulated sulfate and black carbon deposition over Greenland is in very good agreement with the ice-core observations spanning the simulation period. Finally, aerosol optical depth and additional aerosol diagnostics are shown to be in good agreement with previously published estimates.« less
Autonomous, Full-Time Cloud Profiling at Arm Sites with Micro Pulse Lidar
NASA Technical Reports Server (NTRS)
Spinhirne, James D.; Campbell, James R.; Hlavka, Dennis L.; Scott, V. Stanley; Flynn, Connor J.
2000-01-01
Since the early 1990's technology advances permit ground based lidar to operate full time and profile all significant aerosol and cloud structure of the atmosphere up to the limit of signal attenuation. These systems are known as Micro Pulse Lidars (MPL), as referenced by Spinhirne (1993), and were first in operation at DOE Atmospheric Radiation Measurement (ARM) sites. The objective of the ARM program is to improve the predictability of climate change, particularly as it relates to cloud-climate feedback. The fundamental application of the MPL systems is towards the detection of all significant hydrometeor layers, to the limit of signal attenuation. The heating and cooling of the atmosphere are effected by the distribution and characteristics of clouds and aerosol concentration. Aerosol and cloud retrievals in several important areas can only be adequately obtained with active remote sensing by lidar. For cloud cover, the height and related emissivity of thin clouds and the distribution of base height for all clouds are basic parameters for the surface radiation budget, and lidar is essetial for accurate measurements. The ARM MPL observing network represents the first long-term, global lidar study known within the community. MPL systems are now operational at four ARM sites. A six year data set has been obtained at the original Oklahoma site, and there are several years of observations at tropical and artic sites. Observational results include cloud base height distributions and aerosol profiles. These expanding data sets offer a significant new resource for cloud, aerosol and atmospheric radiation analysis. The nature of the data sets, data processing algorithms, derived parameters and application results are presented.
NASA Astrophysics Data System (ADS)
Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.
2013-12-01
We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation
NASA Astrophysics Data System (ADS)
Lee, Lindsay; Mann, Graham; Carslaw, Ken; Toohey, Matthew; Aquila, Valentina
2016-04-01
The World Climate Research Program's SPARC initiative has a new international activity "Stratospheric Sulphur and its Role in Climate" (SSiRC) to better understand changes in stratospheric aerosol and precursor gaseous sulphur species. One component of SSiRC involves an intercomparison "ISA-MIP" of composition-climate models that simulate the stratospheric aerosol layer interactively. Within PoEMS each modelling group will run a "perturbed physics ensemble" (PPE) of interactive stratospheric aerosol (ISA) simulations of the Pinatubo eruption, varying several uncertain parameters associated with the eruption's SO2 emissions and model processes. A powerful new technique to quantify and attribute sources of uncertainty in complex global models is described by Lee et al. (2011, ACP). The analysis uses Gaussian emulation to derive a probability density function (pdf) of predicted quantities, essentially interpolating the PPE results in multi-dimensional parameter space. Once trained on the ensemble, a Monte Carlo simulation with the fast Gaussian emulator enabling a full variance-based sensitivity analysis. The approach has already been used effectively by Carslaw et al., (2013, Nature) to quantify the uncertainty in the cloud albedo effect forcing from a 3D global aerosol-microphysics model allowing to compare the sensitivy of different predicted quantities to uncertainties in natural and anthropogenic emissions types, and structural parameters in the models. Within ISA-MIP, each group will carry out a PPE of runs, with the subsequent analysis with the emulator assessing the uncertainty in the volcanic forcings predicted by each model. In this poster presentation we will give an outline of the "PoEMS" analysis, describing the uncertain parameters to be varied and the relevance to further understanding differences identified in previous international stratospheric aerosol assessments.
NASA Astrophysics Data System (ADS)
Wang, Chenxi; Yang, Ping; Nasiri, Shaima L.; Platnick, Steven; Baum, Bryan A.; Heidinger, Andrew K.; Liu, Xu
2013-02-01
A computationally efficient radiative transfer model (RTM) for calculating visible (VIS) through shortwave infrared (SWIR) reflectances is developed for use in satellite and airborne cloud property retrievals. The full radiative transfer equation (RTE) for combinations of cloud, aerosol, and molecular layers is solved approximately by using six independent RTEs that assume the plane-parallel approximation along with a single-scattering approximation for Rayleigh scattering. Each of the six RTEs can be solved analytically if the bidirectional reflectance/transmittance distribution functions (BRDF/BTDF) of the cloud/aerosol layers are known. The adding/doubling (AD) algorithm is employed to account for overlapped cloud/aerosol layers and non-Lambertian surfaces. Two approaches are used to mitigate the significant computational burden of the AD algorithm. First, the BRDF and BTDF of single cloud/aerosol layers are pre-computed using the discrete ordinates radiative transfer program (DISORT) implemented with 128 streams, and second, the required integral in the AD algorithm is numerically implemented on a twisted icosahedral mesh. A concise surface BRDF simulator associated with the MODIS land surface product (MCD43) is merged into a fast RTM to accurately account for non-isotropic surface reflectance. The resulting fast RTM is evaluated with respect to its computational accuracy and efficiency. The simulation bias between DISORT and the fast RTM is large (e.g., relative error >5%) only when both the solar zenith angle (SZA) and the viewing zenith angle (VZA) are large (i.e., SZA>45° and VZA>70°). For general situations, i.e., cloud/aerosol layers above a non-Lambertian surface, the fast RTM calculation rate is faster than that of the 128-stream DISORT by approximately two orders of magnitude.
NASA Astrophysics Data System (ADS)
Lin, N.; Tsay, S.; Hsu, N. C.; Holben, B. N.; Anh, N.; Reid, J. S.; Sheu, G.; Chi, K.; Wang, S.; Lee, C.; Wang, L.; Wang, J.; Chen, W.; Welton, E. J.; Liang, S.; Sopajaree, K.; Maring, H. B.; Janjai, S.; Chantara, S.
2013-12-01
The Seven South East Asian Studies (7-SEAS) is a grass-root program and seeks to perform interdisciplinary research in the field of aerosol-meteorology and climate interaction in the Southeast Asian region, particularly for the impact of biomass burning on cloud, atmospheric radiation, hydrological cycle, and regional climate. Participating countries include Indonesia, Malaysia, Philippines, Singapore, Thailand, Taiwan, Vietnam, and USA. A series of field experiments have been conducted during springtime biomass burning seasons in northern Southeast Asia, i.e., Dongsha Experiment in 2010, Son La Campaigns in 2011 and 2012, and BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles and Interactions Experiment) in 2013, respectively. Given an example, during 2010 Dongsha Experiment, a monitoring network for ground-based measurements was established, including five stations from northern Thailand and central Vietnam to Taiwan, with a supersite at the Dongsha Island (i.e. Pratas Island) in South China Sea (or East Sea). Aerosol chemistry sampling was performed for each station for characterizing the compositions of PM2.5/PM10 (some for TSP) including water-soluble ions, metal elements, BC/OC, Hg and dioxins. This experiment provides a relatively complete and first dataset of aerosol chemistry and physical observations conducted in the source/sink region for below marine boundary layer and lower free troposphere of biomass burning/air pollutants in the northern SE Asia. This presentation will give an overview of these 7-SEAS activities and their results, particularly for the characterization of biomass-burning aerosol at source regions in northern Thailand and northern Vietnam, and receptor stations in Taiwan, which is rarely studied.
Multi-site characterization of tropical aerosols: Implications for regional radiative forcing
NASA Astrophysics Data System (ADS)
Sumit, Kumar; Devara, P. C. S.; Manoj, M. G.
2012-03-01
A land campaign, as a part of the Indian Space Research Organization-Geosphere Biosphere Program (ISRO-GBP), has been organized using a suit of instruments like AERONET (Aerosol Robotic Network) Sun/Sky sunphotometer, Microtops-II (MICROprocessor-controlled Total Ozone Portable Spectrometer), short-wave pyranometer from December 1, 2006 to April 30, 2007, over five locations (Ahmedabad, Pune, Sinhgad, Trivandrum and Gadanki) representing different environments. The dominance of different aerosol types such as biomass burning, urban/industrial pollution, marine origin and desert-dust particles is expected at these five sites. In all locations, significant day-to-day variability in AOD and Ångström exponent is observed. The Ångström exponent exhibits its lowest values over semi-arid region (Ahmedabad) 0.4-0.7, while it is around 1.8 at rural site (Gadanki). The retrieved volume size distributions for Pune, Ahmedabad and Trivandrum are found to be bimodal with varying concentration of each mode. Interesting feature of this observation is, very low coarse-mode volume concentration observed at Trivandrum even though observations were made about 300 m from the coast. The synergy of results from these complementary measurements is reflected in the computed regional aerosol radiative forcing and heating rates. We have used a radiative transfer model (SBDART) to examine the variations of aerosol direct radiative effect (ADRE) and heating rates to give an overall estimation of the effect on climate. The ADRE, over different measurement sites, at short wavelength is found to be negative at the surface in the range of - 18 to - 59 W m - 2 , and TOA forcing values varied from + 0.9 to - 8 W m - 2 .
MISR Observations of Etna Volcanic Plumes
NASA Technical Reports Server (NTRS)
Scollo, S.; Kahn, R. A.; Nelson, D. L.; Coltelli, M.; Diner, D. J.; Garay, M. J.; Realmuto, V. J.
2012-01-01
In the last twelve years, Mt. Etna, located in eastern Sicily, has produced a great number of explosive eruptions. Volcanic plumes have risen to several km above sea level and created problems for aviation and the communities living near the volcano. A reduction of hazards may be accomplished using remote sensing techniques to evaluate important features of volcanic plumes. Since 2000, the Multiangle Imaging SpectroRadiometer (MISR) on board NASA s Terra spacecraft has been extensively used to study aerosol dispersal and to extract the three-dimensional structure of plumes coming from anthropogenic or natural sources, including volcanoes. In the present work, MISR data from several explosive events occurring at Etna are analyzed using a program named MINX (MISR INteractive eXplorer). MINX uses stereo matching techniques to evaluate the height of the volcanic aerosol with a precision of a few hundred meters, and extracts aerosol properties from the MISR Standard products. We analyzed twenty volcanic plumes produced during the 2000, 2001, 2002-03, 2006 and 2008 Etna eruptions, finding that volcanic aerosol dispersal and column height obtained by this analysis is in good agreement with ground-based observations. MISR aerosol type retrievals: (1) clearly distinguish volcanic plumes that are sulphate and/or water vapor dominated from ash-dominated ones; (2) detect even low concentrations of volcanic ash in the atmosphere; (3) demonstrate that sulphate and/or water vapor dominated plumes consist of smaller-sized particles compared to ash plumes. This work highlights the potential of MISR to detect important volcanic plume characteristics that can be used to constrain the eruption source parameters in volcanic ash dispersion models. Further, the possibility of discriminating sulphate and/or water vapor dominated plumes from ash-dominated ones is important to better understand the atmospheric impact of these plumes.
Choi, Bryan Y; Kobayashi, Leo; Pathania, Shivany; Miller, Courtney B; Locke, Emma R; Stearns, Branden C; Hudepohl, Nathan J; Patefield, Scott S; Suner, Selim; Williams, Kenneth A; Machan, Jason T; Jay, Gregory D
2015-01-01
To measure unhealthy aerosol materials in an Emergency Department (ED) and identify their sources for mitigation efforts. Based on pilot findings of elevated ED particulate matter (PM) levels, investigators hypothesized that unhealthy aerosol materials derive from exogenous (vehicular) sources at ambulance receiving entrances. The Aerosol Environmental Toxicity in Healthcare-related Exposure and Risk program was conducted as an observational study. Calibrated sensors monitored PM and toxic gases at Ambulance Triage Exterior (ATE), Ambulance Triage Desk (ATD), and control Public Triage Desk (PTD) on a 3/3/3-day cycle. Cassette sampling characterized PM; meteorological and ambulance traffic data were logged. Descriptive and multiple linear regression analyses assessed for interactions between aerosol material levels, location, temporal variables, ambulance activity, and meteorological factors. Sensors acquired 93,682 PM0.3, 90,250 PM2.5, and 93,768 PM5 measurements over 366 days to generate a data set representing at least 85.6% of planned measurements. PM0.3, PM2.5, and PM5 mean counts were lowest in PTD; 56%, 224%, and 223% higher in ATD; and 996%, 200%, and 63% higher in ATE, respectively (all p < .001). Qualitative analyses showed similar PM compositions in ATD and ATE. On multiple linear regression analysis, PM0.3 counts correlated primarily with location; PM2.5 and PM5 counts correlated most strongly with location and ambulance presence. PM < 2.5 and toxic gas concentrations at ATD and PTD patient care areas did not exceed hazard levels; PM0.3 counts did not have formal safety thresholds for comparison. Higher levels of PM were linked with ED ambulance areas, although their health impact is unclear. © The Author(s) 2015.
Holmes, C.W.; Miller, R.
2004-01-01
Saharan dust is persistently transported and deposited in ecosystems of the western Atlantic Ocean. This dust is an aggregate of clay and quartz particles cemented with Fe oxides. Samples collected and analyzed from Mali (central Africa), the Azores, the Caribbean and the Eastern United States document the levels of minor and trace metals in the dust. Metal loadings, particularly the toxic elements - Hg and As, are significantly higher than average crustal rocks. Over the past decade, the focus has been to understand the cycling of Hg in south Florida, but As has received very little attention. Arsenic in the sediment deposited in the past decade in south Florida averages 14 mg/kg and appears to be correlated with Al, a proxy for dust. The largest available aerosol data set containing As is the IMPROVE (Interagency Monitoring of Protected Visual Environments) data set. The average concentrations in aerosols collected during this program range from 17 mg/kg in the Virgin Islands to 79 mg/kg at Chassahowitzka, Florida. At Chassahowitzka, most of the As appears to be associated with organic C. If it is assumed that the concentrations in Mali dust and in the aerosols in the Virgin Islands are indicative of soil dust, then the higher values at Chassahowitzka may be derived from local or regional sources. A simple calculation indicates that African dust supplies about 25% of the As deposited from aerosols in the southeastern United States. Comparison of the average yearly As concentrations measured in the Virgin Islands and Everglades shows a negative relationship with the North Atlantic Oscillation (NAO). This relationship demonstrates the influence of climate on the transport and deposition of aerosols to the southeastern United States.
NASA Astrophysics Data System (ADS)
Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.
2014-12-01
Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.
A cross-assessment of CCI-ECVs and RCSM simulations over the Mediterranean area
NASA Astrophysics Data System (ADS)
D'Errico, Miriam; Planton, Serge; Nabat, Pierre
2017-04-01
A first objective of this study, conducted in the framework of the Climate Modelling Users Group (CMUG), one of the projects of the European Space Agency Climate Change Initiative (ESA CCI) program, is a cross-assessment of simulations of a Med-CORDEX regional climate system model (CNRM-RCSM5) and a sub-set of atmosphere, marine and surface interrelated Satellite-Derived Essential Climate Variables (CCI-ECVs) (i.e. sea surface temperature, sea level, aerosols and soil moisture content) over the Mediterranean area. The consistency between the model and the CCI-ECVs is evaluated through the analysis of a climate specific event that can be observed with the CCI-ECVs, in atmospheric reanalysis and reproduced in the RCSM simulations. In this presentation we focus on the July 2006 heat wave that affected the western part of the Mediterranean continental and marine area. The application of a spectral nudging method using ERA-Interim reanalysis in our simulation allows to reproduce this event with a proper chronology. As a result we show that the consistency between the simulated model aerosol optical depth and the ECV products (being produced by the ESA Aerosol CCI project consortium) depends on the choice of the algorithm used to infer the variable from the satellite observations. In particular the heat wave main characteristics become consistent between the model and the satellite-derived observations for sea surface temperature, soil moisture and sea level. The link between the atmospheric circulation and the aerosols distribution is also investigated.
2012-09-01
experiments. J. Aerosol Sci., 40, 603- 612. Zheng, M., Cass, G. R., Schauer, J. J., Edgerton, E. S. (2002) Source Apportionment of PM2.5 in the...Energy Heavy Vehicle Research Program. The SERDP project WP1627 team consists of the following members (listed in alphabetical order of the last name...aircraft emissions are dominated by a fleet of high payload aircraft, such as the C-130, B1 B-52, and a variety of heavy -lift turboshaft vehicles
Stratospheric CCN sampling program. [volcanology, Mount Saint Helens
NASA Technical Reports Server (NTRS)
Rogers, C. F.; Hudson, J. G.
1982-01-01
Two one liter grab samples of stratospheric aerosol were returned from each of six U-2 sampling missions. Cloud condensation nuclei (CCN) spectra from each sample were obtained. Interest was centered on the effects of volcanic activity. Spurious particle generation was found to be a serious problem in container 9 LFT and a much smaller problem in container 9 RT. Initial studies of an option for improved sample containers and values were completed. A CCN spectrometer, able to operate at an internal pressure of 300 mb, was designed.
NASA DC-8 Airborne Scanning Lidar Sensor Development
NASA Technical Reports Server (NTRS)
Nielsen, Norman B.; Uthe, Edward E.; Kaiser, Robert D.; Tucker, Michael A.; Baloun, James E.; Gorordo, Javier G.
1996-01-01
The NASA DC-8 aircraft is used to support a variety of in-situ and remote sensors for conducting environmental measurements over global regions. As part of the atmospheric effects of aviation program (AEAP) the DC-8 is scheduled to conduct atmospheric aerosol and gas chemistry and radiation measurements of subsonic aircraft contrails and cirrus clouds. A scanning lidar system is being developed for installation on the DC-8 to support and extend the domain of the AEAP measurements. Design and objectives of the DC-8 scanning lidar are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
MacMartin, Douglas G.; Kravitz, Ben; Long, Jane C. S.
Any well-informed future decision on whether and how to deploy solar geoengineering requires balancing the impacts (both intended and unintended) of intervening in the climate against the impacts of not doing so. In spite of the tremendous progress in the last decade, the current state of knowledge remains insufficient to support an assessment of this balance, even for stratospheric aerosol geoengineering (SAG), arguably the best understood (practical) geoengineering method. We then articulate key unknowns associated with SAG, including both climate-science and design questions, as an essential step toward developing a future strategic research program that could address outstanding uncertainties.
Parworth, Caroline; Tilp, Alison; Fast, Jerome; ...
2015-04-01
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
NASA Technical Reports Server (NTRS)
Schmid, B.; Arnott, P.; Bucholtz, A.; Colarco, P.; Covert, D.; Eilers, J.; Elleman, R.; Ferrare, R.; Flagan, R.; Jonsson, H.
2003-01-01
In order to meet one of its goals - to relate observations of radiative fluxes and radiances to the atmospheric composition - the Department of Energy's Atmospheric Radiation Measurement (ARM) program has pursued measurements and modeling activities that attempt to determine how aerosols impact atmospheric radiative transfer, both directly and indirectly. However, significant discrepancies between aerosol properties measured in situ or remotely remain. One of the objectives of the Aerosol Intensive Operational Period (TOP) conducted by ARM in May 2003 at the ARM Southern Great Plains (SGP) site in north central Oklahoma was to examine and hopefully reduce these differences. The IOP involved airborne measurements from two airplanes over the heavily instrumented SGP site. We give an overview of airborne results obtained aboard the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. The Twin Otter performed 16 research flights over the SGP site. The aircraft carried instrumentation to perform in-situ measurements of aerosol absorption, scattering, extinction and particle size. This included such novel techniques as the photoacoustic and cavity ring-down methods for in-situ absorption (675 nm) and extinction (675 and 1550 nm) and a new multiwavelength, filter-based absorption photometer (467, 530, 660 nm). A newly developed instrument measured cloud condensation nucleus concentration (CCN) concentrations at two supersaturation levels. Aerosol optical depth and extinction (354-2139 nm) were measured with the NASA Ames Airborne Tracking 14-channel sunphotometer. Furthermore, up-and downwelling solar (broadband and spectral) and infrared radiation were measured using seven individual radiometers. Three up-looking radiometers werer mounted on a newly developed stabilized platform, keeping the instruments level up to aircraft pitch and roll angles of approximately 10(exp 0). This resulted in unprecedented continuous vertical profiles of radiative fluxes, which we will compare to modeled fluxes using the aforementioned data as input.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frenzel, E.; Arnold, D.; Wershofen, H.
1996-06-01
A method for determination of radionuclide concentrations in air aerosol samples collected by the high volume aerosol sampler ASS-500 was elaborated. The aerosol sampling station ASS-500 is a Stand alone, all-weather proofed instrument. It is designed for representative sampling of airborne radionuclides from ground level air at a height of about 1.5 m above ground level. The ASS-500 station enables continuous air monitoring both normal and emergency Situations. The collection of aerosols on the Petrianov FPP-15-1.5 type filter out of an air volume of about 100,000 m{sup 3} (sampling period 1 wk) or of about 250,000 m{sup 3} (sampling periodmore » 3 wk) admits accurate spectrometric low level measurements of natural and artificial radionuclides. The achieved detection limit is 0.5 {mu}Bq m{sup -3} and 0.2 {mu}Bq m{sup -3} for {sup 137}Cs, respectively. A new developed air flow Meter system allows to enhance the collected air volume to about 150,000 m{sup 3} per week and lowers the detection limit to <0.4 {mu}Bq m{sup -3} for {sup 137}Cs for weekly collected aerosol samples. In Poland the CLOR uses 9 Stations ASS-500 at different sites as atmospheric radioactivity control system. On the basis of spectrometric measurements of natural and artificial radionuclides in the collected aerosol samples at the different sites, CLOR establishes a weekly report about the radiological situation at Poland for responsible authorities. The very low achievable detection limit of the Station ASS-500 due 10 the high air flow fate and the long possible sampling period were the key argument for other government radiation protection authorities in Europe to introduce the Station ASS-500 into their low level radionuclide atmospheric monitoring programs (Austria, Belarus, France, Germany, Iceland, Spain, Switzerland, Ukraine).« less
EARLINET Single Calculus Chain - overview on methodology and strategy
NASA Astrophysics Data System (ADS)
D'Amico, G.; Amodeo, A.; Baars, H.; Binietoglou, I.; Freudenthaler, V.; Mattis, I.; Wandinger, U.; Pappalardo, G.
2015-11-01
In this paper we describe the EARLINET Single Calculus Chain (SCC), a tool for the automatic analysis of lidar measurements. The development of this tool started in the framework of EARLINET-ASOS (European Aerosol Research Lidar Network - Advanced Sustainable Observation System); it was extended within ACTRIS (Aerosol, Clouds and Trace gases Research InfraStructure Network), and it is continuing within ACTRIS-2. The main idea was to develop a data processing chain that allows all EARLINET stations to retrieve, in a fully automatic way, the aerosol backscatter and extinction profiles starting from the raw lidar data of the lidar systems they operate. The calculus subsystem of the SCC is composed of two modules: a pre-processor module which handles the raw lidar data and corrects them for instrumental effects and an optical processing module for the retrieval of aerosol optical products from the pre-processed data. All input parameters needed to perform the lidar analysis are stored in a database to keep track of all changes which may occur for any EARLINET lidar system over the time. The two calculus modules are coordinated and synchronized by an additional module (daemon) which makes the whole analysis process fully automatic. The end user can interact with the SCC via a user-friendly web interface. All SCC modules are developed using open-source and freely available software packages. The final products retrieved by the SCC fulfill all requirements of the EARLINET quality assurance programs on both instrumental and algorithm levels. Moreover, the manpower needed to provide aerosol optical products is greatly reduced and thus the near-real-time availability of lidar data is improved. The high-quality of the SCC products is proven by the good agreement between the SCC analysis, and the corresponding independent manual retrievals. Finally, the ability of the SCC to provide high-quality aerosol optical products is demonstrated for an EARLINET intense observation period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jimenez, Jose-Luis
2016-02-01
This grant was originally funded for deployment of a suite of aerosol instrumentation by our group in collaboration with other research groups and DOE/ARM to the Ganges Valley in India (GVAX) to study aerosols sources and processing. Much of the first year of this grant was focused on preparations for GVAX. That campaign was cancelled due to political reasons and with the consultation with our program manager, the research of this grant was refocused to study the applications of oxidation flow reactors (OFRs) for investigating secondary organic aerosol (SOA) formation and organic aerosol (OA) processing in the field and laboratorymore » through a series of laboratory and modeling studies. We developed a gas-phase photochemical model of an OFR which was used to 1) explore the sensitivities of key output variables (e.g., OH exposure, O 3, HO 2/OH) to controlling factors (e.g., water vapor, external reactivity, UV irradiation), 2) develop simplified OH exposure estimation equations, 3) investigate under what conditions non-OH chemistry may be important, and 4) help guide design of future experiments to avoid conditions with undesired chemistry for a wide range of conditions applicable to the ambient, laboratory, and source studies. Uncertainties in the model were quantified and modeled OH exposure was compared to tracer decay measurements of OH exposure in the lab and field. Laboratory studies using OFRs were conducted to explore aerosol yields and composition from anthropogenic and biogenic VOC as well as crude oil evaporates. Various aspects of the modeling and laboratory results and tools were applied to interpretation of ambient and source measurements using OFR. Additionally, novel measurement methods were used to study gas/particle partitioning. The research conducted was highly successful and details of the key results are summarized in this report through narrative text, figures, and a complete list of publications acknowledging this grant.« less
Source apportionment of particulate organic matter using infrared spectra at multiple IMPROVE sites
NASA Astrophysics Data System (ADS)
Kuzmiakova, A.; Dillner, A. M.; Takahama, S.
2016-12-01
As organic aerosol is a dominant contributor to air pollution and radiative forcing in many regions in the United States, characterizing its composition and apportioning the organic mass to its major sources provides insight into atmospheric processes and guidance for decreasing its abundance. National networks, such as Interagency Monitoring of Protected Visual Environment (IMPROVE), provide multi-site and multi-year particulate matter samples useful for evaluating sources over all four seasons. To this end, our study focuses on apportioning the particulate organic matter (OM) to specific anthropogenic and biological processes from year-long infrared aerosol measurements collected at six IMPROVE sites (five national park sites and one urban site) during 2011. Pooling these organic aerosol samples into one dataset, we apply factor and cluster analyses to extract four chemical factors (two dominated by processed emissions, one dominated by hydroxyl groups, and one by hydrocarbons) and ascribe each factor to a specific source depending on the site and season. We also present a method to characterize measurement uncertainty in infrared instrumental analysis and investigate sensitivity analysis in generated factors. In Phoenix (the urban site) we find the majority (80-95%) of the OM consisted of anthropogenic activities, such as traffic emissions, fossil fuel combustion (both all year long), and residential wood burning (fall to winter). Mineral dust emissions accounted for the rest of OM (5-20%). At the National Park sites the OM concentration was lower on average and consisted of marine and dust aerosols, summertime biomass burning and biogenic aerosols, processed fossil fuel combustion, and emissions from ships and oil refineries. Our study highlights the potential for further site-specific or multi-year aerosol characterization in the context of a long-term atmospheric sampling program to quantify sources of organic particles impacting air quality, aid in policy-making, and assess which (trans)formation mechanisms proposed in laboratory studies are consistent with observations.
NASA Astrophysics Data System (ADS)
Garcia, V.; Kondragunta, S.; Holland, D.; Dimmick, F.; Boothe, V.; Szykman, J.; Chu, A.; Kittaka, C.; Al-Saadi, J.; Engel-Cox, J.; Hoff, R.; Wayland, R.; Rao, S.; Remer, L.
2006-05-01
Advancements in remote sensing over the past decade have been recognized by governments around the world and led to the development of the international Global Earth Observation System of Systems 10-Year Implementation Plan. The plan for the U.S. contribution to GEOSS has been put forth in The Strategic Plan for the U.S. Integrated Earth Observation System (IEOS) developed under IWGEO-CENR. The approach for the development of the U.S. IEOS is to focus on specific societal benefits that can be achieved by integrating the nation's Earth observation capabilities. One such challenge is our ability to understand the impact of poor air quality on human health and well being. Historically, the air monitoring networks put in place for the Nations air quality programs provided the only aerosol air quality data on an ongoing and systematic basis at national levels. However, scientific advances in the remote sensing of aerosols from space have improved dramatically. The MODIS sensor and GOES Imager aboard NASA and NOAA satellites, respectively, provide synoptic-scale measurements of aerosol optical depth (AOD) which have been demonstrated to correlate with high levels of PM10 and PM2.5 at the surface. The MODIS sensor has been shown to be capable of a 1 km x 1 km (at nadir) AOD product, while the GOES Imager can provide AOD at 4 km x 4 km every 30 minutes. Within the next several years NOAA and EPA will begin to issue PM2.5 air quality forecasts over the entire domain of the eastern United States, eventually extending to national coverage. These forecasts will provide continuous estimated values of PM2.5 on a daily basis. A multi-agency collaborative project among government and academia is underway to improve the spatial prediction of fine particulate matter through the integration of multi-sensor and multi-platform aerosol observations (MODIS and GOES), numerical model output, and air monitoring data. By giving more weight to monitoring data in monitored areas and relying on adjusted model output and satellite data in non-monitored areas, a Bayesian hierarchical space-time model will be used to improve the accuracy of prediction and associated prediction errors. The improved spatial predictions will be tested as estimates of exposure for input to modeling relationships between air quality and asthma/other respiratory diseases through CDC under the Environmental Public Health Tracking Network. We will also focus on the use of the predictive spatial maps within the EPA AIRNow program which provides near real-time spatial maps of daily average PM2.5 concentrations across the US. We will present the overall project plan and preliminary results with emphasis on how GEOSS framework is facilitating this effort.
NASA Technical Reports Server (NTRS)
Radhakrishnan, Krishnan; Whitefield, Philip
1999-01-01
The goals of the trace chemistry group were to identify the processes relevant to aerosol and aerosol precursor formation occurring within aircraft gas turbine engines; that is, within the combustor, turbine, and nozzle. The topics of discussion focused on whether the chemistry of aerosol formation is homogeneous or heterogeneous; what species are important for aerosol and aerosol precursor formation; what modeling/theoretical activities to pursue; what experiments to carry out that both support modeling activities and elucidate fundamental processes; and the role of particulates in aerosol and aerosol precursor formation. The consensus of the group was that attention should be focused on SO2, SO3, and aerosols. Of immediate concern is the measurement of the concentration of the species SO3, SO2, H2SO4 OH, HO2, H2O2, O, NO, NO2, HONO, HNO3, CO, and CO2 and particulates in various engines, both those currently in use and those in development. The recommendation was that concentration measurements should be made at both the combustor exit and the engine exit. At each location the above species were classified into one of four categories of decreasing importance, Priority I through IV, as follows: Combustor exit: Priority I species - SO3:SO2 ratio, SO3, SO2, and particulates; Priority II species: OH and O; Priority III species - NO and NO2; and Priority IV species - CO and CO2. For the Engine exit: Priority I species - SO3:SO2 ratio, SO3, SO2,H2SO4, and particulates; Priority II species: OH,HO2, H2O2, and O; Priority III species - NO, NO2, HONO, and HNO3; and Priority IV species - CO and CO2. Table I summarizes the anticipated concentration range of each of these species. For particulate matter, the quantities of interest are the number density, size distribution, and composition. In order to provide data for validating multidimensional reacting flow models, it would be desirable to make 2-D, time-resolved measurements of the concentrations of the above species and, in addition, of the pressure, temperature, and velocity. A near term goal of the experimental program should be to confirm the nonlinear effects of sulfur speciation, and if present, to provide an explanation for them. It is also desirable to examine if the particulate matter retains any sulfur. The recommendation is to examine the effects on SOx production of variations in fuel-bound sulfur and aromatic content (which may affect the amount of particulates formed). These experiments should help us to understand if there is a coupling between particulate formation and SO, concentration. Similarly, any coupling with NOx can be examined either by introducing NOx into the combustion air or by using fuel-bound nitrogen. Also of immediate urgency is the need to establish and validate a detailed mechanism for sulfur oxidation/aerosol formation, whose chemistry is concluded to be homogeneous, because there is not enough surface area for heterogeneous effects. It is envisaged that this work will involve both experimental and theoretical programs. The experimental work will require, in addition to the measurements described above, fundamental studies in devices such as flow reactors and shock tubes. Complementing this effort should be modeling and theoretical activities. One impediment to the successful modeling of sulfur oxidation is the lack of reliable data for thermodynamic and transport properties for several species, such as aqueous nitric acid, sulfur oxides, and sulfuric acid. Quantum mechanical calculations are recommended as a convenient means of deriving values for these properties. Such calculations would also help establish rate constants for several important reactions for which experimental measurements are inherently fraught with uncertainty. Efforts to implement sufficiently detailed chemistry into computational fluid dynamic codes should be continued. Zero- and one-dimensional flow models are also useful vehicles for elucidating the minimal set of species and reactions that must be included in two- and three-dimensional modeling studies.
NASA Astrophysics Data System (ADS)
Wei, L.; Mosley-Thompson, E.
2006-12-01
The Laki (Iceland) volcanic event was a basaltic flood lava eruption lasting from June 8, 1783 to February 7, 1784. The timing of the arrival of the sulfate aerosols and volcanic fragments to the Greenland Ice Sheet (GIS) remains uncertain, but is important to confirm as the highly conductive sulfate layer has been consistently used as a time stratigraphic marker (1783 AD) in ice cores collected across Greenland. However, in the GISP2 ice core a few glass shards were found within the annual layer lying just below that containing the sulfate aerosols from Laki suggesting that the ash arrived first, in 1783, while the aerosols arrived the following year [Fiacco et al., 1994]. Additional published ice core results have neither confirmed nor refuted this observation. We have taken advantage of the accurately dated, high temporal resolution ice cores collected by PARCA (Program for Arctic Regional Climate Assessment) to (1) determine more precisely the timing of the arrival of Laki's sulfate aerosols and (2) assess the spatial variability of the excess sulfate contributed by Laki to the GIS. Our results indicate that the sulfate emitted from the Laki eruption most likely arrived on the GIS in the late summer or early fall of 1783 AD. This is also supported by contemporary weather logs and official reports of the appearance of Laki haze [Thordarson and Self, 2003]. The flux of Laki sulfate varies significantly over the GIS, largely as a function of the regional annual accumulation rate. Laki sulfate aerosols also arrived as a single pulse in most of the PARCA cores, suggesting that only a small fraction of the gases emitted from Laki reached the stratosphere. References: Fiacco, R.J.,et al., Atmospheric aerosol loading and transport due to the 1783-84 Laki eruption in Iceland, interpreted from ash particles and acidity in the GISP2 ice core, Quat. Res., 42, 231-240, 1994. Thordarson, T, and S. Self, Atmospheric and environmental effects of the 1783-1784 Laki eruption: A review and reassessment, J. Geophy. Res., 108, 4011-4039, 2003.
Spectral Optical Properties of the Polluted Atmosphere of Mexico City (Spring-Summer 1992)
NASA Technical Reports Server (NTRS)
Vasilyev, O. B.; Contreras, A. Leyva; Valazquez, A. Muhlia; Peralta-Fabi, R.; Ivlev, L. S.; Kovalenko, A. P.; Vasilyev, A. V.; Jukov, V. M.; Welch, Ronald M.
1995-01-01
A joint Mexican, Russian, and American research effort has been initiated to develop new methods to remotely sense atmospheric parameters using ground-based, aircraft, and satellite observations. As a first step in this program, ground-based spectrophotometric measurements of the direct solar radiation have been obtained for the extremely polluted Mexico City atmosphere for the period of April-June 1992. These observations were made at more than 1300 channels in the spectral range of 0.35-0.95 microns. In the UltraViolet (UV) portions of the spectrum (e.g., 0.35 microns), aerosol optical thicknesses were found to range between 0.6 and 1.2; in the visible portion of the spectrum (e. g., 0.5 microns) they ranged from 0.5 to 0.8; and in the Near-Infrared (NIR) spectra (e.g., 0.85 micron), values of 0.3 - 0.5 were found. Applying a Spectral Optical Depth (SOD) model of tau(lambda) = C + A(lambda(sup -varies as), values of 1.55 less than varies as less than 1.85 were obtained for polluted, cloudless days, with values of 1.25 less than varies as less than 1.60 on days with haze. The aerosol particles in the polluted Mexico City atmosphere were found to be strongly absorbing, with a single-scattering albedo of 0.7 - 0.9 in the UV, 0.6 - 0.8 in the visible portion of the spectrum, and 0.4 - 0.7 in the NIR. These values are possibly consistent with a high soot concentration, contributed both by vehicular traffic and heavy industry. Analysis of the measured aerosol SOD using the optical parameters of an urban aerosol model pemiits the concentration of aerosol particles to be estimated in the vertical column; a maximum value of 3 x 10(exp 9) 1/sq cm was found. This concentration of aerosol particles exceeds that found in most other regions of the globe by at least an order of magnitude. Near the ground the aerosol size distributions measured using an optical particle counter were found to be strongly multimodal.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kassianov, Evgueni I.; Flynn, Connor J M.; Barnard, James C.
2016-10-31
Aerosol optical depth (AOD) derived from hyperspectral measurements can serve as an invaluable input for simultaneous retrievals of particle size distributions and major trace gases. The required hyperspectral measurements are provided by a new ground-based radiometer, the so-called Shortwave Array Spectroradiometer-Hemispheric (SAS-He), recently developed with support from the Department of Energy (DOE) Office Atmospheric Radiation Measurement (ARM) Program. The SAS-He has wide spectral coverage (350-1700nm) and high spectral resolution: about 2.4 nm and 6 nm within 350-1000 nm and 970-1700 nm spectral ranges, respectively. To illustrate an initial performance of the SAS-He, we take advantage of integrated dataset collected duringmore » the ARM-supported Two-Column Aerosol Project (TCAP) over the US coastal region (Cape Cod, Massachusetts). This dataset includes AODs derived using data from Aerosol Robotic Network (AERONET) sunphotometer and Multi-Filter Rotating Shadowband Radiometer (MFRSR). We demonstrate that, on average, the SAS-He AODs closely match the MFRSR and AERONET AODs in the ultraviolet and visible spectral ranges for this area with highly variable AOD. Also, we discuss corrections of SAS-He total optical depth for gas absorption in the near-infrared spectral range and their operational implementation.« less
GLOBE Aerosol Field Campaign - U.S. Pilot Study 2016
NASA Technical Reports Server (NTRS)
Pippin, Margaret; Marentette, Christina; Bujosa, Robert; Taylor, Jessica; Lewis, Preston
2016-01-01
During the spring of 2016, from April 4 - May 27, sixteen GLOBE schools participated in the GLOBE Aerosol Field Campaign - U.S. Pilot Study. Thirteen teachers from these schools had previously participated in the NASA LEARN program (Long-term Experience in Authentic Research with NASA) where they were GLOBE trained in Atmosphere protocols, and engaged in 1-3 years of research under the mentorship of NASA scientists. Each school was loaned two aerosol instruments for the Campaign duration, either 2 GLOBE sun photometers, 2 Calitoo sun photometers, or 1 of each. This allowed for students to make measurements side-by-side and in the case of the Calitoos, to compare AOT results immediately with each other for better consistency in data collection. Additionally, as part of the Field Campaign evaluation, multiple instruments allow for an assessment of the ease of use of each instrument for grade level of students, whether in middle school or high school. Before the Campaign, all GLOBE and Calitoo instruments were 'checked out' against an AERONET, then checked again upon return after the Campaign. By examining all data, before, during and after the Campaign, this gives an indication of instrument performance and proficiency obtained by the students. Support was provided to each teacher and their students at the level requested, via email, phone or video conferencing.
Novel Co:MgF2 lidar for aerosol profiler
NASA Technical Reports Server (NTRS)
Acharekar, M. A.
1993-01-01
Lidars are of great interest because of their unique capabilities in remote sensing applications in sounding of the atmosphere, meteorology, and climatology. In this small business innovative research (SBIR) phase II program, laser sources including Co:MgF2, CTH:YAG, CTH:YSGG, CT:YAG, and Er:Glass were evaluated. Modulator of fused silica and TeO2 materials with Brewster's angle end faces were used with these lasers as acousto-optical (AO) Q-switches. A higher hold-off energy and hence a higher Q-switched energy was obtained by using a high power RF driver. The report provides performance characteristics of these lasers. The tunable (1.75-2.50 microns) Co:MgF2 laser damaged the TeO2 Q-switch cell. However, the CTH:YAG laser operating at 2.09 microns provided output energy of over 300 mJ/p in 50 ns pulse width using the fused silica Q-switch. This Q-switched CTH:YAG laser was used in a breadboard vertical aerosol profiler. A 40 cm diameter telescope, InSb and InGaAs detectors were used in the receiver. The data obtained using this lidar is provided in the report. The data shows that the eye safe lidar using CTH:YAG laser for the vertical aerosol density and range measurements is the viable approach.
Development of Laser, Detector, and Receiver Systems for an Atmospheric CO2 Lidar Profiling System
NASA Technical Reports Server (NTRS)
Ismail, Syed; Koch, Grady; Abedin, Nurul; Refaat, Tamer; Rubio, Manuel; Singh, Upendra
2008-01-01
A ground-based Differential Absorption Lidar (DIAL) is being developed with the capability to measure range-resolved and column amounts of atmospheric CO2. This system is also capable of providing high-resolution aerosol profiles and cloud distributions. It is being developed as part of the NASA Earth Science Technology Office s Instrument Incubator Program. This three year program involves the design, development, evaluation, and fielding of a ground-based CO2 profiling system. At the end of a three-year development this instrument is expected to be capable of making measurements in the lower troposphere and boundary layer where the sources and sinks of CO2 are located. It will be a valuable tool in the validation of NASA Orbiting Carbon Observatory (OCO) measurements of column CO2 and suitable for deployment in the North American Carbon Program (NACP) regional intensive field campaigns. The system can also be used as a test-bed for the evaluation of lidar technologies for space-application. This DIAL system leverages 2-micron laser technology developed under a number of NASA programs to develop new solid-state laser technology that provides high pulse energy, tunable, wavelength-stabilized, and double-pulsed lasers that are operable over pre-selected temperature insensitive strong CO2 absorption lines suitable for profiling of lower tropospheric CO2. It also incorporates new high quantum efficiency, high gain, and relatively low noise phototransistors, and a new receiver/signal processor system to achieve high precision DIAL measurements.
The Panchromatic Comparative Exoplanetary Treasury Program
NASA Astrophysics Data System (ADS)
Sing, David
2016-10-01
HST has played the definitive role in the characterization of exoplanets and from the first planets available, we have learned that their atmospheres are incredibly diverse. The large number of transiting planets now available has prompted a new era of atmospheric studies, where wide scale comparative planetology is now possible. The atmospheric chemistry of cloud/haze formation and atmospheric mass-loss are a major outstanding issues in the field of exoplanets, and we seek to make progress gaining insight into their underlying physical process through comparative studies. Here we propose to use Hubble's full spectroscopic capabilities to produce the first large-scale, simultaneous UVOIR comparative study of exoplanets. With full wavelength coverage, an entire planet's atmosphere can be probed simultaneously and with sufficient numbers of planets, we can statistically compare their features with physical parameters for the first time. This panchromatic program will build a lasting HST legacy, providing the UV and blue-optical spectra unavailable to JWST. From these observations, chemistry over a wide range of physical environments will be probed, from the hottest condensates to much cooler planets where photochemical hazes could be present. Constraints on aerosol size and composition will help unlock our understanding of clouds and how they are suspended at such high altitudes. Notably, there have been no large transiting UV HST programs, and this panchromatic program will provide a fundamental legacy contribution to atmospheric escape of small exoplanets, where the mass loss can be significant and have a major impact on the evolution of the planet itself.
NASA Astrophysics Data System (ADS)
Reps, Valentina; Efimenko, Natalia; Povolotskaya, Nina; Abramtsova, Anna; Ischenko, Dmitriy; Senik, Irina; Slepikh, Victor
2017-04-01
The rehabilitative properties (RP) of ground-level atmosphere (GA) of Russian resorts are considered as natural healing resources and received state legal protection [1]. Due to global urbanization the chemical composition and particle size distribution of the surface aerosol are changing rapidly. However, the influence of surface aerosol on the RP of GA has been insufficiently studied. At the resort region of the North Caucasus complex monitoring (aerosol, trace gases NOx, CO, O3, CH4; periodically - heavy metals) is performed at two high levels (860 masl - a park zone of a large mountain resort, 2070 masl - alpine grassland, the net station). The results of the measurements are used in programs of bioclimatic, landscape and medical monitoring to specify the influence of aerosol on rehabilitation properties of the environment and human adaptative reserves. The aerosol particles of size range 500-1000 nm are used as a marker of the pathogenic effect of aerosol [2]. In the conditions of regional urbanization and complicated mountain atmospheric circulation the influence of aerosol on RP of GA and the variability of heart rhythm with the volunteers at different heights were investigated. At the height of 860 masl (urbanized resort) there have been noticed aerosol variations in the range of 0,04-0,35 particles/cm3 (slightly aerosol polluted), in mountain conditions - background pollution aerosol level. The difference of bioclimatic conditions at the specified high-rise levels has been referred to the category of contrasts. The natural aero ionization ∑(N+)+(N-) varied from 960 ion/cm3 to 1460 ion/cm3 in the resort park (860 m); from 1295 ion/cm3 to 4850 ion/cm3 on the Alpine meadow (2070 m); from 1128 ion/cm3 to 3420 ion/cm3 - on the tested site near the edge of the pinewood (1720 m). In the group of volunteers the trip from low-hill terrain zone (860 m) to the lower zone of highlands (2070 m) caused the activation of neuro and humoral regulation, vegetative and central parts of nervous system, psychoemotional status, normalization of frequency spectrum of brain activity and organism adaptation level. The researches are still being conducted. References: 1. The federal law "About Natural Medical Resources, Medical and Improving Areas and Resorts" from 23.02.1995 № 26-fl. 2. The technique of balneological assessment of forest-park landscapes of mountain territories for the purposes of climate-landscape therapy in case of resort treatment of the contingent subject to FMBA of Russia: Handbook for doctors//Registration number 82-15 from 17.12.2015 - Pyatigorsk:MHRF:FMBA of Russia, 2015. -26 p.
The Time Series Technique for Aerosol Retrievals over Land from MODIS: Algorithm MAIAC
NASA Technical Reports Server (NTRS)
Lyapustin, Alexei; Wang, Yujie
2008-01-01
Atmospheric aerosols interact with sun light by scattering and absorbing radiation. By changing irradiance of the Earth surface, modifying cloud fractional cover and microphysical properties and a number of other mechanisms, they affect the energy balance, hydrological cycle, and planetary climate [IPCC, 2007]. In many world regions there is a growing impact of aerosols on air quality and human health. The Earth Observing System [NASA, 1999] initiated high quality global Earth observations and operational aerosol retrievals over land. With the wide swath (2300 km) of MODIS instrument, the MODIS Dark Target algorithm [Kaufman et al., 1997; Remer et al., 2005; Levy et al., 2007] currently complemented with the Deep Blue method [Hsu et al., 2004] provides daily global view of planetary atmospheric aerosol. The MISR algorithm [Martonchik et al., 1998; Diner et al., 2005] makes high quality aerosol retrievals in 300 km swaths covering the globe in 8 days. With MODIS aerosol program being very successful, there are still several unresolved issues in the retrieval algorithms. The current processing is pixel-based and relies on a single-orbit data. Such an approach produces a single measurement for every pixel characterized by two main unknowns, aerosol optical thickness (AOT) and surface reflectance (SR). This lack of information constitutes a fundamental problem of the remote sensing which cannot be resolved without a priori information. For example, MODIS Dark Target algorithm makes spectral assumptions about surface reflectance, whereas the Deep Blue method uses ancillary global database of surface reflectance composed from minimal monthly measurements with Rayleigh correction. Both algorithms use Lambertian surface model. The surface-related assumptions in the aerosol retrievals may affect subsequent atmospheric correction in unintended way. For example, the Dark Target algorithm uses an empirical relationship to predict SR in the Blue (B3) and Red (B1) bands from the 2.1 m channel (B7) for the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce the same SR in the red and blue bands as predicted, i.e. an empirical function of 2.1. In other words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red bands appears borrowed from band B7. This may have certain implications for the vegetation and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively substituted in terms of variability by band B7, which is sensitive to the plant liquid water. This chapter describes a new recently developed generic aerosol-surface retrieval algorithm for MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time series of MODIS measurements.
The Impact of a Large Object with Jupiter in July 2009
NASA Astrophysics Data System (ADS)
Sanchez-Lavega, Agustin; Wesley, A.; Orton, G.; Chodas, P.; Hueso, R.; Perez-Hoyos, S.; Fletcher, L.; Yanamandra-Fisher, P.; Legarreta, J.; Gomez-Forrellad, J. M.
2010-05-01
The only major impact ever observed directly in the Solar System was that of a large fragmented comet with Jupiter in July (1994) (Comet Shoemaker-Levy 9; SL9). We report here the observation of a second, single, large impact on Jupiter that occurred on 19 July 2009 at a latitude of -55° with an orthogonal entry trajectory and a lower incidence angle compared to those of SL9. The size of the initial aerosol cloud debris was 4,800 km East-West and 2,500 km North-South. Comparison its properties with those produced by the SL9 fragments, coupled with dynamical calculations of possible pre-impact orbits, indicates that the impactor was most probably an icy body with a size of 0.5-1 km. We calculate that the rate of collisions of this magnitude may be five to ten times more frequent than previously thought. The search for unpredicted impacts, such as the current one, could be best performed in the near-infrared methane absorption bands at 890 nm and in the 2.12 to 2.3 μm K methane-hydrogen absorption band, where the high-altitude aerosols detach by their brightness relative to Jupiter's primary clouds. We present measurements of the debris dispersion by Jovian winds from a long-term imaging campaign with ground-based telescopes. Ackowledgements: Work was supported by the Spanish MICIIN AYA2009-10701 with FEDER and Grupos Gobierno Vasco IT-464-07, by NASA funds to JPL, Caltech, by the NASA Postdoctoral Program at JPL, and by the Glasstone Fellowship program at Oxford.
NASA Astrophysics Data System (ADS)
Bui, A. T.; Wallace, H. W., IV; Alvarez, S. L.; Erickson, M.; Alwe, H. D.; May, N.; Cook, R.; Connor, M.; Slade, J. H., Jr.; Shi, Q.; Kavassalis, S.; Tyndall, G. S.; Shepson, P. B.; Pratt, K.; Ault, A. P.; Millet, D. B.; Murphy, J. G.; Usenko, S.; Sheesley, R. J.; Flynn, J. H., III; Griffin, R. J.; Wang, W.
2017-12-01
Forests are a rich source of biogenic volatile organic compounds (BVOCs). Oxidation of BVOCs can result in the formation of secondary organic aerosol (SOA) and in the presence of NOx (NO+NO2) produce organic nitrate-containing particles. However, the distribution of both BVOCs and oxidants can be dramatically altered by the physical barriers provided by a forest canopy. Global models currently neglect the effect of these canopies on SOA formation in forested regions. In this work, we characterize non-refractory submicron aerosol (NR-PM1) using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) during the 2016 Program on Oxidants: Photochemistry, Emissions, and Transport-Atmospheric Measurements of Oxidants in Summer (PROPHET-AMOS) campaign. This site is located in a rural forest in northern Michigan and features a tower that allowed for both above and below canopy measurements. Our results indicate that organic aerosols (OA) account for a substantial portion of the NR-PM1 measured at this site. Organic nitrate aerosol can contribute up to 18% of the total OA and an average of 75% of the total measured nitrate aerosol. Episodes of above- and below-canopy NR-PM1 concentration differences indicate that above-canopy OA concentrations can be up to 40% greater than below-canopy, which represents an increase of up to 1.5 µg/m3. Organic fragment ions such as CxHy, CxHyOz, and CxHyO1 contribute to enhanced above-canopy OA concentrations. Positive matrix factorization analysis of the high-resolution OA mass spectra identified three SOA factors: low volatility oxygenated OA (LVOOA), isoprene-derived OOA (ISOOA), and oxygenated organic aerosol. Analysis of air mass backward trajectories and correlations with external data indicate that LVOOA correlates well with sulfate and aged, urban-influenced air masses, whereas ISOOA correlates well with isoprene SOA tracers and air masses originating from semi-remote areas. Our results indicate that the OA at this site is dominated by SOA formation and that vertical differences in OA can exist in the presence of a forest canopy. Results from this work have important implications in understanding the role that canopies play in SOA formation and provide useful data to help accurately validate biosphere-atmosphere exchange models.
Atmospheric Chemistry from Space: Present Status and Future Plans
NASA Technical Reports Server (NTRS)
Schoeberl, Mark R.; Einaudi, Franco (Technical Monitor)
2001-01-01
One of the unqualified successes of the earth observation program is NASA's continuing monitoring of the ozone layer from space. This activity began in the early 70's with research instruments and continues to this day with the TOMS instrument series and the Upper Atmosphere Research Satellite. In the near future, NASA will be launching the EOS Aura spacecraft (launch mid-2003) which will continue our study of the chemical processes that produce stratospheric ozone depletion. In addition, Aura will begin the first global study of lower atmospheric air pollution including urban ozone, aerosols, nitrogen oxides and carbon monoxide. Atmospheric air pollution measurements from earth orbit involve the development of very high precision spectrometer technologies that have never been flown in space. Farther into the future, lower atmospheric ozone and aerosols may be monitored by space based lidars in low earth orbit, by sensors in geostationary orbit and by continuous limb observations instrument from the Lagrange point L2.
Looking skyward to study ecosystem carbon dynamics
Dye, Dennis G.
2012-01-01
Between May and October 2011 the U.S. Geological Survey (USGS), in cooperation with the U.S. Department of Energy's Atmospheric Radiation Measurement (ARM) program, conducted a field campaign at the ARM Southern Great Plains site in north central Oklahoma to evaluate a new instrument for quantitative image-based monitoring of sky conditions and solar radiation. The High Dynamic Range All-Sky Imaging System (HDR-ASIS) was developed by USGS to support studies of cloud- and aerosol-induced variability in the geometric properties of solar radiation (the sky radiance distribution) and its effects on photosynthesis and uptake of carbon dioxide (CO2) by terrestrial ecosystems. Under a clean, cloudless atmosphere when the Sun is above the horizon, most of the solar radiation reaching an area of the Earth's surface is concentrated in a beam coming directly from the Sun; a relatively small proportion arrives as diffuse radiation from the rest of the sky. Clouds and atmospheric aerosols cause increased scattering of the beam radiation, which increases the proportion of diffuse radiation at the surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ambs, J.L.; Cantrell, B.K.; Watts, W.F.
1994-01-01
The U.S. Bureau of Mines (USBM) Diesel Research Program emphasizes the development and evaluation of emission control devices to reduce exposure of miners to diesel exhaust pollutants. Studies by the USBM have shown that diesel exhaust aerosol (DEA) contributes a substantial portion of the respirable aerosol in underground coal mining using diesel equipment not equipped with emission controls. The USBM and the Donaldson Co., Inc., Minneapolis, MN, have developed a low-temperature, disposable diesel exhaust filter (DDEF) for use on permissible diesel haulage vehicles equipped with waterban exhaust conditioners. These were evaluated in three underground mines to determine their effectiveness inmore » reducing DEA concentrations. The DDEF reduced DEA concentrations from 70 to 90 pct at these mines. The usable life of the filter ranged from 10 to 32 h, depending on factors that affect DEA output, such as mine altitude, engine type, and duty-cycle. Cost per filter is approximately $40.« less
Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol
NASA Astrophysics Data System (ADS)
Chen, L.-W. A.; Chow, J. C.; Wang, X. L.; Robles, J. A.; Sumlin, B. J.; Lowenthal, D. H.; Zimmermann, R.; Watson, J. G.
2015-01-01
A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405-980 nm) for monitoring spectral reflectance (R) and transmittance (T) of filter samples allowed "thermal spectral analysis (TSA)" and wavelength (λ)-dependent organic-carbon (OC)-elemental-carbon (EC) measurements. Optical sensing was calibrated with transfer standards traceable to absolute R and T measurements, adjusted for loading effects to report spectral light absorption (as absorption optical depth (τa, λ)), and verified using diesel exhaust samples. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~ 635 nm) for pyrolysis adjustment. TSA provides additional information that evaluates black-carbon (BC) and brown-carbon (BrC) contributions and their optical properties in the near infrared to the near ultraviolet parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.
Multi-wavelength optical measurement to enhance thermal/optical analysis for carbonaceous aerosol
NASA Astrophysics Data System (ADS)
Chen, L.-W. A.; Chow, J. C.; Wang, X. L.; Robles, J. A.; Sumlin, B.; Lowenthal, D. H.; Zimmermann, R.; Watson, J. G.
2014-09-01
A thermal/optical carbon analyzer equipped with seven-wavelength light source/detector (405-980 nm) for monitoring spectral reflectance (R) and transmittance (T) of filter samples allows "thermal spectral analysis (TSA)" and wavelength (λ)-dependent organic carbon (OC)-elemental carbon (EC) measurements. Optical sensing is calibrated with transfer standards traceable to absolute R and T measurements and adjusted for loading effects to determine spectral light absorption (as absorption optical depth [τa, λ]) using diesel exhaust samples as a reference. Tests on ambient and source samples show OC and EC concentrations equivalent to those from conventional carbon analysis when based on the same wavelength (~635 nm) for pyrolysis adjustment. TSA provides additional information that evaluates black carbon (BC) and brown carbon (BrC) contributions and their optical properties in the near-IR to the near-UV parts of the solar spectrum. The enhanced carbon analyzer can add value to current aerosol monitoring programs and provide insight into more accurate OC and EC measurements for climate, visibility, or health studies.
Laboratory Directed Research and Development Program: Annual report to the Department of Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogeka, G.J.; Romano, A.J.
1994-12-01
Project program summaries are presented for: effect of bacterial spore protein on mutagenesis; cellular toxicity of coaine and cocaethylene; calcinfication in marine alga (global carbon cycling); advanced permanent magnet materials; a high flux neutron source; genetics of drug addiction; microdialysis; analysis of powder diffraction data; accelerator technology; nucleic acids and proteins and their interactions, by small-angle XRD; enhancement of microplanar beam radiation therapy of gliosarcoma; relaxographic and functional MRI; low-temperature infrared laser absorption spectroscopy; photodesorption of H{sub 2}; helical magnet for RHIC; novel microporous solids; chemistry and physics of stratospheric aerosols (ozone depletion); rf source for linear colliders; resonance Ramanmore » detection of VOCs; synthesis of plant fatty acids with unusual double bond positions; outer surface proteins of the Lyme disease spirochete; multiwire proportional chambers for collider muons; self-organized criticality; PCR-SSCP detection of genetic changes at single cell level; proton facility for cancer therapy; and visible free-electron laser experiment.« less
AMF3 ARM's Research Facility at Oliktok Point Alaska
NASA Astrophysics Data System (ADS)
Helsel, F.; Lucero, D. A.; Ivey, M.; Dexheimer, D.; Hardesty, J.; Roesler, E. L.
2015-12-01
Scientific Infrastructure To Support Atmospheric Science And Aerosol Science For The Department Of Energy's Atmospheric Radiation Measurement Programs Mobile Facility 3 Located At Oliktok Point, Alaska.The Atmospheric Radiation Measurement (ARM) Program's Mobile Facility 3 (AMF3) located at Oliktok Point, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Oliktok is designed to be mobile and it may be relocated in the future to support other ARM science missions. AMF-3 instruments include: scanning precipitation Radar-cloud radar, Raman Lidar, Eddy correlation flux systems, Ceilometer, Balloon sounding system, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at AMF3 and the challenges of powering an Arctic site without the use of grid power.
Earth Observing System: Science Objectives and Challenges
NASA Technical Reports Server (NTRS)
King, Michael D.
1999-01-01
The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation we review the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.
High Spectral Resolution LIDAR as a Tool for Air Quality Research
NASA Astrophysics Data System (ADS)
Eloranta, E. W.; Spuler, S.; Hayman, M. M.
2017-12-01
Many aspects of air quality research require information on the vertical distribution of pollution. Traditional measurements, obtained from surface based samplers, or passive satellite remote sensing, do not provide vertical profiles. Lidar can provide profiles of aerosol properties. However traditional backscatter lidar suffers from uncertain calibrations with poorly constrained algorithms. These problems are avoided using High Spectral Resolution Lidar (HSRL) which provides absolutely calibrated vertical profiles of aerosol properties. The University of Wisconsin HSRL systems measure 532 nm wavelength aerosol backscatter cross-sections, extinction cross-sections, depolarization, and attenuated 1064 nm backscatter. These instruments are designed for long-term deployment at remote sites with minimal local support. Processed data is provided for public viewing and download in real-time on our web site "http://hsrl.ssec.wisc.edu". Air pollution applications of HSRL data will be illustrated with examples acquired during air quality field programs including; KORUS-AQ, DISCOVER-AQ, LAMOS and FRAPPE. Observations include 1) long range transport of dust, air pollution and smoke. 2) Fumigation episodes where elevated pollution is mixed down to the surface. 3) visibility restrictions by aerosols and 4) diurnal variations in atmospheric optical depth. While HSRL is powerful air quality research tool, its application in routine measurement networks is hindered by the high cost of current systems. Recent technical advances promise a next generation HSRL using telcom components to greatly reduce system cost. This paper will present data generated by a prototype low cost system constructed at NCAR. In addition to lower cost, operation at a non-visible near 780 nm infrared wavelength removes all FAA restrictions on the operation.
NASA Astrophysics Data System (ADS)
Topping, David; Barley, Mark; Bane, Michael K.; Higham, Nicholas; Aumont, Bernard; Dingle, Nicholas; McFiggans, Gordon
2016-03-01
In this paper we describe the development and application of a new web-based facility, UManSysProp (http://umansysprop.seaes.manchester.ac.uk), for automating predictions of molecular and atmospheric aerosol properties. Current facilities include pure component vapour pressures, critical properties, and sub-cooled densities of organic molecules; activity coefficient predictions for mixed inorganic-organic liquid systems; hygroscopic growth factors and CCN (cloud condensation nuclei) activation potential of mixed inorganic-organic aerosol particles; and absorptive partitioning calculations with/without a treatment of non-ideality. The aim of this new facility is to provide a single point of reference for all properties relevant to atmospheric aerosol that have been checked for applicability to atmospheric compounds where possible. The group contribution approach allows users to upload molecular information in the form of SMILES (Simplified Molecular Input Line Entry System) strings and UManSysProp will automatically extract the relevant information for calculations. Built using open-source chemical informatics, and hosted at the University of Manchester, the facilities are provided via a browser and device-friendly web interface, or can be accessed using the user's own code via a JSON API (application program interface). We also provide the source code for all predictive techniques provided on the site, covered by the GNU GPL (General Public License) license to encourage development of a user community. We have released this via a Github repository (doi:10.5281/zenodo.45143). In this paper we demonstrate its use with specific examples that can be simulated using the web-browser interface.
Diffusive deposition of aerosols in Phebus containment during FPT-2 test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kontautas, A.; Urbonavicius, E.
2012-07-01
At present the lumped-parameter codes is the main tool to investigate the complex response of the containment of Nuclear Power Plant in case of an accident. Continuous development and validation of the codes is required to perform realistic investigation of the processes that determine the possible source term of radioactive products to the environment. Validation of the codes is based on the comparison of the calculated results with the measurements performed in experimental facilities. The most extensive experimental program to investigate fission product release from the molten fuel, transport through the cooling circuit and deposition in the containment is performedmore » in PHEBUS test facility. Test FPT-2 performed in this facility is considered for analysis of processes taking place in containment. Earlier performed investigations using COCOSYS code showed that the code could be successfully used for analysis of thermal-hydraulic processes and deposition of aerosols, but there was also noticed that diffusive deposition on the vertical walls does not fit well with the measured results. In the CPA module of ASTEC code there is implemented different model for diffusive deposition, therefore the PHEBUS containment model was transferred from COCOSYS code to ASTEC-CPA to investigate the influence of the diffusive deposition modelling. Analysis was performed using PHEBUS containment model of 16 nodes. The calculated thermal-hydraulic parameters are in good agreement with measured results, which gives basis for realistic simulation of aerosol transport and deposition processes. Performed investigations showed that diffusive deposition model has influence on the aerosol deposition distribution on different surfaces in the test facility. (authors)« less
van der Plaats, R. Q. J.; de Heer, L.; Paauwe, R.; Schimmer, B.; Vellema, P.; van Rotterdam, B. J.; van Duynhoven, Y. T. H. P.
2012-01-01
During large Q fever outbreaks in the Netherlands between 2007 and 2010, dairy goat farms were implicated as the primary source of human Q fever. The transmission of Coxiella burnetii to humans is thought to occur primarily via aerosols, although available data on C. burnetii in aerosols and other environmental matrices are limited. During the outbreak of 2009, 19 dairy goat farms and one dairy sheep farm were selected nationwide to investigate the presence of C. burnetii DNA in vaginal swabs, manure, surface area swabs, milk unit filters, and aerosols. Four of these farms had a positive status during the Coxiella burnetii bulk milk monitoring program in 2009 and additionally reported abortion waves in 2008 or 2009. Eleven farms were reported as having positive bulk milk only, and five selected (control) farms had a bulk milk-negative status in 2009 and no reported Q fever history. Screening by quantitative PCR (qPCR) revealed that on farms with a history of abortions related to C. burnetii and, to a lesser extent, on farms positive by bulk milk monitoring, generally higher proportions of positive samples and higher levels of C. burnetii DNA within positive samples were observed than on the control farms. The relatively high levels of C. burnetii DNA in surface area swabs and aerosols sampled in stables of bulk milk-positive farms, including farms with a Q fever-related abortion history, support the hypothesis that these farms can pose a risk for the transmission of C. burnetii to humans. PMID:22247143
Animal and human dose-response models for Brucella species.
Teske, Sondra S; Huang, Yin; Tamrakar, Sushil B; Bartrand, Timothy A; Weir, Mark H; Haas, Charles N
2011-10-01
Human Brucellosis is one of the most common zoonotic diseases worldwide. Disease transmission often occurs through the handling of domestic livestock, as well as ingestion of unpasteurized milk and cheese, but can have enhanced infectivity if aerosolized. Because there is no human vaccine available, rising concerns about the threat of Brucellosis to human health and its inclusion in the Center for Disease Control's Category B Bioterrorism/Select Agent List make a better understanding of the dose-response relationship of this microbe necessary. Through an extensive peer-reviewed literature search, candidate dose-response data were appraised so as to surpass certain standards for quality. The statistical programming language, "R," was used to compute the maximum likelihood estimation to fit two models, the exponential and the approximate beta-Poisson (widely used for quantitative risk assessment) to dose-response data. Dose-response models were generated for prevalent species of Brucella: Br. suis, Br. melitensis, and Br. abortus. Dose-response models were created for aerosolized Br. suis exposure to guinea pigs from pooled studies. A parallel model for guinea pigs inoculated through both aerosol and subcutaneous routes with Br. melitensis showed that the median infectious dose corresponded to a 30 colony-forming units (CFU) dose of Br. suis, much less than the N(50) dose of about 94 CFU for Br. melitensis organisms. When Br. melitensis was tested subcutaneously on mice, the N(50) dose was higher, 1,840 CFU. A dose-response model was constructed from pooled data for mice, rhesus macaques, and humans inoculated through three routes (subcutaneously/aerosol/intradermally) with Br. melitensis. © 2011 Society for Risk Analysis.
Using commercial software products for atmospheric remote sensing
NASA Astrophysics Data System (ADS)
Kristl, Joseph A.; Tibaudo, Cheryl; Tang, Kuilian; Schroeder, John W.
2002-02-01
The Ontar Corporation (www.Ontar.com) has developed several products for atmospheric remote sensing to calculate radiative transport, atmospheric transmission, and sensor performance in both the normal atmosphere and the atmosphere disturbed by battlefield conditions of smoke, dust, explosives and turbulence. These products include: PcModWin: Uses the USAF standard MODTRAN model to compute the atmospheric transmission and radiance at medium spectral resolution (2 cm-1) from the ultraviolet/visible into the infrared and microwave regions of the spectrum. It can be used for any geometry and atmospheric conditions such as aerosols, clouds and rain. PcLnWin: Uses the USAF standard FASCOD model to compute atmospheric transmission and emission at high (line-by-line) spectral resolution using the HITRAN 2000 database. It can be used over the same spectrum from the UV/visible into the infrared and microwave regions of the spectrum. HitranPC: Computes the absolute high (line-by-line) spectral resolution transmission spectrum of the atmosphere for different temperatures and pressures. HitranPC is a user-friendly program developed by the University of South Florida (USF) and uses the international standard molecular spectroscopic database, HITRAN. LidarPC: A computer program to calculate the Laser Radar/L&n Equation for hard targets and atmospheric backscatter using manual input atmospheric parameters or HitranPC and BETASPEC - transmission and backscatter calculations of the atmosphere. Also developed by the University of South Florida (USF). PcEosael: is a library of programs that mathematically describe aspects of electromagnetic propagation in battlefield environments. 25 modules are connected but can be exercised individually. Covers eight general categories of atmospheric effects, including gases, aerosols and laser propagation. Based on codes developed by the Army Research Lab. NVTherm: NVTherm models parallel scan, serial scan, and staring thermal imagers that operate in the mid and far infrared spectral bands (3 to 12 micrometers wavelength). It predicts the Minimum Resolvable Temperature Difference (MRTD) or just MRT) that can be discriminated by a human when using a thermal imager. NVTherm also predicts the target acquisition range performance likely to be achieved using the sensor.
National Acid Precipitation Assessment Program Report to Congress: An integrated assessment
Burns, Douglas A.; Fenn, Mark E.; Baron, Jill S.; Lynch, Jason A.; Cosby, Bernard J.
2011-01-01
Acid deposition, more commonly known as acid rain, occurs when emissions of sulfur dioxide (SO2) and nitrogen oxides (NOx) react in the atmosphere with water, oxygen, and oxidants to form various acidic compounds. Prevailing winds transport the acidic compounds hundreds of miles, often across state and national borders. These acidic compounds then fall to earth in either a wet form (rain, snow, and fog) or a dry form (gases, aerosols, and particles). At certain levels, the acidic compounds, including small particles such as sulfates and nitrates, can cause many negative human health and environmental effects.
A mobile app for military operational entomology pesticide applications.
Britch, Seth C; Linthicum, Kenneth J; Aldridge, Robert L; Yans, Matthew W; Hill, David W; Obenauer, Peter J; Hoffman, Eric R
2014-09-01
Multiple field studies conducted for the Deployed War-Fighter Protection (DWFP) research program have generated more than 80 specific guidance points for innovative combinations of pesticide application equipment, pesticide formulations, and application techniques for aerosol and residual pesticide treatments in 6 ecological regions against a range of mosquito, sand fly, and filth fly nuisance and disease-vector threats. To synthesize and operationalize these DWFP field and laboratory efficacy data we developed an interactive iOS and Android mobile software application, the Pesticide App, consisting of specific pesticide application guidance organized by environment and target insect vector species.
NASA Astrophysics Data System (ADS)
Golobokova, Liudmila; Polkin, Victor
2014-05-01
The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of aerosols while the natural ones are of lower severity due to low temperatures endemic for the Arctic Ocean areas. For doing the assessment of the air mass components chemical formulation samples of water soluble fraction of the atmospheric aerosol underwent chemical analysis. Sum of main ions within the aerosol composition varied from 0.23 to 16.2 mkg/m3. Minimum ion concentrations are defined in the aerosol sampled over the Chukotka sea surface at still. Chemical composition of the Beringov and Chukotka sea aerosol was dominated by impurities of sea origin coming from the ocean with air mass. Ion sum increased concentrations were observed in the Pevek area (Eastern Siberia Sea). Aerosol chemical composition building was impacted by air mass coming from the shore. Maximum concentrations of the bespoken components are seen in the aerosol sampled during stormy weather. Increase of wind made it for raising into the air of the sea origin particles. Ingestion of sprays onto the filter was eliminated by covering the sample catcher with a special protective hood. This completed survey is indicative of favourable state of atmosphere in the arctic resource of the Russian Arctic Eastern Section during Summer-Autumn season of 2013. The job is done under financial support of project. 23 Programs of fundamental research of the RAS Presidium, Partnership Integration Project, SB RAS. 25.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fast, J. D.; Berg, L. K.; Burleyson, C.
Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in land surface, boundary layer, and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign was designed to provide a detailed set of measurements that are needed to obtainmore » a more complete understanding of the lifecycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. Some of the land-atmosphere-cloud interactions that can be studied using HI-SCALE data are shown in Figure 1. HI-SCALE consisted of two 4-week intensive operation periods (IOPs), one in the spring (April 24-May 21) and the other in the late summer (August 28-September 24) of 2016, to take advantage of different stages of the plant lifecycle, the distribution of “greenness” for various types of vegetation in the vicinity of the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains (SGP) site, and aerosol properties that vary during the growing season. As expected, satellite measurements indicated that the Normalized Difference Vegetation Index (NDVI) was much “greener” in the vicinity of the SGP site during the spring IOP than the late summer IOP as a result of winter wheat maturing in the spring and being harvested in the early summer. As shown in Figure 2, temperatures were cooler than average and soil moisture was high during the spring IOP, while temperatures were warmer than average and soil moisture was low during the late summer IOP. These factors likely influence the occurrence and lifecycle of shallow clouds. Most of the instrumentation was deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei (CCN) concentrations. The specific instrumentation is listed in Table 1. The team of scientists participating in the G-1 flights were from Pacific Northwest National Laboratory (PNNL), Brookhaven National Laboratory (BNL), and the University of Washington. Routine ARM aerosol measurements made at the surface were supplemented with aerosol microphysical properties measurements, with support from the DOE Environmental Molecular Sciences Laboratory (EMSL) User Facility and the Atmospheric System Radiation (ASR) program. This included deploying a scanning mobility particle sizer (SMPS) to measure aerosol size distribution, a proton transfer reaction-mass spectrometer (PTR-MS) to measure volatile organic compounds, an aerosol mass spectrometer (AMS) to measure bulk aerosol composition, and the single-particle laser ablation time-of-flight mass spectrometer (SPLAT II) to measure single-particle aerosol composition at the SGP site Guest Instrumentation Facility. In this way, characterization of aerosol properties at the surface and on the G-1 were consistent. In addition, the HI-SCALE: Nanoparticle Composition and Precursors add-on campaign was conducted during the second IOP in which several state-of-the-science chemical ionization mass spectrometers were deployed to measure nanoparticle composition and precursors. Scientists participating in the surface measurements were from PNNL, BNL, University California–Irvine, Augsberg College, Colorado University, Aerodyne Inc., and Aerosol Dynamics Inc.« less
Airborne Particulate Threat Assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patrick Treado; Oksana Klueva; Jeffrey Beckstead
Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. governmentmore » agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our findings and APICD Gen II subsystems for automated collection, deposition and detection of ambient particulate matter. Key findings from the APTA Program include: Ambient biological PM taxonomy; Demonstration of key subsystems needed for autonomous bioaerosol detection; System design; Efficient electrostatic collection; Automated bioagent recognition; Raman analysis performance validating Td<9 sec; Efficient collection surface regeneration; and Development of a quantitative bioaerosol defection model. The objective of the APTA program was to advance the state of our knowledge of ambient background PM composition. Operation of an automated aerosol detection system was enhanced by a more accurate assessment of background variability, especially for sensitive and specific sensing strategies like Raman detection that are background-limited in performance. Based on this improved knowledge of background, the overall threat detection performance of Raman sensors was improved.« less
Description of the CERES Ocean Validation Experiment (COVE), A Dedicated EOS Validation Test Site
NASA Astrophysics Data System (ADS)
Rutledge, K.; Charlock, T.; Smith, B.; Jin, Z.; Rose, F.; Denn, F.; Rutan, D.; Haeffelin, M.; Su, W.; Xhang, T.; Jay, M.
2001-12-01
A unique test site located in the mid-Atlantic coastal marine waters has been used by several EOS projects for validation measurements. A common theme across these projects is the need for a stable measurement site within the marine environment for long-term, high quality radiation measurements. The site was initiated by NASA's Clouds and the Earths Radiant Energy System (CERES) project. One of CERES's challenging goals is to provide upwelling and downwelling shortwave fluxes at several pressure altitudes within the atmosphere and at the surface. Operationally the radiative transfer model of Fu and Liou (1996, 1998), the CERES instrument measured radiances and various other EOS platform data are being used to accomplish this goal. We present here, a component of the CERES/EOS validation effort that is focused to verify and optimize the prediction algorithms for radiation parameters associated with the marine coastal and oceanic surface types of the planet. For this validation work, the CERES Ocean Validation Experiment (COVE) was developed to provide detailed high-frequency and long-duration measurements for radiation and their associated dependent variables. The CERES validations also include analytical efforts which will not be described here (but see Charlock et.al, Su et.al., Smith et.al-Fall 2001 AGU Meeting) The COVE activity is based on a rigid ocean platform which is located approximately twenty kilometers off of the coast of Virginia Beach, Virginia. The once-manned US Coast Guard facility rises 35 meters from the ocean surface allowing the radiation instruments to be well above the splash zone. The depth of the sea is eleven meters at the site. A power and communications system has been installed for present and future requirements. Scientific measurements at the site have primarily been developed within the framework of established national and international monitoring programs. These include the Baseline Surface Radiation Network of the World Meteorological Organization, NASA's robotic aerosol measurement program - AERONET, NOAA's GPS Water Vapor Demonstration Network, NOAA's National Buoy Data Center and GEWEX's Global Aerosol Climate Program. Other EOS projects have utilized the COVE platform for validation measurements (short term: MODIS, MISR intermediate term: SEAWIFS). A longer term measurement program for the AIRS instrument to be deployed on the AQUA satellite is underway. The poster will detail the unique measurement and infrastructure assets of the COVE site and present example 1.5 year time series of the major radiometric parameters. Lastly, the near term measurement augmentations that are anticipated at COVE will be discussed.
NASA Astrophysics Data System (ADS)
Adon, Jacques; Liousse, Cathy; Yoboue, Veronique; Baeza, Armelle; Akpo, Aristide; Bahino, Julien; Chiron, Christelle; Galy-Lacaux, Corinne; Keita, Sékou
2017-04-01
This study is a contribution to the WP2-DACCIWA program with the aim to characterize particulate pollution on domestic fire site, traffic sites and waste burning site of two West-African capitals (Abidjan, Cote d'Ivoire and Cotonou, Benin) and to study aerosol biological impacts on lung inflammation. Such an impact is still largely unknown, especially for the particles emitted by intense African traffic sources and domestic fires. In this context, fundamental research of this study is centered on the following key scientific question: what is the link between aerosol size differentiated composition and inflammation markers for the main combustion sources prevailing in South West Africa during dry and wet seasons? To tackle this question, intensive campaigns in Abidjan and Cotonou have been conducted in July 2015, January and July 2016, and January 2017. In this paper, we will present our first results for the campaign of January 2016. In terms of aerosol size differentiated composition, main aerosol components (mass, black carbon, organic carbon, water soluble particles ...) were measured. We may notice that PM measured for all the sites is generally higher than WHO norms. Organic carbon and dust particles are the two more important contributors for the ultra-fine and fine particle sizes with more organic carbon in Abidjan and dust particles in Cotonou respectively. In terms of in vitro biological studies on sampled aerosols on these sites, size-fractionated PM from the different sampling sites were compared for their ability to induce a proinflammatory response characterized by the release of the cytokine IL-6 by human bronchial epithelial cells. PM from waste burning site did not induce significant IL-6 release whatever the size fraction whereas PM from domestic fire were the most reactive especially the ultra-fine fraction. Ultra-fine particles from traffic (Abidjan and Cotonou) always induced a dose-dependent IL-6 release. A tentative cross-analysis between physico-chemical and toxicological results will be proposed.
NASA Astrophysics Data System (ADS)
Major, István; Gyökös, Brigitta; Túri, Marianna; Futó, István; Filep, Ágnes; Hoffer, András; Molnár, Mihály
2016-04-01
Comprehensive atmospheric studies have demonstrated that carbonaceous aerosol is one of the main components of atmospheric particulate matter over Europe. Various methods, considering optical or thermal properties, have been developed for quantification of the accurate amount of both organic and elemental carbon constituents of atmospheric aerosol. The aim of our work was to develop an alternative fast and easy method for determination of the total carbon content of individual aerosol samples collected on prebaked quartz filters whereby the mass and surface concentration becomes simply computable. We applied the conventional "elemental analyzer (EA) coupled online with an isotope ratio mass spectrometer (IRMS)" technique which is ubiquitously used in mass spectrometry. Using this technique we are able to measure simultaneously the carbon stable isotope ratio of the samples, as well. During the developing process, we compared the EA-IRMS technique with an off-line catalytic combustion method worked out previously at Hertelendi Laboratory of Environmental Studies (HEKAL). We tested the combined online total carbon content and stable isotope ratio measurement both on standard materials and real aerosol samples. Regarding the test results the novel method assures, on the one hand, at least 95% of carbon recovery yield in a broad total carbon mass range (between 100 and 3000 ug) and, on the other hand, a good reproducibility of stable isotope measurements with an uncertainty of ± 0.2 per mill. Comparing the total carbon results obtained by the EA-IRMS and the off-line catalytic combustion method we found a very good correlation (R2=0.94) that proves the applicability of both preparation method. Advantages of the novel method are the fast and simplified sample preparation steps and the fully automated, simultaneous carbon stable isotope ratio measurement processes. Furthermore stable isotope ratio results can effectively be applied in the source apportionment investigations of atmospheric carbonaceous aerosol. This research was supported by the European Union and the State of Hungary, co-financed by the European Social Fund in the framework of TÁMOP 4.2.4.A/2-11-1-2012-0001 'National Excellence Program.
NASA Astrophysics Data System (ADS)
Zuev, Vladimir V.; Burlakov, Vladimir D.; Nevzorov, Aleksei V.; Pravdin, Vladimir L.; Savelieva, Ekaterina S.; Gerasimov, Vladislav V.
2017-02-01
There are only four lidar stations in the world which have almost continuously performed observations of the stratospheric aerosol layer (SAL) state over the last 30 years. The longest time series of the SAL lidar measurements have been accumulated at the Mauna Loa Observatory (Hawaii) since 1973, the NASA Langley Research Center (Hampton, Virginia) since 1974, and Garmisch-Partenkirchen (Germany) since 1976. The fourth lidar station we present started to perform routine observations of the SAL parameters in Tomsk (56.48° N, 85.05° E, Western Siberia, Russia) in 1986. In this paper, we mainly focus on and discuss the stratospheric background period from 2000 to 2005 and the causes of the SAL perturbations over Tomsk in the 2006-2015 period. During the last decade, volcanic aerosol plumes from tropical Mt. Manam, Soufrière Hills, Rabaul, Merapi, Nabro, and Kelut and extratropical (northern) Mt. Okmok, Kasatochi, Redoubt, Sarychev Peak, Eyjafjallajökull, and Grímsvötn were detected in the stratosphere over Tomsk. When it was possible, we used the NOAA HYSPLIT trajectory model to assign aerosol layers observed over Tomsk to the corresponding volcanic eruptions. The trajectory analysis highlighted some surprising results. For example, in the cases of the Okmok, Kasatochi, and Eyjafjallajökull eruptions, the HYSPLIT air mass backward trajectories, started from altitudes of aerosol layers detected over Tomsk with a lidar, passed over these volcanoes on their eruption days at altitudes higher than the maximum plume altitudes given by the Smithsonian Institution Global Volcanism Program. An explanation of these facts is suggested. The role of both tropical and northern volcanic eruptions in volcanogenic aerosol loading of the midlatitude stratosphere is also discussed. In addition to volcanoes, we considered other possible causes of the SAL perturbations over Tomsk, i.e., the polar stratospheric cloud (PSC) events and smoke plumes from strong forest fires. At least two PSC events were detected in 1995 and 2007. We also make an assumption that the Kelut volcanic eruption (Indonesia, February 2014) could be the cause of the SAL perturbations over Tomsk during the first quarter of 2015.
DEA-I: A Globally Configurable Open Source Software Package in Support of Air Quality Forecasts
NASA Astrophysics Data System (ADS)
Davies, J.; Strabala, K.; Pierce, R.; Huang, H.; Schiffer, E.
2012-12-01
During September 2003, a team of NASA, NOAA, and EPA researchers demonstrated a prototype for using Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth retrievals in daily air quality forecasts; this became known as IDEA (Infusing satellite Data into Environmental Applications). IDEA was part of the NASA Applied Sciences Program strategy to demonstrate practical uses of NASA-sponsored observations from space and predictions. Following its successful demonstration an export version of IDEA, known as IDEA International (IDEA-I), has now been released. IDEA-I supports the Global Earth Observation Systems of Systems (GEOSS) Group on Earth Observations (GEO) Health Societal Benefit Area (SBA) and is being developed within the framework of the GEO Earth Observations in Decision Support Call for Proposals. The vehicle for IDEA-I release is the International MODIS and AIRS (Atmospheric Infrared Sounder) Processing Package (IMAPP), developed at the Space Science and Engineering Center, University of Wisconsin-Madison (SSEC/UW-Madison). IMAPP is a NASA-funded and freely-distributed software package which allows any ground station capable of receiving direct broadcast from Terra or Aqua to produce calibrated and geolocated radiances, and a suite of environmental products, of which the IDEA-I 48-hour forward trajectory prediction of high aerosol events is now a part. IDEA-I provides a tool for linking ground-based and satellite capabilities to support international air quality forecasting activities and is to be demonstrated internationally through user training and impact evaluation via a series of IMAPP workshops. This presentation describes the IMAPP implementation of IDEA-I in terms of its simple installation and configuration, and through examples of its operation in several regions known for periodic high aerosol events.; Screen capture of the University of Wisconsin implementation of the real-time direct broadcast IDEA-I Air Quality monitoring website. This example uses Terra MODIS Aerosol Optical Depth retrievals to identify regions of high aerosol concentrations. A trajectory model is then run that provide a forecast of the horizontal and vertical movement of the aerosols over the next 48 hours.
Aerosol Absorption Measurements in MILAGRO.
NASA Astrophysics Data System (ADS)
Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.
2007-12-01
During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.
NASA Astrophysics Data System (ADS)
Tsay, S. C.; Holben, B. N.
2016-12-01
All major rivers that run through densely populated Asia (i.e., Yangtze, Yellow in China; Mekong in Southeast Asian peninsula; Brahmaputra, Ganges, Indus in Indian subcontinent) originate in High Mountain Asia (HMA) and are fed by the seasonal melt of snowpack and glaciers. Although varying greatly in space and time, the overall snowpack/ glaciers in the HMA are losing mass and retreating at an accelerated rate (e.g., Kulkarni et al., 2007; Kehrwald et al., 2008), as revealed from recent observations. This situation poses an imminent danger to the water supply and environmental hazards (e.g., soil erosion, glacial-lake-outburst flood) not only to regional inhabitants, but also to the global ecosystem through feedback mechanisms. Comprehensive regional-to-global assimilation models, advancing in lockstep with the advent of satellite observations (e.g., MODIS-/CERES-like sensors) and complementary surface measurements (e.g., AERONET), are playing an ever-increasing role in developing mitigation strategies. However, the complex characteristics of HMA, such as its ragged terrain, atmospheric inhomogeneity, snow susceptibility, and ground-truth accessibility, introduces difficulties for the aforementioned research tools to retrieve/assess radiative forcing on snow/ice melting with a high degree of fidelity. In terms of quantifying radiative forcing, the key components are transport/evolution of light-absorbing aerosols (e.g., dust, black carbon) aloft, the surface solar/terrestrial irradiance budget, and snow reflectivity/absorptivity with/without impurities. The RAJO-MEGHA (Sanskrit for Dust-Cloud) project is an initiative on the integrated (aerosols, clouds, and precipitation) measurements in the vicinity of HMA (e.g., Indo-Gangetic Plain, Himalaya-Tibetan Plateau). We will discuss an array of ground-based (e.g., AERONET, MPLNET, SMARTLabs, etc.) and satellite (e.g., Terra, A-Train, etc.) sensors utilized to acquire aerosol characteristics, sources/sinks, and transport processes during the pre-monsoon (April-May, aerosol forcing) season. Close collaboration with other international programs, such as EvK2-CNR, ICIMOD, ITPCAS in the region, is anticipated.
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-07-16
We measured a large suite of gas- and particle-phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gas andmore » particle phases, the latter being detected by temperature-programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO–HR-ToF-CIMS are highly correlated with, and explain at least 25–50 % of, the organic aerosol mass measured by an Aerodyne aerosol mass spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from high molecular weight organics and/or oligomers (i.e., multi-phase accretion reaction products). Approximately 50 % of the HR-ToF-CIMS particle-phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption-temperature-based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas-particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; ...
2015-02-18
We measured a large suite of gas and particle phase multi-functional organic compounds with a Filter Inlet for Gases and AEROsols (FIGAERO) coupled to a high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. The instrument was deployed on environmental simulation chambers to study monoterpene oxidation as a secondary organic aerosol (SOA) source. We focus here on results from experiments utilizing an ionization method most selective towards acids (acetate negative ion proton transfer), but our conclusions are based on more general physical and chemical properties of the SOA. Hundreds of compounds were observed in both gasmore » and particle phases, the latter being detected upon temperature programmed thermal desorption of collected particles. Particulate organic compounds detected by the FIGAERO HR-ToF-CIMS are highly correlated with, and explain at least 25–50% of, the organic aerosol mass measured by an Aerodyne Aerosol Mass Spectrometer (AMS). Reproducible multi-modal structures in the thermograms for individual compounds of a given elemental composition reveal a significant SOA mass contribution from large molecular weight organics and/or oligomers (i.e. multi-phase accretion reaction products). Approximately 50% of the HR-ToF-CIMS particle phase mass is associated with compounds having effective vapor pressures 4 or more orders of magnitude lower than commonly measured monoterpene oxidation products. The relative importance of these accretion-type and other extremely low volatility products appears to vary with photochemical conditions. We present a desorption temperature based framework for apportionment of thermogram signals into volatility bins. The volatility-based apportionment greatly improves agreement between measured and modeled gas–particle partitioning for select major and minor components of the SOA, consistent with thermal decomposition during desorption causing the conversion of lower volatility components into the detected higher volatility compounds.« less
Verma, Dave K; Shaw, Don S; Shaw, M Lorraine; Julian, Jim A; McCollin, Shari-Ann; des Tombe, Karen
2006-02-01
This article summarizes an assessment of air sampling and analytical methods for both oil and water-based metalworking fluids (MWFs). Three hundred and seventy-four long-term area and personal airborne samples were collected at four plants using total (closed-face) aerosol samplers and thoracic samplers. A direct-reading device (DustTrak) was also used. The processes sampled include steel tube making, automotive component manufacturing, and small part manufacturing in a machine shop. The American Society for Testing and Materials (ASTM) Method PS42-97 of analysis was evaluated in the laboratory. This evaluation included sample recovery, determination of detection limits, and stability of samples during storage. Results of the laboratory validation showed (a) the sample recovery to be about 87%, (b) the detection limit to be 35 microg, and (c) sample stability during storage at room temperature to decline rapidly within a few days. To minimize sample loss, the samples should be stored in a freezer and analyzed within a week. The ASTM method should be the preferred method for assessing metalworking fluids (MWFs). The ratio of thoracic aerosol to total aerosol ranged from 0.6 to 0.7. A similar relationship was found between the thoracic extractable aerosol and total extractable aerosol. The DustTrak, with 10-microm sampling head, was useful in pinpointing the areas of potential exposure. MWF exposure at the four plants ranged from 0.04 to 3.84 mg/m3 with the geometric mean ranging between 0.22 to 0.59 mg/m3. Based on this data and the assumption of log normality, MWF exposures are expected to exceed the National Institute for Occupational Safety and Health recommended exposure limit of 0.5 mg/m3 as total mass and 0.4 mg/m3 as thoracic mass about 38% of the time. In addition to controlling airborne MWF exposure, full protection of workers would require the institution of programs for fluid management and dermal exposure prevention.
CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment
NASA Astrophysics Data System (ADS)
Spackman, J. R.; Ralph, F. M.; Prather, K. A.; Cayan, D. R.; DeMott, P. J.; Dettinger, M. D.; Fairall, C. W.; Leung, L. R.; Rosenfeld, D.; Rutledge, S. A.; Waliser, D. E.; White, A. B.
2014-12-01
Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes the science objectives and strategies to address gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In January-February 2015, a field campaign has been planned consisting of a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific. In close coordination with NOAA, DOE's Atmospheric Radiation Measurement (ARM) program is also contributing air and shipborne facilities for ACAPEX (ARM Cloud Aerosol and Precipitation Experiment), a DOE-sponsored study complementing CalWater 2. Ground-based measurements from NOAA's HydroMeteorological Testbed (HMT) network in California and aerosol chemical instrumentation at Bodega Bay, California have been designed to add important near surface-level context for the offshore measurements during AR landfall along the California coast.
Development and evaluation of an ultrasonic personal aerosol sampler.
Volckens, J; Quinn, C; Leith, D; Mehaffy, J; Henry, C S; Miller-Lionberg, D
2017-03-01
Assessing personal exposure to air pollution has long proven challenging due to technological limitations posed by the samplers themselves. Historically, wearable aerosol monitors have proven to be expensive, noisy, and burdensome. The objective of this work was to develop a new type of wearable monitor, an ultrasonic personal aerosol sampler (UPAS), to overcome many of the technological limitations in personal exposure assessment. The UPAS is a time-integrated monitor that features a novel micropump that is virtually silent during operation. A suite of onboard environmental sensors integrated with this pump measure and record mass airflow (0.5-3.0 L/min, accurate within 5%), temperature, pressure, relative humidity, light intensity, and acceleration. Rapid development of the UPAS was made possible through recent advances in low-cost electronics, open-source programming platforms, and additive manufacturing for rapid prototyping. Interchangeable cyclone inlets provided a close match to the EPA PM 2.5 mass criterion (within 5%) for device flows at either 1.0 or 2.0 L/min. Battery life varied from 23 to 45 hours depending on sample flow rate and selected filter media. Laboratory tests of the UPAS prototype demonstrate excellent agreement with equivalent federal reference method samplers for gravimetric analysis of PM 2.5 across a broad range of concentrations. © 2016 The Authors. Indoor Air published by John Wiley & Sons Ltd.
EARLINET observations of the Eyjafjallajökull ash plume over Europe
NASA Astrophysics Data System (ADS)
Pappalardo, Gelsomina; Amodeo, Aldo; Ansmann, Albert; Apituley, Arnoud; Alados Arboledas, Lucas; Balis, Dimitris; Böckmann, Christine; Chaikovsky, Anatoli; Comeron, Adolfo; D'Amico, Giuseppe; De Tomasi, Ferdinando; Freudenthaler, Volker; Giannakaki, Elina; Giunta, Aldo; Grigorov, Ivan; Gustafsson, Ove; Gross, Silke; Haeffelin, Martial; Iarlori, Marco; Kinne, Stefan; Linné, Holger; Madonna, Fabio; Mamouri, Rodanthi; Mattis, Ina; McAuliffe, Michael; Molero, Francisco; Mona, Lucia; Müller, Detlef; Mitev, Valentin; Nicolae, Doina; Papayannis, Alexandros; Perrone, Maria Rita; Pietruczuk, Aleksander; Pujadas, Manuel; Putaud, Jean-Philippe; Ravetta, Francois; Rizi, Vincenzo; Serikov, Ilya; Sicard, Michael; Simeonov, Valentin; Spinelli, Nicola; Stebel, Kerstin; Trickl, Thomas; Wandinger, Ulla; Wang, Xuan; Wagner, Frank; Wiegner, Matthias
2010-10-01
EARLINET, the European Aerosol Research Lidar NETwork, established in 2000, is the first coordinated lidar network for tropospheric aerosol study on the continental scale. The network activity is based on scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. At present, the network includes 27 lidar stations distributed over Europe. EARLINET performed almost continuous measurements since 15 April 2010 in order to follow the evolution of the volcanic plume generated from the eruption of the Eyjafjallajökull volcano, providing the 4-dimensional distribution of the volcanic ash plume over Europe. During the 15-30 April period, volcanic particles were detected over Central Europe over a wide range of altitudes, from 10 km down to the local planetary boundary layer (PBL). Until 19 April, the volcanic plume transport toward South Europe was nearly completely blocked by the Alps. After 19 April volcanic particles were transported to the south and the southeast of Europe. Descending aerosol layers were typically observed all over Europe and intrusion of particles into the PBL was observed at almost each lidar site that was affected by the volcanic plume. A second event was observed over Portugal and Spain (6 May) and then over Italy on 9 May 2010. The volcanic plume was then observed again over Southern Germany on 11 May 2010.
NASA Astrophysics Data System (ADS)
H, S. C.
2016-02-01
Aerosol chemistry is a window to unravel the various environmental health hazard problems. This open forum which deals with the study of formation, interaction, transformation of aerosol species, which could enable in the assessment of biogeochemical cycling of anthropogenic and toxic species. It also preserves the temperature balance and reservoir and sink for nutrients, trace metals and organic species. An inventory of air pollutants is a proactive and necessary first step towards the control of air pollution. Surveys and studies on the sources of pollution and their apportionment to different sources are a pre-requisite for alleviating environmental disorder. The Kochi City (The Queen of Arabian Sea), Kerala, India is a fast growing industrial region where mounting urbanization has been affecting the quality of the atmospheric environment. Cochin estuarine environment is progressively affected by marine pollution concomitant by industrial hazardous chemicals and municipal waste. Further, rapid urbanization and industrialization has lead to lofting and large scale advection of these omnipresent species in the atmosphere. Studies were conducted to assess the significance and potential impact occupied to these ubiquitous species. The major gaseous pollutants include gases like sulphur dioxide, nitrogen dioxide, ammonia and particulate matter (PM). An attempt was performed to unravel the inorganic species in the atmosphere and programmed by means of quantification of PM10 and trace gases. Their distribution pattern and outcomes are inferred.
NASA Astrophysics Data System (ADS)
Brito, Joel; Artaxo, Paulo; Varanda Rizzo, Luciana; Johnson, Ben; Haywood, Jim; Longo, Karla; Freitas, Saulo; Coe, Hugh
2013-04-01
This work presents the results of an Aerosol Chemical Speciation Monitor (ACSM) which was successfully operated at a ground station in Porto Velho, Brazil, during the South American Biomass Burning Analysis (SAMBBA). SAMBBA is an international research project based on experimental and modeling activities designed to investigate the impacts of biomass burning emissions on climate, air quality and numerical weather prediction over South America. The measurement program was headed by the deployment of UK's Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 research aircraft over Brazil during the dry season of 2012. The aircraft operation was coordinated with ground-based measurements at Porto Velho, operated by the University of Sao Paulo. Besides the aerosol chemical speciation, continuous measurements of aerosol size distribution and optical properties were carried out at the ground station, together with CO, CO2 and O3. Filters for trace elements measured by XRF and for OC/EC determined using a Sunset instrument were also collected at the ground based component of SAMBBA. The ACSM collected data for three weeks during September 2012. This period included a strong biomass burning event which showed a marked peak in f60, linked with Levoglucosan, a well-known biomass burning marker. During the biomass burning event, organics concentrations rose up to 80 μg/m3, black carbon close to 6 μg/m3 and CO mixing ratio above 2 ppmv. Fast biomass burning aerosol processing in the atmosphere could be observed through the relative contributions of C2H3O+ vs. CO2+ relative to total organic mass (f44 vs. f43). A clear diurnal variation throughout the sampling period has been observed for organic aerosols with a median peak of 9 μg/m3 at 04:00 LT and a minima of 5 μg/m3 at 18:00 LT. Preliminary results indicate that organics are responsible for 85% of PM1 non-refractory aerosols. The data set will allow the study of interactions between biomass burning and biogenic emissions, focusing on changes in the radiation balance, atmospheric chemistry and effects on the terrestrial biosphere including carbon uptake by the Amazonian forest.
MPL-Net Measurements of Aerosol and Cloud Vertical Distributions at Co-Located AERONET Sites
NASA Technical Reports Server (NTRS)
Welton, Ellsworth J.; Campbell, James R.; Berkoff, Timothy A.; Spinhirne, James D.; Tsay, Si-Chee; Holben, Brent; Starr, David OC. (Technical Monitor)
2002-01-01
In the early 1990s, the first small, eye-safe, and autonomous lidar system was developed, the Micropulse Lidar (MPL). The MPL acquires signal profiles of backscattered laser light from aerosols and clouds. The signals are analyzed to yield multiple layer heights, optical depths of each layer, average extinction-to-backscatter ratios for each layer, and profiles of extinction in each layer. In 2000, several MPL sites were organized into a coordinated network, called MPL-Net, by the Cloud and Aerosol Lidar Group at NASA Goddard Space Flight Center (GSFC) using funding provided by the NASA Earth Observing System. tn addition to the funding provided by NASA EOS, the NASA CERES Ground Validation Group supplied four MPL systems to the project, and the NASA TOMS group contributed their MPL for work at GSFC. The Atmospheric Radiation Measurement Program (ARM) also agreed to make their data available to the MPL-Net project for processing. In addition to the initial NASA and ARM operated sites, several other independent research groups have also expressed interest in joining the network using their own instruments. Finally, a limited amount of EOS funding was set aside to participate in various field experiments each year. The NASA Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) project also provides funds to deploy their MPL during ocean research cruises. All together, the MPL-Net project has participated in four major field experiments since 2000. Most MPL-Net sites and field experiment locations are also co-located with sunphotometers in the NASA Aerosol Robotic Network. (AERONET). Therefore, at these locations data is collected on both aerosol and cloud vertical structure as well as column optical depth and sky radiance. Real-time data products are now available from most MPL-Net sites. Our real-time products are generated at times of AERONET aerosol optical depth (AOD) measurements. The AERONET AOD is used as input to our processing routines, which calculate the aerosol layer top height and extinction profile, and our MPL calibration value. A variety of other data products are available or under development. We present an overview of the MPL-Net project and discuss data products useful to the AERONET community. Results from several sites and field experiments will be presented.
NASA Astrophysics Data System (ADS)
Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.
2012-04-01
The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this problem by establishing a Data Application Center for conducting social science research focused on understanding the best ways to use, transfer, and communicate mission data to decision-makers. The CHASER Data Application Center supports the visions of the National Research Council and the Decadal Survey for an integrated program of observations from space that secures practical benefits for humankind by developing data products for assessing risks due to severe weather and climate change.
VOC Monitoring to Understand Changes in Secondary Pollution in Mexico City
NASA Astrophysics Data System (ADS)
Velasco, E.; Jaimes-Palomera, M.; Retama, A.; Neria, A.; Rivera, O.; Elias, G.
2015-12-01
Previous studies have documented the distribution, diurnal pattern, magnitude, and reactivity of the volatile organic compounds (VOCs) within and downwind of Mexico City. These studies have provided valuable data, but their duration has been restricted to a few weeks since the majority have been part of intensive field campaigns. With the aim of addressing the VOC pollution problem during longer monitoring periods and evaluating control measures to reduce the production of ozone and secondary aerosols, the environmental authorities of Mexico City through its Air Quality Monitoring Network have developed a program to monitor over 50 VOC species every hour in selected existing air quality monitoring stations inside and outside the urban sprawl. The program started with a testing period of six months in 2012 covering the ozone-season (Mar-May). Results of this first campaign are presented in this paper. Using as reference VOC data collected in 2003, reductions in the mixing ratios of light alkanes associated with the consumption of liquefied petroleum gas and aromatic compounds related with the evaporation of fossil fuels and solvents were observed. In contrast, a clear increase in the mixing ratio of olefins was observed. This increase is of relevance to understand the moderate success in the reduction of ozone and fine aerosols in recent years in comparison to other criteria pollutants, which have substantially decreased. Particular features of the diurnal profiles, reactivity with the hydroxyl radical and correlations between individual VOCs and carbon monoxide are used to investigate the influence of specific emission sources. The results discussed here expect to highlight the importance of monitoring VOCs to better understand the drivers and impacts of secondary pollution in large cities like Mexico City.
NASA Technical Reports Server (NTRS)
Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.
2012-01-01
The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.
Evidence for Biomass Burning from 14C and 13C/12C Measurements at T-0 and T-1 during MILAGRO.
NASA Astrophysics Data System (ADS)
Gaffney, J. S.; Marley, N. A.; Tackett, M. J.; Sturchio, N. C.; Heraty, L. J.; Martinez, N.; Hardy, K.; Guilderson, T.
2007-12-01
Both stable carbon isotopic and radiocarbon characterizations of aerosols can yield important information regarding the sources of carbonaceous aerosols in urban and regional environments. Biomass derived materials are labeled due to their recent photochemical activity in radiocarbon and vary depending upon the photochemical pathway (either C-4 or C-3) in stable carbon-13 content. C-4 being enriched over C-3. During the MILAGRO campaign, quartz filter samples were taken at 12 hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The total carbon content was analyzed for stable carbon isotopic composition as well as for radiocarbon. Stable isotope mass spectroscopy was used to determine the carbon-13 to carbon-12 isotopic ratios on carbon dioxide. The carbon dioxide was then converted to graphite for analysis by accelerator mass spectrometry at the Center for Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory. Results are presented for the carbon-13 content relative to the PDB standard and radiocarbon is given relative to recent carbon. The results for total radiocarbon content show that the carbonaceous aerosol content in Mexico City has more than half of the carbon coming from biomass derived sources. These can include inflow of biomass burning aerosols into the T-0 site as well as the input from local burning of biofuels and trash containing biomass derived materials (paper, boxes, etc.). Data also indicate that at the T-1 site biomass burning of C-4 grasses appears to be significant in that the carbon-13 values observed are enriched. Also at T-1 the radiocarbon levels are also found to be slightly higher indicating regional biomass burning as a significant contributor to aerosol carbon in the 0.1 to 1.0 micron size fraction. Some day and night differences were observed that indicate secondary organic aerosols are contributing and that a significant fraction of these aerosols are biomass derived. Further analyses of organic carbon and elemental carbon fractions are underway. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX- Mex) under the support of the Atmospheric Science Program. This research was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328.
Nitric Acid Phase Partitioning and Cycling in the New England Coastal Atmosphere
NASA Astrophysics Data System (ADS)
Fischer, E.; Keene, W.; Maben, J.; Pszenny, A.; Smith, A.; Talbot, R.
2005-12-01
During summer 2004, soluble gases were continuously sampled over 2-hour intervals and size-resolved aerosols were sampled over discrete daytime (~ 15 hr) or nighttime (~ 9 hr) intervals at Appledore Island, ME as part of the International Consortium for Atmospheric Research on Transport and Transformations (ICARTT) field program. Particulate NO3- and gaseous HNO3 concentrations were examined as a function of transport sector and dry deposition fluxes were estimated. HNO3 concentrations varied widely on the time scale of hours; however, all sampling days were characterized by a distinct minimum in the early morning. The daily peak normally occurred in the early afternoon, and was followed by a secondary peak at about 2200. The maximum and median concentrations of HNO3, were 337 and 22.5 nmol m-3 respectively. Aerosol NO3- exhibited a bimodal size distribution with a primary peak associated with sea-salt Na+ at ~4 μm and a secondary sub-μm peak. The median NO3- concentrations of sub and super-μm aerosol fractions were 3.3 and 7.7 nmol m-3 respectively. HNO3 concentrations (median value = 57 nmol m-3) were measured during westerly flow regimes, while super-μm aerosol peaked during southwesterly flow regimes. Although median total nitrate (HNO3 + NO3-)concentrations were higher under westerly flow, higher median dry deposition rates for total nitrate were calculated for southwesterly flow. Both westerly and southwesterly transport regimes carried polluted continental air to the site, but sea-salt concentrations were a factor of 3 higher during southwesterly flow which shifted the phase partitioning toward particulate NO3-. Consequently, under westerly flow, the calculated HNO3 deposition flux was ~3 times greater than the associated aerosol NO3- flux, while for southwesterly flow, the fluxes from the two phases were comparable. The median dry deposition fluxes for aerosol NO3- and volatile HNO3 were 5.6 and 8.2 μmol m-2 d-1. Large particles dominated the aerosol dry deposition, because of both higher concentrations and deposition velocities. This is consistent with previous work suggesting that the mixing of polluted continental and marine air may enhance dry deposition of total nitrate to coastal ecosystems. Displacement of HCl from sea-salt aerosol via incorporation of HNO3 helped to sustain high mixing ratios of HCl (up to 255 nmol m-3) and significant production of atomic Cl via HCl + OH during the daytime, thereby altering the oxidant regime relative to the upwind continent.
New Cloud Science from the New ARM Cloud Radar Systems (Invited)
NASA Astrophysics Data System (ADS)
Wiscombe, W. J.
2010-12-01
The DOE ARM Program is deploying over $30M worth of scanning polarimetric Doppler radars at its four fixed and two mobile sites, with the object of advancing cloud lifecycle science, and cloud-aerosol-precipitation interaction science, by a quantum leap. As of 2011, there will be 13 scanning radar systems to complement its existing array of profiling cloud radars: C-band for precipitation, X-band for drizzle and precipitation, and two-frequency radars for cloud droplets and drizzle. This will make ARM the world’s largest science user of, and largest provider of data from, ground-based cloud radars. The philosophy behind this leap is actually quite simple, to wit: dimensionality really does matter. Just as 2D turbulence is fundamentally different from 3D turbulence, so observing clouds only at zenith provides a dimensionally starved, and sometimes misleading, picture of real clouds. In particular, the zenith view can say little or nothing about cloud lifecycle and the second indirect effect, nor about aerosol-precipitation interactions. It is not even particularly good at retrieving the cloud fraction (no matter how that slippery quantity is defined). This talk will review the history that led to this development and then discuss the aspirations for how this will propel cloud-aerosol-precipitation science forward. The step by step plan for translating raw radar data into information that is useful to cloud and aerosol scientists and climate modelers will be laid out, with examples from ARM’s recent scanning cloud radar deployments in the Azores and Oklahoma . In the end, the new systems should allow cloud systems to be understood as 4D coherent entities rather than dimensionally crippled 2D or 3D entities such as observed by satellites and zenith-pointing radars.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parworth, Caroline; Tilp, Alison; Fast, Jerome
In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the Atmospheric Radiation Measurement (ARM) program's Southern Great Plains (SGP) site are discussed. NR-PM1 data was recorded at ~30 min intervals over a period of 19 months between November 2010 and June 2012. Positive Matrix Factorization (PMF) was performed on the measured organic mass spectral matrix using a rolling window technique to derive factors associated with distinct sources, evolution processes, and physiochemical properties. The rolling window approach also allows us to capture the dynamic variations ofmore » the chemical properties in the organic aerosol (OA) factors over time. Three OA factors were obtained including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when ammonium nitrate increases due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations have little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increase and are mainly associated with local fires. Isoprene and carbon monoxide emission rates were obtained by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the 2011 U.S. National Emissions Inventory to represent the spatial distribution of biogenic and anthropogenic sources, respectively. The combined spatial distribution of isoprene emissions and air mass trajectories suggest that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.« less
An ARM Mobile Facility Designed for Marine Deployments
NASA Astrophysics Data System (ADS)
Wiscombe, W. J.
2007-05-01
The U.S. Dept. of Energy's ARM (Atmospheric Radiation Measurements) Program is designing a Mobile Facility exclusively for marine deployments. This marine facility is patterned after ARM's land Mobile Facility, which had its inaugural deployment at Point Reyes, California, in 2005, followed by deployments to Niger in 2006 and Germany in 2007 (ongoing), and a planned deployment to China in 2008. These facilities are primarily intended for the study of clouds, radiation, aerosols, and surface processes with a goal to include these processes accurately in climate models. They are preferably embedded within larger field campaigns which provide context. They carry extensive instrumentation (in several large containers) including: cloud radar, lidar, microwave radiometers, infrared spectrometers, broadband and narrowband radiometers, sonde-launching facilities, extensive surface aerosol measurements, sky imagers, and surface latent and sensible heat flux devices. ARM's Mobile Facilities are designed for 6-10 month deployments in order to capture climatically-relevant datasets. They are available to any scientist, U.S. or international, who wishes to submit a proposal during the annual Spring call. The marine facility will be adapted to, and ruggedized for, the harsh marine environment and will add a scanning two-frequency radar, a boundary-layer wind profiler, a shortwave spectrometer, and aerosol instrumentation adapted to typical marine aerosols like sea salt. Plans also include the use of roving small UAVs, automated small boats, and undersea autonomous vehicles in order to address the point-to-area-average problem which is so crucial for informing climate models. Initial deployments are planned for small islands in climatically- interesting cloud regimes, followed by deployments on oceanic platforms (like decommissioned oil rigs and the quasi-permanent platform of this session's title) and eventually on large ships like car carriers plying routine routes.
NASA Astrophysics Data System (ADS)
Edwards, David; Barre, Jerome; Worden, Helen; Gaubert, Benjamin
2017-04-01
Intense and costly wildfires tend are predicted to increase in frequency under a warming climate. For example, the recent August 2015 Washington State fires were the largest in the state's history. Also in September and October 2015 very intense fires over Indonesia produced some of the highest concentrations of carbon monoxide (CO) ever seen from satellite. Such larges fires impact not only the local environment but also affect air quality far downwind through the long-range transport of pollutants. Global to continental scale coverage showing the evolution of CO resulting from fire emission is available from satellite observations. Carbon monoxide is the only atmospheric trace gas for which satellite multispectral retrievals have demonstrated reliable independent profile information close to the surface and also higher in the free troposphere. The unique CO profile product from Terra/MOPITT clearly distinguishes near-surface CO from the free troposphere CO. Also previous studies have suggested strong correlations between primary emissions of fire organic and black carbon aerosols and CO. We will present results from the Ensemble Adjustement Kalman Filter (DART) system that has been developed to assimilate MOPITT CO in the global-scale chemistry-climate model CAM-Chem. The ensemble technique allows inference on various fire model state variables such as CO emissions, and also aerosol species resulting from fires such as organic and black carbon. The benefit of MOPITT CO profile assimilation for estimating the CO emissions from the Washington and Indonesian fire cases will be discussed, along with the ability of the ensemble approach to infer information on the black and organic carbon aerosol distribution. This study builds on capability to quantitatively integrate satellite observations and models developed in recent years through projects funded by the NASA ACMAP Program.
Nucleation from seawater emissions during mesocosm experiments
NASA Astrophysics Data System (ADS)
Rose, Clémence; Culot, Anais; Pey, Jorge; Schwier, Allison; Mas, Sébastien; Charriere, Bruno; Sempéré, Richard; Marchand, Nicolas; D'Anna, Barbara; Sellegri, Karine
2015-04-01
Nucleation and new particle formation in the marine atmosphere is usually associated to the presence of macroalgea emerged at low tides in coastal areas, while these processes were very rarely detected away from coastlines. In the present study, we evidence the formation of new particles from the 1 nm size above the seawater surface in the absence of any macroalgea population. Within the SAM project (Sources of marine Aerosol in the Mediterranean),seawater mesocosms experiments were deployed in May 2013 at the STARESO in western Corsica, with the goal of investigating the relationship between marine aerosol emissions and the seawater biogeochemical properties. Three mesocosms imprisoned 3,3 m3 of seawater each and their emerged part was flushed with aerosol-filtered natural air. One of these mesocosms was left unchanged as control and the two others were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16) in order to create different levels of phytoplanctonic activities. We followed both water and air characteristics of three mesocosms during a period of three weeks by using online water and atmospheric probes as well as seawater daily samples for chemical and biological analysis. Secondary new particle formation was followed on-line in the emerged parts of the mesocosms, using a SMPS for the size distribution above 6 nm and a Particle Size Magnifyer (PSM) for the number of cluster particles between 1 and 6 nm. We will present how the cluster formation rates and early growth rates relate to the gaz-phase emissions from the seawater and to its biogeochemical properties. Aknowledgemnts: The authors want to acknowledge the financial support of the ANR "Source of marine Aerosol in the Mediterranean" (SAM), and the support of MISTRAL CHARMEX and MERMEX programs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cataldo, D.A.; Ligotke, M.W.; Bolton, H. Jr.
1989-09-01
The terrestrial transport, chemical fate, and ecological effects of hexachloroethane (HC) smoke were evaluated under controlled wind tunnel conditions. The primary objectives of this research program are to characterize and assess the impacts of smoke and obscurants on: (1) natural vegetation characteristic of US Army training sites in the United States; (2) physical and chemical properties of soils representative of these training sites; and (3) soil microbiological and invertebrate communities. Impacts and dose/responses were evaluated based on exposure scenarios, including exposure duration, exposure rate, and sequential cumulative dosing. Key to understanding the environmental impacts of HC smoke/obscurants is establishing themore » importance of environmental parameters such as relative humidity and wind speed on airborne aerosol characteristics and deposition to receptor surfaces. Direct and indirect biotic effects were evaluated using five plant species and two soil types. HC aerosols were generated in a controlled atmosphere wind tunnel by combustion of hexachloroethane mixtures prepared to simulate normal pot burn rates and conditions. The aerosol was characterized and used to expose plant, soil, and other test systems. Particle sizes of airborne HC ranged from 1.3 to 2.1 {mu}m mass median aerodynamic diameter (MMAD), and particle size was affected by relative humidity over a range of 20% to 85%. Air concentrations employed ranged from 130 to 680 mg/m{sup 3}, depending on exposure scenario. Chlorocarbon concentrations within smokes, deposition rates for plant and soil surfaces, and persistence were determined. The fate of principal inorganic species (Zn, Al, and Cl) in a range of soils was assessed.« less
NASA Astrophysics Data System (ADS)
Nelson, R. M.; Boryta, M. D.; Hapke, B. W.; Manatt, K. S.; Shkuratov, Y.; Vandervoort, K.; Vides, C.; Quinones, J.
2017-12-01
We report reflectance phase curves of selected materials, including several that, if distributed as particulate aerosols, might regulate solar insolation and hence reduce Earth's surface temperature. (See e.g. Teller et al., 1997). We have identified several materials that have phase functions that are remarkably backscattering at very small phase angles (Nelson et al., 2017). When these materials are of appropriately small particle size and in the form of dispersed discrete random media, they are highly reflective at ultraviolet and visual wavelengths. Particles of less than 0.5 microns in diameter are transparent in the infrared. The most promising of these is the mineral halite (NaCl). NaCl and its sister materials exhibit this property due to their simple cubic crystal structure. In crystalline form they are `corner cube' reflectors similar to those on bicycle reflectors used throughout the world, and in arrays deployed by astronauts on the Moon for precise distance determination. As aerosols distributed in relatively small quantities, NaCl might reduce the solar forcing function by several W/m2, the amount estimated by the IPCC to be the anthropogenic contribution to global warming. Furthermore, NaCl is environmentally benign and, as a particulate aerosol, it would have short residence time in the atmosphere. With great trepidation, we suggest potential use in these areas: Temporary regional application to mitigate short-term, life-threatening conditions in areas where extreme temperature events are expected on timescales of days, and Global application for immediate relief during a near-term transition period to an atmosphere that is generally free of anthropogenic greenhouse gas. We offer this as a temporary relief measure and not a solution, somewhat analogous to the application of morphine in a medical situation. This work partially supported by NASA's Cassini Orbiter Program
Atmosphere Kits: Hands-On Learning Activities with a Foundation in NASA Earth Science Missions.
NASA Astrophysics Data System (ADS)
Teige, V.; McCrea, S.; Damadeo, K.; Taylor, J.; Lewis, P. M., Jr.; Chambers, L. H.
2016-12-01
The Science Directorate (SD) at NASA Langley Research Center provides many opportunities to involve students, faculty, researchers, and the citizen science community in real world science. The SD Education Team collaborates with the education community to bring authentic Earth science practices and real-world data into the classroom, provide the public with unique NASA experiences, engaging activities, and advanced technology, and provide products developed and reviewed by science and education experts. Our goals include inspiring the next generation of Science, Technology, Engineering and Mathematics (STEM) professionals and improving STEM literacy by providing innovative participation pathways for educators, students, and the public. The SD Education Team has developed Atmosphere activity kits featuring cloud and aerosol learning activities with a foundation in NASA Earth Science Missions, the Next Generation Science Standards, and The GLOBE Program's Elementary Storybooks. Through cloud kit activities, students will learn how to make estimates from observations and how to categorize and classify specific cloud properties, including cloud height, cloud cover, and basic cloud types. The purpose of the aerosol kit is to introduce students to aerosols and how they can affect the colors we see in the sky. Students will engage in active observation and reporting, explore properties of light, and model the effects of changing amounts/sizes or aerosols on sky color and visibility. Learning activity extensions include participation in ground data collection of environmental conditions and comparison and analysis to related NASA data sets, including but not limited to CERES, CALIPSO, CloudSat, and SAGE III on ISS. This presentation will provide an overview of multiple K-6 NASA Earth Science hands-on activities and free resources will be available.
New insights on aerosol sources and properties of Organics in the west Mediterranean basin
NASA Astrophysics Data System (ADS)
Nicolas, José B.; Sciare, Jean; Petit, Jean-Eudes; Bonnaire, Nicolas; Féron, Anais; Dulac, François; Hamonou, Eric; Gros, Valérie; Mallet, Marc; Lambert, Dominique; Sauvage, Stéphane; Léonardis, Thierry; Tison, Emmanuel; Colomb, Aurélie; Fresney, Evelyn; Pichon, Jean-Marc; Bouvier, Laetitia; Bourrianne, Thierry; Roberts, Gregory
2013-04-01
The Mediterranean basin exhibits high PM concentrations for a marine area, in particular during the dry season (summer), associated with high photochemistry. The large population of the basin is impacted by both natural and anthropogenic aerosols of various sources from Europe and North Africa. Simulations predict significant climate changes in that area, with less precipitation and hotter temperatures, reinforced by an increasing anthropogenic pressure, which will be linked by higher emissions of pollutants and also by higher impacts on the health. Nevertheless the aerosol models in that area currently suffer from large uncertainties, due to a lack of knowledge in organic aerosol (OA) sources and processes. As part of the French program ChArMEx (The Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr), a 5-week intensive campaign has been performed in June - July 2012 at the new Cape Corsica station (see Dulac et al. in that session), and aiming at a better characterization of anthropogenic versus biogenic aerosols, long range transport versus local influence, with a focus on fine OA. A complete instrumental strategy was deployed thanks to the contribution of a large French community: PM1 concentration every 6 min with a TEOM-FDMS 1405 (Thermo), major aerosol components in PM1 every 30 min (Organics, SO4, NO3, NH4) by Aerosol Chemical Speciation Monitor (Aerodyne), Equivalent Black Carbon every 5 min with a 7-? aethalometer AE31 (Magee Scientific), on-line major anions and cations (incl. light organics like oxalate & MSA) every 10 min with Particle-Into-Liquid Sampler (PILS, Metrohm) coupled with Ion Chromatographs (Dionex), on-line water-soluble organic carbon (WSOC) every 4 min with a PILS (Applikon) coupled with a Total Organic Carbon instrument (Ionics). Filter sampling in PM2.5 and PM10 was also performed every 12h for quality purposes (PM, EC/OC, ions) and for complementary measurements (metals by ICP-MS and organic tracers by LC-MS). Additional measurements of reactive gases (CO, O3 and VOCs), and of aerosol optical/physical properties (scattering, extinction, size distribution) were used for a better identification of air masses origin and optical/number closure studies. Backtrajectories issued from Hysplit 4.9 revealed the predominance of air masses from North-West to South, with some dust events from North Africa (Morocco, Algeria) and a few anthropogenic events from Italy and from South-East of France. Two intense heat waves, associated with low wind speed, gave the highest levels of OA observed during the campaign, suggesting a possible local biogenic origin. The comparison of these heat waves showed contrasted levels of WSOC, oxalate, OM-to-OC ratio suggesting various sources and/or processes.
The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment
Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane; ...
2018-02-07
This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less
Real-Time On-Board Processing Validation of MSPI Ground Camera Images
NASA Technical Reports Server (NTRS)
Pingree, Paula J.; Werne, Thomas A.; Bekker, Dmitriy L.
2010-01-01
The Earth Sciences Decadal Survey identifies a multiangle, multispectral, high-accuracy polarization imager as one requirement for the Aerosol-Cloud-Ecosystem (ACE) mission. JPL has been developing a Multiangle SpectroPolarimetric Imager (MSPI) as a candidate to fill this need. A key technology development needed for MSPI is on-board signal processing to calculate polarimetry data as imaged by each of the 9 cameras forming the instrument. With funding from NASA's Advanced Information Systems Technology (AIST) Program, JPL is solving the real-time data processing requirements to demonstrate, for the first time, how signal data at 95 Mbytes/sec over 16-channels for each of the 9 multiangle cameras in the spaceborne instrument can be reduced on-board to 0.45 Mbytes/sec. This will produce the intensity and polarization data needed to characterize aerosol and cloud microphysical properties. Using the Xilinx Virtex-5 FPGA including PowerPC440 processors we have implemented a least squares fitting algorithm that extracts intensity and polarimetric parameters in real-time, thereby substantially reducing the image data volume for spacecraft downlink without loss of science information.
The Green Ocean: Precipitation Insights from the GoAmazon2014/5 Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Die; Giangrande, Scott E.; Bartholomew, Mary Jane
This study summarizes the precipitation properties collected during the GoAmazon2014/5 campaign near Manaus in central Amazonia, Brazil. Precipitation breakdowns, summary radar rainfall relationships and self-consistency concepts from a coupled disdrometer and radar wind profiler measurements are presented. The properties of Amazon cumulus and associated stratiform precipitation are discussed, including segregations according to seasonal (Wet/Dry regime) variability, cloud echo-top height and possible aerosol influences on the apparent oceanic characteristics of the precipitation drop size distributions. Overall, we observe that the Amazon precipitation straddles behaviors found during previous U.S. Department of Energy Atmospheric Radiation Measurements program (ARM) tropical deployments, with distributions favoringmore » higher concentrations of smaller drops than ARM continental examples. Oceanic type precipitation characteristics are predominantly observed during the Amazon Wet seasons. Finally, an exploration of the controls on Wet season precipitation properties reveals that wind direction, as compared with other standard radiosonde thermodynamic parameters or aerosol count/regime classifications performed at the ARM site, provides a good indicator for those Wet season Amazon events having an oceanic character for their precipitation drop size distributions.« less
NASA Technical Reports Server (NTRS)
Schmid, Beat; Michalsky, J.; Slater, D.; Barnard, J.; Halthore, R.; Liljegren, J.; Holben, B.; Eck, T.; Livingston, J.; Russell, P.;
2000-01-01
In the fall of 1997 the Atmospheric Radiation Measurement (ARM program conducted an intensive Observation Period (IOP) to study water vapor at its Southern Great Plains (SGP) site. Among the large number of instruments, four sun-tracking radiometers were present to measure the columnar water vapor (CWV). All four solar radiometers retrieve CWV by measuring solar transmittance in the 0.94-micrometer water vapor absorption band. As one of the steps in the CWV retrievals the aerosol component is subtracted from the total transmittance, in the 0.94-micrometer band. The aerosol optical depth comparisons among the same four radiometers are presented elsewhere. We have used three different methods to retrieve CWV. Without attempting to standardize on the same radiative transfer model and its underlying water vapor spectroscopy we found the CWV to agree within 0.13 cm (rms) for CWV values ranging from 1 to 5 cm. Preliminary results obtained when using the same updated radiative transfer model with updated spectroscopy for all instruments will also be shown. Comparisons to the microwave radiometer results will be included in the comparisons.
Three-year program to improve critical 1-micron Qsw laser technology for Earth observation
NASA Astrophysics Data System (ADS)
Sakaizawa, Daisuke; Chishiki, Yoshikazu; Satoh, Yohei; Hanada, Tatsuyuki; Yamakawa, Shiro; Ogawa, Takayo; Wada, Satoshi; Ishii, Shoken; Mizutani, Kohei; Yasui, Motoaki
2012-11-01
Laser remote sensing technologies are valuable for a variety of scientific requirements. These measurement techniques are involved in several earth science areas, including atmospheric chemistry, aerosols and clouds, wind speed and directions, prediction of pollution, oceanic mixed layer depth, vegetation canopy height (biomass), ice sheet, surface topography, and others. Much of these measurements have been performed from the ground to aircraft over the past decades. To improve knowledge of these science areas with transport models (e.g. AGCM), further advances of vertical profile are required. JAXA collaborated with NICT and RIKEN started a new cross-sectional 3-year program to improve a technology readiness of the critical 1-micron wavelengths from 2011. The efficient frequency conversions such as second and third harmonic generation and optical parametric oscillation/generation are applied. A variety of elements are common issues to lidar instruments, which includes heat rejection using high thermal conductivity materials, laser diode life time and reliability, wavelength control, and suppression of contamination control. And the program has invested in several critical areas including advanced laser transmitter technologies to enable science measurements and improvement of knowledge for space-based laser diode arrays, Pockels cells, advanced nonlinear wavelength conversion technology for space-based LIDIRs. Final goal is aim to realize 15 watt class Q-switched pulse laser over 3-year lifetime.
Russell, Armistead G
2008-02-01
One objective of the U.S. Environmental Protection Agency's (EPA's) Supersite Program was to provide data that could be used to more thoroughly evaluate and improve air quality models, and then have those models used to address both scientific and policy-related issues dealing with air quality management. In this direction, modeling studies have used Supersites-related data and are reviewed here. Fine temporal resolution data have been used both to test model components (e.g., the inorganic thermodynamic routines) and air quality modeling systems (in particular, Community Multiscale Air Quality [CMAQ] and Comprehensive Air Quality Model with extensions [CAMx] applications). Such evaluations suggest that the inorganic thermodynamic approaches being used are accurate, as well as the description of sulfate production, although there are significant uncertainties in production of nitric acid, biogenic and ammonia emissions, secondary organic aerosol formation, and the ability to follow the formation and evolution of ultrafine particles. Model applications have investigated how PM levels will respond to various emissions controls, suggesting that nitrate will replace some of the reductions in sulfate particulate matter (PM), although the replacement is small in the summer. Although not part of the Supersite program, modeling being conducted by EPA, regional planning organizations, and states for policy purposes has benefited from the detailed data collected, and the PM models have advanced by their more widespread use.
Strategies for Controlled Placement of Nanoscale Building Blocks
2007-01-01
The capability of placing individual nanoscale building blocks on exact substrate locations in a controlled manner is one of the key requirements to realize future electronic, optical, and magnetic devices and sensors that are composed of such blocks. This article reviews some important advances in the strategies for controlled placement of nanoscale building blocks. In particular, we will overview template assisted placement that utilizes physical, molecular, or electrostatic templates, DNA-programmed assembly, placement using dielectrophoresis, approaches for non-close-packed assembly of spherical particles, and recent development of focused placement schemes including electrostatic funneling, focused placement via molecular gradient patterns, electrodynamic focusing of charged aerosols, and others. PMID:21794185
NASA Technical Reports Server (NTRS)
Peddie, Catherine
2001-01-01
Aircraft emissions are deposited throughout the atmosphere, and at the lower stratosphere and upper troposphere they have greater potential to change ozone abundance and affect climate. There are significant uncertainties arising from the incomplete knowledge of the composition and evolution of the exhaust emissions, particularly regarding reactive trace species, particles, and their gaseous precursors. NASA Glenn Research Center at Lewis Field has considered its role in answering these challenges and has been committed to strengthening its aerosol/particulate research capabilities with initial emphasis on establishing advanced measurement systems and a particulate database. Activities currently supported by the NASA Ultra-Efficient Engine Technology (UEET) Program and accomplishment up to date will be described.
Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.
NASA Astrophysics Data System (ADS)
Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.
2007-12-01
Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (<0.1micron) were also collected at site T0 and T1 (Universidad Technologica de Tecamac, State of Mexico) from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. Samples were collected on quartz fiber filters with high volume impactor samplers. Continuous absorption spectra of these aerosol samples have been obtained in the laboratory from 280 to 900nm with the use of an integrating sphere coupled to a UV spectrometer (Beckman DU with a Labsphere accessory). The integrating sphere allows the detector to collect and spatially integrate the total radiant flux reflected from the sample and therefore allows for the measurement of absorption on highly reflective or diffusely scattering samples. These continuous spectra have also been used to obtain the aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.
Atmosphere aerosol satellite project Aerosol-UA
NASA Astrophysics Data System (ADS)
Milinevsky, Gennadi; Yatskiv, Yaroslav; Syniavskyi, Ivan; Bovchaliuk, Andrii; Degtyaryov, Oleksandr; Sosonkin, Mikhail; Mishchenko, Michael; Danylevsky, Vassyl; Ivanov, Yury; Oberemok, Yevgeny; Masley, Volodymyr; Rosenbush, Vera; Moskalev, Sergii
2017-04-01
The experiment Aerosol-UA is Ukrainian space mission aimed to the terrestrial atmospheric aerosol spatial distribution and microphysics investigations. The experiment concept is based on idea of Glory/APS mission of precise orbital measurements of polarization and intensity of the sunlight scattered by the atmosphere, aerosol and the surface the multichannel Scanning Polarimeter (ScanPol) with narrow field-of-view. ScanPol measurements will be accompanied by the wide-angle MultiSpectral Imager-Polarimeter (MSIP). The ScanPol is designed to measure Stokes parameters I, Q, U within the spectral range from the UV to the SWIR in a wide range of phase angles along satellite ground path. Expected ScanPol polarimetric accuracy is 0.15%. A high accuracy measurement of the degree of linear polarization is provided by on-board calibration of the ScanPol polarimeter. On-board calibration is performed for each scan of the mirror scanning system. A set of calibrators is viewed during the part of the scan range when the ScanPol polarimeter looks in the direction opposite to the Earth's surface. These reference assemblies provide calibration of the zero of the polarimetric scale (unpolarized reference assembly) and the scale factor for the polarimetric scale (polarized reference assembly). The zero of the radiometric scale is provided by the dark reference assembly.The spectral channels of the ScanPol are used to estimate the tropospheric aerosol absorption, the aerosol over the ocean and the land surface, the signals from cirrus clouds, stratospheric aerosols caused by major volcanic eruptions, and the contribution of the Earth's surface. The imager-polarimeter MSIP will collect 60°x60° field-of-view images on the state of the atmosphere and surface in the area, where the ScanPol polarimeter will measure, to retrieve aerosol optical depth and polarization properties of aerosol by registration of three Stokes parameters simultaneously in three spectral channels. The two more channels of the MSIP are the intensity channels that serve to obtain images in eight spectral wavebands to retrieve the aerosol optical depth. The main feature of the each MSIP channel is the splitting of the image by a special prism-splitter to four images on the same CCD detector. In that way we can simultaneously measure four polarization components at 0°, 45°, 90° and 135° as images in each of three polarization channels. One of the special features of ScanPol/MSIP concept is calibration of the MSIP using ScanPol data in the same field-of-view with 1% expected polarization accuracy. The Aerosol-UA experiment is planned to be launched in 2020 at the new satellite platform YuzhSat developed in the Yuzhnoye Design Office. The GRASP algorithm (Dubovik et al. 2014, doi: 10.1117/2.1201408.005558) is planned for Aerosol-UA data processing and AERONET sun photometers observations for validation. Acknowledgements. The work was partly supported by the Special Complex Program for Space Research 2012-2016 of the National Academy of Sciences of Ukraine, by the project 16BF051-02 of the Taras Shevchenko National University of Kyiv, and by the grant of the State Fund for Fundamental Research, project F73/115-2016.
Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS)
NASA Technical Reports Server (NTRS)
Rhothermel, Jeffry; Jones, W. D.; Dunkin, J. A.; Mccaul, E. W., Jr.
1993-01-01
This effort involves development of a calibrated, pulsed coherent CO2 Doppler lidar, followed by a carefully-planned and -executed program of multi-dimensional wind velocity and aerosol backscatter measurements from the NASA DC-8 research aircraft. The lidar, designated as the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS), will be applicable to two research areas. First, MACAWS will enable specialized measurements of atmospheric dynamical processes in the planetary boundary layer and free troposphere in geographic locations and over scales of motion not routinely or easily accessible to conventional sensors. The proposed observations will contribute fundamentally to a greater understanding of the role of the mesoscale, helping to improve predictive capabilities for mesoscale phenomena and to provide insights into improving model parameterizations of sub-grid scale processes within large-scale circulation models. As such, it has the potential to contribute uniquely to major, multi-institutional field programs planned for the mid 1990's. Second, MACAWS measurements can be used to reduce the degree of uncertainty in performance assessments and algorithm development for NASA's prospective Laser Atmospheric Wind Sounder (LAWS), which has no space-based instrument heritage. Ground-based lidar measurements alone are insufficient to address all of the key issues. To minimize costs, MACAWS is being developed cooperatively by the lidar remote sensing groups of the Jet Propulsion Laboratory, NOAA Wave Propagation Laboratory, and MSFC using existing lidar hardware and manpower resources. Several lidar components have already been exercised in previous airborne lidar programs (for example, MSFC Airborne Doppler Lidar System (ADLS) used in 1981,4 Severe Storms Wind Measurement Program; JPL Airborne Backscatter Lidar Experiment (ABLE) used in 1989,90 Global Backscatter Experiment Survey Missions). MSFC has been given responsibility for directing the overall program of instrument development and scientific measurement. The focus of current research and plans for next year are presented.
NASA Astrophysics Data System (ADS)
Tsimpidi, A. P.; Karydis, V. A.; Pandis, S. N.; Zavala, M.; Lei, W.; Molina, L. T.
2007-12-01
Anthropogenic air pollution is an increasingly serious problem for public health, agriculture, and global climate. Organic material (OM) contributes ~ 20-50% to the total fine aerosol mass at continental mid-latitudes. Although OM accounts for a large fraction of PM2.5 concentration worldwide, the contributions of primary and secondary organic aerosol have been difficult to quantify. In this study, new primary and secondary organic aerosol modules were added to PMCAMx, a three dimensional chemical transport model (Gaydos et al., 2007), for use with the SAPRC99 chemistry mechanism (Carter, 2000; ENVIRON, 2006) based on recent smog chamber studies (Robinson et al., 2007). The new modeling framework is based on the volatility basis-set approach (Lane et al., 2007): both primary and secondary organic components are assumed to be semivolatile and photochemically reactive and are distributed in logarithmically spaced volatility bins. The emission inventory, which uses as starting point the MCMA 2004 official inventory (CAM, 2006), is modified and the primary organic aerosol (POA) emissions are distributed by volatility based on dilution experiments (Robinson et al., 2007). Sensitivity tests where POA is considered as nonvolatile and POA and SOA as chemically reactive are also described. In all cases PMCAMx is applied in the Mexico City Metropolitan Area during March 2006. The modeling domain covers a 180x180x6 km region in the MCMA with 3x3 km grid resolution. The model predictions are compared with Aerodyne's Aerosol Mass Spectrometry (AMS) observations from the MILAGRO Campaign. References Robinson, A. L.; Donahue, N. M.; Shrivastava, M. K.; Weitkamp, E. A.; Sage, A. M.; Grieshop, A. P.; Lane, T. E.; Pandis, S. N.; Pierce, J. R., 2007. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315, 1259-1262. Gaydos, T. M.; Pinder, R. W.; Koo, B.; Fahey, K. M.; Pandis, S. N., 2007. Development and application of a three- dimensional aerosol chemical transport model, PMCAMx. Atmospheric Environment 41, 2594-2611. Carter, W.P.L., 2000. Programs and Files Implementing the SAPRC-99 Mechanism and its Associates Emissions Processing Procedures for Models-3 and Other Regional Models. January 31, 2000. http://pah.cert.ucr.edu/~carter/SAPRC99.htm. Environ, 2006. User's guide to the comprehensive air quality model with extensions (CAMx). Version 4.30. Report prepared by ENVIRON International Corporation, Novato, CA. Lane, T.E.; Donahue, N. M.; Pandis, S. N. 2007. Simulating Secondary Organic Aerosol Formation using the Votality Basis-Set Approach in a Chemical Transport Model, in preperation. CAM (Comision Ambiental Metropolitana) 2006: Inventario de Emisiones 2004 de la Zona Metropolitana del Valle de Mexico, Mexico. Robinson, A. L.; Donahue, N. M.; Shrivastava, M. K.; Weitkamp, E. A.; Sage, A. M.; Grieshop, A. P.; Lane, T. E.; Pandis, S. N.; Pierce, J. R., 2007. Rethinking organic aerosols: semivolatile emissions and photochemical aging. Science 315, 1259-1262.
Optical and microphysical properties of atmospheric aerosols in Moldova
NASA Astrophysics Data System (ADS)
Aculinin, Alexandr; Smicov, Vladimir
2010-05-01
Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 < ?(440) < 2.30, < ?(440)>=0.25 Range of Ångström parameter < α440_870 >: 0.14 < α < 2.28 Asymmetry factor (440/670/870/1020): 0.70/0.63/0.59/0.58 ±0.04 Refraction (n) and absorption (k) indices@440 nm: 1.41 ± 0.06; 0.009 ± 0.005 Single scattering albedo < ?o >(440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter < α440_870 > at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban-industrial and mixed' in accordance with the classification of aerosol type models systematized and developed by AERONET team (O.Dubovik et al., 2002, J. Atmosph. Sci., 59, 590-608) on the basis of datasets acquired from worldwide observations at the network of sunphotometers. It should be noted the presence of increased value of absorption index and reduced values of albedo. This may be due to influence of absorptive aerosols (soot). These aerosols are originated from local dust sources and exhausts from intensive urban traffic, from sources of biomass and household garbage burning both in and around the city, and from long-range transport over regions with high loading of aerosols (dust, smoke).
Fast simulation tool for ultraviolet radiation at the earth's surface
NASA Astrophysics Data System (ADS)
Engelsen, Ola; Kylling, Arve
2005-04-01
FastRT is a fast, yet accurate, UV simulation tool that computes downward surface UV doses, UV indices, and irradiances in the spectral range 290 to 400 nm with a resolution as small as 0.05 nm. It computes a full UV spectrum within a few milliseconds on a standard PC, and enables the user to convolve the spectrum with user-defined and built-in spectral response functions including the International Commission on Illumination (CIE) erythemal response function used for UV index calculations. The program accounts for the main radiative input parameters, i.e., instrumental characteristics, solar zenith angle, ozone column, aerosol loading, clouds, surface albedo, and surface altitude. FastRT is based on look-up tables of carefully selected entries of atmospheric transmittances and spherical albedos, and exploits the smoothness of these quantities with respect to atmospheric, surface, geometrical, and spectral parameters. An interactive site, http://nadir.nilu.no/~olaeng/fastrt/fastrt.html, enables the public to run the FastRT program with most input options. This page also contains updated information about FastRT and links to freely downloadable source codes and binaries.
NASA Astrophysics Data System (ADS)
Deshler, Terry; Butler, James H.; Solomon, Susan; Barnes, John E.; Schnell, Russell C.
2009-12-01
David J. Hofmann, a pioneer in stratospheric aerosol and ozone research, passed away in Boulder, Colo., on 11 August 2009. He was 72. Dave, a frequent contributor to AGU publications and meetings, was elected an AGU Fellow in 2006. His long and prolific scientific career was, as he would say, simple in concept: Make a long-term commitment to specific measurements, pay attention to the details, and focus on the important issues that the measurements raise. This is simple in concept yet challenging to maintain in a world of short-term contracts and budgets. That Dave sustained and led key measurement programs through 25 years at the University of Wyoming (UW), in Laramie, and 17 years with the U.S. National Oceanic and Atmospheric Administration's (NOAA) Climate Monitoring and Diagnostics Laboratory (CMDL, which became the Global Monitoring Division (GMD) of NOAA's Earth System Research Laboratory) in Boulder, speaks volumes about the scientific and societal benefits that have resulted from his work. Most of the measurement programs he initiated, and the instruments he helped develop for them, continue today as testament to the value of his focus and lasting influence.
Earth Observing System: Science Objectives and Challenges
NASA Technical Reports Server (NTRS)
King, Michael D.
1998-01-01
The Earth Observing System (EOS) is a space-based observing system comprised of a series of satellite sensors by which scientists can monitor the Earth, a Data and Information System (EOSDIS) enabling researchers worldwide to access the satellite data, and an interdisciplinary science research program to interpret the satellite data. In this presentation I will describe the key areas of scientific uncertainty in understanding climate and global change, and follow that with a description of the EOS goals, objectives, and scientific research elements that comprise the program (instrument science teams and interdisciplinary investigations). Finally, I will describe how scientists and policy makers intend to use EOS data to improve our understanding of key global change uncertainties, such as: (i) clouds and radiation, including fossil fuel and natural emissions of sulfate aerosol and its potential impact on cloud feedback, (ii) man's impact on ozone depletion, with examples of ClO and O3 obtained from the UARS satellite during the Austral Spring, and (iii) volcanic eruptions and their impact on climate, with examples from the eruption of Mt. Pinatubo.
A Study of Persistent Elevated Pollution Episodes in the Northeastern United States.
NASA Astrophysics Data System (ADS)
Vaughan, William M.; Chan, Michael; Cantrell, Bruce; Pooler, Francis
1982-03-01
To examine chemical transformation within stagnant air masses and the atmospheric processes acting upon such air masses, the United States EPA sponsored a study in the summer of 1980 in the northeastern region of the country. Ten research aircraft and several mobile and stationary surface monitoring platforms from three EPA contractors, seven federal agencies, and four universities participated in an intensive measurement program between 16 July and 15 August 1980. Pollutants of interest included SO2, NO, NOx, HC, O3, sulfate, nitrate, and aerosols in general.This paper summarizes the activities of those research aircraft. The three aircraft and one helicopter operated by the contractor team logged a total of 353 flight hours during 100 missions in the program. Flights were made from Columbus. Ohio, to as far cast as Laconia, N.H., as Car south as Montgomery, Ala., as far west as Texarkana, Ark., and as far north as Saginaw, Mich. The flight patterns and data collected for each mission are documented. This summary will allow scientists who are interested in this data base to identify subsets of the data for model development.
Broadband Outdoor Radiometer Calibration Process for the Atmospheric Radiation Measurement Program
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dooraghi, Michael
2015-09-01
The Atmospheric Radiation Measurement program (ARM) maintains a fleet of monitoring stations to aid in the improved scientific understanding of the basic physics related to radiative feedback processes in the atmosphere, particularly the interactions among clouds and aerosols. ARM obtains continuous measurements and conducts field campaigns to provide data products that aid in the improvement and further development of climate models. All of the measurement campaigns include a suite of solar measurements. The Solar Radiation Research Laboratory at the National Renewable Energy Laboratory supports ARM's full suite of stations in a number of ways, including troubleshooting issues that arise asmore » part of the data-quality reviews; managing engineering changes to the standard setup; and providing calibration services and assistance to the full fleet of solar-related instruments, including pyranometers, pyrgeometers, pyrheliometers, as well as the temperature/relative humidity probes, multimeters, and data acquisition systems that are used in the calibrations performed at the Southern Great Plains Radiometer Calibration Facility. This paper discusses all aspects related to the support provided to the calibration of the instruments in the solar monitoring fleet.« less
The Power of Large Scale Partnerships to Increase Climate Awareness and Literacy Around the World
NASA Astrophysics Data System (ADS)
Murphy, T.; Andersen, T. J.; Wegner, K.
2016-12-01
The Global Learning and Observations to Benefit the Environment (GLOBE) Program is an international science and education program that connects a network of communities around the world and gives them the opportunity to participate in data collection and the scientific process, and contribute meaningfully to our understanding of the Earth system and global environment. In the last few years, there has been an infusion of energy in the program as a result of a change to a more community focus. GLOBE was one of the first attempts at a citizen science program at the K-12 level proposed on a global scale. An initial ramp-up of the program was followed by the establishment of a network of partners in countries and within the U.S. One hundred and seventeen countries have participated in the program since its establishment in 1994. These countries are divided into six regions: Africa (23 countries); Asia and Pacific (18); Europe and Eurasia (41); Latin America and Caribbean (20); Near East and North Africa (13); and North America (2). The community within these regions has reached a maturity level that allows it to organize its own science campaigns ranging from aerosols to phenology…all of which increase awareness of climate issues. In addition, some countries within the regions have established science fairs, GLOBE proved to be the impetus for these fairs. The program's partnership network provides students and teachers with a platform for learning about climate issues in their local and global environment, as well as providing scientists with a network to organize data collection and analysis campaigns. Within the U.S., over 130 educational organizations (universities, science museums, nature centers) are members of a partner network divided into six geographical areas: Northwest; Midwest; Northeast and Mid-Atlantic; Southeast; Southwest; and Pacific. For the first time ever, the U.S. held GLOBE science fairs with considerable input and support from the community, the U.S. Partner Forum members, and U.S. Country Coordinator. GLOBE students exhibited their research and learned about climate issues at these fairs. GLOBE has evolved in 20 years and its strength is the community of partners that has helped moved climate literacy forward on a global scale.
Earth remote sensing with NPOESS: instruments and environmental data products
NASA Astrophysics Data System (ADS)
Glackin, David L.; Cunningham, John D.; Nelson, Craig S.
2004-02-01
The NPOESS (National Polar-orbiting Operational Environmental Satellite System) program represents the merger of the NOAA POES (Polar-orbiting Environmental Satellite) program and the DoD DMSP (Defense Meteorological Satellite Program) satellites. Established by presidential directive in 1994, a tri-agency Integrated Program Office (IPO) in Silver Spring, Maryland, has been managing NPOESS development, and is staffed by representatives of NOAA, DoD, and NASA. NPOESS is being designed to provide 55 atmospheric, oceanographic, terrestrial, and solar-geophysical data products, and will disseminate them to civilian and military users worldwide. The first NPOESS satellite is scheduled to be launched late in this decade, with the other two satellites of the three-satellite constellation due to be launched over the ensuing four years. NPOESS will remain operational for at least ten years. The 55 Environmental Data Records (EDRs) will be provided by a number of instruments, many of which will be briefly described in this paper. The instruments will be hosted in various combinations on three NPOESS platforms in three distinct polar sun-synchronous orbits. The instrument complement represents the combined requirements of the weather, climate, and environmental remote sensing communities. The three critical instruments are VIIRS (Visible/Infrared Imager-Radiometer Suite), CMIS (Conical Microwave Imager/Sounder), and CrIS (Cross-track Infrared Sounder). The other IPO-developed instruments are OMPS (Ozone Mapper/Profiler Suite), GPSOS (Global Positioning System Occultation Sensor), the APS (Aerosol Polarimeter Sensor), and the SESS (Space Environment Sensor Suite). NPOESS will also carry various "leveraged" instruments, i.e., ones that do not require development by the IPO. These include the ATMS (Advanced Technology Microwave Sounder), the TSIS (Total Solar Irradiance Sensor), the ERBS (Earth Radiation Budget Sensor), and the ALT (Radar Altimeter).
Effect of exposure to fentanyl aerosol in mice on breathing pattern and respiratory variables.
Manral, Laxmi; Muniappan, Natrajan; Gupta, Pradeep K; Ganesan, Kumaran; Malhotra, Ramesh Chandra; Vijayaraghavan, Rajagopalan
2009-01-01
The breathing pattern of mice that were exposed to fentanyl aerosol was studied (2.7, 5.7, 6.0, 10.0, and 23.6 microg/m(3); for 1 hour), using dimethyl sulfoxide as a vehicle. This study was conducted in a head-only exposure assembly. Body plethysmographs connected to a volumetric pressure transducer were used to capture the respiratory signals, and an on-line computer program capable of recognizing the changes in the breathing pattern was used for monitoring the respiratory pattern. The response of mice to fentanyl exposure was found to be concentration dependent. A lower concentration (2.7 microg/m(3)) showed fast recovery and no mortality, while 100% mortality was observed at a higher concentration (23.6 microg/m(3)). No sensory, pulmonary irritation, and airway limitation in mice was observed, and death occurred probably due to respiratory depression. The concentration that decreased 50% of the respiratory frequency (RD(50)) was estimated to be 6.4 microg/m(3). The extrapolated human threshold limit value, calculated from the RD(50) value, was found to be 0.192 microg/m(3). The concentration that caused 50% mortality in exposed mice (LC(50)) was estimated to be 8.8 microg/m(3). This study shows that aerosolized fentanyl does not cause sensory and pulmonary irritation, and since the RD(50) and LC(50) are very close with a low safety margin, this type of sedative should not be used as an incapacitating agent.
Ground-based remote sensing scheme for monitoring aerosol–cloud interactions
Sarna, Karolina; Russchenberg, Herman W. J.
2016-03-14
A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution measurements from a lidar, a radar and a radiometer, which allow us to collect and compare data continuously. This method is based on a standardised data format from Cloudnet and can be implemented at any observatory where the Cloudnet data set is available. Two example case studies were chosen from the Atmospheric Radiation Measurementmore » (ARM) Program deployment on Graciosa Island, Azores, Portugal, in 2009 to present the method. We use the cloud droplet effective radius ( r e) to represent cloud microphysical properties and an integrated value of the attenuated backscatter coefficient (ATB) below the cloud to represent the aerosol concentration. All data from each case study are divided into bins of the liquid water path (LWP), each 10 g m -2 wide. For every LWP bin we present the correlation coefficient between ln r e and ln ATB, as well as ACI r (defined as ACI r = -d ln r e d ln ATB, change in cloud droplet effective radius with aerosol concentration). Obtained values of ACI r are in the range 0.01–0.1. In conclusion, we show that ground-based remote sensing instruments used in synergy can efficiently and continuously monitor aerosol–cloud interactions.« less
NASA Astrophysics Data System (ADS)
Piacentini, R.; Cede, A.; Luccini, E.; Stengel, F.
The connection between skin cancer and solar ultraviolet radiation has been well documented (i.e., UNEP report "Environmental Effects of Ozone Depletion. 1998 Assessment"). In this work wepresent a computer software that can be used by dermatologists for determining the risk of persons that are exposed to solar UV radiation incident in Argentina, a country largely extended from low (tropical) to high southern hemisphere latitudes. In particular, its spectral distribution weighted by the CIE standard erythemal action spectrum and integrated in wavelength usually called "erythemal irradiance", is calculated including the following geophysical variables: ozone, solar elevation, Sun-Earth distance, altitude, aerosol and albedo. Other variables that have less influence in the final results are the vertical ozone, aerosol, pressure and temperature profiles, the extraterrestrial spectral solar UV irradiance and the ozone photoabsorption cross section. The ozone total column was obtained from the corresponding seasonal and latitudinal climatological NASA TOMS satellite data, including monthly averages, standard deviations and tendencies for the particular geographical situation of Argentina. The program considers also the different skin types, in order to determine the skin risk without or with a sunscreen protection at each moment of the day and for different days of the year. We present the program output for typical examples of persons exposed in extreme conditions, like in the high altitude tropical Puna of Atacama desert in the North- West, or when the ozone hole event overpasses Ushuaia in the South, as well as in Buenos Aires, the largest populated city in the country and one of the megacities of the world. The availability of a large satellite ozone data set gives us the possibility to make a clear sky day solar risk forecast for all the year, that can be applied in all places of the country. This work was made possible through a collaboration between the Argentina Skin Cancer Foundation, the Institute of Physics Rosario (CONICET - National University of Rosario) and the Institute of Medical Physics of the University of Innsbruck, Austria. With this support and the work of physicians and physicists, now dermatologists as well as health authorities and educators can make a reliable (scientific) prediction of the risk due to solar exposure, in order to prevent health problems induced by solar UV radiation.
NASA Astrophysics Data System (ADS)
Crawford, I.; Ruske, S.; Topping, D. O.; Gallagher, M. W.
2015-11-01
In this paper we present improved methods for discriminating and quantifying primary biological aerosol particles (PBAPs) by applying hierarchical agglomerative cluster analysis to multi-parameter ultraviolet-light-induced fluorescence (UV-LIF) spectrometer data. The methods employed in this study can be applied to data sets in excess of 1 × 106 points on a desktop computer, allowing for each fluorescent particle in a data set to be explicitly clustered. This reduces the potential for misattribution found in subsampling and comparative attribution methods used in previous approaches, improving our capacity to discriminate and quantify PBAP meta-classes. We evaluate the performance of several hierarchical agglomerative cluster analysis linkages and data normalisation methods using laboratory samples of known particle types and an ambient data set. Fluorescent and non-fluorescent polystyrene latex spheres were sampled with a Wideband Integrated Bioaerosol Spectrometer (WIBS-4) where the optical size, asymmetry factor and fluorescent measurements were used as inputs to the analysis package. It was found that the Ward linkage with z-score or range normalisation performed best, correctly attributing 98 and 98.1 % of the data points respectively. The best-performing methods were applied to the BEACHON-RoMBAS (Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen-Rocky Mountain Biogenic Aerosol Study) ambient data set, where it was found that the z-score and range normalisation methods yield similar results, with each method producing clusters representative of fungal spores and bacterial aerosol, consistent with previous results. The z-score result was compared to clusters generated with previous approaches (WIBS AnalysiS Program, WASP) where we observe that the subsampling and comparative attribution method employed by WASP results in the overestimation of the fungal spore concentration by a factor of 1.5 and the underestimation of bacterial aerosol concentration by a factor of 5. We suggest that this likely due to errors arising from misattribution due to poor centroid definition and failure to assign particles to a cluster as a result of the subsampling and comparative attribution method employed by WASP. The methods used here allow for the entire fluorescent population of particles to be analysed, yielding an explicit cluster attribution for each particle and improving cluster centroid definition and our capacity to discriminate and quantify PBAP meta-classes compared to previous approaches.
The Simulated Impact of Dimethyl Sulfide Emissions on the Earth System
NASA Astrophysics Data System (ADS)
Cameron-Smith, P. J.; Elliott, S.; Shrivastava, M. B.; Burrows, S. M.; Maltrud, M. E.; Lucas, D. D.; Ghan, S.
2015-12-01
Dimethyl sulfide (DMS) is one of many biologically derived gases and particles emitted from the ocean that has the potential to affect climate. In the case of DMS it is oxidized to sulfate, which increases the aerosol loading in the atmosphere either through nucleation or condensation on other aerosols, which in turn changes the energy balance of the Earth by reflection of sunlight either through direct reflection by the aerosols or by modifying clouds. We have previously shown that the geographical distribution of DMS emission from the ocean may be quite sensitive to climate changes, especially in the Southern Ocean. Our state-of-the-art sulfur-cycle Earth system model (ESM), based on the Community Earth System Model (CESM) climate model, includes an ocean sulfur ecosystem model, the oxidation of DMS to sulfate by atmospheric chemistry, and the indirect effect of sulfate on radiation via clouds using the Modal Aerosol Model (MAM). Our multi-decadal simulations calculate the impact of DMS on the energy balance and climate of the Earth system, and its sensitivity/feedback to climate change. The estimate from our simulations is that DMS is responsible for ~6 W/m2 of reflected sunlight in the pre-industrial era (globally averaged), and ~4 W/m2 in the present era. The reduction is caused by increased competition with cloud condensation nuclei from anthropogenic aerosols in the present era, and therefore partially offsets the cooling from the anthropogenic aerosols. The distribution of these effects are not uniform, and doesn't necessarily follow the simulated DMS distribution, because some clouds are more sensitive to DMS derived sulfate than others, and there are surface feedbacks such as the ice-albedo feedback. Although our calculated impact of DMS is higher than some previous studies, it is not much higher than recent observational estimates (McCoy, et al., 2015). We are now porting these capabilities to the US Department of Energy's Accelerated Climate Modeling for Energy (ACME) model. This work was conducted by the ACME and SciDAC programs of the Office of Biological and Environmental Research and the Office of Advanced Scientific Computing Research of the U.S. Department of Energy. Prepared by LLNL under Contract DE-AC52-07NA27344.