Science.gov

Sample records for aerosol radiative effect

  1. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  2. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  3. Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing

    SciTech Connect

    Ghan, Steven J.

    2013-10-09

    Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

  4. Aerosol radiative effects over BIMSTEC regions

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Kar, S. C.; Mupparthy, Raghavendra S.

    Aerosols can have variety of shapes, composition, sizes and other properties that influence their optical characteristics and thus the radiative impact. The visible impact of aerosol is the formation of haze, a layer of particles from vehicular, industrial emissions and biomass burning. The characterization of these fine particles is important for regulators and researchers because of their potential impact on human health, their ability to travel thousands of kilometers crossing international borders, and their influence on climate forcing and global warming. The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) with Member Countries Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand has emerged as an important regional group for technical and economic Cooperation. Continuing the quest for a deeper understanding of BIMSTEC countries weather and climate, in this paper we focused on aerosols and their direct radiative effects. Because of various contrasts like geophysical, agricultural practices, heterogeneous land/ocean surface, population etc these regions present an excellent natural laboratory for studying aerosol-meteorology interactions in tropical to sub-tropical environments. We exploited data available on multiple platforms (such as MISR, MODIS etc) and models (OPAC, SBDART etc) to compute the results. Ten regions were selected with different surface characteristics, also having considerable differences in the long-term trends and seasonal distribution of aerosols. In a preliminary analysis pertaining to pre-monsoon (March-April-May) of 2013, AOD _{555nm} is found to be maximum over Bangladesh (>0.52) and minimum over Bhutan (0.22), whereas other regions have intermediate values. Concurrent to these variability of AOD we found a strong reduction in incoming flux at surface of all the regions (> -25 Wm (-2) ), except Bhutan and Sri Lanka (< -18Wm (-2) ). The top of the atmosphere (TOA) forcing values are

  5. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  6. Stratospheric aerosol properties and their effects on infrared radiation.

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    1973-01-01

    This paper presents a stratospheric aerosol model and infers its effects on terrestrial radiation. Composition of the aerosol is assumed to be concentrated sulfuric acid. An appropriate size distribution has been determined from available size distribution measurements of other investigators. Aerosols composed of concentrated sulfuric acid emit energy in the atmospheric window region of the infrared spectrum, 8-13 microns. Laboratory measurements of optical constant data obtained at room temperature are presented for 75 and 90% aqueous sulfuric acid. Calculations of an aerosol extinction coefficient are then performed by using the above data. Effects of changes in aerosol phase and temperature are discussed but not resolved.

  7. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  8. The aerosol radiative effects of uncontrolled combustion of domestic waste

    NASA Astrophysics Data System (ADS)

    Kodros, John K.; Cucinotta, Rachel; Ridley, David A.; Wiedinmyer, Christine; Pierce, Jeffrey R.

    2016-06-01

    Open, uncontrolled combustion of domestic waste is a potentially significant source of aerosol; however, this aerosol source is not generally included in many global emissions inventories. To provide a first estimate of the aerosol radiative impacts from domestic-waste combustion, we incorporate the Wiedinmyer et al. (2014) emissions inventory into GEOS-Chem-TOMAS, a global chemical-transport model with online aerosol microphysics. We find domestic-waste combustion increases global-mean black carbon and organic aerosol concentrations by 8 and 6 %, respectively, and by greater than 40 % in some regions. Due to uncertainties regarding aerosol optical properties, we estimate the globally averaged aerosol direct radiative effect to range from -5 to -20 mW m-2; however, this range increases from -40 to +4 mW m-2 when we consider uncertainties in emission mass and size distribution. In some regions with significant waste combustion, such as India and China, the aerosol direct radiative effect may exceed -0.4 W m-2. Similarly, we estimate a cloud-albedo aerosol indirect effect of -13 mW m-2, with a range of -4 to -49 mW m-2 due to emission uncertainties. In the regions with significant waste combustion, the cloud-albedo aerosol indirect effect may exceed -0.4 W m-2.

  9. Direct radiative effect by multicomponent aerosol over China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Cai, Xuhui; Zhang, Hongsheng; Zhu, Tong

    2015-05-01

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM10 and its components, and aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m-2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m-2. BC was the leading radiative-heating component (+8.7 W m-2), followed by mineral aerosol (+1.1 W m-2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m-2), followed by sulfate (-1.4 W m-2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.

  10. Modeling Trends in Tropospheric Aerosol Burden & Its Radiative Effects

    EPA Science Inventory

    Large changes in emissions of aerosol precursors have occurred across the southeast U.S., North America, as well as the northern hemisphere. The spatial heterogeneity and contrasting trends in the aerosol burden is resulting in differing effects on regional radiative balance. Mul...

  11. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  12. The effect of volcanic aerosols on ultraviolet radiation in Antarctica

    NASA Astrophysics Data System (ADS)

    Tsitas, Steven R.; Yung, Yuk L.

    Volcanic eruptions can inject large amounts of aerosol into the atmosphere, and, at large solar zenith angles, scattering by these aerosols can actually increase the flux of UV-B (290-320 nm) radiation reaching the surface. This is surprising since aerosols increase the reflection of sunlight to space. As previous explanations of this phenomenon are heuristic and incomplete, we first provide a rigorous and complete explanation of how this surprising effect occurs. This phenomenon makes Antarctica during spring the most susceptible place on Earth to the scattering effect of volcanic aerosols, due to the combined effect of the spring ozone hole and the large solar zenith angles characteristic of this time of year. We show that an aerosol layer lying above Antarctica during spring will decrease the integrated daily dose of biologically weighted irradiance, weighted by the erythema action spectrum, by only up to 5%. Hence the effects of any significant destruction of ozone induced by volcanic aerosols will not be offset by aerosol scattering. Thus after a volcanic eruption, life in Antarctica during spring will suffer the combined effects of the spring ozone hole and ozone destruction induced by volcanic aerosols, with the latter effect only slightly offset by aerosol scattering.

  13. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  14. Aerosol, radiation, and climate

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1983-01-01

    Airborne, spaceborne, and ground-based measurements are used to study the radiative and climatic effects of aerosols. The data, which are modelled with a hierarchy of radiation and climate models, and their implications are summarized. Consideration is given to volcanic aerosols, polar stratospheric clouds, and the Arctic haze. It is shown that several types of aerosols (volcanic particles and the Arctic haze) cause significant alterations to the radiation budget of the regions where they are located.

  15. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Bergstrom, Robert W.; Redemann, Jens

    2002-01-01

    This report is the final report for "Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects". It is a bibliographic compilation of 29 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 30 first-authored conference presentations. The tasks outlined in the various proposals are listed below with a brief comment as to the research performed. Copies of title/abstract pages of peer-reviewed publications are attached.

  16. The radiative effect of aerosols in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Domoto, G. A.

    1974-01-01

    A modified two-flux approximation is employed to compute the transfer of radiation in a finite, inhomogeneous, turbid atmosphere. A perturbation technique is developed to allow the treatment of nongray gaseous absorption with multiple scattering. The perturbation method, which employs a backscatter factor as a parameter, can be used with anisotropic particle scattering as well as Rayleigh scattering. This method is used to study the effect of aerosols on radiative solar heating and infrared cooling as well as the radiative-convective temperature distribution in the earth's atmosphere. It is found that the effect of aerosols in the infrared cannot be neglected; while in the visible, the effect can be of the same order as that due to absorption by water vapor. For a high surface albedo (greater than 0.30) heating of the earth-atmosphere system results due to the presence of aerosols. The aerosols also reduce the amount of convection needed to maintain a stable atmosphere. For the case of a dense haze a temperature inversion is found to exist close to the ground.

  17. Aerosol properties and associated radiative effects over Cairo (Egypt)

    NASA Astrophysics Data System (ADS)

    El-Metwally, M.; Alfaro, S. C.; Wahab, M. M. Abdel; Favez, O.; Mohamed, Z.; Chatenet, B.

    2011-02-01

    Cairo is one of the largest megacities in the World and the particle load of its atmosphere is known to be particularly important. In this work we aim at assessing the temporal variability of the aerosol's characteristics and the magnitude of its impacts on the transfer of solar radiation. For this we use the level 2 quality assured products obtained by inversion of the instantaneous AERONET sunphotometer measurements performed in Cairo during the Cairo Aerosol CHaracterization Experiment (CACHE), which lasted from the end of October 2004 to the end of March 2006. The analysis of the temporal variation of the aerosol's optical depth (AOD) and spectral dependence suggests that the aerosol is generally a mixture of at least 3 main components differing in composition and size. This is confirmed by the detailed analysis of the monthly-averaged size distributions and associated optical properties (single scattering albedo and asymmetry parameter). The components of the aerosol are found to be 1) a highly absorbing background aerosol produced by daily activities (traffic, industry), 2) an additional, 'pollution' component produced by the burning of agricultural wastes in the Nile delta, and 3) a coarse desert dust component. In July, an enhancement of the accumulation mode is observed due to the atmospheric stability favoring its building up and possibly to secondary aerosols being produced by active photochemistry. More generally, the time variability of the aerosol's characteristics is due to the combined effects of meteorological factors and seasonal production processes. Because of the large values of the AOD achieved during the desert dust and biomass burning episodes, the instantaneous aerosol radiative forcing (RF) at both the top (TOA) and bottom (BOA) of the atmosphere is maximal during these events. For instance, during the desert dust storm of April 8, 2005 RF BOA, RF TOA, and the corresponding atmospheric heating rate peaked at - 161.7 W/m 2, - 65.8 W/m 2

  18. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  19. Radiative effects of aerosols on the environment in China

    NASA Astrophysics Data System (ADS)

    Yu, Hongbin

    Anthropogenic emissions and concentrations of aerosol precursors and aerosols over China are among the highest in major countries of the world. Due to large emissions of soot and dust, aerosol absorption is high. Based on the observed direct and diffuse irradiance, a single scattering albedo of about 0.8 is derived for two large agri/eco/industrial areas. Aerosol direct effect can exert various environmental impacts in China. Photochemical activities in the atmospheric boundary layer (ABL) are significantly reduced because of reductions in photolysis rates and in emissions of biogenic hydrocarbons. Crop yields under optimal conditions can be reduced due to the reduction in surface solar irradiance. The most significant aerosol radiative perturbation is in changing the air-surface interaction and diurnal evolution of ABL. Reductions in various surface heat fluxes due to aerosols depend on soil moisture. Over a relatively dry surface, the evaporation has a small change, leading to the largest decrease of surface skin temperature at noon. Over a relatively wet surface, a substantial reduction in evaporation results in the largest surface cooling in the early morning. The diurnal temperature range (DTR) can be reduced by an amount comparable to the observed decrease of DTR. The longwave absorption of aerosols can lead to an increase of the daily minimum temperature and contributes to about 20% of the decrease in the DTR. The near-surface air temperature has the largest cooling in the early morning because the ABL is shallow and the temperature is sensitive to the radiative perturbation. As a result of the reduced sensible heat flux, the surface layer becomes more stable. Moreover, the aerosol heating enhances the stabilization of surface layer and in turn further reduces the sensible heat flux. As a result the ABL height can be reduced substantially. This will have many important ramifications, including trapping/accumulation of air pollutants, and perturbing the water

  20. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  1. Global Aerosol Direct Radiative Effect From CALIOP and C3M

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2015-01-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate forcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  2. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-04-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  3. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2012-12-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  4. War Induced Aerosol Optical, Microphysical and Radiative Effects

    NASA Astrophysics Data System (ADS)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    The effect of war on air pollution and climate is assessed in this communication. War today in respect of civil wars and armed conflict in the Middle East area is taken into consideration. Impacts of war are not only in loss of human life and property, but also in the environment. It is well known that war effects air pollution and in the long run contribute to anthropogenic climate change, but general studies on this subject are few because of the difficulties of observations involved. In the current scenario of the ongoing conflict in the Middle East regions, deductions in parameters of atmosphere are discussed. Aerosol Optical Depth, Aerosol loads, Black Carbon, Ozone,Dust, regional haze and many more are analyzed using various satellite data. Multi-model analysis is also studied to verify the analysis. Type segregation of aerosols, in-depth constraints to atmospheric chemistry, biological effects and particularly atmospheric physics in terms of radiative forcing, etc. are discussed. Undergraduate in Earth Sciences.

  5. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    NASA Astrophysics Data System (ADS)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  6. Estimation of Aerosol Direct Radiative Effects from Satellite and In Situ Measurements

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Schmid, Beat; Redemann, Jens; McIntosh, Dawn

    2000-01-01

    Ames researchers have combined measurements from satellite, aircraft, and the surface to estimate the effect of airborne particles (aerosols) on the solar radiation over the North Atlantic region. These aerosols (which come from both natural and pollution sources) can reflect solar radiation, causing a cooling effect that opposes the warming caused by carbon dioxide. Recently, increased attention has been paid to aerosol effects to better understand the Earth climate system.

  7. Exploring the Longwave Radiative Effects of Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Hansell, Richard A., Jr.

    2012-01-01

    Dust aerosols not only affect air quality and visibility where they pose a significant health and safety risk, but they can also play a role in modulating the energy balance of the Earth-atmosphere system by directly interacting with local radiative fields. Consequently, dust aerosols can impact regional climate patterns such as changes in precipitation and the evolution of the hydrological cycle. Assessing the direct effect of dust aerosols at the solar wavelengths is fairly straightforward due in part to the relatively large signal-to-noise ratio in broadband irradiance measurements. The longwave (LW) impacts, on the other hand, are rather difficult to ascertain since the measured dust signal level (10 Wm-2) is on the same order as the instrumental uncertainties. Moreover, compared to the shortwave (SW), limited experimental data on the LW optical properties of dust makes it a difficult challenge for constraining the LW impacts. Owing to the strong absorption features found in many terrestrial minerals (e.g., silicates and clays), the LW effects, although much smaller in magnitude compared to the SW, can still have a sizeable impact on the energetics of the Earth-atmosphere system, which can potentially trigger changes in the heat and moisture surface budgets, and dynamics of the atmosphere. The current endeavor is an integral part of an on-going research study to perform detailed assessments of dust direct aerosol radiative effects (DARE) using comprehensive global datasets from NASA Goddards mobile ground-based facility (cf. http://smartlabs.gsfc.nasa.gov/) during previous field experiments near key dust source regions. Here we examine and compare the results from two of these studies: the 2006 NASA African Monsoon Multidisciplinary Activities and the 2008 Asian Monsoon Years. The former study focused on transported Saharan dust at Sal Island (16.73N, 22.93W), Cape Verde along the west coast of Africa while the latter focused on Asian dust at Zhangye China (39

  8. A case study of the radiative effect of aerosols over Europe: EUCAARI-LONGREX

    NASA Astrophysics Data System (ADS)

    Esteve, Anna R.; Highwood, Eleanor J.; Ryder, Claire L.

    2016-06-01

    The radiative effect of anthropogenic aerosols over Europe during the 2008 European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions Long Range Experiment (EUCAARI-LONGREX) campaign has been calculated using measurements collected by the Facility for Airborne Atmospheric Measurements (FAAM) BAe-146 aircraft and radiative transfer modelling. The aircraft sampled anthropogenically perturbed air masses across north-western Europe under anticyclonic conditions with aerosol optical depths ranging from 0.047 to 0.357. For one specially designed "radiative closure" flight, simulated irradiances have been compared to radiation measurements for a case of aged European aerosol in order to explore the validity of model assumptions and the degree of radiative closure that can be attained given the spatial and temporal variability of the observations and their measurement uncertainties. Secondly, the diurnally averaged aerosol radiative effect throughout EUCAARI-LONGREX has been calculated. The surface radiative effect ranged between -3.9 and -22.8 W m-2 (mean -11 ± 5 W m-2), whilst top-of-the-atmosphere (TOA) values were between -2.1 and -12.0 W m-2 (mean -5 ± 3 W m-2). We have quantified the uncertainties in our calculations due to the way in which aerosols and other parameters are represented in a radiative transfer model. The largest uncertainty in the aerosol radiative effect at both the surface and the TOA comes from the spectral resolution of the information used in the radiative transfer model (˜ 17 %) and the aerosol description (composition and size distribution) used in the Mie calculations of the aerosol optical properties included in the radiative transfer model (˜ 7 %). The aerosol radiative effect at the TOA is also highly sensitive to the surface albedo (˜ 12 %).

  9. Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.

    2004-01-01

    Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.

  10. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  11. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  12. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    NASA Technical Reports Server (NTRS)

    Thorsen, Tyler; Fu, Qiang

    2015-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at mid-latitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30â€"50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  13. CALIPSO-Inferred Aerosol Direct Radiative Effects: Bias Estimates Using Ground-Based Raman Lidars

    NASA Technical Reports Server (NTRS)

    Thorsen, Tyler; Fu, Qiang

    2016-01-01

    Observational constraints on the change in the radiative energy budget caused by the presence of aerosols, i.e. the aerosol direct radiative effect (DRE), have recently been made using observations from the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO). CALIPSO observations have the potential to provide improved global estimates of aerosol DRE compared to passive sensor-derived estimates due to CALIPSO's ability to perform vertically-resolved aerosol retrievals over all surface types and over cloud. In this study we estimate the uncertainties in CALIPSO-inferred aerosol DRE using multiple years of observations from the Atmospheric Radiation Measurement (ARM) program's Raman lidars (RL) at midlatitude and tropical sites. Examined are assumptions about the ratio of extinction-to-backscatter (i.e. the lidar ratio) made by the CALIPSO retrievals, which are needed to retrieve the aerosol extinction profile. The lidar ratio is shown to introduce minimal error in the mean aerosol DRE at the top-of-atmosphere and surface. It is also shown that CALIPSO is unable to detect all radiatively-significant aerosol, resulting in an underestimate in the magnitude of the aerosol DRE by 30-50%. Therefore, global estimates of the aerosol DRE inferred from CALIPSO observations are likely too weak.

  14. Effects of ozone and aerosol on surface UV radiation variability.

    PubMed

    Kim, Jhoon; Cho, Hi-Ku; Mok, Jungbin; Yoo, Hee Dong; Cho, Nayeong

    2013-02-05

    Global (direct+diffuse) spectral ultraviolet (UV, 290-363nm) and total ozone measurements made on the roof of the Main Science Building, Yonsei University at Seoul (37.57°, 128.98°E) were analyzed to quantify the effects of ozone and aerosol on the variability of surface erythemal UV (EUV) irradiance. The measurements have been made with a Brewer Spectrophotometer MKIV (SCI-TEC#148) and a Dobson Ozone Spectrophotometer (Beck#123), respectively, during 2004-2008. The overall mean radiation amplification factor, RAF(AOD, SZA) [23,24] due to total ozone (O(3)) (hereafter O(3) RAF) shows that 1% decrease in total ozone results in an increase of 1.18±0.02% in the EUV irradiance with the range of 0.67-1.74% depending on solar zenith angles (SZAs) (40-70°) and on aerosol optical depths (AODs) (<4.0), under both clear (cloud cover<25%) and all sky conditions. For the mean AOD, the O(3) RAFs(SZA) for both sky conditions increased as SZA increased from 40° to 60°, and then decreased for higher SZA 70°, where the patterns are consistent with results of the previous studies [2,10]. A similar analysis of the RAF(O(3), SZA) due to AOD (hereafter AOD RAF) under clear and all-sky conditions shows that on average, a 1% increase in AOD forces a decrease of 0.29±0.06% in the EUV irradiance with the maximum range 0.18-0.63% depending on SZAs and O(3). Thus, overall sensitivity of UV to ozone (O(3), RAF) was estimated to be about four times higher than to the aerosol (AOD RAF). At the mean O(3), the AOD RAFs(SZA) for both skies appears to be almost independent of SZAs. It is shown that the O(3) RAFs are nearly independent of the sky conditions, whereas the AOD RAFs depend distinctly on the sky conditions with the larger values for all skies. Under cloud free conditions, the overall mean ratio for measured-to-modeled O(3), RAF(AOD, SZA) is 1.13, whereas the ratio for AOD RAF(O(3), SZA) shows 0.82 in the EUV irradiance. Overall, the RAF measurements are corroborated by radiative

  15. Effects of aerosols on clear-sky solar radiation in the ALADIN-HIRLAM NWP system

    NASA Astrophysics Data System (ADS)

    Gleeson, Emily; Toll, Velle; Pagh Nielsen, Kristian; Rontu, Laura; Masek, Jan

    2016-05-01

    The direct shortwave radiative effect of aerosols under clear-sky conditions in the Aire Limitee Adaptation dynamique Developpement InterNational - High Resolution Limited Area Model (ALADIN-HIRLAM) numerical weather prediction system was investigated using three shortwave radiation schemes in diagnostic single-column experiments: the Integrated Forecast System (IFS), acraneb2 and the hlradia radiation schemes. The multi-band IFS scheme was formerly used operationally by the European Centre for Medium Range Weather Forecasts (ECMWF) whereas hlradia and acraneb2 are broadband schemes. The former is a new version of the HIRLAM radiation scheme while acraneb2 is the radiation scheme in the ALARO-1 physics package. The aim was to evaluate the strengths and weaknesses of the numerical weather prediction (NWP) system regarding aerosols and to prepare it for use of real-time aerosol information. The experiments were run with particular focus on the August 2010 Russian wildfire case. Each of the three radiation schemes accurately (within ±4 % at midday) simulates the direct shortwave aerosol effect when observed aerosol optical properties are used. When the aerosols were excluded from the simulations, errors of more than +15 % in global shortwave irradiance were found at midday, with the error reduced to +10 % when standard climatological aerosols were used. An error of -11 % was seen at midday if only observed aerosol optical depths at 550 nm, and not observation-based spectral dependence of aerosol optical depth, single scattering albedos and asymmetry factors, were included in the simulations. This demonstrates the importance of using the correct aerosol optical properties. The dependency of the direct radiative effect of aerosols on relative humidity was tested and shown to be within ±6 % in this case. By modifying the assumptions about the shape of the IFS climatological vertical aerosol profile, the inherent uncertainties associated with assuming fixed vertical

  16. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, R. A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.; Condon, Estelle (Technical Monitor)

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative Forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting, future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols. Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects. TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites, as illustrated in Figure 1. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux chances, or radiative forcing, from the satellite-measured radiances or 'etrieved optical depths remains a difficult challenge. In this paper we summarize key Initial results from TARFOX and, to a lesser extent ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle and high latitudes.

  17. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, Robert A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate In potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols, Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects, TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved optical depths remains a difficult challenge. In this paper we summarize key initial results from TARFOX and, to a lesser extent, ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle latitudes.

  18. Impact of aerosol radiative effects on 2000-2010 surface temperatures

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Shindell, D. T.; Lamarque, J. F.

    2015-10-01

    Aerosol radiative forcing from direct and indirect effects of aerosols is examined over the recent past (last 10-15 years) using updated sulfate aerosol emissions in two Earth System Models with very different surface temperature responses to aerosol forcing. The hypothesis is that aerosol forcing and in particular, the impact of indirect effects of aerosols on clouds (Aerosol-Cloud Interactions, or ACI), explains the recent `hiatus' in global mean surface temperature increases. Sulfate aerosol emissions increase globally from 2000 to 2005, and then decrease slightly to 2010. Thus the change in anthropogenic sulfate induced net global radiative forcing is small over the period. Regionally, there are statistically significant forcings that are similar in both models, and consistent with changes in simulated emissions and aerosol optical depth. Coupled model simulations are performed to look at impacts of the forcing on recent surface temperatures. Temperature response patterns in the models are similar, and reflect the regional radiative forcing. Pattern correlations indicate significant correlations between observed decadal surface temperature changes and simulated surface temperature changes from recent sulfate aerosol forcing in an equilibrium framework. Sulfate ACI might be a contributor to the spatial patterns of recent temperature forcing, but not to the global mean `hiatus' itself.

  19. The effect of ozone and aerosols on the surface erythemal UV radiation estimated from OMI measurements

    NASA Astrophysics Data System (ADS)

    Lee, Joonsuk; Choi, Won Jun; Kim, Deok Rae; Kim, Seung-Yeon; Song, Chang-Keun; Hong, Jun Suk; Hong, Youdeog; Lee, Sukjo

    2013-05-01

    Surface erythemal UV radiation is mainly affected by total column ozone, aerosols, clouds, and solar zenith angle. The effect of ozone on the surface UV radiation has been explored many times in the previous studies due to the decrease of ozone layer. In this study, we calculated the effect of aerosols on the surface UV radiation as well as that of ozone using data acquired from Ozone Monitoring Instrument (OMI). First, ozone, aerosol optical depth (AOD), and surface erythemal UVB radiation measured from satellite are compared with those from ground measurements. The results showed that the comparison for ozone was good with r 2 of 0.92. For aerosol, there was difference between satellite measurements and surface measurements due to the insufficient information on aerosol in the retrieval algorithm. The r 2 for surface erythemal UV radiation was high (˜0.94) but satellite measurements showed about 30% larger values than surface measurements on average by not considering the effect of absorbing aerosols in the retrieval process from satellite measurements. Radiative amplification factor (RAF) is used to access the effect of ozone and aerosol quantitatively. RAF for ozone was 0.97˜1.49 with solar zenith angle. To evaluate the effect of aerosol on the surface UV radiation, only clear-sky pixel data were used and solar zenith angle and total column amount of ozone were fixed. Also, RAF for aerosol was assessed according to the single scattering albedo (SSA) of aerosols. The results showed that RAF for aerosol with smaller SSA (< 0.90) was larger than that for with larger SSA (> 0.90). The RAF for aerosol was 0.09˜0.22 for the given conditions which was relatively small compared to that for ozone. However, considering the fact that aerosol optical depth can change largely in time and space while the total column amount of ozone does not change very much, it needs to include the effect of aerosol to predict the variations of surface UV radiation more correctly.

  20. Carbonaceous Aerosols and Radiative Effects Study (CARES), g1-aircraft, sedlacek sp2

    DOE Data Explorer

    Sedlacek, Art

    2011-08-30

    The primary objective of the Carbonaceous Aerosol and Radiative Effects Study (CARES) in 2010 was to investigate the evolution of carbonaceous aerosols of different types and their optical and hygroscopic properties in central California, with a focus on the Sacramento urban plume.

  1. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative effects

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-08-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  2. A Global Modeling Study on Carbonaceous Aerosol Microphysical Characteristics and Radiative Effects

    NASA Technical Reports Server (NTRS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-01-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, indirect and semi-direct aerosol effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative effects. Our best estimate for net direct and indirect aerosol radiative flux change between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative flux change can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Absorption of black carbon aerosols is amplified by sulfate and nitrate coatings and, even more strongly, by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative fluxeswhen sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to a reduction in positive radiative flux.

  3. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and

  4. Impact of aerosol hygroscopic growth on the direct aerosol radiative effect in summer on North China Plain

    NASA Astrophysics Data System (ADS)

    Kuang, Y.; Zhao, C. S.; Tao, J. C.; Bian, Y. X.; Ma, N.

    2016-12-01

    In this paper, relative humidity (RH) profiles and their impacts on the vertical variations of aerosol optical properties and the direct aerosol radiative effect (DARE) have been investigated based on surface measurements from the Haze in China campaign and sounding data from the North China Plain. Among the profiles obtained from July to September in 2008, about half have RHs greater than 80% within the mixed layer. The vertical variations in the aerosol optical properties at ambient RH, including the extinction coefficient (σext), single scattering albedo (SSA) and asymmetry factor (g), are remarkably different from the variations in the dry aerosols and are highly dependent on the RH profiles. Increases of the aerosol optical depth and column-averaged SSA and g due to aerosol water uptake can reach up to 64%, 0.052 and 0.079, respectively. The fractional contribution to the instantaneous DARE at the top of the atmosphere due to aerosol hygroscopic growth reaches 60% in high RH profiles. DARE estimates can be significantly biased if the RH dependence of SSA or g is not considered. We suggest that if their vertical profiles or column-averaged values are absent, then the ambient values of SSA and g at the surface should be used rather than the values of SSA and g obtained from dry aerosols when estimating DAREs.

  5. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    NASA Astrophysics Data System (ADS)

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    2016-11-01

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These "fire aerosols" can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of -1.0 W m-2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effect is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (-0.2 W m-2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (-1.2 W m-2), while over Boreal Asia the overestimation is +43 % (-1.9 W m-2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.

  6. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  7. Aerosol Effects on Radiation and Climate: Column Closure Experiments with Towers, Aircraft, and Satellites

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.

    1994-01-01

    Many theoretical studies have shown that anthropogenic aerosol particles can change the radiation balance in an atmospheric column and might thereby exert a significant effect on the Earth's climate. In particular, recent calculations have shown that sulfate particles from anthropogenic combustion may already exert a cooling influence on the Earth that partially offsets the warming caused by the greenhouse gases from the same combustion. Despite the potential climatic importance of anthropogenic aerosols, simultaneous measurements of anthropogenic aerosol properties and their effect on atmospheric radiation have been very rare. Successful comparisons of measured radiation fields with those calculated from aerosol measurements - now referred to as column closure comparisons - are required to improve the accuracy and credibility of climate predictions. This paper reviews the column closure experiment performed at the Mt. Sutro Tower in San Francisco in 1975, in which elevated radiometers measured the change in Earth-plus-atmosphere albedo caused by an aerosol layer, while a lidar, sunphotometer, nephelometer, and other radiometers measured properties of the responsible aerosol. The time-dependent albedo calculated from the measured aerosol properties agreed with that measured by the tower radiometers. Also presented are designs for future column closure studies using radiometers and aerosol instruments on the ground, aircraft, and satellites. These designs draw upon algorithms and experience developed in the Sutro Tower study, as well as more recent experience with current measurement and analysis capabilities.

  8. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    DOE PAGES

    Grandey, Benjamin S.; Lee, Hsiang-He; Wang, Chien

    2016-11-23

    Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5). Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m−2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effect ismore » particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m−2). Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m−2), while over Boreal Asia the overestimation is +43 % (−1.9 W m−2). The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.« less

  9. Multi-Decadal Variations of Atmospheric Aerosols and Their Effects on Surface Radiation Trends

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Wild, Martin; Qian, Yun; Yu, Hongbin; Streets, David; Bian, Huisheng; Wang, Weiguo

    2010-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. We analyze the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world.

  10. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    NASA Technical Reports Server (NTRS)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  11. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2015-09-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (all anthropogenic, biomass burning and non-biomass burning) are investigated by performing sensitivity experiments. On the global scale, our results show that land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ~ 9 %. At the regional scale, plant productivity (GPP) and isoprene emission show a robust but opposite sensitivity to pollution aerosols, in regions where complex canopies dominate. In eastern North America and Europe, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +8-12 % on an annual average, with a stronger increase during the growing season (> 12 %). In the Amazon basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the Amazon basin during the dry-fire season (+5-8 %). In Europe and China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on the annual average. Anthropogenic aerosols affect land carbon fluxes via different mechanisms and we suggest that the dominant mechanism varies across regions: (1) light scattering dominates in the eastern US; (2) cooling in the Amazon basin; and (3) reduction in direct radiation in Europe and China.

  12. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2014-01-01

    Atmospheric models often represent the aerosol particle size distribution with a modal approach, in which particles are described with log-normal modes within predetermined size ranges. This approach reallocates particles numerically from one mode to another for example during particle growth, potentially leading to artificial changes in the aerosol size distribution. In this study we analysed how the modal reallocation affects climate-relevant variables: cloud droplet number concentration (CDNC), aerosol-cloud interaction parameter (ACI) and light extinction coefficient (qext). The ACI parameter gives the response of CDNC to a change in total aerosol number concentration. We compared these variables between a modal model (with and without reallocation routines) and a high resolution sectional model, which was considered a reference model. We analysed the relative differences in the chosen variables in four experiments designed to assess the influence of atmospheric aerosol processes. We find that limiting the allowed size ranges of the modes, and subsequent remapping of the distribution, leads almost always to an underestimation of cloud droplet number concentrations (by up to 100%) and an overestimation of light extinction (by up to 20%). On the other hand, the aerosol-cloud interaction parameter can be either over- or underestimated by the reallocating model, depending on the conditions. For example, in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause on average a 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  13. New approaches to quantifying aerosol influence on the cloud radiative effect.

    PubMed

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian

    2016-05-24

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  14. New approaches to quantifying aerosol influence on the cloud radiative effect

    NASA Astrophysics Data System (ADS)

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian

    2016-05-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  15. New approaches to quantifying aerosol influence on the cloud radiative effect

    DOE PAGES

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; ...

    2016-02-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution tomore » represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.« less

  16. Reallocation in modal aerosol models: impacts on predicting aerosol radiative effects

    NASA Astrophysics Data System (ADS)

    Korhola, T.; Kokkola, H.; Korhonen, H.; Partanen, A.-I.; Laaksonen, A.; Lehtinen, K. E. J.; Romakkaniemi, S.

    2013-08-01

    In atmospheric modelling applications the aerosol particle size distribution is commonly represented by modal approach, in which particles in different size ranges are described with log-normal modes within predetermined size ranges. Such method includes numerical reallocation of particles from a mode to another for example during particle growth, leading to potentially artificial changes in the aerosol size distribution. In this study we analysed how this reallocation affects climatologically relevant parameters: cloud droplet number concentration, aerosol-cloud interaction coefficient and light extinction coefficient. We compared these parameters between a modal model with and without reallocation routines, and a high resolution sectional model that was considered as a reference model. We analysed the relative differences of the parameters in different experiments that were designed to cover a wide range of dynamic aerosol processes occurring in the atmosphere. According to our results, limiting the allowed size ranges of the modes and the following numerical remapping of the distribution by reallocation, leads on average to underestimation of cloud droplet number concentration (up to 100%) and overestimation of light extinction (up to 20%). The analysis of aerosol first indirect effect is more complicated as the ACI parameter can be either over- or underestimated by the reallocating model, depending on the conditions. However, for example in the case of atmospheric new particle formation events followed by rapid particle growth, the reallocation can cause around average 10% overestimation of the ACI parameter. Thus it is shown that the reallocation affects the ability of a model to estimate aerosol climate effects accurately, and this should be taken into account when using and developing aerosol models.

  17. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly.

  18. Direct radiative effect due to brownness in organic carbon aerosols generated from biomass combustion

    NASA Astrophysics Data System (ADS)

    Rathod, T. D.; Sahu, S. K.; Tiwari, M.; Pandit, G. G.

    2016-12-01

    We report the enhancement in the direct radiative effect due the presence of Brown carbon (BrC) as a part of organic carbon aerosols. The optical properties of organic carbon aerosols generated from pyrolytic combustion of mango tree wood (Magnifera Indica) and dung cake at different temperatures were considered. Mie codes were used to calculate absorption and scattering coefficients coupled with experimentally derived imaginary complex refractive index. The direct radiative effect (DRE) for sampled organic carbon aerosols was estimated using a wavelength dependent radiative transfer equation. The BrC DRE was estimated taking virtually non absorbing organic aerosols as reference. The BrC DRE from wood and dung cake was compared at different combustion temperatures and conditions. The BrC contributed positively to the direct top of the atmosphere radiative effect. Dung cake generated BrC aerosols were found to be strongly light absorbing as compared to BrC from wood combustion. It was noted that radiative effects of BrC from wood depended on its generation temperature and conditions. For BrC aerosols from dung cake such strong dependence was not observed. The average BrC aerosol DRE values were 1.53±0.76 W g-1 and 17.84±6.45 W g-1 for wood and dung cake respectively. The DRE contribution of BrC aerosols came mainly (67-90%) from visible light absorption though they exhibited strong absorption in shorter wavelengths of the UV-visible spectrum.

  19. Direct radiative effects of aerosols over South Asia from observations and modeling

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Manoj, M. R.; Moorthy, K. Krishna; Chin, Mian

    2016-10-01

    Quantitative assessment of the seasonal variations in the direct radiative effect (DRE) of composite aerosols as well as the constituent species over the Indian sub continent has been carried out using a synergy of observations from a dense network of ground based aerosol observatories and modeling based on chemical transport model simulations. Seasonal variation of aerosol constituents depict significant influence of anthropogenic aerosol sources in winter and the dominance of natural sources in spring, even though the aerosol optical depth doesn't change significantly between these two seasons. A significant increase in the surface cooling and atmospheric warming has been observed as season changes from winter (DRESUR = -28 ± 12 W m-2 and DREATM = +19.6 ± 9 W m-2) to spring (DRESUR = -33.7 ± 12 W m-2 and DREATM = +27 ± 9 W m-2). Interestingly, springtime aerosols are more absorptive in nature compared to winter and consequently the aerosol induced diabatic heating of the atmosphere goes as high as 1 K day-1 during spring, especially over eastern India. The atmospheric DRE due to dust aerosols (+14 ± 7 W m-2) during spring overwhelms that of black carbon DRE (+11.8 ± 6 W m-2) during winter. The DRE at the top of the atmosphere is mostly governed by the anthropogenic aerosols during all the seasons. The columnar aerosol loading, its anthropogenic fraction and radiative effects shows a steady increase with latitude across Indian mainland leading to a larger aerosol-induced atmospheric warming during spring than in winter.

  20. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    SciTech Connect

    Ricchiazzi, P.; O'Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  1. A satellite view of the direct effect of aerosols on solar radiation at global scale

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Matsoukas, Christos; Fotiadi, Aggeliki; Benas, Nikolaos; Vardavas, Ilias

    2016-04-01

    Aerosols are a key parameter for better understanding and predicting current and future climate change. They are determining, apart from clouds, patterns of solar radiation through scattering and absorption processes. Especially, under cloud-free skies, aerosols are the major modulator of the solar radiation budget of the Earth-atmosphere system. Although significant improvement has been made as to better understanding the direct radiative effect (DRE) of aerosols, there is still a need for further improvement in our knowledge of the DRE spatial and temporal patterns, in particular with respect to extended spatial and temporal coverage of relevant information. In an ongoing rapidly evolving era of great satellite-based achievements, concerning the knowledge of solar radiation budget and its modulators, and with the great progress in obtaining significant information on key aerosol optical properties needed for modeling DRE, it is a great challenge to use all this new aerosol information and to see what is the new acquired scientific knowledge. The objective of this study is to obtain an improved view of global aerosol DRE effects using contemporary accurate data for the important atmospheric and surface parameters determining the solar radiation budget, with emphasis to state of the art aerosol data. Thus, a synergy is made of different datasets providing the necessary input data and of a detailed spectral radiative transfer model (RTM) to compute spectral globally distributed aerosol DREs. Emphasis is given on using highly accurate and well-tested aerosol optical properties. Spectral information on aerosol optical depth (AOD) is taken from retrieved products of the MODerate resolution Imaging Spectroradiometer (MODIS) instrument, while similar information is taken from MODIS for the aerosol asymmetry parameter (AP) over ocean. Information from MODIS is also taken for the aerosol single scattering albedo (SSA). All this information comes from the latest Collection

  2. A study of regional aerosol radiative properties and effects on ultraviolet-B radiation

    NASA Astrophysics Data System (ADS)

    Wenny, B. N.; Schafer, J. S.; Deluisi, J. J.; Saxena, V. K.; Barnard, W. F.; Petropavlovskikh, I. V.; Vergamini, A. J.

    1998-07-01

    A field experiment was conducted in western North Carolina to investigate the relationship between aerosol optical properties and atmospheric transmission. Two research measurement sites in close horizontal proximity but at different altitudes were established to measure the transmission of UV radiation through a slab of atmosphere. An identical set of radiation sensing instruments, including a broadband UV-B radiometer, a direct Sun pyrheliometer, a shadowband radiometer, and a spectral photometer, was placed at both sites, a mountaintop site (Mount Gibbes 35.78°N, 82.29°W, 2004 m elevation) and a valley site (Black Mountain, North Carolina 35.66°N, 82.38°N, 951 m elevation). Aerosol size distribution sampling equipment was located at the valley site. Broadband solar pseudo-optical depth and aerosol optical depths at 415 nm, 500 nm, and 673 nm were measured for the lowest 1-km layer of the troposphere. The measurements exhibited variations based on an air mass source region as determined by back trajectory analysis. Broadband UV-B transmission through the layer also displayed variations relating to air mass source region. Spectral UV transmission revealed a dependence upon wavelength, with decreased transmission in the UV-B region (300-320 nm) versus UV-A region (320-363.5 nm). UV-B transmission was found to be negatively correlated with aerosol optical depth. Empirical relations were developed to allow prediction of solar noon UV-B transmission if aerosol optical depth at two visible wavelengths (415 and 500 nm) is known. A new method was developed for determining aerosol optical properties from the radiation and aerosol size distribution measurements. The aerosol albedo of single scatter was found to range from 0.75 to 0.93 and the asymmetry factor ranged from 0.63 to 0.76 at 312 nm, which is close to the peak response of human skin to UV radiation.

  3. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-11-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average of 2% precipitation decrease during the fire week. This study demonstrated that, even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  4. The impact of aerosol optical depth assimilation on aerosol forecasts and radiative effects during a wild fire event over the United States

    NASA Astrophysics Data System (ADS)

    Chen, D.; Liu, Z.; Schwartz, C. S.; Lin, H.-C.; Cetola, J. D.; Gu, Y.; Xue, L.

    2014-06-01

    The Gridpoint Statistical Interpolation three-dimensional variational data assimilation (DA) system coupled with the Weather Research and Forecasting/Chemistry (WRF/Chem) model was utilized to improve aerosol forecasts and study aerosol direct and semi-direct radiative feedbacks during a US wild fire event. Assimilation of MODIS total 550 nm aerosol optical depth (AOD) retrievals clearly improved WRF/Chem forecasts of surface PM2.5 and organic carbon (OC) compared to the corresponding forecasts without aerosol data assimilation. The scattering aerosols in the fire downwind region typically cooled layers both above and below the aerosol layer and suppressed convection and clouds, which led to an average 2% precipitation decease during the fire week. This study demonstrated that even with no input of fire emissions, AOD DA improved the aerosol forecasts and allowed a more realistic model simulation of aerosol radiative effects.

  5. The direct radiative forcing effects of aerosols on the climate in California

    NASA Astrophysics Data System (ADS)

    Du, Hui

    The Weather Research and Forecast (WRF) model is used to explore the influence of aerosol direct radiative effects on regional climate of California. Aerosol data is provided by the MOZART global chemistry transport model and includes sulfate, black carbon, organic carbon, dust and sea salt. To investigate the sensitivity of aerosol radiative effects to different aerosol species and to the quantity of sulfate and dust, tests are conducted by using different combinations of aerosols and by resetting the quantity of sulfate and dust. The model results show that all the considered aerosols could have a cooling effect of one half to one degree in terms of temperature and that dust and sulfate are the most important aerosols. However, large uncertainties exist. The results suggest that the dust from MOZART is greatly overestimated over the simulation domain. The single scattering albedo (SSA) values of dust used in some global climate models are likely underestimated compared to recent studies on dust optical properties and could result in overestimating the corresponding cooling effects by approximately 0.1 degree. Large uncertainties exist in estimating the roles of different forcing factors which are causing the observed temperature change in the past century in California.

  6. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already

  7. Investigation of Trends in Aerosol Direct Radiative Effects over North America Using a Coupled Meteorology-Chemistry Model

    EPA Science Inventory

    A comprehensive investigation of the processes regulating tropospheric aerosol distributions, their optical properties, and their radiative effects in conjunction with verification of their simulated radiative effects for past conditions relative to measurements is needed in orde...

  8. A multi-satellite analysis of the direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Chang, Y. Y.; Christopher, S. A.

    2015-12-01

    Radiative effects of absorbing aerosols above liquid water clouds in the southeast Atlantic as a function of fire sources are investigated using A-Train data coupled with the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-orbiting Partnership (Suomi NPP). Both the VIIRS Active Fire product and the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Thermal Anomalies product (MYD14) are used to identify the biomass burning fire origin in southern Africa. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) are used to assess the aerosol type, aerosol altitude, and cloud altitude. We use back trajectory information, wind data, and the Fire Locating and Modeling of Burning Emissions (FLAMBE) product to infer the transportation of aerosols from the fire source to the CALIOP swath in the southeast Atlantic during austral winter.

  9. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  10. Aerosols in the Convective Boundary Layer: Radiation Effects on the Coupled Land-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Barbaro, E.; Vila-Guerau Arellano, J.; Ouwersloot, H. G.; Schroter, J.; Donovan, D. P.; Krol, M. C.

    2013-12-01

    We investigate the responses of the surface energy budget and the convective boundary-layer (CBL) dynamics to the presence of aerosols using a combination of observations and numerical simulations. A detailed observational dataset containing (thermo)dynamic variables observed at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions (IMPACT/EUCAARI) campaign is employed to design numerical experiments reproducing two prototype clear-sky days characterized by: (i) a well-mixed residual layer above a ground inversion and (ii) a continuously growing CBL. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, both coupled to a broadband radiative transfer code and a land-surface model, are used to study the impacts of aerosol scattering and absorption of shortwave radiation on the land-atmosphere system. We successfully validate our model results using the measurements of (thermo)dynamic variables and aerosol properties for the two different CBL prototypes studied here. Our findings indicate that in order to reproduce the observed surface energy budget and CBL dynamics, information of the vertical structure and temporal evolution of the aerosols is necessary. Given the good agreement between the LES and the MXL model results, we use the MXL model to explore the aerosol effect on the land-atmosphere system for a wide range of optical depths and single scattering albedos. Our results show that higher loads of aerosols decrease irradiance, imposing an energy restriction at the surface. Over the studied well-watered grassland, aerosols reduce the sensible heat flux more than the latent heat flux. As a result, aerosols increase the evaporative fraction. Moreover, aerosols also delay the CBL morning onset and anticipate its afternoon collapse. If also present above the CBL during the morning transition, aerosols maintain a persistent near

  11. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations

    NASA Astrophysics Data System (ADS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-02-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 ± 1.5 W/m2 for cloud-free and -2.1 ± 0.7 W/m2 for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  12. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    NASA Technical Reports Server (NTRS)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  13. Estimating the direct aerosol radiative effect over China using multi-sensor satellite remote sensing measurements

    NASA Astrophysics Data System (ADS)

    Sundström, Anu-Maija; Arola, Antti; Kolmonen, Pekka; de Leeuw, Gerrit

    2013-04-01

    The quantification of aerosol radiative effects is complex and large uncertainties still exist, mainly due to the high spatial and temporal variation of the aerosol concentration and mass as well as their relatively short lifetime in the atmosphere. In this work a multi-sensor satellite based approach is studied for defining the direct short wave aerosol radiative effect (ADRE) over China. ADRE at the top of the atmosphere (TOA) is defined as the difference between the net solar flux with (F) and without (F0) aerosols. The negative values of ADRE correspond to increased outgoing radiation and planetary cooling, whereas positive values correspond to decreased outgoing radiation at TOA and increased atmospheric warming. To derive instantaneous ADRE from the satellite observations, the challenge is to estimate the value for F0. In this work F0 is derived using the colocated observations of CERES (Clouds and the Earth's Radian Energy System) short wave broad band TOA-flux and MODIS (Moderate Imaging Spectroradiometer) aerosol optical depth (AOD). Assuming that aerosol type does not change systematically within a 0.5 deg. grid cell over a month, a linear relationship is established between the TOA-flux and AOD when AOD < 2.0. Using the linear fit an estimate for F0 can be obtained and F is the monthly mean of CERES observations. However, there are several other parameters affecting the observed TOA flux than the aerosol loading and aerosol type, such as solar zenith angle, water vapour, land surface albedo and Earth-Sun distance. Changes in these parameters within a grid cell over a month inflect the correlation. To minimize the effect of zenith angle, water vapour, and Earth-Sun distance the CERES fluxes are normalized before the linear fitting using reference fluxes calculated with a radiative transfer code (Libradtran). The normalization, especially to a fixed zenith angle increases the correlation between TOA flux and AOD significantly. For a comparison theF0 is

  14. Measurement-based estimates of direct radiative effects of absorbing aerosols above clouds

    NASA Astrophysics Data System (ADS)

    Feng, Nan; Christopher, Sundar A.

    2015-07-01

    The elevated layers of absorbing smoke aerosols from western African (e.g., Gabon and Congo) biomass burning activities have been frequently observed above low-level stratocumulus clouds off the African coast, which presents an excellent natural laboratory for studying the effects of aerosols above clouds (AAC) on regional energy balance in tropical and subtropical environments. Using spatially and temporally collocated Moderate Resolution Imaging Spectroradiometer, Ozone Monitoring Instrument (OMI), and Clouds and the Earth's Radiant Energy System data sets, the top-of-atmosphere shortwave aerosol direct shortwave radiative effects (ARE) of absorbing aerosols above low-level water clouds in the southeast Atlantic Ocean was examined in this study. The regional averaged instantaneous ARE has been estimated to be 36.7 ± 20.5 Wm-2 (regional mean ± standard deviation) along with a mean positive OMI Aerosol Index at 1.3 in August 2006 based on multisensors measurements. The highest magnitude of instantaneous ARE can even reach 138.2 Wm-2. We assess that the 660 nm cloud optical depth (COD) values of 8-12 is the critical value above (below) which aerosol absorption (scattering) effect dominates and further produces positive (negative) ARE values. The results further show that ARE values are more sensitive to aerosols above lower COD values than cases for higher COD values. This is among the first studies to provide quantitative estimates of shortwave ARE due to AAC events from an observational perspective.

  15. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    PubMed

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  16. Advances in Quantifying the Radiative Effects of Aerosol Particles on Climate from Airborne Field Studies

    NASA Astrophysics Data System (ADS)

    Pilewskie, P.; Schmidt, K. S.; Coddington, O.; Bergstrom, R.; Redemann, J.

    2007-12-01

    In the fourth assessment report of the Intergovernmental Panel on Climate Change, large uncertainties persist in estimates of climate forcing by aerosol particles. One contributor to this uncertainty is the poorly quantified vertical distribution of solar radiation absorbed by aerosol particles, from the regional to global scale. Another is the spectral and spatial variability of surface albedo, an effect that can dominate the top-of-atmosphere perturbations due to aerosol scattering and absorption, particularly over land. Over the past three years a number of intensive airborne field experiments (ICARTT, MILAGRO, GoMACCS) have contributed significantly to our understanding of the impact of pollution outflow from urban-industrial centers on radiative forcing, using spectrally resolved radiometric measurements and novel observationally-based methods to derive forcing efficiency and flux divergence. We present an overview of some of the most significant advances in direct radiative forcing realized by these studies, and recommendations on where the greatest challenges remain. In addition we present findings from these experiments on the influence of aerosol particles on cloud radiative properties, a potentially greater effect but even more uncertain than direct radiative forcing.

  17. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Technical Reports Server (NTRS)

    Zaveri, R. A.; Shaw, W. J.; Cahill, J. F.; Cairns, Brian; Cappa, C. D.; Ottaviani, Matteo; Cziczo, D. J.; Ferrare, Richard A.; Alexander, M. L.; Alexandrov, Mikhail Dmitrievic; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Schmid, B.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Flowers, B. A.; Fortner, E.; Baidar, S.; Hair, J.; Hostetler, C.; Obland, M. D.; Rogers, R. R.; Floerchinger, C.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climaterelated properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  18. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.

    2012-08-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  19. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Langford, A. O.; Laskin, A.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  20. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X. -Y.; Zelenyuk, A.; Zhang, Q.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program’s Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites – one within the Sacramento urban area and another about 40 km to the northeast in the foothills area – were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and “aged” urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and d) a roadmap of

  1. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect

    Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

    2012-08-22

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data

  2. “Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model”

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challengi...

  3. Southeast Atlantic Ocean aerosol direct radiative effects over clouds: Comparison of observations and simulations

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Haywood, J.; Bellouin, N.; Tilstra, L. G.; Stammes, P.

    2017-02-01

    Absorbing aerosols exert a warming or a cooling effect on the Earth's system, depending on the circumstances. The direct radiative effect (DRE) of absorbing aerosols is negative (cooling) at the top-of-the-atmosphere (TOA) over a dark surface like the ocean, as the aerosols increase the planetary albedo, but it is positive (warming) over bright backgrounds like clouds. Furthermore, radiation absorption by aerosols heat the atmosphere locally, and, through rapid adjustments of the atmospheric column and cloud dynamics, the net effect can be amplified considerably. We developed a technique to study the absorption of radiation of smoke over low lying clouds using satellite spectrometry. The TOA DRE of smoke over clouds is large and positive over the southeast Atlantic Ocean off the west coast of Africa, which can be explained by the large decrease of reflected radiation by a polluted cloud, especially in the UV. However, general circulation models (GCMs) fail to reproduce these strong positive DRE, and in general GCMs disagree on the magnitude and even sign of the aerosol DRE in the southeast Atlantic region. Our satellite-derived DRE measurements show clear seasonal and inter-annual variations, consistent with other satellite measurements, which are not reproduced by GCMs. A comparison with model results showed discrepancies with the Ångström exponent of the smoke aerosols, which is larger than assumed in simulations, and a sensitivity to emission scenarios. However, this was not enough to explain the discrepancies, and we suspect that the modeling of cloud distributions and microphysics will have the necessary larger impact on DRE that will explain the differences between observations and modeling.

  4. CARES: Carbonaceous Aerosol and Radiative Effects Study Operations Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-07-12

    The CARES field campaign is motivated by the scientific issues described in the CARES Science Plan. The primary objectives of this field campaign are to investigate the evolution and aging of carbonaceous aerosols and their climate-affecting properties in the urban plume of Sacramento, California, a mid-size, mid-latitude city that is located upwind of a biogenic volatile organic compound (VOC) emission region. Our basic observational strategy is to make comprehensive gas, aerosol, and meteorological measurements upwind, within, and downwind of the urban area with the DOE G-1 aircraft and at strategically located ground sites so as to study the evolution of urban aerosols as they age and mix with biogenic SOA precursors. The NASA B-200 aircraft, equipped with the High Spectral Resolution Lidar (HSRL), digital camera, and the Research Scanning Polarimeter (RSP), will be flown in coordination with the G-1 to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties, and to provide the vertical context for the G-1 and ground in situ measurements.

  5. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  6. Indirect Radiative Warming Effect in the Winter and Spring Arctic Associated with Aerosol Pollution from Mid-latitude Regions

    NASA Astrophysics Data System (ADS)

    Zhao, Chuanfeng; Garrett, Timothy

    2016-04-01

    Different from global cooling effects of aerosols and aerosol-cloud interactions, anthropogenic aerosols from mid-latitude are found to play an increased warming effect in the Arctic in later winter and early spring. Using four-year (2000-2003) observation of aerosol, cloud and radiation at North Slope of Alaska, it is found that the aerosols can increase cloud droplet effective radius 3 um for fixed liquid water path, and increase cloud thermal emissivity about 0.05-0.08. In other words, aerosols are associated with a warming of 1-1.6 degrees (3-5 W/m2) in the Arctic during late winter and early spring solely due to their first indirect effect. Further analysis indicates that total aerosol climate effects are even more significant (8-10 W/m2), with about 50% contribution from aerosol first indirect effect and another 50% contribution from complicated feedbacks. It also shows strong seasonal distribution of the aerosol indirect radiative effects, with warming effects in seasons other than in summer. However, only the significant warming effect in winter and spring passes through the significance test. The strong warming effect due to aerosol indirect effect could be further strengthened through following feedbacks involving the surface albedo (early ice melting).

  7. Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    NASA Technical Reports Server (NTRS)

    Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong

    2008-01-01

    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  8. Multi-Decadal Change of Atmospheric Aerosols and their Effects on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2011-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007) during which a suite of aerosol data from satellite observations) ground-based measurements) and intensive field experiments have become available. We analyze the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world) including the major anthropogenic source regions (North America) Europe) Asia) that have been experiencing considerable changes of emissions) dust and biomass burning regions that have large interannual variabilities) downwind regions that are directly affected by the changes in the source area) and remote regions that are considered to representing "backgroundH conditions.

  9. The direct effect of aerosols on solar radiation over the broader Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Papadimas, C. D.; Hatzianastassiou, N.; Matsoukas, C.; Kanakidou, M.; Mihalopoulos, N.; Vardavas, I.

    2011-11-01

    For the first time, the direct radiative effect (DRE) of aerosols on solar radiation is computed over the entire Mediterranean basin, one of the most climatically sensitive world regions, by using a deterministic spectral radiation transfer model (RTM). The DRE effects on the outgoing shortwave radiation at the top of atmosphere (TOA), DRETOA, on the absorption of solar radiation in the atmospheric column, DREatm, and on the downward and absorbed surface solar radiation (SSR), DREsurf and DREnetsurf, respectively, are computed separately. The model uses input data for the period 2000-2007 for various surface and atmospheric parameters, taken from satellite (International Satellite Cloud Climatology Project, ISCCP-D2), Global Reanalysis projects (National Centers for Environmental Prediction - National Center for Atmospheric Research, NCEP/NCAR), and other global databases. The spectral aerosol optical properties (aerosol optical depth, AOD, asymmetry parameter, gaer and single scattering albedo, ωaer), are taken from the MODerate resolution Imaging Spectroradiometer (MODIS) of NASA (National Aeronautics and Space Administration) and they are Supplemented by the Global Aerosol Data Set (GADS). The model SSR fluxes have been successfully validated against measurements from 80 surface stations of the Global Energy Balance Archive (GEBA) covering the period 2000-2007. A planetary cooling is found above the Mediterranean on an annual basis (regional mean DRETOA = -2.4 Wm-2). Though planetary cooling is found over most of the region, up to -7 Wm-2, large positive DRETOA values (up to +25 Wm-2) are found over North Africa, indicating a strong planetary warming, as well as over the Alps (+0.5 Wm-2). Aerosols are found to increase the absorption of solar radiation in the atmospheric column over the region (DREatm = +11.1 Wm-2) and to decrease SSR (DREsurf = -16.5 Wm-2 and DREnetsurf -13.5 Wm-2) inducing thus significant atmospheric warming and surface radiative cooling

  10. Quantification of the aerosol direct radiative effect from smoke over clouds using passive space-borne spectrometry

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Stammes, P.; Tilstra, L. G.

    2013-05-01

    The solar radiative absorption by smoke layers above clouds is quantified, using the unique broad spectral range of the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from the ultraviolet (UV) to the shortwave infrared (SWIR). Aerosol radiative effects in the UV are separated from cloud radiative effects in the shortwave infrared (SWIR). In the UV, aerosol absorption from smoke is strong, creating a strong signal in the measured reflectance. In the SWIR, absorbing and scattering effects from smoke are negligible, allowing the retrieval of cloud parameters from the measured spectrum using existing retrieval techniques. The spectral signature of the cloud can be modelled using a radiative transfer model (RTM) and the cloud parameters retrieved in the SWIR. In this way, the aerosol effects can be determined from the measured aerosol-polluted cloud shortwave spectrum and the modelled aerosol-unpolluted cloud shortwave spectrum. This can be used to derive the aerosol direct radiative effect (DRE) over marine clouds, independent of aerosol parameter retrievals, significantly improving the current accuracy of aerosol DRE estimates. Only cloud parameters are needed to model the aerosolunpolluted cloud reflectance, while the effects of the aerosol absorption are in the aerosol-polluted cloud reflectance measurements. In this paper we present a case study of the above method using SCIAMACHY data over the South Atlantic Ocean west of Africa on 13 August 2006, when a huge plume of smoke was present over persistent cloud fields. The aerosol DRE over clouds was as high as 128 ± 8 Wm-2 for this case, while the aerosol DRE over clouds averaged through August 2006 was found to be 23 ± 8 Wm-2 with a mean variation over the region in this month of 22 Wm-2.

  11. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  12. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  13. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat

    2005-01-01

    The Bay Area Environmental Research Institute (BAER) scientists have worked with the NASA Ames Research Center sunphotometer group led by Dr. Philip Russell for many years researching the climatic effects of aerosol particles in the stratosphere and troposphere. We have continued to work with the NASA Ames sunphotometer group in research activities representing funded, peer-reviewed proposals to NASA, NOAA and DOE. The activities are described in those proposals and also in the documents provided to the Grants Office earlier. This is the final report from January 1,2002 - June 30, 2005. The report consists of a compilation of 41 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 43 first-authored conference presentations. To save paper, reprints are not included but will, of course, be provided upon request.

  14. Dust aerosol radiative effect and influence on urban atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, L.; Chen, M.; Li, L.

    2007-11-01

    An 1.5-level-closure and 3-D non-stationary atmospheric boundary layer (ABL) model and a radiation transfer model with the output of Weather Research and Forecast (WRF) Model and lidar AML-1 are employed to simulate the dust aerosol radiative effect and its influence on ABL in Beijing for the period of 23-26 January 2002 when a dust storm occurred. The simulation shows that daytime dust aerosol radiative effect heats up the ABL at the mean rate of about 0.68 K/h. The horizontal wind speed from ground to 900 m layer is also overall increased, and the value changes about 0.01 m/s at 14:00 LT near the ground. At night, the dust aerosol radiative effect cools the ABL at the mean rate of -0.21 K/h and the wind speed lowers down at about -0.19 m/s at 02:00 LT near the ground.

  15. Radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer and its feedback on the haze formation

    NASA Astrophysics Data System (ADS)

    Wei, Chao; Su, Hang; Cheng, Yafang

    2016-04-01

    Planetary boundary layer (PBL) plays a key role in air pollution dispersion and influences day-to-day air quality. Some studies suggest that high aerosol loadings during severe haze events may modify PBL dynamics by radiative effects and hence enhance the development of haze. This study mainly investigates the radiative effects of tropospheric aerosols on the evolution of the atmospheric boundary layer by conducting simulations with Weather Research and Forecasting single-column model (WRF-SCM). We find that high aerosol loading in PBL depressed boundary layer height (PBLH). But the magnitude of the changes of PBLH after adding aerosol loadings in our simulations are small and can't explain extreme high aerosol concentrations observed. We also investigate the impacts of the initial temperature and moisture profiles on the evolution of PBL. Our studies show that the impact of the vertical profile of moisture is comparable with aerosol effects.

  16. Assessment of the first indirect radiative effect of ammonium-sulfate-nitrate aerosols in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Skorokhod, Andrei

    2016-09-01

    A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached -3.47 W m-2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.

  17. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability

    PubMed Central

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-01-01

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324

  18. Effects of aerosol from biomass burning on the global radiation budget

    NASA Technical Reports Server (NTRS)

    Penner, Joyce E.; Dickinson, Robert E.; O'Neill, Christine A.

    1992-01-01

    An analysis is made of the likely contribution of smoke particles from biomass burning to the global radiation balance. These particles act to reflect solar radiation directly; they also can act as cloud condensation nuclei, increasing the reflectivity of clouds. Together these effects, although uncertain, may add up globally to a cooling effect as large as 2 watts per square meter, comparable to the estimated contribution to sulfate aerosols. Anthropogenic increases of smoke emission thus may have helped weaken the net greenhouse warming from anthropogenic trace gases.

  19. Understanding the direct radiative effect of dust aerosols on transport pathways using the NASA GEOS-5 AGCM

    NASA Astrophysics Data System (ADS)

    Nowottnick, E. P.; Colarco, P. R.; Lau, W. K.; Kim, K.

    2012-12-01

    African dust aerosols are transported across the Atlantic Ocean to the Caribbean by the easterly trade winds.While in transport, dust aerosols interact with the Earth system in various ways, ranging from influencing the local radiation balance to serving as a nutrient for tropical ecosystems.However, our current understanding of these processes is incomplete and serves as a source of uncertainty in Earth system modeling.Here, we focus on understanding the direct radiative impacts of African dust aerosols on the atmosphere using the NASA GEOS-5 atmospheric general circulation model that simulates aerosols with an online version of the GOCART model. For this study, we compare a high resolution GEOS-5 climate simulation where aerosols have been radiatively coupled to the atmosphere to one where aerosols are treated as passive tracers for June - September, 2009. Utilizing streamfunction and velocity potentials of the simulated dust mass flux, we isolate differences in dust transport pathways caused by the direct radiative effect of dust by comparing the rotational and divergent components of the dust flow in the horizontal and vertical on various timescales.Additionally, we pay special attention to the influence of dust aerosols on African Easterly Jet (AEJ) position and strength, as well as temperature profiles, cloudiness, and precipitation to gain further insight into the direct radiative effect of dust aerosols on the atmosphere

  20. Multi-decadal Change of Atmospheric Aerosols and their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diel, Thomas; Streets, David; Wild, Martin; Qian, Yun; Yu, Hongbin; Tan, Qian; Bian, Huisheng; Wang. Weiguo

    2012-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model GOCART along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007 during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. Particularly: (1) We compare the model calculated clear sky downward radiation at the surface with surface network data from Baseline Surface Radiation Network (BSRN) and CMA (2) We compare the model and surface data with satellite derived downward radiation products from ISCCP and SRB (3) We analyze the long-term global and regional aerosol trends in major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions during the three decades, dust and biomass burning regions that have large interannual variability, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.

  1. "Investigation of Trends in Aerosol Direct Radiative Effects over North America Using a Coupled Meteorology-Chemistry Model"

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, there has been little effort devoted to verification of the spatial and temporal variability of the magnitude and directionality of aerosol radi...

  2. Multi-Decadal Change of Atmospheric Aerosols and Their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Tan, Qian; Wild, Martin; Qian, Yun; Yu, Hongbin; Bian, Huisheng; Wang, Weiguo

    2012-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations and ground-based remote sensing and in-situ measurements have become available. We analyze the long-term global and regional aerosol optical depth and concentration trends and their relationship to the changes of emissions" and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world, including the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions, dust and biomass burning regions that have large interannual variabilities, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.

  3. Does temperature nudging overwhelm aerosol radiative effects in regional integrated climate models?

    NASA Astrophysics Data System (ADS)

    He, Jian; Glotfelty, Timothy; Yahya, Khairunnisa; Alapaty, Kiran; Yu, Shaocai

    2017-04-01

    Nudging (data assimilation) is used in many regional integrated meteorology-air quality models to reduce biases in simulated climatology. However, in such modeling systems, temperature changes due to nudging could compete with temperature changes induced by radiatively active and hygroscopic short-lived tracers leading to two interesting dilemmas: when nudging is continuously applied, what are the relative sizes of these two radiative forces at regional and local scales? How do these two forces present in the free atmosphere differ from those present at the surface? This work studies these two issues by converting temperature changes due to nudging into pseudo radiative effects (PRE) at the surface (PRE_sfc), in troposphere (PRE_atm), and at the top of atmosphere (PRE_toa), and comparing PRE with the reported aerosol radiative effects (ARE). Results show that the domain-averaged PRE_sfc is smaller than ARE_sfc estimated in previous studies and this work, but could be significantly larger than ARE_sfc at local scales. PRE_atm is also much smaller than ARE_atm. These results indicate that appropriate nudging methodology could be applied to the integrated models to study aerosol radiative effects at continental/regional scales, but it should be treated with caution for local scale applications.

  4. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    NASA Astrophysics Data System (ADS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-02-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  5. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    NASA Astrophysics Data System (ADS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Penner, J. E.; Rasch, P. J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.

    2012-08-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 15 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 15 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m-2, with a mean of -0.30 W m-2 for the 15 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.39 W m-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  6. Radiative Forcing of the Direct Aerosol Effect from AeroCom Phase II Simulations

    NASA Technical Reports Server (NTRS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; vanNoije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J. -H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m(sup-2), with a mean of -0.27 W m(sup-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 W m(sup-2). Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study.We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results

  7. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    SciTech Connect

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J. -F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J. -H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  8. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology

  9. Simulation of bulk aerosol direct radiative effects and its climatic feedbacks in South Africa using RegCM4

    NASA Astrophysics Data System (ADS)

    Tesfaye, M.; Botai, J.; Sivakumar, V.; Mengistu Tsidu, G.; Rautenbach, C. J. deW.; Moja, Shadung J.

    2016-05-01

    In this study, 12 year runs of the Regional Climate Model (RegCM4) have been used to analyze the bulk aerosol radiative effects and its climatic feedbacks in South Africa. Due to the geographical locations where the aerosol potential source regions are situated and the regional dynamics, the South African aerosol spatial-distribution has a unique feature. Across the west and southwest areas, desert dust particles are dominant. However, sulfate and carbonaceous aerosols are primarily distributed over the east and northern regions of the country. Analysis of the Radiative Effects (RE) shows that in South Africa the bulk aerosols play a role in reducing the net radiation absorbed by the surface via enhancing the net radiative heating in the atmosphere. Hence, across all seasons, the bulk aerosol-radiation-climate interaction induced statistically significant positive feedback on the net atmospheric heating rate. Over the western and central parts of South Africa, the overall radiative feedbacks of bulk aerosol predominantly induces statistically significant Cloud Cover (CC) enhancements. Whereas, over the east and southeast coastal areas, it induces minimum reductions in CC. The CC enhancement and RE of aerosols jointly induce radiative cooling at the surface which in turn results in the reduction of Surface Temperature (ST: up to -1 K) and Surface Sensible Heat Flux (SSHF: up to -24 W/m2). The ST and SSHF decreases cause a weakening of the convectively driven turbulences and surface buoyancy fluxes which lead to the reduction of the boundary layer height, surface pressure enhancement and dynamical changes. Throughout the year, the maximum values of direct and semi-direct effects of bulk aerosol were found in areas of South Africa which are dominated by desert dust particles. This signals the need for a strategic regional plan on how to reduce the dust production and monitoring of the dust dispersion as well as it initiate the need of further research on different

  10. Multi-Decadal Change of Atmospheric Aerosols and their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Streets, David; Wild, Martin; Qian, Yun; Yu, Hongbin; Tan, Qian; Bian, Huisheng; Wang, Weiguo

    2011-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model, GOCART, along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007 during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. Particularly: (1) We compare the model calculated clear sky downward radiation at the surface with surface network data from BSRN and CMA (2) We compare the model and surface data with satellite derived downward radiation products from ISCCP and SRS (3) We analyze the long-term global and regional aerosol trends in major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions during the three decades, dust and biomass burning regions that have large interannual variability, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions. The comparisons and methods from this study can be applied to multiple model analysis in the AeroCom framework.

  11. Smoke aerosol and its radiative effects during extreme fire event over Central Russia in summer 2010

    NASA Astrophysics Data System (ADS)

    Chubarova, N.; Nezval', Ye.; Sviridenkov, I.; Smirnov, A.; Slutsker, I.

    2012-03-01

    Different microphysical, optical and radiative properties of aerosol were analyzed during the severe fires in summer 2010 over Central Russia using ground measurements at two AERONET sites in Moscow (Meteorological Observatory of Moscow State University - MSU MO) and Zvenigorod (Moscow Region) and radiative measurements at the MSU MO. Volume aerosol size distribution in smoke conditions had a bimodal character with the significant prevalence of fine mode particles, for which effective radius was shifted to higher values (reff-fine = 0.24 μm against approximately 0.15 μm in typical conditions). For smoke aerosol, the imaginary part of refractive index (REFI) in the visible spectral region was lower than that for typical aerosol (REFIλ =675 nm = 0.006 against REFIλ =675 nm = 0.01), while single scattering albedo (SSA) was significantly higher (SSAλ =675 nm = 0.95 against SSAλ =675 nm ~ 0.9). Extremely high aerosol optical thickness at 500 nm (AOT500) was observed on 6-8 August reaching the absolute maximum on 7 August in Moscow (AOT500 = 6.4) and at Zvenigorod (AOT500 = 5.9). A dramatic attenuation of solar irradiance at ground was also recorded. Maximum irradiance loss had reached 64% for global shortwave irradiance, 91% for UV radiation 300-380 nm, and 97% for erythemally-weighted UV irradiance at relatively high solar elevation 47°. Significant spectral dependence in attenuation of solar irradiance in smoky conditions was mainly explained by higher AOT and smaller SSA in UV (0.8-0.9) compared with SSA in the visible region of spectrum. The assessments of radiative forcing effect (RFE) at the TOA indicated a significant cooling of the smoky atmosphere. Instant RFE reached -167 Wm-2 at AOT500 = 6.4, climatological RFE calculated with August 2010 monthly mean AOT was about -65 Wm-2, compared with -20 Wm-2 for typical aerosol according to the 10 yr period of measurements in Moscow.

  12. Thermal Infrared Radiative Forcing By Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan

    The work mainly focuses on the study of thermal infrared (IR) properties of atmospheric greenhouse gases and aerosols, and the estimation of the aerosol-induced direct longwave (LW) radiative forcing in the spectral region 5-20 mum at the Earth's surface (BOA; bottom of the atmosphere) and the top of the atmosphere (TOA) in cloud-free atmospheric conditions. These objectives were accomplished by conducting case studies on clear sky, smoky, and dusty conditions that took place in the Great Basin of the USA in 2013. Both the solar and thermal IR measurements and a state-of-the-science radiative transfer model, the LBLDIS, a combination of the Line-By-Line Radiative Transfer Model and the Discrete Ordinate Radiative Transfer (DISORT) solver were employed for the study. The LW aerosol forcing is often not included in climate models because the aerosol effect on the LW is often assumed to be negligible. We lack knowledge of aerosol characteristics in the LW region, and aerosol properties exhibit high variability. We have found that the LW TOA radiative forcing due to fine mode aerosols, mainly associated with small biomass burning smoke particles, is + 0.4 W/m2 which seems to be small, but it is similar to the LW radiative forcing due to increase in CO2 concentration in the Earth's atmosphere since the preindustrial era of 1750 (+ 1.6 W/m 2). The LW radiative forcing due to coarse mode aerosols, associated with large airborne mineral dust particles, was found to be as much as + 5.02 W/m2 at the surface and + 1.71 W/m2 at the TOA. All of these significant positive values of the aerosol radiative forcing both at the BOA and TOA indicate that the aerosols have a heating effect in the LW range, which contributes to counterbalancing the cooling effect associated with the aerosol radiative forcing in the shortwave (SW) spectral region. In the meantime, we have found that LW radiative forcing by aerosols is highly sensitive to particle size and complex refractive indices of

  13. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M. L.; Glantz, P.; Iversen, T.; Kirkevåg, A.; Mårtensson, E. M.; Seland, Ø.; Nilsson, E. D.

    2011-04-01

    Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70-90° N) of 86 × 106 m-2 s-1 (mass emission increase of 23 μg m-2 s-1). This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between -0.2 and -0.4 W m-2 for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect) is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.

  14. Dust aerosol radiative effect and forcing over West Africa : A case study from the AMMA SOP

    NASA Astrophysics Data System (ADS)

    Lemaître, C.; Flamant, C.; Pelon, J.; Cuesta, J.; Chazette, P.; Raut, J. C.

    2009-04-01

    The massive transport of arid dust by the African easterly jet (AEJ) can impact the dynamic of the AEJ and modify the development of westerly African waves through modifications of horizontal temperature gradient. Hence, it is important to evaluate the radiative impact of dust and their effect on thermodynamical properties of the AEJ. In this presentation, the impact of aerosol on solar and infra-red fluxes and the heating rate due to dust over West Africa are investigated using the radiative code STREAMER, as well as space-borne and airborne lidars (CALIPSO and LEANDRE 2, respectively) as well as dropsonde observations acquired during the African Monsoon Multidisciplinary Analysis Special Observing Period. Aircraft operations were conducted on 13 and 14 June 2006, over Benin and Niger. On these days the dust observed over Benin and Niger originated from the Bodélé depression and from West Sudan. In this study, we use aerosol extinction coefficient derived from lidar, as well as temperature, pressure and water vapour profiles derived from dropsondes as inputs to STREAMER. The surface albedo is obtained with MODIS. A series of runs was carried out on 13 and 14 June 2006, around mid-day, to investigate the dust radiative forcing as a function of latitude, from 6°N to 15°N, i.e. between the vegetated coast of the Guinea Gulf and the arid Sahel. In the solar spectrum, the maximum heating rate associated with the dust plume on these days was comprised between 1.5 K/day and 3 K/day, depending on the aerosol load, over the entire Sudanian and Sahel regions as inferred from CALIPSO. Sensitivity studies to surface albedo, aerosol backscatter-to-extinction ratio, temperature and water vapor mixing ratio profiles were also conducted.

  15. Observed aerosol-induced radiative effect on plant productivity in the eastern United States

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.; Yue, X.

    2015-12-01

    We apply satellite observations of aerosol optical depth (AOD) in conjunction with flux tower-derived estimates of gross primary productivity (GPP) to probe the relationship between atmospheric aerosol loading and carbon uptake rate at 10 select sites (4 deciduous broadleaf, 3 cropland, 1 evergreen needle leaf, 1 mixed forest and 1 grassland) on hourly time scales in the growing season in the eastern United States. For deciduous and mixed forests, the aerosol light scattering increases GPP with a maximum effect observed under polluted conditions (AOD >0.6), when diffuse radiation is 40-60%. During midday hours, high AOD conditions (>0.4) enhance plant productivity by ∼13% in deciduous forests. In contrast, we find that high diffuse light fraction does not increase the carbon uptake rate in croplands and grasslands; for these ecosystems, we estimate that high AOD conditions reduce GPP by ∼17% during midday hours. Our findings are consistent with previous studies that have attributed these contrasting response sensitivities to the complex and closed canopy architecture of forests versus crops and grasslands. C4 but not C3 crops may benefit from pollution-induced changes in diffuse and direct light. Further research is needed to investigate the role of local meteorology as a possible confounder in the connection between atmospheric aerosols and plant productivity.

  16. SILAM and MACC reanalysis aerosol data used for simulating the aerosol direct radiative effect with the NWP model HARMONIE for summer 2010 wildfire case in Russia

    NASA Astrophysics Data System (ADS)

    Toll, V.; Reis, K.; Ots, R.; Kaasik, M.; Männik, A.; Prank, M.; Sofiev, M.

    2015-11-01

    Persistent high pressure conditions over the European part of Russia during summer 2010 were responsible for an extended period of hot and dry weather, creating favourable conditions for severe wildfires. The chemical transport model SILAM is used to simulate the dispersion of smoke aerosol for this case. Aerosol fields from SILAM are compared to the Monitoring Atmospheric Composition and Climate (MACC) reanalysis. Moreover, the model output is compared to in situ and remote sensing measurements, paying particular attention to the most intense fire period of August 7 to 9, when the plume reached the Baltic countries and Finland. The maximum observed aerosol optical depth was more than 4 at 550 nm during this time. The aerosol distributions from the SILAM run and the MACC reanalysis are subsequently used in meteorological simulations using the Hirlam Aladin Research for Mesoscale Operational Numerical Weather Prediction in Euromed (HARMONIE) model. The modelling results show a significant reduction of the daily average shortwave radiation fluxes at the surface (up to 125 W/m2) and daily average near-surface temperature (up to 4 °C) through the aerosol direct radiative effect. The simulated near-surface temperature and vertical temperature profile agree better with the observations, when the aerosol direct radiative effect is considered in the meteorological simulation. The boundary layer is more stably stratified, creating poorer dispersion conditions for the smoke.

  17. New approaches to quantifying aerosol influence on the cloud radiative effect

    PubMed Central

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian

    2016-01-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol−cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol−cloud interactions adequately. There is a dearth of observational constraints on aerosol−cloud interactions. We develop a conceptual approach to systematically constrain the aerosol−cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol−cloud radiation system. PMID:26831092

  18. Combining Satellite Data, Trajectory Modeling and Surface Insolation Measurements to Deduce the Direct Radiative Effect of Smoke Aerosol

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Pierce, R. Bradley; Baum, Bryan A.; DiPasquale, Robert C.

    2004-01-01

    In this paper, we have introduced a method of inferring the radiative effect of smoke aerosols using a technique that combines satellite remote sensing with trajectory modeling. The results shown here clearly show large flux biases between theoretical and measured radiative fluxes correlate with the arrival of smoke aerosol to the area. Further analysis is required to convincingly demonstrate that the reason for these differences is the radiative effect of the smoke aerosols. To do this, the estimated fluxes taken from the ERA-15 will be recomputed every 3 hours using International Satellite Cloud Climatology Project (ISCCP) data set entitled DX gridded to a 1o equal angle resolution (see paper 7B.2 for details). Surface radiometric and ancillary data for several more Canadian surface sites are being obtained at minute temporal resolution. The ultimate purpose of this research is to derive aerosol smoke maps for fire events such as this to be included in an aerosol climatology and be incorporated in the computation of the earth's surface radiation budget to better understand the radiative effect of aerosols.

  19. Aerosol Radiative Effects: Expected Variations in Optical Depth Spectra and Climate Forcing, with Implications for Closure Experiment Strategies

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Stowe, L. L.; Hobbs, P. V.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We examine measurement strategies for reducing uncertainties in aerosol direct radiative forcing by focused experiments that combine surface, air, and space measurements. Particularly emphasized are closure experiments, which test the degree of agreement among different measurements and calculations of aerosol properties and radiative effects. By combining results from previous measurements of large-scale smokes, volcanic aerosols, and anthropogenic aerosols with models of aerosol evolution, we estimate the spatial and temporal variability in optical depth spectra to be expected in the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, planned for summer 1996 off the Eastern U.S. seaboard). In particular, we examine the expected changes in the wavelength dependence of optical depth as particles evolve through nucleation, growth by condensation and coagulation, and removal via sedimentation. We then calculate the expected radiative climate forcing (i.e. change in net radiative flux) for typical expected aerosols and measurement conditions (e.g. solar elevations, surface albedos, radiometer altitudes). These calculations use new expressions for flux and albedo changes, which account not only for aerosol absorption, but also for instantaneous solar elevation angles and the dependence of surface albedo on solar elevation. These factors, which are usually ignored or averaged in calculations of global aerosol effects, can have a strong influence on fluxes measured in closure experiments, and hence must be accounted for in calculations if closure is to be convincingly tested. We compare the expected measurement signal to measurement uncertainties expected for various techniques in various conditions. Thereby we derive recommendations for measurement strategies that combine surface, airborne, and spaceborne measurements.

  20. Combined multispectral/hyperspectral remote sensing of tropospheric aerosols for quantification of their direct radiative effect

    NASA Astrophysics Data System (ADS)

    McGarragh, Gregory R.

    Scattering and absorption of solar radiation by aerosols in the atmosphere has a direct radiative effect on the climate of the Earth. Unfortunately, according to the IPCC the uncertainties in aerosol properties and their effect on the climate system represent one of the largest uncertainties in climate change research. Related to aerosols, one of the largest uncertainties is the fraction of the incident radiation that is scattered rather than absorbed, or their single scattering albedo. In fact, differences in single scattering albedo have a significant impact on the magnitude of the cooling effect of aerosols (opposite to that of greenhouse gasses) which can even have a warming effect for strongly absorbing aerosols. Satellites provide a unique opportunity to measure aerosol properties on a global scale. Traditional approaches use multispectral measurements of intensity at a single view angle to retrieve at most two aerosol parameters over land but it is being realized that more detail is required for accurate quantification of the direct effect of aerosols, in particular its anthropogenic component, and therefore more measurement information is required. One approach to more advanced measurements is to use not only intensity measurements but also polarimetric measurements and to use multiple view angles. In this work we explore another alternative: the use of hyperspectral measurements in molecular absorption bands. Our study can be divided into three stages the first of which is the development of a fast radiative transfer model for rapid simulation of measurements. Our approach is matrix operator based and uses the Pade approximation for the matrix exponential to evaluate the homogeneous solution. It is shown that the method is two to four times faster than the standard and efficient discrete ordinate technique and is accurate to the 6th decimal place. The second part of our study forms the core and is divided into two chapters the first of which is a rigorous

  1. Application of Satellite and Ground-based Data to Investigate the UV Radiative Effects of Australian Aerosols

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga V.; Mills, Franklin P.; Eldering, Annmarie; Anderson, Don

    2007-01-01

    An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. By analyzing climatological distributions of Australian aerosols we have identified sites where co-located ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, surface UV global irradiance spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using colocated sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity. Aerosol air mass types were analyzed from sunphotometer-derived angstrom parameter, MODIS fire maps and MISR aerosol property retrievals. To assess aerosol effects we compared the measured UV irradiances for aerosol-loaded and clear-sky conditions with each other and with irradiances simulated using the libRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, smoke aerosols over Darwin reduced the surface UV irradiance by as much as 40-50% at 290-300 nm and 20-25% at 320-400 nm near active fires (aerosol optical depth, AOD, at 500 nm approximately equal to 0.6). Downwind of fires, the smoke aerosols over Darwin reduced the surface irradiance by 15-25% at 290-300 nm and approximately 10% at 320-350 nm (AOD at 500 nm approximately equal to 0.2). The effect of smoke increased with decrease of wavel strongest in the UV-B. The aerosol attenuation factors calculated for the selected cases suggest smoke over Darwin has an effect on surface 340

  2. Investigation on seasonal variations of aerosol properties and its influence on radiative effect over an urban location in central India

    NASA Astrophysics Data System (ADS)

    Jose, Subin; Gharai, Biswadip; Niranjan, K.; Rao, P. V. N.

    2016-05-01

    Aerosol plays an important role in modulating solar radiation, which are of great concern in perspective of regional climate change. The study analysed the physical and optical properties of aerosols over an urban area and estimated radiative effect using three years in-situ data from sunphotometer, aethalometer and nephelometer as input to radiative transfer model. Aerosols properties indicate the dominance of fine mode aerosols over the study area. However presence of coarse mode aerosols is also found during pre-monsoon [March-April-May]. Daily mean aerosol optical depth showed a minimum during winter [Dec-Jan-Feb] (0.45-0.52) and a maximum during pre-monsoon (0.6-0.7), while single scattering albedo (ω) attains its maximum (0.78 ± 0.05) in winter and minimum (0.67 ± 0.06) during pre-monsoon and asymmetry factor varied in the range between 0.48 ± 0.02 to 0.53 ± 0.04. Episodic events of dust storm and biomass burning are identified by analyzing intrinsic aerosol optical properties like scattering Ångström exponent (SAE) and absorption Ångström exponent (AAE) during the study periods and it has been observed that during dust storm events ω is lower (˜0.77) than that of during biomass burning (˜0.81). The aerosol direct radiative effect at top of the atmosphere during winter is -11.72 ± 3.5 Wm-2, while during pre-monsoon; it is -5.5 ± 2.5 Wm-2, which can be due to observed lower values of ω during pre-monsoon. A large positive enhancement of atmospheric effect of ˜50.53 Wm-2 is observed during pre-monsoon compared to winter. Due to high aerosol loading in pre-monsoon, a twofold negative surface forcing is also observed in comparison to winter.

  3. Total ozone column, aerosol optical depth and precipitable water effects on solar erythemal ultraviolet radiation recorded in Malta.

    NASA Astrophysics Data System (ADS)

    Bilbao, Julia; Román, Roberto; Yousif, Charles; Mateos, David; Miguel, Argimiro

    2013-04-01

    The Universities of Malta and Valladolid (Spain) developed a measurement campaign, which took place in the Institute for Energy Technology in Marsaxlokk (Southern Malta) between May and October 2012, and it was supported by the Spanish government through the Project titled "Measurement campaign about Solar Radiation, Ozone, and Aerosol in the Mediterranean area" (with reference CGL2010-12140-E). This campaign provided the first ground-based measurements in Malta of erythemal radiation and UV index, which indicate the effectiveness of the sun exposure to produce sunburn on human skin. A wide variety of instruments was involved in the campaign, providing a complete atmospheric characterization. Data of erythemal radiation and UV index (from UVB-1 pyranometer), total shortwave radiaton (global and diffuse components from CM-6B pyranometers), and total ozone column, aerosol optical thickness, and precitable water column (from a Microtops-II sunphotometer) were available in the campaign. Ground-based and satellite instruments were used in the analysis, and several intercomparisons were carried out to validate remote sensing data. OMI, GOME, GOME-2, and MODIS instruments, which provide data of ozone, aerosol load and optical properties, were used to this end. The effects on solar radiation, ultraviolet and total shortwave ranges, of total ozone column, aerosol optical thickness and precipitable water column were obtained using radiation measurements at different fixed solar zenith angles. The empirical results shown a determinant role of the solar position, a negligible effect of ozone on total shortwave radiation, and a stronger attenuation provided by aerosol particles in the erythemal radiation. A variety of aerosol types from different sources (desert dust, biomass burning, continental, and maritime) reach Malta, in this campaign several dust events from the Sahara desert occurred and were analyzed establishing the air mass back-trajectories ending at Malta at

  4. On the effect of different aerosol types on surface solar radiation levels over the region of Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Alexandri, Georgia; Georgoulias, Aristeidis K.; Kourtidis, Konstantinos; Meleti, Charikleia; Balis, Dimitris

    2014-05-01

    In this work, we examine the direct effect of different aerosol types on the surface solar radiation (SSR) levels in the region of Eastern Mediterranean. Simulations with the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model were performed using ground and satellite-based data as input. An IDL tool that "feeds" SBDART with the appropriate input data was developed allowing us to simulate SSR with a time step of 1 hour. Level-2 aerosol optical depth, cloud optical depth, cloud fraction, effective droplet radius, cloud top pressure, precipitable water and surface albedo data from MODIS, as well as ozone total column data from Earth Probe TOMS and OMI satellite sensors, coarse resolution cloud data from the ISCCP and single scattering albedo, asymmetry factor and Angström exponent sunphotometric data from the AERONET are used in our radiative transfer simulations. Simulations are performed over selected spots within Eastern Mediterranean for clear, liquid cloud and ice cloud covered skies and for different aerosol types (maritime, dust, anthropogenic, fine-mode natural). The optical properties of aerosols were determined using a combination of satellite, ground-based, model and reanalysis products. The aerosol direct radiative effect is defined as the difference between simulations done with and without the presence of aerosols. This research has been financed by EPAN II and PEP under the national action "Bilateral, multilateral and regional R&T cooperations" (AEROVIS Sino-Greek project).

  5. From nuclear power to coal power: Aerosol-induced health and radiative effects

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Laakso, Anton; Karhunen, Anni; Kokkola, Harri; Partanen, Antti-Ilari; Korhonen, Hannele; Romakkaniemi, Sami; Lehtinen, Kari E. J.

    2015-12-01

    We have investigated what would be the climate and PM-induced air quality consequences if all nuclear reactors worldwide were closed down and replaced by coal combustion. In a way, this presents a "worst-case scenario" since less polluting energy sources are available. We studied simultaneously the radiative and health effects of coal power emissions using a global 3-D aerosol-climate model (ECHAM-HAMMOZ). This approach allowed us to estimate the effects of a major global energy production change from low carbon source to a high carbon one using detailed spatially resolved population density information. We included the radiative effects of both CO2 and PM2.5 but limited the study of health effects to PM2.5 only. Our results show that the replacement of nuclear power with coal power would have globally caused an average of 150,000 premature deaths per year during the period 2005-2009 with two thirds of them in Europe. For 37 years the aerosol emissions from the additional coal power plants would cool the climate but after that the accumulating CO2 emissions would accelerate the warming of the climate.

  6. Extensive closed cell marine stratocumulus downwind of Europe—A large aerosol cloud mediated radiative effect or forcing?

    NASA Astrophysics Data System (ADS)

    Goren, Tom; Rosenfeld, Daniel

    2015-06-01

    Marine stratocumulus clouds (MSC) cover large areas over the oceans and possess super sensitivity of their cloud radiative effect to changes in aerosol concentrations. Aerosols can cause transitions between regimes of fully cloudy closed cells and open cells. The possible role of aerosols in cloud cover has a big impact on the amount of reflected solar radiation from the clouds, thus potentially constitutes very large aerosol indirect radiative effect, which can exceed 100 Wm-2. It is hypothesized that continentally polluted clouds remain in closed cells regime for longer time from leaving continent and hence for longer distance away from land, thus occupying larger ocean areas with full cloud cover. Attributing this to anthropogenic aerosols would imply a very large negative radiative forcing with a significant climate impact. This possibility is confirmed by analyzing a detailed case study based on geostationary and polar-orbiting satellite observations of the microphysical and dynamical evolution of MSC. We show that large area of closed cells was formed over the northeast Atlantic Ocean downwind of Europe in a continentally polluted air mass. The closed cells undergo cleansing process that was tracked for 3.5 days that resulted with a rapid transition from closed to open cells once the clouds started drizzling heavily. The mechanism leading to the eventual breakup of the clouds due to both meteorological and aerosol considerations is elucidated. We termed this cleansing and cloud breakup process maritimization. Further study is needed to assess the climatological significance of such situations.

  7. Sources and radiative effects of wintertime black carbon aerosols in an urban atmosphere in east India.

    PubMed

    Verma, S; Pani, S K; Bhanja, S N

    2013-01-01

    We carried out an analysis of black carbon (BC) surface mass concentration, its radiative effects, and sources of origin in an urban atmosphere in east India, during winter season, through ground-based measurements and application of modelling tools. BC surface mass concentration exhibited diurnal variation with their higher values and a larger variability during evening to early morning hours than during daytime (1100-1600 h, Local Time, LT) hours. Daytime mean surface BC mass concentration and BC mass fraction in total aerosol (size range 0.23-20 μm) and in submicronic aerosol (size range 0.23-1 μm) during the study period, corresponding to the well-mixed atmospheric layer were 11 μg m(-3), 3-10%, and 9-16% respectively. The mean BC optical depth (BC-AOD) and BC-AOD fraction at 0.5 μm were estimated in an optical model as 0.11 and 13% respectively. Mean shortwave aerosol radiative forcing due to BC at top-of-atmosphere (TOA) during the study period was found to be +0.94 Wm(-2), which is about 59% the global mean radiative forcing due to carbon-dioxide gases. Estimates from BC simulations in a general circulation model showed BC surface concentration and BC optical depth in east India are primarily attributed to emissions from biofuel and fossil fuel combustion. Most of BC surface concentration (95%) and BC optical depth (60%) are contributed by emissions arising from the Indo-Gangetic plain (IGP) but there is a significant influence to BC columnar loading through elevated transport channels attributed mainly to emissions from open biomass burning from distant regions outside IGP.

  8. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  9. Modeling of growth and evaporation effects on the extinction of 1.0-micron solar radiation traversing stratospheric sulfuric acid aerosols

    NASA Technical Reports Server (NTRS)

    Yue, G. K.; Deepak, A.

    1981-01-01

    The effects of growth and evaporation of stratospheric sulfuric acid aerosols on the extinction of solar radiation traversing such an aerosol medium are reported for the case of 1.0-micron solar radiation. Modeling results show that aerosol extinction is not very sensitive to the change of ambient water vapor concentration, but is sensitive to ambient temperature changes, especially at low ambient temperatures and high ambient water vapor concentration. A clarification is given of the effects of initial aerosol size distribution and composition on the change of aerosol extinction due to growth and evaporation processes. It is shown that experiments designed to observe solar radiation extinction of aerosols may also be applied to the determination of observed changes in aerosol optical properties, environmental parameters, or the physical and optical characteristics of sulfate aerosols.

  10. Radiative forcing of climate in the western Antarctic Peninsula: Effects of cloud, surface, and aerosol properties

    NASA Astrophysics Data System (ADS)

    Payton, Allison Mccomiskey

    2003-12-01

    Polar regions are expected to show early and extreme responses to a rise in average global temperatures. The region west of the Antarctic Peninsula has shown a significant rise in temperature of the past half century while temperatures over the rest of the continent are decreasing. Approximately half of the warming over the western Antarctic Peninsula has been explained by changes in atmospheric circulation. This research has examined local climate feedback processes involving aerosols, clouds, and surface properties relative to sea ice cover, to explain the remainder of the warming, and addresses the most appropriate approach in examining local radiative processes. Two data sets are used: a highly resolved ground-based data set from the spring and summer season of 1999 2000 at Palmer Station, Antarctica and a 14 year satellite-derived data set. A three- dimensional radiative transfer model is shown to perform better than the plane-parallel models traditionally used for this application. Aerosol concentrations are low, as expected, and have a typical optical depth of 0.05 which has little effect on surface radiation budgets and climate feedback processes. An absorption process is found on three clear-sky days that accounts for 5 20 W·m-2 of energy absorbed by the atmosphere. The absorption process is of unknown origin. Cloud properties over the short- and long-term were found to be invariant with time and changes in temperature except in the summer season. Cloud radiative forcing was negative throughout the 14 year time period, but the majority of this effect was attributed to changes in surface properties (decreasing reflectance) rather than increasing cloud amount or thickness. The trend in cloud cover over the long-term and the effect of clouds on climate appears to be different in the region of the western Antarctic Peninsula than in the Arctic.

  11. The interplay between assumed morphology and the direct radiative effect of light-absorbing organic aerosol

    NASA Astrophysics Data System (ADS)

    Saleh, Rawad; Adams, Peter J.; Donahue, Neil M.; Robinson, Allen L.

    2016-08-01

    Mie theory is widely employed in aerosol top-of-the-atmosphere direct radiative effect (DRE) calculations and to retrieve the absorptivity of light-absorbing organic aerosol (OA) from measurements. However, when OA is internally mixed with black carbon, it may exhibit complex morphologies whose optical behavior is imperfectly predicted by Mie theory, introducing bias in the retrieved absorptivities. We performed numerical experiments and global radiative transfer modeling (RTM) to investigate the effect of this bias on the calculated absorption and thus the DRE. We show that using true OA absorptivity, retrieved with a realistic representation of the complex morphology, leads to significant errors in DRE when the RTM employs the simplified Mie theory. On the other hand, when Mie theory is consistently applied in both OA absorptivity retrieval and the RTM, the errors largely cancel out, yielding accurate DRE. As long as global RTMs use Mie theory, they should implement parametrizations of light-absorbing OA derived from retrievals based on Mie theory.

  12. Effect of Spectrally Varying Albedo of Vegetation Surfaces on Shortwave Radiation Fluxes and Aerosol Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-01-01

    This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the

  13. Aerosol-radiation-cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Schultz, D. M.; McFiggans, G.

    2015-10-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) has been used to simulate a region of Brazil heavily influenced by biomass burning. Nested simulations were run at 5 km and 1 km horizontal grid spacing for three case studies in September 2012. Simulations were run with and without fire emissions, convective parameterisation on the 5 km domain and aerosol-radiation interactions in order to explore the differences attributable to the parameterisations and to better understand the aerosol direct effects and cloud responses. Direct aerosol-radiation interactions due to biomass burning aerosol resulted in a net cooling, with an average reduction of downwelling shortwave radiation at the surface of -24.7 W m-2 over the three case studies. However, around 21.7 W m-2 is absorbed by aerosol in the atmospheric column, warming the atmosphere at the aerosol layer height, stabilising the column, inhibiting convection and reducing cloud cover and precipitation. The changes to clouds due to radiatively interacting aerosol (traditionally known as the semi-direct effects) increase net shortwave radiation reaching the surface by reducing cloud cover, producing a secondary warming that largely counters the direct cooling. However, the magnitude of the semi-direct effect was difficult to quantify, being extremely sensitive to the model resolution and use of convective parameterisation. The 1 km domain simulated clouds less horizontally spread, reducing the proportion of the domain covered by cloud in all scenarios and producing a smaller semi-direct effect. Not having a convective parameterisation on the 5 km domain reduced total cloud cover, but also total precipitation. BB aerosol particles acted as CCN, increasing the droplet number concentration of clouds. However, the changes to cloud properties had negligible impact on net radiative balance on either domain, with or without convective parameterisation. Sensitivity to the uncertainties relating to the semi

  14. Aerosol radiative effects over global arid and semi-arid regions based on MODIS Deep Blue satellite observations

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Gkikas, Antonis; Matsoukas, Christos; Sayer, Andrew M.; Hsu, N. Christina; Vardavas, Ilias

    2014-05-01

    Aerosols are a key parameter for several atmospheric processes related to weather and climate of our planet. Specifically, the aerosol impact on Earth's climate is exerted and quantified through their radiative effects, which are induced by their direct, indirect and semi-direct interactions with radiation, in particular at short wavelengths (solar). It is acknowledged that the uncertainty of present and future climate assessments is mainly associated with aerosols and that a better understanding of their physico-chemical, optical and radiative effects is needed. The contribution of satellites to this aim is important as a complementary tool to climate and radiative transfer models, as well as to surface measurements, since space observations of aerosol properties offer an extended spatial coverage. However, such satellite based aerosol properties and associated model radiation computations have suffered from unavailability over highly reflecting surfaces, namely polar and desert areas. This is also the case for MODIS which, onboard the Terra and Aqua satellites, has been providing high quality aerosol data since 2000 and 2002, respectively. These data, more specifically the aerosol optical depth (AOD) which is the most important optical property used in radiative and climate models, are considered to be of best quality. In order to address this problem, the MODIS Deep Blue (DB) algorithm has been developed which enables the retrieval of AOD above arid and semi-arid areas of the globe, including the major deserts. In the present study we make use of the FORTH detailed spectral radiative transfer model (RTM) with MODIS DB AOD data, supplemented with single scattering albedo (SSA) and asymmetry parameter (AP) aerosol data from the Global Aerosol DataSet (GADS) to estimate the aerosol DREs over the arid and semi-arid regions of the globe. The RTM is run using surface and atmospheric data from the ISCCP-D2 dataset and the NCEP global reanalysis project and computes the

  15. Aerosol-radiation-cloud interactions in a regional coupled model: the effects of convective parameterisation and resolution

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, Scott; Lowe, Douglas; Schultz, David M.; McFiggans, Gordon

    2016-05-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) has been used to simulate a region of Brazil heavily influenced by biomass burning. Nested simulations were run at 5 and 1 km horizontal grid spacing for three case studies in September 2012. Simulations were run with and without fire emissions, convective parameterisation on the 5 km domain, and aerosol-radiation interactions in order to explore the differences attributable to the parameterisations and to better understand the aerosol direct effects and cloud responses. Direct aerosol-radiation interactions due to biomass burning aerosol resulted in a net cooling, with an average short-wave direct effect of -4.08 ± 1.53 Wm-2. However, around 21.7 Wm-2 is absorbed by aerosol in the atmospheric column, warming the atmosphere at the aerosol layer height, stabilising the column, inhibiting convection, and reducing cloud cover and precipitation. The changes to clouds due to radiatively absorbing aerosol (traditionally known as the semi-direct effects) increase the net short-wave radiation reaching the surface by reducing cloud cover, producing a secondary warming that counters the direct cooling. However, the magnitude of the semi-direct effect was found to be extremely sensitive to the model resolution and the use of convective parameterisation. Precipitation became organised in isolated convective cells when not using a convective parameterisation on the 5 km domain, reducing both total cloud cover and total precipitation. The SW semi-direct effect varied from 6.06 ± 1.46 with convective parameterisation to 3.61 ± 0.86 Wm-2 without. Convective cells within the 1 km domain are typically smaller but with greater updraft velocity than equivalent cells in the 5 km domain, reducing the proportion of the domain covered by cloud in all scenarios and producing a smaller semi-direct effect. Biomass burning (BB) aerosol particles acted as cloud condensation nuclei (CCN), increasing the droplet number

  16. Regional simulation of aerosol radiative effects and their influence on rainfall over India using WRFChem model

    NASA Astrophysics Data System (ADS)

    Kedia, Sumita; Cherian, Ribu; Islam, Sahidul; Das, Subrata Kumar; Kaginalkar, Akshara

    2016-12-01

    A regional climate model, WRFChem has been utilized to simulate aerosol and rainfall distribution over India during July 2010 which was a normal monsoon year. Two identical simulations, one includes aerosol feedback via their direct and indirect effects and other one without any aerosol effect, are structured to understand the impact of aerosol net (direct + indirect) effect on rainfall pattern over India. Model results are accompanied by satellite and ground based observations to examine the robustness of the model simulations. It is shown that the model can reproduce the spatial and temporal characteristics of meteorological parameters, rainfall distribution, aerosol optical depth and single scattering albedo reasonably well. Model simulated spatial distribution and magnitude of aerosol optical depth over India are realistic, particularly over northwest India, where mineral dust is a major contributor to the total aerosol loading and over Indo-Gangetic Plain region (IGP) where AOD remains high throughout the year. Net (shortwave + longwave) atmospheric heating rate is the highest (> 0.27 K day - 1) over east IGP due to abundant dust and anthropogenic aerosols while it is the lowest over peninsular India and over the Thar desert (< 0.03 K day - 1) which can be attributed to less aerosol concentration and longwave cooling, respectively. It is shown that, inclusion of aerosol direct and indirect effects have strong influence ( ± 20%) on rainfall magnitude and its distribution over Indian subcontinent during monsoon.

  17. Simultaneous retrieval of aerosol properties and clear-sky direct radiative effect over the global ocean from MODIS

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Kim, Jhoon; Lee, Yun Gon

    2014-08-01

    A unified satellite algorithm is presented to simultaneously retrieve aerosol properties (aerosol optical depth; AOD and aerosol type) and clear-sky shortwave direct radiative effect (hereafter, DREA) over ocean. The algorithm is applied to Moderate Resolution Imaging spectroradiometer (MODIS) observations for a period from 2003 to 2010 to assess the DREA over the global ocean. The simultaneous retrieval utilizes lookup table (LUT) containing both spectral reflectances and solar irradiances calculated using a single radiative transfer model with the same aerosol input data. This study finds that aerosols cool the top-of-atmosphere (TOA) and bottom-of-atmosphere (BOA) by 5.2 ± 0.5 W/m2 and 8.3 W/m2, respectively, and correspondingly warm the atmosphere (hereafter, ATM) by 3.1 W/m2. These quantities, solely based on the MODIS observations, are consistent with those of previous studies incorporating chemical transport model simulations and satellite observations. However, the DREAs at BOA and ATM are expected to be less accurate compared to that of TOA due to low sensitivity in retrieving aerosol type information, which is related with the atmospheric heating by aerosols, particularly in low AOD conditions; consequently, the uncertainties could not be quantified. Despite the issue in the aerosol type information, the present method allows us to confine the DREA attributed only to fine-mode dominant aerosols, which are expected to be mostly anthropogenic origin, in the range from -1.1 W/m2 to -1.3 W/m2 at TOA. Improvements in size-resolved AOD and SSA retrievals from current and upcoming satellite instruments are suggested to better assess the DREA, particularly at BOA and ATM, where aerosol absorptivity induces substantial uncertainty.

  18. Top-of-Atmosphere Direct Radiative Effect of Aerosols over Global Oceans from Merged CERES and MODIS Observations

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Smith, N. M.

    2004-01-01

    The direct radiative effect of aerosols (DREA) is defined as the difference between radiative fluxes in the absence and presence of aerosols. In this study, the direct radiative effect of aerosols is estimated for 46 months (March, 2000 to December, 2003) of merged CERES and MODIS Terra global measurements over ocean. This analysis includes the contribution from clear regions in both clear and partly cloudy CERES footprints. MODIS-CERES narrow-to-broadband regressions are developed to convert clear-sky MODIS narrowband radiances to broadband SW radiances, and CERES clear-sky Angular Distribution Models (ADMs) are used to estimate the corresponding TOA radiative fluxes needed to determine the DREA. Clear-sky MODIS pixels are identified using two independent cloud masks: (i) the NOAA-NESDIS algorithm used for inferring aerosol properties from MODIS on the CERES Single Scanner Footprint TOA/Surface Fluxes and Clouds (SSF) product (NOAA-SSF); and (ii) the standard algorithm used by the MODIS aerosol group to produce the MODO4 product (MODO4). Over global oceans, direct radiative cooling by aerosols for clear scenes identified from MODO4 is estimated to be 5.5 W m-2, compared to 3.8 W m-2 for clear scenes from NOAA-SSF. Regionally, differences are largest in areas affected by dust aerosol, such as oceanic regions adjacent to the Saharan and Saudi Arabian deserts, and in northern Pacific Ocean regions influenced by dust transported from Asia. The net total-sky (clear and cloudy) DREA is negative (cooling) and is estimated to be -2.0 W m-2 from MOD04, and -1.6 W m-2 from NOAA-SSF. The DREA is shown to have pronounced seasonal cycles in the Northern Hemisphere and large year-to-year fluctuations near deserts. However, no systematic trend in deseasonalized anomalies of the DREA is observed over the 46-month time series considered.

  19. Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum

    NASA Astrophysics Data System (ADS)

    Heyn, Irene; Block, Karoline; Mülmenstädt, Johannes; Gryspeerdt, Edward; Kühne, Philipp; Salzmann, Marc; Quaas, Johannes

    2017-01-01

    In its fifth assessment report (AR5), the Intergovernmental Panel on Climate Change provides a best estimate of the effective radiative forcing (ERF) due to anthropogenic aerosol at -0.9 W m-2. This value is considerably weaker than the estimate of -1.2 W m-2 in AR4. A part of the difference can be explained by an offset of +0.2 W m-2 which AR5 added to all published estimates that only considered the solar spectrum, in order to account for adjustments in the terrestrial spectrum. We find that, in the CMIP5 multimodel median, the ERF in the terrestrial spectrum is small, unless microphysical effects on ice- and mixed-phase clouds are parameterized. In the latter case it is large but accompanied by a very strong ERF in the solar spectrum. The total adjustments can be separated into microphysical adjustments (aerosol "effects") and thermodynamic adjustments. Using a kernel technique, we quantify the latter and find that the rapid thermodynamic adjustments of water vapor and temperature profiles are small. Observation-based constraints on these model results are urgently needed.

  20. Transport and Mixing Patterns over Central California during the Carbonaceous Aerosol and Radiative Effects Study (CARES)

    SciTech Connect

    Fast, Jerome D.; Gustafson, William I.; Berg, Larry K.; Shaw, William J.; Pekour, Mikhail S.; Shrivastava, ManishKumar B.; Barnard, James C.; Ferrare, R.; Hostetler, Chris A.; Hair, John; Erickson, Matthew H.; Jobson, Tom; Flowers, Bradley; Dubey, Manvendra K.; Springston, Stephen R.; Pirce, Bradley R.; Dolislager, Leon; Pederson, J. R.; Zaveri, Rahul A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scales flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin Valley

  1. Transport and mixing patterns over Central California during the carbonaceous aerosol and radiative effects study (CARES)

    SciTech Connect

    Fast J. D.; Springston S.; Gustafson Jr., W. I.; Berg, L. K.; Shaw, W. J.; Pekour, M.; Shrivastava, M.; Barnard, J. C.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. A.; Erickson, M.; Jobson, B. T.; Flowers, B.; Dubey, M. K.; Pierce, R. B.; Dolislager, L.; Pederson, J.; Zaveri, R. A.

    2012-02-17

    We describe the synoptic and regional-scale meteorological conditions that affected the transport and mixing of trace gases and aerosols in the vicinity of Sacramento, California during June 2010 when the Carbonaceous Aerosol and Radiative Effects Study (CARES) was conducted. The meteorological measurements collected by various instruments deployed during the campaign and the performance of the chemistry version of the Weather Research and Forecasting model (WRF-Chem) are both discussed. WRF-Chem was run daily during the campaign to forecast the spatial and temporal variation of carbon monoxide emitted from 20 anthropogenic source regions in California to guide aircraft sampling. The model is shown to reproduce the overall circulations and boundary-layer characteristics in the region, although errors in the upslope wind speed and boundary-layer depth contribute to differences in the observed and simulated carbon monoxide. Thermally-driven upslope flows that transported pollutants from Sacramento over the foothills of the Sierra Nevada occurred every afternoon, except during three periods when the passage of mid-tropospheric troughs disrupted the regional-scale flow patterns. The meteorological conditions after the passage of the third trough were the most favorable for photochemistry and likely formation of secondary organic aerosols. Meteorological measurements and model forecasts indicate that the Sacramento pollutant plume was likely transported over a downwind site that collected trace gas and aerosol measurements during 23 time periods; however, direct transport occurred during only eight of these periods. The model also showed that emissions from the San Francisco Bay area transported by intrusions of marine air contributed a large fraction of the carbon monoxide in the vicinity of Sacramento, suggesting that this source likely affects local chemistry. Contributions from other sources of pollutants, such as those in the Sacramento Valley and San Joaquin

  2. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  3. The Effect of Recent Aerosol Trends on Solar Radiation in the Central and Southeastern United States: Implications for Regional Hydrology.

    NASA Astrophysics Data System (ADS)

    Cusworth, D.; Mickley, L. J.; Leibensperger, E. M.; Iacono, M. J.

    2015-12-01

    Observations show large increases in summertime (JJA) surface solar radiation (SWdn) over the central and southeastern United States during the last 20 years, as much as a +40 Wm-2 at midday. At the same time, in response to environmental regulations in the early 1990s, emissions of U.S. aerosol precursors have decreased by as much as 60%. Detecting a possible connection between these two trends has been difficult due to the secondary effects of aerosols on cloud concentration and lifetime, and previous efforts have failed to find a direct link. Here we investigate the clear-sky direct effect of decreasing U.S. aerosols on climate, using a radiative transfer model (RRTMG) driven by 1997-2014 measurements of aerosol optical depth at Surface Radiation Budget Network (SURFRAD) sites in the central and southeastern United States. We impose aerosol asymmetry parameters and single scattering albedos from nearby Aerosol Robotic Network (AERONET) sites. Preliminary results indicate that declining aerosols drive a summer noontime change in clear-sky SWdn of +25 Wm-2 since 1997 at Goodwin Creek, MS, accounting for 56% of the observed increase in SWdn at that site. Similarly, we find that aerosols increase clear-sky SWdn by +6.5 Wm-2 in Bondville, IL, which accounts for 21% of the observed SWdn trend there. These results suggest that the climate in these regions of the U.S. may be sensitive to recent reductions in aerosol concentrations, especially during summer months. We also analyze in situ soil measurements from the Illinois Climate Network from 1990-present, and find that a significant decrease in soil moisture (-0.6 m3 m-3 a-1) accompanies the increase in SWdn, implying a link between aerosol trends and regional hydrology. Aerosol reductions are expected to continue in the United States and may further influence regional climate including hydrological factors. Our work has implications for polluted regions outside the U.S., where future reductions in the aerosol burden

  4. Diurnal variations of aerosol optical properties in the North China Plain and their influences on the estimates of direct aerosol radiative effect

    NASA Astrophysics Data System (ADS)

    Kuang, Ye; Zhao, Chunsheng

    2016-04-01

    In this paper, the diurnal variations of aerosol optical properties and their influences on the estimation of daily average direct aerosol radiative effect (DARE) in the North China Plain (NCP) are investigated based on in situ measurements from Haze in China campaign. For ambient aerosol, the diurnal patterns of single scattering albedo (SSA) and asymmetry factor (g) in the NCP are both highest at dawn and lowest in the late afternoon, and quite different from those of dry-state aerosol. The relative humidity is the dominant factor which determines the diurnal patterns of SSA and g for ambient aerosol. Basing on the calculated SSA and g, several cases are designed to investigate the impacts of the diurnal changes of aerosol optical properties on DARE. The results demonstrate that the diurnal changes of SSA and g in the NCP have significant influences on the estimation of DARE at the top of the atmosphere (TOA). If the full temporal coverage of aerosol optical depth (AOD), SSA and g are available, an accurate estimation of daily average DARE can be achieved by using the daily averages of AOD, SSA and g. However, due to the lack of full temporal coverage datasets of SSA and g, their daily averages are usually not available. Basing on the results of designed cases, if the RH plays a dominant role in the diurnal variations of SSA and g, we suggest that using both SSA and g averaged over early morning and late afternoon as inputs for radiative transfer model to improve the accurate estimation of DARE. If the temporal samplings of SSA or g are too few to adopt this method, either averaged over early morning or late afternoon of both SSA and g can be used to improve the estimation of DARF at TOA.

  5. Altitude effect in UV radiation during the Evaluation of the Effects of Elevation and Aerosols on the Ultraviolet Radiation 2002 (VELETA-2002) field campaign

    NASA Astrophysics Data System (ADS)

    Sola, Y.; Lorente, J.; Campmany, E.; de Cabo, X.; Bech, J.; RedañO, A.; MartíNez-Lozano, J. A.; Utrillas, M. P.; Alados-Arboledas, L.; Olmo, F. J.; DíAz, J. P.; Expósito, F. J.; Cachorro, V.; Sorribas, M.; Labajo, A.; Vilaplana, J. M.; Silva, A. M.; Badosa, J.

    2008-12-01

    The Evaluation of the Effects of Elevation and Aerosols on the Ultraviolet Radiation 2002 (VELETA-2002) field campaign was designed to study the influence of aerosols and altitude on solar UV irradiance. The altitude effect (AE) was evaluated for UV irradiance under cloudless conditions by taking spectral and broadband measurements in SE Spain in the summer of 2002 at three nearby sites located at different heights (680 m, 2200 m, and 3398 m). A spectral radiative transfer model (Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)) was also applied, mainly to evaluate the tropospheric ozone impact on AE. Results are related to the optical properties and air mass origin of the aerosols as determined by back-trajectory analysis. During the 1-week observing period of the campaign, there were two main synoptic situations with different air masses (polar maritime and tropical continental air mass associated with a Saharan dust event). The AE showed a high dependency on wavelength, solar zenith angle, and aerosols, although the growth of the mixing layer during the day also caused substantial AE variability. Saharan dust caused an increase in AE, especially in the UVB region and in the erythemal irradiance. In the UVA (320-400 nm) band the AE ranged 6-8% km-1 at noon, while for the UVB (280-320 nm) band it reached 7-11% km-1. The AE for erythemally weighted irradiance ranged from 11 to 14% km-1 between the lowest and highest stations when it was calculated from spectral measurements.

  6. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  7. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  8. Parameterization of clear-sky surface irradiance and its implications for estimation of aerosol direct radiative effect and aerosol optical depth

    PubMed Central

    Xia, Xiangao

    2015-01-01

    Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m−2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm−2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available. PMID:26395310

  9. Air pollution and climate response to aerosol direct radiative effects: A modeling study of decadal trends across the northern hemisphere

    EPA Science Inventory

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surfa...

  10. Simulating Changes in Tropospheric Aerosol Burden and its Radiative Effects across the Northern Hemisphere: Contrasting Multi-Decadal Trends between Asia and North America

    EPA Science Inventory

    Though aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challeng...

  11. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  12. Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Bhuyan, Pradip Kumar; Pathak, Binita; Subba, Tamanna; Chutia, Lakhima; Kundu, Shyam Sundar; Bharali, Chandrakala; Borgohain, Arup; Guha, Anirban; De, Barin Kumar; Singh, Brajamani; Chin, Mian

    2017-01-01

    Multiyear measurements of spectral properties of aerosol absorption are examined over four geographically distinct locations of northeastern India. Results indicated significant spatiotemporal variation in aerosol absorption coefficients (σabs) with highest values in winter and lowest in monsoon. The western parts of the region, close to the outflow of Indo-Gangetic Plains, showed higher values of σabs and black carbon (BC) concentration—mostly associated with fossil fuel combustion. But, the eastern parts showed higher contributions from biomass-burning aerosols, as much as 20-25% to the total aerosol absorption, conspicuously during premonsoon season. This is attributed to a large number of burning activities over the Southeast Asian region, as depicted from Moderate Resolution Imaging Spectroradiometer fire count maps, whose spatial extent and magnitude peaks during March/April. The nearly consistent high values of aerosol index (AI) and layer height from Ozone Monitoring Instrument indicate the presence of absorbing aerosols in the upper atmosphere. The observed seasonality has been captured fairly well by Goddard Chemistry Aerosol Radiation and Transport (GOCART) as well as Weather Research and Forecasting-Chemistry (WRF-Chem) model simulations. The ratio of column-integrated optical depths due to particulate organic matter and BC from GOCART showed good coincidence with satellite-based observations, indicating the increased vertical dispersion of absorbing aerosols, probably by the additional local convection due to higher fire radiative power caused by the intense biomass-burning activities. In the WRF-Chem though underperformed by different magnitude in winter, the values are closer or overestimated near the burnt areas. Atmospheric forcing due to BC was highest ( 30 Wm-2) over the western part associated with the fossil fuel combustion.

  13. Effects of Aerosol Optical Depth on diffuse UV and visible radiation

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Kim, J.; Cho, H.; Kim, Y.

    2007-12-01

    Ultraviolet radiation (UV, 300-367nm) was measured with a UV-multifilter rotating shadowband radiometer (UV- MFRSR) at Yonsei University, Seoul (37.57°N, 126.97°) for 7 months from January to July 2006 and visible irradiance (400-700 nm) also measured with a MFRSR for 12 months of 2006 at the same station. Spectral UV_AOD and vis_AOD were retrieved using the Langley method and Beer-Bouguer-Lambert's law, and compared with AOD obtained from Skyradiometer to validate their values. The diffuse and direct irradiance were analyzed to investigate the dependence on total optical depth (TOD) and aerosol optical depth (AOD). The direct-horizontal solar irradiance decreases exponentially as the optical depth increases according to the Beer- Bouguer-Lambert's Law. As the TOD and AOD increase, the diffuse-horizontal UV radiation gradually increases and shows a maximum value at some critical optical depth for a given SZA. Similar analysis was performed on the relation between the diffuse irradiance and AOD. RAF(radiation amplification factor) was used to correct the ozone effects on UV. These results provide empirical equations for the amount of diffuse irradiance in UV and visible wavelengths.

  14. Radiative impact of aerosols generated from biomass burning

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1995-01-01

    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Each year, increasing amounts of aerosol particles are released into the atmosphere due to biomass burning, dust storms, forest fires, and volcanic activity. These particles significantly perturb the radiative balance on local, regional, and global scales. While the detection of aerosols over water is a well established procedure, the detection of aerosols over land is often difficult due to the poor contrast between the aerosols and the underlying terrain. In this study, we use textural measures in order to detect aerosols generated from biomass burning over South America, using AVHRR data. The regional radiative effects are then examined using ERBE data. Preliminary results show that the net radiative forcing of aerosols is about -36 W/sq m.

  15. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    NASA Astrophysics Data System (ADS)

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong; Qian, Yun; Zhang, Kai; Wang, Yuhang; Yang, Xiu-Qun

    2016-11-01

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol-radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m-2 (1σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m-2), while fire POM induces a small effect (-0.05 and 0.04 ± 0.01 W m-2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol-cloud interactions (REaci) of all fire aerosols is -0.70 ± 0.05 W m-2, resulting mainly from the fire POM effect (-0.59 ± 0.03 W m-2). REari (0.43 ± 0.03 W m-2) and REaci (-1.38 ± 0.23 W m-2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and -0.82 ± 0.09 W m-2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 ± 0.10 W m-2) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m-2) with the maximum albedo effect

  16. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    SciTech Connect

    Rutan, D.; Rose, F.; Charlock, T.P.

    2005-03-18

    Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputs is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov/). As various versions of the code are completed, publishable results are named ''Editions.'' After CRS Edition 2A was finalized it was found that dust aerosols were too absorptive. Dust aerosols have subsequently been modified using a new set of properties developed by Andy Lacis and results have been released in CRS Edition 2B. This paper discusses the effects of changing desert dust aerosol properties, which can be significant for the radiation budget in mid ocean, a few thousand kilometers from the source regions. Resulting changes are validated via comparison of surface observed fluxes from the Saudi Solar Village surface site (Myers et al. 1999), and the E13 site

  17. Strategy to use the Terra Aerosol Information to Derive the Global Aerosol Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: - From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. - Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. - Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  18. Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions

    EPA Science Inventory

    Organic aerosols (OA) in the atmosphere affect Earth’s energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called “brown carbon” (BrC) component. However, the absorptivities of OA are not or poorly represented in current climate m...

  19. Investigation on the direct radiative effect of fossil fuel black-carbon aerosol over China

    NASA Astrophysics Data System (ADS)

    Zhuang, Bingliang; Jiang, Fei; Wang, Tijian; Li, Shu; Zhu, Bin

    2011-06-01

    In China, due to lack of countrywide monitoring and coarse emission inventory of black carbon (BC) in early years, there are large uncertainties as to the estimations of its loading, direct radiative forcing (DRF) and climate response. Here, we apply an up-to-date emission inventory of BC in 2006 to investigate its loading, optical depth (AOD) at 550 nm and DRF using the coupled Regional Climate Chemistry Modeling System (RegCCMS). A state of the art air quality model (WRF/Chem) is also used to access surface BC concentration. Simulated surface concentrations of BC from these two models were compared with observations, while the AOD was compared with the results both from the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model and from satellite and ground-based simulations. Results show that RegCCMS presented similar patterns and levels of annual mean-surface BC concentration to those of WRF/Chem. The regional distributions and monthly variations of RegCCMS BC were reproduced well in comparison to observations. Simulated pattern of AODs are consistent to but lower than those from satellite (Omi-0.25°) and AERONET simulations. Annual mean DRFs mainly distribute in the area with high BC loadings, with regional mean of 0.75 W m-2 and predicted global mean of 0.343 W m-2. In general, the results are about 0.4-5 times for regional column burden, about 2 times as high for regional mean DRFs, about 1.3-1.8 times for global mean DRFs and about 3-4 times for AOD at 550 nm as compared to those in previous studies in China. These increasing DRFs of BC imply that its warming effect and climate response should be stronger and the DRF of total aerosols should be weaker (less negative).

  20. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  1. Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta Region of China

    SciTech Connect

    Liu, Jianjun; Zheng, Youfei; Li, Zhanqing; Flynn, Connor J.; Cribb, Maureen

    2012-02-09

    Four years of columnar aerosol particle optical properties (2006 to 2009) and one year database worth of aerosol particle vertical profile of 527 nm extinction coefficient (June 2008 to May 2009) are analyzed at Taihu in the central Yangtze Delta region in eastern China. Seasonal variations of aerosol optical properties, vertical distribution, and influence on shortwave radiation and heating rates were investigated. Multiyear variations of aerosol optical depths (AOD), Angstrom exponents, single scattering albedo (SSA) and asymmetry factor (ASY) are analyzed, together with the vertical profile of aerosol extinction. AOD is largest in summer and smallest in winter. SSAs exhibit weak seasonal variation with the smallest values occurring during winter and the largest during summer. The vast majority of aerosol particles are below 2 km, and about 62%, 67%, 67% and 83% are confined to below 1 km in spring, summer, autumn and winter, respectively. Five-day back trajectory analyses show that the some aerosols aloft are traced back to northern/northwestern China, as far as Mongolia and Siberia, in spring, autumn and winter. The presence of dust aerosols were identified based on the linear depolarization measurements together with other information (i.e., back trajectory, precipitation, aerosol index). Dust strongly impacts the vertical particle distribution in spring and autumn, with much smaller effects in winter. The annual mean aerosol direct shortwave radiative forcing (efficiency) at the bottom, top and within the atmosphere are -34.8 {+-} 9.1 (-54.4 {+-} 5.3), -8.2 {+-} 4.8 (-13.1 {+-} 1.5) and 26.7 {+-} 9.4 (41.3 {+-} 4.6) W/m{sup 2} (Wm{sup -2} T{sup -1}), respectively. The mean reduction in direct and diffuse radiation reaching surface amount to 109.2 {+-} 49.4 and 66.8 {+-} 33.3 W/m{sup 2}, respectively. Aerosols significantly alter the vertical profile of solar heating, with great implications for atmospheric stability and dynamics within the lower troposphere.

  2. Aerosol Direct Radiative Effects Over the Northwest Atlantic, Northwest Pacific, and North Indian Oceans: Estimates Based on In-situ Chemical and Optical Measurements and Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J. A.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2005-12-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean during INDOEX, the Northwest Pacific Ocean during ACE-Asia, and the Northwest Atlantic Ocean during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth, and direct radiative effect of aerosols (change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Such comparisons with observations and resultant reductions in uncertainties are

  3. Aerosol radiative effects on the meteorology and distribution of pollutants in the Mexico City Metropolitan Area during MCMA-2006/MILAGRO Campaign

    NASA Astrophysics Data System (ADS)

    Li, Guohui; Bei, Naifang; Molina, Luisa

    2013-04-01

    Aerosols scatter or absorb incoming solar radiation, perturb the temperature structure of the atmosphere, and impact meteorological fields and further the distribution of gas phase species and aerosols. In the present study, the aerosol radiative effects on the meteorology and photochemistry in the Mexico City Metropolitan Area (MCMA) are investigated using the WRF-CHEM model during the period from March 24th to 29th associated with the MILAGRO-2006 campaign. Aerosols decrease incoming solar radiation by up to 20% and reduce the surface temperature by up to 0.5 °C due to scattering and absorbing the incoming solar radiation in Mexico City. The absorption of black carbon aerosols can also enhance slightly the temperature in the planetary boundary layer (PBL). Generally, the change of the PBL height in the city is less than 200 m during daytime due to the aerosol-induced perturbation of temperature profile. Wind fields are also adjusted with the variation of temperatures, but all the aerosol-induced meteorological changes cannot significantly influence the distribution of pollutants in the city. In addition, when convective events occur in the city, the aerosol radiative effects reduce the convective available potential energy (CAPE) and the convective precipitation is generally decreased. Further studies still need to be performed to evaluate the aerosol indirect effect on precipitation in Mexico City.

  4. Sensitivity of modelled sulfate aerosol and its radiative effect on climate to ocean DMS concentration and air-sea flux

    NASA Astrophysics Data System (ADS)

    Tesdal, Jan-Erik; Christian, James R.; Monahan, Adam H.; von Salzen, Knut

    2016-09-01

    Dimethylsulfide (DMS) is a well-known marine trace gas that is emitted from the ocean and subsequently oxidizes to sulfate in the atmosphere. Sulfate aerosols in the atmosphere have direct and indirect effects on the amount of solar radiation reaching the Earth's surface. Thus, as a potential source of sulfate, ocean efflux of DMS needs to be accounted for in climate studies. Seawater concentration of DMS is highly variable in space and time, which in turn leads to high spatial and temporal variability in ocean DMS emissions. Because of sparse sampling (in both space and time), large uncertainties remain regarding ocean DMS concentration. In this study, we use an atmospheric general circulation model with explicit aerosol chemistry (CanAM4.1) and several climatologies of surface ocean DMS concentration to assess uncertainties about the climate impact of ocean DMS efflux. Despite substantial variation in the spatial pattern and seasonal evolution of simulated DMS fluxes, the global-mean radiative effect of sulfate is approximately linearly proportional to the global-mean surface flux of DMS; the spatial and temporal distribution of ocean DMS efflux has only a minor effect on the global radiation budget. The effect of the spatial structure, however, generates statistically significant changes in the global-mean concentrations of some aerosol species. The effect of seasonality on the net radiative effect is larger than that of spatial distribution and is significant at global scale.

  5. Study on impact of aerosols on solar radiation and its climate effect in Southwest China

    NASA Astrophysics Data System (ADS)

    Zheng, Xiaobo; Zhao, Tianliang; Zhang, Xiaojuan

    Air temperature in Southwest China has changed out of phase with the Northern Hemispheric temperature change since last century, which could be connected to increasing aerosols in that region. By using the 50-year (1961-2010) data of meteorology observed at 19 ground sites in Southwest China and 10-year MODIS-AOD data, the change in global solar radiation and its correlations to the influencing elements of horizontal visibility, cloud amount, wind and AOD are analysed. The analysis results show 1) over the area with high AOD(AOD>0.3),solar radiation had decreased significantly over the 1960s-1990s, but in this century, the decreased trend in solar radiation has ceased and even slightly levelled up at some sites, but the solar radiation has not recovered to the level in the 1960s. The decreased solar radiation is corresponded with less visibility, more aerosols and weakening wind as well as is also related with change in cloud amounts. 2) over the low AOD area(AOD≦0.3)in Southwest China, solar radiation has varied in the insignificant trends excepting the significant increase in solar radiation at Emei Mountain with altitude of 3047m after the 1990s. 3) Meteorological elements are responded to climate change in solar radiation. The sunshine duration is positively correlated with solar radiation at all sites with passing significance test of 99% level at the most sites in Southwest China. Decreases in solar radiation lead to cooling in temperature and decline in evaporation at high AOD regions. The maximum temperature and solar radiation vary in relatively good phase but with a complex response of evaporation to solar radiation over low AOD sites in Southwest China.

  6. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-05-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer

  7. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-01-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer

  8. Direct Radiative Forcing and Regional Climatic Effects of Anthropogenic Aerosols Over East Asia: A Regional Coupled Climate-Chemistry/Aerosol Model Study

    SciTech Connect

    Giorgi, Filippo; Bi, Xunqiang; Qian, Yun )

    2002-09-01

    We present a series of regional climate model simulations aimed at assessing the radiative forcing and surface climatic effects of anthropogenic sulfate and fossil fuel soot over east Asia. The simulations are carried out with a coupled regional climate-chemistry/aerosol model for the 5-year period of 1993-1997 using published estimates of sulfur emissions for the period. Anthropogenic sulfate induces a negative radiative forcing spatially varying from -1 to -8 W/m2 in the winter to -1 to -15 W/m2 in the summer, with maxima over the Sichan Basin of southwest China and over some areas of east and northeast China. This forcing induces a surface cooling in the range of -0.1 to -0.7 K. Fossil fuel soot exerts a positive atmospheric radiative forcing of 0.5 to 2 W/m2 and enhances the surface cooling by a few tenths of K due to increased surface shielding from solar radiation. Doubling of sulfur emissions induces a substantial increase in radiative forcing (up to -7 to -8 W/m2) and associated surface cooling. With doubled sulfur emissions, the surface cooling exceeds -1 K and is statistically significant at the 90% confidence level over various areas of China. The aerosol forcing and surface cooling tend to inhibit precipitation over the region, although this effect is relatively small in the simulations. Some features of the simulated aerosol-induced cooling are consistent with temperature trends observed in recent decades over different regions of China.

  9. Investigation of mineral aerosols radiative effects over High Mountain Asia in 1990-2009 using a regional climate model

    NASA Astrophysics Data System (ADS)

    Ji, Zhenming; Kang, Shichang; Zhang, Qianggong; Cong, Zhiyuan; Chen, Pengfei; Sillanpää, Mika

    2016-09-01

    Mineral aerosols scatter and absorb incident solar radiation in the atmosphere, and play an important role in the regional climate of High Mountain Asia (the domain includes the Himalayas, Tibetan Plateau, Pamir, Hindu-kush, Karakorum and Tienshan Mountains). Dust deposition on snow/ice can also change the surface albedo, resulting in perturbations in the surface radiation balance. However, most studies that have made quantitative assessments of the climatic effect of mineral aerosols over the High Mountain Asia region did not consider the impact of dust on snow/ice at the surface. In this study, a regional climate model coupled with an aerosol-snow/ice feedback module was used to investigate the emission, distribution, and deposition of dust and the climatic effects of aerosols over High Mountain Asia. Two sets of simulations driven by a reanalysis boundary condition were performed, i.e., with and without dust-climate feedback. Results indicated that the model captured the spatial and temporal features of the climatology and aerosol optical depth (AOD). High dust emission fluxes were simulated in the interior of the Tibetan Plateau (TP) and the Yarlung Tsangpo Valley in March-April-May (MAM), with a decreasing trend during 1990-2009. Dry deposition was controlled by the topography, and its spatial and seasonal features agreed well with the dust emission fluxes. The maximum wet deposition occurred in the western (southern and central) TP in MAM (JJA). A positive surface radiative forcing was induced by dust, including aerosol-snow/ice feedback, resulting in 2-m temperature increases of 0.1-0.5 °C over the western TP and Kunlun Mountains in MAM. Mineral dust also caused a decrease of 5-25 mm in the snow water equivalent (SWE) over the western TP, Himalayas, and Pamir Mountains in DJF and MAM. The long-term regional mean radiative forcing via dust deposition on snow showed an rising trend during 1990-2009, which suggested the contribution of aerosols surface

  10. Impacts of the direct radiative effect of aerosols in numerical weather prediction over Europe using the ALADIN-HIRLAM NWP system

    NASA Astrophysics Data System (ADS)

    Toll, V.; Gleeson, E.; Nielsen, K. P.; Männik, A.; Mašek, J.; Rontu, L.; Post, P.

    2016-05-01

    Aerosol feedbacks are becoming more accepted as physical mechanisms that should be included in numerical weather prediction models in order to improve the accuracy of the weather forecasts. The default set-up in the Aire Limitee Adaptation dynamique Developpement INternational (ALADIN) - High Resolution Limited Area Model (HIRLAM) numerical weather prediction system includes monthly aerosol climatologies to account for the average direct radiative effect of aerosols. This effect was studied using the default aerosol climatology in the system and compared to experiments run using the more up-to-date Max-Planck-Institute Aerosol Climatology version 1 (MACv1), and time-varying aerosol data from the Monitoring Atmospheric Composition and Climate (MACC) reanalysis aerosol dataset. Accounting for the direct radiative effect using monthly aerosol climatologies or near real-time aerosol distributions improved the accuracy of the simulated radiative fluxes and temperature and humidity forecasts in the lower troposphere. However, the dependency of forecast meteorological conditions on the aerosol dataset itself was found to be weak.

  11. Improvement and Application of Atmospheric Radiative Transfer Models for Prediction of the Climatic Effects of Aerosol

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Mlawer, Eli J.; Sokolik, Irina N.; Clough, Shepard A.; Toon, Owen B.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications, we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  12. Improvement and Application of Atmospheric Radiative Transfer Models for Prediction of the Climatic Effects of Aerosol

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.

    1998-01-01

    This paper presents a radiative transfer model that has been developed to accurately predict the atmospheric radiant flux in both the infrared and the solar spectrum with a minimum of computational effort. The model is designed to be included in numerical climate models. To assess the accuracy of the model, the results are compared to other more detailed models for several standard cases in the solar and thermal spectrum. As the thermal spectrum has been treated in other publications we focus here on the solar part of the spectrum. We perform several example calculations focussing on the question of absorption of solar radiation by gases and aerosols.

  13. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  14. Trends in surface solar radiation in Spain since the 1980s: the role of the changes in the radiative effects of aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Mateos, David; Wild, Martin; Calbó, Josep; Antón, Manuel; Enriquez-Alonso, Aaron; Sanchez-Romero, Alex

    2014-05-01

    There is a growing interest in the study of decadal variations in surface solar radiation, although the analyses of long-term time series in some areas with major gaps in observations, such as in Spain, are still pending. In the first part of this work, a previously published surface solar radiation dataset in Spain is described (for more details, see Sanchez-Lorenzo et al., 2013) based on the longest series with ground-based records of global and diffuse solar radiation, most of them starting in the early 1980s and ending in 2012. Particular emphasis is placed upon the homogenization of this dataset in order to ensure the reliability of the trends. The linear trend in the mean annual series of global solar radiation shows a significant increase since 1981 of 4.0 Wm-2 (or 2.4 %) per decade. These results are in line with the increase of global solar radiation (i.e. brightening period) reported at many worldwide observation sites (Wild, 2009). In addition, the annual mean diffuse solar radiation series shows a significant decrease during the last three decades, but it is disturbed by strong increases in 1983 and 1991-1992, which might reflect the effects of the El Chichón and Pinatubo volcanic eruptions as a result of enhanced scattering of the aerosols emitted during these large volcanic eruptions. As clouds and aerosols are the main sources of uncertainty in the determination of the energy balance of the Earth, there is a growing interest in the evaluation of their radiative effects and their impact on the decadal variability of the surface solar radiation. Hence, in the second part of this work, the changes of the combined radiative effects of clouds and aerosols in Spain since the 1980s are investigated (for more details, see Mateos et al., 2013). In particular, the global solar radiation data above mentioned and radiative transfer simulations fed with reanalysis data of ozone, water vapour and surface albedo, are used to evaluate the cloud and aerosol

  15. Radiative effects of black carbon aerosols on Indian monsoon: a study using WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Soni, Pramod; Tripathi, Sachchida Nand; Srivastava, Rajesh

    2017-02-01

    The Weather Research and Forecasting model with Chemistry (WRF-Chem) is utilized to examine the radiative effects of black carbon (BC) aerosols on the Indian monsoon, for the year 2010. Five ensemble simulations with different initial conditions (1st to 5th December, 2009) were performed and simulation results between 1st January, 2010 to 31st December, 2010 were used for analysis. Most of the BC which stays near the surface during the pre-monsoon season gets transported to higher altitudes with the northward migration of the Inter Tropical Convergence Zone (ITCZ) during the monsoon season. In both the seasons, strong negative SW anomalies are present at the surface along with positive anomalies in the atmosphere, which results in the surface cooling and lower tropospheric heating, respectively. During the pre-monsoon season, lower troposphere heating causes increased convection and enhanced meridional wind circulation, bringing moist air from Indian Ocean and Bay of Bengal to the North-East India, leading to increased rainfall there. However, during the monsoon season, along with cooling over the land regions, a warming over the Bay of Bengal is simulated. This differential heating results in an increased westerly moisture flux anomaly over central India, leading to increased rainfall over northern parts of India but decreased rainfall over southern parts. Decreased rainfall over southern India is also substantiated by the presence of increased evaporation over Bay of Bengal and decrease over land regions.

  16. Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Pekour, Mikhail; Barnard, James

    2012-10-01

    The majority of previous studies dealing with effect of coarse mode aerosols (supermicron) on the radiation budget have focused primarily on regions where total aerosol loadings are substantial. We reexamine this effect for a relatively clean area using a unique 1-month dataset collected during the recent Carbonaceous Aerosol and Radiative Effects Study (CARES, June 2010) in the central California region near Sacramento. Here we define “clean” as aerosol optical depths less than 0.1 at 0.5 μm. We demonstrate that coarse mode particles contributed substantially (more than 50%) and frequently (up to 85% of time) to the total aerosol volume during this study. In contrast to conventional expectations that the radiative impact of coarse mode aerosols should be small for clean regions, we find that neglecting large particles may lead to significant overestimation, up to 45%, of direct aerosol radiative forcing despite very small aerosol optical depths. Our findings highlight the potential for substantial impacts of coarse mode aerosols on radiative properties over clean areas and the need for more explicit inclusion of coarse mode aerosols in climate-related observational studies.

  17. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-Cloud Aerosols Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Meyer, Kerry G.; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin; Yu, Hongbin

    2014-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It addresses the overlap of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure while also accounting for subgrid-scale variations of aerosols. The method is computationally efficient because of its use of grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table based on radiative transfer calculations. We verify that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous (approximately 1:30PM local time) shortwave DRE of above cloud aerosol (ACA) that generally agrees with more rigorous pixel-level computation within 4 percent. We also estimate the impact of potential CALIOP aerosol optical depth (AOD) retrieval bias of ACA on DRE. We find that the regional and seasonal mean instantaneous DRE of ACA over southeast Atlantic Ocean would increase, from the original value of 6.4 W m(-2) based on operational CALIOP AOD to 9.6 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 1.5 (Meyer et al., 2013) and further to 30.9 W m(-2) if CALIOP AOD retrieval are biased low by a factor of 5 as suggested in (Jethva et al., 2014). In contrast, the instantaneous ACA radiative forcing efficiency (RFE) remains relatively invariant in all cases at about 53 W m(-2) AOD(-1), suggesting a near linear relation between the instantaneous RFE and AOD. We also compute the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global oceans based on 4 years of CALIOP and MODIS data. We find that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds. While we demonstrate our method using CALIOP and MODIS

  18. The 3D Radiative Effects of Clouds in Aerosol Retrieval: Can we Remove Them?

    SciTech Connect

    Kassianov, Evgueni I.; Ovchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.; Ferrare, Richard; Hostetler, Chris A.

    2009-09-30

    We outline a new method, called the ratio method, developed to retrieve aerosol optical depth (AOD) under broken cloud conditions and present validation results from sensitivity and case studies. Results of the sensitivity study demonstrate that the ratio method, which exploits ratios of reflectances in the visible spectral range, has the potential for accurate AOD retrievals under different observational conditions and random errors in input data. Also, we examine the performance of the ratio method using aircraft data collected during the Cloud and Land Surface Interaction Campaign (CLASIC) and the Cumulus Humilis Aerosol Processing Study (CHAPS). Results of the case study suggest that the ratio method has the ability to retrieve AOD from multi-spectral aircraft observations of the reflected solar radiation.

  19. On the use of satellite remote sensing to determine aerosol direct radiative effect over land: A case study over China

    NASA Astrophysics Data System (ADS)

    Sundström, Anu-Maija; Arola, Antti; Kolmonen, Pekka; de Leeuw, Gerrit

    2014-05-01

    The quantification of aerosol radiative effects is complex and large uncertainties still exist, mainly due to the high spatial and temporal variation of the aerosol concentration and mass as well as their relatively short lifetime in the atmosphere. In this work a multi-sensor satellite based approach is studied for defining the direct short wave aerosol radiative effect (ADRE) over China. ADRE at the top of the atmosphere (TOA) is defined as the difference between the net solar flux with (F ) and without (F0) aerosols. The negative values of ADRE correspond to increased outgoing radiation and planetary cooling, whereas positive values correspond to decreased outgoing radiation at TOA and increased atmospheric warming. To derive instantaneous ADRE from the satellite observations, the challenge is to estimate the value for F0. In this work F0 is derived using the colocated observations of CERES (Clouds and the Earth's Radian Energy System) short wave broad band TOA-flux for cloud free sky and MODIS (Moderate Imaging Spectroradiometer) aerosol optical depth (AOD). Assuming that aerosol type does not change systematically within a 0.5 deg. grid cell over a month, a linear relationship is established between the clear-sky TOA-fluxes and AODs. Using the linear regression an estimate for instantaneous monthly F0 can be obtained by extrapolating the line to AOD=0, while F is the monthly mean of cloud free CERES observations. However, there are several other parameters affecting the observed TOA flux than the aerosol loading and aerosol type, such as solar zenith angle, water vapour, land surface albedo and Earth-Sun distance. Changes in these parameters within a grid cell over a month inflect the correlation between AOD and TOA fluxes. To minimize the effect of zenith angle, water vapour, and Earth-Sun distance the CERES fluxes are normalized before the linear fitting using reference fluxes calculated with a radiative transfer code (Libradtran). The normalization

  20. Implications of using transmitted vs. reflected light for determining cloud properties, cloud radiative effects and aerosol-cloud-interactions

    NASA Astrophysics Data System (ADS)

    LeBlanc, S. E.; Redemann, J.; Segal-Rosenhaimer, M.; Kacenelenbogen, M. S.; Shinozuka, Y.; Flynn, C. J.; Schmidt, S.; Pilewskie, P.; Song, S.; Woods, S.; Lawson, P.; Nenes, A.; Lin, J. J.; Ziemba, L. D.

    2015-12-01

    Light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. This difference in sampling volumes has implications when calculating the radiative effects of clouds (CRE) and aerosol-cloud-interactions (ACI). We present a comparison of retrieved cloud properties and the corresponding CRE and ACI based on transmitted and reflected light for a cloud sampled during the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS, 2013) field campaign. Measurements of zenith radiances were obtained from the NASA DC-8 aircraft using the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) instrument. 4STAR was deployed on an airborne platform during SEAC4RS alongside the Solar Spectral Flux Radiometer (SSFR). To retrieve cloud properties from transmitted shortwave radiation, we use a retrieval utilizing spectrally resolved measurements. Spectral features in shortwave radiation transmitted through clouds are sensitive to changes in cloud optical thickness, effective radius, and thermodynamic phase. The spectral features due to absorption and scattering processes by liquid water and ice cloud particles include shifts in spectral slopes, curvatures, maxima, and minima of cloud-transmitted radiance. These spectral features have been quantified by 15 parameters used to retrieve cloud properties from the 4STAR zenith radiances. Retrieved cloud optical thicknesses and effective radii based on transmitted shortwave radiation are compared to their counterparts obtained from reflected shortwave radiation measured above cloud with MODIS and with the enhanced MODIS Airborne Simulator (eMAS), the Research Scanning Polarimeter (RSP), and SSFR operating aboard the NASA ER-2 aircraft. Remotely sensed cloud particle effective radius are combined with in situ measurements of cloud and aerosol particles from the NASA Langley Aerosol Research Group Experiment (LARGE) CCN Counter

  1. Effects of sulfate aerosol on the central Pennsylvania surface shortwave radiation budget. Master's thesis

    SciTech Connect

    Guimond, P.W.

    1994-12-01

    Surface radiation measurements are taken simultaneously with measurements of meteorological variables including temperature, pressure, relative humidity, and visibility to evaluate the impact of sulfate haze on the surface radiation budget. A relationship is sought between flux losses due only to aerosol and relative humidity, visibility or both, with the goal of facilitating parameterization of sulfate hazes by climate modelers. At the same time, a rotating shadowband radiometer (RSR) is compared with a more costly sun photometer to determine the feasibility of substituting the former for the latter in future research. It is found that depletion of surface radiation due to aerosol is typically ten to twenty percent of initial insolation, and that the losses can be correlated with zenith angle, relative humidity and optical depth. In the case of flux loss as a function of optical depth, the two are related in a nearly linear fashion. It is also discovered that the RSR has a predictable error owing to a wider field of view than the sun photometer, and can be used as a replacement for the former by correcting for the error.

  2. Radiative transfer effects of high SO2 and aerosol loads during major volcanic eruptions

    NASA Astrophysics Data System (ADS)

    Hörmann, Christoph; Penning de Vries, Marloes; Beirle, Steffen; Wagner, Thomas

    2014-05-01

    Satellite remote sensing of volcanic emissions nowadays allow to globally track and quantify large plumes after major eruptions. Especially the detection of sulphur dioxide (SO2) via Differential Optical Absorption Spectroscopy (DOAS) has become one of the most common applications to monitor the input of gaseous volcanic species into the Earth's atmosphere. While SO2 can be spectroscopically identified because of its strong absorption bands in the UV, the DOAS method can usually only be applied for optical weak absorbers. However, if the SO2 loading of the atmosphere becomes very high, which may occur in the course of a strong volcanic eruption, the atmosphere can no longer be considered transparent throughout the commonly used wavelength range of evaluation between 300 and 325 nm. The associated radiative transfer usually results in a strong underestimation of the SO2 slant column density (SCD), mainly because the solar radiation that is detected by the satellite instruments has only penetrated the outermost layers of the SO2-rich volcanic plume. In order to overcome this problem, we recently proposed to use a combination of results from the standard and additional alternative fit windows at longer wavelengths (326.5-335 nm and/or 360-390 nm). Here, the SO2 absorption cross-section is generally weak, but sufficiently strong for the detection of very high SO2 loads. A first comparison of the results showed that generally a typical relationship can be identified between SO2 SCDs from different evaluation wavelength ranges. However, occuring differences for some observations can only be explained by the additional influences of large amounts of volcanic aerosols on radiative transfer. We present first results from a study on the possible characterisation of volcanic aerosol properties and thereby associated impacts of the radiative transfer on the SO2 DOAS retrieval at different fit windows. Satellite observations of the SO2 column densities and UV Aerosol Indices

  3. Light absorption properties and radiative effects of primary organic aerosol emissions.

    PubMed

    Lu, Zifeng; Streets, David G; Winijkul, Ekbordin; Yan, Fang; Chen, Yanju; Bond, Tami C; Feng, Yan; Dubey, Manvendra K; Liu, Shang; Pinto, Joseph P; Carmichael, Gregory R

    2015-04-21

    Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption.

  4. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  5. Spatially Refined Aerosol Direct Radiative Focusing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  6. Impacts of Aerosol Direct Effects on the South Asian Climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/Surface Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Gautam, Ritesh; Lau, William K. M.; Tsay, Si-Chee; Sun, Wen-Yih; Kim, Kyu-Myong; Chern, Jiun-Dar; Hsu, Christina; Lin, Neng-Huei

    2011-01-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation.

  7. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, Melanie S.; Martin, Randall V.; van Donkelaar, Aaron; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-03-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years

  8. Interpreting the Ultraviolet Aerosol Index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, M. S.; Martin, R. V.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-10-01

    Satellite observations of the Ultraviolet Aerosol Index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 35 % over South America in September, up to 25 % over southern Africa in July, and up to 20 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  9. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  10. Stratospheric Aerosols for Solar Radiation Management

    NASA Astrophysics Data System (ADS)

    Kravitz, Ben

    SRM in the context of this entry involves placing a large amount of aerosols in the stratosphere to reduce the amount of solar radiation reaching the surface, thereby cooling the surface and counteracting some of the warming from anthropogenic greenhouse gases. The way this is accomplished depends on the specific aerosol used, but the basic mechanism involves backscattering and absorbing certain amounts of solar radiation aloft. Since warming from greenhouse gases is due to longwave (thermal) emission, compensating for this warming by reduction of shortwave (solar) energy is inherently imperfect, meaning SRM will have climate effects that are different from the effects of climate change. This will likely manifest in the form of regional inequalities, in that, similarly to climate change, some regions will benefit from SRM, while some will be adversely affected, viewed both in the context of present climate and a climate with high CO2 concentrations. These effects are highly dependent upon the means of SRM, including the type of aerosol to be used, the particle size and other microphysical concerns, and the methods by which the aerosol is placed in the stratosphere. SRM has never been performed, nor has deployment been tested, so the research up to this point has serious gaps. The amount of aerosols required is large enough that SRM would require a major engineering endeavor, although SRM is potentially cheap enough that it could be conducted unilaterally. Methods of governance must be in place before deployment is attempted, should deployment even be desired. Research in public policy, ethics, and economics, as well as many other disciplines, will be essential to the decision-making process. SRM is only a palliative treatment for climate change, and it is best viewed as part of a portfolio of responses, including mitigation, adaptation, and possibly CDR. At most, SRM is insurance against dangerous consequences that are directly due to increased surface air

  11. Radiative Impacts of Elevated Aerosol Layers from Different Origins

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Heimerl, K.

    2014-12-01

    Aerosol particles are omnipresent in the Earth's atmosphere and have important impacts on weather and climate by their effects on the atmospheric radiative balance. With the advent of more and more sophisticated representations of atmospheric processes in earth system models, the lack of reliable input data on aerosols leads to significant uncertainties in the prediction of future climate scenarios. In recent years large discrepancies in radiative forcing estimates from aerosol layers in modeling studies have been revealed emphasizing the need for detailed and systematic observations of aerosols. Airborne in-situ measurements represent an important pillar for validating both model results and retrievals of aerosol distributions and properties from remote sensing methods on global scales. However, detailed observations are challenging and therefore are subject to substantial uncertainties themselves. Here we use data from airborne in-situ measurements of elevated aerosol layers from various field experiments in different regions of the world. The data set includes Saharan mineral dust layers over Africa, the Atlantic Ocean and the Caribbean from the SALTRACE and the SAMUM campaigns as well as long-range transported biomass burning aerosol layers from wild fires in the Sahel region and North America measured over the tropical Atlantic Ocean, Europe and the Arctic detected during SAMUM2, CONCERT2011, DC3 and ACCESS 2012. We aim to characterize the effects of the measured aerosol layers, in particular with respect to ageing, mixing state and vertical structure, on the overall atmospheric radiation budget as well as local heating and cooling rates. We use radiative transfer simulations of short and long-wave radiation and aerosol optical properties derived in a consistent way from the in-situ observations of microphysical properties using T-matrix calculations. The results of this characterization will help to improve the parameterization of the effects of elevated

  12. Aerosol Radiative Effects observed on the Coast of the Japanese Sea (Tango peninsula) during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Hoeller, R.; Yabe, T.; Tohno, S.; Kasahara, M.

    2001-12-01

    The characterization of the optical properties of the atmospheric aerosol as well as its size-resolved chemical composition is on of the main objectives of ACE-Asia. This is necessary to constrain the radiative forcing by the Asian aerosol, which will become more important as emissions in this area are predicted to increase dramatically. We set up a monitoring station on the coast of the Japanese Sea (Tango Peninsula, Kyoto Prefecture) for the measurements of aerosol optical and chemical properties as well as sky radiation during ACE-Asia in spring 2001. The instrumentation at Tango includes a 3-wavelenght nephelometer (TSI 3563), an OPC (RION KC-01D), a pyrheliometer (EKO MS-53), a 5-wavelength sunphotometer (EKO MS-110A), and a pyranometer (EKO MS-801). The sunphotometer also has a near infrared channel (938 nm) for evaluations of precipitable water; visible channels are used to retrieve aerosol optical depth and Ångström exponents. Filter sampling is performed collocated to the optical measurements for subsequent analysis of elemental and ionic composition of the aerosol. Filters are also analyzed by the integrating plate method for measurements of aerosol absorption coefficients. Size-resolved chemical composition obtained from low-pressure impactor samples are used to calculate aerosol optical properties and compare them to directly measured optical properties. Quality checked parameters are henceforth input into a radiative transfer model (MODTRAN 4.0) to calculate the radiative forcing of the aerosol. This enables us to evaluate which chemical species control the optical properties and radiative forcing of the aerosol. We also compare the radiative impact of clear days with days with heavy dust loadings. >http://aerosol.energy.kyoto- u.ac.jp/~hoeller/ACEmineyama.html

  13. A GCM study of effects of radiative forcing of sulfate aerosol on large scale circulation and rainfall in East Asia during boreal spring

    NASA Astrophysics Data System (ADS)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Lee, Woo-Seop

    2007-12-01

    The effect of sulfate aerosol radiative forcing on spring rainfall in East Asia are studied based on numerical simulations with the NASA finite-volume General Circulation Model (fvGCM) forced with monthly varying three-dimensional aerosol distribution from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Result shows that radiative forcing of sulfate aerosol leads to cooling of the land surface and reduction in rainfall over central East Asia. The maximum reduction in precipitation is shifted northward relative to the maximum aerosol loading region as a result of dynamical feedback. The anomalous thermal gradient by aerosol cooling near the land surface, reduces the baroclinicity of the atmosphere, leading to a deceleration of the upper level westerly flow. The westerly deceleration induces, through ageostrophic wind adjustment, anomalous meridional secondary circulation at the entrance region of the East Asian jetstream, with strong sinking motion and suppressed precipitation near 30°N, coupled to weak rising motion and moderately enhanced precipitation over southern China and the South China Sea. These results suggest that the radiative forcing of aerosol through induced dynamical feedback with the atmospheric water cycle, may be a causal factor in the observed spring precipitation trend over East Asia.

  14. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2005-09-30

    from the massive dust storm that occurred at the start of Operation Iraqi Freedom in late March 2003, may have been sampled during ADAM. COAMPS ...Along coastal and even some deep ocean regions, dust , pollution and smoke are often present and can dominate Electro-Optical (EO) effects over... COAMPS ®1) and the NRL Aerosol Analysis and Prediction System (NAAPS) require precise source and sink functions, as well as parameterizations for particle

  15. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    SciTech Connect

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong; Qian, Yun; Zhang, Kai; Wang, Yuhang; Yang, Xiu-Qun

    2016-11-29

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m-2 (1σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m-2), while fire POM induces a small effect (-0.05 and 0.04 ± 0.01 W m-2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is -0.70 ± 0.05 W m-2, resulting mainly from the fire POM effect (-0.59 ± 0.03 W m-2). REari (0.43 ± 0.03 W m-2) and REaci (-1.38 ± 0.23 W m-2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and -0.82 ± 0.09 W m-2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to -15 Wm-2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 ± 0.10 W m-2) is small

  16. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    DOE PAGES

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong; ...

    2016-11-29

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m−2 (1σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m−2), while fire POM induces a small effect (−0.05 andmore » 0.04 ± 0.01 W m−2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is −0.70 ± 0.05 W m−2, resulting mainly from the fire POM effect (−0.59 ± 0.03 W m−2). REari (0.43 ± 0.03 W m−2) and REaci (−1.38 ± 0.23 W m−2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and −0.82 ± 0.09 W m−2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to −15 W m−2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 ± 0.10 W m−2) is small

  17. Airborne Coarse Mode Aerosol Measurements with the CAS-DPOL Instrument: Effects of Particle Shape and Refractive Index and Implications for Radiative Transfer Estimate

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Spanu, A.; Freudenthaler, V.; Gross, S.

    2015-12-01

    Each year huge amounts of mineral dust are mobilized in deserts and arid regions of the world and transported over large distances forming thick elevated aerosol layers with a substantial fraction of coarse mode particles. Optical properties of mineral dust, including the absorptive refractive index of some components, cause a significant effect on the atmospheric radiative energy balance from optical to infrared wavelengths. The aerosol characteristics, in particular its coarse mode size distribution, are modified during long-range transport by aging and deposition processes. This also affects the aerosol optical properties and therefore the effect on the atmospheric radiative energy budget. In-situ measurements of aerosol microphysical properties are essential to characterize those effects in order to be implemented in global climate models in parametrized form. However, in-situ measurements of airborne coarse mode aerosols such as mineral dust and volcanic ash are challenging and the measurements are usually affected by substantial uncertainties. In this work we use airborne measurements of mineral dust from our optical light-scattering spectrometer CAS-DPOL during SALTRACE 2013 to discuss the analysis of such data. We cover the effects of varying refractive index and particle shapes and develop recommendations for the configuration of the CAS-DPOL for aerosol studies. We also present an inversion method to derive coarse mode size distributions from light-scattering probes for mixtures of non-spherical, absorbing aerosols. The size distributions retrieved from the in-situ measurements are then validated using an independent analysis with a combination of sun-photometer and lidar data. We apply these methods to investigate the Saharan mineral dust particle size distributions measured on both sides of the Atlantic Ocean and discuss the influence of aerosol aging on the atmospheric radiative energy budget. With this example we also assess how the uncertainties

  18. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  19. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    NASA Astrophysics Data System (ADS)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  20. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  1. Shortwave direct radiative effects of above cloud aerosols over global oceans derived from eight years of CALIOP and MODIS observations

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Meyer, K.; Yu, H.; Platnick, S.; Colarco, P.; Liu, Z.; Oreopoulos, L.

    2015-09-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans using eight years of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: Southeast (SE) Atlantic region where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over African Savanna; Tropical Northeast Atlantic and Arabian Sea where ACAs are predominantly windblown dust from the Sahara and Arabian desert, respectively; and Northwest Pacific where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in TNE Atlantic and Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region the JJA (July ~ August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. The uncertainty in our DRE computations is mainly cause by the uncertainties in the aerosol optical properties, in particular aerosol absorption, and uncertainties in the CALIOP operational aerosol optical thickness retrieval. In situ and remotely sensed measurements of ACA from future field campaigns and satellite missions, and improved lidar retrieval algorithm, in particular vertical feature masking, would help reduce the

  2. Aerosol Direct Radiative Effect at the Top of the Atmosphere Over Cloud Free Ocean Derived from Four Years of MODIS Data

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.

    2006-01-01

    A four year record of MODIS spaceborne data provides a new measurement tool to assess the aerosol direct radiative effect at the top of the atmosphere. MODIS derives the aerosol optical thickness and microphysical properties from the scattered sunlight at 0.55-2.1 microns. The monthly MODIS data used here are accumulated measurements across a wide range of view and scattering angles and represent the aerosol s spectrally resolved angular properties. We use these data consistently to compute with estimated accuracy of +/-0.6W/sq m the reflected sunlight by the aerosol over global oceans in cloud free conditions. The MODIS high spatial resolution (0.5 km) allows observation of the aerosol impact between clouds that can be missed by other sensors with larger footprints. We found that over the clear-sky global ocean the aerosol reflected 5.3+/-0.6W/sq m with an average radiative efficiency of 49+/-2W/sq m per unit optical thickness. The seasonal and regional distribution of the aerosol radiative effects are discussed. The analysis adds a new measurement perspective to a climate change problem dominated so far by models.

  3. A Global Model Simulation of Aerosol Effects of Surface Radiation Budget- Toward Understanding of the "Dimming to Brightening" Transition

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin

    2008-01-01

    We present a global model study on the role aerosols play in the change of solar radiation at Earth's surface that transitioned from a decreasing (dimming) trend to an increasing (brightening) trend. Our primary objective is to understand the relationship between the long-term trends of aerosol emission, atmospheric burden, and surface solar radiation. More specifically, we use the recently compiled comprehensive global emission datasets of aerosols and precursors from fuel combustion, biomass burning, volcanic eruptions and other sources from 1980 to 2006 to simulate long-term variations of aerosol distributions and optical properties, and then calculate the multi-decadal changes of short-wave radiative fluxes at the surface and at the top of the atmosphere by coupling the GOCART model simulated aerosols with the Goddard radiative transfer model. The model results are compared with long-term observational records from ground-based networks and satellite data. We will address the following critical questions: To what extent can the observed surface solar radiation trends, known as the transition from dimming to brightening, be explained by the changes of anthropogenic and natural aerosol loading on global and regional scales? What are the relative contributions of local emission and long-range transport to the surface radiation budget and how do these contributions change with time?

  4. Sensitivity of clear-sky direct radiative effect of the aerosol to micro-physical properties by using 6SV radiative transfer model: preliminary results

    NASA Astrophysics Data System (ADS)

    Bassani, Cristiana; Tirelli, Cecilia; Manzo, Ciro; Pietrodangelo, Adriana; Curci, Gabriele

    2015-04-01

    The aerosol micro-physical properties are crucial to analyze their radiative impact on the Earth's radiation budget [IPCC, 2007]. The 6SV model, last generation of the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer code [Kotchenova et al., 2007; Vermote et al., 1997] has been used to perform physically-based atmospheric correction of hyperspectral airborne and aircraft remote sensing data [Vermote et al., 2009; Bassani et al. 2010; Tirelli et al., 2014]. The atmospheric correction of hyperspectral data has been shown to be sensitive to the aerosol micro-physical properties, as reported in Bassani et al., 2012. The role of the aerosol micro-physical properties on the accuracy of the atmospheric correction of hyperspectral data acquired over water and land targets is investigated within the framework of CLAM-PHYM (Coasts and Lake Assessment and Monitoring by PRISMA HYperspectral Mission) and PRIMES (Synergistic use of PRISMA products with high resolution meteo-chemical simulations and their validation on ground and from satellite) projects, both funded by Italian Space Agency (ASI). In this work, the results of the radiative field of the Earth/Atmosphere coupled system simulated by using 6SV during the atmospheric correction of hyperspectral data are presented. The analysis of the clear-sky direct radiative effect is performed considering the aerosol micro-physical properties used to define the aerosol model during the atmospheric correction process. In particular, the AERONET [Holben et al., 1998] and FLEXAOD [Curci et al., 2014] micro-physical properties are used for each image to evaluate the contribution of the size distribution and refractive index of the aerosol type on the surface reflectance and on the direct radiative forcing. The results highlight the potential of the hyperspectral remote sensing data for atmospheric studies as well as for environmental studies. Currently, the future hyperspectral missions, such as the

  5. Direct Radiative Effect and Heating Rate of black carbon aerosol: high time resolution measurements and source-identified forcing effects

    NASA Astrophysics Data System (ADS)

    Ferrero, Luca; Mocnik, Grisa; Cogliati, Sergio; Comi, Alberto; Degni, Francesca; Di Mauro, Biagio; Colombo, Roberto; Bolzacchini, Ezio

    2016-04-01

    Black carbon (BC) absorbs sunlight in the atmosphere heating it. However, up to now, heating rate (HR) calculations from the divergence of the net radiative flux with altitude or from the modelling activity are too sparse. This work fills the aforementioned gap presenting a new methodology based on a full set of physical equations to experimentally determine both the radiative power density absorbed into a ground-based atmospheric layer (ADRE), and the consequent HR induced by the absorptive component of aerosol. In urban context, it is essentially related to the BC. The methodology is also applicable to natural components (i.e. dust) and is obtained solving the first derivative of the main radiative transfer equations. The ADRE and the consequent HR can be determined coupling spectral aerosol absorption measurements with the spectrally resolved measurements of the direct, diffuse downward radiation and the surface reflected radiance components. Moreover, the spectral absorption of BC aerosol allows its source apportionment (traffic and biomass burning (BB)) allowing the same apportionment on HR. This work reports one year of high-time resolution measurements (5 min) of sunlight absorption and HR induced by BC aerosol over Milan. A unique sampling site was set up from March 2015 with: 1) Aethalometer (AE-31, Magee Scientific, 7-λ), 2) the Multiplexer-Radiometer-Irradiometer which detects downward and reflected radiance (350-1000 nm in 3648 spectral bands) coupled with a rotating shadow-band to measure spectrally-resolved global and diffuse radiation (thus direct), 3) a meteorological station (LSI-Lastem) equipped with 3 pyranometers (global, diffuse and refrected radiation; 300-3000 nm), a thermohygrometer, a barometer, an anemometer, 4) condensation and optical particle counters (TSI 3775 and Grimm 1.107), 5) low volume sampler (FAI Hydra dual sampler, PM2.5 and PM10) for sample collection and chemistry determination. Results concerning the radiative power

  6. On the Feasibility of Studying Shortwave Aerosol Radiative Forcing of Climate Using Dual-Wavelength Aerosol Backscatter Lidar

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.

  7. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    NASA Astrophysics Data System (ADS)

    Brindley, H.; Osipov, S.; Bantges, R.; Smirnov, A.; Banks, J.; Levy, R.; Jish Prakash, P.; Stenchikov, G.

    2015-10-01

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m-2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m-2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  8. Describing the direct and indirect radiative effects of atmospheric aerosols over Europe by using coupled meteorology-chemistry simulations: a contribution from the AQMEII-Phase II exercise

    NASA Astrophysics Data System (ADS)

    Jimenez-Guerrero, Pedro; Balzarini, Alessandra; Baró, Rocío; Curci, Gabriele; Forkel, Renate; Hirtl, Marcus; Honzak, Luka; Langer, Matthias; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Tuccella, Paolo; Werhahn, Johannes; Zabkar, Rahela

    2014-05-01

    The study of the response of the aerosol levels in the atmosphere to a changing climate and how this affects the radiative budget of the Earth (direct, semi-direct and indirect effects) is an essential topic to build confidence on climate science, since these feedbacks involve the largest uncertainties nowadays. Air quality-climate interactions (AQCI) are, therefore, a key, but uncertain contributor to the anthropogenic forcing that remains poorly understood. To build confidence in the AQCI studies, regional-scale integrated meteorology-atmospheric chemistry models (i.e., models with on-line chemistry) that include detailed treatment of aerosol life cycle and aerosol impacts on radiation (direct effects) and clouds (indirect effects) are in demand. In this context, the main objective of this contribution is the study and definition of the uncertainties in the climate-chemistry-aerosol-cloud-radiation system associated to the direct radiative forcing and the indirect effect caused by aerosols over Europe, using an ensemble of fully-coupled meteorology-chemistry model simulations with the WRF-Chem model run under the umbrella of AQMEII-Phase 2 international initiative. Simulations were performed for Europe for the entire year 2010. According to the common simulation strategy, the year was simulated as a sequence of 2-day time slices. For better comparability, the seven groups applied the same grid spacing of 23 km and shared common processing of initial and boundary conditions as well as anthropogenic and fire emissions. With exception of a simulation with different cloud microphysics, identical physics options were chosen while the chemistry options were varied. Two model set-ups will be considered here: one sub-ensemble of simulations not taking into account any aerosol feedbacks (the baseline case) and another sub-ensemble of simulations which differs from the former by the inclusion of aerosol-radiation feedback. The existing differences for meteorological

  9. Effects of aerosol-radiation interaction on precipitation during biomass-burning season in East China

    NASA Astrophysics Data System (ADS)

    Huang, Xin; Ding, Aijun; Liu, Lixia; Liu, Qiang; Ding, Ke; Niu, Xiaorui; Nie, Wei; Xu, Zheng; Chi, Xuguang; Wang, Minghuai; Sun, Jianning; Guo, Weidong; Fu, Congbin

    2016-08-01

    Biomass burning is a main source for primary carbonaceous particles in the atmosphere and acts as a crucial factor that alters Earth's energy budget and balance. It is also an important factor influencing air quality, regional climate and sustainability in the domain of Pan-Eurasian Experiment (PEEX). During the exceptionally intense agricultural fire season in mid-June 2012, accompanied by rapidly deteriorating air quality, a series of meteorological anomalies was observed, including a large decline in near-surface air temperature, spatial shifts and changes in precipitation in Jiangsu province of East China. To explore the underlying processes that link air pollution to weather modification, we conducted a numerical study with parallel simulations using the fully coupled meteorology-chemistry model WRF-Chem with a high-resolution emission inventory for agricultural fires. Evaluation of the modeling results with available ground-based measurements and satellite retrievals showed that this model was able to reproduce the magnitude and spatial variations of fire-induced air pollution. During the biomass-burning event in mid-June 2012, intensive emission of absorbing aerosols trapped a considerable part of solar radiation in the atmosphere and reduced incident radiation reaching the surface on a regional scale, followed by lowered surface sensible and latent heat fluxes. The perturbed energy balance and re-allocation gave rise to substantial adjustments in vertical temperature stratification, namely surface cooling and upper-air heating. Furthermore, an intimate link between temperature profile and small-scale processes like turbulent mixing and entrainment led to distinct changes in precipitation. On the one hand, by stabilizing the atmosphere below and reducing the surface flux, black carbon-laden plumes tended to dissipate daytime cloud and suppress the convective precipitation over Nanjing. On the other hand, heating aloft increased upper-level convective

  10. The effects of smoke and dust aerosols on UV-B radiation in Australia from ground-based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Olga V.; Mills, Franklin P.; Eldering, Annmarie; Anderson, Don; Mitchell, Ross

    2005-08-01

    An understanding of the effect of aerosols on biologically- and photochemically-active UV radiation reaching the Earth's surface is important for many ongoing climate, biophysical, and air pollution studies. In particular, estimates of the UV characteristics of the most common Australian aerosols will be valuable inputs to UV Index forecasts, air quality studies, and assessments of the impact of regional environmental changes. Based on MODIS fire maps and MISR aerosol property retrievals, we have analyzed the climatological distributions of Australian dust and smoke particles and have identified sites where collocated ground-based UV-B and ozone measurements were available during episodes of relatively high aerosol activity. Since at least June 2003, overhead ozone and surface UV spectra (285-450 nm) have been measured routinely at Darwin and Alice Springs in Australia by the Australian Bureau of Meteorology (BoM). Using collocated AERONET sunphotometer measurements at Darwin and collocated BoM sunphotometer measurements at Darwin and Alice Springs, we identified several episodes of relatively high aerosol activity that could be used to study the effects of dust and smoke on the UV-B solar irradiance at the Earth's surface. To assess smoke effect we compared the measured UV irradiances at Darwin with irradiancies simulated with the LibRadtran radiative transfer model for aerosol-free conditions. We found that for otherwise similar atmospheric conditions, aerosols reduced the UVB irradiance by 50% near the fire source and up to 15% downwind. We also found the effect of smoke particles to be 5 to 10% larger in the UV-B part of the spectrum. For the selected period at Darwin, changes in the aerosol loadings gave larger variations in the surface UV irradiances than previously reported changes seen in the ozone column. We are continuing similar investigations for the Alice Springs site to assess spectral differences between smoke and dust aerosols.

  11. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    NASA Astrophysics Data System (ADS)

    Gan, C.-M.; Pleim, J.; Mathur, R.; Hogrefe, C.; Long, C. N.; Xing, J.; Wong, D.; Gilliam, R.; Wei, C.

    2015-07-01

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 21 years (1990-2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Gan et al. (2014) utilizing observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995-2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot be readily

  12. Can Aerosol Direct Radiative Effects Account for Analysis Increments of Temperature in the Tropical Atlantic?

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo M.; Alpert, Pinhas

    2016-01-01

    In the late 1990's, prior to the launch of the Terra satellite, atmospheric general circulation models (GCMs) did not include aerosol processes because aerosols were not properly monitored on a global scale and their spatial distributions were not known well enough for their incorporation in operational GCMs. At the time of the first GEOS Reanalysis (Schubert et al. 1993), long time series of analysis increments (the corrections to the atmospheric state by all available meteorological observations) became readily available, enabling detailed analysis of the GEOS-1 errors on a global scale. Such analysis revealed that temperature biases were particularly pronounced in the Tropical Atlantic region, with patterns depicting a remarkable similarity to dust plumes emanating from the African continent as evidenced by TOMS aerosol index maps. Yoram Kaufman was instrumental encouraging us to pursue this issue further, resulting in the study reported in Alpert et al. (1998) where we attempted to assess aerosol forcing by studying the errors of a the GEOS-1 GCM without aerosol physics within a data assimilation system. Based on this analysis, Alpert et al. (1998) put forward that dust aerosols are an important source of inaccuracies in numerical weather-prediction models in the Tropical Atlantic region, although a direct verification of this hypothesis was not possible back then. Nearly 20 years later, numerical prediction models have increased in resolution and complexity of physical parameterizations, including the representation of aerosols and their interactions with the circulation. Moreover, with the advent of NASA's EOS program and subsequent satellites, atmospheric aerosols are now monitored globally on a routine basis, and their assimilation in global models are becoming well established. In this talk we will reexamine the Alpert et al. (1998) hypothesis using the most recent version of the GEOS-5 Data Assimilation System with assimilation of aerosols. We will

  13. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  14. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  15. A Novel Method for Estimating Shortwave Direct Radiative Effect of Above-cloud Aerosols over Ocean Using CALIOP and MODIS Data

    NASA Technical Reports Server (NTRS)

    Zhang, Z.; Meyer, K.; Platnick, S.; Oreopoulos, L.; Lee, D.; Yu, H.

    2013-01-01

    This paper describes an efficient and unique method for computing the shortwave direct radiative effect (DRE) of aerosol residing above low-level liquid-phase clouds using CALIOP and MODIS data. It accounts for the overlapping of aerosol and cloud rigorously by utilizing the joint histogram of cloud optical depth and cloud top pressure. Effects of sub-grid scale cloud and aerosol variations on DRE are accounted for. It is computationally efficient through using grid-level cloud and aerosol statistics, instead of pixel-level products, and a pre-computed look-up table in radiative transfer calculations. We verified that for smoke over the southeast Atlantic Ocean the method yields a seasonal mean instantaneous shortwave DRE that generally agrees with more rigorous pixel-level computation within 4%. We have also computed the annual mean instantaneous shortwave DRE of light-absorbing aerosols (i.e., smoke and polluted dust) over global ocean based on 4 yr of CALIOP and MODIS data. We found that the variability of the annual mean shortwave DRE of above-cloud light-absorbing aerosol is mainly driven by the optical depth of the underlying clouds.

  16. The cloud-aerosol-radiation (CAR) ensemble modeling system

    NASA Astrophysics Data System (ADS)

    Liang, X.-Z.; Zhang, F.

    2013-08-01

    A cloud-aerosol-radiation (CAR) ensemble modeling system has been developed to incorporate the largest choices of alternate parameterizations for cloud properties (cover, water, radius, optics, geometry), aerosol properties (type, profile, optics), radiation transfers (solar, infrared), and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world's leading general circulation models (GCMs). CAR provides a unique framework to determine (via intercomparison across all schemes), reduce (via optimized ensemble simulations), and attribute specific key factors for (via physical process sensitivity analyses) the model discrepancies and uncertainties in representing greenhouse gas, aerosol, and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purposes, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol, and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  17. Cloud-Aerosol-Radiation (CAR) ensemble modeling system

    NASA Astrophysics Data System (ADS)

    Liang, X.-Z.; Zhang, F.

    2013-04-01

    A Cloud-Aerosol-Radiation (CAR) ensemble modeling system has been developed to incorporate the largest choices of alternative parameterizations for cloud properties (cover, water, radius, optics, geometry), aerosol properties (type, profile, optics), radiation transfers (solar, infrared), and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world leading general circulation models (GCMs). The CAR provides a unique framework to determine (via intercomparison across all schemes), reduce (via optimized ensemble simulations), and attribute specific key factors for (via physical process sensitivity analyses) the model discrepancies and uncertainties in representing greenhouse gas, aerosol and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purpose, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  18. Advancing Solar Irradiance Measurement for Climate-Related Studies: Accurate Constraint on Direct Aerosol Radiative Effect (DARE)

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Ji, Q. Jack

    2011-01-01

    Earth's climate is driven primarily by solar radiation. As summarized in various IPCC reports, the global average of radiative forcing for different agents and mechanisms, such as aerosols or CO2 doubling, is in the range of a few W/sq m. However, when solar irradiance is measured by broadband radiometers, such as the fleet of Eppley Precision Solar Pyranometers (PSP) and equivalent instrumentation employed worldwide, the measurement uncertainty is larger than 2% (e.g., WMO specification of pyranometer, 2008). Thus, out of the approx. 184 W/sq m (approx.263 W/sq m if cloud-free) surface solar insolation (Trenberth et al. 2009), the measurement uncertainty is greater than +/-3.6 W/sq m, overwhelming the climate change signals. To discern these signals, less than a 1 % measurement uncertainty is required and is currently achievable only by means of a newly developed methodology employing a modified PSP-like pyranometer and an updated calibration equation to account for its thermal effects (li and Tsay, 2010). In this talk, we will show that some auxiliary measurements, such as those from a collocated pyrgeometer or air temperature sensors, can help correct historical datasets. Additionally, we will also demonstrate that a pyrheliometer is not free of the thermal effect; therefore, comparing to a high cost yet still not thermal-effect-free "direct + diffuse" approach in measuring surface solar irradiance, our new method is more economical, and more likely to be suitable for correcting a wide variety of historical datasets. Modeling simulations will be presented that a corrected solar irradiance measurement has a significant impact on aerosol forcing, and thus plays an important role in climate studies.

  19. Light Absorption of Black Carbon Aerosol and Its Radiative Forcing Effect in an Megacity Atmosphere in South China

    NASA Astrophysics Data System (ADS)

    Lan, Zijuan

    2013-04-01

    The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, the regional effect of BC light absorption is more significant. The reduction of BC is now expected to have significant near-term climate change mitigation. Mass absorption efficient (MAE) was one of the important optical properties of BC aerosol for evaluating the BC on its radiative forcing effect, while BC mixing state is one main influencing factor for MAE. Models have estimated that BC radiative forcing can be increased by a factor of ~2 for internally versus externally mixed BC. On the other hand, some organic carbon had been found to significantly absorb light at UV or shorter wavelengths in the most recent studies, with strong spectral dependence. But large uncertainties still remain in determining the positive forcing effect of BC on global clime change due to the technical limitations. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a megacity in South China, Shenzhen, during the summer of 2011. It is in the southeast corner of the Pearl River Delta (PRD) region, neighboring Hong Kong to the south. During the campaign, the average BC mass concentration was 4.0±3.1 μg m-3, accounting for about 11% of PM2.5 mass concentration, which mainly came from fossil fuel combustion rather than biomass burning. The MAE of BC ranged from 5.0 to 8.5 m2 g-1, with an average value of 6.5±0.5 m2 g-1. The percentage of internally mixed BC was averagely 24.3±7.9% and positively correlated with the MAE. It is estimated that the internally mixed BC amplified MAE by about 7% during the campaign, suggesting that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low in comparison with the predictions by theoretical models, which stands in accordance with

  20. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2016-06-13

    storm activity, and 4) surface and airborne measurements on the west coast of the U.S. indicate the presence of aerosols and dust on the predicted...observables (in situ and satellites) and model quantities such as mass. Aerosol species currently included in the analyses are dust , pollution, biomass...Prediction System ( COAMPS ®). Over the next several years it is the goal of this project to maintain these systems as the world leaders in EO prediction

  1. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2016-06-07

    for dust storm forecasting and analysis, AGU Fall Meeting, San Francisco, CA. Dec. 11-15, 2002 [Published]. Reid, J.S., J.R. Cook, D.L. Westphal...Persian Gulf/Arabian Sea, East Asia, and some parts of the Mediterranean Sea. Along coastal regions, dust , pollution and smoke can be present and...transitioned from the combined Marine Aerosol and Dust Aerosol programs from SPAWAR Systems Center San Diego (SSC-SD) to the Naval Research Laboratory

  2. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    EPA Science Inventory

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  3. Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India

    NASA Astrophysics Data System (ADS)

    Allen, R. J.; Norris, J. R.; Wild, M.

    2013-06-01

    Observations from the Global Energy Balance Archive indicate regional decreases in all sky surface solar radiation from ˜1950s to 1980s, followed by an increase during the 1990s. These periods are popularly called dimming and brightening, respectively. Removal of the radiative effects of cloud cover variability from all sky surface solar radiation results in a quantity called "clear sky proxy" radiation, in which multidecadal trends can be seen more distinctly, suggesting aerosol radiative forcing as a likely cause. Prior work has shown climate models from the Coupled Model Intercomparison Project 3 (CMIP3) generally underestimate the magnitude of these trends, particularly over China and India. Here we perform a similar analysis with 173 simulations from 42 climate models participating in the new CMIP5. Results show negligible improvement over CMIP3, as CMIP5 dimming trends over four regions—Europe, China, India, and Japan—are all underestimated. This bias is largest for both India and China, where the multimodel mean yields a decrease in clear sky proxy radiation of -1.3±0.3 and -1.2±0.2 W m-2decade-1, respectively, compared to observed decreases of -6.5±0.9 and -8.2±1.3 W m-2decade-1. Similar underestimation of the observed dimming over Japan exists, with the CMIP5 mean dimming ˜20% as large as observed. Moreover, not a single simulation reproduces the magnitude of the observed dimming trend for these three regions. Relative to dimming, CMIP5 models better simulate the observed brightening, but significant underestimation exists for both China and Japan. Overall, no individual model performs particularly well for all four regions. Model biases do not appear to be related to the use of prescribed versus prognostic aerosols or to aerosol indirect effects. However, models exhibit significant correlations between clear sky proxy radiation and several aerosol-related fields, most notably aerosol optical depth (AOD) and absorption AOD. This suggests model

  4. Evaluation of Aerosol Indirect Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Easter, Richard C.; Hudson, J D.; Breon, Francois

    2001-04-01

    We evaluate aerosol indirect radiative forcing simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). Although explicit measurements of aerosol indirect radiative forcing do not exist, measurements of many of the links between aerosols and indirect radiative forcing are available and can be used for evaluation. These links include the cloud condensation nuclei concentration, the ratio of droplet number to aerosol number, the droplet number concentration, the column droplet number, the column cloud water, the droplet effective radius, the cloud optical depth, the correlation between cloud albedo and droplet effective radius, and the cloud radiative forcing. The CCN concentration simulated by MIRAGE agrees with measurements for supersaturations larger than 0.1%, but not for smaller supersaturations. Simulated droplet number concentrations are too low in most, but not all, locations with available measurements, even when normalized by aerosol number. MIRA GE correctly simulates the higher droplet numbers and smaller droplet sizes over continents and in the Northern Hemisphere. Biases in column cloud water, cloud optical depth, and shortwave cloud radiative forcing are evident in the Intertropical Convergence Zone and in the subtropical oceans. MIRAGE correctly simulates a negative correlation between cloud albedo and droplet size over remote oceans for cloud optical depths greater than 15 and a positive correlation for cloud optical depths less than 15, but fails to simulate a negative correlation over land.

  5. Geophysical Fluid Dynamics Laboratory general circulation model investigation of the indirect radiative effects of anthropogenic sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Ming, Yi; Ramaswamy, V.; Ginoux, Paul A.; Horowitz, Larry W.; Russell, Lynn M.

    2005-11-01

    The Geophysical Fluid Dynamics Laboratory (GFDL) atmosphere general circulation model, with its new cloud scheme, is employed to study the indirect radiative effect of anthropogenic sulfate aerosol during the industrial period. The preindustrial and present-day monthly mean aerosol climatologies are generated from running the Model for Ozone And Related chemical Tracers (MOZART) chemistry-transport model. The respective global annual mean sulfate burdens are 0.22 and 0.81 Tg S. Cloud droplet number concentrations are related to sulfate mass concentrations using an empirical relationship (Boucher and Lohmann, 1995). A distinction is made between "forcing" and flux change at the top of the atmosphere in this study. The simulations, performed with prescribed sea surface temperature, show that the first indirect "forcing" ("Twomey" effect) amounts to an annual mean of -1.5 W m-2, concentrated largely over the oceans in the Northern Hemisphere (NH). The annual mean flux change owing to the response of the model to the first indirect effect is -1.4 W m-2, similar to the annual mean forcing. However, the model's response causes a rearrangement of cloud distribution as well as changes in longwave flux (smaller than solar flux changes). There is thus a differing geographical nature of the radiation field than for the forcing even though the global means are similar. The second indirect effect, which is necessarily an estimate made in terms of the model's response, amounts to -0.9 W m-2, but the statistical significance of the simulated geographical distribution of this effect is relatively low owing to the model's natural variability. Both the first and second effects are approximately linearly additive, giving rise to a combined annual mean flux change of -2.3 W m-2, with the NH responsible for 77% of the total flux change. Statistically significant model responses are obtained for the zonal mean total indirect effect in the entire NH and in the Southern Hemisphere low

  6. Assessment of the Interactions Among Tropospheric Aerosol Loading, Radiative Balance and Clouds Through Examination of Their Multi-decadal Trends

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of aerosol radiative forcing has remained challenging. Anthropogenic emissions of prima...

  7. Effects of aggregation on scattering and radiative properties of soot aerosols

    NASA Astrophysics Data System (ADS)

    Liu, Li; Mishchenko, Michael I.

    2005-06-01

    The superposition T-matrix method is used to compute the scattering matrix elements and optical cross sections for a wide variety of fractal-like soot aggregates in random orientation at a visible wavelength 0.628 μm. The effects of the fractal dimension and prefactor, the monomer radius, the number of monomers in the aggregate, and the refractive index on light scattering and absorption by aggregated soot particles are analyzed. It is shown that the configuration of the monomers can have a substantial effect and that aggregation can result in a significant enhancement of extinction and scattering relative to those computed from the Lorenz-Mie theory, assuming that there are no electromagnetic interactions between the monomers. Thus one must take the effects of soot agglomeration and cluster morphology into account in radiative transfer modeling and remote sensing applications.

  8. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  9. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  10. Simulated 2050 aviation radiative forcing from contrails and aerosols

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Chieh; Gettelman, Andrew

    2016-06-01

    The radiative forcing from aviation-induced cloudiness is investigated by using the Community Atmosphere Model Version 5 (CAM5) in the present (2006) and the future (through 2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing in 2050 can reach 87 mW m-2, an increase by a factor of 7 from 2006, and thus does not scale linearly with fuel emission mass. This is due to non-uniform regional increase in air traffic and different sensitivities for contrail radiative forcing in different regions. CAM5 simulations indicate that negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds in 2050 can be as large as -160 mW m-2, an increase by a factor of 4 from 2006. As a result, the net 2050 radiative forcing of contrail cirrus and aviation aerosols may have a cooling effect on the planet. Aviation sulfate aerosols emitted at cruise altitude can be transported down to the lower troposphere, increasing the aerosol concentration, thus increasing the cloud drop number concentration and persistence of low-level clouds. Aviation black carbon aerosols produce a negligible net forcing globally in 2006 and 2050 in this model study. Uncertainties in the methodology and the modeling are significant and discussed in detail. Nevertheless, the projected percentage increase in contrail radiative forcing is important for future aviation impacts. In addition, the role of aviation aerosols in the cloud nucleation processes can greatly influence on the simulated radiative forcing from aircraft-induced cloudiness and even change its sign. Future research to confirm these results is necessary.

  11. Estimating the Direct Radiative Effect of Absorbing Aerosols Overlying Marine Boundary Layer Clouds in the Southeast Atlantic Using MODIS and CALIOP

    NASA Technical Reports Server (NTRS)

    Meyer, Kerry; Platnick, Steven; Oreopoulos, Lazaros; Lee, Dongmin

    2013-01-01

    Absorbing aerosols such as smoke strongly absorb solar radiation, particularly at ultraviolet and visible/near-infrared (VIS/NIR) wavelengths, and their presence above clouds can have considerable implications. It has been previously shown that they have a positive (i.e., warming) direct aerosol radiative effect (DARE) when overlying bright clouds. Additionally, they can cause biased passive instrument satellite retrievals in techniques that rely on VIS/NIR wavelengths for inferring the cloud optical thickness (COT) and effective radius (re) of underlying clouds, which can in turn yield biased above-cloud DARE estimates. Here we investigate Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical property retrieval biases due to overlying absorbing aerosols observed by Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and examine the impact of these biases on above-cloud DARE estimates. The investigation focuses on a region in the southeast Atlantic Ocean during August and September (2006-2011), where smoke from biomass burning in southern Africa overlies persistent marine boundary layer stratocumulus clouds. Adjusting for above-cloud aerosol attenuation yields increases in the regional mean liquid COT (averaged over all ocean-only liquid clouds) by roughly 6%; mean re increases by roughly 2.6%, almost exclusively due to the COT adjustment in the non-orthogonal retrieval space. It is found that these two biases lead to an underestimate of DARE. For liquid cloud Aqua MODIS pixels with CALIOP-observed above-cloud smoke, the regional mean above-cloud radiative forcing efficiency (DARE per unit aerosol optical depth (AOD)) at time of observation (near local noon for Aqua overpass) increases from 50.9Wm(sup-2)AOD(sup-1) to 65.1Wm(sup-2)AOD(sup -1) when using bias-adjusted instead of nonadjusted MODIS cloud retrievals.

  12. Top-of-Atmosphere Direct Radiative Effect of Aerosols from the Clouds and the Earth's Radiant Energy System Satellite Instrument (CERES)

    NASA Technical Reports Server (NTRS)

    Loeb, N. G.; Kato, S.

    2002-01-01

    Nine months of CERES/TRMM broadband fluxes combined with VIRS high-resolution imager measurements are used to estimate the daily average direct radiative effect of aerosols for clear-sky conditions over the tropical oceans. On average, aerosols have a cooling effect over the tropics of 4.6 +/- 1 W/sq m. The magnitude is approx.2 W/sq m smaller over the southern tropical oceans than it is over northern tropical oceans. The direct effect derived from CERES is highly correlated with coincident aerosol optical depth retrievals inferred from 0.63 microns VIRS radiances (correlation coefficient of 0.96). The slope of the regression line is approx. -32 W/sq m/t over the equatorial Pacific Ocean, but changes both regionally and seasonally, depending on the aerosol characteristics. Near sources of biomass burning and desert dust, the aerosol direct effect reaches -25 W sq m to -30 W/sq m. The direct effect from CERES also shows a dependence on wind speed. The reason for this dependence is unclear-it may be due to increased aerosol (e.g. sea-salt or aerosol transport) or increased surface reflection (e.g. due to whitecaps). The uncertainty in the tropical average direct effect from CERES is approx. 1 W/sq m (approx. 20%) due mainly to cloud contamination, the radiance-to-flux conversion, and instrument calibration. By comparison, uncertainties in the direct effect from the ERBE and CERES "ERBE-Like" products are a factor of 3 to 5 larger.

  13. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested.

  14. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  15. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  16. Assessment of long-term WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    NASA Astrophysics Data System (ADS)

    Gan, C.-M.; Pleim, J.; Mathur, R.; Hogrefe, C.; Long, C. N.; Xing, J.; Wong, D.; Gilliam, R.; Wei, C.

    2015-11-01

    Long-term simulations with the coupled WRF-CMAQ (Weather Research and Forecasting-Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 16 years (1995-2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995-2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrepancies found in the clear-sky diffuse SW radiation are likely due to several factors such as the potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology, and

  17. Assessment of long-term WRF–CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE PAGES

    Gan, C.-M.; Pleim, J.; Mathur, R.; ...

    2015-11-03

    Long-term simulations with the coupled WRF–CMAQ (Weather Research and Forecasting–Community Multi-scale Air Quality) model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 16 years (1995–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analysesmore » conducted by Gan et al. (2014a) utilizing observations (e.g., SURFRAD, CASTNET, IMPROVE, and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US, while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF–CMAQ model is capable of replicating the trends well even though it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrepancies found in the clear-sky diffuse SW radiation are likely due to several factors such as the potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval

  18. Assessment of multi-decadal WRF-CMAQ simulations for understanding direct aerosol effects on radiation "brightening" in the United States

    DOE PAGES

    Gan, C.-M.; Pleim, J.; Mathur, R.; ...

    2015-07-01

    Multi-decadal simulations with the coupled WRF-CMAQ model have been conducted to systematically investigate the changes in anthropogenic emissions of SO2 and NOx over the past 21 years (1990–2010) across the United States (US), their impacts on anthropogenic aerosol loading over North America, and subsequent impacts on regional radiation budgets. In particular, this study attempts to determine the consequences of the changes in tropospheric aerosol burden arising from substantial reductions in emissions of SO2 and NOx associated with control measures under the Clean Air Act (CAA) especially on trends in solar radiation. Extensive analyses conducted by Gan et al. (2014) utilizingmore » observations (e.g. SURFRAD, CASTNET, IMPROVE and ARM) over the past 16 years (1995–2010) indicate a shortwave (SW) radiation (both all-sky and clear-sky) "brightening" in the US. The relationship of the radiation brightening trend with decreases in the aerosol burden is less apparent in the western US. One of the main reasons for this is that the emission controls under the CAA were aimed primarily at reducing pollutants in areas violating national air quality standards, most of which were located in the eastern US while the relatively less populated areas in the western US were less polluted at the beginning of this study period. Comparisons of model results with observations of aerosol optical depth (AOD), aerosol concentration, and radiation demonstrate that the coupled WRF-CMAQ model is capable of replicating the trends well even through it tends to underestimate the AOD. In particular, the sulfate concentration predictions were well matched with the observations. The discrenpancies found in the clear-sky diffuse SW radiation are likely due to several factors such as potential increase of ice particles associated with increasing air traffic, the definition of "clear-sky" in the radiation retrieval methodology and aerosol semi-direct and/or indirect effects which cannot be

  19. Aerosol properties computed from aircraft-based observations during the ACE- Asia campaign. 2; A case study of lidar ratio closure and aerosol radiative effects

    NASA Technical Reports Server (NTRS)

    Kuzmanoski, Maja; Box, M. A.; Schmid, B.; Box, G. P.; Wang, J.; Russell, P. B.; Bates, D.; Jonsson, H. H.; Welton, Ellsworth J.; Flagan, R. C.

    2005-01-01

    For a vertical profile with three distinct layers (marine boundary, pollution and dust), observed during the ACE-Asia campaign, we carried out a comparison between the modeled lidar ratio vertical profile and that obtained from collocated airborne NASA AATS-14 sunphotometer and shipborne Micro-Pulse Lidar (MPL) measurements. Vertically resolved lidar ratio was calculated from two size distribution vertical profiles - one obtained by inversion of sunphotometer-derived extinction spectra, and one measured in-situ - combined with the same refractive index model based on aerosol chemical composition. The aerosol model implies single scattering albedos of 0.78 - 0.81 and 0.93 - 0.96 at 0.523 microns (the wavelength of the lidar measurements), in the pollution and dust layers, respectively. The lidar ratios calculated from the two size distribution profiles have close values in the dust layer; they are however, significantly lower than the lidar ratios derived from combined lidar and sunphotometer measurements, most probably due to the use of a simple nonspherical model with a single particle shape in our calculations. In the pollution layer, the two size distribution profiles yield generally different lidar ratios. The retrieved size distributions yield a lidar ratio which is in better agreement with that derived from lidar/sunphotometer measurements in this layer, with still large differences at certain altitudes (the largest relative difference was 46%). We explain these differences by non-uniqueness of the result of the size distribution retrieval and lack of information on vertical variability of particle refractive index. Radiative transfer calculations for this profile showed significant atmospheric radiative forcing, which occurred mainly in the pollution layer. We demonstrate that if the extinction profile is known then information on the vertical structure of absorption and asymmetry parameter is not significant for estimating forcing at TOA and the surface

  20. Climatology of aerosol properties and clear-sky shortwave radiative effects using Lidar and Sun photometer observations in the Dakar site

    NASA Astrophysics Data System (ADS)

    Mortier, A.; Goloub, P.; Derimian, Y.; Tanré, D.; Podvin, T.; Blarel, L.; Deroo, C.; Marticorena, B.; Diallo, A.; Ndiaye, T.

    2016-06-01

    This paper presents the analysis of nearly a decade of continuous aerosol observations performed at the Mbour site (Senegal) with Sun photometer, Lidar, and Tapered Electromagnetic Oscillating Microbalance. This site is influenced all year-round by desert dust and sporadically, in wintertime, by biomass burning particles. Different patterns are revealed for winter and summer, seasons associated to air masses of different origin. The summer (wet season) is characterized by a high aerosol loading (optical thickness, AOT, around 0.57 at 532 nm) composed of large and weakly absorbing particles (Angstrom exponent, α, of 0.23 and single-scattering albedo, ϖ0, of 0.94 at 532 nm). A lower aerosol loading (AOT = 0.32) is observed during winter (dry season) for finer and absorbing particles (α = 0.48 and ϖ0 = 0.87) revealing the presence of biomass burning aerosols and a greater proportion of local emissions. This latter anthropogenic contribution is visible at weekly and daily scales through AOT cycles. A decrease of about 30% in AOT has been featured in autumn since 2003. The derivation of the extinction profiles highlights a dust transport close to the ground during winter and in an aloft layer (up to 5 km) during summer. Accurate calculations of the daily aerosol radiative effect in clear-sky conditions are finally addressed. From spring to winter, seasonal shortwave radiative forcing averages of 14.15, 11.15, 8.92, and 12.06 W m-2 have been found respectively. Up to 38% of the solar clear-sky atmospheric heating can be attributed to the aerosols in this site.

  1. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  2. 3D radiative transfer effects in multi-angle/multispectral radio-polarimetric signals from a mixture of clouds and aerosols viewed by a non-imaging sensor

    NASA Astrophysics Data System (ADS)

    Davis, Anthony B.; Garay, Michael J.; Xu, Feng; Qu, Zheng; Emde, Claudia

    2013-09-01

    When observing a spatially complex mix of aerosols and clouds in a single relatively large field-of-view, nature entangles their signals non-linearly through polarized radiation transport processes that unfold in the 3D position and direction spaces. In contrast, any practical forward model in a retrieval algorithm will use only 1D vector radiative transfer (vRT) in a linear mixing technique. We assess the difference between the observed and predicted signals using synthetic data from a high-fidelity 3D vRT model with clouds generated using a Large Eddy Simulation model and an aerosol climatology. We find that this difference is signal—not noise—for the Aerosol Polarimetry Sensor (APS), an instrument developed by NASA. Moreover, the worst case scenario is also the most interesting case, namely, when the aerosol burden is large, hence hase the most impact on the cloud microphysics and dynamics. Based on our findings, we formulate a mitigation strategy for these unresolved cloud adjacency effects assuming that some spatial information is available about the structure of the clouds at higher resolution from "context" cameras, as was planned for NASA's ill-fated Glory mission that was to carry the APS but failed to reach orbit. Application to POLDER (POLarization and Directionality of Earth Reflectances) data from the period when PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) was in the A-train is briefly discussed.

  3. Observations of Smoke Aerosol from Biomass Burning in Mexico: Effect of Particle Aging on Radiative Forcing and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Bruintjes, Roelof; Holben, Brent N.; Christopher, Sundar

    1999-01-01

    We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.

  4. Historical anthropogenic radiative forcing of changes in biogenic secondary aerosol

    NASA Astrophysics Data System (ADS)

    Acosta Navarro, Juan; D'Andrea, Stephen; Pierce, Jeffrey; Ekman, Annica; Struthers, Hamish; Zorita, Eduardo; Guenther, Alex; Arneth, Almut; Smolander, Sampo; Kaplan, Jed; Farina, Salvatore; Scott, Catherine; Rap, Alexandru; Farmer, Delphine; Spracklen, Domink; Riipinen, Ilona

    2016-04-01

    Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA. We found that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m².

  5. Performance of McRAS-AC in the GEOS-5 AGCM: Part 1, Aerosol-Activated Cloud Microphysics, Precipitation, Radiative Effects, and Circulation

    NASA Technical Reports Server (NTRS)

    Sud, Y. C.; Lee, D.; Oreopoulos, L.; Barahona, D.; Nenes, A.; Suarez, M. J.

    2012-01-01

    A revised version of the Microphysics of clouds with Relaxed Arakawa-Schubert and Aerosol-Cloud interaction (McRAS-AC), including, among others, the Barahona and Nenes ice nucleation parameterization, is implemented in the GEOS-5 AGCM. Various fields from a 10-year long integration of the AGCM with McRAS-AC were compared with their counterparts from an integration of the baseline GEOS-5 AGCM, and with satellite data as observations. Generally using McRAS-AC reduced biases in cloud fields and cloud radiative effects are much better over most of the regions of the Earth. Two weaknesses are identified in the McRAS-AC runs, namely, too few cloud particles around 40S-60S, and too high cloud water path during northern hemisphere summer over the Gulf Stream and North Pacific. Sensitivity analyses showed that these biases potentially originated from biases in the aerosol input. The first bias is largely eliminated in a sensitivity test using 50% smaller aerosol particles, while the second bias is much reduced when interactive aerosol chemistry was turned on. The main drawback of McRAS-AC is dearth of low-level marine stratus clouds, probably due to lack of dry-convection, not yet implemented into the cloud scheme. Despite these biases, McRAS-AC does simulate realistic clouds and their optical properties that can improve with better aerosol-input and thereby has the potential to be a valuable tool for climate modeling research because of its aerosol indirect effect simulation capabilities involving prediction of cloud particle number concentration and effective particle size for both convective and stratiform clouds is quite realistic.

  6. Atmospheric Radiation Measurement (ARM) Data from Shouxian, China for the Study of Aerosol Indirect Effects in China

    DOE Data Explorer

    In a complex ARM Mobile Facility (AMF) deployment, monitoring data was collected at four locations in China during 2008. The various sites are located in regions with different climate regimes and with high aerosol loadings of different optical, physical, and chemical properties. Measurements obtained at all the AMF sites during the 8-month deployment in China will help scientists to validate satellite-based findings, understand the mechanisms of the aerosol indirect effects in the region, and examine the roles of aerosols in affecting regional climate and atmospheric circulation, with a special focus on the impact of the East Asian monsoon system. As with other collections from the ARM Mobile Facility, the datasets are available from the ARM Archive. The ARM Archive physically resides at the Oak Ridge National Laboratory.

  7. Aerosol distributions and radiative forcing over the Asian Pacific region simulated by Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS)

    NASA Astrophysics Data System (ADS)

    Takemura, Toshihiko; Nakajima, Teruyuki; Higurashi, Akiko; Ohta, Sachio; Sugimoto, Nobuo

    2003-12-01

    A three-dimensional aerosol transport-radiation model coupled with a general circulation model, Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS), simulates atmospheric aerosol distributions and optical properties. The simulated results are compared with aerosol sampling and optical observations from ground, aircraft, and satellite acquired by intensive observation campaigns over east Asia in spring 2001. Temporal variations of the aerosol concentrations, optical thickness, and Ångström exponent are in good agreement between the simulation and observations. The midrange values of the Ångström exponent, even at the Asian dust storm events over the outflow regions, suggest that the contribution of the anthropogenic aerosol, such as carbonaceous and sulfate, to the total optical thickness is of an order comparable to that of the Asian dust. The radiative forcing by the aerosol direct and indirect effects is also calculated. The negative direct radiative forcing is simulated to be over -10 W m-2 at the tropopause in the air mass during the large-scale dust storm, to which both anthropogenic aerosols and Asian dust contribute almost equivalently. The direct radiative forcing, however, largely depends on the cloud water content and the vertical profiles of aerosol and cloud. The simulation shows that not only sulfate and sea salt aerosols but also black carbon and soil dust aerosols, which absorb solar and thermal radiation, make strong negative radiative forcing by the direct effect at the surface, which may exceed the positive forcing by anthropogenic greenhouse gases over the east Asian region.

  8. Impact of Asian aerosols on air quality over the United States: A perspective from aerosol-cloud-radiation coupling

    NASA Astrophysics Data System (ADS)

    Tao, Z.; Yu, H.; Chin, M.

    2013-12-01

    It has well been established, through satellite/ground observations, that dust and aerosols from various Asian sources can travel across the Pacific and reach North America (NA) at least on episode bases. Once reaching NA, these inflow aerosols would compete with local emissions to influence atmospheric composition and air quality over the United States (US). The previous studies, typically based on one or multiple satellite measurements in combination with global/regional model simulations, suggest that the impact of Asian dust/aerosols on US air quality tend to be small since most inflow aerosols stay aloft. On the other hand, aerosols affect many key meteorological processes that will ultimately channel down to impact air quality. Aerosols absorb and scatter solar radiation that change the atmospheric stability, thus temperature, wind, and planetary boundary layer structure that would directly alter air quality. Aerosols can serve as cloud condensation nuclei and ice nuclei to modify cloud properties and precipitation that would also affect aerosol removal and concentration. This indirect impact of Asian aerosol inflow on US air quality may be substantial and need to be investigated. This study employs the NASA Unified WRF (NU-WRF) to address the question from the aerosol-radiation-cloud interaction perspective. The simulation period was selected from April to June of 2010 during which the Asian dust continuously reached NA based on CALIPSO satellite observation. The preliminary results show that the directly-transported Asian aerosol increases surface PM2.5 concentration by less than 2 μg/m3 over the west coast areas of US, and the aerosol-radiation-cloud feedback has a profound effect on air quality over the central to eastern US. A more detailed analysis links this finding to a series of meteorological conditions modified by aerosol effects.

  9. Air pollution and climate response to aerosol direct radiative ...

    EPA Pesticide Factsheets

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surface temperature, relative humidity, wind speed, and direction was evaluated through comparison with observations from NOAA's National Climatic Data Center Integrated Surface Data. The inclusion of aerosol direct radiative effects improves the model's ability to reproduce the trend in daytime temperature range which over the past two decades was increasing in eastern China but decreasing in eastern U.S. and Europe. Trends and spatial and diurnal variations of the surface-level gaseous and particle concentrations to the aerosol direct effect were analyzed. The inclusion of aerosol direct radiative effects was found to increase the surface-level concentrations of SO2, NO2, O3, SO42−, NO3−, and particulate matter 2.5 in eastern China, eastern U.S., and Europe by 1.5–2.1%, 1–1.5%, 0.1–0.3%, 1.6–2.3%, 3.5–10.0%, and 2.2–3.2%, respectively, on average over the entire 21 year period. However, greater impacts are noted during polluted days with increases of 7.6–10.6%, 6.2–6.7%, 2.0–3.0%, 7.8–9.5%, 11.1–18.6%, and 7.2–10.1%, respectively. Due to the aerosol direct radiative effects, stabilizing of the atmosphere associated with reduced planetary boundary layer height a

  10. Easy Aerosol - a model intercomparison project to study aerosol-radiative interactions and their impact on regional climate

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Bony, S.; Stevens, B. B.; Boucher, O.; Medeiros, B.; Pincus, R.; Wang, Z.; Zhang, K.; Lewinschal, A.; Bellouin, N.; Yang, Y. M.

    2015-12-01

    Recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns, but it remains unclear to what extent the proposed aerosol-induced changes reflect robust model behavior and are affected by the climate system's internal variability. "Easy Aerosol" addresses this question by subjecting nine comprehensive climate models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. They both scatter and absorb shortwave radiation, but to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of internal variability, one of the models contributes a 5-member ensemble for each simulation. When observed SSTs from years 1979-2005 are used, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the intertropical convergence zone (ITCZ). This is consistent with the aerosol's shortwave atmospheric heating and the fact that SSTs are fixed. Moreover, the Northern hemisphere mid-latitude jet shifts poleward in the annual and zonal-mean. Due to large natura variability, however, these signals only emerge in ensemble runs or if the aerosol optical depth is increased by a factor of five compared to the observed magnitude of the present-day anthropogenic aerosol. When SSTs are adapted to include the cooling effect of the aerosol, the ITCZ and the Northern hemisphere jet shift southward in the annual and zonal-mean. The models exhibit very similar precipitation and zonal wind changes in response to the SST change, showing

  11. Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations: IMPACT OF ENSO ON CLOUD RADIATIVE EFFECT

    SciTech Connect

    Yang, Yang; Russell, Lynn M.; Xu, Li; Lou, Sijia; Lamjiri, Maryam A.; Somerville, Richard C. J.; Miller, Arthur J.; Cayan, Daniel R.; DeFlorio, Michael J.; Ghan, Steven J.; Liu, Ying; Singh, Balwinder; Wang, Hailong; Yoon, Jin-Ho; Rasch, Philip J.

    2016-06-02

    The impacts of the El Niño–Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW) and the underlying changes in cloud fraction as well as aerosol emissions, wet scavenging and transport are quantified using three 150-year simulations in preindustrial conditions by the CESM model. Compared to recent observations from Clouds and the Earth’s Radiant Energy System (CERES), the model simulation successfully reproduced larger variations of CRESW over the tropical western and central Pacific, Indonesian regions, and the eastern Pacific Ocean, as well as large variations of CRELW located mainly within the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects, especially over the tropics. Relative to those during La Niña events, simulated cooling (warming) effects from CRESW (CRELW) during El Niño events are stronger over the tropical western and central Pacific Ocean, with the largest difference exceeding 40 Wm–2 (30 Wm–2), with weaker effects of 10–30 Wm–2 over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in medium and high cloud fractions each account for about 20–50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction contributes most interannual variations of CRESW over the mid-latitude oceans. Variations in natural aerosol concentrations considering emissions, wet scavenging and transport explained 10–30% of the interannual variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions and the tropical Indian Ocean. Changes in wet scavenging of natural aerosol modulate the variations of cloud radiative effects. Because of increased (decreased) precipitation over the tropical western Pacific

  12. Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and aerosol emissions, wet scavenging and transport

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Russell, L. M.; Xu, L.; Lou, S.; Lamjiri, M. A.

    2015-12-01

    The impacts of the El Niño-Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW) and the related changes in cloud fraction and aerosol emissions, wet scavenging and transport are quantified using three 150-year simulations for the preindustrial condition from the CESM model. Compared to recent observations from Clouds and the Earth's Radiant Energy System (CERES), the model simulation successfully reproduced larger variations of CRESW over the tropical western and central Pacific, Indonesian regions, and the eastern Pacific, as well as large variations of CRELW located mainly within the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects, especially over the tropics. Relative to those during La Niña events, simulated cooling (warming) effects from CRESW (CRELW) during El Niño events are stronger over tropical western and central Pacific, with the largest difference exceeding 40 Wm-2 (30 Wm-2), and weaker effects of 10-30 Wm-2 over Indonesian regions and the subtropical Pacific. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-induced changes in cloud fraction. However, changes in natural aerosol concentrations, primarily due to changes in wet scavenging and transport processes, also play an important role in modulating the variations of cloud radiative effects. Because of increased (decreased) precipitation in El Niño (La Niña) events, increased (decreased) wet scavenging and transport of natural aerosols offset about 10% of variations of cloud radiative effects averaged over the tropics, whereas the emission changes enhance the variations by 4-6%. Moreover, the variation in medium and high cloud fraction accounts for about 20-50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction plays a dominant role in contributing

  13. Radiative forcing by stratospheric aerosol in a CCM with interactive aerosol module

    NASA Astrophysics Data System (ADS)

    Brühl, Christoph; Lelieveld, Jos; Tost, Holger; Steil, Benedikt; Höpfner, Michael

    2013-04-01

    Multiyear studies with the atmospheric chemistry general circulation model EMAC with the aerosol module GMXe demonstrate that stratospheric aerosol formation is controlled by COS oxidation and SO2 injected by low-latitude volcanic eruptions. The model consistently uses the same parameters in the troposphere and stratosphere for 7 aerosol modes applied. Calculated radiative heating by aerosol feeds back to stratospheric dynamics. Radiative forcing by stratospheric aerosol can be diagnosed separately. The simulations include the medium size tropical eruptions in 2003, 2005 and 2006 but also the major eruption of Pinatubo in 1991. We show that calculated radiative forcing by stratospheric aerosol agrees well with the corresponding satellite derived quantity and that the medium size tropical eruptions should not be neglected in climate simulations. Changes in temperature, dynamics and tracer transport due to interactive aerosol will be also presented. We show also that calculated aerosol and SO2 concentrations are consistent with the observations by SAGE and by MIPAS on ENVISAT.

  14. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing.

    PubMed

    Wang, Menghua

    2006-12-10

    The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.

  15. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  16. Observationally constrained estimates of carbonaceous aerosol radiative forcing

    PubMed Central

    Chung, Chul E.; Ramanathan, V.; Decremer, Damien

    2012-01-01

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  17. From Regional Cloud-Albedo to a Global Albedo Footprint - Studying Aerosol Effects on the Radiation Budget Using the Relation Between Albedo and Cloud Fraction

    NASA Astrophysics Data System (ADS)

    Bender, F.; Engström, A.; Karlsson, J.; Wood, R.; Charlson, R. J.

    2015-12-01

    Earth's albedo is the primary determinant of the amount of energy absorbed by the Earth-atmosphere system. The main factor controlling albedo is the amount of clouds present, but aerosols can affect and alter both clear-sky and cloudy-sky reflectance. How albedo depends on cloud fraction and how albedo varies at a given cloud fraction and a given cloud water content, reveals information about these aerosol effects on the radiation budget. Hence, the relation between total albedo and cloud fraction can be used for illustration and quantification of aerosol effects, and as a diagnostic tool, to test model performance. Here, we show examples of the utilisation of this relation focusing on satellite observations from CERES and MODIS on Aqua, as well as from Calipso and CloudSat, and performing comparisons with climate models on the way: In low-cloud regions in the subtropics, we find that climate models well represent a near-constant regional cloud albedo, and this representation has improved from CMIP3 to CMIP5. CMIP5 models indicate more reflective clouds in present-day climate than pre-industrial, as a result of increased aerosol burdens. On monthly mean time scale, models are found to over-estimate the regional cloud-brightening due to aerosols. On the global scale we find an increasing cloud albedo with increasing cloud fraction - a relation that is very well defined in observations, and less so in CMIP5 models. Cloud brightening from pre-industrial to present day is also seen on global scale. Further, controlling for both cloud fraction and cloud water content we can trace small variations in albedo, or perturbations of solar reflectivity, that create a near-global coherent geographical pattern that is consistent with aerosol impacts on climate, with albedo enhancement in regions dominant of known aerosol sources and suppression of albedo in regions associated with high rates of aerosol removal (deduced using CloudSat precipitation estimates). This mapping can be

  18. Spectral aerosol direct radiative forcing from airborne radiative measurements during CalNex and ARCTAS

    NASA Astrophysics Data System (ADS)

    Leblanc, Samuel E.; Schmidt, K. S.; Pilewskie, P.; Redemann, J.; Hostetler, C.; Ferrare, R.; Hair, J.; Langridge, J. M.; Lack, D. A.

    2012-09-01

    This study presents the aerosol radiative forcing derived from airborne measurements of shortwave spectral irradiance during the 2010 Research at the Nexus of Air Quality and Climate Change (CalNex). Relative forcing efficiency, the radiative forcing normalized by aerosol optical thickness and incident irradiance, is a means of comparing the aerosol radiative forcing for different conditions. In this study, it is used to put the aerosol radiative effects of an air mass in the Los Angeles basin in context with case studies from three field missions that targeted other regions and aerosol types, including a case study from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). For CalNex, we relied on irradiance measurements onboard the NOAA P-3 aircraft during a flight on 19 May 2010 over a ground station. CalNex presented a difficulty for determining forcing efficiency since one of the input parameters, optical thickness, was not available from the same aircraft. However, extinction profiles were available from a nearby aircraft. An existing retrieval algorithm was modified to use those measurements as initial estimate for the missing optical thickness. In addition, single scattering albedo and asymmetry parameter (secondary products of the method), were compared with CalNex in situ measurements. The CalNex relative forcing efficiency spectra agreed with earlier studies that found this parameter to be constrained at each wavelength within 20% per unit of aerosol optical thickness at 500 nm regardless of aerosol type and experiment, except for highly absorbing aerosols sampled near Mexico City. The diurnally averaged below-layer forcing efficiency integrated over the wavelength range of 350-700 nm for CalNex is estimated to be -58.6 ± 13.8 W/m2, whereas for the ARCTAS case it is -48.7 ± 11.5 W/m2.

  19. Investigation the optical and radiative properties of aerosol vertical profile of boundary layer by lidar and ground based measurements

    NASA Astrophysics Data System (ADS)

    Chen, W.; Chou, C.; Lin, P.; Wang, S.

    2011-12-01

    The planetary boundary layer is the air layer near the ground directly affected by diurnal heat, moisture, aerosol, and cloud transfer to or from the surface. In the daytime solar radiation heats the surface, initiating thermal instability or convection. Whereas, the scattering and absorption of aerosols or clouds might decrease the surface radiation or heat atmosphere which induce feedbacks such as the enhanced stratification and change in relative humidity in the boundary layer. This study is aimed to understand the possible radiative effect of aerosols basing on ground based aerosol measurements and lidar installed in National Taiwan University in Taipei. The optical and radiative properties of aerosols are dominated by aerosol composition, particle size, hygroscopicity property, and shape. In this study, aerosol instruments including integrating nephelometer, open air nephelometer, aethalometer are applied to investigate the relationship between aerosol hygroscopicity properties and aerosol types. The aerosol hygroscopicity properties are further applied to investigate the effect of relative humidity on aerosol vertical profiles measured by a dual-wavelength and depolarization lidar. The possible radiative effect of aerosols are approached by vertical atmospheric extinction profiles measured by lidar. Calculated atmospheric and aerosol heating effects was compared with vertical meteorological parameters measured by radiosonde. The result shows light-absorbing aerosol has the potential to affect the stability of planetary boundary layer.

  20. Shortwave direct radiative effects of above-cloud aerosols over global oceans derived from 8 years of CALIOP and MODIS observations

    NASA Astrophysics Data System (ADS)

    Zhang, Zhibo; Meyer, Kerry; Yu, Hongbin; Platnick, Steven; Colarco, Peter; Liu, Zhaoyan; Oreopoulos, Lazaros

    2016-03-01

    In this paper, we studied the frequency of occurrence and shortwave direct radiative effects (DREs) of above-cloud aerosols (ACAs) over global oceans using 8 years (2007-2014) of collocated CALIOP and MODIS observations. Similar to previous work, we found high ACA occurrence in four regions: southeastern (SE) Atlantic region, where ACAs are mostly light-absorbing aerosols, i.e., smoke and polluted dust according to CALIOP classification, originating from biomass burning over the African Savanna; tropical northeastern (TNE) Atlantic and the Arabian Sea, where ACAs are predominantly windblown dust from the Sahara and Arabian deserts, respectively; and the northwestern (NW) Pacific, where ACAs are mostly transported smoke and polluted dusts from Asian. From radiative transfer simulations based on CALIOP-MODIS observations and a set of the preselected aerosol optical models, we found the DREs of ACAs at the top of atmosphere (TOA) to be positive (i.e., warming) in the SE Atlantic and NW Pacific regions, but negative (i.e., cooling) in the TNE Atlantic Ocean and the Arabian Sea. The cancellation of positive and negative regional DREs results in a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m-2 (range of -0.03 to 0.06 W m-2) at TOA. The DREs at surface and within the atmosphere are -0.15 W m-2 (range of -0.09 to -0.21 W m-2), and 0.17 W m-2 (range of 0.11 to 0.24 W m-2), respectively. The regional and seasonal mean DREs are much stronger. For example, in the SE Atlantic region, the JJA (July-August) seasonal mean cloudy-sky DRE is about 0.7 W m-2 (range of 0.2 to 1.2 W m-2) at TOA. All our DRE computations are publicly available1. The uncertainty in our DRE computations is mainly caused by the uncertainties in the aerosol optical properties, in particular aerosol absorption, the uncertainties in the CALIOP operational aerosol optical thickness retrieval, and the ignorance of cloud and potential aerosol diurnal cycle. In situ and remotely sensed

  1. Evaluating aerosol indirect effect through marine stratocumulus clouds

    SciTech Connect

    Kogan, Z.N.; Kogan, Y.L.; Lilly, D.K.

    1996-04-01

    During the last decade much attention has been focused on anthropogenic aerosols and their radiative influence on the global climate. Charlson et al. and Penner et al. have demonstrated that tropospheric aerosols and particularly anthropogenic sulfate aerosols may significantly contribute to the radiative forcing exerting a cooling influence on climate (-1 to -2 W/m{sup 2}) which is comparable in magnitude to greenhouse forcing, but opposite in sign. Aerosol particles affect the earth`s radiative budget either directly by scattering and absorption of solar radiation by themselves or indirectly by altering the cloud radiative properties through changes in cloud microstructure. Marine stratocumulus cloud layers and their possible cooling influence on the atmosphere as a result of pollution are of special interest because of their high reflectivity, durability, and large global cover. We present an estimate of thet aerosol indirect effect, or, forcing due to anthropogenic sulfate aerosols.

  2. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    NASA Technical Reports Server (NTRS)

    Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub

    2012-01-01

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.

  3. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  4. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  5. Direct radiative forcing from black carbon aerosols over urban environment

    NASA Astrophysics Data System (ADS)

    Badarinath, K. V. S.; Madhavi Latha, K.

    There is growing evidence that the earth’s climate is changing and will likely continue to change in the future. It is still debated whether these changes are due to natural variability of the climate system or a result of increases in the concentration of greenhouse gases in the atmosphere. Black carbon (BC) has become the subject of interest for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes, viz., vegetation burning, industrial effluents and motor vehicle exhausts, etc. In this paper, we present results from our measurements on black carbon aerosols, total aerosol mass concentration and aerosol optical depth over an urban environment namely Hyderabad during January to May, 2003. Diurnal variations of BC indicate high BC concentrations during 6:00 9:00 and 19:00 23:00 h. Weekday variations of BC concentrations increase gradually from Monday to Wednesday and gradually decrease from Thursday to Sunday. Analysis of traffic density along with meteorological parameters suggests that the primary determinant for BC concentration levels and patterns is traffic density. Seasonal variations of BC suggest that the BC concentrations are high during dry season compared to rainy season due to the scavenging by air. The fraction of BC to total mass concentration has been observed to be 7% during January to May. BC showed positive correlation with total mass concentration and aerosol optical depth at 500 nm. Radiative transfer calculations suggests that during January to May, diurnal averaged aerosol forcing at the surface is -33 Wm2 and at the top of the atmosphere (TOA) above 100 km it is observed to be +9 Wm-2. The results have been discussed in detail in the paper.

  6. Impacts of ENSO events on cloud radiative effects in preindustrial conditions: Changes in cloud fraction and their dependence on interactive aerosol emissions and concentrations

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Russell, Lynn M.; Xu, Li; Lou, Sijia; Lamjiri, Maryam A.; Somerville, Richard C. J.; Miller, Arthur J.; Cayan, Daniel R.; DeFlorio, Michael J.; Ghan, Steven J.; Liu, Ying; Singh, Balwinder; Wang, Hailong; Yoon, Jin-Ho; Rasch, Philip J.

    2016-06-01

    We use three 150 year preindustrial simulations of the Community Earth System Model to quantify the impacts of El Niño-Southern Oscillation (ENSO) events on shortwave and longwave cloud radiative effects (CRESW and CRELW). Compared to recent observations from the Clouds and the Earth's Radiant Energy System data set, the model simulation successfully reproduces larger variations of CRESW and CRELW over the tropics. The ENSO cycle is found to dominate interannual variations of cloud radiative effects. Simulated cooling (warming) effects from CRESW (CRELW) are strongest over the tropical western and central Pacific Ocean during warm ENSO events, with the largest difference between 20 and 60 W m-2, with weaker effects of 10-40 W m-2 over Indonesian regions and the subtropical Pacific Ocean. Sensitivity tests show that variations of cloud radiative effects are mainly driven by ENSO-related changes in cloud fraction. The variations in midlevel and high cloud fractions each account for approximately 20-50% of the interannual variations of CRESW over the tropics and almost all of the variations of CRELW between 60°S and 60°N. The variation of low cloud fraction contributes to most of the variations of CRESW over the midlatitude oceans. Variations in natural aerosol concentrations explained 10-30% of the variations of both CRESW and CRELW over the tropical Pacific, Indonesian regions, and the tropical Indian Ocean. Changes in natural aerosol emissions and concentrations enhance 3-5% and 1-3% of the variations of cloud radiative effects averaged over the tropics.

  7. A Strategy to Assess Aerosol Direct Radiative Forcing of Climate Using Satellite Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of

  8. Continental pollution in the Western Mediterranean basin: large variability of the aerosol single scattering albedo and influence on the direct shortwave radiative effect

    NASA Astrophysics Data System (ADS)

    Di Biagio, Claudia; Formenti, Paola; Doppler, Lionel; Gaimoz, Cécile; Grand, Noel; Ancellet, Gerard; Attié, Jean-Luc; Bucci, Silvia; Dubuisson, Philippe; Fierli, Federico; Mallet, Marc; Ravetta, François

    2016-08-01

    Pollution aerosols strongly influence the composition of the Western Mediterranean basin, but at present little is known on their optical properties. We report in this study in situ observations of the single scattering albedo (ω) of pollution aerosol plumes measured over the Western Mediterranean basin during the TRAQA (TRansport and Air QuAlity) airborne campaign in summer 2012. Cases of pollution export from different source regions around the basin and at different altitudes between ˜ 160 and 3500 m above sea level were sampled during the flights. Data from this study show a large variability of ω, with values between 0.84-0.98 at 370 nm and 0.70-0.99 at 950 nm. The single scattering albedo generally decreases with the wavelength, with some exception associated to the mixing of pollution with sea spray or dust particles over the sea surface. The lowest values of ω (0.84-0.70 between 370 and 950 nm) are measured in correspondence of a fresh plume possibly linked to ship emissions over the basin. The range of variability of ω observed in this study seems to be independent of the source region around the basin, as well as of the altitude and aging time of the plumes. The observed variability of ω reflects in a large variability for the complex refractive index of pollution aerosols, which is estimated to span in the large range 1.41-1.77 and 0.002-0.097 for the real and the imaginary parts, respectively, between 370 and 950 nm. Radiative calculations in clear-sky conditions were performed with the GAME radiative transfer model to test the sensitivity of the aerosol shortwave Direct Radiative Effect (DRE) to the variability of ω as observed in this study. Results from the calculations suggest up to a 50 and 30 % change of the forcing efficiency (FE), i.e. the DRE per unit of optical depth, at the surface (-160/-235 W m-2 τ-1 at 60° solar zenith angle) and at the Top-Of-Atmosphere (-137/-92 W m-2 τ-1) for ω varying between its maximum and minimum value

  9. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  10. Impact of Mixing State on Anthropogenic Aerosol Radiative Forcing and Associated Climate Response

    NASA Astrophysics Data System (ADS)

    Avramov, A.; Shin, H. J.; Wang, C.

    2014-12-01

    Atmospheric aerosols affect Earth's radiation balance directly by scattering and absorbing solar radiation and, indirectly, by changing the microphysical structure, lifetime and spatial extent of clouds. The aerosol mixing state to a large extent determines not only their optical properties (direct effect) but also their ability to serve as cloud condensation nuclei or ice nuclei (indirect effect). Results from previous research have highlighted the importance of the aerosol mixing assumptions in radiative forcing estimates in model simulations. Here we take a step further to analyze the differences in associated climate responses, using a multimodal, size- and mixing-dependent aerosol model (MARC) incorporated within the Community Earth System Model (CESM). The new model allows for a detailed representation of aerosol-radiation and aerosol-cloud interactions by including an improved treatment of aerosol mixing state and composition. First, we estimate and compare the magnitudes of direct and indirect forcing of anthropogenic aerosols under different mixing assumptions. We then carry out several century-long fully-coupled climate simulations designed to isolate the climate responses to direct and indirect forcings under the same aerosol mixing assumptions. In our analysis, we specifically focus on the following three climate response components: 1) cloud distribution and coverage; 2) precipitation amount and distribution; and 3) changes in circulation patterns.

  11. Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing

    SciTech Connect

    Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.; Rasch, Philip J.; Yoon, Jin-Ho; Eaton, Brian

    2012-10-01

    The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic aerosol on solar and infrared radiation through droplet and crystal nucleation on aerosol, and semidirect effects through the influence of solar absorption on the distribution of clouds. A three-mode representation of the aerosol in version 5.1 of the Community Atmosphere Model (CAM5.1) yields global annual mean radiative forcing estimates for each of these forcing mechanisms that are within 0.1 W m–2 of estimates using a more complex seven-mode representation that distinguishes between fresh and aged black carbon and primary organic matter. Simulating fresh black carbon particles separately from internally mixed accumulation mode particles is found to be important only near fossil fuel sources. In addition to the usual large indirect effect on solar radiation, this study finds an unexpectedly large positive longwave indirect effect (because of enhanced cirrus produced by homogenous nucleation of ice crystals on anthropogenic sulfate), small shortwave and longwave semidirect effects, and a small direct effect (because of cancelation and interactions of direct effects of black carbon and sulfate). Differences between the threemode and seven-mode versions are significantly larger (up to 0.2 W m–2) when the hygroscopicity of primary organic matter is decreased from 0.1 to 0 and transfer of the primary carbonaceous aerosol to the accumulation mode in the seven-mode version requires more hygroscopic material coating the primary particles. Radiative forcing by cloudborne anthropogenic black carbon is only 20.07 W m–2.

  12. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  13. Effect of Carbonaceous Aerosols on Clouds and Precipitation in Asia

    NASA Astrophysics Data System (ADS)

    v, V.; Wang, H.; Ganguly, D.; Minghuai, W.; Rasch, P. J.

    2010-12-01

    Carbonaceous aerosols enhance scattering and absorption of solar radiation (i.e., direct radiative effect) in the atmosphere and also affect clouds and precipitation through indirect effects, thus heating the atmosphere but reducing the amount of solar radiation that reaches the earth’s surface. These effects through dynamic feedbacks can also have remote impact over regions far away from their emission sources and hence demand special scientific attention. Previous modeling studies have revealed that large amount of anthropogenic carbonaceous aerosols over the Asian region can alter monsoon circulation and precipitation patterns and thereby influence its strength by varying degrees spatially. Most of the studies focused on the direct radiative effect of aerosols and their subsequent effect on monsoon precipitation. We evaluate the changes in clouds and precipitation in Asia due to carbonaceous aerosols using the community atmospheric model (CAM5) which accounts for not only aerosol direct effects, but also aerosol indirect effects on warm, mixed-phase and cirrus clouds. This study focuses on the precipitation efficiency with emphasis on aerosol indirect effects. In addition to carbonaceous aerosol emissions over Asia, the effect of emissions from other regions like North America, North Africa and Europe are also investigated for their influence on precipitation in the Asian region. In addition to the focus on the aerosol effect on monsoon, we also study the seasonality in aerosol induced changes to precipitation efficiency. We present the quantitative estimates of changes in precipitation efficiency related to changes in aerosol loading and compare them with those estimated from satellite observations, and further explore the potential role of aerosol indirect effects to changes in precipitation efficiency.

  14. Direct radiative forcing from black carbon aerosols over urban environment

    NASA Astrophysics Data System (ADS)

    Madhavi Latha, K.; Badarinath, K. V. S.

    There is growing evidence that the earth's climate is changing and will likely continue to change in the future. It is still debated whether these changes are due to natural variability of the climate system or a result of increases in the concentration of greenhouse gases in the atmosphere. Black carbon (BC) has become the subject of interest for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes viz., vegetation burning, industrial effluents and motor vehicle exhausts etc. In this paper, we present results from our measurements on black carbon aerosols, total aerosol mass concentration and aerosol optical depth over an urban environment namely Hyderabad during January to May, 2003. Diurnal variations of BC suggests that high BC concentrations observed during 6:00-9:00hrs and 19:00-23:00hrs. Weekday variations of BC suggest that the day average BC concentrations increases gradually from Monday to Wednesday and gradually decreased from Thursday to Sunday. Analysis of traffic density along with meteorological parameters suggests that the primary determinant for BC concentration levels and patterns is traffic density. Seasonal variations of BC suggest that the BC concentrations are high during dry season compared to rainy season due to scavenging effects of BC during rainy season. Fraction of BC to total mass concentration has been observed to be 7% during January to May. BC showed positive correlation with total mass concentration and aerosol optical depth at 500nm. Radiative transfer calculations suggests that during January to May, diurnal averaged aerosol forcing at the surface calculated to be -33Wm -2 and at the top of the atmosphere (TOA) it is observed to +9 Wm -2. The

  15. Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Keith, D. W.; Keutsch, F. N.

    2016-07-01

    Side effects resulting from the deliberate injection of sulfate aerosols intended to partially offset climate change have motivated the investigation of alternatives, including solid aerosol materials. Sulfate aerosols warm the tropical tropopause layer, increasing the flux of water vapor into the stratosphere, accelerating ozone loss, and increasing radiative forcing. The high refractive index of some solid materials may lead to reduction in these risks. We present a new analysis of the scattering efficiency and absorption of a range of candidate solid aerosols. We utilize a comprehensive radiative transfer model driven by updated, physically consistent estimates of optical properties. We compute the potential increase in stratospheric water vapor and associated longwave radiative forcing. We find that the stratospheric heating calculated in this analysis indicates some materials to be substantially riskier than previous work. We also find that there are Earth-abundant materials that may reduce some principal known risks relative to sulfate aerosols.

  16. Study of aerosol radiative properties under different relative humidity conditions in the thermal infrared region

    NASA Astrophysics Data System (ADS)

    Kuo, C. P.; Yang, P.; Nasiri, S. L.; Liu, X.

    2014-12-01

    In the aerosol transport process, the optical properties of aerosol particles can vary due to humidification or mixing with other kinds of aerosols. Previous studies have shown mixing dust with other types of aerosol tends to make the aerosol more spectrally absorptive, but the degree of impact of relative humidity (RH) along the transport path is not clear. To investigate this effect, we conduct a numerical study to estimate the radiative sensitivity of aerosols under various relative humidity conditions. Specifically, the OPAC (Optical Properties of Aerosols and Clouds) database is used, which provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions. Lookup tables (LUTs) of the bidirectional reflectivity, transmissivity and effective emissivity will be computed for the ten aerosol types for input to the high-spectral-resolution radiative transfer model (HRTM). Using these LUTs, the HTRM can calculate top-of-atmospheric brightness temperatures, which we can use to determine the degree of radiative sensitivity in the infrared spectral region. Furthermore, comparisons between simulations and MODIS observations will be presented.

  17. Investigation of multiple scattering effects in aerosols

    NASA Technical Reports Server (NTRS)

    Deepak, A.

    1980-01-01

    The results are presented of investigations on the various aspects of multiple scattering effects on visible and infrared laser beams transversing dense fog oil aerosols contained in a chamber (4' x 4' x 9'). The report briefly describes: (1) the experimental details and measurements; (2) analytical representation of the aerosol size distribution data by two analytical models (the regularized power law distribution and the inverse modified gamma distribution); (3) retrieval of aerosol size distributions from multispectral optical depth measurements by two methods (the two and three parameter fast table search methods and the nonlinear least squares method); (4) modeling of the effects of aerosol microphysical (coagulation and evaporation) and dynamical processes (gravitational settling) on the temporal behavior of aerosol size distribution, and hence on the extinction of four laser beams with wavelengths 0.44, 0.6328, 1.15, and 3.39 micrometers; and (5) the exact and approximate formulations for four methods for computing the effects of multiple scattering on the transmittance of laser beams in dense aerosols, all of which are based on the solution of the radiative transfer equation under the small angle approximation.

  18. Aerosols and their influence on radiation partitioning and savanna productivity in northern Australia

    SciTech Connect

    Kanniah, K. D.; Beringer, J.; Tapper, N. J.; Long, Charles N.

    2010-05-01

    We investigated the effect of aerosols and clouds on the Net Ecosystem Productivity (NEP) of savannas in northern Australia using aerosol optical depth, clouds and radiation data from the Atmospheric Radiation Measurement (ARM) site in Darwin and carbon flux data measured from eddy covariance techniques from a site at Howard Springs, 35km southeast of Darwin. Generally we found that the concentration of aerosols in this region was relatively low than observed at other sites, therefore the proportion of diffuse radiation reaching the earths surface was only ~ 30%. As a result, we observed only a modest change in carbon uptake under aerosol laden skies and there was no significant difference for dry season Radiation Use Efficiency (RUE) between clear sky, aerosols or thin clouds. On the other hand thick clouds in the wet season produce much more diffuse radiation than aerosols or thin clouds and therefore the initial canopy quantum efficiency was seen to increase 45 and 2.5 times more than under thin clouds and aerosols respectively. The normalized carbon uptake under thick clouds is 57% and 50% higher than under aerosols and thin clouds respectively even though the total irradiance received under thick clouds was reduced 59% and 50% than under aerosols and thin clouds respectively. However, reduction in total irradiance decreases the mean absolute carbon uptake as much as 22% under heavy cloud cover compared to thin clouds or aerosols. Thus, any increase in aerosol concentration or cloud cover that can enhance the diffuse component may have large impacts on productivity in this region.

  19. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W m(exp -2) in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  20. GCM Simulations of the Aerosol Indirect Effect: Sensitivity to Cloud Parameterization and Aerosol Burden

    NASA Technical Reports Server (NTRS)

    Menon, Surabi; DelGenio, Anthony D.; Koch, Dorothy; Tselioudis, George; Hansen, James E. (Technical Monitor)

    2001-01-01

    We describe the coupling of the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to an online sulfur chemistry model and source models for organic matter and sea-salt that is used to estimate the aerosol indirect effect. The cloud droplet number concentration is diagnosed empirically from field experiment datasets over land and ocean that observe droplet number and all three aerosol types simultaneously; corrections are made for implied variations in cloud turbulence levels. The resulting cloud droplet number is used to calculate variations in droplet effective radius, which in turn allows us to predict aerosol effects on cloud optical thickness and microphysical process rates. We calculate the aerosol indirect effect by differencing the top-of-the-atmosphere net cloud radiative forcing for simulations with present-day vs. pre-industrial emissions. Both the first (radiative) and second (microphysical) indirect effects are explored. We test the sensitivity of our results to cloud parameterization assumptions that control the vertical distribution of cloud occurrence, the autoconversion rate, and the aerosol scavenging rate, each of which feeds back significantly on the model aerosol burden. The global mean aerosol indirect effect for all three aerosol types ranges from -1.55 to -4.36 W/sq m in our simulations. The results are quite sensitive to the pre-industrial background aerosol burden, with low pre-industrial burdens giving strong indirect effects, and to a lesser extent to the anthropogenic aerosol burden, with large burdens giving somewhat larger indirect effects. Because of this dependence on the background aerosol, model diagnostics such as albedo-particle size correlations and column cloud susceptibility, for which satellite validation products are available, are not good predictors of the resulting indirect effect.

  1. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Jiyoung

    In situ measurements at Gosan, South Korea, and onboard C-130 aircraft during ACE-Asia were analyzed to investigate the influence of relative humidity (RH) on aerosol optical properties and radiative forcing. The temporal variation of aerosol chemical composition at the Gosan super-site was highly dependent on the air mass transport pathways and source region. RH in the springtime over East Asia were distributed with very high spatial and temporal variation. The RH profile onboard C-130 aircraft measurements exhibits a mixed layer height of about 2 km. Aerosol scattering coefficient ( σsp) under ambient RH was greatly enhanced as compared with that at dry RH (RH<40%). From the aerosol optical and radiative transfer modeling studies, we found that the extinction and scattering coefficients are greatly enhanced with RH. Single scattering albedo with RH is also sensitively changed in the longer wavelength. Asymmetry parameter ( g) is gradually increased with RH although g decreases with wavelength at a given RH. Aerosol optical depth (AOD) at 550 nm and RH of 50% increased to factors 1.24, 1.51, 2.16, and 3.20 at different RH levels 70, 80, 90, and 95%, respectively. Diurnal-averaged aerosol radiative forcings for surface, TOA, and atmosphere were increased with RH because AOD was increased with RH due to hygroscopic growth of aerosol particles. This result implies that the hygroscopic growth due to water-soluble or hydrophilic particles in the lower troposphere may significantly modify the magnitude of aerosol radiative forcing both at the surface and TOA. However, the diurnal-averaged radiative forcing efficiencies at the surface, TOA, and atmosphere were decreased with increasing RH. The decrease of the forcing efficiency with RH results from the fact that increasing rate of aerosol optical depth with RH is greater than the increasing rate of aerosol radiative forcing with RH.

  2. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2005-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes

  3. Aerosol indirect effect dictated by liquid clouds

    NASA Astrophysics Data System (ADS)

    Christensen, Matthew W.; Chen, Yi-Chun; Stephens, Graeme L.

    2016-12-01

    Anthropogenic aerosols have been shown to enhance the solar reflection from warm liquid clouds and mask part of the warming due to the buildup of greenhouse gases. However, very little is known about the effects of aerosol on mixed-phase stratiform clouds as well as other cloud regimes including cumulus, altocumulus, nimbostratus, deep convection, and anvil cirrus. These additional cloud categories are ubiquitous and typically overlooked in satellite-based assessments of the global aerosol indirect forcing. Here we provide their contribution to the aerosol indirect forcing estimate using satellite data collected from several colocated sensors in the A-train for the period 2006-2010. Cloud type is determined according to the 2B-CLDCLASS-LIDAR CloudSat product, and the observations are matched to the radiative flux measurements from CERES (Clouds and the Earth's Radiant Energy System) and aerosol retrievals from MODIS (MODerate resolution Imaging Spectroradiometer). The oceanic mean aerosol indirect forcing is estimated to be -0.20 ± 0.31 W m-2 with warm low-level cloud largely dictating the strength of the response (-0.36 ± 0.21 W m-2) due to their abundance and strong cloud albedo effect. Contributions from mixed-phase low-level cloud (0.01 ± 0.06 W m-2) and convective cloud (0.15 ± 0.23 W m-2) are positive and buffer the system due to strong aerosol-cloud feedbacks that reduce the cloud albedo effect and/or lead to convective invigoration causing a countering positive longwave warming response. By combining all major cloud categories together, aerosol indirect forcing decreases and now contains positive values in the uncertainty estimate.

  4. Distinct impact of different types of aerosols on surface solar radiation in China

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhao, Chuanfeng; Zhou, Lijing; Wang, Yang; Liu, Xiaohong

    2016-06-01

    Observations of surface direct solar radiation (DSR) and visibility, particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5), together with the aerosol optical thickness (AOT) taken from Moderate-Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer, were investigated to gain insight into the impact of aerosol pollution on surface solar radiation in China. The surface DSR decreased during 2004-2014 compared with 1993~2003 over eastern China, but no clear reduction was observed in remote regions with cleaner air. Significant correlations of visibility, PM2.5, and regionally averaged AOT with the surface DSR over eastern China indicate that aerosol pollution greatly affects the energy available at the surface. The net loss of surface solar radiation also reduces the surface ground temperature over eastern China. However, the slope of the linear variation of the radiation with respect to atmospheric visibility is distinctly different at different stations, implying that the main aerosol type varies regionally. The largest slope value occurs at Zhengzhou and indicates that the aerosol absorption in central China is the highest, and lower slope values suggest relatively weakly absorbing types of aerosols at other locations. The spatial distribution of the linear slopes agrees well with the geographical distribution of the absorbing aerosols derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations and Ozone Monitoring Instrument over China. The regional correlation between a larger slope value and higher absorbance properties of aerosols indicates that the net effects of aerosols on the surface solar energy and corresponding climatic effects are dependent on both aerosol amount and optical properties.

  5. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  6. Anthropogenic Aerosol Effects on Sea Surface Temperatures: Mixed-Layer Ocean Experiments with Explicit Aerosol Representation

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    Anthropogenic aerosols affect the Earth's radiative balance both through direct and indirect effects. These effects can lead to a reduction of the incoming solar radiation at the surface, i.e. dimming, which may lead to a change in sea surface temperatures (SST) or SST pattern. This, in turn, may affect precipitation patterns. The goal of the present work is to achieve an estimate of the equilibrium SST changes under anthropogenic aerosol forcing since industrialisation. We show preliminary results from mixed-layer ocean (MLO) experiments with explicit aerosol representation performed with ECHAM6-HAM. The (fixed) MLO heat flux into the deep ocean was derived from atmosphere only runs with fixed climatological SSTs (1961-1990 average) and present day (year 2000) aerosols and GHG burdens. Some experiments we repeated with an alternative MLO deep ocean heat flux (based on pre-industrial conditions) to test the robustness of our results with regard to this boundary condition. The maximum surface temperature responses towards anthropogenic aerosol and GHG forcing (separately and combined) were derived on a global and regional scale. The same set of experiments was performed with aerosol and GHG forcings representative of different decades over the past one and a half centuries. This allows to assess how SST patterns at equilibrium changed with changing aerosol (and GHG) forcing. Correlating SST responses with the change in downward clear-sky and all-sky shortwave radiation provides a first estimate of the response to anthropogenic aerosols. Our results show a clear contrast in hemispheric surface temperature response, as expected from the inter-hemispheric asymmetry of aerosol forcing The presented work is part of a project aiming at quantifying the effect of anthropogenic aerosol forcing on SSTs and the consequences for global precipitation patterns. Results from this study will serve as a starting point for further experiments involving a dynamic ocean model, which

  7. On the relationship between aerosol model uncertainty and radiative forcing uncertainty

    PubMed Central

    Reddington, Carly L.; Carslaw, Kenneth S.

    2016-01-01

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple “equifinal” models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model−observation agreement could give a misleading impression of model robustness. PMID:26848136

  8. A revisit to decadal change of aerosol optical depth and its impact on global radiation over China

    NASA Astrophysics Data System (ADS)

    Tang, Wenjun; Yang, Kun; Qin, Jun; Niu, Xiaolei; Lin, Changgui; Jing, Xianwen

    2017-02-01

    Global radiation over China decreased between the 1960s and 1990, since when it has remained stable. As the total cloud cover has continued to decrease since the 1960s, variations in aerosols were suggested in previous studies to be the primary cause for variations in global radiation over China. However, the effect of aerosols on global radiation on a decadal scale has not been physically quantified over China. In this study, aerosol optical depth (AOD) data since 1980 are estimated by combining horizontal visibility data at stations in China and AOD observed by the moderate resolution imaging spectroradiometer (MODIS). It is found that the AOD exhibits decadal changes, with two decreasing periods (before the end of 1980s and after 2006) and one increasing period (from 1990 to 2006). With the derived AOD, a clear-sky model is then applied to quantify the role of aerosols in the variations in global radiation over China. The results show that aerosol direct effect cannot fully explain the decadal variations in the global radiation over China between 1980 and 2010, though it has a considerable effect on global radiation climatology. There are significant differences between the trends of clear-sky global radiation impacted by aerosols and those of all-sky global radiation impacted by aerosols and clouds, and the correlation coefficient for the comparison is very low. Therefore, the variations in all-sky global radiation over China are likely to be due to changes in cloud properties and to interactions between clouds and aerosols.

  9. Response of different regional online coupled models to aerosol-radiation interactions

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Balzarini, Alessandra; Brunner, Dominik; Baró, Rocio; Curci, Gabriele; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Jorba, Oriol; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela

    2016-04-01

    The importance of aerosol-meteorology interactions and their representation in online coupled regional atmospheric chemistry-meteorology models was investigated in COST Action ES1004 (EuMetChem, http://eumetchem.info/). Case study results from different models (COSMO-Muscat, COSMO-ART, and different configurations of WRF-Chem), which were applied for Europe as a coordinated exercise for the year 2010, are analyzed with respect to inter-model variability and the response of the different models to direct and indirect aerosol-radiation interactions. The main focus was on two episodes - the Russian heat wave and wildfires episode in July/August 2010 and a period in October 2010 with enhanced cloud cover and rain and including an of Saharan dust transport to Europe. Looking at physical plausibility the decrease in downward solar radiation and daytime temperature due to the direct aerosol effect is robust for all model configurations. The same holds for the pronounced decrease in cloud water content and increase in solar radiation for cloudy conditions and very low aerosol concentrations that was found for WRF-Chem when aerosol cloud interactions were considered. However, when the differences were tested for statistical significance no significant differences in mean solar radiation and mean temperature between the baseline case and the simulations including the direct and indirect effect from simulated aerosol concentrations were found over Europe for the October episode. Also for the fire episode differences between mean temperature and radiation from the simulations with and without the direct aerosol effect were not significant for the major part of the modelling domain. Only for the region with high fire emissions in Russia, the differences in mean solar radiation and temperature due to the direct effect were found to be significant during the second half of the fire episode - however only for a significance level of 0.1. The few observational data indicate that

  10. Global Radiative Forcing of Coupled Tropospheric Ozone and Aerosols in a Unified General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.; Adams, Peter J.; Mickley, Loretta J.

    2008-01-01

    Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II', that simulates coupled tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled gas-aerosol unified GCM allows one to evaluate the extent to which global burdens, radiative forcing, and eventually climate feedbacks of ozone and aerosols are influenced by gas-aerosol chemical interactions. Estimated present-day global burdens of sea salt and mineral dust are 6.93 and 18.1 Tg with lifetimes of 0.4 and 3.9 days, respectively. The GCM is applied to estimate current top of atmosphere (TOA) and surface radiative forcing by tropospheric ozone and all natural and anthropogenic aerosol components. The global annual mean value of the radiative forcing by tropospheric ozone is estimated to be +0.53 W m(sup -2) at TOA and +0.07 W m(sup -2) at the Earth's surface. Global, annual average TOA and surface radiative forcing by all aerosols are estimated as -0.72 and -4.04 W m(sup -2), respectively. While the predicted highest aerosol cooling and heating at TOA are -10 and +12 W m(sup -2) respectively, surface forcing can reach values as high as -30 W m(sup -2), mainly caused by the absorption by black carbon, mineral dust, and OC. We also estimate the effects of chemistry-aerosol coupling on forcing estimates based on currently available understanding of heterogeneous reactions on aerosols. Through altering the burdens of sulfate, nitrate, and ozone, heterogeneous reactions are predicted to change the global mean TOA forcing of aerosols by 17% and influence global mean TOA forcing of tropospheric ozone by 15%.

  11. North Atlantic Aerosol Properties for Radiative Impact Assessments. Derived from Column Closure Analyses in TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, Philip A.; Bergstrom, Robert A.; Schmid, Beat; Livingston, John M.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. Both experiments used remote and in situ measurements from aircraft and the surface, coordinated with overpasses by a variety of satellite radiometers. TARFOX focused on the urban-industrial haze plume flowing from the United States over the western Atlantic, whereas ACE-2 studied aerosols over the eastern Atlantic from both Europe and Africa. These aerosols often have a marked impact on satellite-measured radiances. However, accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved aerosol optical depths (AODs) remains a difficult challenge. Here we summarize key initial results from TARFOX and ACE-2, with a focus on closure analyses that yield aerosol microphysical models for use in improved assessments of flux changes. We show how one such model gives computed radiative flux sensitivities (dF/dAOD) that agree with values measured in TARFOX and preliminary values computed for the polluted marine boundary layer in ACE-2. A companion paper uses the model to compute aerosol-induced flux changes over the North Atlantic from AVHRR-derived AOD fields.

  12. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-02-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  13. I. The effect of volcanic aerosols on ultraviolet radiation in Antarctica. II. A novel method for enhancing subsurface radar imaging using radar interferometry

    NASA Astrophysics Data System (ADS)

    Tsitas, Steven Ronald

    The theory of radiative transfer is used to explain how a stratospheric aerosol layer may, for large solar zenith angles, increase the flux of UV-B light at the ground. As previous explanations are heuristic and incomplete, I first provide a rigorous and complete explanation of how this occurs. I show that an aerosol layer lying above Antarctica during spring will decrease the integrated daily dose of biologically weighted irradiance, weighted by the erythema action spectrum, by only up to 5%. Thus after a volcanic eruption, life in Antarctica during spring will suffer the combined effects of the spring ozone hole and ozone destruction induced by volcanic aerosols, with the latter effect only slightly offset by aerosol scattering. I extend subsurface radar imaging by considering the additional information that may be derived from radar interferometry. I show that, under the conditions that temporal and spatial decorrelation between observations is small so that the effects of these decorrelations do not swamp the signature expected from a subsurface layer, the depth of burial of the lower surface may be derived. Also, the echoes from the lower and upper surfaces may be separated. The method is tested with images acquired by SIR-C of the area on the Egypt/Sudan border where buried river channels were first observed by SIR-A. Temporal decorrelation between the images, due to some combination of physical changes in the scene, changes in the spacecraft attitude and errors in the processing by NASA of the raw radar echoes into the synthetic aperture radar images, swamps the expected signature for a layer up to 40 meters thick. I propose a test to determine whether or not simultaneous observations are required, and then detail the radar system requirements for successful application of the method for both possible outcomes of the test. I also describe in detail the possible applications of the method. These include measuring the depth of burial of ice in the polar

  14. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    Biomass-burning (BB) aerosols are the significant contributor to the regional/global aerosol loading and radiation budgets. BB aerosols affect the radiation budget of the earth and atmosphere by scattering and absorbing directly the incoming solar and outgoing terrestrial radiation. These aerosols can exert either cooling or warming effect on climate, depending on the balance between scattering and absorption. BB activities in the form of wildland forest fires and agricultural crop burning are very pronounced in the Indochina peninsular regions in Southeast Asia mainly in spring (late February to April) season. The region of interest includes Doi Ang Khang (19.93° N, 99.05° E, 1536 msl) in northern Thailand, as part of the Seven South East Asian Studies (7-SEAS)/BASELInE (Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment) campaign in 2013. In this study, for the first time, the direct aerosol radiative effects of BB aerosols over near-source BB emissions, during the peak loading spring season, in northern Indochina were investigated by using ground-based physical, chemical, and optical properties of aerosols as well as the aerosol optical and radiative transfer models. Information on aerosol parameters in the field campaign was used in the OPAC (Optical Properties of Aerosols and Clouds) model to estimate various optical properties corresponding to aerosol compositions. Clear-sky shortwave direct aerosol radiative effects were further estimated with a raditive transfer model SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer). The columnar aerosol optical depth (AOD500) was found to be ranged from 0.26 to 1.13 (with the mean value 0.71 ± 0.24). Fine-mode (fine mode fraction ≈0.98, angstrom exponent ≈1.8) and significantly absorbing aerosols (columnar single-scattering albedo ≈0.89, asymmetry-parameter ≈0.67 at 441 nm wavelength) dominated in this region. Water soluble and black carbon (BC) aerosols mainly

  15. Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources

    SciTech Connect

    Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

    2009-02-01

    The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to

  16. Anthropogenic Aerosols in Asia, Radiative Forcing, and Climate Change

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Bollasina, M. A.; Ming, Y.; Ocko, I.; Persad, G.

    2014-12-01

    Aerosols arising as a result of human-induced emissions in Asia form a key 'driver' in causing pollution and in the forcing of anthropogenic climate change. The manner of the forced climate change is sensitive to the scattering and absorption properties of the aerosols and the aerosol-cloud microphysical interactions. Using the NOAA/ GFDL global climate models and observations from multiple platforms, we investigate the radiative perturbations due to the 20th Century sulfate and carbonaceous aerosol emissions and the resultant impacts on surface temperature, tropical precipitation, Indian monsoon, hemispheric circulation, and atmospheric and oceanic heat transports. The influence of the aerosol species has many contrasts with that due to the anthropogenic well-mixed greenhouse gas emissions e.g., the asymmetry in the hemispheric climate response, but is subject to larger uncertainties. The aerosol forcing expected in the future indicates a significant control on the 21st Century anthropogenic climate change in Asia.

  17. Significant radiative impact of volcanic aerosol in the lowermost stratosphere.

    PubMed

    Andersson, Sandra M; Martinsson, Bengt G; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A M; Hermann, Markus; van Velthoven, Peter F J; Zahn, Andreas

    2015-07-09

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008-2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing.

  18. Significant radiative impact of volcanic aerosol in the lowermost stratosphere

    PubMed Central

    Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A. M.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  19. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  20. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Han, X.; Liu, X.

    2011-12-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W/m2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W/m2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan.

  1. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Han, Zhiwei; Xin, Jinyuan; Liu, Xiaohong

    2011-11-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m -2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m -2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  2. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    Aerosols are a major atmospheric variable which perturb the Earth-atmosphere radiation balance by absorbing and scattering the solar and terrestrial radiation. Aerosols are produced by natural and anthropogenic processes. The presence of different types of aerosol over a location and aerosols transported from long-range can give rise to different mixing states because of aging and interaction among the different aerosol species. Knowledge of the mixing state of aerosols is important for an accurate assessment of aerosols in climate forcing, as assumptions regarding the mixing state of aerosol and its effect on optical properties can give rise to uncertainties in modeling their direct and indirect effects [1]. Seasonal variations in mixing states of aerosols over an urban (Kanpur) and a rural location (Gandhi College) in the Indo-Gangetic Plain (IGP) are determined using the measured and modeled aerosol optical properties, and the impact of aerosol mixing state on aerosol radiative forcing are investigated. IGP is one of the most populated and polluted river basins in the world, rich in fertile lands and agricultural production. Kanpur is an urban, industrial and densely populated city, and has several large/small scale industries and vehicles, while Gandhi College in IGP is a rural village, located southeast of Kanpur. Aerosol optical properties obtained from Aerosol Robotic Network sun/sky radiometers [2] over these two environmentally distinct locations in Indo-Gangetic Plain are used in the study, along with aerosol vertical profiles obtained from CALIPSO (Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations. Probable mixing state of aerosols is determined utilizing the aerosol optical properties viz., aerosol optical depth, single scattering albedo and asymmetry parameter. The coated-sphere Mie calculation requires the refractive index of core and shell species, and the radius of core and shell particles. Core to shell radius

  3. Revealing the aerosol radiative impact of volcanic ash on synoptic time scales

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Rieger, Daniel; Gasch, Philipp; Förstner, Jochen; Vogel, Bernhard

    2016-04-01

    Including the interactions of aerosols with radiation in weather forecast models often leads to perturbations of the temperature field even at locations not directly influenced by the regarded aerosols. They arise out of signals propagating with the speed of sound leading to abrupt changes in cloud cover. The temperature perturbations due to these changes hamper the quantification of the aerosol radiative impact as they can appear in the same order of magnitude. In order to reveal the aerosol radiative impact on synoptic time scales we introduce a new method to separate the aerosol induced temperature effect from atmospheric perturbations. We simulated the impact of volcanic ash aerosol on radiation with the new global to regional scale modelling system ICON-ART (ICOsahedral Nonhydrostatic - Aerosols and Reactive Trace gases; Rieger et al., 2015). Within ICON-ART the radiative fluxes and cooling rates are calculated with the RRTM (Rapid Radiative Transfer Model; Mlawer et al., 1997) for 30 longwave and shortwave bands. To determine the optical properties of the prognostic ash aerosol, Mie calculations were conducted for a compilation of ash refractive indices. We obtain a significant change in 2 m temperature of up to several Kelvin for the Puyehue-Cordon Caulle eruption in 2011. In addition to the temperature effect the atmospheric stability is modified and as a consequence the ash concentrations. The temperature effect during the Eyjafjallajökull eruption in 2010 over Europe is much less pronounced. Nevertheless, we are able to show the impact of volcanic ash on the state of the atmosphere by this eruption.

  4. North Atlantic Aerosol Single Scattering Albedos: TARFOX and ACE-2 Results and Their Relation to Radiative Effects Derived from Satellite Optical Depths

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Redemann, J.; Quinn, P. K.; Carrico, C. M.; Rood, M. J.

    2000-01-01

    Bergstrom and Russell estimated direct solar radiative flux changes caused by atmospheric aerosols over the mid-latitude North Atlantic Ocean under cloud-free and cloudy conditions. They excluded African dust aerosols, primarily by restricting calculations to latitudes 25-60 N. As inputs they used midvisible aerosol optical depth (AOD) maps derived from AVHRR satellite measurements and aerosol intensive properties determined primarily in the 1996 IGAC Troposheric Aerosol Radiative Forcing Observational Experiment (TARFOX). Those aerosol intensive properties, which included optical depth wavelength dependence and spectra of single scattering albedo (SSA) and scattering asymmetry parameter, were also checked against initial properties from the 1997 North Atlantic Aerosol Characterization Experiment (ACE 2). Bergstrom and Russell investigated the sensitivity of their derived flux changes to assumed input parameters, including midvisible AOD, SSA, and scattering asymmetry parameter. Although the sensitivity of net flux change at the tropopause to SSA was moderate over the ocean (e.g., a SSA uncertainty of 0.07 produced a flux-change uncertainty of 21%), the sensitivity over common land surfaces can be much larger. Also, flux changes within and below the aerosol layer, which affect atmospheric stability, heating rates, and cloud formation and persistence, are quite sensitive to aerosol SSA. Therefore, this paper focuses on the question: "What have we learned from TARFOX and ACE 2 regarding aerosol single scattering albedo?" Three techniques were used in TARFOX to determine midvisible SSA. One of these derived SSA as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from aerosol properties. Another technique combined airborne measurements of aerosol scattering and absorption by nephelometer and absorption photometer. A third technique obtained SSA from best-fit complex refractive indices derived by comparing

  5. New Satellite Measurements of Aerosol Direct Radiative Forcing from MODIS, MISR, and POLDER

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2000-01-01

    New set of satellites, MODIS and MISR launched on EOS-Terra and POLDER launched on ADEOS-1, and scheduled for ADEOS-II and PARASOL in orbit with EOS-AQUA, open exciting opportunities to measure aerosol and their radiative forcing of climate. Each of these instruments has a different approach to invert remote sensing data to derive the aerosol properties. MODIS is using wide spectral range 0.47-2.1 micron. MISR is using narrower spectral range (0.44 to 0.87 micron) but observing the same spot from 9 different angles along the satellite track. POLDER using similar wavelengths, uses two dimensional view with a wide angle optics and adds polarization to the inversion process. Among these instruments, we expect to measure the global distribution of aerosol, to distinguish small pollution particles from large particles from deserts and ocean spray. We shall try to measure the aerosol absorption of solar radiation, and their refractive index that indicates the effect of liquid water on the aerosol size and interaction with sunlight. The radiation field measured by these instruments in variety of wavelengths and angles, is also used to derive the effect of the aerosol on reflection of sunlight spectral fluxes to space. When combined with flux measurements at the ground, it gives a complete characterization of the effect of aerosol on solar illumination, heating in the atmosphere and reflection to space.

  6. Evaluation of Aerosol Direct Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Laulainen, Nels S.; Easter, Richard C.; Wagener, Richard; Nemesure, Seth; Chapman, Elaine G.; Zhang, Yang; Leung, Lai-Yung R.

    2001-04-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). The treatment of water uptake in MIRAGE agrees with laboratory measurements for the aerosol components that have been measured. The simulated frequency of relative humidity near 100% is about twice that of European Center for Medium-range Weather Forecasts analyzed relative humidity. When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated aerosol optical depth agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for. Simulated optical depths are low over sites in Brazil during the biomass burning season and over sites in central Canada during the wildfire season, which can be attributed to limitations in the organic and black car bon emissions data used by MIRAGE. The simulated aerosol optical depths are mostly within a factor of two of satellite estimates, but MIRAGE simulates excessively high aerosol optical depths off the east coast of the US and China, and too little dust off the coast of West Africa and in the Arabian Sea. The simulated distribution of single-scatter albedo is consistent with the available in situ surface measurements. The simulated sensitivity of radiative forcing to aerosol optical depth is consistent with estimates from measurements where available. The simulated spatial distribution of aerosol radiance is broadly consistent with estimates from satellite measurements, but with the same errors as the aerosol optical depth. The simulated direct forcing is within the uncertainty of estimates from measurements in the North Atlantic.

  7. Aerosol Composition and Morphology during the 2005 Marine Stratus Radiation Aerosol and Drizzle Study

    SciTech Connect

    Berkowitz, Carl M.; Jobson, B Tom T.; Alexander, M. Lizabeth; Laskin, Alexander; Laulainen, Nels S.

    2005-12-01

    The composition and morphology of aerosols activated within cloud droplets relative to the properties of aerosols not activated is of central importance to studies directed at improved parameterization of the treatment of aerosols in large-scale models. These models have many applications, including evaluations of the impact of anthropogenic aerosols on climate. To further our understanding of these aerosol characteristics, scientists from the U.S. Department of Energy Atmospheric Science Program (ASP), joined forces with other participants of the Atmospheric Radiation Measurement (ARM) "Marine Stratus Radiation Aerosol and Drizzle Study" between July 4 and July 29, 2005, at Pt. Reyes, California. Observations from in situ aerosol instruments and from the ARM Mobile Facility will be combined in a first look at observations from this period. The in situ aerosol measurements included high time resolution data of size-resolved bulk composition (sulfate, nitrate, NH4, organics, etc.) and single particle analysis to determine elemental composition and morphology. A CCN counter was also deployed to measure the fraction of cloud droplet kernels that are CCN active over a range of super-saturations. Our presentation will partition measurements into periods of cloudy and cloud-free periods, and will also be partitioned between periods associated with northerly back trajectories that arrived at Pt. Reyes after passing along the Washington-Oregon coast, westerly oceanic trajectories and a very limited number of periods when the air flow appeared to be associated with urban areas to the south and southeast.

  8. Shortwave and longwave radiative forcings of aerosols depending on the vertical stratification of aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Oikawa, Eiji; Suzuki, Kentaroh; Nakajima, Teruyuki; Nishizawa, Tomoaki

    2017-02-01

    We investigate four scenarios for estimating shortwave (SW) and longwave (LW) direct aerosol radiative forcing (DARF) at the top of atmosphere (TOA) using the global data set of the vertical distributions for aerosols and clouds of CALIPSO and CloudSat Level 2 products. One scenario is clear-sky (cloud-free) condition and three scenarios are cloudy-sky condition: the case that aerosols exists above clouds (AAC case), and the case that aerosols exist below high clouds such as cirrus, but without clouds below the aerosol layers (ABC case), and the case that aerosols are not observed in cloudy-sky condition. In clear-sky and ABC cases, aerosols mainly scatter sunlight and SWDARFs show negative values, except for bright surfaces, such as desert regions and the North and South Poles. In AAC case, aerosols absorb the reflected light from underlying low-level clouds to TOA, so that SWDARF at TOA shows positive value. Mineral dust absorbs the Earth's radiation and LWDARF indicates strong positive over Saharan and Arabian deserts. The global mean values of SW plus LW DARFs are -2.77, -0.77, and -1.40 Wm-2 under clear-sky, cloudy-sky, and all-sky conditions.

  9. Aerosol types and radiative forcing estimates over East Asia

    NASA Astrophysics Data System (ADS)

    Bhawar, Rohini L.; Lee, Woo-Seop; Rahul, P. R. C.

    2016-09-01

    Using the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data sets along with the CSIRO-MK 3.6.0 model simulations, we analyzed the aerosol optical depth (AOD) variability during March-May (MAM), June-August (JJA) along with their annual mean variability over East Asia for the period 2006-2012. The CALIPSO measurements correlated well with the MODIS measurements and the CSIRO-MK 3.6.0 model simulations over the spatial distribution patterns of the aerosols, but CALIPSO underestimated the magnitudes of the AOD. Maximum smoke aerosol loading is observed to occur during JJA, as a result of wind transport from Southern China while dust loading dominated during MAM via the transport from desert region. The vertical distribution profiles revealed that there is uniform distribution of smoke aerosols during both MAM and JJA, only differing at the altitude at which they peak; while the dust aerosols during MAM showed a significant distribution from the surface to 10 km altitude and JJA was marked with lower dust loading at the same altitudes. Both dust and smoke aerosols warm the atmosphere in MAM but due to the absorbing nature of smoke aerosols, they cause considerable cooling at the surface which is double when compared to the dust aerosols. The top of the atmosphere aerosol radiative forcing (ARF) due to smoke and dust aerosols is positive in MAM which indicates warming over East Asia. During MAM a consistent declining trend of the surface ARF due to smoke aerosols persisted over the last three decades as conspicuously evidenced from model analysis; the decline is ∼10 W/m2 from 1980 to 2012.

  10. Host Model Uncertainties in Aerosol Radiative Forcing Estimates: Results from the AeroCom Prescribed Intercomparison Study

    SciTech Connect

    Stier, Phillip; Schutgens, Nick A.; Bellouin, N.; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven J.; Huneeus, N.; Kinne, Stefan; Lin, G.; Ma, Xiaoyan; Myhre, G.; Penner, J. E.; Randles, Cynthia; Samset, B. H.; Schulz, M.; Takemura, T.; Yu, Fangqun; Yu, Hongbin; Zhou, Cheng

    2013-03-20

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as mea- sure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties,simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 Wm-2 and the inter-model standard deviation is 0.70 Wm-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 Wm-2, and the standard deviation increases to 1.21 W-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative in the AeroCom Direct Effect experiment, demonstrates that host model uncertain- ties could explain about half of the overall sulfate forcing diversity of 0.13 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained.

  11. Modeling the Relationships Between Aerosol Properties and the Direct and Indirect Effects of Aerosols on Climate

    NASA Technical Reports Server (NTRS)

    Toon, Owen B.

    1994-01-01

    Aerosols may affect climate directly by scattering and absorbing visible and infrared energy, They may also affect climate indirectly by modifying the properties of clouds through microphysical processes, and by altering abundances of radiatively important gases through heterogeneous chemistry. Researchers understand which aerosol properties control the direct effect of aerosols on the radiation budget. Unfortunately, despite an abundance of data on certain types of aerosols, much work remains to be done to determine the values of these properties. For instance we have little idea about the global distribution, seasonal variation, or interannual variability of the aerosol optical depth. Also we do not know the visible light absorption properties of tropical aerosols which may contain much debris from slash and burn agriculture. A positive correlation between aerosol concentrations and albedos of marine stratus clouds is observed, and the causative microphysics is understood. However, models suggest that it is difficult to produce new particles in the marine boundary layer. Some modelers have suggested that the particles in the marine boundary layer may originate in the free troposphere and be transported into the boundary layer. Others argue that the aerosols are created in the marine boundary layer. There are no data linking aerosol concentration and cirrus cloud albedo, and models suggest cirrus properties may not be very sensitive to aerosol abundance. There is clear evidence of a radiatively significant change in the global lower stratospheric ozone abundance during the past few decades. These changes are caused by heterogeneous chemical reactions occurring on the surfaces of particles. The rates of these reactions depend upon the chemical composition of the particles. Although rapid advances in understanding heterogeneous chemistry have been made, much remains to be done.

  12. Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-06-17

    Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  13. How Well Will MODIS Measure Top of Atmosphere Aerosol Direct Radiative Forcing?

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Levin, Zev; Ghan, Stephen; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The new generation of satellite sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in our estimates of aerosol radiative forcing at the top of the atmosphere. Satellite remote sensing detects aerosol optical thickness with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. We use the monthly mean results of two global aerosol transport models to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87-94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal to noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.5 to 2.2 Wm-2 (21-56%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. The range of values depend on which estimate of MODIS retrieval uncertainty is used, either the theoretical calculation (upper bound) or the empirical estimate (lower bound). Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.

  14. Direct and semidirect aerosol effects of Southern African biomass burning aerosol

    SciTech Connect

    Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.

    2011-06-21

    The direct and semi-direct radiative effects of biomass burning aerosols from Southern African fires during July-October are investigated using 20 year runs of the Community Atmospheric Model (CAM) coupled to a slab ocean model. The aerosol optical depth is constrained using observations in clear skies from MODIS and for aerosol layers above clouds from CALIPSO. Over the ocean, where the absorbing biomass burning aerosol layers are primarily located above cloud, negative top of atmosphere (TOA) semi-direct radiative effects associated with increased low cloud cover dominate over a weaker positive all-sky direct radiative effect (DRE). In contrast, over the land where the aerosols are often below or within cloud layers, reductions in cloud liquid water path (LWP) lead to a positive semi-direct radiative effect that dominates over a near-zero DRE. Over the ocean, the cloud response can be understood as a response to increased lower tropospheric stability (LTS) which is caused both by aerosol absorptive warming in overlying layers and surface cooling in response to direct aerosol forcing. The ocean cloud changes are robust to changes in the cloud parameterization (removal of the hard-wired dependence of clouds on LTS), suggesting that they are physically realistic. Over land where cloud cover changes are minimal, decreased LWP is consistent with weaker convection driven by increased static stability. Over the entire region the overall TOA radiative effect from the biomass burning aerosols is almost zero due to opposing effects over the land and ocean. However, the surface forcing is strongly negative requiring a reduction in precipitation. This is primarily realized through reductions in convective precipitation on both the southern and northern flanks of the convective precipitation region spanning the equatorial rainforest and the ITCZ in the southern Sahel. The changes are consistent with the low-level aerosol forced cooling pattern. The results highlight the

  15. Study of Aerosol/Cloud/Radiation Interactions over the ARM SGP Site

    SciTech Connect

    Chuang, C; Chin, S

    2006-03-14

    While considerable advances in the understanding of atmospheric processes and feedbacks in the climate system have led to a better representation of these mechanisms in general circulation models (GCMs), the greatest uncertainty in predictability of future climate arises from clouds and their interactions with radiation. To explore this uncertainty, cloud resolving model has been evolved as one of the main tools for understanding and testing cloud feedback processes in climate models, whereas the indirect effects of aerosols are closely linked with cloud feedback processes. In this study we incorporated an existing parameterization of cloud drop concentration (Chuang et al., 2002a) together with aerosol prediction from a global chemistry/aerosol model (IMPACT) (Rotman et al., 2004; Chuang et al., 2002b; Chuang et al., 2005) into LLNL cloud resolving model (Chin, 1994; Chin et al., 1995; Chin and Wilhelmson, 1998) to investigate the effects of aerosols on cloud/precipitation properties and the resulting radiation fields over the Southern Great Plains.

  16. Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations

    NASA Astrophysics Data System (ADS)

    Su, Wenying; Loeb, Norman G.; Schuster, Gregory L.; Chin, Mian; Rose, Fred G.

    2013-01-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon Moderate Resolution Imaging Spectroradiometer (MODIS) and Model for Atmospheric Transport and Chemistry (MATCH) assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF) by assuming that the anthropogenic fractions from GOCART are representative. The global (60°N~60°S) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the top of the atmosphere (TOA), 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are

  17. Sensitivity analysis of aerosol direct radiative forcing in ultraviolet visible wavelengths and consequences for the heat budget

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, N.; Katsoulis, B.; Vardavas, I.

    2004-09-01

    A series of sensitivity studies were performed with a spectral radiative transfer model using aerosol data from the Global Aerosol Data Set (GADS, data available at aerosol/aerosol.htm">http://www.meteo.physik.uni-muenchen.de/strahlung/aerosol/aerosol.htm) in order to investigate and quantify the relative role of key climatic parameters on clear-sky ultraviolet visible direct aerosol radiative forcing at the top of the atmosphere (TOA), within the atmosphere and at the Earth's surface. The model results show that relative humidity and aerosol single-scattering albedo are the most important climatic parameters that determine aerosol forcing at the TOA and at the Earth's surface and atmosphere, respectively. Relative humidity exerts a non-linear positive radiative effect, i.e. increasing humidity amplifies the magnitude of the forcing in the atmosphere and at the surface. Our model sensitivity studies show that increasing relative humidity by 10%, in relative terms, increases the aerosol forcing by factors of 1.42 at the TOA, 1.02 in the atmosphere and 1.17 at the surface. An increase in aerosol single-scattering albedo by 10%, in relative terms, increased the aerosol forcing at the TOA by 1.29, while it decreased the forcing in the atmosphere and at the surface by factors of 0.2 and 0.69, respectively. Our results show that an increase in relative humidity enhances the planetary cooling effect of aerosols (increased reflection of solar radiation to space) over oceans and low-albedo land areas, whilst over polar regions and highly reflecting land surfaces the warming effect of aerosols changes to a cooling effect. Thus, global warming and an associated increase in relative humidity would lead to enhanced aerosol cooling worldwide. The sensitivity results also demonstrate that an increase in surface albedo due to

  18. The Spatial and Temporal Heterogeneity of Precipitation and Aerosol-Cloud Radiative Forcing Uncertainty in Climatically Important Regions

    NASA Astrophysics Data System (ADS)

    Regayre, L.; Pringle, K.; Lee, L.; Booth, B.; Browse, J.; Mann, G.; Woodhouse, M. T.; Reddington, C.; Carslaw, K. S.; Rap, A.

    2014-12-01

    Aerosol-cloud radiative forcing and precipitation sensitivities are quantified within climatically important regions, where surface temperatures and moisture availability are thought to influence large-scale climatic effects. The sensitivity of precipitation and the balance of incoming and outgoing radiation to uncertain historical aerosol emission fluxes and aerosol-cloud parametrisations are quantified and their climatic importance considered. The predictability of monsoon onset and intensity, position of the inter-tropical convergence zone, tropical storm frequency and intensity, heat transport to the Arctic and changes in the mode of the El Niño Southern Oscillation are all limited by the parametric uncertainties examined here. Precipitation and aerosol-cloud radiative forcing sensitivities are found to be both spatially and temporally heterogeneous. Statistical analysis highlights aspects of aerosol-climate research and model development that should be prioritised in order to reduce the impact of uncertainty in regional precipitation and aerosol-cloud forcing on near-term climate projections.

  19. Effect of Dust and Anthropogenic Aerosols on Columnar Aerosol Optical Properties over Darjeeling (2200 m asl), Eastern Himalayas, India

    PubMed Central

    Chatterjee, Abhijit; Ghosh, Sanjay K.; Adak, Anandamay; Singh, Ajay K.; Devara, Panuganti C. S.; Raha, Sibaji

    2012-01-01

    Background The loading of atmospheric particulate matter (aerosol) in the eastern Himalaya is mainly regulated by the locally generated anthropogenic aerosols from the biomass burning and by the aerosols transported from the distance sources. These different types of aerosol loading not only affect the aerosol chemistry but also produce consequent signature on the radiative properties of aerosol. Methodology/Principal Findings An extensive study has been made to study the seasonal variations in aerosol components of fine and coarse mode aerosols and black carbon along with the simultaneous measurements of aerosol optical depth on clear sky days over Darjeeling, a high altitude station (2200 masl) at eastern Himalayas during the year 2008. We observed a heavy loading of fine mode dust component (Ca2+) during pre-monsoon (Apr – May) which was higher by 162% than its annual mean whereas during winter (Dec – Feb), the loading of anthropogenic aerosol components mainly from biomass burning (fine mode SO42− and black carbon) were higher (76% for black carbon and 96% for fine mode SO42−) from their annual means. These high increases in dust aerosols during pre-monsoon and anthropogenic aerosols during winter enhanced the aerosol optical depth by 25 and 40%, respectively. We observed that for every 1% increase in anthropogenic aerosols, AOD increased by 0.55% during winter whereas for every 1% increase in dust aerosols, AOD increased by 0.46% during pre-monsoon. Conclusion/Significance The natural dust transport process (during pre-monsoon) plays as important a role in the radiation effects as the anthropogenic biomass burning (during winter) and their differential effects (rate of increase of the AOD with that of the aerosol concentration) are also very similar. This should be taken into account in proper modeling of the atmospheric environment over eastern Himalayas. PMID:22792264

  20. Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ramaswamy, V.; Ginoux, Paul; Ming, Yi; Horowitz, Larry W.

    2012-10-01

    The direct radiative forcing of the climate system includes effects due to scattering and absorbing aerosols. This study explores how important physical climate characteristics contribute to the magnitudes of the direct radiative forcings (DRF) from anthropogenic sulfate, black carbon, and organic carbon. For this purpose, we employ the GFDL CM2.1 global climate model, which has reasonable aerosol concentrations and reconstruction of twentieth-century climate change. Sulfate and carbonaceous aerosols constitute the most important anthropogenic aerosol perturbations to the climate system and provide striking contrasts between primarily scattering (sulfate and organic carbon) and primarily absorbing (black carbon) species. The quantitative roles of cloud coverage, surface albedo, and relative humidity in governing the sign and magnitude of all-sky top-of-atmosphere (TOA) forcings are examined. Clouds reduce the global mean sulfate TOA DRF by almost 50%, reduce the global mean organic carbon TOA DRF by more than 30%, and increase the global mean black carbon TOA DRF by almost 80%. Sulfate forcing is increased by over 50% as a result of hygroscopic growth, while high-albedo surfaces are found to have only a minor (less than 10%) impact on all global mean forcings. Although the radiative forcing magnitudes are subject to uncertainties in the state of mixing of the aerosol species, it is clear that fundamental physical climate characteristics play a large role in governing aerosol direct radiative forcing magnitudes.

  1. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  2. Aerosol Indirect Effects on Cirrus Clouds in Global Aerosol-Climate Models

    NASA Astrophysics Data System (ADS)

    Liu, X.; Zhang, K.; Wang, Y.; Neubauer, D.; Lohmann, U.; Ferrachat, S.; Zhou, C.; Penner, J.; Barahona, D.; Shi, X.

    2015-12-01

    Cirrus clouds play an important role in regulating the Earth's radiative budget and water vapor distribution in the upper troposphere. Aerosols can act as solution droplets or ice nuclei that promote ice nucleation in cirrus clouds. Anthropogenic emissions from fossil fuel and biomass burning activities have substantially perturbed and enhanced concentrations of aerosol particles in the atmosphere. Global aerosol-climate models (GCMs) have now been used to quantify the radiative forcing and effects of aerosols on cirrus clouds (IPCC AR5). However, the estimate uncertainty is very large due to the different representation of ice cloud formation and evolution processes in GCMs. In addition, large discrepancies have been found between model simulations in terms of the spatial distribution of ice-nucleating aerosols, relative humidity, and temperature fluctuations, which contribute to different estimates of the aerosol indirect effect through cirrus clouds. In this presentation, four GCMs with the start-of-the art representations of cloud microphysics and aerosol-cloud interactions are used to estimate the aerosol indirect effects on cirrus clouds and to identify the causes of the discrepancies. The estimated global and annual mean anthropogenic aerosol indirect effect through cirrus clouds ranges from 0.1 W m-2 to 0.3 W m-2 in terms of the top-of-the-atmosphere (TOA) net radiation flux, and 0.5-0.6 W m-2 for the TOA longwave flux. Despite the good agreement on global mean, large discrepancies are found at the regional scale. The physics behind the aerosol indirect effect is dramatically different. Our analysis suggests that burden of ice-nucleating aerosols in the upper troposphere, ice nucleation frequency, and relative role of ice formation processes (i.e., homogeneous versus heterogeneous nucleation) play key roles in determining the characteristics of the simulated aerosol indirect effects. In addition to the indirect effect estimate, we also use field campaign

  3. Simulating aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe haze conditionsin winter

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Wang, Y.; Hao, J.

    2015-03-01

    The aerosol-radiation-cloud feedbacks on meteorology and air quality over eastern China under severe winter haze conditions in January 2013 are simulated using the fully coupled online Weather Research and Forecasting/Chemistry (WRF-Chem) model. Three simulation scenarios including different aerosol configurations are undertaken to distinguish the aerosol's radiative (direct and semi-direct) and indirect effects. Simulated spatial and temporal variations of PM2.5 are generally consistent with surface observations, with a mean bias of -18.9 μg m-3 (-15.0%) averaged over 71 big cities in China. Comparisons between different scenarios reveal that aerosol radiative effects (direct effect and semi-direct effects) result in reductions of downward shortwave flux at the surface, 2 m temperature, 10 m wind speed and planetary boundary layer (PBL) height by up to 84.0 W m-2, 3.2°C, 0.8 m s-1, and 268 m, respectively. The simulated impact of the aerosol indirect effects is comparatively smaller. Through reducing the PBL height and stabilizing lower atmosphere, the aerosol effects lead to increases in surface concentrations of primary pollutants (CO and SO2). Surface O3 mixing ratio is reduced by up to 6.9 ppb (parts per billion) due to reduced incoming solar radiation and lower temperature, while the aerosol feedbacks on PM2.5 mass concentrations show some spatial variations. Comparisons of model results with observations show that inclusion of aerosol feedbacks in the model significantly improves model performance in simulating meteorological variables and improves simulations of PM2.5 temporal distributions over the North China Plain, the Yangtze River delta, the Pearl River delta, and central China. Although the aerosol-radiation-cloud feedbacks on aerosol mass concentrations are subject to uncertainties, this work demonstrates the significance of aerosol-radiation-cloud feedbacks for real-time air quality forecasting under haze conditions.

  4. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  5. An initial assessment of the impact of Australian aerosols on surface ultraviolet radiation and implications for human health

    NASA Astrophysics Data System (ADS)

    Chee, C. Y.; Mills, F. P.

    2010-08-01

    Aerosols can have significant influence on surface radiation, and the intense surface ultraviolet radiation Australia experiences contributes to Australia's high incidence rates for related human diseases. Aerosol properties, such as total column aerosol optical depth, have been measured over several years for varying lengths of time at sites across Australia using sunphotometers. Statistical analysis of the average daily aerosol optical depth over sites near Alice Springs, Canberra, Darwin, and Perth provides one measure of the annual atmospheric loading of aerosols over these sites. The sunphotometers used at these sites do not make measurements in the UV-B spectral region and have only one channel in the UV-A spectral region, the regions of most interest for assessing human health impact. Consequently, model calculations using standard aerosol types have been used to make an initial estimate of the impact of the aerosols found over these four sites on surface ultraviolet radiation. The aerosol loading is at times sufficient to significantly reduce the surface ultraviolet radiation, but few such days occur each year. The annual average effect of aerosols on surface ultraviolet radiation, thus, appears to be small compared to lifestyle factors, such as clothing and use of sunscreen.

  6. Volcanic aerosols: Chemistry, evolution, and effects

    NASA Astrophysics Data System (ADS)

    Turco, Richard

    1991-02-01

    Stratospheric aerosols have been the subject of scientific speculation since the 1880s, when the powerful eruption of Krakatoa attracted worldwide attention to the upper atmosphere through spectacular optical displays. The presence of a permanent tenuous dust layer in the lower stratosphere was postulated in the 1920s following studies of the twilight glow. Junge collected the first samples of these 'dust' particles and demonstrated that they were actually composed of sulfates, most likely concentrated sulfuric acid (Junge and Manson, 1961; Junge, 1963). Subsequent research has been spurred by the realization that stratospheric particles can influence the surface climate of earth through their effects on atmospheric radiation. Such aerosols can also influence, through chemical and physical effects, the trace composition of the atmosphere, ozone concentrations, and atmospheric electrical properties. The properties of stratospheric aerosols (both the background particles and those enhanced by volcanic eruptions) were measured in situ by balloon ascents and high altitude aircraft sorties. The aerosols were also observed remotely from the ground and from satellites using both active (lidar) and passive (solar occultation) techniques (remote sensing instruments were carried on aircraft and balloon platforms as well). In connection with the experimental work, models were developed to test theories of particle formation and evolution, to guide measurement strategies, to provide a means of connecting laboratory and field data, and to apply the knowledge gained to answer practical questions about global changes in climate, depletion of the ozone layer, and related environmental problems.

  7. Volcanic aerosols: Chemistry, evolution, and effects

    NASA Technical Reports Server (NTRS)

    Turco, Richard

    1991-01-01

    Stratospheric aerosols have been the subject of scientific speculation since the 1880s, when the powerful eruption of Krakatoa attracted worldwide attention to the upper atmosphere through spectacular optical displays. The presence of a permanent tenuous dust layer in the lower stratosphere was postulated in the 1920s following studies of the twilight glow. Junge collected the first samples of these 'dust' particles and demonstrated that they were actually composed of sulfates, most likely concentrated sulfuric acid (Junge and Manson, 1961; Junge, 1963). Subsequent research has been spurred by the realization that stratospheric particles can influence the surface climate of earth through their effects on atmospheric radiation. Such aerosols can also influence, through chemical and physical effects, the trace composition of the atmosphere, ozone concentrations, and atmospheric electrical properties. The properties of stratospheric aerosols (both the background particles and those enhanced by volcanic eruptions) were measured in situ by balloon ascents and high altitude aircraft sorties. The aerosols were also observed remotely from the ground and from satellites using both active (lidar) and passive (solar occultation) techniques (remote sensing instruments were carried on aircraft and balloon platforms as well). In connection with the experimental work, models were developed to test theories of particle formation and evolution, to guide measurement strategies, to provide a means of connecting laboratory and field data, and to apply the knowledge gained to answer practical questions about global changes in climate, depletion of the ozone layer, and related environmental problems.

  8. North Atlantic Aerosol Radiative Impacts Based on Satellite Measurements and Aerosol Intensive Properties from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Bergstrom, Robert W.; Schmid, B.; Livingston, J. M.

    2000-01-01

    We estimate the impact of North Atlantic aerosols on the net short-wave flux at the tropopause by combining satellite-derived aerosol optical depth (AOD) maps with model aerosol properties determined via closure analyses in TARFOX and ACE 2. We exclude African dust, primarily by restricting latitudes to 25-60 N. The analyses use in situ aerosol composition measurements and air- and ship-borne sun-photometer measurements of AOD spectra. The aerosol model yields computed flux sensitivities (dFlux/dAOD) that agree with measurements by airborne flux radiometers in TARFOX. Its midvisible single-scattering albedo is 0.9. which is in the range obtained from in situ measurements of scattering and absorption in both TARFOX and ACE 2. Combining satellite-derived AOD maps with the aerosol model yields maps of 24-hour average net radiative flux changes. For simultaneous AVHRR, radiance measurements exceeded the sunphotometer AODs by about 0.04. However. shipboard sunphotometer and AVHRR AODs agreed Within 0.02 for data acquired during satellite overflights on two other days. We discuss attempts to demonstrate column closure within the MBL by comparing shipboard sunphotometer AODs and values calculated from simultaneous shipboard in-situ aerosol size distribution measurements. These comparisons were mostly unsuccessful, but they illustrate the difficulties inherent in this type of closure analysis. Specifically, AODs derived from near-surface in-situ size distribution measurements are extremely sensitive to the assumed hygroscopic growth model that itself requires an assumption of particle composition as a function of height and size, to the radiosonde-measured relative humidity, and to the vertical profile of particle number. We investigate further the effects of hygroscopic particle growth within the MBL by using shipboard lidar aerosol backscatter profiles together with the sunphotometer AOD.

  9. Aerosol effects and corrections in the Halogen Occultation Experiment

    NASA Technical Reports Server (NTRS)

    Hervig, Mark E.; Russell, James M., III; Gordley, Larry L.; Daniels, John; Drayson, S. Roland; Park, Jae H.

    1995-01-01

    The eruptions of Mt. Pinatubo in June 1991 increased stratospheric aerosol loading by a factor of 30, affecting chemistry, radiative transfer, and remote measurements of the stratosphere. The Halogen Occultation Experiment (HALOE) instrument on board Upper Atmosphere Research Satellite (UARS) makes measurements globally for inferring profiles of NO2, H2O, O3, HF, HCl, CH4, NO, and temperature in addition to aerosol extinction at five wavelengths. Understanding and removing the aerosol extinction is essential for obtaining accurate retrievals from the radiometer channels of NO2, H2O and O3 in the lower stratosphere since these measurements are severely affected by contaminant aerosol absorption. If ignored, aerosol absorption in the radiometer measurements is interpreted as additional absorption by the target gas, resulting in anomalously large mixing ratios. To correct the radiometer measurements for aerosol effects, a retrieved aerosol extinction profile is extrapolated to the radiometer wavelengths and then included as continuum attenuation. The sensitivity of the extrapolation to size distribution and composition is small for certain wavelength combinations, reducing the correction uncertainty. The aerosol corrections extend the usable range of profiles retrieved from the radiometer channels to the tropopause with results that agree well with correlative measurements. In situations of heavy aerosol loading, errors due to aerosol in the retrieved mixing ratios are reduced to values of about 15, 25, and 60% in H2O, O3, and NO2, respectively, levels that are much less than the correction magnitude.

  10. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    USGS Publications Warehouse

    Guo, S.; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  11. Global profiles of the direct aerosol effect using vertically resolved aerosol data

    NASA Astrophysics Data System (ADS)

    Korras Carraca, Marios Bruno; Pappas, Vasilios; Matsoukas, Christos; Hatzianastassiou, Nikolaos; Vardavas, Ilias

    2014-05-01

    Atmospheric aerosols, both natural and anthropogenic, can cause climate change through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In general, aerosols cause cooling of the surface and the planet, while they warm the atmosphere due to scattering and absorption of incoming solar radiation. The importance of vertically resolved direct radiative effect (DRE) and heating/cooling effects of aerosols is strong, while large uncertainties still lie with their magnitudes. In order to be able to quantify them throughout the atmosphere, a detailed vertical profile of the aerosol effect is required. Such data were made available recently by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIOP is the first polarization lidar to fly in space and has been acquiring unique data on aerosols and clouds since June 2006. The aim of this study is to investigate both the vertically resolved geographic and seasonal variation of the DRE due to aerosols. The vertical profile of DRE under all-sky and clear-sky conditions is computed using the deterministic spectral radiative transfer model FORTH. From the DRE, the effect on atmospheric heating/cooling rate profiles due to aerosols can also be derived. We use CALIOP Level 2-Version 3 Layer aerosol optical depth data as input to our radiation transfer model, for a period of 3 complete years (2007-2009). These data are provided on a 5 km horizontal resolution and in up to 8 vertical layers and have been regridded on our model horizontal and vertical resolutions. We use cloud data from the International Satellite Cloud Climatology Project (ISCCP), while the aerosol asymmetry factor and single scattering albedo are taken from the Global Aerosol Data Set (GADS). The model computations are performed on a monthly, 2.5°× 2.5° resolution on global scale, at 40

  12. Climate effects of anthropogenic aerosols over East Asia based on modeling study

    NASA Astrophysics Data System (ADS)

    Mukai, Makiko

    The increasing emission of anthropogenic aerosols causes serious air pollution episodes and various effects on the climate by the aerosols interacting with the radiation budget by directly absorbing and scattering the solar radiation, and by them indirectly modifying the optical properties and lifetimes of clouds. In East Asia anthropogenic aerosol concentrations are rapidly increasing. It is therefore necessary to evaluate the sensitivity of anthropogenic aerosols upon the radiative forcing in this region. For this purpose we utilize an atmospheric general circulation model (AGCM) with an aerosol transport and radiation model and an ocean mixed-layer model. The model in this study was a three-dimensional aerosol transport-radiation model (SPRINTARS), driven by the AGCM developed by CCSR (Center for Climate System Research), NIES (National Institute for Environmental Studies), and FRCGC (Frontier Research Center for Global Change). This model incorporates sulfate, carbonaceous, sea salt, and mineral dust aerosols, the first three of which are assumed to acts as cloud condensation nuclei that generate cloud droplets whose number increases with the number of nuclei. We assumed sulfate and carbonaceous aerosol from fuel burning for anthropogenic aerosol. And the model simulations of equilibrium experiments were performed to investigate the impact of anthropogenic aerosols based on present-day emission data and the preindustrial-era emission data. Our simulation results showed that copious anthropogenic aerosol loading causes significant decrease in the surface downward shortwave radiation flux (SDSWRF), which indicates that a direct effect of aerosols has the greatest influence on the surface radiation. It is found from our model simulations that low-level clouds increase but convective clouds decrease due to reduced convective activity caused by surface cooling when anthropogenic aerosol increases. It was also found that the contributions of aerosols to the radiation

  13. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  14. Irreducible 3D Radiative Transfer Effects in Multi-angle/Multi-spectral Radio-Polarimetric Signals (Not Noise!) from a Mixture of Clouds and Aerosol in a Single Large-Footprint Pixel

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Qu, Z.; Emde, C.; Xu, F.; Marshak, A.

    2013-12-01

    Although the Glory satellite mission failed at launch, the atmospheric observation strategy implemented in its Aerosol Polarization Sensor (APS) is alive and well since it is at least possible that another one will be built and launched. This strategy is based on APS's along-track scanning spectro-polarimetric measurement system that captures the three main Stokes vector elements (I,Q,U) at a large number (>200) viewing directions for 9 wavelengths emanating from a single pixel that is ~7 km in diameter at nadir and stretches into a ~7 x 20 km^2 ellipse at the most oblique views to be considered (~70 degrees). Two cloud cameras (CCs) were also onboard Glory to provide spatial context. If the relatively large APS footprint is cloud-free or fully-cloudy, then a 1D vector radiative transfer (RT) model is adequate for predicting the APS signals and, upon iteration over its input parameters, aerosol and cloud property retrievals are expected to be of high quality. And this level of accuracy is indeed required to make a real breakthrough in climate modeling where the radiative properties of aerosols and clouds remain one of the main sources of uncertainty. However, the CCs will often show that the APS's field-of-view is a spatially complex cloud scene, but where we are mostly interested in the ambient aerosols. Moreover, it is precisely these aerosols in contact with clouds that will influence their microphysical and optical properties, leading to the manifold indirect aerosol effects on the climate system that need to be far better understood in order to improve their representation in climate models. Therefore, the research presented here addresses the challenge of characterizing simultaneously aerosols and clouds in a single APS observation. Access to polarization can, at least in principle, be used to separate clouds and aerosols using the cloud-bow directions that will often be sampled by APS. In practice, however, we need to assess the extent of 3D polarized RT

  15. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review

    NASA Astrophysics Data System (ADS)

    Haywood, James; Boucher, Olivier

    2000-11-01

    This paper reviews the many developments in estimates of the direct and indirect global annual mean radiative forcing due to present-day concentrations of anthropogenic tropospheric aerosols since Intergovernmental Panel on Climate Change [1996]. The range of estimates of the global mean direct radiative forcing due to six distinct aerosol types is presented. Additionally, the indirect effect is split into two components corresponding to the radiative forcing due to modification of the radiative properties of clouds (cloud albedo effect) and the effects of anthropogenic aerosols upon the lifetime of clouds (cloud lifetime effect). The radiative forcing for anthropogenic sulphate aerosol ranges from -0.26 to -0.82 W m-2. For fossil fuel black carbon the radiative forcing ranges from +0.16 W m-2 for an external mixture to +0.42 W m-2 for where the black carbon is modeled as internally mixed with sulphate aerosol. For fossil fuel organic carbon the two estimates of the likely weakest limit of the direct radiative forcing are -0.02 and -0.04 W m-2. For biomass-burning sources of black carbon and organic carbon the combined radiative forcing ranges from -0.14 to -0.74 W m-2. Estimates of the radiative forcing due to mineral dust vary widely from +0.09 to -0.46 W m-2; even the sign of the radiative forcing is not well established due to the competing effects of solar and terrestrial radiative forcings. A single study provides a very tentative estimate of the radiative forcing of nitrates to be -0.03 W m-2. Estimates of the cloud albedo indirect radiative forcing range from -0.3 to approximately -1.8 W m-2. Although the cloud lifetime effect is identified as a potentially important climate forcing mechanism, it is difficult to quantify in the context of the present definition of radiative forcing of climate change and current model simulations. This is because its estimation by general circulation models necessarily includes some level of cloud and water vapor feedbacks

  16. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Golaz, J.-C.; Mauzerall, D. L.

    2015-11-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80 % by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm day-1. However, when using a version of CM3 with reduced present-day aerosol radiative forcing (-1.0 W m-2), the global temperature increase for RCP8.5 is about 0.5 K, with similar magnitude decreases in other climate response parameters as well. Regionally and locally, climate impacts can be much larger than the global mean, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm day-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in

  17. Simultaneously Constraining Climate Sensitivity and Aerosol Radiative Forcing.

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny; Kaufmann, Robert K.

    2002-10-01

    conclusions, it was found that the simulated change of ocean heat content (over the 0-3000-m depth interval, during the period 1948-98) agrees well with the observed change in ocean heat content for climate sensitivity and aerosol forcing combinations that produce a good simulation of the observed temperature change during this time period, thereby validating the model uptake of heat by the oceans.Although the preferred T2× is 2°C in this study, it is possible to choose fossil and biomass aerosol forcing combinations (within the ranges given above) that produce comparable simulations of global mean and NH SH temperature variation after the 1880s for any T2× in the range 1.0°-5.0°C. However, and in common with other models, this model simulates much too large a drop in temperature during the 1880s (in response to the eruption of Mount Krakatau in 1883). As T2× ranges from 1.0° to 5.0°C, the simulated drop ranges from about 0.3° to about 0.7°C, compared to an observed change of about 0.2°C. On this basis, a lower T2× is preferred.Inasmuch as the model response to the 1991 eruption of Mount Pinatubo accords well with observations, especially for intermediate and high sensitivities, it may be that the estimated radiative forcing due to the eruption of Krakatau is too large or that there was a short-term negative feedback, dependent on conditions just before this eruption, which reduced the effective radiative forcing. If half the base case forcing is assumed for Krakatau only, the temperature decrease during the 1880s ranges from 0.2°C for T2× = 1°C (matching observations) to 0.3°C for T2× = 5°C (modestly in excess of observations). Thus, the volcanic radiative forcing during the 1880s, and the quality of the historical and proxy temperature records around this time, are critical data in discriminating between different climate sensitivities, inasmuch as a smaller volcanic forcing might permit

  18. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2006-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer

  19. WRF-Solar: Upgrading the WRF representation of the aerosol-cloud-radiation feedbacks in support of solar energy forecasting

    NASA Astrophysics Data System (ADS)

    Jimenez, P. A.; Haupt, S. E.; Hacker, J.; Dudhia, J.

    2015-12-01

    WRF-Solar is an upgraded version of the Weather Research and Forecasting (WRF) model aimed at improving solar power forecasting that provides a better representation of the aerosol-cloud-radiation feedbacks. Model developments include efficient numerical approaches to support operational forecasting and focus on particular feedbacks of the aerosol-cloud-radiation system: Aerosol-radiation feedbacks: A new parameterization of the aerosol direct effect was implemented to improve the representation of the aerosol variability. Cloud-aerosol feedbacks: The microphysics parameterization was upgraded to include water- and ice-nucleation aerosols. Cloud-radiation feedbacks: A shallow cumulus parameterization was implemented to connect sub-grid clouds to the radiation scheme. In addition, the microphysics parameterization provides the cloud droplet radius and ice crystal size to the radiation parameterizations to fully represent the first and second aerosol indirect effect. Initialization of the cloud field from infrared radiances recorded by satellites. The different components have been interconnected to provide a complete representation of the aerosol-cloud-radiation system and its feedbacks. In addition, new developments were introduced to output the diffuse and direct normal irradiance (DNI) at temporal resolutions only limited by the time step of the model. This presentation will provide an overview of the model physics packages upgraded for solar energy applications together with an assessment of different upgraded components. This includes the clear sky assessment wherein improvements of up to 58%, 76%, and 83% are found in global horizontal irradiance, DNI, and diffuse irradiance, respectively, compared to a standard version of the WRF model. The benefits of including a representation of the effects of unresolved clouds in the solar irradiance that largely reduce a positive bias in the model (~50W/m2). Finally, we will discuss an ongoing evaluation of the

  20. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    NASA Astrophysics Data System (ADS)

    García, O. E.; Díaz, J. P.; Expósito, F. J.; Díaz, A. M.; Dubovik, O.; Derimian, Y.; Dubuisson, P.; Roger, J.-C.

    2011-12-01

    The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the top (TOA) and at the bottom of atmosphere (BOA) modeled based on AERONET aerosol retrievals. In this study we have considered six main types of atmospheric aerosols: desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere. The ΔF averages obtained vary from -148 ± 44 Wm-2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in Central Africa and -42 ± 22 Wm-2 (AOD = 0.86 ± 0.51) at the TOA for the pure mineral dust also in this region up to -6 ± 3 Wm-2 and -4 ± 2 Wm-2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system, contributing to the greenhouse gas effect.

  1. The Effects of Transpacific Transported Aerosol on Clouds in California

    NASA Astrophysics Data System (ADS)

    Suski, K.; Creamean, J.; Rosenfeld, D.; Cazorla, A.; DeMott, P. J.; Sullivan, R. C.; White, A. B.; Ralph, F. M.; Cahill, J.; Tomlinson, J. M.; Chand, D.; Schmid, B.; Prather, K. A.

    2012-12-01

    Atmospheric aerosols are frequently lofted high into the atmosphere and can travel large distances within several days. Long-range transported aerosols can have large impacts on radiative and microphysical cloud properties and can affect precipitation on both regional and global scales. Research flights were conducted out of Sacramento, California onboard the DOE G-1 aircraft during the CalWater 2011 flight campaign, which aimed to understand the effects of aerosols on clouds and precipitation in California. To investigate aerosol effects on clouds, measurements of cloud microphysical properties were coupled with an aircraft aerosol time-of-flight mass spectrometer (A-ATOFMS), which characterized the chemical composition of aerosols and cloud residues. California Central Valley pollution aerosols were hypothesized to have a large impact on orographic clouds in the California Sierra Nevada Mountains; however transpacific transported aerosols were observed in cloud residues on several flights. Our observations indicate that dust from Asia, Africa, and the Middle East initiated ice formation in upper level clouds, while Asian soot from biomass burning served as cloud condensation nuclei in clouds with large concentrations of small liquid droplets. Previous work has linked large concentrations of small droplets to suppression of orographic precipitation, while ice formation has been shown to enhance precipitation. Therefore, the overall impact of these competing effects on precipitation in the Sierra Nevada is highly uncertain. The varying impacts of long-range transported aerosols on clouds and precipitation in California are presented.

  2. The effect of subtropical aerosol loading on equatorial precipitation

    NASA Astrophysics Data System (ADS)

    Dagan, G.; Chemke, R.

    2016-10-01

    Cloud-aerosol interactions are considered as one of the largest sources of uncertainties in the study of climate change. Here another possible cloud-aerosol effect on climate is proposed. A series of large eddy simulations (LES) with bin microphysics reveal a sensitivity of the total atmospheric water vapor amount to aerosol concentration. Under polluted conditions the rain is suppressed and the total amount of water vapor in the atmosphere increases with time compared to clean precipitating conditions. Theoretical examination of this aerosol effect on water vapor transport from the subtropics to the tropics, and hence on the equatorial rain and Hadley circulation, is conducted using an idealized general circulation model (GCM). It is shown that a reduction in the subtropical rain amount results in increased water vapor advection to the tropics and enhanced equatorial rain and Hadley circulation. This joins previously proposed mechanisms on the radiative aerosol effect on the general circulation.

  3. Radiative transfer in finite participating atmospheric aerosol media

    NASA Astrophysics Data System (ADS)

    Degheidy, A. R.; Elgarayhi, A.; Sallah, M.; Shaaban, S. M.

    2014-01-01

    The properties of radiation transfer through a plane-parallel atmospheric aerosol medium has been studied. It has been done by employing Mie theory to calculate the radiation transfer scattering parameters of the medium in the form of extinction, scattering, and absorption efficiencies. Then, the equation of radiative transfer through a plane-parallel atmosphere of aerosol has been solved for partial heat fluxes using two different analytical techniques, namely, the Variational Pomraning -Eddington approximation and Galerkin technique. Average efficiencies over log-normal and modified gamma size distributions are calculated. Therefore, the radiative properties of Carbon, Anthracite, Bituminous, Lignite, and Fly ash have been calculated. The obtained numerical results show very good agreement with each other in addition to the previous published work.

  4. Elevated aerosol layers and their radiative impact over Kanpur during monsoon onset period

    NASA Astrophysics Data System (ADS)

    Sarangi, Chandan; Tripathi, S. N.; Mishra, A. K.; Goel, A.; Welton, E. J.

    2016-07-01

    Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (σ) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5 km (where σ decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5 km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (˜2-3°C) of lower troposphere (below 3 km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high aerosol loading

  5. Global All-sky Shortwave Direct Radiative Forcing of Anthropogenic Aerosols from Combined Satellite Observations and GOCART Simulations

    NASA Astrophysics Data System (ADS)

    Su, W.; Loeb, N. G.; Schuster, G. L.; Chin, M.; Rose, F. G.

    2013-05-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon MODIS and MATCH assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the GOCART model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF), by assuming that the anthropogenic fractions from GOCART are representative. The global (60oN ˜60oS) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the TOA, 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo, and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are more absorbing than those in MODIS/MATCH. Large difference in all-sky TOA DRF from these two aerosol data sets highlights the complexity in determining the all-sky DRF

  6. Final report. [Impact of tropospheric aerosols on the past surface radiation income: Calibration with ARM site data

    SciTech Connect

    Kukla, George

    2001-03-15

    This work involved a comparison of surface solar radiation observations from the SOCMET-DATA BASE from 1960-1990 and results from a General Circulation Model to test and evaluate the effects of tropospheric aerosols on clouds.

  7. Radiative Forcing of the Pinatubo Aerosol as a Function of Latitude and Time

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Russell, P. B.; Bauman, J. J.; Minnis, P.

    1996-01-01

    We present calculations of the radiative forcing of the Mt. Pinatubo aerosols as a function of latitude and time after the eruption and compare the results with GOES satellite data. The results from the model indicate that the net effect of the aerosol was to cool the earth-atmosphere system with the most significant radiative effect in the tropics (corresponding to the location of the tropical stratospheric reservoir) and at latitudes greater than 60 deg. The high-latitude maximum is a combined effect of the high-latitude peak in optical depth (Trepte et al 1994) and the large solar zenith angles. The comparison of the predicted and measured net flux shows relatively good agreement, with the model consistently under predicting the cooling effect of the aerosol.

  8. Radiation effects.

    PubMed

    Preston, R J

    2012-01-01

    International Commission on Radiological Protection (ICRP) Committee 1 (C1) considers the risk of induction of cancer and heritable disease; the underlying mechanisms of radiation action; and the risks, severity, and mechanisms of induction of tissue reactions (formerly 'deterministic effects'). C1 relies upon the interpretation of current knowledge of radio-epidemiological studies; current information on the underlying mechanisms of diseases and radiation-induced disease; and current radiobiological studies at the whole animal, tissue, cell, and molecular levels. This overview will describe the activities of C1 in the context of the 2007 Recommendations of ICRP. In particular, the conclusions from the most recent C1 Task Group deliberations on radon and lung cancer, and tissue reactions will be discussed. Other activities are described in summary fashion to illustrate those areas that C1 judge to be likely to influence the development of the risk estimates and nominal risk coefficients used for radiation protection purposes.

  9. Towards a Global Aerosol Climatology: Preliminary Trends in Tropospheric Aerosol Amounts and Corresponding Impact on Radiative Forcing between 1950 and 1990

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Koch, Dorothy; Lacis, Andrew A.; Sato, Makiko

    1999-01-01

    A global aerosol climatology is needed in the study of decadal temperature change due to natural and anthropogenic forcing of global climate change. A preliminary aerosol climatology has been developed from global transport models for a mixture of sulfate and carbonaceous aerosols from fossil fuel burning, including also contributions from other major aerosol types such as soil dust and sea salt. The aerosol distributions change for the period of 1950 to 1990 due to changes in emissions of SO2 and carbon particles from fossil fuel burning. The optical thickness of fossil fuel derived aerosols increased by nearly a factor of 3 during this period, with particularly strong increase in eastern Asia over the whole time period. In countries where environmental laws came into effect since the early 1980s (e.g. US and western Europe), emissions and consequently aerosol optical thicknesses did not increase considerably after 1980, resulting in a shift in the global distribution pattern over this period. In addition to the optical thickness, aerosol single scattering albedos may have changed during this period due to different trends in absorbing black carbon and reflecting sulfate aerosols. However, due to the uncertainties in the emission trends, this change cannot be determined with any confidence. Radiative forcing of this aerosol distribution is calculated for several scenarios, resulting in a wide range of uncertainties for top-of-atmosphere (TOA) forcings. Uncertainties in the contribution of the strongly absorbing black carbon aerosol leads to a range in TOA forcings of ca. -0.5 to + 0.1 Wm (exp. -2), while the change in aerosol distributions between 1950 to 1990 leads to a change of -0.1 to -0.3 Wm (exp. -2), for fossil fuel derived aerosol with a "moderate" contribution of black carbon aerosol.

  10. 3D Radiative Transfer Effects in Multi-Angle/Multi-Spectral Radio-Polarimetric Signals from a Mixture of Clouds and Aerosols Viewed by a Non-Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Garay, Michael J.; Xu, Feng; Qu, Zheng; Emde, Claudia

    2013-01-01

    When observing a spatially complex mix of aerosols and clouds in a single relatively large field-of-view, nature entangles their signals non-linearly through polarized radiation transport processes that unfold in the 3D position and direction spaces. In contrast, any practical forward model in a retrieval algorithm will use only 1D vector radiative transfer (vRT) in a linear mixing technique. We assess the difference between the observed and predicted signals using synthetic data from a high-fidelity 3D vRT model with clouds generated using a Large Eddy Simulation model and an aerosol climatology. We find that this difference is signal--not noise--for the Aerosol Polarimetry Sensor (APS), an instrument developed by NASA. Moreover, the worst case scenario is also the most interesting case, namely, when the aerosol burden is large, hence hase the most impact on the cloud microphysics and dynamics. Based on our findings, we formulate a mitigation strategy for these unresolved cloud adjacency effects assuming that some spatial information is available about the structure of the clouds at higher resolution from "context" cameras, as was planned for NASA's ill-fated Glory mission that was to carry the APS but failed to reach orbit. Application to POLDER (POLarization and Directionality of Earth Reflectances) data from the period when PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) was in the A-train is briefly discussed.

  11. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    NASA Astrophysics Data System (ADS)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  12. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    PubMed

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  13. Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions

    NASA Astrophysics Data System (ADS)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2011-08-01

    We examine the aerosol radiative effects due to aerosols emitted from different emission sectors (anthropogenic and natural) and originating from different geographical regions within and outside India during the northeast (NE) Indian winter monsoon (January-March). These studies are carried out through aerosol transport simulations in the general circulation (GCM) model of the Laboratoire de Météorologie Dynamique (LMD). The model estimates of aerosol single scattering albedo (SSA) show lower values (0.86-0.92) over the region north to 10°N comprising of the Indian subcontinent, Bay of Bengal, and parts of the Arabian Sea compared to the region south to 10°N where the estimated SSA values lie in the range 0.94-0.98. The model estimated SSA is consistent with the SSA values inferred through measurements on various platforms. Aerosols of anthropogenic origin reduce the incoming solar radiation at the surface by a factor of 10-20 times the reduction due to natural aerosols. At the top-of-atmosphere (TOA), aerosols from biofuel use cause positive forcing compared to the negative forcing from fossil fuel and natural sources in correspondence with the distribution of SSA which is estimated to be the lowest (0.7-0.78) from biofuel combustion emissions. Aerosols originating from India and Africa-west Asia lead to the reduction in surface radiation (-3 to -8 W m -2) by 40-60% of the total reduction in surface radiation due to all aerosols over the Indian subcontinent and adjoining ocean. Aerosols originating from India and Africa-west Asia also lead to positive radiative effects at TOA over the Arabian Sea, central India (CNI), with the highest positive radiative effects over the Bay of Bengal and cause either negative or positive effects over the Indo-Gangetic plain (IGP).

  14. Impact of transpacific aerosol on air quality over the United States: A perspective from aerosol-cloud-radiation interactions

    NASA Astrophysics Data System (ADS)

    Tao, Zhining; Yu, Hongbin; Chin, Mian

    2016-01-01

    Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3-month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 μg m-3 over the west coast and about 0.5 μg m-3 over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (±6 μg m-3) and ozone (±12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.

  15. Radiative Flux Changes by Aerosols from North America, Europe, and Africa over the Atlantic Ocean: Measurements and Calculations from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Livingston, J. M.; Schmid, B.; Chien, A.; Bergstrom, R.; Durkee, P. A.; Hobbs, P. V.; Bates, T. S.; Quinn, P. K.; Condon, Estelle (Technical Monitor)

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that is a major source of uncertainty in understanding the past climate and predicting climate change. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Experiment (TARFOX) and the 1997 second Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of American, European, and African aerosols over the Atlantic. In TARFOX, radiative fluxes and microphysics of the American aerosol were measured from the UK C-130 while optical depth spectra, aerosol composition, and other properties were measured by the University of Washington C-131A and the CIRPAS Pelican. Closure studies show that the measured flux changes agree with those derived from the aerosol measurements using several modelling approaches. The best-fit midvisible single-scatter albedos (approx. 0.89 to 0.93) obtained from the TARFOX flux comparisons are in accord with values derived by independent techniques. In ACE-2 we measured optical depth and extinction spectra for both European urban-marine aerosols and free-tropospheric African dust aerosols, using sunphotometers on the R/V Vodyanitskiy and the Pelican. Preliminary values for the radiative flux sensitivities (Delta Flux / Delta Optical depth) computed for ACE-2 aerosols (boundary layer and African dust) over ocean are similar to those found in TARFOX. Combining a satellite-derived optical depth climatology with the aerosol optical model validated for flux sensitivities in TARFOX provides first-cut estimates of aerosol-induced flux changes over the Atlantic Ocean.

  16. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique for estimating aerosol radiative forcing from spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, R. R.

    2015-12-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is

  17. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    SciTech Connect

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.; Kosmopoulos, P. G.; Tripathi, S. N.; Misra, Amit; Sharma, M.; Singh, R. P.

    2013-11-01

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the days having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may cause

  18. Evaluation of ultraviolet radiation, ozone and aerosol interactions in the troposphere using automatic differentiation. Final report

    SciTech Connect

    Carmichael, G.R.; Potra, F.

    1998-10-06

    A major goal of this research was to quantify the interactions between UVR, ozone and aerosols. One method of quantification was to calculate sensitivity coefficients. A novel aspect of this work was the use of Automatic Differentiation software to calculate the sensitivities. The authors demonstrated the use of ADIFOR for the first time in a dimensional framework. Automatic Differentiation was used to calculate such quantities as: sensitivities of UV-B fluxes to changes in ozone and aerosols in the stratosphere and the troposphere; changes in ozone production/destruction rates to changes in UV-B flux; aerosol properties including loading, scattering properties (including relative humidity effects), and composition (mineral dust, soot, and sulfate aerosol, etc.). The combined radiation/chemistry model offers an important test of the utility of Automatic Differentiation as a tool in atmospheric modeling.

  19. Evapo-transpiration, role of aerosol radiative forcing: a study over a dense canopy

    NASA Astrophysics Data System (ADS)

    Bhanage, VInayak; Latha, R.; Murthy, B. S.

    2016-05-01

    Current study uses Satellite and Reanalysis data to quantify the effect of aerosol on ET at various space and time scales. All the data are obtained for the period June 2008 to May 2009 over Dibrugarh district, Assam, Indi a where NDVI has limited change of through the year. Monthly Evapo-Transpiration (ET, cumulative), Normalized Difference Vegetation Index (NDVI) and Aerosol Optical Depth (AOD) are retrieved from satellite images of Terra-MODIS. The AOD data are evaluated against in-situ observations. Maximum values of AOD are observed in the pre-monsoon season while minimum AOD values are perceived in October and November. Aerosol Radiative Forcing (ARF) is calculated by using the MERRA data sets of `clean-clear radiation' and `clear-radiation' at surface over the study area. Maximum aerosol radiative forcing is observed during the pre-monsoon season; this is in tune with ground observations. Strong positive correlation (r=0.75) between ET and NDVI is observed and it is found that the dense vegetative surfaces exhibit higher rate of evapo-transpiration. A strong positive correlation (r= -0.85) between ARF at surface and AOD is observed with radiative forcing efficiency of 35 W/m2. A statistical regression equation of ET a s a function of NDVI and AOD i.e. ET = 0.25 + (-84.27) * AOD + (131.51) * NDVI, is obtained that shows a correlation of 0.824.

  20. Enhancement of atmospheric radiation by an aerosol layer

    NASA Technical Reports Server (NTRS)

    Michelangeli, Diane V.; Yung, Yuk L.; Shia, Run-Lie; Eluszkiewicz, Janusz; Allen, Mark; Crisp, David

    1992-01-01

    The presence of a stratospheric haze layer may produce increases in both the actinic flux and the irradiance below this layer. Such haze layers result from the injection of aerosol-forming material into the stratosphere by volcanic eruptions. Simple heuristic arguments show that the increase in flux below the haze layer, relative to a clear sky case, is a consequence of 'photon trapping'. The magnitude of these flux perturbations, as a function of aerosol properties and illumination conditions, is explored with a new radiative transfer model that can accurately compute fluxes in an inhomogeneous atmosphere with nonconservative scatterers having arbitrary phase function. One calculated consequence of the El Chichon volcanic eruption is an increase in the midday surface actinic flux at 20 deg N latitude, summer, by as much as 45 percent at 2900 A. This increase in flux in the UV-B wavelength range was caused entirely by aerosol scattering, without any reduction in the overhead ozone column.

  1. Early growth dynamical implications for the steerability of stratospheric solar radiation management via sulfur aerosol particles

    NASA Astrophysics Data System (ADS)

    Benduhn, François; Schallock, Jennifer; Lawrence, Mark G.

    2016-09-01

    Aerosol growth dynamics may have implications for the steerability of stratospheric solar radiation management via sulfur particles. This paper derives a set of critical initial growth conditions that are analyzed as a function of two key parameters: the initial concentration of the injected sulfuric acid and its dilution rate with the surrounding air. Based upon this analysis, early aerosol growth dynamical regimes may be defined and classified in terms of their likelihood to serve as candidates for the controlled generation of a radiatively effective aerosol. Our results indicate that the regime that fulfills all critical conditions would require that airplane turbines be used to provide sufficient turbulence. The regime's parameter space is narrow and related to steep gradients, thus pointing to potential fine tuning requirements. More research, development, and testing would be required to refine our findings and determine their global-scale implications.

  2. Indirect aerosol effect increases CMIP5 models projected Arctic warming

    SciTech Connect

    Chylek, Petr; Vogelsang, Timothy J.; Klett, James D.; Hengartner, Nicholas; Higdon, Dave; Lesins, Glen; Dubey, Manvendra K.

    2016-02-20

    Phase 5 of the Coupled Model Intercomparison Project (CMIP5) climate models’ projections of the 2014–2100 Arctic warming under radiative forcing from representative concentration pathway 4.5 (RCP4.5) vary from 0.9° to 6.7°C. Climate models with or without a full indirect aerosol effect are both equally successful in reproducing the observed (1900–2014) Arctic warming and its trends. However, the 2014–2100 Arctic warming and the warming trends projected by models that include a full indirect aerosol effect (denoted here as AA models) are significantly higher (mean projected Arctic warming is about 1.5°C higher) than those projected by models without a full indirect aerosol effect (denoted here as NAA models). The suggestion is that, within models including full indirect aerosol effects, those projecting stronger future changes are not necessarily distinguishable historically because any stronger past warming may have been partially offset by stronger historical aerosol cooling. In conclusion, the CMIP5 models that include a full indirect aerosol effect follow an inverse radiative forcing to equilibrium climate sensitivity relationship, while models without it do not.

  3. Sensitivity Analysis on Fu-Liou-Gu Radiative Transfer Model for different lidar aerosol and cloud profiles

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Pappalardo, Gelsomina; Welton, Ellsworth J.

    2016-04-01

    The aerosol and cloud impact on climate change is evaluated in terms of enhancement or reduction of the radiative energy, or heat, available in the atmosphere and at the Earth's surface, from the surface (SFC) to the Top Of the Atmosphere (TOA) covering a spectral range from the UV (extraterrestrial shortwave solar radiation) to the far-IR (outgoing terrestrial longwave radiation). Systematic Lidar network measurements from permanent observational sites across the globe are available from the beginning of this current millennium. From the retrieved lidar atmospheric extinction profiles, inputted in the Fu-Liou-Gu (FLG) Radiative Transfer code, it is possible to evaluate the net radiative effect and heating rate of the different aerosol species and clouds. Nevertheless, the lidar instruments may use different techniques (elastic lidar, Raman lidar, multi-wavelength lidar, etc) that translate into uncertainty of the lidar extinction retrieval. The goal of this study is to assess, applying a MonteCarlo technique and the FLG Radiative Transfer model, the sensitivity in calculating the net radiative effect and heating rate of aerosols and clouds for the different lidar techniques, using both synthetic and real lidar data. This sensitivity study is the first step to implement an automatic algorithm to retrieve the net radiative forcing effect of aerosols and clouds from the long records of aerosol measurements available in the frame of EARLINET and MPLNET lidar networks.

  4. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols

    SciTech Connect

    Schwartz, S.E.; Slingo, A.

    1995-05-01

    It has been suggested that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity, thereby exerting a radiative influence on climate. This article presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds.

  5. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Mauzerall, D. L.

    2015-03-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80% by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1. Regionally and locally, climate impacts can be much larger, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm d-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in cloud droplet effective radius. Future aerosol decreases could be responsible for 30-40% of total climate warming by 2100 in East Asia, even under the high greenhouse gas emissions scenario (RCP8.5). The expected unmasking of global warming caused by aerosol reductions will

  6. Changes in radiative forcing in Amazonia: the influence of clouds and aerosols controlling carbon budget

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo

    2016-07-01

    Surface radiation fluxes are critically important in photosynthetic processes that controls carbon assimilation and losses in tropical forests. Clouds and aerosols control the surface radiation fluxes in Amazonia, and the ratio of diffuse and direct radiation directly affects photosynthetic plant processes. Biomass burning emissions changes the atmosphere aerosol loading. The background aerosol optical thickness in wet season Amazonia is about 0.1 at 550 nm, while during the dry season AOT can reach values as high as 3-4 over large areas. The increase in diffuse radiation significantly enhance photosynthesis. Remote sensing measurements using MODIS and AERONET were used to measure the large scale aerosol distribution over Amazonia, and LBA flux towers provided the carbon balance over several sites. The enhancement in carbon uptake for AOD between 0.1 and 1 can reach 45%. For AOD above 1, the reduction in the direct flux starts to dominate and a strong reduction in carbon uptake is observed. Cloud cover also has a huge impact on carbon balance in Amazonia, but it is more difficult to quantify. These effects controls carbon balance in Amazonia.

  7. Overview of ACE-Asia Spring 2001 Investigations On Aerosol-Radiation Interactions

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Flatau, P. J.; Valero, F. P. J.; Nakajima, T.; Holben, B.; Pilewskie, P.; Bergin, M.; Schmid, B.; Bergstrom, R. W.; Vogelmann, A.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    ACE-Asia's extensive measurements from land, ocean, air and space quantified aerosol-radiation interactions. Results from each platform type, plus satellite-suborbital combinations, include: 1. Time series of multiwavelength aerosol optical depth (ADD), Angstrom exponent (alpha), single-scattering albedo (SSA), and size distribution from AERONET radiometry at 13 stations. In China and Korea AOD and alpha were strongly anticorrelated (reflecting transient dust events); dust volume-size modes peaked near 8 microns diameter; and SSA(dust) greater than SSA(pollution). 2. Calculations and measurements of photosynthetically active radiation and aerosols in China yield 24-h average downward surface radiative forcing per AOD(500 nm) of -27 W/sq m (400-700 nm). 3. The Hawaii-Japan cruise sampled a gradient with AOD(500 nm) extremes of 0.1 and 1.1. Shipboard measurements showed that adding dust to pollution increased SSA(550 nm, 55% RH), typically from -0.91 to approx. 0.97. Downwelling 8-12 micron radiances showed aerosol effects, especially in the major April dust event, with longwave forcing estimated at -5 to 15 W/sq m. 4. Extinction profiles from airborne sunphotometry and total-direct-diffuse radiometry show wavelength dependence often varying strongly with height, reflecting layering of dust-dominated over pollution-dominated aerosols. Comparing sunphotometric extinction profiles to those from in situ measurements (number and composition vs size, or scattering and absorption) shows layer heights agree, but extinction sometimes differs. 5. Airborne solar spectral flux radiometry yields absorption spectra for layers. Combining with AOD spectra yields best-fit aerosol single scattering albedo spectra. 6. Visible, NIR and total solar fluxes combined with AOD give radiative forcing efficiencies at surface and aloft.

  8. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    NASA Astrophysics Data System (ADS)

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy

    2015-04-01

    particles. A monthly climatology of AOD over the Red Sea is then created from 5yrs of SEVIRI retrievals and shows both enhanced aerosol loading and the development of a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used as input to radiative transfer calculations to generate corresponding estimates of the DRF at the top and bottom of the atmosphere and the atmospheric absorption due to aerosol. These estimates indicate that although longwave effects can reach 10s W m-2, shortwave cooling typically dominates the net radiative effect over the basin and is particularly pronounced in the summer, exceeding 130 W m-2 at the surface. The spatial gradient in summer-time AOD is reflected in both the aerosol forcing at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric forcing would be expected to exert a significant influence on the regional atmospheric and oceanic circulation and warrants further study in the context of coupled aerosol-atmosphere-ocean regional models.

  9. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  10. Aerosol and ozone radiative forcing 1990-2015

    NASA Astrophysics Data System (ADS)

    Myhre, Cathrine Lund; Myhre, Gunnar; Samset, Bjørn H.; Schulz, Michael

    2016-04-01

    The regional changes in economic growth and pollution regulations have caused large changes in the geographical distribution of emissions of precursors and components affecting the radiation balance. Here we use recently updated emission data over the 1990-2015 period in eight global aerosol models to simulate aerosol and ozone changes and their radiative forcing. The models reproduce the general large-scale changes in aerosol and ozone changes over this period. The surface particle mass changes is simulated to 2-3 %/yr for the total fine particle concentration over main industrialized regions. Six models simulated changes in PM2.5 (particulate matter with aerodynamic diameters less 2.5 μm) over the 1990-2015 period. Observations of changes in PM2.5 are available for selected regions and time periods. The available PM2.5 trends from observations and model mean results are compared and for Europe the observed trend is 20% stronger than the model-mean over the 2000-2010 period. Over the 1990-2010 period the US observed changes are 13% lower than the simulated changes. Despite this relatively promising result, the agreement over US for the 2000-2010 period is poor. The reasons for this will be further explored. The forcing for ozone and aerosols increase over the 1990-2015 period and more positive relative to results in IPCC AR5. The main reason for a positive aerosol forcing over this period is explained by a substantial reduction of global mean SO2 emissions, in parallel with increasing black carbon emissions.

  11. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2004-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of backscattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The BUV aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the BUV data collected by a series of TOMS instruments. We will also discuss how the data from the OM1 instrument launched on July 15,2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OM1 and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train". The CALIPSO satellite is expected to join this constellation in mid 2005.

  12. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2012-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of back scattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The buv aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the buv data collected by a series of TOMS instruments. We will also discuss how the data from the OMI instrument launched on July 15, 2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OMI and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train".

  13. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Jayaraman, A.; Misra, A.

    2008-06-01

    A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13° N, 75.70° E), a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3) during the initial days, which, however, increased (0.86) as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 μm) particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 μmaerosol optical depth spectra are model fitted to infer the aerosol components which are further used to compute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours.

  14. International Workshop on Stratospheric Aerosols: Measurements, Properties, and Effects

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf F. (Editor)

    1991-01-01

    Following a mandate by the International Aerosol Climatology Program under the auspices of International Association of Meteorology and Atmospheric Physics International Radiation Commission, 45 scientists from five nations convened to discuss relevant issues associated with the measurement, properties, and effects of stratospheric aerosols. A summary is presented of the discussions on formation and evolution, transport and fate, effects on climate, role in heterogeneous chemistry, and validation of lidar and satellite remote sensing of stratospheric aerosols. Measurements are recommended of the natural (background) and the volcanically enhanced aerosol (sulfuric acid and silica particles), the exhaust of shuttle, civil aviation and supersonic aircraft operations (alumina, soot, and ice particles), and polar stratospheric clouds (ice, condensed nitric and hydrochloric acids).

  15. Optical characterization of continental and biomass-burning aerosols over Bozeman, Montana: A case study of the aerosol direct effect

    NASA Astrophysics Data System (ADS)

    Nehrir, Amin R.; Repasky, Kevin S.; Reagan, John A.; Carlsten, John L.

    2011-11-01

    shown to compare favorably with regional-scale forcing calculations using MODIS-Terra and AERONET data in an effort to assess the accuracy of estimating the regional-scale aerosol direct radiative forcing effect using aerosol optical properties measured from a single rural site such as Bozeman, Montana.

  16. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Impr