Science.gov

Sample records for aerosol radiative forcings

  1. Factors Affecting Aerosol Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  2. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  3. Thermal Infrared Radiative Forcing By Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan

    The work mainly focuses on the study of thermal infrared (IR) properties of atmospheric greenhouse gases and aerosols, and the estimation of the aerosol-induced direct longwave (LW) radiative forcing in the spectral region 5-20 mum at the Earth's surface (BOA; bottom of the atmosphere) and the top of the atmosphere (TOA) in cloud-free atmospheric conditions. These objectives were accomplished by conducting case studies on clear sky, smoky, and dusty conditions that took place in the Great Basin of the USA in 2013. Both the solar and thermal IR measurements and a state-of-the-science radiative transfer model, the LBLDIS, a combination of the Line-By-Line Radiative Transfer Model and the Discrete Ordinate Radiative Transfer (DISORT) solver were employed for the study. The LW aerosol forcing is often not included in climate models because the aerosol effect on the LW is often assumed to be negligible. We lack knowledge of aerosol characteristics in the LW region, and aerosol properties exhibit high variability. We have found that the LW TOA radiative forcing due to fine mode aerosols, mainly associated with small biomass burning smoke particles, is + 0.4 W/m2 which seems to be small, but it is similar to the LW radiative forcing due to increase in CO2 concentration in the Earth's atmosphere since the preindustrial era of 1750 (+ 1.6 W/m 2). The LW radiative forcing due to coarse mode aerosols, associated with large airborne mineral dust particles, was found to be as much as + 5.02 W/m2 at the surface and + 1.71 W/m2 at the TOA. All of these significant positive values of the aerosol radiative forcing both at the BOA and TOA indicate that the aerosols have a heating effect in the LW range, which contributes to counterbalancing the cooling effect associated with the aerosol radiative forcing in the shortwave (SW) spectral region. In the meantime, we have found that LW radiative forcing by aerosols is highly sensitive to particle size and complex refractive indices of

  4. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  5. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  6. Technical Note: Estimating Aerosol Effects on Cloud Radiative Forcing

    SciTech Connect

    Ghan, Steven J.

    2013-10-09

    Estimating anthropogenic aerosol effects on the planetary energy balance through the aerosol influence on clouds using the difference in cloud radiative forcing from simulations with and without anthropogenic emissions produces estimates that are positively biased. A more representative method is suggested using the difference in cloud radiative forcing calculated with aerosol radiative effects neglected. The method also yields an aerosol radiative forcing decomposition that includes a term quantifying the impact of changes in surface albedo. The method requires only two additional diagnostic calculations: the whole-sky and clear-sky top-of-atmosphere radiative flux with aerosol radiative effects neglected.

  7. Spatially Refined Aerosol Direct Radiative Forcing Efficiencies

    NASA Technical Reports Server (NTRS)

    Henze, Daven K.; Shindell, Drew Todd; Akhtar, Farhan; Spurr, Robert J. D.; Pinder, Robert W.; Loughlin, Dan; Kopacz, Monika; Singh, Kumaresh; Shim, Changsub

    2012-01-01

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary to assess realistic policy options. To address this challenge, here we show how adjoint model sensitivities can be used to provide highly spatially resolved estimates of the DRF from emissions of black carbon (BC), primary organic carbon (OC), sulfur dioxide (SO2), and ammonia (NH3), using the example of emissions from each sector and country following multiple Representative Concentration Pathway (RCPs). The radiative forcing efficiencies of many individual emissions are found to differ considerably from regional or sectoral averages for NH3, SO2 from the power sector, and BC from domestic, industrial, transportation and biomass burning sources. Consequently, the amount of emissions controls required to attain a specific DRF varies at intracontinental scales by up to a factor of 4. These results thus demonstrate both a need and means for incorporating spatially refined aerosol DRF into analysis of future emissions scenario and design of air quality and climate change mitigation policies.

  8. Total aerosol effect: forcing or radiative flux perturbation?

    SciTech Connect

    Lohmann, Ulrike; Storelvmo, Trude; Jones, Andy; Rotstayn, Leon; Menon, Surabi; Quaas, Johannes; Ekman, Annica; Koch, Dorothy; Ruedy, Reto

    2009-09-25

    Uncertainties in aerosol forcings, especially those associated with clouds, contribute to a large extent to uncertainties in the total anthropogenic forcing. The interaction of aerosols with clouds and radiation introduces feedbacks which can affect the rate of rain formation. Traditionally these feedbacks were not included in estimates of total aerosol forcing. Here we argue that they should be included because these feedbacks act quickly compared with the time scale of global warming. We show that for different forcing agents (aerosols and greenhouse gases) the radiative forcings as traditionally defined agree rather well with estimates from a method, here referred to as radiative flux perturbations (RFP), that takes these fast feedbacks and interactions into account. Thus we propose replacing the direct and indirect aerosol forcing in the IPCC forcing chart with RFP estimates. This implies that it is better to evaluate the total anthropogenic aerosol effect as a whole.

  9. Anthropogenic Aerosols in Asia, Radiative Forcing, and Climate Change

    NASA Astrophysics Data System (ADS)

    Ramaswamy, V.; Bollasina, M. A.; Ming, Y.; Ocko, I.; Persad, G.

    2014-12-01

    Aerosols arising as a result of human-induced emissions in Asia form a key 'driver' in causing pollution and in the forcing of anthropogenic climate change. The manner of the forced climate change is sensitive to the scattering and absorption properties of the aerosols and the aerosol-cloud microphysical interactions. Using the NOAA/ GFDL global climate models and observations from multiple platforms, we investigate the radiative perturbations due to the 20th Century sulfate and carbonaceous aerosol emissions and the resultant impacts on surface temperature, tropical precipitation, Indian monsoon, hemispheric circulation, and atmospheric and oceanic heat transports. The influence of the aerosol species has many contrasts with that due to the anthropogenic well-mixed greenhouse gas emissions e.g., the asymmetry in the hemispheric climate response, but is subject to larger uncertainties. The aerosol forcing expected in the future indicates a significant control on the 21st Century anthropogenic climate change in Asia.

  10. Direct Aerosol Radiative Forcing: Calculations and Measurements from the Tropospheric

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Stowe, L. L.; Livingston, J. M.; Kinne, S.; Wong, J.; Chan, K. Roland (Technical Monitor)

    1997-01-01

    Radiative forcing is defined as the change in the net (downwelling minus upwelling) radiative flux at a given level in the atmosphere. This net flux is the radiative power density available to drive climatic processes in the earth-atmosphere system below that level. Recent research shows that radiative forcing by aerosol particles is a major source of uncertainty in climate predictions. To reduce those uncertainties, TARFOX was designed to determine direct (cloud-free) radiative forcing by the aerosols in one of the world's major industrial pollution plumes--that flowing from the east coast of the US over the Atlantic Ocean. TARFOX measured a variety of aerosol radiative effects (including direct forcing) while simultaneously measuring the chemical, physical, and optical properties of the aerosol particles causing those effects. The resulting data sets permit a wide variety of tests of the consistency, or closure, among the measurements and the models that link them. Because climate predictions use the same or similar model components, closure tests help to assess and reduce prediction uncertainties. In this work we use the TARFOX-determined aerosol, gas, and surface properties to compute radiative forcing for a variety of aerosol episodes, with inadvisable optical depths ranging from 0.07 to 0.6. We calculate forcing by several techniques with varying degrees of sophistication, in part to test the range of applicability of simplified techniques--which are often the only ones feasible in climate predictions by general circulation models (GCMs). We then compare computed forcing to that determined from: (1) Upwelling and downwelling fluxes (0.3-0.7 mm and 0.7-3.0 mm) measured by radiometers on the UK MRF C-130. and (2) Daily average cloud-free absorbed solar and emitted thermal radiative flux at the top of the atmosphere derived from the AVHRR radiometer on the NOAA- 14 satellite. The calculations and measurements all yield aerosol direct radiative forcing in the

  11. Simulated 2050 aviation radiative forcing from contrails and aerosols

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Chieh; Gettelman, Andrew

    2016-06-01

    The radiative forcing from aviation-induced cloudiness is investigated by using the Community Atmosphere Model Version 5 (CAM5) in the present (2006) and the future (through 2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing in 2050 can reach 87 mW m-2, an increase by a factor of 7 from 2006, and thus does not scale linearly with fuel emission mass. This is due to non-uniform regional increase in air traffic and different sensitivities for contrail radiative forcing in different regions. CAM5 simulations indicate that negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds in 2050 can be as large as -160 mW m-2, an increase by a factor of 4 from 2006. As a result, the net 2050 radiative forcing of contrail cirrus and aviation aerosols may have a cooling effect on the planet. Aviation sulfate aerosols emitted at cruise altitude can be transported down to the lower troposphere, increasing the aerosol concentration, thus increasing the cloud drop number concentration and persistence of low-level clouds. Aviation black carbon aerosols produce a negligible net forcing globally in 2006 and 2050 in this model study. Uncertainties in the methodology and the modeling are significant and discussed in detail. Nevertheless, the projected percentage increase in contrail radiative forcing is important for future aviation impacts. In addition, the role of aviation aerosols in the cloud nucleation processes can greatly influence on the simulated radiative forcing from aircraft-induced cloudiness and even change its sign. Future research to confirm these results is necessary.

  12. Evaluation of Aerosol Indirect Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Easter, Richard C.; Hudson, J D.; Breon, Francois

    2001-04-01

    We evaluate aerosol indirect radiative forcing simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). Although explicit measurements of aerosol indirect radiative forcing do not exist, measurements of many of the links between aerosols and indirect radiative forcing are available and can be used for evaluation. These links include the cloud condensation nuclei concentration, the ratio of droplet number to aerosol number, the droplet number concentration, the column droplet number, the column cloud water, the droplet effective radius, the cloud optical depth, the correlation between cloud albedo and droplet effective radius, and the cloud radiative forcing. The CCN concentration simulated by MIRAGE agrees with measurements for supersaturations larger than 0.1%, but not for smaller supersaturations. Simulated droplet number concentrations are too low in most, but not all, locations with available measurements, even when normalized by aerosol number. MIRA GE correctly simulates the higher droplet numbers and smaller droplet sizes over continents and in the Northern Hemisphere. Biases in column cloud water, cloud optical depth, and shortwave cloud radiative forcing are evident in the Intertropical Convergence Zone and in the subtropical oceans. MIRAGE correctly simulates a negative correlation between cloud albedo and droplet size over remote oceans for cloud optical depths greater than 15 and a positive correlation for cloud optical depths less than 15, but fails to simulate a negative correlation over land.

  13. Radiative forcing by stratospheric aerosol in a CCM with interactive aerosol module

    NASA Astrophysics Data System (ADS)

    Brühl, Christoph; Lelieveld, Jos; Tost, Holger; Steil, Benedikt; Höpfner, Michael

    2013-04-01

    Multiyear studies with the atmospheric chemistry general circulation model EMAC with the aerosol module GMXe demonstrate that stratospheric aerosol formation is controlled by COS oxidation and SO2 injected by low-latitude volcanic eruptions. The model consistently uses the same parameters in the troposphere and stratosphere for 7 aerosol modes applied. Calculated radiative heating by aerosol feeds back to stratospheric dynamics. Radiative forcing by stratospheric aerosol can be diagnosed separately. The simulations include the medium size tropical eruptions in 2003, 2005 and 2006 but also the major eruption of Pinatubo in 1991. We show that calculated radiative forcing by stratospheric aerosol agrees well with the corresponding satellite derived quantity and that the medium size tropical eruptions should not be neglected in climate simulations. Changes in temperature, dynamics and tracer transport due to interactive aerosol will be also presented. We show also that calculated aerosol and SO2 concentrations are consistent with the observations by SAGE and by MIPAS on ENVISAT.

  14. Do Diurnal Aerosol Changes Affect Daily Average Radiative Forcing?

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-06-17

    Strong diurnal variability of aerosol has been observed frequently for many urban/industrial regions. How this variability may alter the direct aerosol radiative forcing (DARF), however, is largely unknown. To quantify changes in the time-averaged DARF, we perform an assessment of 29 days of high temporal resolution ground-based data collected during the Two-Column Aerosol Project (TCAP) on Cape Cod, which is downwind of metropolitan areas. We demonstrate that strong diurnal changes of aerosol loading (about 20% on average) have a negligible impact on the 24-h average DARF, when daily averaged optical properties are used to find this quantity. However, when there is a sparse temporal sampling of aerosol properties, which may preclude the calculation of daily averaged optical properties, large errors (up to 100%) in the computed DARF may occur. We describe a simple way of reducing these errors, which suggests the minimal temporal sampling needed to accurately find the forcing.

  15. Strategy to use the Terra Aerosol Information to Derive the Global Aerosol Radiative Forcing of Climate

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: - From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. - Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. - Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  16. Evaluation of Aerosol Direct Radiative Forcing in MIRAGE

    SciTech Connect

    Ghan, Steven J.; Laulainen, Nels S.; Easter, Richard C.; Wagener, Richard; Nemesure, Seth; Chapman, Elaine G.; Zhang, Yang; Leung, Lai-Yung R.

    2001-04-01

    A variety of measurements have been used to evaluate the treatment of aerosol radiative properties and radiative impacts of aerosols simulated by the Model for Integrated Research on Atmospheric Global Exchanges (MIRAGE). The treatment of water uptake in MIRAGE agrees with laboratory measurements for the aerosol components that have been measured. The simulated frequency of relative humidity near 100% is about twice that of European Center for Medium-range Weather Forecasts analyzed relative humidity. When the analyzed relative humidity is used to calculate aerosol water uptake in MIRAGE, the simulated aerosol optical depth agrees with most surface measurements after cloudy conditions are filtered out and differences between model and station elevations are accounted for. Simulated optical depths are low over sites in Brazil during the biomass burning season and over sites in central Canada during the wildfire season, which can be attributed to limitations in the organic and black car bon emissions data used by MIRAGE. The simulated aerosol optical depths are mostly within a factor of two of satellite estimates, but MIRAGE simulates excessively high aerosol optical depths off the east coast of the US and China, and too little dust off the coast of West Africa and in the Arabian Sea. The simulated distribution of single-scatter albedo is consistent with the available in situ surface measurements. The simulated sensitivity of radiative forcing to aerosol optical depth is consistent with estimates from measurements where available. The simulated spatial distribution of aerosol radiance is broadly consistent with estimates from satellite measurements, but with the same errors as the aerosol optical depth. The simulated direct forcing is within the uncertainty of estimates from measurements in the North Atlantic.

  17. High Resolution Aerosol Modeling: Decadal Changes in Radiative Forcing

    SciTech Connect

    Bergmann, D J; Chuang, C C; Govindasamy, B; Cameron-Smith, P J; Rotman, D A

    2005-02-01

    The Atmospheric Science Division of LLNL has performed high-resolution calculations of direct sulfate forcing using a DOE-provided computer resource at NERSC. We integrated our global chemistry-aerosol model (IMPACT) with the LLNL high-resolution global climate model (horizontal resolution as high as 100 km) to examine the temporal evolution of sulfate forcing since 1950. We note that all previous assessments of sulfate forcing reported in IPCC (2001) were based on global models with coarse spatial resolutions ({approx} 300 km or even coarser). However, the short lifetime of aerosols ({approx} days) results in large spatial and temporal variations of radiative forcing by sulfate. As a result, global climate models with coarse resolutions do not accurately simulate sulfate forcing on regional scales. It requires much finer spatial resolutions in order to address the effects of regional anthropogenic SO{sub 2} emissions on the global atmosphere as well as the effects of long-range transport of sulfate aerosols on the regional climate forcing. By taking advantage of the tera-scale computer resources at NERSC, we simulated the historic direct sulfate forcing at much finer spatial resolutions than ever attempted before. Furthermore, we performed high-resolution chemistry simulations and saved monthly averaged oxidant fields, which will be used in subsequent simulations of sulfate aerosol formation and their radiative impact.

  18. Influences of relative humidity on aerosol optical properties and aerosol radiative forcing during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Jiyoung

    In situ measurements at Gosan, South Korea, and onboard C-130 aircraft during ACE-Asia were analyzed to investigate the influence of relative humidity (RH) on aerosol optical properties and radiative forcing. The temporal variation of aerosol chemical composition at the Gosan super-site was highly dependent on the air mass transport pathways and source region. RH in the springtime over East Asia were distributed with very high spatial and temporal variation. The RH profile onboard C-130 aircraft measurements exhibits a mixed layer height of about 2 km. Aerosol scattering coefficient ( σsp) under ambient RH was greatly enhanced as compared with that at dry RH (RH<40%). From the aerosol optical and radiative transfer modeling studies, we found that the extinction and scattering coefficients are greatly enhanced with RH. Single scattering albedo with RH is also sensitively changed in the longer wavelength. Asymmetry parameter ( g) is gradually increased with RH although g decreases with wavelength at a given RH. Aerosol optical depth (AOD) at 550 nm and RH of 50% increased to factors 1.24, 1.51, 2.16, and 3.20 at different RH levels 70, 80, 90, and 95%, respectively. Diurnal-averaged aerosol radiative forcings for surface, TOA, and atmosphere were increased with RH because AOD was increased with RH due to hygroscopic growth of aerosol particles. This result implies that the hygroscopic growth due to water-soluble or hydrophilic particles in the lower troposphere may significantly modify the magnitude of aerosol radiative forcing both at the surface and TOA. However, the diurnal-averaged radiative forcing efficiencies at the surface, TOA, and atmosphere were decreased with increasing RH. The decrease of the forcing efficiency with RH results from the fact that increasing rate of aerosol optical depth with RH is greater than the increasing rate of aerosol radiative forcing with RH.

  19. Observationally constrained estimates of carbonaceous aerosol radiative forcing.

    PubMed

    Chung, Chul E; Ramanathan, V; Decremer, Damien

    2012-07-17

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm(-2), to be compared with the Intergovernmental Panel on Climate Change's estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm(-2). This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm(-2) (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm(-2), thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon.

  20. Observationally constrained estimates of carbonaceous aerosol radiative forcing

    PubMed Central

    Chung, Chul E.; Ramanathan, V.; Decremer, Damien

    2012-01-01

    Carbonaceous aerosols (CA) emitted by fossil and biomass fuels consist of black carbon (BC), a strong absorber of solar radiation, and organic matter (OM). OM scatters as well as absorbs solar radiation. The absorbing component of OM, which is ignored in most climate models, is referred to as brown carbon (BrC). Model estimates of the global CA radiative forcing range from 0 to 0.7 Wm-2, to be compared with the Intergovernmental Panel on Climate Change’s estimate for the pre-Industrial to the present net radiative forcing of about 1.6 Wm-2. This study provides a model-independent, observationally based estimate of the CA direct radiative forcing. Ground-based aerosol network data is integrated with field data and satellite-based aerosol observations to provide a decadal (2001 through 2009) global view of the CA optical properties and direct radiative forcing. The estimated global CA direct radiative effect is about 0.75 Wm-2 (0.5 to 1.0). This study identifies the global importance of BrC, which is shown to contribute about 20% to 550-nm CA solar absorption globally. Because of the inclusion of BrC, the net effect of OM is close to zero and the CA forcing is nearly equal to that of BC. The CA direct radiative forcing is estimated to be about 0.65 (0.5 to about 0.8) Wm-2, thus comparable to or exceeding that by methane. Caused in part by BrC absorption, CAs have a net warming effect even over open biomass-burning regions in Africa and the Amazon. PMID:22753522

  1. Aerosol types and radiative forcing estimates over East Asia

    NASA Astrophysics Data System (ADS)

    Bhawar, Rohini L.; Lee, Woo-Seop; Rahul, P. R. C.

    2016-09-01

    Using the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) and MODIS (Moderate Resolution Imaging Spectroradiometer) satellite data sets along with the CSIRO-MK 3.6.0 model simulations, we analyzed the aerosol optical depth (AOD) variability during March-May (MAM), June-August (JJA) along with their annual mean variability over East Asia for the period 2006-2012. The CALIPSO measurements correlated well with the MODIS measurements and the CSIRO-MK 3.6.0 model simulations over the spatial distribution patterns of the aerosols, but CALIPSO underestimated the magnitudes of the AOD. Maximum smoke aerosol loading is observed to occur during JJA, as a result of wind transport from Southern China while dust loading dominated during MAM via the transport from desert region. The vertical distribution profiles revealed that there is uniform distribution of smoke aerosols during both MAM and JJA, only differing at the altitude at which they peak; while the dust aerosols during MAM showed a significant distribution from the surface to 10 km altitude and JJA was marked with lower dust loading at the same altitudes. Both dust and smoke aerosols warm the atmosphere in MAM but due to the absorbing nature of smoke aerosols, they cause considerable cooling at the surface which is double when compared to the dust aerosols. The top of the atmosphere aerosol radiative forcing (ARF) due to smoke and dust aerosols is positive in MAM which indicates warming over East Asia. During MAM a consistent declining trend of the surface ARF due to smoke aerosols persisted over the last three decades as conspicuously evidenced from model analysis; the decline is ∼10 W/m2 from 1980 to 2012.

  2. Aerosols in central California: Unexpectedly large contribution of coarse mode to aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Kassianov, Evgueni; Pekour, Mikhail; Barnard, James

    2012-10-01

    The majority of previous studies dealing with effect of coarse mode aerosols (supermicron) on the radiation budget have focused primarily on regions where total aerosol loadings are substantial. We reexamine this effect for a relatively clean area using a unique 1-month dataset collected during the recent Carbonaceous Aerosol and Radiative Effects Study (CARES, June 2010) in the central California region near Sacramento. Here we define “clean” as aerosol optical depths less than 0.1 at 0.5 μm. We demonstrate that coarse mode particles contributed substantially (more than 50%) and frequently (up to 85% of time) to the total aerosol volume during this study. In contrast to conventional expectations that the radiative impact of coarse mode aerosols should be small for clean regions, we find that neglecting large particles may lead to significant overestimation, up to 45%, of direct aerosol radiative forcing despite very small aerosol optical depths. Our findings highlight the potential for substantial impacts of coarse mode aerosols on radiative properties over clean areas and the need for more explicit inclusion of coarse mode aerosols in climate-related observational studies.

  3. Historical anthropogenic radiative forcing of changes in biogenic secondary aerosol

    NASA Astrophysics Data System (ADS)

    Acosta Navarro, Juan; D'Andrea, Stephen; Pierce, Jeffrey; Ekman, Annica; Struthers, Hamish; Zorita, Eduardo; Guenther, Alex; Arneth, Almut; Smolander, Sampo; Kaplan, Jed; Farina, Salvatore; Scott, Catherine; Rap, Alexandru; Farmer, Delphine; Spracklen, Domink; Riipinen, Ilona

    2016-04-01

    Human activities have lead to changes in the energy balance of the Earth and the global climate. Changes in atmospheric aerosols are the second largest contributor to climate change after greenhouse gases since 1750 A.D. Land-use practices and other environmental drivers have caused changes in the emission of biogenic volatile organic compounds (BVOCs) and secondary organic aerosol (SOA) well before 1750 A.D, possibly causing climate effects through aerosol-radiation and aerosol-cloud interactions. Two numerical emission models LPJ-GUESS and MEGAN were used to quantify the changes in aerosol forming BVOC emissions in the past millennium. A chemical transport model of the atmosphere (GEOS-Chem-TOMAS) was driven with those BVOC emissions to quantify the effects on radiation caused by millennial changes in SOA. We found that global isoprene emissions decreased after 1800 A.D. by about 12% - 15%. This decrease was dominated by losses of natural vegetation, whereas monoterpene and sesquiterpene emissions increased by about 2% - 10%, driven mostly by rising surface air temperatures. From 1000 A.D. to 1800 A.D, isoprene, monoterpene and sesquiterpene emissions decline by 3% - 8% driven by both, natural vegetation losses, and the moderate global cooling between the medieval climate anomaly and the little ice age. The millennial reduction in BVOC emissions lead to a 0.5% to 2% reduction in climatically relevant aerosol particles (> 80 nm) and cause a direct radiative forcing between +0.02 W/m² and +0.07 W/m², and an indirect radiative forcing between -0.02 W/m² and +0.02 W/m².

  4. Global Aerosol Radiative Forcing Derived from Sea WiFS-Inferred Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Ming-Dah; Chan, Pui-King; Wang, Menghua

    1999-01-01

    Aerosol optical properties inferred from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) radiance measurements are used to compute the aerosol shortwave radiative forcing using a radiative transfer model. The aerosol optical thickness at the wavelength of 865-nm is taken from the SeaWIFS archive. It is found that the nominal optical thickness over oceans ranges from 0.1 to 0.2. Using a maritime aerosol model and the radiances measured at the various SeaWiFS channels, the Angstrom exponent is determined to be 0.2174, the single-scattering albedo to be 0.995, and the asymmetry factor to be 0.786. The radiative transfer model has eight bands in the visible and ultraviolet spectral regions and three bands in the near infrared. It includes the absorption due to aerosols, water vapor, carbon dioxide, and oxygen, and the scattering due to aerosols and gases (Rayleigh scattering). The radiative forcing is computed over global oceans for four months (January, April, July, and October, 1998) to represent four seasons. It is found that the aerosol radiative forcing is large and changes significantly with seasons near the continents with large-scale forest fires and desert dust. Averaged over oceans and the four months, the aerosol radiative forcing is approximately 7 W/sq m at the top of the atmosphere. This large radiative forcing is expected to have a significant cooling effect on the Earth's climate as implied from simulations of a number of general circulation models.

  5. Enhanced shortwave cloud radiative forcing due to anthropogenic aerosols

    SciTech Connect

    Schwartz, S.E.; Slingo, A.

    1995-05-01

    It has been suggested that anthropogenic aerosols in the troposphere can influence the microphysical properties of clouds and in turn their reflectivity, thereby exerting a radiative influence on climate. This article presents the theoretical basis for of this so-called indirect forcing and reviews pertinent observational evidence and climate model calculations of its magnitude and geographical distribution. We restrict consideration to liquid-water clouds.

  6. Aerosol and ozone radiative forcing 1990-2015

    NASA Astrophysics Data System (ADS)

    Myhre, Cathrine Lund; Myhre, Gunnar; Samset, Bjørn H.; Schulz, Michael

    2016-04-01

    The regional changes in economic growth and pollution regulations have caused large changes in the geographical distribution of emissions of precursors and components affecting the radiation balance. Here we use recently updated emission data over the 1990-2015 period in eight global aerosol models to simulate aerosol and ozone changes and their radiative forcing. The models reproduce the general large-scale changes in aerosol and ozone changes over this period. The surface particle mass changes is simulated to 2-3 %/yr for the total fine particle concentration over main industrialized regions. Six models simulated changes in PM2.5 (particulate matter with aerodynamic diameters less 2.5 μm) over the 1990-2015 period. Observations of changes in PM2.5 are available for selected regions and time periods. The available PM2.5 trends from observations and model mean results are compared and for Europe the observed trend is 20% stronger than the model-mean over the 2000-2010 period. Over the 1990-2010 period the US observed changes are 13% lower than the simulated changes. Despite this relatively promising result, the agreement over US for the 2000-2010 period is poor. The reasons for this will be further explored. The forcing for ozone and aerosols increase over the 1990-2015 period and more positive relative to results in IPCC AR5. The main reason for a positive aerosol forcing over this period is explained by a substantial reduction of global mean SO2 emissions, in parallel with increasing black carbon emissions.

  7. Direct radiative forcing from black carbon aerosols over urban environment

    NASA Astrophysics Data System (ADS)

    Badarinath, K. V. S.; Madhavi Latha, K.

    There is growing evidence that the earth’s climate is changing and will likely continue to change in the future. It is still debated whether these changes are due to natural variability of the climate system or a result of increases in the concentration of greenhouse gases in the atmosphere. Black carbon (BC) has become the subject of interest for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes, viz., vegetation burning, industrial effluents and motor vehicle exhausts, etc. In this paper, we present results from our measurements on black carbon aerosols, total aerosol mass concentration and aerosol optical depth over an urban environment namely Hyderabad during January to May, 2003. Diurnal variations of BC indicate high BC concentrations during 6:00 9:00 and 19:00 23:00 h. Weekday variations of BC concentrations increase gradually from Monday to Wednesday and gradually decrease from Thursday to Sunday. Analysis of traffic density along with meteorological parameters suggests that the primary determinant for BC concentration levels and patterns is traffic density. Seasonal variations of BC suggest that the BC concentrations are high during dry season compared to rainy season due to the scavenging by air. The fraction of BC to total mass concentration has been observed to be 7% during January to May. BC showed positive correlation with total mass concentration and aerosol optical depth at 500 nm. Radiative transfer calculations suggests that during January to May, diurnal averaged aerosol forcing at the surface is -33 Wm2 and at the top of the atmosphere (TOA) above 100 km it is observed to be +9 Wm-2. The results have been discussed in detail in the paper.

  8. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  9. Direct radiative forcing from black carbon aerosols over urban environment

    NASA Astrophysics Data System (ADS)

    Madhavi Latha, K.; Badarinath, K. V. S.

    There is growing evidence that the earth's climate is changing and will likely continue to change in the future. It is still debated whether these changes are due to natural variability of the climate system or a result of increases in the concentration of greenhouse gases in the atmosphere. Black carbon (BC) has become the subject of interest for a variety of reasons. BC aerosol may cause environmental as well as harmful health effects in densely inhabited regions. BC is a strong absorber of radiation in the visible and near-infrared part of the spectrum, where most of the solar energy is distributed. Black carbon is emitted into the atmosphere as a byproduct of all combustion processes viz., vegetation burning, industrial effluents and motor vehicle exhausts etc. In this paper, we present results from our measurements on black carbon aerosols, total aerosol mass concentration and aerosol optical depth over an urban environment namely Hyderabad during January to May, 2003. Diurnal variations of BC suggests that high BC concentrations observed during 6:00-9:00hrs and 19:00-23:00hrs. Weekday variations of BC suggest that the day average BC concentrations increases gradually from Monday to Wednesday and gradually decreased from Thursday to Sunday. Analysis of traffic density along with meteorological parameters suggests that the primary determinant for BC concentration levels and patterns is traffic density. Seasonal variations of BC suggest that the BC concentrations are high during dry season compared to rainy season due to scavenging effects of BC during rainy season. Fraction of BC to total mass concentration has been observed to be 7% during January to May. BC showed positive correlation with total mass concentration and aerosol optical depth at 500nm. Radiative transfer calculations suggests that during January to May, diurnal averaged aerosol forcing at the surface calculated to be -33Wm -2 and at the top of the atmosphere (TOA) it is observed to +9 Wm -2. The

  10. Shortwave and longwave radiative forcings of aerosols depending on the vertical stratification of aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Oikawa, Eiji; Suzuki, Kentaroh; Nakajima, Teruyuki; Nishizawa, Tomoaki

    2017-02-01

    We investigate four scenarios for estimating shortwave (SW) and longwave (LW) direct aerosol radiative forcing (DARF) at the top of atmosphere (TOA) using the global data set of the vertical distributions for aerosols and clouds of CALIPSO and CloudSat Level 2 products. One scenario is clear-sky (cloud-free) condition and three scenarios are cloudy-sky condition: the case that aerosols exists above clouds (AAC case), and the case that aerosols exist below high clouds such as cirrus, but without clouds below the aerosol layers (ABC case), and the case that aerosols are not observed in cloudy-sky condition. In clear-sky and ABC cases, aerosols mainly scatter sunlight and SWDARFs show negative values, except for bright surfaces, such as desert regions and the North and South Poles. In AAC case, aerosols absorb the reflected light from underlying low-level clouds to TOA, so that SWDARF at TOA shows positive value. Mineral dust absorbs the Earth's radiation and LWDARF indicates strong positive over Saharan and Arabian deserts. The global mean values of SW plus LW DARFs are -2.77, -0.77, and -1.40 Wm-2 under clear-sky, cloudy-sky, and all-sky conditions.

  11. Simultaneously Constraining Climate Sensitivity and Aerosol Radiative Forcing.

    NASA Astrophysics Data System (ADS)

    Harvey, L. D. Danny; Kaufmann, Robert K.

    2002-10-01

    An energy balance climate model with latitudinal, surface-air, and land-sea resolution is coupled to a two-dimensional (latitude-depth) ocean model and used to simulate changes in surface and surface air temperature since 1765. The climate model sensitivity can be prescribed by adjusting the parameterization of infrared radiation to space, and sensitivities corresponding to an equilibrium, global average warming to a CO2 doubling (T2×) of 1.0° to 5.0°C are used here. The model is driven with various combinations of greenhouse gas (GHG), fossil fuel aerosol, biomass aerosol, solar, and volcanic forcings. The fossil fuel aerosol forcing is concentrated in the NH, while the biomass aerosol forcing is centered near the equator. The variation in the global mean air temperature, and in the NH minus SH temperature, is examined over the period 1856-2000, in order to simultaneously constrain both climate sensitivity and aerosol forcing. The model performance, compared to observations, is evaluated using three statistical measures. It is possible to identify a group of experiments that performs better than other experiments, but it cannot be claimed that any member of the group is better than any other member in a statistically rigorous manner. The different statistical measures and temperature variables (global mean, NH SH, NH, or SH temperature) give slightly different groups of `more accurate' experiments.Based on the statistical measures and examination of the time series of model-simulated global mean and NH SH temperature variation, the following conclusions can be drawn: (i) The most likely T2× is around 2°C, which is at the lower end of the range of 2.1°-4.8°C obtained by recent general circulation models; (ii) the fossil fuel aerosol forcing is unlikely to have exceeded 1.0 W m2 in the global mean by 1990; and (iii) the net biomass plus soil dust aerosol forcing is unlikely to have exceeded 0.5 W m2 in the global mean by 1990. As an independent check of these

  12. Spectral aerosol direct radiative forcing from airborne radiative measurements during CalNex and ARCTAS

    NASA Astrophysics Data System (ADS)

    Leblanc, Samuel E.; Schmidt, K. S.; Pilewskie, P.; Redemann, J.; Hostetler, C.; Ferrare, R.; Hair, J.; Langridge, J. M.; Lack, D. A.

    2012-09-01

    This study presents the aerosol radiative forcing derived from airborne measurements of shortwave spectral irradiance during the 2010 Research at the Nexus of Air Quality and Climate Change (CalNex). Relative forcing efficiency, the radiative forcing normalized by aerosol optical thickness and incident irradiance, is a means of comparing the aerosol radiative forcing for different conditions. In this study, it is used to put the aerosol radiative effects of an air mass in the Los Angeles basin in context with case studies from three field missions that targeted other regions and aerosol types, including a case study from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). For CalNex, we relied on irradiance measurements onboard the NOAA P-3 aircraft during a flight on 19 May 2010 over a ground station. CalNex presented a difficulty for determining forcing efficiency since one of the input parameters, optical thickness, was not available from the same aircraft. However, extinction profiles were available from a nearby aircraft. An existing retrieval algorithm was modified to use those measurements as initial estimate for the missing optical thickness. In addition, single scattering albedo and asymmetry parameter (secondary products of the method), were compared with CalNex in situ measurements. The CalNex relative forcing efficiency spectra agreed with earlier studies that found this parameter to be constrained at each wavelength within 20% per unit of aerosol optical thickness at 500 nm regardless of aerosol type and experiment, except for highly absorbing aerosols sampled near Mexico City. The diurnally averaged below-layer forcing efficiency integrated over the wavelength range of 350-700 nm for CalNex is estimated to be -58.6 ± 13.8 W/m2, whereas for the ARCTAS case it is -48.7 ± 11.5 W/m2.

  13. New Directions: Emerging Satellite Observations of Above-cloud Aerosols and Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Zhang, Zhibo

    2013-01-01

    Spaceborne lidar and passive sensors with multi-wavelength and polarization capabilities onboard the A-Train provide unprecedented opportunities of observing above-cloud aerosols and direct radiative forcing. Significant progress has been made in recent years in exploring these new aerosol remote sensing capabilities and generating unique datasets. The emerging observations will advance the understanding of aerosol climate forcing.

  14. WRF-Chem Simulations of Aerosols and Anthropogenic Aerosol Radiative Forcing in East Asia

    SciTech Connect

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, Lai-Yung R.

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at different sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korean, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 um or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan due to the pollutant transport from polluted area of East Asia. AOD is high over Southwest and Central China in winter, spring and autumn and over North China in summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. The model also captures the dust events at the Zhangye site in the semi-arid region of China. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over ocean at the top of atmosphere (TOA), 5 to 30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO4 2-, NO3 - and NH4+. Positive BC RF at TOA compensates 40~50% of the TOA cooling associated with anthropogenic aerosol.

  15. Aerosol Radiative Forcing Derived From SeaWIFS - Retrieved Aerosol Optical Properties

    NASA Technical Reports Server (NTRS)

    Chou, Mong-Dah; Chan, Pui-King; Wang, Menghua; Einaudi, Franco (Technical Monitor)

    2000-01-01

    To understand climatic implications of aerosols over global oceans, the aerosol optical properties retrieved from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) are analyzed, and the effects of the aerosols on the Earth's radiation budgets (aerosol radiative forcing, ARF) are computed using a radiative transfer model. It is found that the distribution of the SeaWiFS-retrieved aerosol optical thickness is distinctively zonal. The maximum in the equatorial region coincides with the Intertropical Convergence Zone, and the maximum in the Southern Hemispheric high latitudes coincides with the region of prevailing westerlies. The minimum aerosol optical thickness is found in the subtropical high pressure regions, especially in the Southern Hemisphere. These zonal patterns clearly demonstrate the influence of atmospheric circulation on the oceanic aerosol distribution. Over global oceans, aerosols reduce the annual mean net downward solar flux by 5.4 W m-2 at the top of the atmosphere and by 6.1 W m-2 at the surface. The largest ARF is found in the tropical Atlantic, Arabian Sea, Bay of Bengal, the coastal regions of Southeast and East Asia, and the Southern Hemispheric high latitudes. During the period of the Indonesian big fires (September-December 1997), the cooling due to aerosols is greater than 15 W m-2 at the top of the atmosphere and greater than 30 W m(exp -1) at the surface in the vicinity of the maritime continents. The atmosphere receives extra solar radiation by greater than 15 W m(exp -1) over a large area. These large changes in radiative fluxes are expected to have enhanced the atmospheric stability, weakened the atmospheric circulation, and augmented the drought condition during that period. It would be very instructive to simulate the regional climatic. The model-calculated clear sky solar flux at the top of the atmosphere is compared with that derived from the Clouds and the Earth's Radiant Energy System (CERES). The net downward solar flux of

  16. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    NASA Astrophysics Data System (ADS)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  17. Aerosol Properties and Radiative Forcing over Kanpur during Severe Aerosol Loading Conditions

    SciTech Connect

    Kaskaoutis, D. G.; Sinha, P. R.; Vinoj, V.; Kosmopoulos, P. G.; Tripathi, S. N.; Misra, Amit; Sharma, M.; Singh, R. P.

    2013-11-01

    Atmospheric aerosols over India exhibit large spatio-temporal fluctuation driven by the local monsoon system, emission rates and seasonally-changed air masses. The northern part of India is well-known for its high aerosol loading throughout the year due to anthropogenic emissions, dust influence and biomass burning. On certain circumstances and, under favorable weather conditions, the aerosol load can be severe, causing significant health concerns and climate implications. The present work analyzes the aerosol episode (AE) days and examines the modification in aerosol properties and radiative forcing during the period 2001-2010 based on Kanpur-AERONET sun photometer data. As AEs are considered the days having daily-mean aerosol optical depth (AOD) above the decadal mean + 1 STD (standard deviation); the threshold value is defined at 0.928. The results identify 277 out of 2095 days (13.2%) of AEs over Kanpur, which are most frequently observed during post-monsoon (78 cases, 18.6%) and monsoon (76, 14.7%) seasons due to biomass-burning episodes and dust influence, respectively. On the other hand, the AEs in winter and pre-monsoon are lower in both absolute and percentage values (65, 12.5% and 58, 9.1%, respectively). The modification in aerosol properties on the AE days is strongly related to season. Thus, in post-monsoon and winter the AEs are associated with enhanced presence of fine-mode aerosols and Black Carbon from anthropogenic pollution and any kind of burning, while in pre-monsoon and monsoon seasons they are mostly associated with transported dust. Aerosol radiative forcing (ARF) calculated using SBDART shows much more surface (~-69 to -97 Wm-2) and Top of Atmosphere cooling (-20 to -30 Wm-2) as well as atmospheric heating (~43 to 71 Wm-2) during the AE days compared to seasonal means. These forcing values are mainly controlled by the higher AODs and the modified aerosol characteristics (Angstrom α, SSA) during the AE days in each season and may cause

  18. A Strategy to Assess Aerosol Direct Radiative Forcing of Climate Using Satellite Radiation Measurements

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric aerosols have a complex internal chemical composition and optical properties. Therefore it is difficult to model their impact on redistribution and absorption of solar radiation, and the consequent impact on atmospheric dynamics and climate. The use in climate models of isolated aerosol parameters retrieved from satellite data (e.g. optical thickness) may result in inconsistent calculations, if the model assumptions differ from these of the satellite retrieval schemes. Here we suggest a strategy to assess the direct impact of aerosol on the radiation budget at the top and bottom of the atmosphere using satellite and ground based measurements of the spectral solar radiation scattered by the aerosol. This method ensures consistent use of the satellite data and increases its accuracy. For Kaufman and Tanre: Strategy for aerosol direct forcing anthropogenic aerosol in the fine mode (e.g. biomass burning smoke and urban pollution) consistent use of satellite derived optical thickness can yield the aerosol impact on the spectral solar flux with accuracy an order of magnitude better than the optical thickness itself. For example, a simulated monthly average smoke optical thickness of 0.5 at 0.55 microns (forcing of 40-50 W/sq m) derived with an error of 20%, while the forcing can be measured directly with an error of only 0-2 W/sq m. Another example, the effect of large dust particles on reflection of solar flux can be derived three times better than retrievals of optical thickness. Since aerosol impacts not only the top of the atmosphere but also the surface irradiation, a combination of satellite and ground based measurements of the spectral flux, can be the most direct mechanism to evaluate the aerosol effect on climate and assimilate it in climate models. The strategy is applied to measurements from SCAR-B and the Tarfox experiments. In SCAR-B aircraft spectral data are used to derive the 24 hour radiative forcing of smoke at the top of the atmosphere of

  19. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning using Satellite Data

    NASA Technical Reports Server (NTRS)

    Chistopher, Sundar A.; Kliche, Donna V.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  20. First Estimates of the Radiative Forcing of Aerosols Generated from Biomass Burning Using Satellite Data

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Kliche, Donna A.; Chou, Joyce; Welch, Ronald M.

    1996-01-01

    Collocated measurements from the Advanced Very High Resolution Radiometer (AVHRR) and the Earth Radiation Budget Experiment (ERBE) scanner are used to examine the radiative forcing of atmospheric aerosols generated from biomass burning for 13 images in South America. Using the AVHRR, Local Area Coverage (LAC) data, a new technique based on a combination of spectral and textural measures is developed for detecting these aerosols. Then, the instantaneous shortwave, longwave, and net radiative forcing values are computed from the ERBE instantaneous scanner data. Results for the selected samples from 13 images show that the mean instantaneous net radiative forcing for areas with heavy aerosol loading is about -36 W/sq m and that for the optically thin aerosols are about -16 W/sq m. These results, although preliminary, provide the first estimates of radiative forcing of atmospheric aerosols from biomass burning using satellite data.

  1. WRF-Chem simulations of aerosols and anthropogenic aerosol radiative forcing in East Asia

    NASA Astrophysics Data System (ADS)

    Gao, Yi; Zhao, Chun; Liu, Xiaohong; Zhang, Meigen; Leung, L. Ruby

    2014-08-01

    This study aims to provide a first comprehensive evaluation of WRF-Chem for modeling aerosols and anthropogenic aerosol radiative forcing (RF, including direct, semi-direct and indirect forcing) over East Asia. Several numerical experiments were conducted from November 2007 to December 2008. Comparison between model results and observations shows that the model can generally reproduce the observed spatial distributions of aerosol concentration, aerosol optical depth (AOD) and single scattering albedo (SSA) from measurements at many sites, including the relatively higher aerosol concentration and AOD over East China and the relatively lower AOD over Southeast Asia, Korea, and Japan. The model also depicts the seasonal variation and transport of pollutions over East Asia. Particulate matter of 10 μm or less in the aerodynamic diameter (PM10), black carbon (BC), sulfate (SO42-), nitrate (NO3-) and ammonium (NH4+) concentrations are higher in spring than other seasons in Japan, which indicates the possible influence of pollutant transport from polluted area of East Asia. The model underestimates SO42- and organic carbon (OC) concentrations over mainland China by about a factor of 2, while overestimates NO3- concentration in autumn along the Yangtze River. The model captures the dust events at the Zhangye site in the semi-arid region of China. AOD is high over Southwest and Central China in winter and spring and over North China in winter, spring and summer while is low over South China in summer due to monsoon precipitation. SSA is lowest in winter and highest in summer. Anthropogenic aerosol RF is estimated to range from -5 to -20 W m-2 over land and -20 to -40 W m-2 over adjacent oceans at the top of atmosphere (TOA), 5-30 W m-2 in the atmosphere (ATM) and -15 to -40 W m-2 at the bottom (BOT). The warming effect of anthropogenic aerosol in ATM results from BC aerosol while the negative aerosol RF at TOA is caused by scattering aerosols such as SO42-, NO3- and NH4

  2. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  3. Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.

    2003-01-01

    We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).

  4. Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols

    NASA Technical Reports Server (NTRS)

    Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.; Halthore, R. N.; Haywood, J. M.; Iversen, T.; Kato, S.; Kinne, S.; Kirkevag, A.; Knapp, K. R.; Lacis, A.; Laszlo, I.; Mishchenko, M. I.

    2000-01-01

    The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is

  5. Aerosol properties and radiative forcing for three air masses transported in Summer 2011 to Sopot, Poland

    NASA Astrophysics Data System (ADS)

    Rozwadowska, Anna; Stachlewska, Iwona S.; Makuch, P.; Markowicz, K. M.; Petelski, T.; Strzałkowska, A.; Zieliński, T.

    2013-05-01

    Properties of atmospheric aerosols and solar radiation reaching the Earth's surface were measured during Summer 2011 in Sopot, Poland. Three cloudless days, characterized by different directions of incoming air-flows, which are typical transport pathways to Sopot, were used to estimate a radiative forcing due to aerosols present in each air mass.

  6. Global Radiative Forcing of Coupled Tropospheric Ozone and Aerosols in a Unified General Circulation Model

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.; Adams, Peter J.; Mickley, Loretta J.

    2008-01-01

    Global simulations of sea salt and mineral dust aerosols are integrated into a previously developed unified general circulation model (GCM), the Goddard Institute for Space Studies (GISS) GCM II', that simulates coupled tropospheric ozone-NOx-hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. The fully coupled gas-aerosol unified GCM allows one to evaluate the extent to which global burdens, radiative forcing, and eventually climate feedbacks of ozone and aerosols are influenced by gas-aerosol chemical interactions. Estimated present-day global burdens of sea salt and mineral dust are 6.93 and 18.1 Tg with lifetimes of 0.4 and 3.9 days, respectively. The GCM is applied to estimate current top of atmosphere (TOA) and surface radiative forcing by tropospheric ozone and all natural and anthropogenic aerosol components. The global annual mean value of the radiative forcing by tropospheric ozone is estimated to be +0.53 W m(sup -2) at TOA and +0.07 W m(sup -2) at the Earth's surface. Global, annual average TOA and surface radiative forcing by all aerosols are estimated as -0.72 and -4.04 W m(sup -2), respectively. While the predicted highest aerosol cooling and heating at TOA are -10 and +12 W m(sup -2) respectively, surface forcing can reach values as high as -30 W m(sup -2), mainly caused by the absorption by black carbon, mineral dust, and OC. We also estimate the effects of chemistry-aerosol coupling on forcing estimates based on currently available understanding of heterogeneous reactions on aerosols. Through altering the burdens of sulfate, nitrate, and ozone, heterogeneous reactions are predicted to change the global mean TOA forcing of aerosols by 17% and influence global mean TOA forcing of tropospheric ozone by 15%.

  7. Aerosol Spectral Radiative Forcing Efficiency from Airborne Measurements During Multiple Field Missions

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Leblanc, S. E.; Pilewskie, P.; Redemann, J.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.

    2012-12-01

    Measurements of shortwave spectral irradiance in conjunction with measurements of aerosol optical depth are used to determine the direct aerosol radiative forcing for various different regions and missions. To better compare cases with different air masses and solar geometry, we use the concept of top-of-layer and bottom-of-layer relative forcing efficiency. The aerosol layers were sampled from aircraft during several field campaigns, including the Megacity Initiative: Local and Global Research Observations (MILAGRO, Mexico, 2006); the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, Alaska and Alberta, 2008), Research at the Nexus of Air Quality and Climate Change (CalNex, California, 2010); and the Deep Convective Clouds and Chemistry Experiment (DC3, central US, 2012). We show that the spectral shape of the relative forcing efficiency is similar for these aerosol layers regardless of the aerosol type. The spectral relative forcing efficiency at any one wavelength for the majority of the cases is constrained within a span of 20% per unit of midvisible aerosol optical depth. Single scattering albedo, asymmetry parameter, and surface albedo are secondary products for the various methods used to determine aerosol radiative forcing. Using these, we determine the diurnally averaged spectral and broadband top-of-atmosphere and surface radiative forcing efficiency for the various different aerosol types and surface conditions.

  8. On the relationship between aerosol model uncertainty and radiative forcing uncertainty

    PubMed Central

    Reddington, Carly L.; Carslaw, Kenneth S.

    2016-01-01

    The largest uncertainty in the historical radiative forcing of climate is caused by the interaction of aerosols with clouds. Historical forcing is not a directly measurable quantity, so reliable assessments depend on the development of global models of aerosols and clouds that are well constrained by observations. However, there has been no systematic assessment of how reduction in the uncertainty of global aerosol models will feed through to the uncertainty in the predicted forcing. We use a global model perturbed parameter ensemble to show that tight observational constraint of aerosol concentrations in the model has a relatively small effect on the aerosol-related uncertainty in the calculated forcing between preindustrial and present-day periods. One factor is the low sensitivity of present-day aerosol to natural emissions that determine the preindustrial aerosol state. However, the major cause of the weak constraint is that the full uncertainty space of the model generates a large number of model variants that are equally acceptable compared to present-day aerosol observations. The narrow range of aerosol concentrations in the observationally constrained model gives the impression of low aerosol model uncertainty. However, these multiple “equifinal” models predict a wide range of forcings. To make progress, we need to develop a much deeper understanding of model uncertainty and ways to use observations to constrain it. Equifinality in the aerosol model means that tuning of a small number of model processes to achieve model−observation agreement could give a misleading impression of model robustness. PMID:26848136

  9. Aerosol Radiative Effects on Deep Convective Clouds and Associated Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Fan, J.; Zhang, R.; Tao, W.-K.; Mohr, I.

    2007-01-01

    The aerosol radiative effects (ARE) on the deep convective clouds are investigated by using a spectral-bin cloud-resolving model (CRM) coupled with a radiation scheme and an explicit land surface model. The sensitivity of cloud properties and the associated radiative forcing to aerosol single-scattering albedo (SSA) are examined. The ARE on cloud properties is pronounced for mid-visible SSA of 0.85. Relative to the case excluding the ARE, cloud fraction and optical depth decrease by about 18% and 20%, respectively. Cloud droplet and ice particle number concentrations, liquid water path (LWP), ice water path (IWP), and droplet size decrease significantly when the ARE is introduced. The ARE causes a surface cooling of about 0.35 K and significantly high heating rates in the lower troposphere (about 0.6K/day higher at 2 km), both of which lead to a more stable atmosphere and hence weaker convection. The weaker convection and the more desiccation of cloud layers explain the less cloudiness, lower cloud optical depth, LWP and IWP, smaller droplet size, and less precipitation. The daytime-mean direct forcing induced by black carbon is about 2.2 W/sq m at the top of atmosphere (TOA) and -17.4 W/sq m at the surface for SSA of 0.85. The semi-direct forcing is positive, about 10 and 11.2 W/sq m at the TOA and surface, respectively. Both the TOA and surface total radiative forcing values are strongly negative for the deep convective clouds, attributed mostly to aerosol indirect forcing. Aerosol direct and semi-direct effects are very sensitive to SSA. Because the positive semi-direct forcing compensates the negative direct forcing at the surface, the surface temperature and heat fluxes decrease less significantly with the increase of aerosol absorption (decreasing SSA). The cloud fraction, optical depth, convective strength, and precipitation decrease with the increase of absorption, resulting from a more stable and dryer atmosphere due to enhanced surface cooling and

  10. Impact of Mixing State on Anthropogenic Aerosol Radiative Forcing and Associated Climate Response

    NASA Astrophysics Data System (ADS)

    Avramov, A.; Shin, H. J.; Wang, C.

    2014-12-01

    Atmospheric aerosols affect Earth's radiation balance directly by scattering and absorbing solar radiation and, indirectly, by changing the microphysical structure, lifetime and spatial extent of clouds. The aerosol mixing state to a large extent determines not only their optical properties (direct effect) but also their ability to serve as cloud condensation nuclei or ice nuclei (indirect effect). Results from previous research have highlighted the importance of the aerosol mixing assumptions in radiative forcing estimates in model simulations. Here we take a step further to analyze the differences in associated climate responses, using a multimodal, size- and mixing-dependent aerosol model (MARC) incorporated within the Community Earth System Model (CESM). The new model allows for a detailed representation of aerosol-radiation and aerosol-cloud interactions by including an improved treatment of aerosol mixing state and composition. First, we estimate and compare the magnitudes of direct and indirect forcing of anthropogenic aerosols under different mixing assumptions. We then carry out several century-long fully-coupled climate simulations designed to isolate the climate responses to direct and indirect forcings under the same aerosol mixing assumptions. In our analysis, we specifically focus on the following three climate response components: 1) cloud distribution and coverage; 2) precipitation amount and distribution; and 3) changes in circulation patterns.

  11. Aerosol Radiative Forcing and Regional Climate Impact over Middle East and North Africa

    NASA Astrophysics Data System (ADS)

    Bangalth, H. K.; Stenchikov, G.; Zampieri, M.; Bantges, R.; Brindley, H.

    2012-04-01

    Middle East and North Africa (MENA) is a unique region due in part to the abundance of atmospheric aerosols and their significant contribution to the energy balance of the region. Mineral dust plays a leading role in this process. In this study we evaluate the radiative forcing of dust aerosols in the MENA region and their impact on the regional circulation and temperature distribution using a global high-resolution atmospheric model HIRAM developed at the NOAA Geophysical Fluid Dynamics Laboratory. We found that dust aerosols reduce downward radiative fluxes at surface up to 30 W/m2 and warm by about this amount the lower five-km-deep atmospheric layer. To better quantify radiative impact of aerosols we have employed the available aerosol satellite observations that primarily provide column integral aerosol optical depth (AOD), as a measure of aerosol burden. Climatology of AOD from different satellites (MODIS, MISR, SEVIRI and CALIPSO) over MENA and their inter comparison is made to have a comprehension of the discrepancies and agreement between them. Though the observed AODs vary among the different instruments spatially and temporally, the difference falls within a factor of less than two. We implement these observed aerosols in HIRAM. The radiative forcing corresponding to the satellite aerosol observation and the sensitivity of regional climate to this forcing are analyzed. The analysis shows that the differential heating in the vertical and the corresponding response of the vertical temperature profile have a profound impact on the tropospheric dynamics and the structure of the boundary layer.

  12. Sensitivity of scattering and absorbing aerosol direct radiative forcing to physical climate factors

    NASA Astrophysics Data System (ADS)

    Ocko, Ilissa B.; Ramaswamy, V.; Ginoux, Paul; Ming, Yi; Horowitz, Larry W.

    2012-10-01

    The direct radiative forcing of the climate system includes effects due to scattering and absorbing aerosols. This study explores how important physical climate characteristics contribute to the magnitudes of the direct radiative forcings (DRF) from anthropogenic sulfate, black carbon, and organic carbon. For this purpose, we employ the GFDL CM2.1 global climate model, which has reasonable aerosol concentrations and reconstruction of twentieth-century climate change. Sulfate and carbonaceous aerosols constitute the most important anthropogenic aerosol perturbations to the climate system and provide striking contrasts between primarily scattering (sulfate and organic carbon) and primarily absorbing (black carbon) species. The quantitative roles of cloud coverage, surface albedo, and relative humidity in governing the sign and magnitude of all-sky top-of-atmosphere (TOA) forcings are examined. Clouds reduce the global mean sulfate TOA DRF by almost 50%, reduce the global mean organic carbon TOA DRF by more than 30%, and increase the global mean black carbon TOA DRF by almost 80%. Sulfate forcing is increased by over 50% as a result of hygroscopic growth, while high-albedo surfaces are found to have only a minor (less than 10%) impact on all global mean forcings. Although the radiative forcing magnitudes are subject to uncertainties in the state of mixing of the aerosol species, it is clear that fundamental physical climate characteristics play a large role in governing aerosol direct radiative forcing magnitudes.

  13. A global modeling study on carbonaceous aerosol microphysical characteristics and radiative forcing

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.; Koch, D.; Bond, T. C.; Tsigaridis, K.

    2010-02-01

    Recently, attention has been drawn towards black carbon aerosols as a short-term climate warming mitigation candidate. However the global and regional impacts of the direct, cloud-indirect and semi-direct forcing effects are highly uncertain, due to the complex nature of aerosol evolution and the way that mixed, aged aerosols interact with clouds and radiation. A detailed aerosol microphysical scheme, MATRIX, embedded within the GISS climate model is used in this study to present a quantitative assessment of the impact of microphysical processes involving black carbon, such as emission size distributions and optical properties on aerosol cloud activation and radiative forcing. Our best estimate for net direct and indirect aerosol radiative forcing between 1750 and 2000 is -0.56 W/m2. However, the direct and indirect aerosol effects are quite sensitive to the black and organic carbon size distribution and consequential mixing state. The net radiative forcing can vary between -0.32 to -0.75 W/m2 depending on these carbonaceous particle properties at emission. Assuming that sulfates, nitrates and secondary organics form a coating around a black carbon core, rather than forming a uniformly mixed particle, changes the overall net aerosol radiative forcing from negative to positive. Taking into account internally mixed black carbon particles let us simulate correct aerosol absorption. Black carbon absorption is amplified by sulfate and nitrate coatings, but even more strongly by organic coatings. Black carbon mitigation scenarios generally showed reduced radiative forcing when sources with a large proportion of black carbon, such as diesel, are reduced; however reducing sources with a larger organic carbon component as well, such as bio-fuels, does not necessarily lead to climate benefits.

  14. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    SciTech Connect

    Ricchiazzi, P.; O'Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  15. Remote Sensing of Aerosol and Aerosol Radiative Forcing of Climate from EOS Terra MODIS Instrument

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Tanre, Didier; Remer, Lorraine; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The recent launch of EOS-Terra into polar orbit has begun to revolutionize remote sensing of aerosol and their effect on climate. Terra has five instruments, two of them,Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectro-Radiometer (MISR) are designed to monitor global aerosol in two different complementary ways. Here we shall discuss the use of the multispectral measurements of MODIS to derive: (1) the global distribution of aerosol load (and optical thickness) over ocean and land; (2) to measure the impact of aerosol on reflection of sunlight to space; and (3) to measure the ability of aerosol to absorb solar radiation. These measurements have direct applications on the understanding of the effect of aerosol on climate, the ability to predict climate change, and on the monitoring of dust episodes and man-made pollution. Principles of remote sensing of aerosol from MODIS will be discussed and first examples of measurements from MODIS will be provided.

  16. Regional and seasonal radiative forcing by perturbations to aerosol and ozone precursor emissions

    NASA Astrophysics Data System (ADS)

    Bellouin, Nicolas; Baker, Laura; Hodnebrog, Øivind; Olivié, Dirk; Cherian, Ribu; Macintosh, Claire; Samset, Bjørn; Esteve, Anna; Aamaas, Borgar; Quaas, Johannes; Myhre, Gunnar

    2016-11-01

    Predictions of temperature and precipitation responses to changes in the anthropogenic emissions of climate forcers require the quantification of the radiative forcing exerted by those changes. This task is particularly difficult for near-term climate forcers like aerosols, methane, and ozone precursors because their short atmospheric lifetimes cause regionally and temporally inhomogeneous radiative forcings. This study quantifies specific radiative forcing, defined as the radiative forcing per unit change in mass emitted, for eight near-term climate forcers as a function of their source regions and the season of emission by using dedicated simulations by four general circulation and chemistry-transport models. Although differences in the representation of atmospheric chemistry and radiative processes in different models impede the creation of a uniform dataset, four distinct findings can be highlighted. Firstly, specific radiative forcing for sulfur dioxide and organic carbon are stronger when aerosol-cloud interactions are taken into account. Secondly, there is a lack of agreement on the sign of the specific radiative forcing of volatile organic compound perturbations, suggesting they are better avoided in climate mitigation strategies. Thirdly, the strong seasonalities of the specific radiative forcing of most forcers allow strategies to minimise positive radiative forcing based on the timing of emissions. Finally, European and shipping emissions exert stronger aerosol specific radiative forcings compared to East Asia where the baseline is more polluted. This study can therefore form the basis for further refining climate mitigation options based on regional and seasonal controls on emissions. For example, reducing summertime emissions of black carbon and wintertime emissions of sulfur dioxide in the more polluted regions is a possible way to improve air quality without weakening the negative radiative forcing of aerosols.

  17. Satellite-derived aerosol radiative forcing from the 2004 British Columbia wildfires

    USGS Publications Warehouse

    Guo, S.; Leighton, H.

    2008-01-01

    The British Columbia wildfires of 2004 was one of the largest wildfire events in the last ten years in Canada. Both the shortwave and longwave smoke aerosol radiative forcing at the top-of-atmosphere (TOA) are investigated using data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and the Earth's Radiant Energy System (CERES) instruments. Relationships between the radiative forcing fluxes (??F) and wildfire aerosol optical thickness (AOT) at 0.55 ??m (??0.55) are deduced for both noontime instantaneous forcing and diurnally averaged forcing. The noontime averaged instantaneous shortwave and longwave smoke aerosol radiative forcing at the TOA are 45.8??27.5 W m-2 and -12.6??6.9 W m-2, respectively for a selected study area between 62??N and 68??N in latitude and 125??W and 145??W in longitude over three mainly clear-sky days (23-25 June). The derived diurnally averaged smoke aerosol shortwave radiative forcing is 19.9??12.1 W m-2 for a mean ??0.55 of 1.88??0.71 over the same time period. The derived ??F-?? relationship can be implemented in the radiation scheme used in regional climate models to assess the effect of wildfire aerosols.

  18. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  19. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review

    NASA Astrophysics Data System (ADS)

    Haywood, James; Boucher, Olivier

    2000-11-01

    This paper reviews the many developments in estimates of the direct and indirect global annual mean radiative forcing due to present-day concentrations of anthropogenic tropospheric aerosols since Intergovernmental Panel on Climate Change [1996]. The range of estimates of the global mean direct radiative forcing due to six distinct aerosol types is presented. Additionally, the indirect effect is split into two components corresponding to the radiative forcing due to modification of the radiative properties of clouds (cloud albedo effect) and the effects of anthropogenic aerosols upon the lifetime of clouds (cloud lifetime effect). The radiative forcing for anthropogenic sulphate aerosol ranges from -0.26 to -0.82 W m-2. For fossil fuel black carbon the radiative forcing ranges from +0.16 W m-2 for an external mixture to +0.42 W m-2 for where the black carbon is modeled as internally mixed with sulphate aerosol. For fossil fuel organic carbon the two estimates of the likely weakest limit of the direct radiative forcing are -0.02 and -0.04 W m-2. For biomass-burning sources of black carbon and organic carbon the combined radiative forcing ranges from -0.14 to -0.74 W m-2. Estimates of the radiative forcing due to mineral dust vary widely from +0.09 to -0.46 W m-2; even the sign of the radiative forcing is not well established due to the competing effects of solar and terrestrial radiative forcings. A single study provides a very tentative estimate of the radiative forcing of nitrates to be -0.03 W m-2. Estimates of the cloud albedo indirect radiative forcing range from -0.3 to approximately -1.8 W m-2. Although the cloud lifetime effect is identified as a potentially important climate forcing mechanism, it is difficult to quantify in the context of the present definition of radiative forcing of climate change and current model simulations. This is because its estimation by general circulation models necessarily includes some level of cloud and water vapor feedbacks

  20. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Zhang, M.; Han, X.; Liu, X.

    2011-12-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W/m2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W/m2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan.

  1. Simulation of aerosol direct radiative forcing with RAMS-CMAQ in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Han, Zhiwei; Xin, Jinyuan; Liu, Xiaohong

    2011-11-01

    The air quality modeling system RAMS-CMAQ is developed to assess aerosol direct radiative forcing by linking simulated meteorological parameters and aerosol mass concentration with the aerosol optical properties/radiative transfer module in this study. The module is capable of accounting for important factors that affect aerosol optical properties and radiative effect, such as incident wave length, aerosol size distribution, water uptake, and internal mixture. Subsequently, the modeling system is applied to simulate the temporal and spatial variations in mass burden, optical properties, and direct radiative forcing of diverse aerosols, including sulfate, nitrate, ammonium, black carbon, organic carbon, dust, and sea salt over East Asia throughout 2005. Model performance is fully evaluated using various observational data, including satellite monitoring of MODIS and surface measurements of EANET (Acid Deposition Monitoring Network), AERONET (Aerosol Robotic Network), and CSHNET (Chinese Sun Hazemeter Network). The correlation coefficients of the comparisons of daily average mass concentrations of sulfate, PM2.5, and PM10 between simulations and EANET measurements are 0.70, 0.61, and 0.64, respectively. It is also determined that the modeled aerosol optical depth (AOD) is in congruence with the observed results from the AERONET, the CSHNET, and the MODIS. The model results suggest that the high AOD values ranging from 0.8 to 1.2 are mainly distributed over the Sichuan Basin as well as over central and southeastern China, in East Asia. The aerosol direct radiative forcing patterns generally followed the AOD patterns. The strongest forcing effect ranging from -12 to -8 W m -2 was mainly distributed over the Sichuan Basin and the eastern China's coastal regions in the all-sky case at TOA, and the forcing effect ranging from -8 to -4 W m -2 could be found over entire eastern China, Korea, Japan, East China Sea, and the sea areas of Japan

  2. Climatic Effects of 1950-2050 Changes in US Anthropogenic Aerosols. Part 1; Aerosol Trends and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Leibensperger, E. M.; Mickley, L. J.; Jacob, D. J.; Chen, W.-T.; Seinfeld, J. H.; Nenes, A.; Adams, P. J.; Streets, D. G.; Kumar, N.; Rind, D.

    2012-01-01

    We calculate decadal aerosol direct and indirect (warm cloud) radiative forcings from US anthropogenic sources over the 1950-2050 period. Past and future aerosol distributions are constructed using GEOS-Chem and historical emission inventories and future projections from the IPCC A1B scenario. Aerosol simulations are evaluated with observed spatial distributions and 1980-2010 trends of aerosol concentrations and wet deposition in the contiguous US. Direct and indirect radiative forcing is calculated using the GISS general circulation model and monthly mean aerosol distributions from GEOS-Chem. The radiative forcing from US anthropogenic aerosols is strongly localized over the eastern US. We find that its magnitude peaked in 1970-1990, with values over the eastern US (east of 100 deg W) of -2.0Wm(exp-2 for direct forcing including contributions from sulfate (-2.0Wm-2), nitrate (-0.2Wm(exp-2), organic carbon (-0.2Wm(exp-2), and black carbon (+0.4Wm(exp-2). The uncertainties in radiative forcing due to aerosol radiative properties are estimated to be about 50 %. The aerosol indirect effect is estimated to be of comparable magnitude to the direct forcing. We find that the magnitude of the forcing declined sharply from 1990 to 2010 (by 0.8Wm(exp-2) direct and 1.0Wm(exp-2 indirect), mainly reflecting decreases in SO2 emissions, and project that it will continue declining post-2010 but at a much slower rate since US SO2 emissions have already declined by almost 60% from their peak. This suggests that much of the warming effect of reducing US anthropogenic aerosol sources has already been realized. The small positive radiative forcing from US BC emissions (+0.3Wm(exp-2 over the eastern US in 2010; 5% of the global forcing from anthropogenic BC emissions worldwide) suggests that a US emission control strategy focused on BC would have only limited climate benefit.

  3. Aerosol distributions and radiative forcing over the Asian Pacific region simulated by Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS)

    NASA Astrophysics Data System (ADS)

    Takemura, Toshihiko; Nakajima, Teruyuki; Higurashi, Akiko; Ohta, Sachio; Sugimoto, Nobuo

    2003-12-01

    A three-dimensional aerosol transport-radiation model coupled with a general circulation model, Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS), simulates atmospheric aerosol distributions and optical properties. The simulated results are compared with aerosol sampling and optical observations from ground, aircraft, and satellite acquired by intensive observation campaigns over east Asia in spring 2001. Temporal variations of the aerosol concentrations, optical thickness, and Ångström exponent are in good agreement between the simulation and observations. The midrange values of the Ångström exponent, even at the Asian dust storm events over the outflow regions, suggest that the contribution of the anthropogenic aerosol, such as carbonaceous and sulfate, to the total optical thickness is of an order comparable to that of the Asian dust. The radiative forcing by the aerosol direct and indirect effects is also calculated. The negative direct radiative forcing is simulated to be over -10 W m-2 at the tropopause in the air mass during the large-scale dust storm, to which both anthropogenic aerosols and Asian dust contribute almost equivalently. The direct radiative forcing, however, largely depends on the cloud water content and the vertical profiles of aerosol and cloud. The simulation shows that not only sulfate and sea salt aerosols but also black carbon and soil dust aerosols, which absorb solar and thermal radiation, make strong negative radiative forcing by the direct effect at the surface, which may exceed the positive forcing by anthropogenic greenhouse gases over the east Asian region.

  4. Influence of atmospheric relative humidity on ultraviolet flux and aerosol direct radiative forcing: Observation and simulation

    NASA Astrophysics Data System (ADS)

    Xia, Dong; Chen, Ling; Chen, Huizhong; Luo, Xuyu; Deng, Tao

    2016-08-01

    The atmospheric aerosols can absorb moisture from the environment due to their hydrophilicity and thus affect atmospheric radiation fluxes. In this article, the ultraviolet radiation and relative humidity (RH) data from ground observations and a radiative transfer model were used to examine the influence of RH on ultraviolet radiation flux and aerosol direct radiative forcing under the clear-sky conditions. The results show that RH has a significant influence on ultraviolet radiation because of aerosol hygroscopicity. The relationship between attenuation rate and RH can be fitted logarithmically and all of the R2 of the 4 sets of samples are high, i.e. 0.87, 0.96, 0.9, and 0.9, respectively. When the RH is 60%, 70%, 80% and 90%, the mean aerosol direct radiative forcing in ultraviolet is -4.22W m-2, -4.5W m-2, -4.82W m-2 and -5.4W m-2, respectively. For the selected polluted air samples the growth factor for computing aerosol direct radiative forcing in the ultraviolet for the RH of 80% varies from 1.19 to 1.53, with an average of 1.31.

  5. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China

    NASA Astrophysics Data System (ADS)

    Xin, Jinyuan; Gong, Chongshui; Wang, Shigong; Wang, Yuesi

    2016-05-01

    The optical properties of dust aerosols were measured using narrow-band data from a portable sun photometer at four desert and semi-desert stations in northwestern China from 2004 to 2007. Ground-based and satellite observations indicated absorbing dust aerosol loading over the region surrounded by eight large-scale deserts. Radiation forcing was identified by using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The ranges of annual mean aerosol optical depth (AOD), Angström exponents, and single-scattering albedo (SSA) were from 0.25 to 0.35, from - 0.73 to 1.18, and from 0.77 to 0.86, respectively. The ranges of annual mean aerosol direct radiative forcing values at the top of the atmosphere (TOA), mid-atmosphere, and on the surface were from 3.9 to 12.0, from 50.0 to 53.1, and from - 39.1 to - 48.1 W/m2, respectively. The aerosols' optical properties and radiative characteristics showed strong seasonal variations in both the desert and semi-desert regions. Strong winds and relatively low humidity will lead dust aerosols in the atmosphere to an increase, which played greatly affected these optical properties during spring and winter in northwestern China. Based on long-term observations and retrieved data, aerosol direct radiative forcing was confirmed to heat the atmosphere (50-53 W/m2) and cool the surface (- 39 to - 48 W/m2) above the analyzed desert. Radiative forcing in the atmosphere in spring and winter was 18 to 21 W/m2 higher than other two seasons. Based on the dust sources around the sites, the greater the AOD, the more negative the forcing. The annual averaged heating rates for aerosols close to the ground (1 km) were approximately 0.80-0.85 K/day.

  6. How Well Will MODIS Measure Top of Atmosphere Aerosol Direct Radiative Forcing?

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.; Levin, Zev; Ghan, Stephen; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The new generation of satellite sensors such as the Moderate Resolution Imaging Spectroradiometer (MODIS) will be able to detect and characterize global aerosols with an unprecedented accuracy. The question remains whether this accuracy will be sufficient to narrow the uncertainties in our estimates of aerosol radiative forcing at the top of the atmosphere. Satellite remote sensing detects aerosol optical thickness with the least amount of relative error when aerosol loading is high. Satellites are less effective when aerosol loading is low. We use the monthly mean results of two global aerosol transport models to simulate the spatial distribution of smoke aerosol in the Southern Hemisphere during the tropical biomass burning season. This spatial distribution allows us to determine that 87-94% of the smoke aerosol forcing at the top of the atmosphere occurs in grid squares with sufficient signal to noise ratio to be detectable from space. The uncertainty of quantifying the smoke aerosol forcing in the Southern Hemisphere depends on the uncertainty introduced by errors in estimating the background aerosol, errors resulting from uncertainties in surface properties and errors resulting from uncertainties in assumptions of aerosol properties. These three errors combine to give overall uncertainties of 1.5 to 2.2 Wm-2 (21-56%) in determining the Southern Hemisphere smoke aerosol forcing at the top of the atmosphere. The range of values depend on which estimate of MODIS retrieval uncertainty is used, either the theoretical calculation (upper bound) or the empirical estimate (lower bound). Strategies that use the satellite data to derive flux directly or use the data in conjunction with ground-based remote sensing and aerosol transport models can reduce these uncertainties.

  7. Toward a Minimal Representation of Aerosols in Climate Models: Comparative Decomposition of Aerosol Direct, Semidirect, and Indirect Radiative Forcing

    SciTech Connect

    Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.; Rasch, Philip J.; Yoon, Jin-Ho; Eaton, Brian

    2012-10-01

    The authors have decomposed the anthropogenic aerosol radiative forcing into direct contributions from each aerosol species to the planetary energy balance through absorption and scattering of solar radiation, indirect effects of anthropogenic aerosol on solar and infrared radiation through droplet and crystal nucleation on aerosol, and semidirect effects through the influence of solar absorption on the distribution of clouds. A three-mode representation of the aerosol in version 5.1 of the Community Atmosphere Model (CAM5.1) yields global annual mean radiative forcing estimates for each of these forcing mechanisms that are within 0.1 W m–2 of estimates using a more complex seven-mode representation that distinguishes between fresh and aged black carbon and primary organic matter. Simulating fresh black carbon particles separately from internally mixed accumulation mode particles is found to be important only near fossil fuel sources. In addition to the usual large indirect effect on solar radiation, this study finds an unexpectedly large positive longwave indirect effect (because of enhanced cirrus produced by homogenous nucleation of ice crystals on anthropogenic sulfate), small shortwave and longwave semidirect effects, and a small direct effect (because of cancelation and interactions of direct effects of black carbon and sulfate). Differences between the threemode and seven-mode versions are significantly larger (up to 0.2 W m–2) when the hygroscopicity of primary organic matter is decreased from 0.1 to 0 and transfer of the primary carbonaceous aerosol to the accumulation mode in the seven-mode version requires more hygroscopic material coating the primary particles. Radiative forcing by cloudborne anthropogenic black carbon is only 20.07 W m–2.

  8. Mixing state of aerosols over the Indo-Gangetic Plain: Radiative forcing and heating rate

    NASA Astrophysics Data System (ADS)

    Srivastava, R.; Ramachandran, S.

    2012-12-01

    Aerosols are a major atmospheric variable which perturb the Earth-atmosphere radiation balance by absorbing and scattering the solar and terrestrial radiation. Aerosols are produced by natural and anthropogenic processes. The presence of different types of aerosol over a location and aerosols transported from long-range can give rise to different mixing states because of aging and interaction among the different aerosol species. Knowledge of the mixing state of aerosols is important for an accurate assessment of aerosols in climate forcing, as assumptions regarding the mixing state of aerosol and its effect on optical properties can give rise to uncertainties in modeling their direct and indirect effects [1]. Seasonal variations in mixing states of aerosols over an urban (Kanpur) and a rural location (Gandhi College) in the Indo-Gangetic Plain (IGP) are determined using the measured and modeled aerosol optical properties, and the impact of aerosol mixing state on aerosol radiative forcing are investigated. IGP is one of the most populated and polluted river basins in the world, rich in fertile lands and agricultural production. Kanpur is an urban, industrial and densely populated city, and has several large/small scale industries and vehicles, while Gandhi College in IGP is a rural village, located southeast of Kanpur. Aerosol optical properties obtained from Aerosol Robotic Network sun/sky radiometers [2] over these two environmentally distinct locations in Indo-Gangetic Plain are used in the study, along with aerosol vertical profiles obtained from CALIPSO (Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observations) lidar observations. Probable mixing state of aerosols is determined utilizing the aerosol optical properties viz., aerosol optical depth, single scattering albedo and asymmetry parameter. The coated-sphere Mie calculation requires the refractive index of core and shell species, and the radius of core and shell particles. Core to shell radius

  9. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability.

    PubMed

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-05-24

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing.

  10. MODIS Observation of Aerosols over Southern Africa During SAFARI 2000: Data, Validation, and Estimation of Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Kaufman, Yoram; Remer, Lorraine; Chu, D. Allen; Mattoo, Shana; Tanre, Didier; Levy, Robert; Li, Rong-Rong; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Aerosol properties, including optical thickness and size parameters, are retrieved operationally from the MODIS sensor onboard the Terra satellite launched on 18 December 1999. The predominant aerosol type over the Southern African region is smoke, which is generated from biomass burning on land and transported over the southern Atlantic Ocean. The SAFARI-2000 period experienced smoke aerosol emissions from the regular biomass burning activities as well as from the prescribed burns administered on the auspices of the experiment. The MODIS Aerosol Science Team (MAST) formulates and implements strategies for the retrieval of aerosol products from MODIS, as well as for validating and analyzing them in order to estimate aerosol effects in the radiative forcing of climate as accurately as possible. These activities are carried out not only from a global perspective, but also with a focus on specific regions identified as having interesting characteristics, such as the biomass burning phenomenon in southern Africa and the associated smoke aerosol, particulate, and trace gas emissions. Indeed, the SAFARI-2000 aerosol measurements from the ground and from aircraft, along with MODIS, provide excellent data sources for a more intensive validation and a closer study of the aerosol characteristics over Southern Africa. The SAFARI-2000 ground-based measurements of aerosol optical thickness (AOT) from both the automatic Aerosol Robotic Network (AERONET) and handheld Sun photometers have been used to validate MODIS retrievals, based on a sophisticated spatio-temporal technique. The average global monthly distribution of aerosol from MODIS has been combined with other data to calculate the southern African aerosol daily averaged (24 hr) radiative forcing over the ocean for September 2000. It is estimated that on the average, for cloud free conditions over an area of 9 million square kin, this predominantly smoke aerosol exerts a forcing of -30 W/square m C lose to the terrestrial

  11. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation

    NASA Astrophysics Data System (ADS)

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K.; Wagner, Robert; Dunne, Eimear M.; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S.; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C.; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R.; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A.; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P.; Pringle, Kirsty J.; Richards, Nigel A. D.; Rissanen, Matti P.; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E.; Seinfeld, John H.; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C.; Wagner, Paul E.; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M.; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M.; Worsnop, Douglas R.; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S.

    2016-10-01

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by 0.22 W m-2 (27%) to -0.60 W m-2. Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  12. Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation.

    PubMed

    Gordon, Hamish; Sengupta, Kamalika; Rap, Alexandru; Duplissy, Jonathan; Frege, Carla; Williamson, Christina; Heinritzi, Martin; Simon, Mario; Yan, Chao; Almeida, João; Tröstl, Jasmin; Nieminen, Tuomo; Ortega, Ismael K; Wagner, Robert; Dunne, Eimear M; Adamov, Alexey; Amorim, Antonio; Bernhammer, Anne-Kathrin; Bianchi, Federico; Breitenlechner, Martin; Brilke, Sophia; Chen, Xuemeng; Craven, Jill S; Dias, Antonio; Ehrhart, Sebastian; Fischer, Lukas; Flagan, Richard C; Franchin, Alessandro; Fuchs, Claudia; Guida, Roberto; Hakala, Jani; Hoyle, Christopher R; Jokinen, Tuija; Junninen, Heikki; Kangasluoma, Juha; Kim, Jaeseok; Kirkby, Jasper; Krapf, Manuel; Kürten, Andreas; Laaksonen, Ari; Lehtipalo, Katrianne; Makhmutov, Vladimir; Mathot, Serge; Molteni, Ugo; Monks, Sarah A; Onnela, Antti; Peräkylä, Otso; Piel, Felix; Petäjä, Tuukka; Praplan, Arnaud P; Pringle, Kirsty J; Richards, Nigel A D; Rissanen, Matti P; Rondo, Linda; Sarnela, Nina; Schobesberger, Siegfried; Scott, Catherine E; Seinfeld, John H; Sharma, Sangeeta; Sipilä, Mikko; Steiner, Gerhard; Stozhkov, Yuri; Stratmann, Frank; Tomé, Antonio; Virtanen, Annele; Vogel, Alexander Lucas; Wagner, Andrea C; Wagner, Paul E; Weingartner, Ernest; Wimmer, Daniela; Winkler, Paul M; Ye, Penglin; Zhang, Xuan; Hansel, Armin; Dommen, Josef; Donahue, Neil M; Worsnop, Douglas R; Baltensperger, Urs; Kulmala, Markku; Curtius, Joachim; Carslaw, Kenneth S

    2016-10-25

    The magnitude of aerosol radiative forcing caused by anthropogenic emissions depends on the baseline state of the atmosphere under pristine preindustrial conditions. Measurements show that particle formation in atmospheric conditions can occur solely from biogenic vapors. Here, we evaluate the potential effect of this source of particles on preindustrial cloud condensation nuclei (CCN) concentrations and aerosol-cloud radiative forcing over the industrial period. Model simulations show that the pure biogenic particle formation mechanism has a much larger relative effect on CCN concentrations in the preindustrial atmosphere than in the present atmosphere because of the lower aerosol concentrations. Consequently, preindustrial cloud albedo is increased more than under present day conditions, and therefore the cooling forcing of anthropogenic aerosols is reduced. The mechanism increases CCN concentrations by 20-100% over a large fraction of the preindustrial lower atmosphere, and the magnitude of annual global mean radiative forcing caused by changes of cloud albedo since 1750 is reduced by [Formula: see text] (27%) to [Formula: see text] Model uncertainties, relatively slow formation rates, and limited available ambient measurements make it difficult to establish the significance of a mechanism that has its dominant effect under preindustrial conditions. Our simulations predict more particle formation in the Amazon than is observed. However, the first observation of pure organic nucleation has now been reported for the free troposphere. Given the potentially significant effect on anthropogenic forcing, effort should be made to better understand such naturally driven aerosol processes.

  13. Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.

  14. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2005-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes

  15. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Golaz, J.-C.; Mauzerall, D. L.

    2015-11-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80 % by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Coupled Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm day-1. However, when using a version of CM3 with reduced present-day aerosol radiative forcing (-1.0 W m-2), the global temperature increase for RCP8.5 is about 0.5 K, with similar magnitude decreases in other climate response parameters as well. Regionally and locally, climate impacts can be much larger than the global mean, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm day-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in

  16. Host Model Uncertainties in Aerosol Radiative Forcing Estimates: Results from the AeroCom Prescribed Intercomparison Study

    SciTech Connect

    Stier, Phillip; Schutgens, Nick A.; Bellouin, N.; Bian, Huisheng; Boucher, Olivier; Chin, Mian; Ghan, Steven J.; Huneeus, N.; Kinne, Stefan; Lin, G.; Ma, Xiaoyan; Myhre, G.; Penner, J. E.; Randles, Cynthia; Samset, B. H.; Schulz, M.; Takemura, T.; Yu, Fangqun; Yu, Hongbin; Zhou, Cheng

    2013-03-20

    Simulated multi-model "diversity" in aerosol direct radiative forcing estimates is often perceived as mea- sure of aerosol uncertainty. However, current models used for aerosol radiative forcing calculations vary considerably in model components relevant for forcing calculations and the associated "host-model uncertainties" are generally convoluted with the actual aerosol uncertainty. In this AeroCom Prescribed intercomparison study we systematically isolate and quantify host model uncertainties on aerosol forcing experiments through prescription of identical aerosol radiative properties in nine participating models. Even with prescribed aerosol radiative properties,simulated clear-sky and all-sky aerosol radiative forcings show significant diversity. For a purely scattering case with globally constant optical depth of 0.2, the global-mean all-sky top-of-atmosphere radiative forcing is -4.51 Wm-2 and the inter-model standard deviation is 0.70 Wm-2, corresponding to a relative standard deviation of 15%. For a case with partially absorbing aerosol with an aerosol optical depth of 0.2 and single scattering albedo of 0.8, the forcing changes to 1.26 Wm-2, and the standard deviation increases to 1.21 W-2, corresponding to a significant relative standard deviation of 96%. However, the top-of-atmosphere forcing variability owing to absorption is low, with relative standard deviations of 9% clear-sky and 12% all-sky. Scaling the forcing standard deviation for a purely scattering case to match the sulfate radiative in the AeroCom Direct Effect experiment, demonstrates that host model uncertain- ties could explain about half of the overall sulfate forcing diversity of 0.13 Wm-2 in the AeroCom Direct Radiative Effect experiment. Host model errors in aerosol radiative forcing are largest in regions of uncertain host model components, such as stratocumulus cloud decks or areas with poorly constrained.

  17. Aerosol size distribution and radiative forcing response to anthropogenically driven historical changes in biogenic secondary organic aerosol formation

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Acosta Navarro, J. C.; Farina, S. C.; Scott, C. E.; Rap, A.; Farmer, D. K.; Spracklen, D. V.; Riipinen, I.; Pierce, J. R.

    2015-03-01

    Emissions of biogenic volatile organic compounds (BVOCs) have changed in the past millennium due to changes in land use, temperature, and CO2 concentrations. Recent reconstructions of BVOC emissions have predicted that global isoprene emissions have decreased, while monoterpene and sesquiterpene emissions have increased; however, all three show regional variability due to competition between the various influencing factors. In this work, we use two modeled estimates of BVOC emissions from the years 1000 to 2000 to test the effect of anthropogenic changes to BVOC emissions on secondary organic aerosol (SOA) formation, global aerosol size distributions, and radiative effects using the GEOS-Chem-TOMAS (Goddard Earth Observing System; TwO-Moment Aerosol Sectional) global aerosol microphysics model. With anthropogenic emissions (e.g., SO2, NOx, primary aerosols) turned off and BVOC emissions changed from year 1000 to year 2000 values, decreases in the number concentration of particles of size Dp > 80 nm (N80) of > 25% in year 2000 relative to year 1000 were predicted in regions with extensive land-use changes since year 1000 which led to regional increases in the combined aerosol radiative effect (direct and indirect) of > 0.5 W m-2 in these regions. We test the sensitivity of our results to BVOC emissions inventory, SOA yields, and the presence of anthropogenic emissions; however, the qualitative response of the model to historic BVOC changes remains the same in all cases. Accounting for these uncertainties, we estimate millennial changes in BVOC emissions cause a global mean direct effect of between +0.022 and +0.163 W m-2 and the global mean cloud-albedo aerosol indirect effect of between -0.008 and -0.056 W m-2. This change in aerosols, and the associated radiative forcing, could be a largely overlooked and important anthropogenic aerosol effect on regional climates.

  18. Investigation of aerosol radiative forcing and atmosphere-ocean remote sensing in Northern Norway

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chun; Hamre, Børge; Stamnes, Snorre; Frette, Øyvind; Stamnes, Kunt; Stamnes, Jakob J.

    2013-04-01

    We examine aerosol optical properties and radiative forcing at Andenes, Northern Norway (69N, 16E, 379 m altitude) during a two-year period (2008-2010) using AERONET data, radiative transfer modelling (C-DISORT), and Mie-scattering computations. We show that the mean value of the aerosol optical thickness at 500 nm derived from AERONET measurements is close to that obtained from Mie-scattering computations with input of aerosol size distribution and refractive index as derived from AERONET measurements. Also, different models for the ground reflectance used as input to the radiative transfer computations are shown to have little impact on the aerosol radiative forcing both at the top and bottom of the atmosphere. The coupled atmosphere-surface system accounted for by C-DISORT is suitable for radiative transfer calculations over open ocean and coastal water areas, and we discuss how it can be used to make simultaneous retrieval of aerosol and marine parameters from ocean colour data.

  19. Evolution of ozone, particulates, and aerosol direct radiative forcing in the vicinity of Houston using a fully coupled meteorology-chemistry-aerosol model

    NASA Astrophysics Data System (ADS)

    Fast, Jerome D.; Gustafson, William I.; Easter, Richard C.; Zaveri, Rahul A.; Barnard, James C.; Chapman, Elaine G.; Grell, Georg A.; Peckham, Steven E.

    2006-11-01

    A new fully coupled meteorology-chemistry-aerosol model is used to simulate the urban- to regional-scale variations in trace gases, particulates, and aerosol direct radiative forcing in the vicinity of Houston over a 5 day summer period. Model performance is evaluated using a wide range of meteorological, chemistry, and particulate measurements obtained during the 2000 Texas Air Quality Study. The predicted trace gas and particulate distributions were qualitatively similar to the surface and aircraft measurements with considerable spatial variations resulting from urban, power plant, and industrial sources of primary pollutants. Sulfate, organic carbon, and other inorganics were the largest constituents of the predicted particulates. The predicted shortwave radiation was 30 to 40 W m-2 closer to the observations when the aerosol optical properties were incorporated into the shortwave radiation scheme; however, the predicted hourly aerosol radiative forcing was still underestimated by 10 to 50 W m-2. The predicted aerosol radiative forcing was larger over Houston and the industrial ship channel than over the rural areas, consistent with surface measurements. The differences between the observed and simulated aerosol radiative forcing resulted from transport errors, relative humidity errors in the upper convective boundary layer that affect aerosol water content, secondary organic aerosols that were not yet included in the model, and uncertainties in the primary particulate emission rates. The current model was run in a predictive mode and demonstrates the challenges of accurately simulating all of the meteorological, chemical, and aerosol parameters over urban to regional scales that can affect aerosol radiative forcing.

  20. Direct Aerosol Radiative Forcing Based on Combined A-Train Observations: Towards All-sky Estimates and Attribution to Aerosol Type

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.; Torres, O.; Remer, L.

    2014-01-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.

  1. Evapo-transpiration, role of aerosol radiative forcing: a study over a dense canopy

    NASA Astrophysics Data System (ADS)

    Bhanage, VInayak; Latha, R.; Murthy, B. S.

    2016-05-01

    Current study uses Satellite and Reanalysis data to quantify the effect of aerosol on ET at various space and time scales. All the data are obtained for the period June 2008 to May 2009 over Dibrugarh district, Assam, Indi a where NDVI has limited change of through the year. Monthly Evapo-Transpiration (ET, cumulative), Normalized Difference Vegetation Index (NDVI) and Aerosol Optical Depth (AOD) are retrieved from satellite images of Terra-MODIS. The AOD data are evaluated against in-situ observations. Maximum values of AOD are observed in the pre-monsoon season while minimum AOD values are perceived in October and November. Aerosol Radiative Forcing (ARF) is calculated by using the MERRA data sets of `clean-clear radiation' and `clear-radiation' at surface over the study area. Maximum aerosol radiative forcing is observed during the pre-monsoon season; this is in tune with ground observations. Strong positive correlation (r=0.75) between ET and NDVI is observed and it is found that the dense vegetative surfaces exhibit higher rate of evapo-transpiration. A strong positive correlation (r= -0.85) between ARF at surface and AOD is observed with radiative forcing efficiency of 35 W/m2. A statistical regression equation of ET a s a function of NDVI and AOD i.e. ET = 0.25 + (-84.27) * AOD + (131.51) * NDVI, is obtained that shows a correlation of 0.824.

  2. New Satellite Measurements of Aerosol Direct Radiative Forcing from MODIS, MISR, and POLDER

    NASA Technical Reports Server (NTRS)

    Kaufman, Y.

    2000-01-01

    New set of satellites, MODIS and MISR launched on EOS-Terra and POLDER launched on ADEOS-1, and scheduled for ADEOS-II and PARASOL in orbit with EOS-AQUA, open exciting opportunities to measure aerosol and their radiative forcing of climate. Each of these instruments has a different approach to invert remote sensing data to derive the aerosol properties. MODIS is using wide spectral range 0.47-2.1 micron. MISR is using narrower spectral range (0.44 to 0.87 micron) but observing the same spot from 9 different angles along the satellite track. POLDER using similar wavelengths, uses two dimensional view with a wide angle optics and adds polarization to the inversion process. Among these instruments, we expect to measure the global distribution of aerosol, to distinguish small pollution particles from large particles from deserts and ocean spray. We shall try to measure the aerosol absorption of solar radiation, and their refractive index that indicates the effect of liquid water on the aerosol size and interaction with sunlight. The radiation field measured by these instruments in variety of wavelengths and angles, is also used to derive the effect of the aerosol on reflection of sunlight spectral fluxes to space. When combined with flux measurements at the ground, it gives a complete characterization of the effect of aerosol on solar illumination, heating in the atmosphere and reflection to space.

  3. A Comparison of Pre-monsoonal and Monsoonal Radiative Forcing by Anthropogenic Aerosols over South Asia

    NASA Astrophysics Data System (ADS)

    Lee, S.; Cohen, J. B.; Wang, C.

    2012-12-01

    Radiative forcing by anthropogenic aerosols after monsoon onset is often considered unimportant compared to forcing during the pre-monsoonal period, due to precipitation scavenging. We tested this assumption for the South Asian monsoon using three model runs with forcing prescribed during the pre-monsoonal period (March-May), monsoon period (June-September) and both periods. The forcing represents the direct radiative effects of sulfate, organic carbon and black carbon. It was derived from a set of Kalman filter-optimised black carbon emissions from a modelling system based on the CAM3 GCM, a two-moment multi-scheme aerosol and radiation model, and a coupled urban scale processing package; we expect it to be reliable within its given error bounds. The monthly climatological forcing values were prescribed over South Asia every year for 100 years to CESM 1.0.4, a coupled atmosphere-ocean model. We shall compare the three resultant climatologies with climatologies from a no aerosol model and a full aerosol model.

  4. Reducing the Uncertainties in Direct Aerosol Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2011-01-01

    Airborne particles, which include desert and soil dust, wildfire smoke, sea salt, volcanic ash, black carbon, natural and anthropogenic sulfate, nitrate, and organic aerosol, affect Earth's climate, in part by reflecting and absorbing sunlight. This paper reviews current status, and evaluates future prospects for reducing the uncertainty aerosols contribute to the energy budget of Earth, which at present represents a leading factor limiting the quality of climate predictions. Information from satellites is critical for this work, because they provide frequent, global coverage of the diverse and variable atmospheric aerosol load. Both aerosol amount and type must be determined. Satellites are very close to measuring aerosol amount at the level-of-accuracy needed, but aerosol type, especially how bright the airborne particles are, cannot be constrained adequately by current techniques. However, satellite instruments can map out aerosol air mass type, which is a qualitative classification rather than a quantitative measurement, and targeted suborbital measurements can provide the required particle property detail. So combining satellite and suborbital measurements, and then using this combination to constrain climate models, will produce a major advance in climate prediction.

  5. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    NASA Astrophysics Data System (ADS)

    García, O. E.; Díaz, J. P.; Expósito, F. J.; Díaz, A. M.; Dubovik, O.; Derimian, Y.; Dubuisson, P.; Roger, J.-C.

    2011-12-01

    The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the top (TOA) and at the bottom of atmosphere (BOA) modeled based on AERONET aerosol retrievals. In this study we have considered six main types of atmospheric aerosols: desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere. The ΔF averages obtained vary from -148 ± 44 Wm-2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in Central Africa and -42 ± 22 Wm-2 (AOD = 0.86 ± 0.51) at the TOA for the pure mineral dust also in this region up to -6 ± 3 Wm-2 and -4 ± 2 Wm-2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system, contributing to the greenhouse gas effect.

  6. Shortwave radiative forcing and efficiency of key aerosol types using AERONET data

    NASA Astrophysics Data System (ADS)

    García, O. E.; Díaz, J. P.; Expósito, F. J.; Díaz, A. M.; Dubovik, O.; Derimian, Y.; Dubuisson, P.; Roger, J.-C.

    2012-06-01

    The shortwave radiative forcing (ΔF) and the radiative forcing efficiency (ΔFeff) of natural and anthropogenic aerosols have been analyzed using estimates of radiation both at the Top (TOA) and at the Bottom Of Atmosphere (BOA) modeled based on AERONET aerosol retrievals. Six main types of atmospheric aerosols have been compared (desert mineral dust, biomass burning, urban-industrial, continental background, oceanic and free troposphere) in similar observational conditions (i.e., for solar zenith angles between 55° and 65°) in order to compare the nearly same solar geometry. The instantaneous ΔF averages obtained vary from -122 ± 37 Wm-2 (aerosol optical depth, AOD, at 0.55 μm, 0.85 ± 0.45) at the BOA for the mixture of desert mineral dust and biomass burning aerosols in West Africa and -42 ± 22 Wm-2 (AOD = 0.9 ± 0.5) at the TOA for the pure mineral dust also in this region up to -6 ± 3 Wm-2 and -4 ± 2 Wm-2 (AOD = 0.03 ± 0.02) at the BOA and the TOA, respectively, for free troposphere conditions. This last result may be taken as reference on a global scale. Furthermore, we observe that the more absorbing aerosols are overall more efficient at the BOA in contrast to at the TOA, where they backscatter less solar energy into the space. The analysis of the radiative balance at the TOA shows that, together with the amount of aerosols and their absorptive capacity, it is essential to consider the surface albedo of the region on which they are. Thus, we document that in regions with high surface reflectivity (deserts and snow conditions) atmospheric aerosols lead to a warming of the Earth-atmosphere system.

  7. Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-11-01

    Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

  8. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2006-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer

  9. Global Distribution and Climate Forcing of Marine Organic Aerosol - Part 2: Effects on Cloud Properties and Radiative Forcing

    SciTech Connect

    Gantt, Brett; Xu, Jun; Meskhidze, N.; Zhang, Yang; Nenes, Athanasios; Ghan, Steven J.; Liu, Xiaohong; Easter, Richard C.; Zaveri, Rahul A.

    2012-07-25

    A series of simulations with the Community Atmosphere Model version 5 (CAM5) with a 7-mode Modal Aerosol Model were conducted to assess the changes in cloud microphysical properties and radiative forcing resulting from marine organic aerosols. Model simulations show that the anthropogenic aerosol indirect forcing (AIF) predicted by CAM5 is decreased in absolute magnitude by up to 0.09 Wm{sup -2} (7 %) when marine organic aerosols are included. Changes in the AIF from marine organic aerosols are associated with small global increases in low-level incloud droplet number concentration and liquid water path of 1.3 cm{sup -3} (1.5 %) and 0.22 gm{sup -2} (0.5 %), respectively. Areas especially sensitive to changes in cloud properties due to marine organic aerosol include the Southern Ocean, North Pacific Ocean, and North Atlantic Ocean, all of which are characterized by high marine organic emission rates. As climate models are particularly sensitive to the background aerosol concentration, this small but non-negligible change in the AIF due to marine organic aerosols provides a notable link for ocean-ecosystem marine low-level cloud interactions and may be a candidate for consideration in future earth system models.

  10. Shortwave radiative forcing efficiency of urban aerosols--a case study using ground based measurements.

    PubMed

    Latha, K Madhavi; Badarinath, K V S

    2005-01-01

    Aerosols reduce the surface reaching solar flux by scattering the incoming solar radiation out to space. Various model studies on climate change suggest that surface cooling induced by aerosol scattering is the largest source of uncertainty in predicting the future climate. In the present study measurements of aerosol optical depth (AOD) and its direct radiative forcing efficiency has been presented over a typical tropical urban environment namely Hyderabad during December, 2003. Measurements of AOD have been carried out using MICROTOPS-II sunphotometer, black carbon aerosol mass concentration using Aethalometer, total aerosol mass concentration using channel Quartz Crystal Microbalance (QCM) Impactor Particle analyser and direct normal solar irradiance using Multifilter Rotating Shadow Band Radiometer (MFRSR). Diurnal variation of AOD showed high values during afternoon hours. The fraction of BC estimated to be approximately 9% in the total aerosol mass concentration over the study area. Results of the study suggest -62.5 Wm(-2) reduction in the ground reaching shortwave flux for every 0.1 increase in aerosol optical depth. The results have been discussed in the paper.

  11. The direct radiative forcing effects of aerosols on the climate in California

    NASA Astrophysics Data System (ADS)

    Du, Hui

    The Weather Research and Forecast (WRF) model is used to explore the influence of aerosol direct radiative effects on regional climate of California. Aerosol data is provided by the MOZART global chemistry transport model and includes sulfate, black carbon, organic carbon, dust and sea salt. To investigate the sensitivity of aerosol radiative effects to different aerosol species and to the quantity of sulfate and dust, tests are conducted by using different combinations of aerosols and by resetting the quantity of sulfate and dust. The model results show that all the considered aerosols could have a cooling effect of one half to one degree in terms of temperature and that dust and sulfate are the most important aerosols. However, large uncertainties exist. The results suggest that the dust from MOZART is greatly overestimated over the simulation domain. The single scattering albedo (SSA) values of dust used in some global climate models are likely underestimated compared to recent studies on dust optical properties and could result in overestimating the corresponding cooling effects by approximately 0.1 degree. Large uncertainties exist in estimating the roles of different forcing factors which are causing the observed temperature change in the past century in California.

  12. Radiative Forcing Due to Major Aerosol Emitting Sectors in China and India

    NASA Technical Reports Server (NTRS)

    Streets, David G.; Shindell, Drew Todd; Lu, Zifeng; Faluvegi, Greg

    2013-01-01

    Understanding the radiative forcing caused by anthropogenic aerosol sources is essential for making effective emission control decisions to mitigate climate change. We examined the net direct plus indirect radiative forcing caused by carbonaceous aerosol and sulfur emissions in key sectors of China and India using the GISS-E2 chemistry-climate model. Diesel trucks and buses (67 mW/ sq. m) and residential biofuel combustion (52 mW/ sq. m) in India have the largest global mean, annual average forcings due mainly to the direct and indirect effects of BC. Emissions from these two sectors in China have near-zero net global forcings. Coal-fired power plants in both countries exert a negative forcing of about -30 mW/ sq. m from production of sulfate. Aerosol forcings are largest locally, with direct forcings due to residential biofuel combustion of 580 mW/ sq. m over India and 416 mW/ sq. m over China, but they extend as far as North America, Europe, and the Arctic

  13. Challenges in constraining anthropogenic aerosol effects on cloud radiative forcing using present-day spatiotemporal variability

    PubMed Central

    Ghan, Steven; Wang, Minghuai; Zhang, Shipeng; Ferrachat, Sylvaine; Gettelman, Andrew; Griesfeller, Jan; Kipling, Zak; Lohmann, Ulrike; Morrison, Hugh; Neubauer, David; Partridge, Daniel G.; Stier, Philip; Takemura, Toshihiko; Wang, Hailong; Zhang, Kai

    2016-01-01

    A large number of processes are involved in the chain from emissions of aerosol precursor gases and primary particles to impacts on cloud radiative forcing. Those processes are manifest in a number of relationships that can be expressed as factors dlnX/dlnY driving aerosol effects on cloud radiative forcing. These factors include the relationships between cloud condensation nuclei (CCN) concentration and emissions, droplet number and CCN concentration, cloud fraction and droplet number, cloud optical depth and droplet number, and cloud radiative forcing and cloud optical depth. The relationship between cloud optical depth and droplet number can be further decomposed into the sum of two terms involving the relationship of droplet effective radius and cloud liquid water path with droplet number. These relationships can be constrained using observations of recent spatial and temporal variability of these quantities. However, we are most interested in the radiative forcing since the preindustrial era. Because few relevant measurements are available from that era, relationships from recent variability have been assumed to be applicable to the preindustrial to present-day change. Our analysis of Aerosol Comparisons between Observations and Models (AeroCom) model simulations suggests that estimates of relationships from recent variability are poor constraints on relationships from anthropogenic change for some terms, with even the sign of some relationships differing in many regions. Proxies connecting recent spatial/temporal variability to anthropogenic change, or sustained measurements in regions where emissions have changed, are needed to constrain estimates of anthropogenic aerosol impacts on cloud radiative forcing. PMID:26921324

  14. The Impact of Desert Dust Aerosol Radiative Forcing on Global and West African Precipitation

    NASA Astrophysics Data System (ADS)

    Jordan, A.; Zaitchik, B. F.; Gnanadesikan, A.; Dezfuli, A. K.

    2015-12-01

    Desert dust aerosols exert a radiative forcing on the atmosphere, influencing atmospheric temperature structure and modifying radiative fluxes at the top of the atmosphere (TOA) and surface. As dust aerosols perturb radiative fluxes, the atmosphere responds by altering both energy and moisture dynamics, with potentially significant impacts on regional and global precipitation. Global Climate Model (GCM) experiments designed to characterize these processes have yielded a wide range of results, owing to both the complex nature of the system and diverse differences across models. Most model results show a general decrease in global precipitation, but regional results vary. Here, we compare simulations from GFDL's CM2Mc GCM with multiple other model experiments from the literature in order to investigate mechanisms of radiative impact and reasons for GCM differences on a global and regional scale. We focus on West Africa, a region of high interannual rainfall variability that is a source of dust and that neighbors major Sahara Desert dust sources. As such, changes in West African climate due to radiative forcing of desert dust aerosol have serious implications for desertification feedbacks. Our CM2Mc results show net cooling of the planet at TOA and surface, net warming of the atmosphere, and significant increases in precipitation over West Africa during the summer rainy season. These results differ from some previous GCM studies, prompting comparative analysis of desert dust parameters across models. This presentation will offer quantitative analysis of differences in dust aerosol parameters, aerosol optical properties, and overall particle burden across GCMs, and will characterize the contribution of model differences to the uncertainty of forcing and climate response affecting West Africa.

  15. Radiative Forcing of the Pinatubo Aerosol as a Function of Latitude and Time

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Russell, P. B.; Bauman, J. J.; Minnis, P.

    1996-01-01

    We present calculations of the radiative forcing of the Mt. Pinatubo aerosols as a function of latitude and time after the eruption and compare the results with GOES satellite data. The results from the model indicate that the net effect of the aerosol was to cool the earth-atmosphere system with the most significant radiative effect in the tropics (corresponding to the location of the tropical stratospheric reservoir) and at latitudes greater than 60 deg. The high-latitude maximum is a combined effect of the high-latitude peak in optical depth (Trepte et al 1994) and the large solar zenith angles. The comparison of the predicted and measured net flux shows relatively good agreement, with the model consistently under predicting the cooling effect of the aerosol.

  16. The Spatial and Temporal Heterogeneity of Precipitation and Aerosol-Cloud Radiative Forcing Uncertainty in Climatically Important Regions

    NASA Astrophysics Data System (ADS)

    Regayre, L.; Pringle, K.; Lee, L.; Booth, B.; Browse, J.; Mann, G.; Woodhouse, M. T.; Reddington, C.; Carslaw, K. S.; Rap, A.

    2014-12-01

    Aerosol-cloud radiative forcing and precipitation sensitivities are quantified within climatically important regions, where surface temperatures and moisture availability are thought to influence large-scale climatic effects. The sensitivity of precipitation and the balance of incoming and outgoing radiation to uncertain historical aerosol emission fluxes and aerosol-cloud parametrisations are quantified and their climatic importance considered. The predictability of monsoon onset and intensity, position of the inter-tropical convergence zone, tropical storm frequency and intensity, heat transport to the Arctic and changes in the mode of the El Niño Southern Oscillation are all limited by the parametric uncertainties examined here. Precipitation and aerosol-cloud radiative forcing sensitivities are found to be both spatially and temporally heterogeneous. Statistical analysis highlights aspects of aerosol-climate research and model development that should be prioritised in order to reduce the impact of uncertainty in regional precipitation and aerosol-cloud forcing on near-term climate projections.

  17. Radiative forcing and climate response to projected 21st century aerosol decreases

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Horowitz, L. W.; Naik, V.; Mauzerall, D. L.

    2015-03-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. For instance, global emissions of aerosols and their precursors are projected to decrease by as much as 80% by the year 2100, according to the four Representative Concentration Pathway (RCP) scenarios. The removal of aerosols will cause unintended climate consequences, including an unmasking of global warming from long-lived greenhouse gases. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without the aerosol emission changes projected by each of the RCPs in order to isolate the radiative forcing and climate response resulting from the aerosol reductions. We find that the projected global radiative forcing and climate response due to aerosol decreases do not vary significantly across the four RCPs by 2100, although there is some mid-century variation, especially in cloud droplet effective radius, that closely follows the RCP emissions and energy consumption projections. Up to 1 W m-2 of radiative forcing may be unmasked globally from 2005 to 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1. Regionally and locally, climate impacts can be much larger, with a 2.1 K warming projected over China, Japan, and Korea due to the reduced aerosol emissions in RCP8.5, as well as nearly a 0.2 mm d-1 precipitation increase, a 7 g m-2 LWP decrease, and a 2 μm increase in cloud droplet effective radius. Future aerosol decreases could be responsible for 30-40% of total climate warming by 2100 in East Asia, even under the high greenhouse gas emissions scenario (RCP8.5). The expected unmasking of global warming caused by aerosol reductions will

  18. Radiative flux and forcing parameterization error in aerosol-free clear skies

    SciTech Connect

    Pincus, Robert; Oreopoulos, Lazaros; Ackerman, Andrew S.; Baek, Sunghye; Brath, Manfred; Buehler, Stefan A.; Cady-Pereira, Karen E.; Cole, Jason N. S.; Dufresne, Jean -Louis; Kelley, Maxwell; Li, Jiangnan; Manners, James; Paynter, David J.; Roehrig, Romain; Sekiguchi, Miho; Schwarzkopf, Daniel M.

    2015-07-03

    This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentially unrelated to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.

  19. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    NASA Astrophysics Data System (ADS)

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy

    2015-04-01

    A combination of ground-based and satellite observations are used, in conjunction with column radiative transfer modelling, to assess the climatological aerosol loading and quantify its corresponding cloud-free direct radiative forcing (DRF) over the Red Sea. While there have been campaigns designed to probe aerosol-climate interactions over much of the world, relatively little attention has been paid to this region. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements which can be used to evaluate retrievals are thus highly desirable. Here we take advantage of ship-based sun-photometer micro-tops observations gathered from a series of cruises which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Initially two aerosol optical depth (AOD) retrieval algorithms developed for the MODerate Resolution Imaging Spectroradiometer (MODIS) and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are evaluated via comparison with the co-located cruise observations. These show excellent agreement, with correlations typically better than 0.9 and very small root-mean-square and bias differences. Calculations of radiative fluxes and DRF along one of the cruises using the observed aerosol and meteorological conditions also show good agreement with co-located estimates from the Geostationary Earth Radiation Budget (GERB) instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large

  20. Aerosol radiative forcing efficiency in the UV-B region over central Argentina

    NASA Astrophysics Data System (ADS)

    Palancar, Gustavo G.; Olcese, Luis E.; Lanzaco, Bethania L.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.

    2016-07-01

    AEROSOL Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer (MODIS) and global UV-B (280-315 nm) irradiance measurements and calculations were combined to investigate the effects of aerosol loading on the ultraviolet B radiation (UV-B) reaching the surface under cloudless conditions in Córdoba, Argentina. The aerosol radiative forcing (ARF) and the aerosol forcing efficiency (ARFE) were calculated for an extended period of time (2000-2013) at a ground-based monitoring site affected by different types and loading of aerosols. The ARFE was evaluated by using the aerosol optical depth (AOD) at 340 nm retrieved by AERONET at the Cordoba CETT site. The individual and combined effects of the single scattering albedo (SSA) and the solar zenith angle (SZA) on the ARFE were also analyzed. In addition, and for comparison purposes, the MODIS AOD at 550 nm was used as input in a machine learning method to better characterize the aerosol load at 340 nm and evaluate the ARFE retrieved from AOD satellite measurements. The ARFE at the surface calculated using AOD data from AERONET ranged from (-0.11 ± 0.01) to (-1.76 ± 0.20) Wm-2 with an average of -0.61 Wm-2; however, when using AOD data from MODIS (TERRA/AQUA satellites), it ranged from (-0.22 ± 0.03) to (-0.65 ± 0.07) Wm-2 with an average value of -0.43 Wm-2. At the same SZA and SSA, the maximum difference between ground and satellite-based was 0.22 Wm-2.

  1. Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model

    NASA Astrophysics Data System (ADS)

    Hassan, Taufiq; Moosmüller, H.; Chung, Chul E.

    2015-10-01

    Simple analytical equations for global-average direct aerosol radiative forcing are useful to quickly estimate aerosol forcing changes as function of key atmosphere, surface and aerosol parameters. The surface and atmosphere parameters in these analytical equations are the globally uniform atmospheric transmittance and surface albedo, and have so far been estimated from simplified observations under untested assumptions. In the present study, we take the state-of-the-art analytical equation and write the aerosol forcing as a linear function of the single scattering albedo (SSA) and replace the average upscatter fraction with the asymmetry parameter (ASY). Then we determine the surface and atmosphere parameter values of this equation using the output from the global MACR (Monte-Carlo Aerosol Cloud Radiation) model, as well as testing the validity of the equation. The MACR model incorporated spatio-temporally varying observations for surface albedo, cloud optical depth, water vapor, stratosphere column ozone, etc., instead of assuming as in the analytical equation that the atmosphere and surface parameters are globally uniform, and should thus be viewed as providing realistic radiation simulations. The modified analytical equation needs globally uniform aerosol parameters that consist of AOD (Aerosol Optical Depth), SSA, and ASY. The MACR model is run here with the same globally uniform aerosol parameters. The MACR model is also run without cloud to test the cloud effect. In both cloudy and cloud-free runs, the equation fits in the model output well whether SSA or ASY varies. This means the equation is an excellent approximation for the atmospheric radiation. On the other hand, the determined parameter values are somewhat realistic for the cloud-free runs but unrealistic for the cloudy runs. The global atmospheric transmittance, one of the determined parameters, is found to be around 0.74 in case of the cloud-free conditions and around 1.03 with cloud. The surface

  2. Direct radiative forcing properties of atmospheric aerosols over semi-arid region, Anantapur in India.

    PubMed

    Kalluri, Raja Obul Reddy; Gugamsetty, Balakrishnaiah; Kotalo, Rama Gopal; Nagireddy, Siva Kumar Reddy; Tandule, Chakradhar Rao; Thotli, Lokeswara Reddy; Rajuru Ramakrishna, Reddy; Surendranair, Suresh Babu

    2016-10-01

    This paper describes the aerosols optical, physical characteristics and the aerosol radiative forcing pertaining to semi-arid region, Anantapur for the period January 2013-December 2014. Collocated measurements of Aerosol Optical Depth (AOD) and Black Carbon mass concentration (BC) are carried out by using MICROTOPS II and Aethalometer and estimated the aerosol radiative forcing over this location. The mean values of AOD at 500nm are found to be 0.47±0.09, 0.34±0.08, 0.29±0.06 and 0.30±0.07 during summer, winter, monsoon and post-monsoon respectively. The Angstrom exponent (α380-1020) value is observed maximum in March (1.25±0.19) and which indicates the predominance of fine - mode aerosols and lowest in the month of July (0.33±0.14) and may be due to the dominance of coarse-mode aerosols. The diurnal variation of BC is exhibited two height peaks during morning 07:00-08:00 (IST) and evening 19:00-21:00 (IST) hours and one minima noticed during afternoon (13:00-16:00). The highest monthly mean BC concentration is observed in the month of January (3.4±1.2μgm(-3)) and the lowest in July (1.1±0.2μgm(-3)). The estimated Aerosol Direct Radiative Forcing (ADRF) in the atmosphere is found to be +36.8±1.7Wm(-2), +26.9±0.2Wm(-2), +18.0±0.6Wm(-2) and +18.5±3.1Wm(-2) during summer, winter, monsoon and post-monsoon seasons, respectively. Large difference between TOA and BOA forcing is observed during summer which indicate the large absorption of radiant energy (36.80Wm(-2)) which contributes more increase in atmospheric heating by ~1K/day. The BC contribution on an average is found to be 64% and is responsible for aerosol atmospheric heating.

  3. Sensitivity analysis of aerosol direct radiative forcing in ultraviolet visible wavelengths and consequences for the heat budget

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, N.; Katsoulis, B.; Vardavas, I.

    2004-09-01

    A series of sensitivity studies were performed with a spectral radiative transfer model using aerosol data from the Global Aerosol Data Set (GADS, data available at aerosol/aerosol.htm">http://www.meteo.physik.uni-muenchen.de/strahlung/aerosol/aerosol.htm) in order to investigate and quantify the relative role of key climatic parameters on clear-sky ultraviolet visible direct aerosol radiative forcing at the top of the atmosphere (TOA), within the atmosphere and at the Earth's surface. The model results show that relative humidity and aerosol single-scattering albedo are the most important climatic parameters that determine aerosol forcing at the TOA and at the Earth's surface and atmosphere, respectively. Relative humidity exerts a non-linear positive radiative effect, i.e. increasing humidity amplifies the magnitude of the forcing in the atmosphere and at the surface. Our model sensitivity studies show that increasing relative humidity by 10%, in relative terms, increases the aerosol forcing by factors of 1.42 at the TOA, 1.02 in the atmosphere and 1.17 at the surface. An increase in aerosol single-scattering albedo by 10%, in relative terms, increased the aerosol forcing at the TOA by 1.29, while it decreased the forcing in the atmosphere and at the surface by factors of 0.2 and 0.69, respectively. Our results show that an increase in relative humidity enhances the planetary cooling effect of aerosols (increased reflection of solar radiation to space) over oceans and low-albedo land areas, whilst over polar regions and highly reflecting land surfaces the warming effect of aerosols changes to a cooling effect. Thus, global warming and an associated increase in relative humidity would lead to enhanced aerosol cooling worldwide. The sensitivity results also demonstrate that an increase in surface albedo due to

  4. An Energetic Perspective on Aerosol Radiative Forcing and Interactions with Atmospheric Wave Activity

    NASA Astrophysics Data System (ADS)

    Hosseinpour, F.; Wilcox, E. M.; Colarco, P. R.

    2014-12-01

    Aerosols have the capability to alter regional-scale atmospheric circulations. A better understanding of the contribution of aerosols to multi-scale atmospheric phenomena and their transient changes is crucial for efforts to evaluate climate predictions using next generation climate models. In this study we address the following questions: (1) Is there a mechanistic relationship between variability of oceanic dust aerosol forcing and transient changes in the African easterly jet- African easterly wave (AEJ-AEW) system? (2) What are the long-term impacts of possible aerosol-wave interactions on climate dynamics of eastern tropical Atlantic Ocean and western African monsoon (WAM) region during boreal summer seasons? Our hypothesis is that aerosol radiative forcing may act as additional energy source to fuel the development of African easterly waves on the northern and southern sides of the AEJ. Evidence in support of this hypothesis is presented based on analysis of an ensemble of NASA satellite data sets, including aerosol optical thickness (AOT) observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) and the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS), as well as an atmospheric reanalysis from the Modern-Era Retrospective Analysis for Research and Applications (MERRA) and a simulation of global aerosol distributions made with the Goddard Earth Observing System Model version 5 (GEOS-5) Earth system model with meteorology constrained by MERRA and an assimilation of MODIS AOT (MERRAero). We propose that the impacts of Saharan aerosols on the regional climate dynamics occur through contributions to the eddy energy of waves with 2—7-day and 7—11-day variability.

  5. Estimation of Asian Dust Aerosol Effect on Cloud Radiation Forcing Using Fu-Liou Radiative Model and CERES Measurements

    NASA Technical Reports Server (NTRS)

    Su, Jing; Huang, Jianping; Fu, Qiang; Minnis, Patrick; Ge, Jinming; Bi, Jianrong

    2008-01-01

    The impact of Asian dust on cloud radiative forcing during 2003-2006 is studied by using the Earth's Radiant Energy Budget Scanner (CERES) data and the Fu-Liou radiative transfer model. Analysis of satellite data shows that the dust aerosol significantly reduced the cloud cooling effect at TOA. In dust contaminated cloudy regions, the 4-year mean values of the instantaneous shortwave, longwave and net cloud radiative forcing are -138.9, 69.1, and -69.7 Wm(sup -2), which are 57.0, 74.2, and 46.3%, respectively, of the corresponding values in more pristine cloudy regions. The satellite-retrieved cloud properties are significantly different in the dusty regions and can influence the radiative forcing indirectly. The contributions to the cloud radiation forcing by the dust direct, indirect and semi-direct effects are estimated using combined satellite observations and Fu-Liou model simulation. The 4-year mean value of combination of indirect and semi-direct shortwave radiative forcing (SWRF) is 82.2 Wm(sup -2), which is 78.4% of the total dust effect. The direct effect is only 22.7 Wm(sup -2), which is 21.6% of the total effect. Because both first and second indirect effects enhance cloud cooling, the aerosol-induced cloud warming is mainly the result of the semi-direct effect of dust.

  6. Impact of springtime biomass-burning aerosols on radiative forcing over northern Thailand during the 7SEAS campaign

    NASA Astrophysics Data System (ADS)

    Pani, Shantanu Kumar; Wang, Sheng-Hsiang; Lin, Neng-Huei; Lee, Chung-Te; Tsay, Si-Chee; Holben, Brent; Janjai, Serm; Hsiao, Ta-Chih; Chuang, Ming-Tung; Chantara, Somporn

    2016-04-01

    dominate the both surface mass concentration and the columnar burden. The BC contributed only 6% to the aerosol mass loading, but its contribution to the total AOD and net atmospheric forcing were 12% and 75%, respectively. The mean radiative forcing was -6.8 to -8.7 W m-2 at the top-of-atmosphere and -28 to -33 W m-2 at surface. Furthermore BC aerosols contributed 45-49% to the surface radiative forcing along with the water soluble aerosols (49-52%), thus, significantly contributing to solar dimming

  7. Direct radiative forcing of aerosols in cloudy condition using CALIPSO satellite data

    NASA Astrophysics Data System (ADS)

    Oikawa, E.; Nakajima, T.; Winker, D. M.

    2013-12-01

    The aerosol direct effect occurs by direct scattering and absorption of solar and thermal radiation. Shortwave direct aerosol radiative forcing (DARF) under clear-sky condition is estimated about 5 Wm-2 from satellite retrievals and model simulations [Yu et al., 2006ACP]. Simultaneous observations of aerosols and clouds are very limited, thus it is difficult to validate the estimation of DARF under cloudy-sky condition. In 2006, the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) satellite was launched with the space-borne lidar, CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization). This enabled us to get data of the vertical distribution of aerosols and clouds all over the world. Oikawa et al. [2013JGR] estimated DARF under clear-sky, cloudy-sky, and all-sky conditions using CALIPSO and MODIS (Moderate resolution Imaging Spectrometer) data. Over Atlantic Ocean off southwest Africa, biomass burning aerosols are transported above low-level clouds and cause large positive DARF [Oikawa et al., 2013JGR; Chand et al., 2009Nat. Geosci.; De Graaf et al., 2012JGR; Takemura et al., 2005JGR]. We calculate DARF using CALIOP Level 2 Cloud and Aerosol Layer Products Version 3 and the method of Oikawa et al. [2013]. In this study, we focus on the case that aerosols exist above clouds (above-cloud case) in 2007. Over Atlantic Ocean off southwest Africa, DARF caused by smoke aerosols is +7.1 Wm-2 in September. On the other hand, aerosol optical thickness (AOT) of smoke is small as close to 0 Wm-2 in spring season. Over North Pacific, yellow sand and industrial smoke are transported from Asia and DARF is +5.2 Wm-2 in May. Dust AOT at 532 nm is 0.014 and polluted dust AOT at 532 nm is 0.052; in other words, a large part of dust emitted from Taklamakan and Gobi deserts are mixed with the industrial smoke and transported to the Pacific Ocean according to the CALIPSO algorithms.

  8. On the Feasibility of Studying Shortwave Aerosol Radiative Forcing of Climate Using Dual-Wavelength Aerosol Backscatter Lidar

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.

  9. Decadal Changes in Arctic Radiative Forcing from Aerosols and Tropospheric Ozone

    NASA Astrophysics Data System (ADS)

    Breider, T. J.; Mickley, L. J.; Jacob, D. J.; Payer Sulprizio, M.; Croft, B.; Ridley, D. A.; Ge, C.; Yang, Q.; Bitz, C. M.; McConnell, J.; Sharma, S.; Skov, H.; Eleftheriadis, K.

    2014-12-01

    Annual average Arctic sea ice coverage has declined by 3.6% per decade since the 1980s, but factors driving this trend are uncertain. Long-term surface observations and ice core records suggest recent, large declines in the Arctic atmospheric burden of sulfate aerosol, which may account in part for the warming trend. The decline in black carbon (BC) aerosol in the Arctic during the same period may partly offset the warming due to decreases in sulfate. Here we use the GEOS-Chem chemical transport model together with a detailed inventory of historical anthropogenic trace gas and primary aerosol emissions to quantify changes in Arctic radiative forcing from tropospheric ozone and aerosol between 1980 and 2010. Previous studies have reported an increasing trend in observed ozone at 500 hPa over Canada, but our simulation shows no significant trend. Over Europe, good agreement is found with observed long-term trends in sulfate in surface air (observed = -0.14±0.02 μg m-3 yr-1, model = -0.13±0.01 μg m-3 yr-1), while the observed trend in sulfate in precipitation (-0.20±0.03 μg m-3 yr-1) is underestimated by 40%. At Alert, the timing of the observed decline in sulfate after 1991 is well captured in the simulation, but the observed trend between 1991 and 2001 (-36.3±4.1 ng m-3 yr-1) is underestimated by 26%. BC observations at remote Arctic surface stations are biased low throughout 1980-2010 by a factor of 2. At Greenland ice cores, observed 1980-2010 trends in sulfate deposition are underestimated by 35%. The smaller model bias in observed sulfate and BC deposition at ice cores in southern Greenland (5% and 65%) compared to northern Greenland (56% and 90%) indicates greater uncertainty in pollution emissions from Eurasian sources. We estimate a surface radiative forcing from atmospheric aerosols in the Arctic during 2008 of -0.51 W m-2. The forcing is largest in spring (-1.36 W m-2) and dominated by sulfate aerosol (87%). We will quantify the contributions to the

  10. Global three-dimensional simulation and radiative forcing of various aerosol species with GCM

    NASA Astrophysics Data System (ADS)

    Takemura, Toshihiko; Okamoto, Hajime; Numaguti, Atusi; Suzuki, Kentaroh; Higurashi, Akiko; Nakajima, Teruyuki

    2001-02-01

    A global three-dimensional transport model that can simultaneously treat main tropospheric aerosols, i.e., carbonaceous (organic and black carbons), sulfate, soil dust, and sea salt, is developed. It is coupled with a Center for Climate System Research (CCSR)/National Institute for Enviormental Studies (NIES) atmospheric general circulation model (AGCM), and the meteorological field of wind, temperature, and specific humidity can be nudged by reanalysis data. Simulated results are compared with not only observations for aerosol concentrations but also the optical thickness and Angstrom exponent retrieved from remote sensing data such as National Oceanic and Atmospheric Administration (NOAA)/Advanced Very High Resolution Radiometer (AVHRR) and Aerosol Robotic Network (AERONET). A general agreement is found between simulated results and observations spatially seasonally, and quantitatively. The present model is also coupled with the radiative process over both the solar and thermal regions. The annual and global mean radiative forcing by anthropogenic aerosols from fossil fuel sources is estimated to be -0.5 W m-2 over the clear sky for the direct effect and -2.0 W m-2 for the indirect effect.

  11. Wintertime characteristics of aerosols over middle Indo-Gangetic Plain: Vertical profile, transport and radiative forcing

    NASA Astrophysics Data System (ADS)

    Kumar, M.; Raju, M. P.; Singh, R. K.; Singh, A. K.; Singh, R. S.; Banerjee, T.

    2017-01-01

    Winter-specific characteristics of airborne particulates over middle Indo-Gangetic Plain (IGP) were evaluated in terms of aerosol chemical and micro-physical properties under three-dimensional domain. Emphases were made for the first time to identify intra-seasonal variations of aerosols sources, horizontal and vertical transport, effects of regional meteorology and estimating composite aerosol short-wave radiative forcing over an urban region (25°10‧-25°19‧N; 82°54‧-83°4‧E) at middle-IGP. Space-borne passive (Aqua and Terra MODIS, Aura OMI) and active sensor (CALIPSO-CALIOP) based observations were concurrently used with ground based aerosol mass measurement for entire winter and pre-summer months (December, 1, 2014 to March, 31, 2015). Exceptionally high aerosol mass loading was recorded for both PM10 (267.6 ± 107.0 μg m- 3) and PM2.5 (150.2 ± 89.4 μg m- 3) typically exceeding national standard. Aerosol type was mostly dominated by fine particulates (particulate ratio: 0.61) during pre to mid-winter episodes before being converted to mixed aerosol types (ratio: 0.41-0.53). Time series analysis of aerosols mass typically identified three dissimilar aerosol loading episodes with varying attributes, well resemble to that of previous year's observation representing its persisting nature. Black carbon (9.4 ± 3.7 μg m- 3) was found to constitute significant proportion of fine particulates (2-27%) with a strong diurnal profile. Secondary inorganic ions also accounted a fraction of particulates (PM2.5: 22.5%; PM10: 26.9%) having SO4- 2, NO3- and NH4+ constituting major proportion. Satellite retrieved MODIS-AOD (0.01-2.30) and fine mode fractions (FMF: 0.01-1.00) identified intra-seasonal variation with transport of aerosols from upper to middle-IGP through continental westerly. Varying statistical association of columnar and surface aerosol loading both in terms of fine (r; PM2.5: MODIS-AOD: 0.51) and coarse particulates (PM10: MODIS-AOD: 0.53) was

  12. Microphysical and compositional influences on shortwave radiative forcing of climate by sulfate aerosols

    SciTech Connect

    Schwartz, S F; Wagener, Richard; Nemesure, S

    1995-01-01

    Anthropogenic sulfate aerosols scatter shortwave (solar) radiation incident upon the atmosphere, thereby exerting a cooling influence on climate relative to pre-industrial times. Previous estimates of this forcing place its global and annual average value at about -1 W m{sup -2}, uncertain to a factor of somewhat more than 2, comparable in magnitude to greenhouse gas forcing over the same period but opposite in sign and much more uncertain. Key sources of uncertainty are atmospheric chemistry factors (yield, residence time), and microphysical factors (scattering efficiency, upscatter fraction, and the dependence of these quantities on particle size and relative humidity, RH). This paper examines these microphysical influences to identify properties required to obtain more a accurate description of this forcing. The mass scattering efficiency exhibits a maximum at a particle diameter ({approximately}0.5 M) roughly equal to the wavelength of maximum power in the solar spectrum and roughly equal to diameter typical of anthropogenic sulfate aerosols. Particle size, and hence mass scattering efficiency, increase with increasing on RH because of accretion of water by deliquescent salt aerosols. For example the scattering efficiency of aqueous (NH{sub 4}){sub 2}SO{sub 4} (dry radius 0.2 {mu}m) increases from 8 to 80 m{sup 2}/g (SO{sub 4}{sup 2-}) as RH increases from 39 to 97%. The sensitivity of forcing to particle dry mass and relative humidity suggest the need to explicitly represent these properties if the sulfate aerosol forcing is to be accurately described in climate models.

  13. Microphysical and compositional influences on shortwave radiative forcing of climate by sulfate aerosols

    SciTech Connect

    Schwartz, S.E.; Wagener, R.; Nemesure, S.

    1995-02-01

    Anthropogenic sulfate aerosols scatter shortwave (solar) radiation iincident upon the atmosphere, thereby exerting a cooling influence on climate relative to pre-industrial times. Previous estimates of this forcing place its global and annual average value at about {minus}1 W M{sup {minus}2}, uncertain to a factor of somewhat more than 2, comparable in magnitude to greenhouse gas forcing over the same period but opposite in sign and much more uncertain. Key sources of uncertainty are atmospheric chemistry factors (yield, residence time), and microphysical factors (scattering efficiency, upscatter fraction, and the dependence of these quantities on particle size and relative humidity, RH). This paper examines these microphysical influences to indentify properties required to obtain more a accurate description of this forcing. The mass scattering efficiency exhibits a maximum at a particle diameter ({approximately}0.5 {mu}m) roughly equal to the wavelength of maximum power in the solar spectrum and roughly equal to diameter typical of anthropogenic sulfate aerosols. Particle size, and hence mass scattering efficiency, increase with increasing on RH because of accretion of water by deliquescent salt aerosols.

  14. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    NASA Astrophysics Data System (ADS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-02-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  15. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    NASA Astrophysics Data System (ADS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Luo, G.; Ma, X.; Penner, J. E.; Rasch, P. J.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J.-H.; Zhang, K.; Zhang, H.; Zhou, C.

    2012-08-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 15 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 15 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m-2, with a mean of -0.30 W m-2 for the 15 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.39 W m-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  16. Radiative Forcing of the Direct Aerosol Effect from AeroCom Phase II Simulations

    NASA Technical Reports Server (NTRS)

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; vanNoije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J. -H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 W m(sup-2), with a mean of -0.27 W m(sup-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 W m(sup-2). Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study.We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results

  17. Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations

    SciTech Connect

    Myhre, G.; Samset, B. H.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Chin, M.; Diehl, T.; Easter, R. C.; Feichter, J.; Ghan, S. J.; Hauglustaine, D.; Iversen, T.; Kinne, S.; Kirkevåg, A.; Lamarque, J. -F.; Lin, G.; Liu, X.; Lund, M. T.; Luo, G.; Ma, X.; van Noije, T.; Penner, J. E.; Rasch, P. J.; Ruiz, A.; Seland, Ø.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Wang, P.; Wang, Z.; Xu, L.; Yu, H.; Yu, F.; Yoon, J. -H.; Zhang, K.; Zhang, H.; Zhou, C.

    2013-01-01

    We report on the AeroCom Phase II direct aerosol effect (DAE) experiment where 16 detailed global aerosol models have been used to simulate the changes in the aerosol distribution over the industrial era. All 16 models have estimated the radiative forcing (RF) of the anthropogenic DAE, and have taken into account anthropogenic sulphate, black carbon (BC) and organic aerosols (OA) from fossil fuel, biofuel, and biomass burning emissions. In addition several models have simulated the DAE of anthropogenic nitrate and anthropogenic influenced secondary organic aerosols (SOA). The model simulated all-sky RF of the DAE from total anthropogenic aerosols has a range from -0.58 to -0.02 Wm-2, with a mean of -0.27 Wm-2 for the 16 models. Several models did not include nitrate or SOA and modifying the estimate by accounting for this with information from the other AeroCom models reduces the range and slightly strengthens the mean. Modifying the model estimates for missing aerosol components and for the time period 1750 to 2010 results in a mean RF for the DAE of -0.35 Wm-2. Compared to AeroCom Phase I (Schulz et al., 2006) we find very similar spreads in both total DAE and aerosol component RF. However, the RF of the total DAE is stronger negative and RF from BC from fossil fuel and biofuel emissions are stronger positive in the present study than in the previous AeroCom study. We find a tendency for models having a strong (positive) BC RF to also have strong (negative) sulphate or OA RF. This relationship leads to smaller uncertainty in the total RF of the DAE compared to the RF of the sum of the individual aerosol components. The spread in results for the individual aerosol components is substantial, and can be divided into diversities in burden, mass extinction coefficient (MEC), and normalized RF with respect to AOD. We find that these three factors give similar contributions to the spread in results.

  18. Global all-sky shortwave direct radiative forcing of anthropogenic aerosols from combined satellite observations and GOCART simulations

    NASA Astrophysics Data System (ADS)

    Su, Wenying; Loeb, Norman G.; Schuster, Gregory L.; Chin, Mian; Rose, Fred G.

    2013-01-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon Moderate Resolution Imaging Spectroradiometer (MODIS) and Model for Atmospheric Transport and Chemistry (MATCH) assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF) by assuming that the anthropogenic fractions from GOCART are representative. The global (60°N~60°S) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the top of the atmosphere (TOA), 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are

  19. Aerosols, Chemistry, and Radiative Forcing: A 3-D Model Analysis of Satellite and ACE-Asia data (ACMAP)

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Torres, Omar; Zhao, Xue-Peng

    2005-01-01

    We propose a research project to incorporate a global 3-D model and satellite data into the multi-national Aerosol Characterization Experiment-Asia (ACE-Asia) mission. Our objectives are (1) to understand the physical, chemical, and optical properties of aerosols and the processes that control those properties over the Asian-Pacific region, (2) to investigate the interaction between aerosols and tropospheric chemistry, and (3) to determine the aerosol radiative forcing over the Asia-Pacific region. We will use the Georgia TecWGoddard Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) model to link satellite observations and the ACE-Asia measurements. First, we will use the GOCART model to simulate aerosols and related species, and evaluate the model with satellite and in-situ observations. Second, the model generated aerosol vertical profiles and compositions will be used to validate the satellite products; and the satellite data will be used for during- and post- mission analysis. Third, we will use the model to analyze and interpret both satellite and ACE- Asia field campaign data and investigate the aerosol-chemistry interactions. Finally, we will calculate aerosol radiative forcing over the Asian-Pacific region, and assess the influence of Asian pollution in the global atmosphere. We propose a research project to incorporate a global 3-D model and satellite data into

  20. Towards a Global Aerosol Climatology: Preliminary Trends in Tropospheric Aerosol Amounts and Corresponding Impact on Radiative Forcing between 1950 and 1990

    NASA Technical Reports Server (NTRS)

    Tegen, Ina; Koch, Dorothy; Lacis, Andrew A.; Sato, Makiko

    1999-01-01

    A global aerosol climatology is needed in the study of decadal temperature change due to natural and anthropogenic forcing of global climate change. A preliminary aerosol climatology has been developed from global transport models for a mixture of sulfate and carbonaceous aerosols from fossil fuel burning, including also contributions from other major aerosol types such as soil dust and sea salt. The aerosol distributions change for the period of 1950 to 1990 due to changes in emissions of SO2 and carbon particles from fossil fuel burning. The optical thickness of fossil fuel derived aerosols increased by nearly a factor of 3 during this period, with particularly strong increase in eastern Asia over the whole time period. In countries where environmental laws came into effect since the early 1980s (e.g. US and western Europe), emissions and consequently aerosol optical thicknesses did not increase considerably after 1980, resulting in a shift in the global distribution pattern over this period. In addition to the optical thickness, aerosol single scattering albedos may have changed during this period due to different trends in absorbing black carbon and reflecting sulfate aerosols. However, due to the uncertainties in the emission trends, this change cannot be determined with any confidence. Radiative forcing of this aerosol distribution is calculated for several scenarios, resulting in a wide range of uncertainties for top-of-atmosphere (TOA) forcings. Uncertainties in the contribution of the strongly absorbing black carbon aerosol leads to a range in TOA forcings of ca. -0.5 to + 0.1 Wm (exp. -2), while the change in aerosol distributions between 1950 to 1990 leads to a change of -0.1 to -0.3 Wm (exp. -2), for fossil fuel derived aerosol with a "moderate" contribution of black carbon aerosol.

  1. Secondary inorganic aerosol formation and its shortwave direct radiative forcing in China

    NASA Astrophysics Data System (ADS)

    Huang, Xin

    2015-04-01

    Secondary inorganic aerosol (SIA), including sulfate, nitrate and ammonium, is an important part of fine particle. SIA plays a significant role in shortwave radiation transfer. Numerical simulation is usually used to study SIA formation and its climate effect. In this work, we used the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) to study SIA formation and its direct radiative forcing (DRF) over China. SO2 oxidation pathways related to mineral aerosol, including transition metal-catalyzed oxidation in aqueous phase and heterogeneous reactions, play an important role in sulfate production, but they are not well treated in current atmospheric models. In this work, we improved the WRF-Chem model by simulating the enhancement role of mineral aerosol in sulfate production. Firstly, we estimated mineral cations based on local measurements in order to well represent aqueous phase acidity. Secondly, we scaled the transition metal concentration to the mineral aerosol levels according to the existing observations and improved transition metal-catalyzed oxidation calculation. Lastly, heterogeneous reactions of acid gases on the surface of mineral aerosol were included in this simulation. Accuracy in the prediction of sulfate by the model was significantly improved and we concluded that mineral aerosol can facilitate SO2 oxidation and subsequent sulfate formation. It was demonstrated that, over China, mineral aerosol was responsible for 21.8% of annual mean sulfate concentration. The enhanced aqueous oxidation was more significant compared to the heterogeneous reactions. In winter, mineral aerosol was responsible for 39.6% of sulfate production. In summer, gaseous oxidation and aqueous oxidation of SO2 by hydrogen peroxide and ozone were the dominant pathways of sulfate formation. Mineral aerosol only contributed 11.9% to the total sulfate production. The increase in annual mean sulfate concentration due to mineral aerosol could reach up to over 6

  2. A study of the aerosol radiative properties needed to compute direct aerosol forcing in the southeastern United States

    NASA Astrophysics Data System (ADS)

    Yu, Shaocai; Saxena, V. K.; Wenny, B. N.; Deluisi, J. J.; Yue, G. K.; Petropavlovskikh, I. V.

    2000-10-01

    To assess the direct radiative forcing due to aerosols in southeastern United States where a mild cooling is under way, an accurate set of data describing the aerosol radiative properties are needed. We report here aerosol optical depth (AOD) and diffuse to-direct solar irradiance ratio (DDR) at three operational wavelengths (415, 500, 673 nm) determined by using Multifilter Rotating Shadowband Radiometers (MFRSR) at two sites (a mountain top site: Mount Gibbes, 35.78°N, 82.29°W, 2006 m mean sea level (msl); a valley site: Black Mountain, 35.66°N, 82.38°W, 951 m msl), which are separated horizontally by 10 km and vertically by 1 km. The characteristics AOD and DDR were determined from the field measurements obtained during 1995. It was found that the representative total AOD values at 500 nm at the valley site for highly polluted (HP), marine (M) and continental (C) air masses were 0.68±0.33, 0.29±0.19, and 0.10±0.04, respectively. The fact that the ratio of the mean 1 km layer optical depth to total mean optical depth at 500 nm from the valley site was 71% indicates that the major portion of the atmospheric aerosol was located in the lowest 1 km surface boundary layer (SBL). There was a significant linear correlation between the DDR and the total AOD at both sites. A simple, fast, and operative search-graph method was used to retrieve the columnar size distribution (number concentration N effective radius reff, and geometric standard deviation σg) from the optical depth observations at the three operational wavelengths. The ground albedo, single-scattering albedo, and imaginary part of the refractive index are calculated using a mathematically unique procedure involving a Mie code and a radiative transfer code in conjunction with the retrieved aerosol size distribution, AOD, and DDR. It was found that N, reff, and σg were in the range of 1.9×10 to 1.7×104 cm-3, 0.09-0.68 μm, and 1.12-2.70, respectively. The asymmetry factor and single-scattering albedo

  3. Dust aerosol radiative effect and forcing over West Africa : A case study from the AMMA SOP

    NASA Astrophysics Data System (ADS)

    Lemaître, C.; Flamant, C.; Pelon, J.; Cuesta, J.; Chazette, P.; Raut, J. C.

    2009-04-01

    The massive transport of arid dust by the African easterly jet (AEJ) can impact the dynamic of the AEJ and modify the development of westerly African waves through modifications of horizontal temperature gradient. Hence, it is important to evaluate the radiative impact of dust and their effect on thermodynamical properties of the AEJ. In this presentation, the impact of aerosol on solar and infra-red fluxes and the heating rate due to dust over West Africa are investigated using the radiative code STREAMER, as well as space-borne and airborne lidars (CALIPSO and LEANDRE 2, respectively) as well as dropsonde observations acquired during the African Monsoon Multidisciplinary Analysis Special Observing Period. Aircraft operations were conducted on 13 and 14 June 2006, over Benin and Niger. On these days the dust observed over Benin and Niger originated from the Bodélé depression and from West Sudan. In this study, we use aerosol extinction coefficient derived from lidar, as well as temperature, pressure and water vapour profiles derived from dropsondes as inputs to STREAMER. The surface albedo is obtained with MODIS. A series of runs was carried out on 13 and 14 June 2006, around mid-day, to investigate the dust radiative forcing as a function of latitude, from 6°N to 15°N, i.e. between the vegetated coast of the Guinea Gulf and the arid Sahel. In the solar spectrum, the maximum heating rate associated with the dust plume on these days was comprised between 1.5 K/day and 3 K/day, depending on the aerosol load, over the entire Sudanian and Sahel regions as inferred from CALIPSO. Sensitivity studies to surface albedo, aerosol backscatter-to-extinction ratio, temperature and water vapor mixing ratio profiles were also conducted.

  4. Identification of aerosol types over Indo-Gangetic Basin: implications to optical properties and associated radiative forcing.

    PubMed

    Tiwari, S; Srivastava, A K; Singh, A K; Singh, Sachchidanand

    2015-08-01

    The aerosols in the Indo-Gangetic Basin (IGB) are a mixture of sulfate, dust, black carbon, and other soluble and insoluble components. It is a challenge not only to identify these various aerosol types, but also to assess the optical and radiative implications of these components. In the present study, appropriate thresholds for fine-mode fraction and single-scattering albedo have been used to first identify the aerosol types over IGB. Four major aerosol types may be identified as polluted dust (PD), polluted continental (PC), black carbon-enriched (BCE), and organic carbon-enriched (OCE). Further, the implications of these different types of aerosols on optical properties and radiative forcing have been studied. The aerosol products derived from CIMEL sun/sky radiometer measurements, deployed under Aerosol Robotic Network program of NASA, USA were used from four different sites Karachi, Lahore, Jaipur, and Kanpur, spread over Pakistan and Northern India. PD is the most dominant aerosol type at Karachi and Jaipur, contributing more than 50% of all the aerosol types. OCE, on the other hand, contributes only about 12-15% at all the stations except at Kanpur where its contribution is ∼38%. The spectral dependence of AOD was relatively low for PD aerosol type, with the lowest AE values (<0.5); whereas, large spectral dependence in AOD was observed for the remaining aerosol types, with the highest AE values (>1.0). SSA was found to be the highest for OCE (>0.9) and the lowest for BCE (<0.9) type aerosols, with drastically different spectral variability. The direct aerosol radiative forcing at the surface and in the atmosphere was found to be the maximum at Lahore among all the four stations in the IGB.

  5. Aerosol radiative forcing over the Indo-Gangetic plains during major dust storms

    NASA Astrophysics Data System (ADS)

    Prasad, Anup K.; Singh, Sachchidanand; Chauhan, S. S.; Srivastava, Manoj K.; Singh, Ramesh P.; Singh, Risal

    Indo-Gangetic (IG) alluvial plains, one of the largest river basins in the world, suffers from the long range transport of mineral dust from the western arid and desert regions of Africa, Arabia and Rajasthan during the summer (pre-monsoon season, April-June). These dust storms influence the aerosol optical depth (AOD) across the IG plains. The Kanpur AERONET (Aerosol Robotic Network) station and Moderate Resolution Imaging Spectro-radiometer (MODIS) data show pronounced effect on the aerosol optical properties and aerosol size distribution during major dust storm events over the IG plains that have significant effect on the aerosol radiative forcing (ARF). The multi-band AOD, from AERONET and MODIS, show contrasting changes in wavelength dependency over dust affected regions. A time collocated (±30 min) validation of AERONET AOD with MODIS Terra (level 2 swath product) over Kanpur, at a common wavelength of 550 nm for the period 2001-2005 show moderate correlation ( R2˜0.6) during the summer season. The average surface forcing is found to change by -23 W m -2 during dust events and the top of the atmosphere (TOA) forcing change by -11 W m -2 as compared to the non-dusty clear-sky days. A strong correlation is found between AOD at 500 nm and the ARF. At surface, the correlation coefficient between AOD and ARF is found to be high ( R2=0.925) and is found to be moderate ( R2=0.628) at the TOA. The slope of the regression line gives the aerosol forcing efficiency at 500 nm of about -46±2.6 W m -2 and -17±2.5 W m -2 at the surface and the TOA, respectively. The ARF is found to increase with the advance of the dry season in conjunction with the gradual rise in AOD (at 500 nm) from April (0.4-0.5) to June (0.6-0.7) over the IG plains.

  6. Aerosol radiative forcing controls: Results from an Indian table-top mining region

    NASA Astrophysics Data System (ADS)

    Latha, R.; Murthy, B. S.; Kumar, Manoj; Lipi, K.; Jyotsna, S.

    2013-12-01

    Aerosol radiative forcing (ARF) over intense mining area in Indian monsoon trough region, computed based on the aerosol optical properties obtained through Prede (POM-1L) sky radiometer and radiative transfer model, are analysed for the year 2011 based on 21 clear sky days spread through seasons. Due to active mining and varied minerals ARF is expected to be significantly modulated by single scattering albedo (SSA). Our studies show that radiative forcing normalized by aerosol optical depth (AOD) is highly correlated with SSA (0.96) while ARF at the surface with AOD by 0.92. Our results indicate that for a given AOD, limits or range of ARF are determined by SSA, hence endorses the need to obtain SSA accurately, preferably derived through observations concurrent with AOD. Noticeably, ARF at the top-of the atmosphere is well connected to SSA (r = 0.77) than AOD (r = 0.6). Relation between observed black carbon and SSA are investigated. A possible over estimation of SSA by the inversion algorithm, SKYRAD.pack 4.2, used in the current study is also discussed. Choice of atmospheric profiles deviating from tropical to mid altitude summer or winter does not appear to be sensitive in ARF calculation by SBDART. Based on the 21 clear sky days, a multiple linear regression equation is obtained for ARFbot as a function of AOD and SSA with a bias of ±2.7 Wm-2. This equation is verified with an independent data set of seasonal mean AOD and SSA to calculate seasonal ARF that compares well with the modeled ARF within ±4 Wm-2.

  7. Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions

    NASA Astrophysics Data System (ADS)

    Verma, S.; Venkataraman, C.; Boucher, O.

    2011-08-01

    We examine the aerosol radiative effects due to aerosols emitted from different emission sectors (anthropogenic and natural) and originating from different geographical regions within and outside India during the northeast (NE) Indian winter monsoon (January-March). These studies are carried out through aerosol transport simulations in the general circulation (GCM) model of the Laboratoire de Météorologie Dynamique (LMD). The model estimates of aerosol single scattering albedo (SSA) show lower values (0.86-0.92) over the region north to 10°N comprising of the Indian subcontinent, Bay of Bengal, and parts of the Arabian Sea compared to the region south to 10°N where the estimated SSA values lie in the range 0.94-0.98. The model estimated SSA is consistent with the SSA values inferred through measurements on various platforms. Aerosols of anthropogenic origin reduce the incoming solar radiation at the surface by a factor of 10-20 times the reduction due to natural aerosols. At the top-of-atmosphere (TOA), aerosols from biofuel use cause positive forcing compared to the negative forcing from fossil fuel and natural sources in correspondence with the distribution of SSA which is estimated to be the lowest (0.7-0.78) from biofuel combustion emissions. Aerosols originating from India and Africa-west Asia lead to the reduction in surface radiation (-3 to -8 W m -2) by 40-60% of the total reduction in surface radiation due to all aerosols over the Indian subcontinent and adjoining ocean. Aerosols originating from India and Africa-west Asia also lead to positive radiative effects at TOA over the Arabian Sea, central India (CNI), with the highest positive radiative effects over the Bay of Bengal and cause either negative or positive effects over the Indo-Gangetic plain (IGP).

  8. Radiative flux and forcing parameterization error in aerosol-free clear skies

    DOE PAGES

    Pincus, Robert; Mlawer, Eli J.; Oreopoulos, Lazaros; ...

    2015-07-03

    This article reports on the accuracy in aerosol- and cloud-free conditions of the radiation parameterizations used in climate models. Accuracy is assessed relative to observationally validated reference models for fluxes under present-day conditions and forcing (flux changes) from quadrupled concentrations of carbon dioxide. Agreement among reference models is typically within 1 W/m2, while parameterized calculations are roughly half as accurate in the longwave and even less accurate, and more variable, in the shortwave. Absorption of shortwave radiation is underestimated by most parameterizations in the present day and has relatively large errors in forcing. Error in present-day conditions is essentially unrelatedmore » to error in forcing calculations. Recent revisions to parameterizations have reduced error in most cases. As a result, a dependence on atmospheric conditions, including integrated water vapor, means that global estimates of parameterization error relevant for the radiative forcing of climate change will require much more ambitious calculations.« less

  9. Global All-sky Shortwave Direct Radiative Forcing of Anthropogenic Aerosols from Combined Satellite Observations and GOCART Simulations

    NASA Astrophysics Data System (ADS)

    Su, W.; Loeb, N. G.; Schuster, G. L.; Chin, M.; Rose, F. G.

    2013-05-01

    Estimation of aerosol direct radiative forcing (DRF) from satellite measurements is challenging because current satellite sensors do not have the capability of discriminating between anthropogenic and natural aerosols. We combine 3-hourly cloud properties from satellite retrievals with two aerosol data sets to calculate the all-sky aerosol direct radiative effect (DRE), which is the mean radiative perturbation due to the presence of both natural and anthropogenic aerosols. The first aerosol data set is based upon MODIS and MATCH assimilation model and is largely constrained by MODIS aerosol optical depth, but it does not distinguish between anthropogenic and natural aerosols. The other aerosol data set is based upon the GOCART model, which does not assimilate aerosol observations but predicts the anthropogenic and natural components of aerosols. Thus, we can calculate the aerosol DRF using GOCART classifications of anthropogenic and natural aerosols and the ratio of DRF to DRE. We then apply this ratio to DRE calculated using MODIS/MATCH aerosols to partition it into DRF (MODIS/MATCH DRF), by assuming that the anthropogenic fractions from GOCART are representative. The global (60oN ˜60oS) mean all-sky MODIS/MATCH DRF is -0.51 Wm-2 at the TOA, 2.51 Wm-2 within the atmosphere, and -3.02 Wm-2 at the surface. The GOCART all-sky DRF is -0.17 Wm-2 at the TOA, 2.02 Wm-2 within the atmosphere, and -2.19 Wm-2 at the surface. The differences between MODIS/MATCH DRF and GOCART DRF are solely due to the differences in aerosol properties, since both computations use the same cloud properties and surface albedo, and the same proportion of anthropogenic contributions to aerosol DRE. Aerosol optical depths simulated by the GOCART model are smaller than those in MODIS/MATCH, and aerosols in the GOCART model are more absorbing than those in MODIS/MATCH. Large difference in all-sky TOA DRF from these two aerosol data sets highlights the complexity in determining the all-sky DRF

  10. On the influence of the diurnal variations of aerosol content to estimate direct aerosol radiative forcing using MODIS data

    NASA Astrophysics Data System (ADS)

    Xu, Hui; Guo, Jianping; Ceamanos, Xavier; Roujean, Jean-Louis; Min, Min; Carrer, Dominique

    2016-09-01

    Long-term measurements of aerosol optical depth (AOD) from the Aerosol Robotic Network (AERONET) located in Beijing reveal a strong diurnal cycle of aerosol load staged by seasonal patterns. Such pronounced variability is matter of importance in respect to the estimation of daily averaged direct aerosol radiative forcing (DARF). Polar-orbiting satellites could only offer a daily revisit, which turns in fact to be even much less in case of frequent cloudiness. Indeed, this places a severe limit to properly capture the diurnal variations of AOD and thus estimate daily DARF. Bearing this in mind, the objective of the present study is however to evaluate the impact of AOD diurnal variations for conducting quantitative assessment of DARF using Moderate Resolution Imaging Spectroradiometer (MODIS) AOD data over Beijing. We provide assessments of DARF with two different assumptions about diurnal AOD variability: taking the observed hourly-averaged AOD cycle into account and assuming constant MODIS (including Terra and Aqua) AOD value throughout the daytime. Due to the AOD diurnal variability, the absolute differences in annual daily mean DARFs, if the constant MODIS/Terra (MODIS/Aqua) AOD value is used instead of accounting for the observed hourly-averaged daily variability, is 1.2 (1.3) Wm-2 at the top of the atmosphere, 27.5 (30.6) Wm-2 at the surface, and 26.4 (29.3) Wm-2 in the atmosphere, respectively. During the summertime, the impact of the diurnal AOD variability on seasonal daily mean DARF estimates using MODIS Terra (Aqua) data can reach up to 2.2 (3.9) Wm-2 at the top of the atmosphere, 43.7 (72.7) Wm-2 at the surface, and 41.4 (68.8) Wm-2 in the atmosphere, respectively. Overall, the diurnal variation in AOD tends to cause large bias in the estimated DARF on both seasonal and annual scales. In summertime, the higher the surface albedo, the stronger impact on DARF at the top of the atmosphere caused by dust and biomass burning (continental) aerosol. This

  11. Aerosol radiative forcing during African desert dust events (2005-2010) over Southeastern Spain

    NASA Astrophysics Data System (ADS)

    Valenzuela, A.; Olmo, F. J.; Lyamani, H.; Antón, M.; Quirantes, A.; Alados-Arboledas, L.

    2012-11-01

    The daily (24 h) averages of the aerosol radiative forcing (ARF) at the surface and the top of the atmosphere (TOA) were calculated during desert dust events over Granada (southeastern Spain) from 2005 to 2010. A radiative transfer model (SBDART) was utilized to simulate the solar irradiance values (0.31-2.8 μm) at the surface and TOA, using as input aerosol properties retrieved from CIMEL sun photometer measurements via an inversion methodology that uses the sky radiance measurements in principal plane configuration and a spheroid particle shape approximation. This inversion methodology was checked by means of simulated data from aerosol models, and the derived aerosol properties were satisfactorily compared against well-known AERONET products. Good agreement was found over a common spectral interval (0.2-4.0 μm) between the simulated SBDART global irradiances at surface and those provided by AERONET. In addition, simulated SBDART solar global irradiances at the surface have been successfully validated against CM-11 pyranometer measurements. The comparison indicates that the radiative transfer model slightly overestimates (mean bias of 3%) the experimental solar global irradiance. These results show that the aerosol optical properties used to estimate ARF represent appropriately the aerosol properties observed during desert dust outbreak over the study area. The ARF mean monthly values computed during desert dust events ranged from -13 ± 8 W m-2 to -34 ± 15 W m-2 at surface, from -4 ± 3 W m-2 to -13 ± 7 W m-2 at TOA and from +6 ± 4 to +21 ± 12 W m-2 in the atmosphere. We have checked if the differences found in aerosol optical properties among desert dust sectors translate to differences in ARF. The mean ARF at surface (TOA) were -20 ± 12 (-5 ± 5) W m-2, -21 ± 9 (-7 ± 5) W m-2 and -18 ± 9 (-6 ± 5) W m-2 for sector A (northern Morocco; northwestern Algeria), sector B (western Sahara, northwestern Mauritania and southwestern Algeria), and sector C

  12. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique for estimating aerosol radiative forcing from spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, R. R.

    2015-12-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is

  13. Fog-induced variations in aerosol optical and physical properties over the Indo-Gangetic Basin and impact to aerosol radiative forcing

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Jayaraman, A.; Misra, A.

    2008-06-01

    A detailed study on the changes in aerosol physical and optical properties during fog events were made in December 2004 at Hissar (29.13° N, 75.70° E), a city located in the Indo-Gangetic basin. The visible aerosol optical depth was relatively low (0.3) during the initial days, which, however, increased (0.86) as the month progressed. The increasing aerosol amount, the decreasing surface temperature and a higher relative humidity condition were found favoring the formation of fog. The fog event is also found to alter the aerosol size distribution. An increase in the number concentration of the nucleation mode (radius<0.1 μm) particles, along with a decrease in the mode radius showed the formation of freshly nucleated aerosols. In the case of accumulation mode (0.1 μmaerosol optical depth spectra are model fitted to infer the aerosol components which are further used to compute the aerosol radiative forcing. The top of the atmosphere forcing is found to increase during foggy days due to large backscattering of radiation back to space. It is also shown that during foggy days, as the day progresses the RH value decreases, which reduces the forcing value while the increasing solar elevation increases the forcing value. Thus the fog event which prolongs longer into the daytime has a stronger effect on the diurnally averaged aerosol radiative forcing than those events which are confined only to the early morning hours.

  14. Direct Radiative Forcing Due to Carbonaceous Aerosols in Biomass Burning Emissions

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Marks, M.; Heo, J.; Adams, P. J.; Donahue, N. M.; Robinson, A. L.

    2014-12-01

    Most climate forcing calculations treat black carbon (BC) as the only carbonaceous particulate light-absorber. Numerous studies have shown that some organic aerosols (OA), mainly associated with biomass burning emissions, contain significant amounts of light-absorbing brown carbon (BrC). However, the light absorption properties of biomass burning OA are poorly constrained, complicating its representation in climate models. During the Fire Laboratory at Missoula Experiment (FLAME 4), we conducted experiments to characterize the light absorption properties of OA in emissions of globally important biomass fuels. We showed that the effective absorptivity of OA depends largely on burn conditions, not fuel type, and derived a parameterization that links OA absorptivity to the BC-to-OA ratio of the emissions (Nature Geoscience, DOI:10.1038/ngeo2220). Here, we utilize this parameterization to estimate the direct radiative effect (DRE) of carbonaceous aerosols in biomass burning emissions using a global chemical transport model (GEOS-Chem) and a column radiative transfer model (libRadTran). The simulations were performed for the year 2005. Monthly-averaged global aerosol concentrations, including BC, OA, inorganic sulfates and nitrates, sea salt, and mineral dust, were obtained from GEOS-Chem simulations. Concentrations of BC and OA from biomass burning emissions were determined by running two GEOS-Chem simulations, one with and one without biomass burning emissions. We attributed the difference in BC and OA concentrations between the two simulations to biomass burning, and could thus calculate the BC-to-OA ratio for biomass burning emissions. libRadTran was used (offline) to calculated DRE due to biomass burning carbonaceous aerosols at each GEOS-Chem grid-cell. Our results show that the global average DRE due to carbonaceous biomass burning emissions increases significantly if light-absorption by OA is considered (using our parameterization for OA absorptivity), compared

  15. Aerosol Radiative Effects: Expected Variations in Optical Depth Spectra and Climate Forcing, with Implications for Closure Experiment Strategies

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Stowe, L. L.; Hobbs, P. V.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We examine measurement strategies for reducing uncertainties in aerosol direct radiative forcing by focused experiments that combine surface, air, and space measurements. Particularly emphasized are closure experiments, which test the degree of agreement among different measurements and calculations of aerosol properties and radiative effects. By combining results from previous measurements of large-scale smokes, volcanic aerosols, and anthropogenic aerosols with models of aerosol evolution, we estimate the spatial and temporal variability in optical depth spectra to be expected in the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, planned for summer 1996 off the Eastern U.S. seaboard). In particular, we examine the expected changes in the wavelength dependence of optical depth as particles evolve through nucleation, growth by condensation and coagulation, and removal via sedimentation. We then calculate the expected radiative climate forcing (i.e. change in net radiative flux) for typical expected aerosols and measurement conditions (e.g. solar elevations, surface albedos, radiometer altitudes). These calculations use new expressions for flux and albedo changes, which account not only for aerosol absorption, but also for instantaneous solar elevation angles and the dependence of surface albedo on solar elevation. These factors, which are usually ignored or averaged in calculations of global aerosol effects, can have a strong influence on fluxes measured in closure experiments, and hence must be accounted for in calculations if closure is to be convincingly tested. We compare the expected measurement signal to measurement uncertainties expected for various techniques in various conditions. Thereby we derive recommendations for measurement strategies that combine surface, airborne, and spaceborne measurements.

  16. Using Aerocom Results to Constrain Black Carbon, Sulphate and Total Direct Aerosol Radiative Forcing and Their Uncertainties

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Myhre, G.

    2014-12-01

    Aerosols affect the global radiative balance, and hence the climate, through a multitude of processes. However, even the direct interaction of aerosols with incoming sunlight is at present insufficiently constrained. Here we compare the output of 15 recent aerosol climate models (AeroCom Phase II), both column averaged and vertically resolved. Through a simple MonteCarlo approach, we show that the model based total anthropogenic aerosol direct radiative forcing (DRF) uncertainty may be underestimated. Constraining modelled vertical profiles of black carbon (BC) concentration to aircraft measurements in remote regions, we further show that recent BC DRF estimates may be biased high. A short modelled BC lifetime is indicated as a necessary, though not sufficient, requirement for reproducing measurements. Finally, modeled sulphate aerosol DRF is discussed in the context of differences in representation of humidity and hygroscopic growth in the models.

  17. Global aerosol formation and revised radiative forcing based on CERN CLOUD data

    NASA Astrophysics Data System (ADS)

    Gordon, H.; Carslaw, K. S.; Sengupta, K.; Dunne, E. M.; Kirkby, J.

    2015-12-01

    New particle formation in the atmosphere accounts for 40-70% of global cloud condensation nuclei (CCN). It is a complex process involving many precursors: sulphuric acid, ions, ammonia, and a wide range of natural and anthropogenic organic molecules. The CLOUD laboratory chamber experiment at CERN allows the contributions of different compounds to be disentangled in a uniquely well-controlled environment. To date, CLOUD has measured over 500 formation rates (Riccobono 2014, Kirkby 2015, Dunne 2015), under conditions representative of the planetary boundary layer and free troposphere. To understand the sensitivity of the climate to anthropogenic atmospheric aerosols, we must quantify historical aerosol radiative forcing. This requires an understanding of pre-industrial aerosol sources. Here we show pre-industrial nucleation over land usually involves organic molecules in the very first steps of cluster formation. The complexity of the organic vapors is a major challenge for theoretical approaches. Furthermore, with fewer sulphuric acid and ammonia molecules available to stabilize nucleating clusters in the pre-industrial atmosphere, ions from radon or galactic cosmic rays were probably more important than they are today. Parameterizations of particle formation rates determined in CLOUD as a function of precursor concentrations, temperature and ions are being used to refine the GLOMAP aerosol model (Spracklen 2005). The model simulates the growth, transport and loss of particles, translating nucleation rates to CCN concentrations. This allows us to better understand the effects of pre-industrial and present-day particle formation. I will present new results on global CCN based on CLOUD data, including estimates of anthropogenic aerosol radiative forcing, currently the most uncertain driver of climate change (IPCC 2013). References: Riccobono, F. et al, Science 344 717 (2014); Kirkby, J. et al, in review; Dunne, E. et al, in preparation; Spracklen, D. et al, Atmos

  18. The Impact of Pre-Industrial Land Use Change on Atmospheric Composition and Aerosol Radiative Forcing.

    NASA Astrophysics Data System (ADS)

    Hamilton, D. S.; Carslaw, K. S.; Spracklen, D. V.; Folberth, G.; Kaplan, J. O.; Pringle, K.; Scott, C.

    2015-12-01

    Anthropogenic land use change (LUC) has had a major impact on the climate by altering the amount of carbon stored in vegetation, changing surface albedo and modifying the levels of both biogenic and pyrogenic emissions. While previous studies of LUC have largely focused on the first two components, there has recently been a recognition that changes to aerosol and related pre-cursor gas emissions from LUC are equally important. Furthermore, it has also recently been recognised that the pre-industrial (PI) to present day (PD) radiative forcing (RF) of climate from aerosol cloud interactions (ACI) due to anthropogenic emissions is highly sensitive to the amount of natural aerosol that was present in the PI. This suggests that anthropogenic RF from ACI may be highly sensitive to land-use in the PI. There are currently two commonly used baseline reference years for the PI; 1750 and 1860. Rapid LUC occurred between 1750 and 1860, with large reductions in natural vegetation cover in Eastern Northern America, Europe, Central Russia, India and Eastern China as well as lower reductions in parts of Brazil and Africa. This LUC will have led to significant changes in biogenic and fire emissions with implications for natural aerosol concentrations and PI-to-PD RF. The focus of this study is therefore to quantify the impact of LUC between 1750 and 1860 on aerosol concentrations and PI-to-PD RF calculations from ACI. We use the UK Met Office HadGEM3-UKCA coupled-chemistry-climate model to calculate the impacts of anthropogenic emissions and anthropogenic LUC on aerosol size distributions in both 1750 and 1860. We prescribe LUC using the KK10 historical dataset of land cover change. Monoterpene emissions are coupled directly to the prescribed LUC through the JULES land surface scheme in HadGEM3. Fire emissions from LUC were calculated offline using the fire module LPJ-LMfire in the Lund-Potsdam-Jena dynamic global vegetation model. To separate out the impacts of LUC from

  19. A Study of Direct and Cloud-Mediated Radiative Forcing of Climate Due to Aerosols

    NASA Technical Reports Server (NTRS)

    Yu, Shao-Cai

    1999-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has reported that in the southeastern US and eastern China, the general greenhouse warming due to anthropogenic gaseous emissions is dominated by the cooling effect of anthropogenic aerosols. To verify this model prediction in eastern China and southeastern US, we analyzed regional patterns of climate changes at 72 stations in eastern China during 1951- 94 (44 years), and at 52 stations in the southeastern US during 1949-94 (46 years) to detect the fingerprint of aerosol radiative forcing. It was found that the mean rates of change of annual mean daily, maximum, minimum temperatures and diurnal temperature range (DTR) in eastern China were 0.8, -0.2, 1.8, and -2.0 C/100 years respectively, while the mean rates of change of annual mean daily, maximum, minimum temperatures and DTR in the southeastern US were -0.2, -0.6, 0.2, and -0.8 C/100 years, respectively. This indicates that the high rate of increase in annual mean minimum temperature in eastern China results in a slightly warming trend of daily temperature, while the high rate of decrease in annual mean maximum temperature and low rate of increase in annual mean minimum temperature lead to the cooling trend of daily temperature in the southeastern US. We found that the warming from the longwave forcing due to both greenhouse gases and aerosols was completely counteracted by the shortwave aerosol forcing in the southeastern US in the past 46 years. A slightly overall warming trend in eastern China is evident; winters have become milder. This finding is explained by hypothesizing that increasing energy usage during the past 44 years has resulted in more coal and biomass burning, thus increasing the emission of absorbing soot and organic aerosols in eastern China. Such emissions, in addition to well-known Asia dust and greenhouse gases, may be responsible for the winter warming trend in eastern China that we have reported here. The sensitivity of aerosol

  20. Sensitivity of precipitation extremes to radiative forcing of greenhouse gases and aerosols

    NASA Astrophysics Data System (ADS)

    Lin, Lei; Wang, Zhili; Xu, Yangyang; Fu, Qiang

    2016-09-01

    Greenhouse gases (GHGs) and aerosols are the two most important anthropogenic forcing agents in the 21st century. The expected declines of anthropogenic aerosols in the 21st century from present-day levels would cause an additional warming of the Earth's climate system, which would aggravate the climate extremes caused by GHG warming. We examine the increased rate of precipitation extremes with global mean surface warming in the 21st century caused by anthropogenic GHGs and aerosols, using an Earth system model ensemble simulation. Similar to mean precipitation, the increased rate of precipitation extremes caused by aerosol forcing is significantly larger than that caused by GHG forcing. The aerosol forcing in the coming decades can play a critical role in inducing change in precipitation extremes if a lower GHG emission pathway is adopted. Our results have implications for policy-making on climate adaptation to extreme precipitation events.

  1. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    NASA Technical Reports Server (NTRS)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  2. Radiative forcing of climate in the western Antarctic Peninsula: Effects of cloud, surface, and aerosol properties

    NASA Astrophysics Data System (ADS)

    Payton, Allison Mccomiskey

    2003-12-01

    Polar regions are expected to show early and extreme responses to a rise in average global temperatures. The region west of the Antarctic Peninsula has shown a significant rise in temperature of the past half century while temperatures over the rest of the continent are decreasing. Approximately half of the warming over the western Antarctic Peninsula has been explained by changes in atmospheric circulation. This research has examined local climate feedback processes involving aerosols, clouds, and surface properties relative to sea ice cover, to explain the remainder of the warming, and addresses the most appropriate approach in examining local radiative processes. Two data sets are used: a highly resolved ground-based data set from the spring and summer season of 1999 2000 at Palmer Station, Antarctica and a 14 year satellite-derived data set. A three- dimensional radiative transfer model is shown to perform better than the plane-parallel models traditionally used for this application. Aerosol concentrations are low, as expected, and have a typical optical depth of 0.05 which has little effect on surface radiation budgets and climate feedback processes. An absorption process is found on three clear-sky days that accounts for 5 20 W·m-2 of energy absorbed by the atmosphere. The absorption process is of unknown origin. Cloud properties over the short- and long-term were found to be invariant with time and changes in temperature except in the summer season. Cloud radiative forcing was negative throughout the 14 year time period, but the majority of this effect was attributed to changes in surface properties (decreasing reflectance) rather than increasing cloud amount or thickness. The trend in cloud cover over the long-term and the effect of clouds on climate appears to be different in the region of the western Antarctic Peninsula than in the Arctic.

  3. Role of black carbon in aerosol properties and radiative forcing over western India during premonsoon period

    NASA Astrophysics Data System (ADS)

    Das, S. K.; Jayaraman, A.

    2011-11-01

    The present study addresses the role of black carbon (BC) in aerosol radiative forcing (ARF) over western India, where the Thar Desert produces large amount of dust aerosols during premonsoon season (Mar-May) and its mixing with BC makes the investigation a real challenge. Measurements of aerosol physical and optical parameters were carried out at three stations, Ahmedabad (urban area), Udaipur (semi-arid region) and Mt. Abu (a hill-top representing background conditions), to investigate the regional variation of ARF during April 2007. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements show presence of dust layer in the altitude region from 1 to 5 km over western India throughout the month leading to uniform distribution of dust. Ahmedabad has slightly higher AOD500(0.31) due to production of anthropogenic aerosols with BC concentration of 1.8 μg.m- 3 at surface, followed by Udaipur (AOD500 = 0.30 and BC = 0.9 μg.m- 3) and Mt. Abu (0.28 and 0.7 μg.m- 3, respectively). The longwave ARF is found to be similar over all three stations whereas the shortwave ARF depends on type of location. The shortwave ARF at the top of atmosphere (TOA), surface, and within the atmosphere are found to be 1.7, -46 and 47.7 W m- 2, respectively, at Ahmedabad, -1.5, -35 and 33.5 W m- 2 at Udaipur and - 1.5, -31 and 29.5 W m- 2 at Mt. Abu. On the other hand, the heating rates in the lower atmosphere (up to 5 km) are 1.3, 1.0 and 0.4 K/day over Ahmedabad, Udaipur and Mt. Abu, respectively. Sensitivity analysis shows that a 40% enhancement of BC could increase the heating rate by up to 50% over western India. Higher aerosol-induced heating in the atmosphere during premonsoon may have a large impact on the regional climate dynamics and hydrological processes.

  4. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  5. Future Climate Impacts of Direct Radiative Forcing Anthropogenic Aerosols, Tropospheric Ozone, and Long-lived Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Chen, Wei-Ting; Liao, Hong; Seinfeld, John H.

    2007-01-01

    Long-lived greenhouse gases (GHGs) are the most important driver of climate change over the next century. Aerosols and tropospheric ozone (O3) are expected to induce significant perturbations to the GHG-forced climate. To distinguish the equilibrium climate responses to changes in direct radiative forcing of anthropogenic aerosols, tropospheric ozone, and GHG between present day and year 2100, four 80-year equilibrium climates are simulated using a unified tropospheric chemistry-aerosol model within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) 110. Concentrations of sulfate, nitrate, primary organic (POA) carbon, secondary organic (SOA) carbon, black carbon (BC) aerosols, and tropospheric ozone for present day and year 2100 are obtained a priori by coupled chemistry-aerosol GCM simulations, with emissions of aerosols, ozone, and precursors based on the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emissions Scenario (SRES) A2. Changing anthropogenic aerosols, tropospheric ozone, and GHG from present day to year 2100 is predicted to perturb the global annual mean radiative forcing by +0.18 (considering aerosol direct effects only), +0.65, and +6.54 W m(sup -2) at the tropopause, and to induce an equilibrium global annual mean surface temperature change of +0.14, +0.32, and +5.31 K, respectively, with the largest temperature response occurring at northern high latitudes. Anthropogenic aerosols, through their direct effect, are predicted to alter the Hadley circulation owing to an increasing interhemispheric temperature gradient, leading to changes in tropical precipitation. When changes in both aerosols and tropospheric ozone are considered, the predicted patterns of change in global circulation and the hydrological cycle are similar to those induced by aerosols alone. GHG-induced climate changes, such as amplified warming over high latitudes, weakened Hadley circulation, and increasing precipitation over the

  6. Climate forcing by anthropogenic aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, R. J.; Schwartz, S. E.; Hales, J. M.; Cess, R. D.; Coakley, J. A., Jr.; Hansen, J. E.; Hofmann, D. J.

    1992-01-01

    Although long considered to be of marginal importance to global climate change, tropospheric aerosol contributes substantially to radiative forcing, and anthropogenic sulfate aerosol, in particular, has imposed a major perturbation to this forcing. Both the direct scattering of short-wavelength solar radiation and the modification of the shortwave reflective properties of clouds by sulfate aerosol particles increase planetary albedo, thereby exerting a cooling influence on the planet. Current climate forcing due to anthropogenic sulfate is estimated to be -1 to -2 watts per square meter, globally averaged. This perturbation is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign. Thus, the aerosol forcing has likely offset global greenhouse warming to a substantial degree. However, differences in geographical and seasonal distributions of these forcings preclude any simple compensation. Aerosol effects must be taken into account in evaluating anthropogenic influences on past, current, and projected future climate and in formulating policy regarding controls on emission of greenhouse gases and sulfur dioxide. Resolution of such policy issues requires integrated research on the magnitude and geographical distribution of aerosol climate forcing and on the controlling chemical and physical processes.

  7. Radiative Forcing Due to Enhancements in Tropospheric Ozone and Carbonaceous Aerosols Caused by Asian Fires During Spring 2008

    NASA Technical Reports Server (NTRS)

    Natarajan, Murali; Pierce, R. Bradley; Lenzen, Allen J.; Al-Saadi, Jassim A.; Soja, Amber J.; Charlock, Thomas P.; Rose, Fred G.; Winker, David M.; Worden, John R.

    2012-01-01

    Simulations of tropospheric ozone and carbonaceous aerosol distributions, conducted with the Real-time Air Quality Modeling System (RAQMS), are used to study the effects of major outbreaks of fires that occurred in three regions of Asia, namely Thailand, Kazakhstan, and Siberia, during spring 2008. RAQMS is a global scale meteorological and chemical modeling system. Results from these simulations, averaged over April 2008, indicate that tropospheric ozone column increases by more than 10 Dobson units (DU) near the Thailand region, and by lesser amounts in the other regions due to the fires. Widespread increases in the optical depths of organic and black carbon aerosols are also noted. We have used an off-line radiative transfer model to evaluate the direct radiative forcing due to the fire-induced changes in atmospheric composition. For clear sky, the monthly averaged radiative forcing at the top of the atmosphere (TOA) is mostly negative with peak values less than -12 W/sq m occurring near the fire regions. The negative forcing represents the increased outgoing shortwave radiation caused by scattering due to carbonaceous aerosols. At high latitudes, the radiative forcing is positive due to the presence of absorbing aerosols over regions of high surface albedo. Regions of positive forcing at TOA are more pronounced under total sky conditions. The monthly averaged radiative forcing at the surface is mostly negative, and peak values of less than -30 W/sq m occur near the fire regions. Persistently large negative forcing at the surface could alter the surface energy budget and potentially weaken the hydrological cycle.

  8. Effect of Spectrally Varying Albedo of Vegetation Surfaces on Shortwave Radiation Fluxes and Aerosol Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-01-01

    This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the

  9. Trends in Ocean Irradiance using a Radiative Model Forced with Terra Aerosols and Clouds

    NASA Technical Reports Server (NTRS)

    Gregg, Watson; Casey, Nancy; Romanou, Anastasia

    2010-01-01

    Aerosol and cloud information from MODIS on Terra provide enhanced capability to understand surface irradiance over the oceans and its variability. These relationships can be important for ocean biology and carbon cycles. An established radiative transfer model, the Ocean-Atmosphere Spectral Irradiance Model (OASIM) is used to describe ocean irradiance variability on seasonal to decadal time scales. The model is forced with information on aerosols and clouds from the MODIS sensor on Terra and Aqua. A 7-year record (2000-2006) showed no trends in global ocean surface irradiance or photosynthetic available irradiance (PAR). There were significant (P<0.05) negative trends in the Mediterranean Sea, tropical Pacific) and tropical Indian Oceans, of -7.0, -5.0 and -2.7 W/sq m respectively. Global interannual variability was also modest. Regional interannual variability was quite large in some ocean basins, where monthly excursions from climatology were often >20 W/sq m. The trends using MODIS data contrast with results from OASIM using liquid water path estimates from the International Satellite Cloud Climatology Project (ISCCP). Here, a global trend of -2 W/sq m was observed, largely dues to a large negative trend in the Antarctic -12 W/sq m. These results suggest the importance of the choice of liquid water path data sets in assessments of medium-length trends in ocean surface irradiance. The choices also impact the evaluation of changes in ocean biogeochemistry.

  10. Assessment of simulated aerosol effective radiative forcings in the terrestrial spectrum

    NASA Astrophysics Data System (ADS)

    Heyn, Irene; Block, Karoline; Mülmenstädt, Johannes; Gryspeerdt, Edward; Kühne, Philipp; Salzmann, Marc; Quaas, Johannes

    2017-01-01

    In its fifth assessment report (AR5), the Intergovernmental Panel on Climate Change provides a best estimate of the effective radiative forcing (ERF) due to anthropogenic aerosol at -0.9 W m-2. This value is considerably weaker than the estimate of -1.2 W m-2 in AR4. A part of the difference can be explained by an offset of +0.2 W m-2 which AR5 added to all published estimates that only considered the solar spectrum, in order to account for adjustments in the terrestrial spectrum. We find that, in the CMIP5 multimodel median, the ERF in the terrestrial spectrum is small, unless microphysical effects on ice- and mixed-phase clouds are parameterized. In the latter case it is large but accompanied by a very strong ERF in the solar spectrum. The total adjustments can be separated into microphysical adjustments (aerosol "effects") and thermodynamic adjustments. Using a kernel technique, we quantify the latter and find that the rapid thermodynamic adjustments of water vapor and temperature profiles are small. Observation-based constraints on these model results are urgently needed.

  11. How does the synergy between GEO-CAPE and GOES-R improve the retrieval of aerosol properties and the estimate of aerosol radiative forcing?

    NASA Astrophysics Data System (ADS)

    Wang, J.; Zeng, J.; Xu, X.; Spurr, R. J.; Liu, X.

    2011-12-01

    As a geostationary satellite, GEO-CAPE will monitor the same region constantly with same viewing zenith angle; but the change of solar zenith angle during the course of a day provides GEO-CAPE an opportunity to observe the same area at multi-scattering angles. This multi-angle observation from GEO-CAPE can be further combined with similar multi-angle observation from GOES-R, offering the unprecedented opportunity to conduct the retrieval of aerosol properties beyond the aerosol optical depth. In this study, we use the state-of-the-art linearized vector radative transfer model (VLIDORT), linearized Mie code, and linearized T-matrix code in conjunction with inversion theory and HITRAN database to study how the multi-angle synergy between GEO-CAPE and GOES-R can improve the retrieval of aerosol properties and the estimate of aerosol radiative forcing. Our numerical framework is capable to study the degree of freedoms in the aerosol retrieval space for any given set of synthetic or real satellite observation. Our preliminary studies showed that a combined use of GEO-CAPE and GOES-R multi-angle observation can offer unique opportunity to retrieve not only aerosol optical depth but also ~2-3 out of 4 aerosol parameters (e.g., effective radius, effective variance, and refractive index), depending on number of wavelengths and angles used in the retrieval. The retrieved parameter and the corresponding retrieval uncertainty are input into the radiative transfer model to compute the aerosol radiative forcing and estimate the associated uncertainty in the forcing calculations. These results are then compared against another set of forcing calculations that use the current knowledge of satellite-based aerosol parameters and uncertainties as inputs. The comparison is stratified as a function of many confounding parameters (such as surface reflectance, satellite-earth geometry, calibration accuracy) for different air mass types (e.g., urban, rural, or a mixture of both, etc) to

  12. Extensive closed cell marine stratocumulus downwind of Europe—A large aerosol cloud mediated radiative effect or forcing?

    NASA Astrophysics Data System (ADS)

    Goren, Tom; Rosenfeld, Daniel

    2015-06-01

    Marine stratocumulus clouds (MSC) cover large areas over the oceans and possess super sensitivity of their cloud radiative effect to changes in aerosol concentrations. Aerosols can cause transitions between regimes of fully cloudy closed cells and open cells. The possible role of aerosols in cloud cover has a big impact on the amount of reflected solar radiation from the clouds, thus potentially constitutes very large aerosol indirect radiative effect, which can exceed 100 Wm-2. It is hypothesized that continentally polluted clouds remain in closed cells regime for longer time from leaving continent and hence for longer distance away from land, thus occupying larger ocean areas with full cloud cover. Attributing this to anthropogenic aerosols would imply a very large negative radiative forcing with a significant climate impact. This possibility is confirmed by analyzing a detailed case study based on geostationary and polar-orbiting satellite observations of the microphysical and dynamical evolution of MSC. We show that large area of closed cells was formed over the northeast Atlantic Ocean downwind of Europe in a continentally polluted air mass. The closed cells undergo cleansing process that was tracked for 3.5 days that resulted with a rapid transition from closed to open cells once the clouds started drizzling heavily. The mechanism leading to the eventual breakup of the clouds due to both meteorological and aerosol considerations is elucidated. We termed this cleansing and cloud breakup process maritimization. Further study is needed to assess the climatological significance of such situations.

  13. Airborne measurements of spectral direct aerosol radiative forcing in INTEX/ICARTT (2004) and comparisons to previous campaigns

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Pilewskie, P.; Russell, P.; Livingston, J.; Howard, S.; Schmid, B.; Pommier, J.; Gore, W.; Eilers, J.; Wendisch, M.; Bush, B.; Valero, F.

    2005-12-01

    As part of the INTEX-NA (INtercontinental chemical Transport EXperiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies, the NASA Ames 14-channel Airborne Tracking Sunphotometer (AATS-14) and a pair of Solar Spectral Flux Radiometers (SSFR) took measurements from aboard a Jetstream 31 (J31) aircraft during 19 science flights (~ 53 flight hours) over the Gulf of Maine between 12 July and 8 August 2004. AATS-14 measures the direct solar beam transmission at 14 discrete wavelengths (354-2138 nm), yielding aerosol optical depth (AOD) spectra, while the SSFR system yields down- and upwelling solar irradiance at a spectral resolution of ~ 8-12 nm over the wavelength range 300-1700 nm. The combination of simultaneous AATS and SSFR measurements yields plots of net spectral irradiance as a function of aerosol optical depth as measured along horizontal flight legs. From the slope of these plots we determine the instantaneous aerosol-induced change in net radiative flux per change in AOD. By normalization to an aerosol optical depth change of unity we derive the spectral aerosol radiative forcing efficiency [W m-2 nm-1]. Numerical integration of the irradiance measurements over a given spectral range yields the broadband aerosol radiative forcing efficiency [W m-2]. In INTEX/ITCT, we observed a total of 16 horizontal AOD gradients, with 10 gradients well suited for our analysis because of the small changes in solar zenith angle. Within the 10 case studies we found a high variability in the derived instantaneous aerosol forcing efficiencies for the visible wavelength range (350-700 nm), with a mean of -79.6 W m-2 and a standard deviation of 21.8 W m-2 (27%). The mean instantaneous forcing efficiency for the visible plus near-IR wavelength range (350-1670 nm) was derived to be 135.3 W m-2 with a standard deviation of 36.0 W m-2 (27%). An analytical conversion of the instantaneous forcing efficiencies to

  14. Global Impacts of Gas-Phase Chemistry-Aerosol Interactions on Direct Radiative Forcing by Anthropogenic Aerosols and Ozone

    NASA Technical Reports Server (NTRS)

    Liao, Hong; Seinfeld, John H.

    2005-01-01

    We present here a first global modeling study on the influence of gas-phase chemistry/aerosol interactions on estimates of anthropogenic forcing by tropospheric O3 and aerosols. Concentrations of gas-phase species and sulfate, nitrate, ammonium, black carbon, primary organic carbon, secondary organic carbon, sea salt, and mineral dust aerosols in the preindustrial, present-day, and year 2100 (IPCC SRES A2) atmospheres are simulated online in the Goddard Institute for Space Studies general circulation model II' (GISS GCM II'). With fully coupled chemistry and aerosols, the preindustrial, presentday, and year 2100 global burdens of tropospheric ozone are predicted to be 190, 319, and 519 Tg, respectively. The burdens of sulfate, nitrate, black carbon, and organic carbon are predicted respectively to be 0.32. 0.18, 0.01, 0.33 Tg in preindustrial time, 1.40, 0.48, 0.23, 1.60 Tg in presentday, and 1.37, 1.97, 0.54, 3.31 Tg in year 2100. Anthropogenic O3 is predicted to have a globally and annually averaged present-day forcing of +0.22 W m(sup -2) and year 2100 forcing of +0.57 W m(sup -2) at the top of the atmosphere (TOA). Net anthropogenic TOA forcing by internally mixed sulfate, nitrate, organic carbon, and black carbon aerosols is estimated to be virtually zero in the present-day and +0.34 W m(sup -2) in year 2100, whereas it is predicted to be -0.39 W m(sup -2) in present-day and -0.61 W m(sup -2) in year 2100 if the aerosols are externally mixed. Heterogeneous reactions are shown to be important in affecting anthropogenic forcing. When reactions of N2O5, NO3, NO2, and HO2 on aerosols are accounted for, TOA anthropogenic O3 forcing is less by 20-45% in present-day and by 20-32% in year 2100 at mid to high latitudes in the Northern Hemisphere, as compared with values predicted in the absence of heterogeneous gas aerosol reactions. Mineral dust uptake of HNO3 and O3 is shown to have practically no influence on anthropogenic O3 forcing. Heterogeneous reactions of N2Os

  15. Future Projections of Aerosol Optical Depth, Radiative Forcing, and Climate Response Due to Declining Aerosol Emissions in the Representative Concentration Pathways

    NASA Astrophysics Data System (ADS)

    Westervelt, D. M.; Mauzerall, D. L.; Horowitz, L. W.; Naik, V.

    2014-12-01

    It is widely expected that global emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted based on human health concerns. However, the resulting decrease in atmospheric aerosol burden will have unintended climate consequences. Since aerosols generally exert a net cooling influence on the climate, their removal will lead to an unmasking of global warming as well as other changes to the climate system. Aerosol and precursor global emissions decrease by as much as 80% by the year 2100, according to projections in four Representative Concentration Pathway (RCP) scenarios. We use the Geophysical Fluid Dynamics Laboratory Climate Model version 3 (GFDL CM3) to simulate future climate over the 21st century with and without aerosol emission changes projected by the RCPs in order to isolate the radiative forcing and climate response due to the aerosol reductions. We find that up to 1 W m-2 of radiative forcing may be unmasked globally by 2100 due to reductions in aerosol and precursor emissions, leading to average global temperature increases up to 1 K and global precipitation rate increases up to 0.09 mm d-1 (3%). Regionally and locally, climate impacts are much larger, as RCP8.5 projects a 2.1 K warming over China, Japan, and Korea due to reduced aerosol emissions. Our results highlight the importance of crafting emissions control policies with both climate and air pollution benefits in mind. The expected unmasking of additional global warming from aerosol reductions highlights the importance of robust greenhouse gas mitigation policies and may require more aggressive policies than anticipated.

  16. Radiative Forcing of Climate Change

    SciTech Connect

    Ramaswamy, V.; Boucher, Olivier; Haigh, J.; Hauglustaine, D.; Haywood, J.; Myhre, G.; Nakajima, Takahito; Shi, Guangyu; Solomon, S.; Betts, Robert E.; Charlson, R.; Chuang, C. C.; Daniel, J. S.; Del Genio, Anthony D.; Feichter, J.; Fuglestvedt, J.; Forster, P. M.; Ghan, Steven J.; Jones, A.; Kiehl, J. T.; Koch, D.; Land, C.; Lean, J.; Lohmann, Ulrike; Minschwaner, K.; Penner, Joyce E.; Roberts, D. L.; Rodhe, H.; Roelofs, G.-J.; Rotstayn, Leon D.; Schneider, T. L.; Schumann, U.; Schwartz, Stephen E.; Schwartzkopf, M. D.; Shine, K. P.; Smith, Steven J.; Stevenson, D. S.; Stordal, F.; Tegen, I.; van Dorland, R.; Zhang, Y.; Srinivasan, J.; Joos, Fortunat

    2001-10-01

    Chapter 6 of the IPCC Third Assessment Report Climate Change 2001: The Scientific Basis. Sections include: Executive Summary 6.1 Radiative Forcing 6.2 Forcing-Response Relationship 6.3 Well-Mixed Greenhouse Gases 6.4 Stratospheric Ozone 6.5 Radiative Forcing By Tropospheric Ozone 6.6 Indirect Forcings due to Chemistry 6.7 The Direct Radiative Forcing of Tropospheric Aerosols 6.8 The Indirect Radiative Forcing of Tropospheric Aerosols 6.9 Stratospheric Aerosols 6.10 Land-use Change (Surface Albedo Effect) 6.11 Solar Forcing of Climate 6.12 Global Warming Potentials hydrocarbons 6.13 Global Mean Radiative Forcings 6.14 The Geographical Distribution of the Radiative Forcings 6.15 Time Evolution of Radiative Forcings Appendix 6.1 Elements of Radiative Forcing Concept References.

  17. Seasonal differences in aerosol abundance and radiative forcing in months of contrasting emissions and rainfall over northern South Asia

    NASA Astrophysics Data System (ADS)

    Sadavarte, P.; Venkataraman, C.; Cherian, R.; Patil, N.; Madhavan, B. L.; Gupta, T.; Kulkarni, S.; Carmichael, G. R.; Adhikary, B.

    2016-01-01

    A modeling framework was used to examine gaps in understanding of seasonal and spatial heterogeneity in aerosol abundance and radiative forcing over northern South Asia, whose glimpses are revealed in observational studies. Regionally representative emissions were used in chemical transport model simulations at a spatial resolution of 60 × 60 km2, in April, July and September, chosen as months of contrasting emissions and rainfall. Modeled aerosol abundance in northern South Asia was predominantly found to be dust and carbonaceous in April, dust and sulfate in July and sulfate and carbonaceous in September. Anthropogenic aerosols arose from energy-use emissions (from industrial sources, residential biofuel cooking, brick kilns) in all months, additionally from field burning in April, and incursion from East Asia in September. In April, carbonaceous aerosols were abundant from open burning of agricultural fields even at high altitude locations (Godavari), and of forests in the eastern Gangetic Plain (Kolkata). Direct radiative forcing and heating rate, calculated from OPAC-SBDART, using modeled aerosol fields, and corrected by MODIS AOD observations, showed regionally uniform atmospheric forcing in April, compared to that in other months, influenced by both dust and black carbon abundance. A strong spatial heterogeneity of radiative forcing and heating rate was found, with factor of 2.5-3.5 lower atmospheric forcing over the Tibet plateau than that over the Ganga Plain and Northwest in July and September. However, even over the remote Tibet plateau, there was significant anthropogenic contribution to atmospheric forcing and heating rate (45% in Apr, 75% in Sep). Wind fields showed black carbon transport from south Asia in April and east Asia in September. Further evaluation of the transport of dust and anthropogenic emissions from various source regions and their deposition in the Himalaya and Tibet, is important in understanding regional air quality and climate

  18. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    NASA Astrophysics Data System (ADS)

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shuguang

    2016-02-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001-2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m-2 and a standard deviation of 2,589 g C m-2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (-583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m-2 with a standard deviation of 2.87 W m-2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  19. Assessment of aerosol radiative forcing in the North-Eastern region of India using radiative transfer model and regional climate model

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Bhuyan, Pradip

    Regional characterization of atmospheric aerosols is essential from the viewpoint of reducing the current uncertainties in the understanding of their climate implications at regional and global scale. The north-eastern part of India owing to its unique topography and geography located at sub Himalayan range and the middle of Indian Subcontinent and South-East Asian region as well as with scattered local hilly regions persevere complex aerosol environment. Collocated measurements of parameters corresponding to aerosol optical and physical properties i.e., spectral aerosol optical depths (AODs) by a 10 channel Multi-Wavelength solar Radiometer (MWR), near surface aerosol mass concentration of composite aerosols by a Quartz Crystal Microbalance Impactor (QCM) and Black Carbon (BC) mass concentration by an Aethalometer have been used in the Optical Properties of Aerosols and Clouds (OPAC) model to estimate the optical properties of composite aerosols over Dibrugarh (27.3ºN, 94.6ºE, 111 m amsl) for the short wavelength range. The OPAC outputs are then used as inputs to the Rdiative Transfer model ‘Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART)’, developed by the University of California, Santa Barbara, to derive the shortwave aerosol radiative properties. The aerosol optical depth shows maximum value in pre-monsoon season and minimum in post-monsoon season. Columnar aerosols are bimodal in nature with dominant contribution from fine mode aerosols. Unlike columnar aerosols surface aerosol concentration including black carbon shows maximum value in winter and minimum in monsoon season. The aerosol radiative forcing (ARF) estimated for the period pre-monsoon 2008-winter 2013 shows maximum value in the pre-monsoon season at the surface as well as in the atmosphere corresponding to highest columnar aerosol loading. The surface forcing varies between -37 Wm-2 in Pre-monsoon 2009 and 2011 to -13 Wm-2 in Post-monsoon 2008 while forcing in the Atmosphere

  20. A new statistical approach to improve the satellite-based estimation of the radiative forcing by aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Patel, Piyushkumar N.; Quaas, Johannes; Kumar, Raj

    2017-03-01

    In a previous study of Quaas et al. (2008) the radiative forcing by anthropogenic aerosol due to aerosol-cloud interactions, RFaci, was obtained by a statistical analysis of satellite retrievals using a multilinear regression. Here we employ a new statistical approach to obtain the fitting parameters, determined using a nonlinear least square statistical approach for the relationship between planetary albedo and cloud properties and, further, for the relationship between cloud properties and aerosol optical depth. In order to verify the performance, the results from both statistical approaches (previous and present) were compared to the results from radiative transfer simulations over three regions for different seasons. We find that the results of the new statistical approach agree well with the simulated results both over land and ocean. The new statistical approach increases the correlation by 21-23 % and reduces the error compared to the previous approach.

  1. Wintertime aerosol properties during foggy and nonfoggy days over urban center Delhi and their implications for shortwave radiative forcing

    NASA Astrophysics Data System (ADS)

    Ganguly, Dilip; Jayaraman, A.; Rajesh, T. A.; Gadhavi, H.

    2006-08-01

    We present results from complimentary measurements of physical and optical properties of aerosols carried out at Delhi, as part of the Indian Space Research Organization Geosphere Biosphere Programme's Land Campaign II in December 2004. For the first time we unravel ground truth values of several radiatively important aerosol parameters such as their wavelength dependency in absorption, scattering behavior, single-scattering albedo, number size distribution, and vertical distribution in the atmosphere from this polluted megacity in south Asia. Interesting features are observed in the behavior of aerosol parameters under intermittent foggy, hazy, and clear-sky conditions prevalent during the campaign. All aerosol parameters exhibited a large distribution in their values, with variabilities being particularly higher on hazy and foggy days. The average clear-sky aerosol optical depth (AOD) value is 0.91 ± 0.48, which is higher than the AOD value reported for most other cities in India during this season of the year. Increases in AOD on hazy and foggy days are found to be spectrally nonuniform. The percentage increase in AOD at shorter wavelengths was higher on hazy days compared to clear days. Diurnally averaged BC mass concentration varied from a low of 15 μg/m3 during clear days to a high of about 65 μg/m3 on hazy days. The wavelength dependency of aerosol absorption shows signatures of the presence of a significant amount of absorbing aerosols produced from biofuel/biomass burning. Single-scattering albedo at 525 nm is found to vary between 0.6 and 0.8 with an average value of 0.68 for the entire period. Lidar observations reveal that during a fog event there is a subsidence of aerosols to an extremely dense and shallow atmospheric layer of less than 200 m height from the surface. The presence of an aerosol layer at elevated altitudes is also detected. All the results are combined and used for estimating aerosol radiative forcing using a discrete ordinate

  2. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Hauglustaine, D. A.; Balkanski, Y.; Schulz, M.

    2014-03-01

    The ammonia cycle and nitrate particle formation have been introduced in the LMDz-INCA global model. Both fine nitrate particles formation in the accumulation mode and coarse nitrate forming on existing dust and sea-salt particles are considered. The model simulates distributions of nitrates and related species in agreement with previous studies and observations. The calculated present-day total nitrate direct radiative forcing since the pre-industrial is -0.056 W m-2. This forcing has the same magnitude than the forcing associated with organic carbon particles and represents 18% of the sulfate forcing. Fine particles largely dominate the nitrate forcing representing close to 90% of this value. The model has been used to investigate the future changes in nitrates and direct radiative forcing of climate based on snapshot simulations for the four Representative Concentration Pathway (RCP) scenarios and for the 2030, 2050 and 2100 time horizons. Due to a decrease in fossil fuel emissions in the future, the concentrations of most of the species involved in the nitrate-ammonium-sulfate system drop by 2100 except for ammonia which originates from agricultural practices and for which emissions significantly increase in the future. Despite the decrease of nitrate surface levels in Europe and Northern America, the global burden of accumulation mode nitrates increases by up to a factor of 2.6 in 2100. This increase in nitrate in the future arises despite decreasing NOx emissions due to increased availability of ammonia to form ammonium nitrate. The total aerosol direct forcing decreases from its present-day value of -0.234 W m-2 to a range of -0.070 to -0.130 W m-2 in 2100 based on the considered scenario. The direct forcing decreases for all aerosols except for nitrates for which the direct negative forcing increases to a range of -0.060 to -0.115 W m-2 in 2100. Including nitrates in the radiative forcing calculations increases the total direct forcing of aerosols by a

  3. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  4. Direct Radiative Forcing and Regional Climatic Effects of Anthropogenic Aerosols Over East Asia: A Regional Coupled Climate-Chemistry/Aerosol Model Study

    SciTech Connect

    Giorgi, Filippo; Bi, Xunqiang; Qian, Yun )

    2002-09-01

    We present a series of regional climate model simulations aimed at assessing the radiative forcing and surface climatic effects of anthropogenic sulfate and fossil fuel soot over east Asia. The simulations are carried out with a coupled regional climate-chemistry/aerosol model for the 5-year period of 1993-1997 using published estimates of sulfur emissions for the period. Anthropogenic sulfate induces a negative radiative forcing spatially varying from -1 to -8 W/m2 in the winter to -1 to -15 W/m2 in the summer, with maxima over the Sichan Basin of southwest China and over some areas of east and northeast China. This forcing induces a surface cooling in the range of -0.1 to -0.7 K. Fossil fuel soot exerts a positive atmospheric radiative forcing of 0.5 to 2 W/m2 and enhances the surface cooling by a few tenths of K due to increased surface shielding from solar radiation. Doubling of sulfur emissions induces a substantial increase in radiative forcing (up to -7 to -8 W/m2) and associated surface cooling. With doubled sulfur emissions, the surface cooling exceeds -1 K and is statistically significant at the 90% confidence level over various areas of China. The aerosol forcing and surface cooling tend to inhibit precipitation over the region, although this effect is relatively small in the simulations. Some features of the simulated aerosol-induced cooling are consistent with temperature trends observed in recent decades over different regions of China.

  5. Changes in radiative forcing in Amazonia: the influence of clouds and aerosols controlling carbon budget

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo

    2016-07-01

    Surface radiation fluxes are critically important in photosynthetic processes that controls carbon assimilation and losses in tropical forests. Clouds and aerosols control the surface radiation fluxes in Amazonia, and the ratio of diffuse and direct radiation directly affects photosynthetic plant processes. Biomass burning emissions changes the atmosphere aerosol loading. The background aerosol optical thickness in wet season Amazonia is about 0.1 at 550 nm, while during the dry season AOT can reach values as high as 3-4 over large areas. The increase in diffuse radiation significantly enhance photosynthesis. Remote sensing measurements using MODIS and AERONET were used to measure the large scale aerosol distribution over Amazonia, and LBA flux towers provided the carbon balance over several sites. The enhancement in carbon uptake for AOD between 0.1 and 1 can reach 45%. For AOD above 1, the reduction in the direct flux starts to dominate and a strong reduction in carbon uptake is observed. Cloud cover also has a huge impact on carbon balance in Amazonia, but it is more difficult to quantify. These effects controls carbon balance in Amazonia.

  6. Aerosol, radiation, and climate

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1983-01-01

    Airborne, spaceborne, and ground-based measurements are used to study the radiative and climatic effects of aerosols. The data, which are modelled with a hierarchy of radiation and climate models, and their implications are summarized. Consideration is given to volcanic aerosols, polar stratospheric clouds, and the Arctic haze. It is shown that several types of aerosols (volcanic particles and the Arctic haze) cause significant alterations to the radiation budget of the regions where they are located.

  7. Aerosol Radiative Forcing Estimates from South Asian Clay Brick Production Based on Direct Emission Measurements

    NASA Astrophysics Data System (ADS)

    Weyant, C.; Athalye, V.; Ragavan, S.; Rajarathnam, U.; Kr, B.; Lalchandani, D.; Maithel, S.; Malhotra, G.; Bhanware, P.; Thoa, V.; Phuong, N.; Baum, E.; Bond, T. C.

    2012-12-01

    About 150-200 billion clay bricks are produced in India every year. Most of these bricks are fired in small-scale traditional kilns that burn coal or biomass without pollution controls. Reddy and Venkataraman (2001) estimated that 8% of fossil fuel related PM2.5 emissions and 23% of black carbon emissions in India are released from brick production. Few direct emissions measurements have been done in this industry and black carbon emissions, in particular, have not been previously measured. In this study, 9 kilns representing five common brick kiln technologies were tested for aerosol properties and gaseous pollutant emissions, including optical scattering and absorption and thermal-optical OC/EC. Simple relationships are then used to estimate the radiative-forcing impact. Kiln design and fuel quality greatly affect the overall emission profiles and relative climate warming. Batch production kilns, such as the Downdraft kiln, produce the most PM2.5 (0.97 gPM2.5/fired brick) with an OC/EC fraction of 0.3. Vertical Shaft Brick kilns using internally mixed fuels produce the least PM (0.09 gPM2.5/kg fired brick) with the least EC (OC/EC = 16.5), but these kilns are expensive to implement and their use throughout Southern Asia is minimal. The most popular kiln in India, the Bull's Trench kiln, had fewer emissions per brick than the Downdraft kiln, but an even higher EC fraction (OC/EC = 0.05). The Zig-zag kiln is similar in structure to the Bull's Trench kiln, but the emission factors are significantly lower: 50% reduction for CO, 17% for PM2.5 and 60% for black carbon. This difference in emissions suggests that converting traditional Bull's Trench kilns into less polluting Zig-zag kilns would result in reduced atmospheric warming from brick production.

  8. Impact of anomalous forest fire on aerosol radiative forcing and snow cover over Himalayan region

    NASA Astrophysics Data System (ADS)

    Bali, Kunal; Mishra, Amit Kumar; Singh, Sachchidanand

    2017-02-01

    Forest fires are very common in tropical region during February-May months and are known to have significant impact on ecosystem dynamics. Moreover, aerosols emitted from these burning activities significantly modulate the Earth's radiation budget. In present study, we investigated the anomalous forest fire events and their impact on atmospheric radiation budget and glaciated snow cover over the Himalayan region. We used multiple dataset derived from satellites [Moderate Resolution Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)] and reanalysis models [Global Fire Assimilation System (GFAS), Second Modern-Era Retrospective analysis for Research and Application (MERRA-2) and ERA-interim] to evaluate the effect of biomass burning aerosols on radiation budget. April 2016 is associated with anomalous fire activities over lower Himalayan region in the last fourteen years (2003-2016). The model estimated organic carbon (OC) and black carbon (BC) emission reaches up to ∼3 × 104 and ∼2 × 103 μg/m2/day, respectively during the biomass burning period of April 2016. The meteorological data analysis accompanied with CALIOP aerosol vertical profile shows that these carbonaceous aerosols could reach up to ∼5-7 km altitude and could be transported towards glaciated region of upper Himalayas. The large amount of BC/OC from biomass burning significantly modulates the atmospheric radiation budget. The estimated columnar heating rate shows that these carbonaceous aerosols could heat up the atmosphere by ∼0.04-0.06 K/day in April-2016 with respect to non-burning period (2015). The glaciated snow cover fractions are found to be decreasing by ∼5-20% in 2016 as compared to long term mean (2003-2016). The combined analyses of various climatic factors, fires and associated BC emissions show that the observed snow cover decrease could be results of increased surface/atmospheric temperature due to combined effect of

  9. Impact of dust size parameterizations on aerosol burden and radiative forcing in RegCM4

    NASA Astrophysics Data System (ADS)

    Tsikerdekis, Athanasios; Zanis, Prodromos; Steiner, Allison L.; Solmon, Fabien; Amiridis, Vassilis; Marinou, Eleni; Katragkou, Eleni; Karacostas, Theodoros; Foret, Gilles

    2017-01-01

    We investigate the sensitivity of aerosol representation in the regional climate model RegCM4 for two dust parameterizations for the period 2007-2014 over the Sahara and the Mediterranean. We apply two discretization methods of the dust size distribution keeping the total mass constant: (1) the default RegCM4 4-bin approach, where the size range of each bin is calculated using an equal, logarithmic separation of the total size range of dust, using the diameter of dust particles, and (2) a newly implemented 12-bin approach with each bin defined according to an isogradient method where the size ranges are dependent on the dry deposition velocity of dust particles. Increasing the number of transported dust size bins theoretically improves the representation of the physical properties of dust particles within the same size bin. Thus, more size bins improve the simulation of atmospheric processes. The radiative effects of dust over the area are discussed and evaluated with the CALIPSO dust optical depth (DOD). This study is among the first studies evaluating the vertical profile of simulated dust with a pure dust product. Reanalysis winds from ERA-Interim and the total precipitation flux from the Climate Research Unit (CRU) observational gridded database are used to evaluate and explain the discrepancies between model and observations. The new dust binning approach increases the dust column burden by 4 and 3 % for fine and coarse particles, respectively, which increases DOD by 10 % over the desert and the Mediterranean. Consequently, negative shortwave radiative forcing (RF) is enhanced by more than 10 % at the top of the atmosphere and by 1 to 5 % on the surface. Positive longwave RF locally increases by more than 0.1 W m-2 in a large portion of the Sahara, the northern part of the Arabian Peninsula and the Middle East. The four-bin isolog method is to some extent numerically efficient, nevertheless our work highlights that the simplified representation of the four

  10. Spatial variations in immediate greenhouse gases and aerosol emissions and resulting radiative forcing from wildfires in interior Alaska

    USGS Publications Warehouse

    Huang, Shengli; Liu, Heping; Dahal, Devendra; Jin, Suming; Li, Shuang; Liu, Shu-Guang

    2016-01-01

    Boreal fires can cool the climate; however, this conclusion came from individual fires and may not represent the whole story. We hypothesize that the climatic impact of boreal fires depends on local landscape heterogeneity such as burn severity, prefire vegetation type, and soil properties. To test this hypothesis, spatially explicit emission of greenhouse gases (GHGs) and aerosols and their resulting radiative forcing are required as an important and necessary component towards a full assessment. In this study, we integrated remote sensing (Landsat and MODIS) and models (carbon consumption model, emission factors model, and radiative forcing model) to calculate the carbon consumption, GHGs and aerosol emissions, and their radiative forcing of 2001–2010 fires at 30 m resolution in the Yukon River Basin of Alaska. Total carbon consumption showed significant spatial variation, with a mean of 2,615 g C m−2 and a standard deviation of 2,589 g C m−2. The carbon consumption led to different amounts of GHGs and aerosol emissions, ranging from 593.26 Tg (CO2) to 0.16 Tg (N2O). When converted to equivalent CO2 based on global warming potential metric, the maximum 20 years equivalent CO2 was black carbon (713.77 Tg), and the lowest 20 years equivalent CO2 was organic carbon (−583.13 Tg). The resulting radiative forcing also showed significant spatial variation: CO2, CH4, and N2O can cause a 20-year mean radiative forcing of 7.41 W m−2 with a standard deviation of 2.87 W m−2. This emission forcing heterogeneity indicates that different boreal fires have different climatic impacts. When considering the spatial variation of other forcings, such as surface shortwave forcing, we may conclude that some boreal fires, especially boreal deciduous fires, can warm the climate.

  11. Spatially Refined Aerosol Direct Radiative Focusing Efficiencies

    EPA Science Inventory

    Global aerosol direct radiative forcing (DRF) is an important metric for assessing potential climate impacts of future emissions changes. However, the radiative consequences of emissions perturbations are not readily quantified nor well understood at the level of detail necessary...

  12. Large atmospheric shortwave radiative forcing by Mediterranean aerosols derived from simultaneous ground-based and spaceborne observations and dependence on the aerosol type and single scattering albedo

    NASA Astrophysics Data System (ADS)

    di Biagio, Claudia; di Sarra, Alcide; Meloni, Daniela

    2010-05-01

    Aerosol optical properties and shortwave irradiance measurements at the island of Lampedusa (central Mediterranean) during 2004-2007 are combined with Clouds and the Earth's Radiant Energy System observations of the outgoing shortwave flux at the top of the atmosphere (TOA). The measurements are used to estimate the surface (FES), the top of the atmosphere (FETOA), and the atmospheric (FEATM) shortwave aerosol forcing efficiencies for solar zenith angle (θ) between 15° and 55° for desert dust (DD), urban/industrial-biomass burning aerosols (UI-BB), and mixed aerosols (MA). The forcing efficiency at the different atmospheric levels is derived by applying the direct method, that is, as the derivative of the shortwave net flux versus the aerosol optical depth at fixed θ. The diurnal average forcing efficiency at the surface/TOA at the equinox is (-68.9 ± 4.0)/(-45.5 ± 5.4) W m-2 for DD, (-59.0 ± 4.3)/(-19.2 ± 3.3) W m-2 for UI-BB, and (-94.9 ± 5.1)/(-36.2 ± 1.7) W m-2 for MA. The diurnal average atmospheric radiative forcing at the equinox is (+7.3 ± 2.5) W m-2 for DD, (+8.4 ± 1.9) W m-2 for UI-BB, and (+8.2 ± 1.9) W m-2 for MA, suggesting that the mean atmospheric forcing is almost independent of the aerosol type. The largest values of the atmospheric forcing may reach +35 W m-2 for DD, +23 W m-2 for UI-BB, and +34 W m-2 for MA. FETOA is calculated for MA and 25° ≤ θ ≤ 35° for three classes of single scattering albedo (0.7 ≤ ω < 0.8, 0.8 ≤ ω < 0.9, and 0.9 ≤ ω ≤ 1) at 415.6 and 868.7 nm: FETOA increases, in absolute value, for increasing ω. A 0.1 increment in ω determines an increase in FETOA by 10-20 W m-2.

  13. A global model simulation of present and future nitrate aerosols and their direct radiative forcing of climate

    NASA Astrophysics Data System (ADS)

    Hauglustaine, D. A.; Balkanski, Y.; Schulz, M.

    2014-10-01

    The ammonia cycle and nitrate particle formation are introduced into the LMDz-INCA (Laboratoire de Météorologie Dynamique, version 4 - INteraction with Chemistry and Aerosols, version 3) global model. An important aspect of this new model is that both fine nitrate particle formation in the accumulation mode and coarse nitrate forming on existing dust and sea-salt particles are considered. The model simulates distributions of nitrates and related species in agreement with previous studies and observations. The calculated present-day total nitrate direct radiative forcing since the pre-industrial is -0.056 W m-2. This forcing corresponds to 18% of the sulfate forcing. Fine particles largely dominate the nitrate forcing, representing close to 90% of this value. The model has been used to investigate the future changes in nitrates and direct radiative forcing of climate based on snapshot simulations for the four representative concentration pathway (RCP) scenarios and for the 2030, 2050, and 2100 time horizons. Due to a decrease in fossil fuel emissions in the future, the concentration of most of the species involved in the nitrate-ammonium-sulfate system drop by 2100 except for ammonia, which originates from agricultural practices and for which emissions significantly increase in the future. Despite the decrease of nitrate surface levels in Europe and North America, the global burden of accumulation mode nitrates increases by up to a factor of 2.6 in 2100. This increase in ammonium nitrate in the future arises despite decreasing NOx emissions due to increased availability of ammonia to form ammonium nitrate. The total aerosol direct forcing decreases from its present-day value of -0.234 W m-2 to a range of -0.070 to -0.130 W m-2 in 2100 based on the considered scenario. The direct forcing decreases for all aerosols except for nitrates, for which the direct negative forcing increases to a range of -0.060 to -0.115 W m-2 in 2100. Including nitrates in the radiative

  14. A GCM study of effects of radiative forcing of sulfate aerosol on large scale circulation and rainfall in East Asia during boreal spring

    NASA Astrophysics Data System (ADS)

    Kim, Maeng-Ki; Lau, William K. M.; Kim, Kyu-Myong; Lee, Woo-Seop

    2007-12-01

    The effect of sulfate aerosol radiative forcing on spring rainfall in East Asia are studied based on numerical simulations with the NASA finite-volume General Circulation Model (fvGCM) forced with monthly varying three-dimensional aerosol distribution from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). Result shows that radiative forcing of sulfate aerosol leads to cooling of the land surface and reduction in rainfall over central East Asia. The maximum reduction in precipitation is shifted northward relative to the maximum aerosol loading region as a result of dynamical feedback. The anomalous thermal gradient by aerosol cooling near the land surface, reduces the baroclinicity of the atmosphere, leading to a deceleration of the upper level westerly flow. The westerly deceleration induces, through ageostrophic wind adjustment, anomalous meridional secondary circulation at the entrance region of the East Asian jetstream, with strong sinking motion and suppressed precipitation near 30°N, coupled to weak rising motion and moderately enhanced precipitation over southern China and the South China Sea. These results suggest that the radiative forcing of aerosol through induced dynamical feedback with the atmospheric water cycle, may be a causal factor in the observed spring precipitation trend over East Asia.

  15. Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2007-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53 cm(sup -3) compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 micrometers. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth s Radiant Energy System to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -.9.9 plus or minus 4.3 W m(sup -2) for overcast conditions.

  16. The Influence of Aerosols on the Shortwave Cloud Radiative Forcing from North Pacific Oceanic Clouds: Results from the Cloud Indirect Forcing Experiment (CIFEX)

    NASA Technical Reports Server (NTRS)

    Wilcox, Eric M.; Roberts, Greg; Ramanathan, V.

    2006-01-01

    Aerosols over the Northeastern Pacific Ocean enhance the cloud drop number concentration and reduce the drop size for marine stratocumulus and cumulus clouds. These microphysical effects result in brighter clouds, as evidenced by a combination of aircraft and satellite observations. In-situ measurements from the Cloud Indirect Forcing Experiment (CIFEX) indicate that the mean cloud drop number concentration in low clouds over the polluted marine boundary layer is greater by 53/cu cm compared to clean clouds, and the mean cloud drop effective radius is smaller by 4 microns. We link these in-situ measurements of cloud modification by aerosols, for the first time, with collocated satellite broadband radiative flux observations from the Clouds and the Earth's Radiant Energy System (CERES) to show that these microphysical effects of aerosols enhance the top-of-atmosphere cooling by -9.9+/-4.3 W/sq m for overcast conditions.

  17. Global upper ocean heat storage response to radiative forcing from changing solar irradiance and increasing greenhouse gas/aerosol concentrations

    NASA Astrophysics Data System (ADS)

    White, Warren B.; Cayan, Daniel R.; Lean, Judith

    1998-09-01

    We constructed gridded fields of diabatic heat storage changes in the upper ocean from 20°S to 60°N from historical temperature profiles collected from 1955 to 1996. We filtered these 42 year records for periods of 8 to 15 years and 15 to 30 years, producing depth-weighted vertical average temperature (DVT) changes from the sea surface to the top of the main pycnocline. Basin and global averages of these DVT changes reveal decadal and interdecadal variability in phase across the Indian, Pacific, Atlantic, and Global Oceans, each significantly correlated with changing surface solar radiative forcing at a lag of 0+/-2 years. Decadal and interdecadal changes in global average DVT are 0.06°+/-0.01°K and 0.04°K+/-0.01°K, respectively, the same as those expected from consideration of the Stefan-Boltzmann radiation balance (i.e., 0.3°K per Wm-2) in response to 0.1% changes in surface solar radiative forcing of 0.2 Wm-2 and 0.15 Wm-2, respectively. Global spatial patterns of DVT changes are similar to temperature changes simulated in coupled ocean-atmosphere models, suggesting that natural modes of Earth's variability are phase-locked to the solar irradiance cycle. A trend in global average DVT of 0.15°K over this 42 year record cannot be explained by changing surface solar radiative forcing. But when we consider the 0.5 Wm-2 increase in surface radiative forcing estimated from the increase in atmospheric greenhouse gas and aerosol (GGA) concentrations over this period [Intergovernmental Panel on Climate Change, 1995], the Stefan-Boltzmann radiation balance yields this observed change. Moreover, the sum of solar and GGA surface radiative forcing can explain the relatively sharp increase in global and basin average DVT in the late 1970's.

  18. Dust size parameterization in RegCM4: Impact on aerosol burden and radiative forcing

    NASA Astrophysics Data System (ADS)

    Tsikerdekis, A.; Zanis, P.; Steiner, A. L.; Solmon, F.; Amiridis, V.; Marinou, E.; Katragkou, E.; Karacostas, T.; Foret, G.

    2015-12-01

    We investigate the sensitivity of two dust parameterizations of the regional climate model RegCM4, for the period 2008-2012, over a large domain focused on the Sahara and the Mediterranean. We implement two size bin distributions: 1) a 4-bin approach, where each bin is delimited using an isolog approach and every size group has equal ranges in logarithmic scale according to the diameter of the dust particles, and 2) a 12-bin approach with each bin defined according to an isogradient method, where the size ranges are dependent on the dry deposition velocity of dust particles. Increasing the number of the transported dust size bin improves the representation of the physical properties of dust particles that belong on the same group. Thus, more size bins minimize the error and improve the simulation of atmospheric processes. The emission, deposition and transport of dust are evaluated combined for each experiment to determine the impact of dust size bin partition. The radiative effects of dust over the area are also discussed and evaluated with the CALIPSO Aerosol Optical Depth (AOD) pure dust product. Techniques for the discrimination of the dust component from other aerosol types have been recently developed in the framework of the LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies- http://lidar.space.noa.gr:8080/livas/).

  19. Observations of Smoke Aerosol from Biomass Burning in Mexico: Effect of Particle Aging on Radiative Forcing and Remote Sensing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Bruintjes, Roelof; Holben, Brent N.; Christopher, Sundar

    1999-01-01

    We take advantage of the May 1998 biomass burning event in Southern Mexico to test the global applicability of a smoke aerosol size model developed from data observed in South America. The Mexican event is an unique opportunity to observe well-aged, residual smoke. Observations of smoke aerosol size distribution made from vertical profiles of airborne in situ measurements show an inverse relationship between concentration and particle size that suggests the aging process continues more than a week after the smoke is separated from its fire sources. The ground-based radiometer retrievals show that the column-averaged, aged, Mexican smoke particles are larger (diameter = 0.28 - 0.33 micrometers) than the mean smoke particles in South America (diameter = 0.22 - 0.30 micrometers). However, the difference (delta - 0.06 micrometer) translates into differences in backscattering coefficient of only 4-7% and an increase of direct radiative forcing of only 10%.

  20. Assessment of Clear Sky Radiative Forcing in the Caribbean Region Using an Aerosol Dispersion Model and Ground Radiometry During Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Qi, Qiang; Westpthal, Douglas; Reid, Jeffery; Tsay, Si-Chee

    2004-01-01

    This study investigates the surface and top of the atmosphere solar radiative forcing by long-range transport of Saharan dust. The calculations of radiative forcing are based on measurements collected in the Puerto Rico Dust Experiment (PRIDE) carried out during July, 2000. The purpose of the experiment was the characterization of the Saharan dust plume, which frequently reaches the Caribbean region during the summer. The experiment involved the use of three approaches to study the plume: space and ground based remote sensing, airborne and ground based in-situ measurements and aerosol dispersion modeling. The diversity of measuring platforms provides an excellent opportunity for determination of the direct effect of dust on the clear sky radiative forcing. Specifically, comparisons of heating rates, surface and TOA fluxes derived from the Navy global aerosol dispersion model NAAPS (NRL Aerosol Analysis and Prediction System) and actual measurements of fluxes from ground and space based platforms are shown. In addition, the direct effect of dust on the clear sky radiative forcing is modeled. The extent and time of evolution of the radiative properties of the plume are computed with the aerosol concentrations modeled by NAAPS. Standard aerosol parameterizations, as well as in-situ composition and size distributions measured during PRIDE, are utilized to compute the aerosol optical depth, single scattering albedo and asymmetry factor. Radiative transfer computations are done with an in-house modified spectral radiative transfer code (Fu-Liou). The code includes gas absorption and cloud particles (ice and liquid phase) and it allows the input of meteorological data. The code was modified to include modules for the aerosols contribution to the calculated fluxes. This comparison study helps to narrow the current uncertainty in the dust direct radiative forcing, as recently reported in the 2001 IPCC assessment.

  1. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  2. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; Denjean, C.; Brogniez, G.; di Sarra, A.; Alados-Arboledas, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, T.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Waquet, F.; Wenger, J.; Zapf, P.

    2016-01-01

    MBL. In terms of shortwave (SW) direct forcing, in situ surface and aircraft observations have been merged and used as inputs in 1-D radiative transfer codes for calculating the aerosol direct radiative forcing (DRF). Results show significant surface SW instantaneous forcing (up to -90 W m-2 at noon). Aircraft observations provide also original estimates of the vertical structure of SW and LW radiative heating revealing significant instantaneous values of about 5° K per day in the solar spectrum (for a solar angle of 30°) within the dust layer. Associated 3-D modeling studies from regional climate (RCM) and chemistry transport (CTM) models indicate a relatively good agreement for simulated AOD compared with observations from the AERONET/PHOTONS network and satellite data, especially for long-range dust transport. Calculations of the 3-D SW (clear-sky) surface DRF indicate an average of about -10 to -20 W m-2 (for the whole period) over the Mediterranean Sea together with maxima (-50 W m-2) over northern Africa. The top of the atmosphere (TOA) DRF is shown to be highly variable within the domain, due to moderate absorbing properties of dust and changes in the surface albedo. Indeed, 3-D simulations indicate negative forcing over the Mediterranean Sea and Europe and positive forcing over northern Africa. Finally, a multi-year simulation, performed for the 2003 to 2009 period and including an ocean-atmosphere (O-A) coupling, underlines the impact of the aerosol direct radiative forcing on the sea surface temperature, O-A fluxes and the hydrological cycle over the Mediterranean.

  3. Long term characterization of aerosol optical properties: Implications for radiative forcing over the desert region of Jodhpur, India

    NASA Astrophysics Data System (ADS)

    Bhaskar, V. Vizaya; Safai, P. D.; Raju, M. P.

    2015-08-01

    AOT data for eight years period (2004-2012) using the MICROTOPS II Sun photometer has been used to study the wavelength dependent optical characteristics of aerosols over Jodhpur, situated in the desert region in NW India. The daily mean AOT at 500 nm for the present study period was 0.66 ± 0.14 with an average Angstrom exponent as 0.71 ± 0.20. Linear regression analysis of monthly AOT and Angstrom Exponent indicated an increasing trend of both. Seasonal variations of daily AOT and α as well as spectral dependence of seasonal mean AOT are presented. Diurnal variation of AOT and α in different season is studied. Impact of dust storm events on the aerosol characteristics over Jodhpur during the study period is studied. AOT values derived from MICROTOPS II were cross checked with Sun Sky Radiometer (Model POM-01, Prede Inc.) data for the period from May 2011 to April 2012 and were found to be in good agreement. Short wave aerosol radiative forcing (ARF) was computed for one year period of May 2011 to April 2012. Spectral variation of AOT, SSA and ASP showed more AOT and ASP during pre monsoon period when SSA was comparatively low; indicating towards more prevalence of coarse size absorbing dust in this period. The ARF at SUF and TOA was negative during all the seasons indicating dominance of scattering type aerosols mainly dust particles whereas that at ATM was positive in all the seasons indicating heating of the atmosphere, especially more during pre monsoon (+40.5 W/m2) than during rest of the year (+19.5 W/m2). A high degree of correlation between ARF at the SUF with AOT (R2 = 0.94) indicated that ARF is a strong function of AOT. The radiative forcing efficiency inferred to scattering nature of aerosols at SUF (-4.2 W/m2/AOD) and TOA (-63.2 W/m2/AOD) indicating cooling at surface and top of the atmosphere whereas, there was warming of the atmosphere in between (+59 W/m2/AOD). The atmospheric heating rates varied from 0.49 K/day in post monsoon to 1.13 K/day in

  4. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Saikawa, E.; Naik, V.; Horowitz, L. W.; Liu, J.; Mauzerall, D. L.

    2008-12-01

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO2), a sulfate (SO42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct and indirect effects, SO42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO2, SO42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing. Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to radiative forcing in 2000 and 2030. In 2000, we estimate these aerosols cause 385,320 premature deaths in China and an additional 18 240 globally. In 2030, aggressive emission controls lead to a reduction in premature deaths to 200,370 in China and 7,740 elsewhere, while under a high emissions scenario premature deaths would increase to 602,950 in China and to 29,750 elsewhere. Because the negative radiative forcing from SO42- and OC is larger than the positive forcing from BC, the Chinese aerosols lead to global net direct radiative forcing of -74 mW m-2 in 2000 and between -15 and -97 mW m-2 in 2030 based on the emissions scenario. Our analysis suggests that environmental policies that simultaneously improve public health and mitigate climate change would be highly beneficial (eg. reductions in BC emissions).

  5. Aerosol's optical and physical characteristics and direct radiative forcing during a shamal dust storm, a case study

    NASA Astrophysics Data System (ADS)

    Saeed, T. M.; Al-Dashti, H.; Spyrou, C.

    2014-04-01

    Dust aerosols are analyzed for their optical and physical properties during an episode of a dust storm that blew over Kuwait on 26 March 2003 when the military Operation Iraqi Freedom was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March. The synoptic sequence leading to the dust storm and the associated wind fields are discussed. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26 and 27 March respectively while the Ångstrom coefficient, α870/440, dropped to -0.0234 and -0.0318. Particulate matter concentration of 10 μm diameter or less, PM10, peaked at 4800 μg m-3 during dust storm hours of 26 March. Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved aerosol optical depth (AOD) by Deep Blue algorithm and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI) exhibited high values. Latitude-longitude maps of AOD and AI were used to deduce source regions of dust transport over Kuwait. The vertical profile of the dust layer was simulated using the SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA) and surface level. The thick dust layer of 26 March resulted in cooling the TOA by -60 Wm-2 and surface level by -175 Wm-2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 K day-1 between 3 and 5 km, dropped to 1.5 K day-1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 K day-1 at surface level, declined sharply at increasing altitude and diminished at 4 km. Above 4 km longwave radiation started to cool the atmosphere slightly reaching a maximum rate of -0.1 K day-1 at 6 km.

  6. Brown carbon aerosols from burning of boreal peatlands: microphysical properties, emission factors, and implications for direct radiative forcing

    NASA Astrophysics Data System (ADS)

    Chakrabarty, Rajan K.; Gyawali, Madhu; Yatavelli, Reddy L. N.; Pandey, Apoorva; Watts, Adam C.; Knue, Joseph; Chen, Lung-Wen A.; Pattison, Robert R.; Tsibart, Anna; Samburova, Vera; Moosmüller, Hans

    2016-03-01

    The surface air warming over the Arctic has been almost twice as much as the global average in recent decades. In this region, unprecedented amounts of smoldering peat fires have been identified as a major emission source of climate-warming agents. While much is known about greenhouse gas emissions from these fires, there is a knowledge gap on the nature of particulate emissions and their potential role in atmospheric warming. Here, we show that aerosols emitted from burning of Alaskan and Siberian peatlands are predominantly brown carbon (BrC) - a class of visible light-absorbing organic carbon (OC) - with a negligible amount of black carbon content. The mean fuel-based emission factors for OC aerosols ranged from 3.8 to 16.6 g kg-1. Their mass absorption efficiencies were in the range of 0.2-0.8 m2 g-1 at 405 nm (violet) and dropped sharply to 0.03-0.07 m2 g-1 at 532 nm (green), characterized by a mean Ångström exponent of ≈ 9. Electron microscopy images of the particles revealed their morphologies to be either single sphere or agglomerated "tar balls". The shortwave top-of-atmosphere aerosol radiative forcing per unit optical depth under clear-sky conditions was estimated as a function of surface albedo. Only over bright surfaces with albedo greater than 0.6, such as snow cover and low-level clouds, the emitted aerosols could result in a net warming (positive forcing) of the atmosphere.

  7. Solar energy assessment in the Alpine area: satellite data and ground instruments integration for studying the radiative forcing of aerosols.

    NASA Astrophysics Data System (ADS)

    Castelli, M.; Petitta, M.; Emili, E.

    2012-04-01

    measurement site of Bolzano, where we installed an AERONET sun-photometer for measuring aerosol optical properties and column water-vapor amount. The impact of aerosols on the surface irradiance was already demonstrated, in fact the literature shows that the daily aerosol direct forcing on the surface radiation in the Italian Po valley amounts on average to -12.2 Wm-2, with extremes values beyond -70 Wm-2. In particular here we examine the role in the radiation budget of the Alpine valleys of aerosol microphysical characteristics, such as size distribution, and optical properties, such as phase function, derived from the inversion of spectrally resolved sky radiances. After provided evidence of the radiative impact of atmospheric aerosols on solar energy availability in the Alpine area, the final step will be the enhancement of the most advanced existent algorithm for retrieving SIS in the Alpine area from satellite data, developed by MeteoSwiss in the framework of CM-SAF, which thoroughly considers the effect of topography and clouds, while can still be improved in terms of atmospheric input data.

  8. A novel methodology for large-scale daily assessment of the direct radiative forcing of smoke aerosols

    NASA Astrophysics Data System (ADS)

    Sena, E. T.; Artaxo, P.

    2015-05-01

    A new methodology was developed for obtaining daily retrievals of the direct radiative forcing of aerosols (24h-DARF) at the top of the atmosphere (TOA) using satellite remote sensing. Simultaneous CERES (Clouds and Earth's Radiant Energy System) shortwave flux at the top of the atmosphere and MODIS (Moderate Resolution Spectroradiometer) aerosol optical depth (AOD) retrievals were used. To analyse the impact of forest smoke on the radiation balance, this methodology was applied over the Amazonia during the peak of the biomass burning season from 2000 to 2009. To assess the spatial distribution of the DARF, background smoke-free scenes were selected. The fluxes at the TOA under clean conditions (Fcl) were estimated as a function of the illumination geometry (θ0) for each 0.5° x 0.5° grid cell. The instantaneous DARF was obtained as the difference between the clean (Fcl (θ0)) and the polluted flux at the TOA measured by CERES in each cell (Fpol (θ0)). The radiative transfer code SBDART (Santa Barbara DISORT Radiative Transfer model) was used to expand instantaneous DARFs to 24 h averages. This new methodology was applied to assess the DARF both at high temporal resolution and over a large area in Amazonia. The spatial distribution shows that the mean 24h-DARF can be as high as -30 W m-2 over some regions. The temporal variability of the 24h-DARF along the biomass burning season was also studied and showed large intraseasonal and interannual variability. We showed that our methodology considerably reduces statistical sources of uncertainties in the estimate of the DARF, when compared to previous approaches. DARF assessments using the new methodology agree well with ground-based measurements and radiative transfer models. This demonstrates the robustness of the new proposed methodology for assessing the radiative forcing for biomass burning aerosols. To our knowledge, this is the first time that satellite remote sensing assessments of the DARF have been compared

  9. Aerosols optical and physical characteristics and direct radiative forcing during a "Shamal" dust storm, a case study

    NASA Astrophysics Data System (ADS)

    Saeed, T. M.; Al-Dashti, H.; Spyrou, C.

    2013-09-01

    Dust aerosols are analyzed for their optical and physical properties during an episode of dust storm that hit Kuwait on 26 March 2003 when "Iraqi Freedom" military operation was in full swing. The intensity of the dust storm was such that it left a thick suspension of dust throughout the following day, 27 March, resulting in a considerable cooling effect at the surface on both days. Ground-based measurements of aerosol optical thickness reached 3.617 and 4.17 on 26-27 March respectively while Ångstrom coefficient, α870/440, dropped to -0.0234 and -0.0318. Particulate matter concentration of diameter 10 μm or less, PM10, peaked at 4800 μg m-3 during dust storm hours of 26 March. Moderate resolution imaging spectrometer (MODIS) retrieved optical and physical characteristics that exhibited extreme values as well. The synoptic of the dust storm is presented and source regions are identified using total ozone mapping spectrometer (TOMS) aerosol index retrieved images. The vertical profile of the dust layer was simulated using SKIRON atmospheric model. Instantaneous net direct radiative forcing is calculated at top of atmosphere (TOA) and surface level. The thick dust layer of 26 March resulted in cooling the TOA by -60 Wm-2 and surface level by -175 Wm-2 for a surface albedo of 0.35. Slightly higher values were obtained for 27 March due to the increase in aerosol optical thickness. The large reduction in the radiative flux at the surface level had caused a drop in surface temperature by approximately 6 °C below its average value. Radiative heating/cooling rates in the shortwave and longwave bands were also examined. Shortwave heating rate reached a maximum value of 2 °K day-1 between 3 and 5 km, dropped to 1.5 °K day-1 at 6 km and diminished at 8 km. Longwave radiation initially heated the lower atmosphere by a maximum value of 0.2 °K day-1 at surface level, declined sharply at increasing altitude and diminished at 4 km. Above 4 km longwave radiation started to

  10. Overview of the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate (ChArMEx/ADRIMED) summer 2013 campaign

    NASA Astrophysics Data System (ADS)

    Mallet, M.; Dulac, F.; Formenti, P.; Nabat, P.; Sciare, J.; Roberts, G.; Pelon, J.; Ancellet, G.; Tanré, D.; Parol, F.; di Sarra, A.; Alados, L.; Arndt, J.; Auriol, F.; Blarel, L.; Bourrianne, T.; Brogniez, G.; Chazette, P.; Chevaillier, S.; Claeys, M.; D'Anna, B.; Denjean, C.; Derimian, Y.; Desboeufs, K.; Di Iorio, T.; Doussin, J.-F.; Durand, P.; Féron, A.; Freney, E.; Gaimoz, C.; Goloub, P.; Gómez-Amo, J. L.; Granados-Muñoz, M. J.; Grand, N.; Hamonou, E.; Jankowiak, I.; Jeannot, M.; Léon, J.-F.; Maillé, M.; Mailler, S.; Meloni, D.; Menut, L.; Momboisse, G.; Nicolas, J.; Podvin, J.; Pont, V.; Rea, G.; Renard, J.-B.; Roblou, L.; Schepanski, K.; Schwarzenboeck, A.; Sellegri, K.; Sicard, M.; Solmon, F.; Somot, S.; Torres, B.; Totems, J.; Triquet, S.; Verdier, N.; Verwaerde, C.; Wenger, J.; Zapf, P.

    2015-07-01

    The Chemistry-Aerosol Mediterranean Experiment (ChArMEx; http://charmex.lsce.ipsl.fr) is a collaborative research program federating international activities to investigate Mediterranean regional chemistry-climate interactions. A special observing period (SOP-1a) including intensive airborne measurements was performed in the framework of the Aerosol Direct Radiative Forcing on the Mediterranean Climate (ADRIMED) project during the Mediterranean dry season over the western and central Mediterranean basins, with a focus on aerosol-radiation measurements and their modeling. The SOP-1a took place from 11 June to 5 July 2013. Airborne measurements were made by both the ATR-42 and F-20 French research aircraft operated from Sardinia (Italy) and instrumented for in situ and remote-sensing measurements, respectively, and by sounding and drifting balloons, launched in Minorca. The experimental set-up also involved several ground-based measurement sites on islands including two ground-based reference stations in Corsica and Lampedusa and secondary monitoring sites in Minorca and Sicily. Additional measurements including lidar profiling were also performed on alert during aircraft operations at EARLINET/ACTRIS stations at Granada and Barcelona in Spain, and in southern Italy. Remote sensing aerosol products from satellites (MSG/SEVIRI, MODIS) and from the AERONET/PHOTONS network were also used. Dedicated meso-scale and regional modelling experiments were performed in relation to this observational effort. We provide here an overview of the different surface and aircraft observations deployed during the ChArMEx/ADRIMED period and of associated modeling studies together with an analysis of the synoptic conditions that determined the aerosol emission and transport. Meteorological conditions observed during this campaign (moderate temperatures and southern flows) were not favorable to produce high level of atmospheric pollutants nor

  11. Confronting the "Indian summer monsoon response to black carbon aerosol" with the uncertainty in its radiative forcing and beyond

    NASA Astrophysics Data System (ADS)

    Kovilakam, Mahesh; Mahajan, Salil

    2016-07-01

    While black carbon aerosols (BC) are believed to modulate the Indian monsoons, the radiative forcing estimate of BC suffers from large uncertainties globally. We analyze a suite of idealized experiments forced with a range of BC concentrations that span a large swath of the latest estimates of its global radiative forcing. Within those bounds of uncertainty, summer precipitation over the Indian region increases nearly linearly with the increase in BC burden. The linearity holds even as the BC concentration is increased to levels resembling those hypothesized in nuclear winter scenarios, despite large surface cooling over India and adjoining regions. The enhanced monsoonal circulation is associated with a linear increase in the large-scale meridional tropospheric temperature gradient. The precipitable water over the region also increases linearly with an increase in BC burden, due to increased moisture transport from the Arabian sea to the land areas. The wide range of Indian monsoon response elicited in these experiments emphasizes the need to reduce the uncertainty in BC estimates to accurately quantify their role in modulating the Indian monsoons. The increase in monsoonal circulation in response to large BC concentrations contrasts earlier findings that the Indian summer monsoon may break down following a nuclear war.

  12. Atmospheric aerosol radiative forcing over a semi-continental location Tripura in North-East India: Model results and ground observations.

    PubMed

    Dhar, Pranab; De, Barin Kumar; Banik, Trisanu; Gogoi, Mukunda M; Babu, S Suresh; Guha, Anirban

    2017-02-15

    Northeast India (NEI) is located within the boundary of the great Himalayas in the north and the Bay of Bengal (BoB) in the southwest, experiences the mixed influence of the westerly dust advection from the Indian desert, anthropogenic aerosols from the highly polluted Indo-Gangetic Plains (IGP) and marine aerosols from BoB. The present study deals with the estimation and characterization of aerosol radiative forcing over a semi-continental site Tripura, which is a strategic location in the western part of NEI having close proximity to the outflow of the IGP. Continuous long term measurements of aerosol black carbon (BC) mass concentrations and columnar aerosol optical depth (AOD) are used for the estimation of aerosol radiative forcing in each monthly time scale. The study revealed that the surface forcing due to aerosols was higher during both winter and pre-monsoon seasons, having comparable values of 32W/m(2) and 33.45W/m(2) respectively. The atmospheric forcing was also higher during these months due to increased columnar aerosol loadings (higher AOD ~0.71) shared by abundant BC concentrations (SSA ~0.7); while atmospheric forcing decreased in monsoon due to reduced magnitude of BC (SSA ~0.94 in July) as well as columnar AOD. The top of the atmosphere (TOA) forcing is positive in pre-monsoon and monsoon months with the highest positive value of 3.78W/m(2) in June 2012. The results are discussed in light of seasonal source impact and transport pathways from adjacent regions.

  13. Direct observations of shortwave aerosol radiative forcing at surface and its diurnal variation during the Asian dry season at southwest Indian peninsula

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj Kumar; Rajeev, K.

    2016-08-01

    The Arabian Sea witnesses consistent occurrence of a large-scale aerosol plume transported by the northerlies from the Asian region during the dry season (December-April). This paper presents direct observations of the diurnal variation (and dependence on solar zenith angle, SZA) of instantaneous aerosol direct radiative forcing efficiency (IADRFE) and aerosol direct radiative forcing (ADRF) at surface during the period from December to March of 2010-2013 at Thiruvananthapuram (8.5°N, 77°E), an Indian peninsular station adjoining the Arabian Sea coast, which resides well within this aerosol plume. Magnitude of the IADRFE increases with SZA from -75 ± 20 W m-2 τ 500 -1 at SZA of ~80° to attain a peak value of -170 ± 30 W m-2 τ 500 -1 at SZA ~60° in March (~3 h before and after the local noon). Absolute magnitudes and SZA dependence of the observed seasonal mean IADRFE are in agreement (within 16 % of the absolute magnitudes) with those estimated using radiation transfer computations employing an aerosol model with visible band single-scattering albedo of ~0.90 ± 0.03. Observed values of the diurnal mean aerosol radiative forcing efficiency (ADRFE) averaged during the season (December-March) vary between -71 and -76.5 W m-2 τ 500 -1 , which is in agreement with the model estimate of -71 W m-2 τ 500 -1 . The present observations show that the seasonal mean ADRF at surface (-25 to -28 W m-2) is about 10 % of the diurnal mean downwelling shortwave flux reaching the surface (in the absence of aerosols) during dry season at this location, indicating the major role of aerosols in regulating surface energetics.

  14. Vertical distribution of aerosols and shortwave radiative forcing over the Indo-Gangetic Basin during three major dust storms of 2010

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvan; Singh, Abhay Kumar

    Abstract: The present study aims to analyze the Aerosol Radiative Forcing (ARF) and vertical distribution of aerosols over Kanpur (located in central Indo-Gangetic Basin; IGB) during the three (20 April, 28 May and 2 June, 2010) intense dust-storm events in the pre-monsoon season, using the synergy of ground and satellite observations and SBDART simulation. The analysis reveals considerable changes in the aerosol vertical profiles and ARF during the dust-storm events highlighting the important role of dust in the aerosol load and ARF properties over the IGB. The CALIOP-derived aerosol properties show vertically elevated aerosol profiles (up to 4 km altitude), majorly consisting of dust particles during the dust event. The maximum daily average top of the atmosphere (TOA), atmosphere (ATM) and surface (SRF) forcing is found to be -40.95, 60.65 W/m2 and -101.59W/m2 during the dust events respectively. A strong correlation is found between AOD at 500 nm and the ARF. The correlation coefficient (R2) between AOD and ARF is found to be 0.74, 0.46 and 0.84 at TOA, ATM and SRF respectively. The slope of the regression line gives the aerosol forcing efficiency at 500nm of about 24.29, -19.85 and -44.15 W/m2 at the ATM, TOA and SRF respectively. The ARF is found to increase with the advance of the dry season. Keywords: Dust Storms, Aerosol properties, AERONET, Satellites, Indo-Gangetic Basin, Aerosol Radiative Forcing (ARF).

  15. Estimation of the aerosol radiative forcing at ground level, over land, and in cloudless atmosphere, from METEOSAT-7 observation: method and first results

    NASA Astrophysics Data System (ADS)

    Elias, T.; Roujean, J.-L.

    2007-09-01

    A new method is proposed to estimate the spatial and temporal variability of the solar radiative flux reaching the surface (DSSF) over land, as well as the Aerosol Radiative Forcing (ARF), in cloud-free atmosphere. The objective of global applications of the method is fulfilled by using the visible broadband of METEOSAT-7 satellite which scans Europe and Africa on a half-hourly basis. The method relies on a selection of best correspondence between METEOSAT-7 radiance and DSSF computed with a radiative transfer code. The validation of DSSF is performed comparing retrievals with ground-based measurements acquired in two contrasted environments, i.e. an urban site near Paris and a continental background site in South East of France. The study is concentrated on aerosol episodes occurring around the 2003 summer heat wave, providing 42 cases of comparison for variable solar zenith angle (from 59° to 69°), variable aerosol type (biomass burning emissions and urban pollution), and variable aerosol optical thickness (a factor 6). The method reproduces measurements of DSSF within an accuracy assessment of 20 Wm-2 (5% in relative) in 70% of the cases, and within 40 Wm-2 in 90% of the cases. Considering aerosol is the main contributor in changing the measured radiance at the top of the atmosphere, DSSF temporal variability is assumed to be caused only by aerosols, and consequently the ARF at ground level and over land is also retrieved: ARF is computed as the difference between DSSF and a parameterised aerosol-free reference level. Retrievals are linearly correlated with the ground-based measurements of the aerosol optical thickness (AOT): sensitivity is included between 120 and 160 Wm-2 per unity of AOT at 440 nm. AOT being an instantaneous measure indicative of the aerosol columnar amount, we therefore prove the feasibility to infer instantaneous aerosol radiative impact at the ground level over land with METEOSAT-7 visible channel.

  16. Estimation of the aerosol radiative forcing at ground level, over land, and in cloudless atmosphere, from METEOSAT-7 observation: method and case study

    NASA Astrophysics Data System (ADS)

    Elias, T.; Roujean, J.-L.

    2008-02-01

    A new method is proposed to estimate the spatial and temporal variability of the solar radiative flux reaching the surface over land (DSSF), as well as the Aerosol Radiative Forcing (ARF), in cloud-free atmosphere. The objective of regional applications of the method is attainable by using the visible broadband of METEOSAT-7 satellite instrument which scans Europe and Africa on a half-hourly basis. The method relies on a selection of best correspondence between METEOSAT-7 radiance and radiative transfer computations. The validation of DSSF is performed comparing retrievals with ground-based measurements acquired in two contrasted environments: an urban site near Paris and a continental background site located South East of France. The study is concentrated on aerosol episodes occurring around the 2003 summer heat wave, providing 42 cases of comparison for variable solar zenith angle (from 59° to 69°), variable aerosol type (biomass burning emissions and urban pollution), and variable aerosol optical thickness (a factor 6 in magnitude). The method reproduces measurements of DSSF within an accuracy assessment of 20 W m-2 (5% in relative) in 70% of the situations, and within 40 W m-2 in 90% of the situations, for the two case studies considered here. Considering aerosol is the main contributor in changing the measured radiance at the top of the atmosphere, DSSF temporal variability is assumed to be caused only by aerosols, and consequently ARF at ground level and over land is also retrieved: ARF is computed as the difference between DSSF and a parameterised aerosol-free reference level. Retrievals are linearly correlated with the ground-based measurements of the aerosol optical thickness (AOT): sensitivity is included between 120 and 160 W m-2 per unity of AOT at 440 nm. AOT being an instantaneous measure indicative of the aerosol columnar amount, we prove the feasibility to infer instantaneous aerosol radiative impact at the ground level over land with METEOSAT-7

  17. Light Absorption of Black Carbon Aerosol and Its Radiative Forcing Effect in an Megacity Atmosphere in South China

    NASA Astrophysics Data System (ADS)

    Lan, Zijuan

    2013-04-01

    The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, the regional effect of BC light absorption is more significant. The reduction of BC is now expected to have significant near-term climate change mitigation. Mass absorption efficient (MAE) was one of the important optical properties of BC aerosol for evaluating the BC on its radiative forcing effect, while BC mixing state is one main influencing factor for MAE. Models have estimated that BC radiative forcing can be increased by a factor of ~2 for internally versus externally mixed BC. On the other hand, some organic carbon had been found to significantly absorb light at UV or shorter wavelengths in the most recent studies, with strong spectral dependence. But large uncertainties still remain in determining the positive forcing effect of BC on global clime change due to the technical limitations. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a megacity in South China, Shenzhen, during the summer of 2011. It is in the southeast corner of the Pearl River Delta (PRD) region, neighboring Hong Kong to the south. During the campaign, the average BC mass concentration was 4.0±3.1 μg m-3, accounting for about 11% of PM2.5 mass concentration, which mainly came from fossil fuel combustion rather than biomass burning. The MAE of BC ranged from 5.0 to 8.5 m2 g-1, with an average value of 6.5±0.5 m2 g-1. The percentage of internally mixed BC was averagely 24.3±7.9% and positively correlated with the MAE. It is estimated that the internally mixed BC amplified MAE by about 7% during the campaign, suggesting that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low in comparison with the predictions by theoretical models, which stands in accordance with

  18. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    SciTech Connect

    Seinfeld, John H.

    2011-12-02

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  19. Airborne measurements of spectral direct aerosol radiative forcing in the Intercontinental chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution, 2004

    NASA Astrophysics Data System (ADS)

    Redemann, Jens; Pilewskie, Peter; Russell, Philip B.; Livingston, John M.; Howard, Steve; Schmid, Beat; Pommier, John; Gore, Warren; Eilers, James; Wendisch, Manfred

    2006-07-01

    As part of the INTEX-NA (Intercontinental chemical Transport Experiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies, the NASA Ames 14-channel Airborne Tracking Sunphotometer (AATS-14) and a pair of Solar Spectral Flux Radiometers (SSFR) took measurements from aboard a Sky Research Jet stream 31 (J31) aircraft during 19 science flights over the Gulf of Maine during 12 July to 8 August 2004. The combination of coincident AATS-14 and SSFR measurements yields plots of net (downwelling minus upwelling) spectral irradiance as a function of aerosol optical depth (AOD) as measured along horizontal flight legs. By definition, the slope of these plots yields the instantaneous change in net irradiance per unit AOD change and is referred to as the instantaneous spectral aerosol radiative forcing efficiency, Ei (W m-2 nm-1). Numerical integration over a given spectral range yields the instantaneous broadband aerosol radiative forcing efficiency (W m-2). This technique for deriving Ei is called the aerosol gradient method. Within 10 case studies considered suitable for our analysis we found a high variability in the derived instantaneous aerosol forcing efficiencies for the visible wavelength range (350-700 nm), with a mean of -79.6 W m-2 and a standard deviation of 21.8 W m-2 (27%). An analytical conversion of the instantaneous forcing efficiencies to 24-hour-average values yielded -45.8 ± 13.1 W m-2 (mean ± std). We present spectrally resolved aerosol forcing efficiencies between 350 and 1670 nm, estimates of the midvisible aerosol single scattering albedo and a comparison of observed broadband forcing efficiencies to previously reported values.

  20. Multi-model simulations of aerosol and ozone radiative forcing due to anthropogenic emission changes during the period 1990-2015

    NASA Astrophysics Data System (ADS)

    Myhre, Gunnar; Aas, Wenche; Cherian, Ribu; Collins, William; Faluvegi, Greg; Flanner, Mark; Forster, Piers; Hodnebrog, Øivind; Klimont, Zbigniew; Lund, Marianne T.; Mülmenstädt, Johannes; Myhre, Cathrine Lund; Olivié, Dirk; Prather, Michael; Quaas, Johannes; Samset, Bjørn H.; Schnell, Jordan L.; Schulz, Michael; Shindell, Drew; Skeie, Ragnhild B.; Takemura, Toshihiko; Tsyro, Svetlana

    2017-02-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. -1 to -3 % yr-1 in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by +0.17 ± 0.08 W m-2, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5. The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  1. Multi-Model Simulations of Aerosol and Ozone Radiative Forcing Due to Anthropogenic Emission Changes During the Period 1990-2015

    NASA Technical Reports Server (NTRS)

    Myhre, Gunnar; Aas, Wenche; Ribu, Cherian; Collins, William; Faluvegi, Gregory S.; Flanner, Mark; Forster, Piers; Hodnebrog, Oivind; Klimont, Zbigniew; Lund, Marianne T.

    2017-01-01

    Over the past few decades, the geographical distribution of emissions of substances that alter the atmospheric energy balance has changed due to economic growth and air pollution regulations. Here, we show the resulting changes to aerosol and ozone abundances and their radiative forcing using recently updated emission data for the period 1990-2015, as simulated by seven global atmospheric composition models. The models broadly reproduce large-scale changes in surface aerosol and ozone based on observations (e.g. 1 to 3 percent per year in aerosols over the USA and Europe). The global mean radiative forcing due to ozone and aerosol changes over the 1990-2015 period increased by 0.17 plus or minus 0.08 watts per square meter, with approximately one-third due to ozone. This increase is more strongly positive than that reported in IPCC AR5 (Intergovernmental Panel on Climate Change Fifth Assessment Report). The main reasons for the increased positive radiative forcing of aerosols over this period are the substantial reduction of global mean SO2 emissions, which is stronger in the new emission inventory compared to that used in the IPCC analysis, and higher black carbon emissions.

  2. Global climate forcing of aerosols embodied in international trade

    NASA Astrophysics Data System (ADS)

    Lin, Jintai; Tong, Dan; Davis, Steven; Ni, Ruijing; Tan, Xiaoxiao; Pan, Da; Zhao, Hongyan; Lu, Zifeng; Streets, David; Feng, Tong; Zhang, Qiang; Yan, Yingying; Hu, Yongyun; Li, Jing; Liu, Zhu; Jiang, Xujia; Geng, Guannan; He, Kebin; Huang, Yi; Guan, Dabo

    2016-10-01

    International trade separates regions consuming goods and services from regions where goods and related aerosol pollution are produced. Yet the role of trade in aerosol climate forcing attributed to different regions has never been quantified. Here, we contrast the direct radiative forcing of aerosols related to regions' consumption of goods and services against the forcing due to emissions produced in each region. Aerosols assessed include black carbon, primary organic aerosol, and secondary inorganic aerosols, including sulfate, nitrate and ammonium. We find that global aerosol radiative forcing due to emissions produced in East Asia is much stronger than the forcing related to goods and services ultimately consumed in that region because of its large net export of emissions-intensive goods. The opposite is true for net importers such as Western Europe and North America: global radiative forcing related to consumption is much greater than the forcing due to emissions produced in these regions. Overall, trade is associated with a shift of radiative forcing from net importing to net exporting regions. Compared to greenhouse gases such as carbon dioxide, the short atmospheric lifetimes of aerosols cause large localized differences between consumption- and production-related radiative forcing. International efforts to reduce emissions in the exporting countries will help alleviate trade-related climate and health impacts of aerosols while lowering global emissions.

  3. Simulated 2050 aviation radiative forcing

    NASA Astrophysics Data System (ADS)

    Chen, C. C.; Gettelman, A.

    2015-12-01

    The radiative forcing from aviation is investigated by using a comprehensive general circulation model in the present (2006) and the future (2050). Global flight distance is projected to increase by a factor of 4 between 2006 and 2050. However, simulated contrail cirrus radiative forcing can increase by a factor of 7, and thus does not scale linearly with fuel emission mass. Simulations indicate negative radiative forcing induced by the indirect effect of aviation sulfate aerosols on liquid clouds that increasesby a factor of 4 in 2050. As a result, the net 2050 aviation radiative forcing is a cooling. Aviation sulfates emitted at cruise altitude canbe transported down to the lowest troposphere, increasing the aerosolconcentration, thus increasing the cloud drop number concentration and persistenceof low-level clouds. Aviation black carbon aerosols produce a negligible forcing.

  4. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing

    DOE PAGES

    Wang, Mo; Xu, B.; Cao, J.; ...

    2015-02-02

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia hasmore » the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.« less

  5. Carbonaceous aerosols recorded in a southeastern Tibetan glacier: analysis of temporal variations and model estimates of sources and radiative forcing

    SciTech Connect

    Wang, Mo; Xu, B.; Cao, J.; Tie, X.; Wang, Hailong; Zhang, Rudong; Qian, Yun; Rasch, Philip J.; Zhao, Shuyu; Wu, Guangjian; Zhao, Huabiao; Joswiak, Daniel R.; Li, Jiule; Xie, Ying

    2015-02-02

    High temporal resolution measurements of black carbon (BC) and organic carbon (OC) covering the time period of 1956–2006 in an ice core over the southeastern Tibetan Plateau show a distinct seasonal dependence of BC and OC with higher respective concentrations but a lower OC / BC ratio in the non-monsoon season than during the summer monsoon. We use a global aerosol-climate model, in which BC emitted from different source regions can be explicitly tracked, to quantify BC source–receptor relationships between four Asian source regions and the southeastern Tibetan Plateau as a receptor. The model results show that South Asia has the largest contribution to the present-day (1996–2005) mean BC deposition at the ice-core drilling site during the non-monsoon season (October to May) (81%) and all year round (74%), followed by East Asia (14% to the non-monsoon mean and 21% to the annual mean). The ice-core record also indicates stable and relatively low BC and OC deposition fluxes from the late 1950s to 1980, followed by an overall increase to recent years. This trend is consistent with the BC and OC emission inventories and the fuel consumption of South Asia (as the primary contributor to annual mean BC deposition). Moreover, the increasing trend of the OC / BC ratio since the early 1990s indicates a growing contribution of coal combustion and/or biomass burning to the emissions. The estimated radiative forcing induced by BC and OC impurities in snow has increased since 1980, suggesting an increasing potential influence of carbonaceous aerosols on the Tibetan glacier melting and the availability of water resources in the surrounding regions. Our study indicates that more attention to OC is merited because of its non-negligible light absorption and the recent rapid increases evident in the ice-core record.

  6. Present and potential future contributions of sulfate, black and organic carbon aerosols from China to global air quality, premature mortality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Saikawa, Eri; Naik, Vaishali; Horowitz, Larry W.; Liu, Junfeng; Mauzerall, Denise L.

    Aerosols are harmful to human health and have both direct and indirect effects on climate. China is a major contributor to global emissions of sulfur dioxide (SO 2), a sulfate (SO 42-) precursor, organic carbon (OC), and black carbon (BC) aerosols. Although increasingly examined, the effect of present and potential future levels of these emissions on global premature mortality and climate change has not been well quantified. Through both direct radiative effects and indirect effects on clouds, SO 42- and OC exert negative radiative forcing (cooling) while BC exerts positive forcing (warming). We analyze the effect of China's emissions of SO 2, SO 42-, OC and BC in 2000 and for three emission scenarios in 2030 on global surface aerosol concentrations, premature mortality, and radiative forcing (RF). Using global models of chemical transport (MOZART-2) and radiative transfer (GFDL RTM), and combining simulation results with gridded population data, mortality rates, and concentration-response relationships from the epidemiological literature, we estimate the contribution of Chinese aerosols to global annual premature mortality and to RF in 2000 and 2030. In 2000, we estimate these aerosols cause approximately 470 000 premature deaths in China and an additional 30 000 deaths globally. In 2030, aggressive emission controls lead to a 50% reduction in premature deaths from the 2000 level to 240 000 in China and 10 000 elsewhere, while under a high emissions scenario premature deaths increase 50% from the 2000 level to 720 000 in China and to 40 000 elsewhere. Because the negative RF from SO 42- and OC is larger than the positive forcing from BC, Chinese aerosols lead to global net direct RF of -74 mW m -2 in 2000 and between -15 and -97 mW m -2 in 2030 depending on the emissions scenario. Our analysis indicates that increased effort to reduce greenhouse gases is essential to address climate change as China's anticipated reduction of aerosols will result in the

  7. Column Aerosol Optical Properties and Aerosol Radiative Forcing During a Serious Haze-Fog Month over North China Plain in 2013 Based on Ground-Based Sunphotometer Measurements

    NASA Technical Reports Server (NTRS)

    Che, H.; Xia, X.; Zhu, J.; Li, Z.; Dubovik, O.; Holben, Brent N.; Goloub, P.; Chen, H.; Estelles, V.; Cuevas-Agullo, E.

    2014-01-01

    In January 2013, North China Plain experienced several serious haze events. Cimel sunphotometer measurements at seven sites over rural, suburban and urban regions of North China Plain from 1 to 30 January 2013 were used to further our understanding of spatial-temporal variation of aerosol optical parameters and aerosol radiative forcing (ARF). It was found that Aerosol Optical Depth at 500 nm (AOD500nm) during non-pollution periods at all stations was lower than 0.30 and increased significantly to greater than 1.00 as pollution events developed. The Angstrom exponent (Alpha) was larger than 0.80 for all stations most of the time. AOD500nm averages increased from north to south during both polluted and non-polluted periods on the three urban sites in Beijing. The fine mode AOD during pollution periods is about a factor of 2.5 times larger than that during the non-pollution period at urban sites but a factor of 5.0 at suburban and rural sites. The fine mode fraction of AOD675nm was higher than 80% for all sites during January 2013. The absorption AOD675nm at rural sites was only about 0.01 during pollution periods, while 0.03-0.07 and 0.01-0.03 during pollution and non-pollution periods at other sites, respectively. Single scattering albedo varied between 0.87 and 0.95 during January 2013 over North China Plain. The size distribution showed an obvious tri-peak pattern during the most serious period. The fine mode effective radius in the pollution period was about 0.01-0.08 microns larger than during nonpollution periods, while the coarse mode radius in pollution periods was about 0.06-0.38 microns less than that during nonpollution periods. The total, fine and coarse mode particle volumes varied by about 0.06-0.34 cu microns, 0.03-0.23 cu microns, and 0.03-0.10 cu microns, respectively, throughout January 2013. During the most intense period (1-16 January), ARF at the surface exceeded -50W/sq m, -180W/sq m, and -200W/sq m at rural, suburban, and urban sites

  8. Quantifying the climatological cloud-free shortwave direct radiative forcing of mineral dust aerosol over the Red Sea

    NASA Astrophysics Data System (ADS)

    Stenchikov, G. L.; Brindley, H. E.; Osipov, S.; Bantges, R. J.; Smirnov, A.; Prakash, P. J.

    2014-12-01

    While there have been a number of campaigns designed to probe dust-climate interactions over much of the world, relatively little attention has been paid to the Red Sea. Because of the remoteness of the area, satellite retrievals provide a crucial tool for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly in the case of mineral dust. Ground based measurements, which can be used to evaluate retrievals, are thus highly desirable. Here we take advantage of ship-based hand-held sun-photometer (microtops) observations gathered within the framework of NASA Aerosol Maritime Network from a series of cruises, which took place across the Red Sea during 2011 and 2013. To our knowledge these data represent the first set of detailed aerosol measurements from the Sea. They thus provide a unique opportunity to assess the performance of satellite retrieval algorithms in this region. Here we used the microtops measurements to evaluate the performance of co-located satellite retrievals from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) and the MODerate Imaging Spectrometer (MODIS). Both algorithms show good agreement with the ship-based measurements and with each other, although it appears that the MODIS cloud detection scheme in particular is rather conservative. The stand alone Rapid Radiative Transfer Model (RRTM) driven by reanalysis meteorological fields is used to estimate the cloud-free aerosol direct radiative effect at the surface and TOA along the ship tracks. The TOA effects are compared to co-located measurements from the Geostationary Earth Radiation Budget (GERB) instrument. Having evaluated both the quality of the retrievals and the ability of the model to capture the associated radiative effect, we will present a climatology of aerosol loading over the

  9. DMS atmospheric concentrations and sulphate aerosol indirect radiative forcing: a sensitivity study to the DMS source representation and oxidation

    NASA Astrophysics Data System (ADS)

    Boucher, O.; Moulin, C.; Belviso, S.; Aumont, O.; Bopp, L.; Cosme, E.; von Kuhlmann, R.; Lawrence, M. G.; Pham, M.; Reddy, M. S.; Sciare, J.; Venkataraman, C.

    2003-01-01

    The global sulphur cycle has been simulated using a general circulation model with a focus on the source and oxidation of atmospheric dimethylsulphide (DMS). The sensitivity of atmospheric DMS to the oceanic DMS climatology, the parameterisation of the sea-air transfer and to the oxidant fields have been studied. The importance of additional oxidation pathways (by O3 in the gas- and aqueous-phases and by BrO in the gas phase) not incorporated in global models has also been evaluated. While three different climatologies of the oceanic DMS concentration produce rather similar global DMS fluxes to the atmosphere at 24-27 Tg S yr -1, there are large differences in the spatial and seasonal distribution. The relative contributions of OH and NO3 radicals to DMS oxidation depends critically on which oxidant fields are prescribed in the model. Oxidation by O3 appears to be significant at high latitudes in both hemispheres. Oxidation by BrO could be significant even for BrO concentrations at sub-pptv levels in the marine boundary layer. The impact of such refinements on the DMS chemistry onto the indirect radiative forcing by anthropogenic sulphate aerosols is also discussed.

  10. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    SciTech Connect

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  11. Aerosol Direct Radiative Forcing in the Southern Appalachian Mountains: Initial Results from the Appalachian Atmospheric Interdisciplinary Research (AppalAIR) Facility

    NASA Astrophysics Data System (ADS)

    Taubman, B.; Sherman, J.; Sheridan, P. J.; Perry, L. B.; Neufeld, H.; Emanuel, R. E.; Tashakkori, R.; Bowman, D.; Long, C.

    2009-12-01

    AppalAIR (Appalachian Atmospheric Interdisciplinary Research, http://appalair.appstate.edu/) is a new interdisciplinary, atmospheric research facility located on the campus of Appalachian State University (1076 m; 36.2° N, 81.7° W) in the southern Appalachian Mountains. The facility was designed to investigate air pollution formation and transport, the relationships among biogenic and anthropogenic inputs to a changing climate, and the effects of these factors on regional ecosystems. AppalAIR is a collaborating member of the NOAA Earth System Research Laboratory Global Monitoring Division (NOAA/ESRL GMD) Collaborative Global Aerosol Network (http://www.esrl.noaa.gov/gmd/aero/net/app/index.html). Measurements are made from a 34 m tower and include aerosol light scattering (3-λ nephelometer) and absorption (3-λ PSAP, 7-λ aethalometer, 6-λ UV aethalometer), particle number concentration (CPC), and aerosol chemistry, size, and morphology using SPME/GC-MS and SEM analyses on 24 h filter samples. Initial results indicate alternating periods of small, highly absorptive (ssa < 0.90) fractal agglomerates and large, highly scattering (ssa > 0.95) spherical particles that are strongly dependent upon the highly variably meteorological patterns that have occurred over the summertime (JJA) in the southeastern U.S. By quantifying the aerosol direct radiative forcing during discrete meteorological patterns as defined by statistical cluster analysis as well as from specific aerosol chemical sources, we are able to extrapolate the results beyond the immediate region.

  12. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  13. An anomalous African dust event and its impact on aerosol radiative forcing on the Southwest Atlantic coast of Europe in February 2016.

    PubMed

    Sorribas, M; Adame, J A; Andrews, E; Yela, M

    2017-04-01

    A desert dust (DD) event that had its origin in North Africa occurred on the 20th-23rd of February 2016. The dust transport phenomenon was exceptional because of its unusual intensity during the coldest season. A historical dataset (2006-2015) of February meteorological scenarios using ECMWF fields, meteorological parameters, aerosol optical properties, surface O3 and AOD retrieved from MODIS at the El Arenosillo observatory (southwestern Spain) were analysed and compared with the levels during the DD event to highlight its exceptionality. Associated with a low-pressure system in western North Africa, flows transported air from the Sahel to Algeria and consequently increased temperatures from the surface to 700hPa by up to 7-9°C relative to the last decade. These conditions favoured the formation of a Saharan air layer. Dust was transported to the north and reached the Western Mediterranean Basin and the Iberian Peninsula. The arrival of the DD event at El Arenosillo did not affect the surface weather conditions or ozone but did impact the aerosol radiative forcing at the top of atmosphere (RFTOA). Aerosol radiative properties did not change relative to historical; however, the particle size and the amount of the aerosol were significantly higher. The DD event caused an increase (in absolute terms) of the mean aerosol RFTOA to a value of -8.1Wm(-2) (long-term climatological value ~-1.5Wm(-2)). The aerosol RFTOA was not very large relative other DD episodes; however, our analysis of the historical data concluded that the importance of this DD event lay in the month of occurrence. European phenological datasets related to extreme atmospheric events predominantly reflect changes that are probably associated with climate change. This work is an example of this phenomenon, showing an event that occurred in a hotspot, the Saharan desert, and its impact two thousand km away.

  14. Modelling of long-range transport of Southeast Asia biomass-burning aerosols to Taiwan and their radiative forcings over East Asia

    SciTech Connect

    Lin, Chuan-Yao; Zhao, Chun; Liu, Xiaohong; Lin, Neng-Huei; Chen, Wei-Nei

    2014-10-12

    Biomass burning is a major source of aerosols and air pollutants during the springtime in Southeast Asia. At Lulin mountain background station (elevation 2862 m) in Taiwan, the concentrations of carbon monoxide (CO), ozone (O3) and particulate matter particles with diameter less than 10 μm (PM10), were measured around 150-250 ppb, 40-60 ppb, and 10-30μg/m3, respectively at spring time (February-April) during 2006 and 2009, which are about 2~3 times higher than those in other seasons. Observations and simulation results indicate that the higher concentrations during the spring time are clearly related to biomass burning plumes transported from the Indochina Peninsula of Southeast Asia. The spatial distribution of high aerosols optical depth (AOD) were identified by the satellite measurement and Aerosol Robotic Network (AERONET) ground observation, and could be reasonably captured by the WRF-Chem model during the study period of 15-18 March, 2008. AOD reached as high as 0.8-1.0 in Indochina ranging from 10 to 22°N and 95 to 107°E. Organic carbon (OC) is a major contributor of AOD over Indochina according to simulation results. The contributor of AOD from black carbon (BC) is minor when compared with OC over the Indochina. However, the direct absorption radiative forcing of BC in the atmosphere could reach 35-50 W m-2, which is about 8-10 times higher than that of OC. The belt shape of radiation reduction at surface from Indochina to Taiwan could be as high 20-40 W m-2 during the study period. The implication of the radiative forcing from biomass burning aerosols and their impact on the regional climate in East Asia is our major concern.

  15. Radiative impact of aerosols generated from biomass burning

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1995-01-01

    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Each year, increasing amounts of aerosol particles are released into the atmosphere due to biomass burning, dust storms, forest fires, and volcanic activity. These particles significantly perturb the radiative balance on local, regional, and global scales. While the detection of aerosols over water is a well established procedure, the detection of aerosols over land is often difficult due to the poor contrast between the aerosols and the underlying terrain. In this study, we use textural measures in order to detect aerosols generated from biomass burning over South America, using AVHRR data. The regional radiative effects are then examined using ERBE data. Preliminary results show that the net radiative forcing of aerosols is about -36 W/sq m.

  16. Impact of aerosol direct radiative forcing on the radiative budget, surface heat fluxes, and atmospheric dynamics during the heat wave of summer 2003 over western Europe: A modeling study

    NASA Astrophysics Data System (ADS)

    PéRé, J. C.; Mallet, M.; Pont, V.; Bessagnet, B.

    2011-12-01

    In this work, an off-line coupling between the chemistry-transport model CHIMERE (associated with an aerosol optical module) and the meteorological model Weather Research and Forecasting (WRF) is used to study (1) the direct radiative forcing of pollution aerosols during the heat wave of summer 2003 over western Europe and (2) the possible feedbacks of this direct radiative forcing on the surface-atmosphere system. Simulations performed for the period 7-15 August 2003 reveal a significant decrease of daily mean solar radiation reaching the surface (ΔFBOA = -(10-30) W/m2) because of back scattering at the top of the atmosphere (ΔFTOA = -(1-12) W/m2) and also absorption of solar radiation by polluted particles (ΔFatm = + (5-23) W/m2). During daytime, the aerosol surface dimming induces a mean reduction of both sensible (16 W/m2) and latent (21 W/m2) heat fluxes emitted by the terrestrial surface, resulting in a radiative cooling of the air near the surface (up to 2.9 K/d at noon). Simultaneously, the absorption of solar energy by aerosols causes an atmospheric radiative heating within the planetary boundary layer reaching 1.20 K/d at noon. As a consequence, the direct radiative effect of aerosols is shown to reduce both the planetary boundary layer height (up to 30%) and the horizontal wind speed (up to 6%); that may have contributed to favor the particulate pollution during the heat wave of summer 2003.

  17. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  18. A HTAP Multi-Model Assessment of the Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing and the Role of Intercontinental Transport

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; West, J. Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; Hess, Peter; Schulz, Michael; Shindell, Drew; Takemura, Toshihiko; Tan, Qian

    2012-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the northern hemisphere by using results from 10 global chemical transport models in the framework of the Hemispheric Transport of Air Pollution (HTAP). The multi-model results show that on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia and South Asia lowers the global mean AOD and DRF by about 9%, 4%, and 10% for sulfate, organic matter, and black carbon aerosol, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport. On an annual basis, intercontinental transport accounts for 10-30% of the overall AOD and DRF in a receptor region, with domestic emissions accounting for the remainder, depending on regions and species. While South Asia is most influenced by import of sulfate aerosol from Europe, North America is most influenced by import of black carbon from East Asia. Results show a large spread among models, highlighting the need to improve aerosol processes in models and evaluate and constrain models with observations.

  19. Short wave Aerosol Radiative Forcing estimates over a semi urban coastal environment in south-east India and validation with surface flux measurements

    NASA Astrophysics Data System (ADS)

    Aruna, K.; Lakshmi Kumar, T. V.; Krishna Murthy, B. V.; Babu, S. Suresh; Ratnam, M. Venkat; Rao, D. Narayana

    2016-01-01

    The short wave direct Aerosol Radiative Forcing (ARF) at a semi urban coastal location near Chennai (12.81 °N, 80.03 °E, ˜45 m amsl), a mega city on the east coast of India has been estimated for all the four seasons in the year 2013 using the SBDART (Santa Barbara Discrete ordinate Atmospheric Radiative Transfer) model. As inputs to this model, measured aerosol parameters together with modeled aerosol and atmospheric parameters are used. The ARF in the atmosphere is found to be higher in the pre-monsoon and winter seasons compared to the other seasons whereas at the surface, it is found to be higher in the south-west (SW) monsoon and winter seasons. The estimated ARF values are compared with those reported over other locations in India. The effect of Relative Humidity on ARF has been investigated for the first time in the present study. It is found that the ARF increases with increasing RH in the SW monsoon and winter seasons. An unique feature of the present study is the comparison of the net surface short wave fluxes estimated from the model (SBDART) and measured fluxes using CNR 4 net radiometer. This comparison between the estimated and measured fluxes showed good agreement, providing a 'closure' for the estimates.

  20. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  1. A novel methodology using MODIS and CERES for assessing the daily radiative forcing of smoke aerosols in large scale over the Amazonia

    NASA Astrophysics Data System (ADS)

    Sena, E. T.; Artaxo, P.

    2014-12-01

    A new methodology was developed for obtaining daily retrievals of the direct radiative forcing of aerosols (24h-DARF) at the top of the atmosphere (TOA) using satellite remote sensing. For that, simultaneous CERES (Clouds and Earth's Radiant Energy System) shortwave flux at the top of the atmosphere (TOA) and MODIS (Moderate Resolution Spectroradiometer) aerosol optical depth (AOD) retrievals were used. This methodology is applied over a large region of Brazilian Amazonia. We focused our studies on the peak of the biomass burning season (August to September) from 2000 to 2009 to analyse the impact of forest smoke on the radiation balance. To assess the spatial distribution of the DARF, background scenes without biomass burning impacts, were defined as scenes with MODIS AOD < 0.1. The fluxes at the TOA retrieved by CERES for those clean conditions (Fcl) were estimated as a function of the illumination geometry (θ0) for each 0.5° × 0.5° grid cell. The instantaneous DARF was obtained as the difference between clean Fcl (θ0) and the polluted mean flux at the TOA measured by CERES in each cell (Fpol (θ0)). The radiative transfer code SBDART (Santa Barbara DISORT Radiative Transfer model) was used to expand instantaneous DARFs to 24 h averages. With this methodology it is possible to assess the DARF both at large scale and at high temporal resolution. This new methodology also showed to be more robust, because it considerably reduces statistical sources of uncertainties in the estimates of the DARF, when compared to previous assessments of the DARF using satellite remote sensing. The spatial distribution of the 24h-DARF shows that, for some cases, the mean 24h-DARF presents local values as high as -30 W m-2. The temporal variability of the 24h-DARF along the biomass burning season was also studied and showed large intraseasonal and interannual variability. In an attempt to validate the radiative forcing obtained in this work using CERES and MODIS, those results

  2. Direct Radiative Effect and Heating Rate of black carbon aerosol: high time resolution measurements and source-identified forcing effects

    NASA Astrophysics Data System (ADS)

    Ferrero, Luca; Mocnik, Grisa; Cogliati, Sergio; Comi, Alberto; Degni, Francesca; Di Mauro, Biagio; Colombo, Roberto; Bolzacchini, Ezio

    2016-04-01

    Black carbon (BC) absorbs sunlight in the atmosphere heating it. However, up to now, heating rate (HR) calculations from the divergence of the net radiative flux with altitude or from the modelling activity are too sparse. This work fills the aforementioned gap presenting a new methodology based on a full set of physical equations to experimentally determine both the radiative power density absorbed into a ground-based atmospheric layer (ADRE), and the consequent HR induced by the absorptive component of aerosol. In urban context, it is essentially related to the BC. The methodology is also applicable to natural components (i.e. dust) and is obtained solving the first derivative of the main radiative transfer equations. The ADRE and the consequent HR can be determined coupling spectral aerosol absorption measurements with the spectrally resolved measurements of the direct, diffuse downward radiation and the surface reflected radiance components. Moreover, the spectral absorption of BC aerosol allows its source apportionment (traffic and biomass burning (BB)) allowing the same apportionment on HR. This work reports one year of high-time resolution measurements (5 min) of sunlight absorption and HR induced by BC aerosol over Milan. A unique sampling site was set up from March 2015 with: 1) Aethalometer (AE-31, Magee Scientific, 7-λ), 2) the Multiplexer-Radiometer-Irradiometer which detects downward and reflected radiance (350-1000 nm in 3648 spectral bands) coupled with a rotating shadow-band to measure spectrally-resolved global and diffuse radiation (thus direct), 3) a meteorological station (LSI-Lastem) equipped with 3 pyranometers (global, diffuse and refrected radiation; 300-3000 nm), a thermohygrometer, a barometer, an anemometer, 4) condensation and optical particle counters (TSI 3775 and Grimm 1.107), 5) low volume sampler (FAI Hydra dual sampler, PM2.5 and PM10) for sample collection and chemistry determination. Results concerning the radiative power

  3. Climate Implications of the Heterogeneity of Anthropogenic Aerosol Forcing

    NASA Astrophysics Data System (ADS)

    Persad, Geeta Gayatri

    Short-lived anthropogenic aerosols are concentrated in regions of high human activity, where they interact with radiation and clouds, causing horizontally heterogeneous radiative forcing between polluted and unpolluted regions. Aerosols can absorb shortwave energy in the atmosphere, but deplete it at the surface, producing opposite radiative perturbations between the surface and atmosphere. This thesis investigates climate and policy implications of this horizontal and vertical heterogeneity of anthropogenic aerosol forcing, employing the Geophysical Fluid Dynamics Laboratory's AM2.1 and AM3 models, both at a global scale and using East Asia as a regional case study. The degree of difference between spatial patterns of climate change due to heterogeneous aerosol forcing versus homogeneous greenhouse gas forcing deeply impacts the detection, attribution, and prediction of regional climate change. This dissertation addresses a gap in current understanding of these two forcings' response pattern development, using AM2.1 historical forcing simulations. The results indicate that fast atmospheric and land-surface processes alone substantially homogenize the global pattern of surface energy flux response to heterogeneous aerosol forcing. Aerosols' vertical redistribution of energy significantly impacts regional climate, but is incompletely understood. It is newly identified here, via observations and historical and idealized forcing simulations, that increased aerosol-driven atmospheric absorption may explain half of East Asia's recent surface insolation decline. Further, aerosols' surface and atmospheric effects counteract each other regionally---atmospheric heating enhances summer monsoon circulation, while surface dimming suppresses it---but absorbing aerosols' combined effects reduce summer monsoon rainfall. This thesis constitutes the first vertical decomposition of aerosols' impacts in this high-emissions region and elucidates the monsoonal response to aerosols

  4. Modulation of aerosol radiative forcing due to mixing state in clear and cloudy-sky: A case study from Delhi National Capital Region, India

    NASA Astrophysics Data System (ADS)

    Srivastava, Parul; Dey, Sagnik; Srivastava, Atul K.; Singh, Sachchidanand; Tiwari, Suresh; Agarwal, Poornima

    2016-04-01

    Aerosol properties change with the change in mixing state of aerosols and therefore it is a source of uncertainty in estimated aerosol radiative forcing (ARF) from observations or by models assuming a specific mixing state. The problem is important in the Indo-Gangetic Basin, Northern India, where various aerosol types mix and show strong seasonal variations. Quantifying the modulation of ARF by mixing state is hindered by lack of knowledge about proper aerosol composition. Hence, first a detailed chemical composition analysis of aerosols for Delhi National capital region (NCR) is carried out. Aerosol composition is arranged quantitatively into five major aerosol types - accumulation dust, coarse dust, water soluble (WS), water insoluble (WINS), and black carbon (BC) (directly measured by Athelometer). Eight different mixing cases - external mixing, internal mixing, and six combinations of core- shell mixing (BC over dust, WS over dust, WS over BC, BC over WS, WS over WINS, and BC over WINS; each of the combinations externally mixed with other species) have been considered. The spectral aerosol optical properties - extinction coefficient, single scattering albedo (SSA) and asymmetry parameter (g) for each of the mixing cases are calculated and finally 'clear-sky' and 'cloudy-sky' ARF at the top-of-the-atmosphere (TOA) and surface are estimated using a radiative transfer model. Comparison of surface-reaching flux for each of the cases with MERRA downward shortwave surface flux reveals the most likely mixing state. 'BC-WINS+WS+Dust' show least deviation relative to MERRA during the pre-monsoon (MAMJ) and monsoon (JAS) seasons and hence is the most probable mixing states. During the winter season (DJF), 'BC-Dust+WS+WINS' case shows the closest match with MERRA, while external mixing is the most probable mixing state in the post-monsoon season (ON). Lowest values for both TOA and surface 'clear-sky' ARF is observed for 'BC-WINS+WS+ Dust' mixing case. TOA ARF is 0.28±2

  5. Biomass burning emissions over northern Australia constrained by aerosol measurements: II—Model validation, and impacts on air quality and radiative forcing

    NASA Astrophysics Data System (ADS)

    Luhar, Ashok K.; Mitchell, Ross M.; (Mick) Meyer, C. P.; Qin, Yi; Campbell, Susan; Gras, John L.; Parry, David

    This two-part series investigates the emission and transport of biomass burning aerosol (or particulate matter) across the Top End of the Northern Territory of Australia. In Part I, Meyer et al. [2008. Biomass burning emissions over northern Australia constrained by aerosol measurements: I—Modelling the distribution of hourly emissions. Atmospheric Environment, in press, doi:10.1016/j.atmosenv.2007.10.089.] used a fuel load distribution coupled with a satellite-derived imagery of fire scars and hotspots and the diurnal variation of a fire danger index to estimate hourly emission rates of particulate matter with an aerodynamic diameter of 2.5 μm or less (PM 2.5) for the dry season April-November 2004 at a spatial resolution of 1 km×1 km. In the present paper, these emission rates are used in TAPM, a three-dimensional meteorological and air pollution model, and the modelled PM 2.5 concentrations and aerosol optical depths are compared with satellite and ground-based measurements. This exercise also seeks to fine-tune and validate the emission calculation methodology, a process through which it is found that cases with hotspots without any corresponding fire scars (e.g. in mountainous terrain), which were initially ignored, need to be included to improve the accuracy of model predictions. Overall, the model is able to describe the measurements satisfactorily, considering the issues associated with the model resolution, emission uncertainty, and modelled meteorology. The model hindcasts numerous exceedences of the advisory maximum PM 2.5 exposure limit across the study region, with large areas in excess of 30 exceedences during the study period. Estimated mean top of atmosphere direct radiative forcing due to aerosol shows a seasonal mean of -1.8 W m -2 with a region of strong enhancement over the western portion of the Top End.

  6. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  7. Simulation of the Indirect Radiative Forcing of Climate Due to Aerosols by the Two-Way Coupled WRF-CMAQ over the Eastern United States

    EPA Science Inventory

    In this study, the shortwave cloud forcing (SWCF) and longwave cloud forcing (LWCF) are estimated with the newly developed two-way coupled WRF-CMAQ over the eastern United States. Preliminary indirect aerosol forcing has been successfully implemented in WRF-CMAQ. The comparisons...

  8. Aerosol radiative effects over BIMSTEC regions

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Kar, S. C.; Mupparthy, Raghavendra S.

    Aerosols can have variety of shapes, composition, sizes and other properties that influence their optical characteristics and thus the radiative impact. The visible impact of aerosol is the formation of haze, a layer of particles from vehicular, industrial emissions and biomass burning. The characterization of these fine particles is important for regulators and researchers because of their potential impact on human health, their ability to travel thousands of kilometers crossing international borders, and their influence on climate forcing and global warming. The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) with Member Countries Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand has emerged as an important regional group for technical and economic Cooperation. Continuing the quest for a deeper understanding of BIMSTEC countries weather and climate, in this paper we focused on aerosols and their direct radiative effects. Because of various contrasts like geophysical, agricultural practices, heterogeneous land/ocean surface, population etc these regions present an excellent natural laboratory for studying aerosol-meteorology interactions in tropical to sub-tropical environments. We exploited data available on multiple platforms (such as MISR, MODIS etc) and models (OPAC, SBDART etc) to compute the results. Ten regions were selected with different surface characteristics, also having considerable differences in the long-term trends and seasonal distribution of aerosols. In a preliminary analysis pertaining to pre-monsoon (March-April-May) of 2013, AOD _{555nm} is found to be maximum over Bangladesh (>0.52) and minimum over Bhutan (0.22), whereas other regions have intermediate values. Concurrent to these variability of AOD we found a strong reduction in incoming flux at surface of all the regions (> -25 Wm (-2) ), except Bhutan and Sri Lanka (< -18Wm (-2) ). The top of the atmosphere (TOA) forcing values are

  9. Radiative Impacts of Elevated Aerosol Layers from Different Origins

    NASA Astrophysics Data System (ADS)

    Sauer, D. N.; Weinzierl, B.; Gasteiger, J.; Heimerl, K.

    2014-12-01

    Aerosol particles are omnipresent in the Earth's atmosphere and have important impacts on weather and climate by their effects on the atmospheric radiative balance. With the advent of more and more sophisticated representations of atmospheric processes in earth system models, the lack of reliable input data on aerosols leads to significant uncertainties in the prediction of future climate scenarios. In recent years large discrepancies in radiative forcing estimates from aerosol layers in modeling studies have been revealed emphasizing the need for detailed and systematic observations of aerosols. Airborne in-situ measurements represent an important pillar for validating both model results and retrievals of aerosol distributions and properties from remote sensing methods on global scales. However, detailed observations are challenging and therefore are subject to substantial uncertainties themselves. Here we use data from airborne in-situ measurements of elevated aerosol layers from various field experiments in different regions of the world. The data set includes Saharan mineral dust layers over Africa, the Atlantic Ocean and the Caribbean from the SALTRACE and the SAMUM campaigns as well as long-range transported biomass burning aerosol layers from wild fires in the Sahel region and North America measured over the tropical Atlantic Ocean, Europe and the Arctic detected during SAMUM2, CONCERT2011, DC3 and ACCESS 2012. We aim to characterize the effects of the measured aerosol layers, in particular with respect to ageing, mixing state and vertical structure, on the overall atmospheric radiation budget as well as local heating and cooling rates. We use radiative transfer simulations of short and long-wave radiation and aerosol optical properties derived in a consistent way from the in-situ observations of microphysical properties using T-matrix calculations. The results of this characterization will help to improve the parameterization of the effects of elevated

  10. Significant radiative impact of volcanic aerosol in the lowermost stratosphere.

    PubMed

    Andersson, Sandra M; Martinsson, Bengt G; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A M; Hermann, Markus; van Velthoven, Peter F J; Zahn, Andreas

    2015-07-09

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008-2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing.

  11. Significant radiative impact of volcanic aerosol in the lowermost stratosphere

    PubMed Central

    Andersson, Sandra M.; Martinsson, Bengt G.; Vernier, Jean-Paul; Friberg, Johan; Brenninkmeijer, Carl A. M.; Hermann, Markus; van Velthoven, Peter F. J.; Zahn, Andreas

    2015-01-01

    Despite their potential to slow global warming, until recently, the radiative forcing associated with volcanic aerosols in the lowermost stratosphere (LMS) had not been considered. Here we study volcanic aerosol changes in the stratosphere using lidar measurements from the NASA CALIPSO satellite and aircraft measurements from the IAGOS-CARIBIC observatory. Between 2008 and 2012 volcanism frequently affected the Northern Hemisphere stratosphere aerosol loadings, whereas the Southern Hemisphere generally had loadings close to background conditions. We show that half of the global stratospheric aerosol optical depth following the Kasatochi, Sarychev and Nabro eruptions is attributable to LMS aerosol. On average, 30% of the global stratospheric aerosol optical depth originated in the LMS during the period 2008–2011. On the basis of the two independent, high-resolution measurement methods, we show that the LMS makes an important contribution to the overall volcanic forcing. PMID:26158244

  12. A Multimodel Assessment of the Influence of Regional Anthropogenic Emission Reductions on Aerosol Direct Radiative Forcing and the Role of Intercontinental Transport

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; West, Jason; Atherton, Cynthia S.; Bellouin, Nicolas; Bergmann, Dan; Bey, Isabelle; Bian, Huisheng; Diehl, Thomas; Forberth, Gerd; Hess, Peter; Schulz, Michael; Shindell, Drew; Takemura, Toshihiko; Tan, Qian

    2013-01-01

    In this study, we assess changes of aerosol optical depth (AOD) and direct radiative forcing (DRF) in response to the reduction of anthropogenic emissions in four major pollution regions in the Northern Hemisphere by using results from nine global models in the framework of the Hemispheric Transport of Air Pollution (HTAP). DRF at top of atmosphere (TOA) and surface is estimated based on AOD results from the HTAP models and AOD-normalized DRF (NDRF) from a chemical transport model. The multimodel results show that, on average, a 20% reduction of anthropogenic emissions in North America, Europe, East Asia, and South Asia lowers the global mean AOD (all-sky TOA DRF) by 9.2% (9.0%), 3.5% (3.0%), and 9.4% (10.0%) for sulfate, particulate organic matter (POM), and black carbon (BC), respectively. Global annual average TOA all-sky forcing efficiency relative to particle or gaseous precursor emissions from the four regions (expressed as multimodel mean +/- one standard deviation) is -3.5 +/-0.8, -4.0 +/- 1.7, and 29.5+/-18.1mW / sq m per Tg for sulfate (relative to SO2), POM, and BC, respectively. The impacts of the regional emission reductions on AOD and DRF extend well beyond the source regions because of intercontinental transport (ICT). On an annual basis, ICT accounts for 11 +/- 5% to 31 +/- 9% of AOD and DRF in a receptor region at continental or subcontinental scale, with domestic emissions accounting for the remainder, depending on regions and species. For sulfate AOD, the largest ICT contribution of 31 +/- 9% occurs in South Asia, which is dominated by the emissions from Europe. For BC AOD, the largest ICT contribution of 28 +/- 18% occurs in North America, which is dominated by the emissions from East Asia. The large spreads among models highlight the need to improve aerosol processes in models, and evaluate and constrain models with observations.

  13. Precipitation Response to Regional Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Shindell, D. T.; Voulgarakis, A.; Faluvegi, G.; Milly, G.

    2012-01-01

    Precipitation shifts can have large impacts on human society and ecosystems. Many aspects of how inhomogeneous radiative forcings influence precipitation remain unclear, however. Here we investigate regional precipitation responses to various forcings imposed in different latitude bands in a climate model. We find that several regions show strong, significant responses to most forcings, but that the magnitude and even the sign depends upon the forcing location and type. Aerosol and ozone forcings typically induce larger responses than equivalent carbon dioxide (CO2) forcing, and the influence of remote forcings often outweighs that of local forcings. Consistent with this, ozone and especially aerosols contribute greatly to precipitation changes over the Sahel and South and East Asia in historical simulations, and inclusion of aerosols greatly increases the agreement with observed trends in these areas, which cannot be attributed to either greenhouse gases or natural forcings. Estimates of precipitation responses derived from multiplying our Regional Precipitation Potentials (RPP; the response per unit forcing relationships) by historical forcings typically capture the actual response in full transient climate simulations fairly well, suggesting that these relationships may provide useful metrics. The strong sensitivity to aerosol and ozone forcing suggests that although some air quality improvements may unmask greenhouse gas-induced warming, they have large benefits for reducing regional disruption of the hydrologic cycle.

  14. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model

    NASA Astrophysics Data System (ADS)

    Bellouin, N.; Mann, G. W.; Woodhouse, M. T.; Johnson, C.; Carslaw, K. S.; Dalvi, M.

    2013-03-01

    The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000-2006. HadGEM simulations of the aerosol optical depth using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. Because of differences in wet deposition rates, GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and abilities to affect cloud droplet number, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a present-day direct aerosol forcing of -0.49 W m-2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This

  15. Assessment of the Interactions Among Tropospheric Aerosol Loading, Radiative Balance and Clouds Through Examination of Their Multi-decadal Trends

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of aerosol radiative forcing has remained challenging. Anthropogenic emissions of prima...

  16. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model

    NASA Astrophysics Data System (ADS)

    Bellouin, N.; Mann, G. W.; Woodhouse, M. T.; Johnson, C.; Carslaw, K. S.; Dalvi, M.

    2012-08-01

    The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000-2006. HadGEM simulations using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and cloud susceptibilities, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a present-day direct aerosol forcing of -0.49 W m-2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This difference is compensated by changes in first indirect aerosol forcing: the forcing of -1.17 W m-2

  17. Satellite methods underestimate indirect climate forcing by aerosols

    PubMed Central

    Penner, Joyce E.; Xu, Li; Wang, Minghuai

    2011-01-01

    Satellite-based estimates of the aerosol indirect effect (AIE) are consistently smaller than the estimates from global aerosol models, and, partly as a result of these differences, the assessment of this climate forcing includes large uncertainties. Satellite estimates typically use the present-day (PD) relationship between observed cloud drop number concentrations (Nc) and aerosol optical depths (AODs) to determine the preindustrial (PI) values of Nc. These values are then used to determine the PD and PI cloud albedos and, thus, the effect of anthropogenic aerosols on top of the atmosphere radiative fluxes. Here, we use a model with realistic aerosol and cloud processes to show that empirical relationships for ln(Nc) versus ln(AOD) derived from PD results do not represent the atmospheric perturbation caused by the addition of anthropogenic aerosols to the preindustrial atmosphere. As a result, the model estimates based on satellite methods of the AIE are between a factor of 3 to more than a factor of 6 smaller than model estimates based on actual PD and PI values for Nc. Using ln(Nc) versus ln(AI) (Aerosol Index, or the optical depth times angstrom exponent) to estimate preindustrial values for Nc provides estimates for Nc and forcing that are closer to the values predicted by the model. Nevertheless, the AIE using ln(Nc) versus ln(AI) may be substantially incorrect on a regional basis and may underestimate or overestimate the global average forcing by 25 to 35%. PMID:21808047

  18. Carbonaceous aerosols influencing atmospheric radiation: Black and organic carbon

    SciTech Connect

    Penner, J.E.

    1994-09-01

    Carbonaceous particles in the atmosphere may both scatter and absorb solar radiation. The fraction associated with the absorbing component is generally referred to as black carbon (BC) and is mainly produced from incomplete combustion processes. The fraction associated with condensed organic compounds is generally referred to as organic carbon (OC) or organic matter and is mainly scattering. Absorption of solar radiation by carbonaceous aerosols may heat the atmosphere, thereby altering the vertical temperature profile, while scattering of solar radiation may lead to a net cooling of the atmosphere/ocean system. Carbonaceous aerosols may also enhance the concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the fine particle (D < 2.5 {mu}m) source rates of both OC and BC. The source rates for anthropogenic organic aerosols may be as large as the source rates for anthropogenic sulfate aerosols, suggesting a similar magnitude of direct forcing of climate. The role of BC in decreasing the amount of reflected solar radiation by OC and sulfates is discussed. The total estimated forcing depends on the source estimates for organic and black carbon aerosols which are highly uncertain. The role of organic aerosols acting as cloud condensation nuclei (CCN) is also described.

  19. How Important Is Organic Aerosol Hygroscopicity to Aerosol Indirect Forcing?

    SciTech Connect

    Liu, Xiaohong; Wang, Jian

    2010-12-07

    Organics are among the most abundant aerosol components in the atmosphere. However, there are still large uncertainties with emissions of primary organic aerosol (POA) and volatile organic compounds (VOCs) (precursor gases of secondary organic aerosol, SOA), formation and yield of SOA, and chemical and physical properties (e.g., hygroscopicity) of POA and SOA. All these may have significant impacts on aerosol direct and indirect forcing estimated from global models. In this study a modal aerosol module (MAM) in the NCAR Community Atmospheric Model (CAM) is used to examine sensitivities of aerosol indirect forcing to hygroscopicity (“κ” value) of POA and SOA. Our model simulation indicates that in the present-day condition changing “κ” value of POA from 0 to 0.1 increases the number concentration of cloud condensational nuclei (CCN) at supersaturation S=0.1% by 40-60% over the POA source regions, while changing “κ” value of SOA by ±50% (from 0.14 to 0.07 and 0.21) changes the CCN within 30%. Changes in the in-cloud droplet number concentrations (CDNC) are within 20% in most locations on the globe with the above changes in “κ” value of POA and SOA. Global annual mean anthropogenic aerosol indirect forcing (AIF) between present-day (PD) and pre-industrial (PI) conditions change by 0.4 W m-2 with the control run of -1.3 W m-2. AIF reduces with the increase hygroscopicity of organic aerosol, indicating the important role of natural organic aerosol in buffering the relative change of CDNC from PI to PD.

  20. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  1. Radiative Forcing by Contrails

    NASA Technical Reports Server (NTRS)

    Meerkoetter, R.; Schumann, U.; Doelling, D. R.; Nakajima, T.; Tsushima, Y.

    1999-01-01

    A parametric study of the instantaneous radiative impact of contrails is presented using three different radiative transfer models for a series of model atmospheres and cloud parameters. Contrails are treated as geometrically and optically thin plane parallel homogeneous cirrus layers in a static atmospheres The ice water content is varied as a function of ambient temperature. The model atmospheres include tropical, mid-latitude, and subarctic summer and winter atmospheres Optically thin contrails cause a positive net forcing at top of the atmosphere. At the surface the radiative forcing is negative during daytime. The forcing increases with the optical depth and the amount of contrail cover. At the top of the atmosphere a mean contrail cover of 0.1% with average optical depth of 0.2 to 0.5 causes about 0.01 to 0.03 W/m(exp 2)a daily mean instantaneous radiative forcing. Contrails cool the surface during the day and heat the surface during the night, and hence reduce the daily temperature amplitude The net effect depends strongly on the daily variation of contrail cloud cover. The indirect radiative forcing due to particle changes in natural cirrus clouds may be of the same magnitude as the direct one due to additional cover.

  2. The cloud-aerosol-radiation (CAR) ensemble modeling system

    NASA Astrophysics Data System (ADS)

    Liang, X.-Z.; Zhang, F.

    2013-08-01

    A cloud-aerosol-radiation (CAR) ensemble modeling system has been developed to incorporate the largest choices of alternate parameterizations for cloud properties (cover, water, radius, optics, geometry), aerosol properties (type, profile, optics), radiation transfers (solar, infrared), and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world's leading general circulation models (GCMs). CAR provides a unique framework to determine (via intercomparison across all schemes), reduce (via optimized ensemble simulations), and attribute specific key factors for (via physical process sensitivity analyses) the model discrepancies and uncertainties in representing greenhouse gas, aerosol, and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purposes, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol, and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  3. Cloud-Aerosol-Radiation (CAR) ensemble modeling system

    NASA Astrophysics Data System (ADS)

    Liang, X.-Z.; Zhang, F.

    2013-04-01

    A Cloud-Aerosol-Radiation (CAR) ensemble modeling system has been developed to incorporate the largest choices of alternative parameterizations for cloud properties (cover, water, radius, optics, geometry), aerosol properties (type, profile, optics), radiation transfers (solar, infrared), and their interactions. These schemes form the most comprehensive collection currently available in the literature, including those used by the world leading general circulation models (GCMs). The CAR provides a unique framework to determine (via intercomparison across all schemes), reduce (via optimized ensemble simulations), and attribute specific key factors for (via physical process sensitivity analyses) the model discrepancies and uncertainties in representing greenhouse gas, aerosol and cloud radiative forcing effects. This study presents a general description of the CAR system and illustrates its capabilities for climate modeling applications, especially in the context of estimating climate sensitivity and uncertainty range caused by cloud-aerosol-radiation interactions. For demonstration purpose, the evaluation is based on several CAR standalone and coupled climate model experiments, each comparing a limited subset of the full system ensemble with up to 896 members. It is shown that the quantification of radiative forcings and climate impacts strongly depends on the choices of the cloud, aerosol and radiation schemes. The prevailing schemes used in current GCMs are likely insufficient in variety and physically biased in a significant way. There exists large room for improvement by optimally combining radiation transfer with cloud property schemes.

  4. Radiative forcing of climate

    NASA Technical Reports Server (NTRS)

    Ramanswamy, V.; Shine, Keith; Leovy, Conway; Wang, Wei-Chyung; Rodhe, Henning; Wuebbles, Donald J.; Ding, M.; Lelieveld, Joseph; Edmonds, Jae A.; Mccormick, M. Patrick

    1991-01-01

    An update of the scientific discussions presented in Chapter 2 of the Intergovernmental Panel on Climate Change (IPCC) report is presented. The update discusses the atmospheric radiative and chemical species of significance for climate change. There are two major objectives of the present update. The first is an extension of the discussion on the Global Warming Potentials (GWP's), including a reevaluation in view of the updates in the lifetimes of the radiatively active species. The second important objective is to underscore major developments in the radiative forcing of climate due to the observed stratospheric ozone losses occurring between 1979 and 1990.

  5. Radiative forcing from the 1991 Mount Pinatubo volcanic eruption

    NASA Astrophysics Data System (ADS)

    Stenchikov, Georgiy L.; Kirchner, Ingo; Robock, Alan; Graf, Hans-F.; AntuñA, Juan Carlos; Grainger, R. G.; Lambert, Alyn; Thomason, Larry

    1998-06-01

    Volcanic sulfate aerosols in the stratosphere produce significant long-term solar and infrared radiative perturbations in the Earth's atmosphere and at the surface, which cause a response of the climate system. Here we study the fundamental process of the development of this volcanic radiative forcing, focusing on the eruption of Mount Pinatubo in the Philippines on June 15, 1991. We develop a spectral-, space-, and time-dependent set of aerosol parameters for 2 years after the Pinatubo eruption using a combination of SAGE II aerosol extinctions and UARS-retrieved effective radii, supported by SAM II, AVHRR, lidar and balloon observations. Using these data, we calculate the aerosol radiative forcing with the ECHAM4 general circulation model (GCM) for cases with climatological and observed sea surface temperature (SST), as well as with and without climate response. We find that the aerosol radiative forcing is not sensitive to the climate variations caused by SST or the atmospheric response to the aerosols, except in regions with varying dense cloudiness. The solar forcing in the near infrared contributes substantially to the total stratospheric heating. A complete formulation of radiative forcing should include not only changes of net fluxes at the tropopause but also the vertical distribution of atmospheric heating rates and the change of downward thermal and net solar radiative fluxes at the surface. These forcing and aerosol data are available for GCM experiments with any spatial and spectral resolution.

  6. Impact of aerosol radiative effects on 2000-2010 surface temperatures

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Shindell, D. T.; Lamarque, J. F.

    2015-10-01

    Aerosol radiative forcing from direct and indirect effects of aerosols is examined over the recent past (last 10-15 years) using updated sulfate aerosol emissions in two Earth System Models with very different surface temperature responses to aerosol forcing. The hypothesis is that aerosol forcing and in particular, the impact of indirect effects of aerosols on clouds (Aerosol-Cloud Interactions, or ACI), explains the recent `hiatus' in global mean surface temperature increases. Sulfate aerosol emissions increase globally from 2000 to 2005, and then decrease slightly to 2010. Thus the change in anthropogenic sulfate induced net global radiative forcing is small over the period. Regionally, there are statistically significant forcings that are similar in both models, and consistent with changes in simulated emissions and aerosol optical depth. Coupled model simulations are performed to look at impacts of the forcing on recent surface temperatures. Temperature response patterns in the models are similar, and reflect the regional radiative forcing. Pattern correlations indicate significant correlations between observed decadal surface temperature changes and simulated surface temperature changes from recent sulfate aerosol forcing in an equilibrium framework. Sulfate ACI might be a contributor to the spatial patterns of recent temperature forcing, but not to the global mean `hiatus' itself.

  7. Aerosol Indirect Forcing Dictated by Warm Low-Cloud

    NASA Astrophysics Data System (ADS)

    Christensen, M.; Chen, Y. C.; Stephens, G. L.

    2014-12-01

    Aerosol indirect forcing is one of the largest sources of uncertainty in estimating the extent of global warming. Increased aerosol levels can enhance the solar reflection from warm liquid clouds countering greenhouse gas warming. However, very little is actually known about the strength of the indirect effects for mixed-phase stratiform clouds as well as other cloud types such as cumulus, altocumulus, nimbostratus, deep convection, and cirrus. These mixed-phase cloud types are ubiquitous and typically overlooked in satellite estimates of the indirect forcing. In this study we assess the responses of each major cloud type to changes in aerosol loading and provide an estimate of their contribution to the global mean indirect forcing. Satellite data is collected from several co-located sensors in the A-train for the period starting in January of 2007 - 2010. Cloud layers are classified according to the 2B-CLDCLASS-LIDAR CloudSat product. Radiative fluxes are obtained from CERES (Clouds and the Earth's Radiant Energy System) and examined as a function of the aerosol loading obtained from MODIS (MODerate resolution Imaging Spectroradiometer) data. For low-level cloud regimes (e.g., stratus, stratocumulus, cumulus) we show that the longwave contribution to the net indirect effect is insignificant and dominated by changes in reflected shortwave radiation which also becomes insignificant as cloud top temperature decreases below 0°C. An increase in the aerosol loading in mixed-phase stratocumulus leads to more ice and precipitation that depletes cloud water and limits cloud brightening. For the more convective type clouds (e.g., altocumulus, nimbostratus, deep convection), increased aerosol loading can invigorate deep convection and promote deeper clouds with higher cloud albedo (cooling effect) and cloud tops that emit less longwave radiation to space (warming effect). As a consequence, the shortwave and longwave indirect radiative effects tend to cancel for the

  8. Aerosol Composition and Morphology during the 2005 Marine Stratus Radiation Aerosol and Drizzle Study

    SciTech Connect

    Berkowitz, Carl M.; Jobson, B Tom T.; Alexander, M. Lizabeth; Laskin, Alexander; Laulainen, Nels S.

    2005-12-01

    The composition and morphology of aerosols activated within cloud droplets relative to the properties of aerosols not activated is of central importance to studies directed at improved parameterization of the treatment of aerosols in large-scale models. These models have many applications, including evaluations of the impact of anthropogenic aerosols on climate. To further our understanding of these aerosol characteristics, scientists from the U.S. Department of Energy Atmospheric Science Program (ASP), joined forces with other participants of the Atmospheric Radiation Measurement (ARM) "Marine Stratus Radiation Aerosol and Drizzle Study" between July 4 and July 29, 2005, at Pt. Reyes, California. Observations from in situ aerosol instruments and from the ARM Mobile Facility will be combined in a first look at observations from this period. The in situ aerosol measurements included high time resolution data of size-resolved bulk composition (sulfate, nitrate, NH4, organics, etc.) and single particle analysis to determine elemental composition and morphology. A CCN counter was also deployed to measure the fraction of cloud droplet kernels that are CCN active over a range of super-saturations. Our presentation will partition measurements into periods of cloudy and cloud-free periods, and will also be partitioned between periods associated with northerly back trajectories that arrived at Pt. Reyes after passing along the Washington-Oregon coast, westerly oceanic trajectories and a very limited number of periods when the air flow appeared to be associated with urban areas to the south and southeast.

  9. Global Aerosol Direct Radiative Effect From CALIOP and C3M

    NASA Technical Reports Server (NTRS)

    Winker, Dave; Kato, Seiji; Tackett, Jason

    2015-01-01

    Aerosols are responsible for the largest uncertainties in current estimates of climate forcing. These uncertainties are due in part to the limited abilities of passive sensors to retrieve aerosols in cloudy skies. We use a dataset which merges CALIOP observations together with other A-train observations to estimate aerosol radiative effects in cloudy skies as well as in cloud-free skies. The results can be used to quantify the reduction of aerosol radiative effects in cloudy skies relative to clear skies and to reduce current uncertainties in aerosol radiative effects.

  10. Estimation of mineral dust direct radiative forcing at the European Aerosol Research Lidar NETwork site of Lecce, Italy, during the ChArMEx/ADRIMED summer 2013 campaign: Impact of radiative transfer model spectral resolutions

    NASA Astrophysics Data System (ADS)

    Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria Rita; Comeron, Adolfo

    2016-09-01

    A field campaign took place in the western and central Mediterranean basin on June-July 2013 in the framework of the ChArMEx (Chemistry-Aerosol Mediterranean Experiment, http://charmex.lsce.ipsl.fr/)/ADRIMED (Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region, http://adrimed.sedoo.fr/) project to characterize the aerosol direct radiative forcing (DRF) over the Mediterranean. This work focuses on the aerosol DRF estimations at Lecce (40.33°N; 18.11°E; 30 m above sea level) during the Saharan dust outbreak that affected southern Italy from 20 to 24 June 2013. The Global Atmospheric Model (GAME) and the Two-Stream (TS) model were used to calculate the instantaneous aerosol DRF in the short-wave (SW) and long-wave (LW) spectral ranges, at the surface and at the top of the atmosphere (TOA). The main differences between the two models were due to the different numerical methods to solve the radiative transfer (RT) equations and to the more detailed spectral resolution of GAME compared to that of TS. 167 and 115 subbands were used by GAME in the 0.3-4 and 4-37 µm spectral ranges, respectively. Conversely, the TS model used 8 and 11 subbands in the same spectral ranges, respectively. We found on 22 June that the SW-DRFs from the two models were in good agreement, both at the TOA and at the surface. The instantaneous SW-DRFs at the surface and at the TOA varied from -50 to -34 W m-2 and from -6 to +8 W m-2, respectively, while the surface and TOA LW-DRFs ranged between +3.5 and +8.0 W m-2 and between +1.7 and +6.9 W m-2, respectively. In particular, both models provided positive TOA SW-DRFs at solar zenith angles smaller than 25° because of the mixing of the desert dust with anthropogenic pollution during its transport to the study site. In contrast, the TS model overestimated the GAME LW-DRF up to about 5 and 7.5 times at the surface and at the TOA, respectively, when the dust particle contribution was largest. The low spectral

  11. Global fine-mode aerosol radiative effect, as constrained by comprehensive observations

    NASA Astrophysics Data System (ADS)

    Chung, Chul E.; Chu, Jung-Eun; Lee, Yunha; van Noije, Twan; Jeoung, Hwayoung; Ha, Kyung-Ja; Marks, Marguerite

    2016-07-01

    Aerosols directly affect the radiative balance of the Earth through the absorption and scattering of solar radiation. Although the contributions of absorption (heating) and scattering (cooling) of sunlight have proved difficult to quantify, the consensus is that anthropogenic aerosols cool the climate, partially offsetting the warming by rising greenhouse gas concentrations. Recent estimates of global direct anthropogenic aerosol radiative forcing (i.e., global radiative forcing due to aerosol-radiation interactions) are -0.35 ± 0.5 W m-2, and these estimates depend heavily on aerosol simulation. Here, we integrate a comprehensive suite of satellite and ground-based observations to constrain total aerosol optical depth (AOD), its fine-mode fraction, the vertical distribution of aerosols and clouds, and the collocation of clouds and overlying aerosols. We find that the direct fine-mode aerosol radiative effect is -0.46 W m-2 (-0.54 to -0.39 W m-2). Fine-mode aerosols include sea salt and dust aerosols, and we find that these natural aerosols result in a very large cooling (-0.44 to -0.26 W m-2) when constrained by observations. When the contribution of these natural aerosols is subtracted from the fine-mode radiative effect, the net becomes -0.11 (-0.28 to +0.05) W m-2. This net arises from total (natural + anthropogenic) carbonaceous, sulfate and nitrate aerosols, which suggests that global direct anthropogenic aerosol radiative forcing is less negative than -0.35 W m-2.

  12. Cloud Scavenging Effects on Aerosol Radiative and Cloud-nucleating Properties - Final Technical Report

    SciTech Connect

    Ogren, John A.; Sheridan, Patrick S.; Andrews, Elisabeth

    2009-03-05

    The optical properties of aerosol particles are the controlling factors in determining direct aerosol radiative forcing. These optical properties depend on the chemical composition and size distribution of the aerosol particles, which can change due to various processes during the particles’ lifetime in the atmosphere. Over the course of this project we have studied how cloud processing of atmospheric aerosol changes the aerosol optical properties. A counterflow virtual impactor was used to separate cloud drops from interstitial aerosol and parallel aerosol systems were used to measure the optical properties of the interstitial and cloud-scavenged aerosol. Specifically, aerosol light scattering, back-scattering and absorption were measured and used to derive radiatively significant parameters such as aerosol single scattering albedo and backscatter fraction for cloud-scavenged and interstitial aerosol. This data allows us to demonstrate that the radiative properties of cloud-processed aerosol can be quite different than pre-cloud aerosol. These differences can be used to improve the parameterization of aerosol forcing in climate models.

  13. Aerosol properties and associated radiative effects over Cairo (Egypt)

    NASA Astrophysics Data System (ADS)

    El-Metwally, M.; Alfaro, S. C.; Wahab, M. M. Abdel; Favez, O.; Mohamed, Z.; Chatenet, B.

    2011-02-01

    Cairo is one of the largest megacities in the World and the particle load of its atmosphere is known to be particularly important. In this work we aim at assessing the temporal variability of the aerosol's characteristics and the magnitude of its impacts on the transfer of solar radiation. For this we use the level 2 quality assured products obtained by inversion of the instantaneous AERONET sunphotometer measurements performed in Cairo during the Cairo Aerosol CHaracterization Experiment (CACHE), which lasted from the end of October 2004 to the end of March 2006. The analysis of the temporal variation of the aerosol's optical depth (AOD) and spectral dependence suggests that the aerosol is generally a mixture of at least 3 main components differing in composition and size. This is confirmed by the detailed analysis of the monthly-averaged size distributions and associated optical properties (single scattering albedo and asymmetry parameter). The components of the aerosol are found to be 1) a highly absorbing background aerosol produced by daily activities (traffic, industry), 2) an additional, 'pollution' component produced by the burning of agricultural wastes in the Nile delta, and 3) a coarse desert dust component. In July, an enhancement of the accumulation mode is observed due to the atmospheric stability favoring its building up and possibly to secondary aerosols being produced by active photochemistry. More generally, the time variability of the aerosol's characteristics is due to the combined effects of meteorological factors and seasonal production processes. Because of the large values of the AOD achieved during the desert dust and biomass burning episodes, the instantaneous aerosol radiative forcing (RF) at both the top (TOA) and bottom (BOA) of the atmosphere is maximal during these events. For instance, during the desert dust storm of April 8, 2005 RF BOA, RF TOA, and the corresponding atmospheric heating rate peaked at - 161.7 W/m 2, - 65.8 W/m 2

  14. Uncertainty requirements in radiative forcing of climate change.

    PubMed

    Schwartz, Stephen E

    2004-11-01

    The continuing increase in atmospheric carbon dioxide (CO2) makes it essential that climate sensitivity, the equilibrium change in global mean surface temperature that would result from a given radiative forcing, be quantified with known uncertainty. Present estimates are quite uncertain, 3 +/- 1.5 K for doubling of CO2. Model studies examining climate response to forcing by greenhouse gases and aerosols exhibit large differences in sensitivities and imposed aerosol forcings that raise questions regarding claims of their having reproduced observed large-scale changes in surface temperature over the 20th century. Present uncertainty in forcing, caused largely by uncertainty in forcing by aerosols, precludes meaningful model evaluation by comparison with observed global temperature change or empirical determination of climate sensitivity. Uncertainty in aerosol forcing must be reduced at least three-fold for uncertainty in climate sensitivity to be meaningfully reduced and bounded.

  15. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2016-06-13

    storm activity, and 4) surface and airborne measurements on the west coast of the U.S. indicate the presence of aerosols and dust on the predicted...observables (in situ and satellites) and model quantities such as mass. Aerosol species currently included in the analyses are dust , pollution, biomass...Prediction System ( COAMPS ®). Over the next several years it is the goal of this project to maintain these systems as the world leaders in EO prediction

  16. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2016-06-07

    for dust storm forecasting and analysis, AGU Fall Meeting, San Francisco, CA. Dec. 11-15, 2002 [Published]. Reid, J.S., J.R. Cook, D.L. Westphal...Persian Gulf/Arabian Sea, East Asia, and some parts of the Mediterranean Sea. Along coastal regions, dust , pollution and smoke can be present and...transitioned from the combined Marine Aerosol and Dust Aerosol programs from SPAWAR Systems Center San Diego (SSC-SD) to the Naval Research Laboratory

  17. Asian Monsoon Changes and the Role of Aerosol and Greenhouse Gas Forcing

    NASA Astrophysics Data System (ADS)

    Ting, M.; Li, X.

    2015-12-01

    Changes in Asian summer (June to August) monsoon in response to aerosol and greenhouse gas forcing are examined using observations and the Coupled Model Intercomparison Project - Phase 5 (CMIP5) multi-model, multi-realization ensemble. Results show that during the historical period, CMIP5 models show a predominantly drying trend in Asian monsoon, while in the 21st Century under representative concentration pathway 8.5 (rcp8.5) scenario, monsoon rainfall enhances across the entire Asian domain. The thermodynamic and dynamic mechanisms causing the changes are evaluated using the moisture budget analysis. The drying trend in the CMIP5 historical simulations and the wetting trend in the rcp8.5 projections can be explained by the relative importance of dynamical and thermodynamical contributions to the total moisture convergence. While thermodynamic mechanism dominates in the future, the historical rainfall changes are dominated by the changes in circulation. The relative contributions of aerosols and greenhouse gases (GHGs) on the historical monsoon change are further examined using CMIP5 single-forcing simulations. Rainfall reduces under aerosol forcing and increases under greenhouse gas (GHG) forcing. Aerosol forcing dominates over the greenhouse effect during the historical period, leading to the general drying trend in the all-forcing simulations. While the thermodynamic change of mean moisture convergence in the all-forcing case is dominated by the GHG forcing, the dynamic change in mean moisture convergence in the all-forcing case is dominated by the aerosol forcing. Further analysis using atmospheric GCM with prescribed aerosol and GHG radiative forcing versus those with the prescribed sea surface temperature (SST) warming suggests that the weak circulation changes due to GHG forcing is a result of the cancellation between CO2 radiative forcing and the SST warming, while aerosol radiative effect tends to enhance the circulation response due to SST forcing.

  18. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, R. A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.; Condon, Estelle (Technical Monitor)

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative Forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting, future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols. Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects. TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites, as illustrated in Figure 1. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux chances, or radiative forcing, from the satellite-measured radiances or 'etrieved optical depths remains a difficult challenge. In this paper we summarize key Initial results from TARFOX and, to a lesser extent ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle and high latitudes.

  19. North Atlantic Aerosol Properties and Direct Radiative Effects: Key Results from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Livingston, J. M.; Schmid, B.; Bergstrom, Robert A.; Hignett, P.; Hobbs, P. V.; Durkee, P. A.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate In potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the observed climate change of the past century and in predicting future climate. To help reduce this uncertainty, the International Global Atmospheric Chemistry Project (IGAC) has endorsed a series of multiplatform aerosol field campaigns. The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the second Aerosol Characterization Experiment (ACE-2) were the first IGAC campaigns to address the impact of anthropogenic aerosols, Both TARFOX and ACE-2 gathered extensive data sets on aerosol properties and radiative effects, TARFOX focused on the urban-industrial haze plume flowing from the eastern United States over the western Atlantic Ocean, whereas ACE-2 studied aerosols carried over the eastern Atlantic from both European urban/industrial and African mineral sources. These aerosols often have a marked influence on the top-of-atmosphere radiances measured by satellites. Shown there are contours of aerosol optical depth derived from radiances measured by the AVHRR sensor on the NOAA-11 satellite. The contours readily show that aerosols originating in North America, Europe, and Africa impact the radiative properties of air over the North Atlantic. However, the accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved optical depths remains a difficult challenge. In this paper we summarize key initial results from TARFOX and, to a lesser extent, ACE-2, with a focus on those results that allow an improved assessment of the flux changes caused by North Atlantic aerosols at middle latitudes.

  20. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2005-09-30

    from the massive dust storm that occurred at the start of Operation Iraqi Freedom in late March 2003, may have been sampled during ADAM. COAMPS ...Along coastal and even some deep ocean regions, dust , pollution and smoke are often present and can dominate Electro-Optical (EO) effects over... COAMPS ®1) and the NRL Aerosol Analysis and Prediction System (NAAPS) require precise source and sink functions, as well as parameterizations for particle

  1. Possible Influence of Anthropogenic Aerosols on Cirrus Clouds and Anthropogenic Forcing

    SciTech Connect

    Penner, Joyce E.; Chen, Yang; Wang, Minghuai; Liu, Xiaohong

    2009-02-03

    Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth’s area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We find that fossil fuel and biomass burning soot aerosols exert a radiative forcing of -0.68 to 0.01 Wm-2 while anthropogenic sulfate aerosols exert a forcing of -0.01 to 0.18 Wm-2. Our calculations show that the sign of the forcing by aircraft soot depends on the model configuration and can be both positive or negative, ranging from -0.16 to 0.02 Wm-2. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  2. Internally Consistent MODIS Estimate of Aerosol Clear-Sky Radiative Effect Over the Global Oceans

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine A.; Kaufman, Yoram J.

    2004-01-01

    Modern satellite remote sensing, and in particular the MODerate resolution Imaging Spectroradiometer (MODIS), offers a measurement-based pathway to estimate global aerosol radiative effects and aerosol radiative forcing. Over the Oceans, MODIS retrieves the total aerosol optical thickness, but also reports which combination of the 9 different aerosol models was used to obtain the retrieval. Each of the 9 models is characterized by a size distribution and complex refractive index, which through Mie calculations correspond to a unique set of single scattering albedo, assymetry parameter and spectral extinction for each model. The combination of these sets of optical parameters weighted by the optical thickness attributed to each model in the retrieval produces the best fit to the observed radiances at the top of the atmosphere. Thus the MODIS Ocean aerosol retrieval provides us with (1) An observed distribution of global aerosol loading, and (2) An internally-consistent, observed, distribution of aerosol optical models that when used in combination will best represent the radiances at the top of the atmosphere. We use these two observed global distributions to initialize the column climate model by Chou and Suarez to calculate the aerosol radiative effect at top of the atmosphere and the radiative efficiency of the aerosols over the global oceans. We apply the analysis to 3 years of MODIS retrievals from the Terra satellite and produce global and regional, seasonally varying, estimates of aerosol radiative effect over the clear-sky oceans.

  3. Improved aerosol radiative properties as a foundation for solar geoengineering risk assessment

    NASA Astrophysics Data System (ADS)

    Dykema, J. A.; Keith, D. W.; Keutsch, F. N.

    2016-07-01

    Side effects resulting from the deliberate injection of sulfate aerosols intended to partially offset climate change have motivated the investigation of alternatives, including solid aerosol materials. Sulfate aerosols warm the tropical tropopause layer, increasing the flux of water vapor into the stratosphere, accelerating ozone loss, and increasing radiative forcing. The high refractive index of some solid materials may lead to reduction in these risks. We present a new analysis of the scattering efficiency and absorption of a range of candidate solid aerosols. We utilize a comprehensive radiative transfer model driven by updated, physically consistent estimates of optical properties. We compute the potential increase in stratospheric water vapor and associated longwave radiative forcing. We find that the stratospheric heating calculated in this analysis indicates some materials to be substantially riskier than previous work. We also find that there are Earth-abundant materials that may reduce some principal known risks relative to sulfate aerosols.

  4. Aerosols: Non-CO2 Non-Greenhouse Non-Gas Forcing

    NASA Astrophysics Data System (ADS)

    Schwartz, S. E.

    2005-05-01

    Tropospheric aerosols influence Earth's radiation budget and climate by scattering and absorbing solar radiation (direct effects) and by modifying the reflectivity and extent of clouds (indirect effects). While aerosol forcing is arguably less important from a policy perspective than greenhouse gas forcing because of the short residence times of these aerosols (about a week) compared to the lifetimes of the well mixed greenhouse gases (decades to centuries), knowledge of aerosol forcing over the industrial period is essential to empirical inference of Earth's climate sensitivity from temperature change over this period and to evaluation of the performance of climate model simulations over this period. Accuracy in global-average forcing by anthropogenic aerosols required for these purposes is estimated to be ~0.5 w m-2 [Schwartz, J. Air Waste Management Assoc. 54, 1351-1359 (2004)]. For an accumulation-mode (radius 50-1000 nm) scattering aerosol above a dark surface the forcing per optical depth (at 550 nm) during daylight hours for cloud-free sky is 50 to 100 W m-2. Such a forcing intensity implies, taking into account 50% nighttime and ~50% cloud cover, that global average optical depth of anthropogenic aerosol must be known to 0.02 - 0.04, an accuracy achievable by careful ground-based measurements, but which would be difficult to achieve globally because of high spatial and temporal variation. Top-of-atmosphere forcing for a given optical depth is sensitive also to single scattering albedo, size distribution (as manifested in asymmetry parameter, backscatter fraction, or Angstrom exponent) and surface reflectance; these sensitivities are examined here. It is necessary as well to determine the fraction of forcing that is due to anthropogenic aerosol. Similar considerations apply to aerosol indirect forcing, which depends to first approximation on the number concentration of cloud condensation nuclei as a function of applied supersaturation, which depends on the

  5. Force approach to radiation reaction

    SciTech Connect

    López, Gustavo V.

    2016-02-15

    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion of a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.

  6. Force approach to radiation reaction

    NASA Astrophysics Data System (ADS)

    López, Gustavo V.

    2016-02-01

    The difficulty of the usual approach to deal with the radiation reaction is pointed out, and under the condition that the radiation force must be a function of the external force and is zero whenever the external force be zero, a new and straightforward approach to radiation reaction force and damping is proposed. Starting from the Larmor formula for the power radiated by an accelerated charged particle, written in terms of the applied force instead of the acceleration, an expression for the radiation force is established in general, and applied to the examples for the linear and circular motion of a charged particle. This expression is quadratic in the magnitude of the applied force, inversely proportional to the speed of the charged particle, and directed opposite to the velocity vector. This force approach may contribute to the solution of the very old problem of incorporating the radiation reaction to the motion of the charged particles, and future experiments may tell us whether or not this approach point is in the right direction.

  7. Long-term AOD timeseries by Precision Filter Radiometer and assessment of radiative forcing due to the aerosol direct effect at four sites in Switzerland over the last two decades.

    NASA Astrophysics Data System (ADS)

    Martucci, Giovanni; Vuilleumier, Laurent

    2016-04-01

    In association with the WMO GAW Precision Filter Radiometer network, MeteoSwiss operates four automatic stations measuring the direct solar irradiance in 16 narrow spectral bands within the range 305-1024 nm since 1998. The four sites are (i) Payerne (timeseries 2002-2016), characterized by rural environment (Swiss plateau), (ii) Davos (timeseries 1998-2016), characterized by alpine environment, (iii) Jungfraujoch (timeseries 1999-2016), characterized by alpine environment and partial free tropospheric conditions (mainly in winter, Hermann et al, 2015), and (iv) Locarno-Monti (timeseries 2001-2016), characterized by semi-alpine and urban environment (southern side of the Swiss-Italian Alps). WE present the long-term, almost uninterrupted, timeseries of Aerosol Optical Depth (AOD) in the spectral range 368-1024 nm that has been calculated for each of the four sites along the last two decades. Additionally, we present a study of the trends over almost twenty years of the AOD at different wavelengths. Based on the simulations of the LibRadtran software package for radiative transfer calculations (Meyer and Kylling, 2005) and on the PFR-based timeseries of AOD it has been possible to assess the radiative forcing due to the direct effect of aerosols over Switzerland since 1998.

  8. North Atlantic Aerosol Properties for Radiative Impact Assessments. Derived from Column Closure Analyses in TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, Philip A.; Bergstrom, Robert A.; Schmid, Beat; Livingston, John M.

    2000-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that can change the climate in potentially significant ways. This aerosol radiative forcing is a major source of uncertainty in understanding the climate change of the past century and predicting future climate. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the 1997 Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of aerosols over the Atlantic Ocean. Both experiments used remote and in situ measurements from aircraft and the surface, coordinated with overpasses by a variety of satellite radiometers. TARFOX focused on the urban-industrial haze plume flowing from the United States over the western Atlantic, whereas ACE-2 studied aerosols over the eastern Atlantic from both Europe and Africa. These aerosols often have a marked impact on satellite-measured radiances. However, accurate derivation of flux changes, or radiative forcing, from the satellite measured radiances or retrieved aerosol optical depths (AODs) remains a difficult challenge. Here we summarize key initial results from TARFOX and ACE-2, with a focus on closure analyses that yield aerosol microphysical models for use in improved assessments of flux changes. We show how one such model gives computed radiative flux sensitivities (dF/dAOD) that agree with values measured in TARFOX and preliminary values computed for the polluted marine boundary layer in ACE-2. A companion paper uses the model to compute aerosol-induced flux changes over the North Atlantic from AVHRR-derived AOD fields.

  9. Aerosol Forcing of Climate Change and "Anomalous" Atmospheric Absorption

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    1999-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well-measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. We will focus on the role of aerosols as a climate forcing mechanism and the contribution that aerosols might make to the so- called "anomalous" atmospheric absorption that has been inferred from some atmospheric measurements.

  10. Aerosol Forcing of Climate Change and Anomalous Atmospheric Absorption

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change, Anthropogenic greenhouse gases (GHGs), which are well-measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. We will focus on the role of aerosols as a climate forcing mechanism and the contribution that aerosols might make to the so-called "anomalous" atmospheric absorption that has been inferred from some atmospheric measurements.

  11. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    EPA Science Inventory

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  12. Stratospheric Aerosols for Solar Radiation Management

    NASA Astrophysics Data System (ADS)

    Kravitz, Ben

    SRM in the context of this entry involves placing a large amount of aerosols in the stratosphere to reduce the amount of solar radiation reaching the surface, thereby cooling the surface and counteracting some of the warming from anthropogenic greenhouse gases. The way this is accomplished depends on the specific aerosol used, but the basic mechanism involves backscattering and absorbing certain amounts of solar radiation aloft. Since warming from greenhouse gases is due to longwave (thermal) emission, compensating for this warming by reduction of shortwave (solar) energy is inherently imperfect, meaning SRM will have climate effects that are different from the effects of climate change. This will likely manifest in the form of regional inequalities, in that, similarly to climate change, some regions will benefit from SRM, while some will be adversely affected, viewed both in the context of present climate and a climate with high CO2 concentrations. These effects are highly dependent upon the means of SRM, including the type of aerosol to be used, the particle size and other microphysical concerns, and the methods by which the aerosol is placed in the stratosphere. SRM has never been performed, nor has deployment been tested, so the research up to this point has serious gaps. The amount of aerosols required is large enough that SRM would require a major engineering endeavor, although SRM is potentially cheap enough that it could be conducted unilaterally. Methods of governance must be in place before deployment is attempted, should deployment even be desired. Research in public policy, ethics, and economics, as well as many other disciplines, will be essential to the decision-making process. SRM is only a palliative treatment for climate change, and it is best viewed as part of a portfolio of responses, including mitigation, adaptation, and possibly CDR. At most, SRM is insurance against dangerous consequences that are directly due to increased surface air

  13. “Modeling Trends in Aerosol Direct Radiative Effects over the Northern Hemisphere using a Coupled Meteorology-Chemistry Model”

    EPA Science Inventory

    While aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challengi...

  14. The Impact of Aerosols Generated from Biomass Burning, Dust Storms, and Volcanoes Upon the Earth's Radiative Energy Budget

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.

    1997-01-01

    A new technique for detecting aerosols from biomass burning and dust is developed. The radiative forcing of aerosols is estimated over four major ecosystems in South America. A new smoke and fire detection scheme is developed for biomass burning aerosols over South America. Surface shortware irradiance calculations are developed in the presence of biomass burning aerosols during the SCAR-B experiment. This new approach utilizes ground based, aircraft, and satellite measurements.

  15. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-06-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high latitude effects result from robust enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. While there is significant ensemble variability in the high latitude response to each aerosol forcing set, the mean response is sensitive to the forcing set used. Significant differences, for example, are found in the NH polar stratosphere temperature and zonal wind response to two different forcing data sets constructed from different versions of SAGE II aerosol observations. Significant strengthening of the polar vortex, in rough agreement with the expected response, is achieved only using aerosol forcing extracted from prior coupled aerosol-climate model simulations. Differences in the dynamical response to the different forcing sets used imply that reproducing

  16. Megacity Radiative Forcing: A Mexico City Case Study

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Olsen, S.; Mazzoleni, C.; Chylek, P.; Zhang, Y.; Randerson, J. T.; Horowitz, L.

    2007-05-01

    We assess the radiative forcing of the largest megacity in North America, Mexico City. While particular aspects of the regional environmental impacts of cities on their surroundings have been thoroughly investigated, e.g., air quality and acid rain, relatively little effort has been focused on the net radiative impact of a megacity on global climate. The range of radiative impacts from a megacity covers many spatial and temporal scales from short-term regional-scale effects due to aerosols and relatively short-lived gases (ozone) to long-term global-scale impacts due to longer-lived trace gases (e.g., carbon dioxide, methane). In this study we combine chemistry-transport model simulations from the Model for Ozone And Related Chemical Tracers (MOZART-2) with in situ and satellite observations from the Aerosol Robotic Network (AERONET) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to calculate the global radiative forcing of megacity emissions. We also explore the radiative impact of various emission control strategies that focus on improving regional air quality. Our results suggest that the warming by greenhouse gases like carbon dioxide and ozone can be moderated or exacerbated by aerosols depending on their optical properties. As the size and number of megacities increase and clean air regulations are implemented, metrics such as the net radiative forcing may become increasingly important in comparing the impact of urban centers and assessing the trade-offs between improving local air quality and minimizing global radiative impacts.

  17. Impact of the oxidant chemistry description on direct and indirect aerosol forcing estimates

    NASA Astrophysics Data System (ADS)

    Olivié, D.; Sand, M.; Berntsen, T.; Seland; Kirkevåg, A.; Iversen, T.

    2011-12-01

    Sulfate aerosol is formed as a consequence of the oxidation of dimethyl sulfide (DMS) and sulfur dioxide (SO2) by the hydroxyl radical (OH), ozone (O3), hydrogen peroxide (H2O2) and the nitrate radical (NO3). In addition, the amount of particulate organic matter (POM) is also influenced by the atmospheric oxidant concentrations. Oxidant levels can therefore have a considerable impact on aerosols and on their direct and indirect forcing. Here we study the impact of the description of these oxidation reactions. The model which is used is the CAM-Oslo model, which contains an aerosol module describing the evolution of DMS, SO2, sea-salt, dust, BC, POM, and sulfate. It also describes the interaction of the aerosols with radiation and clouds, and therefore gives estimates of the direct and indirect forcing of aerosols. In the standard version of the aerosol module, the oxidation rates are calculated using prescribed monthly fields of OH, O3, H2O2 and NO3. In the new version, we use oxidant fields calculated on-line by a full tropospheric chemistry scheme. On-line OH, O3, H2O2 and NO3 distributions induce both lower sulfate concentrations (-10 %) and lower POM concentrations (-2.5 %). The impact on the direct and indirect forcing is +0.065 and +0.185 W/m2 respectively, underlining the importance of the oxidant description for the estimation of the direct and indirect aerosol forcing.

  18. Aerosol and ozone changes as forcing for climate evolution between 1850 and 2100

    NASA Astrophysics Data System (ADS)

    Szopa, Sophie; Balkanski, Y.; Schulz, M.; Bekki, S.; Cugnet, D.; Fortems-Cheiney, A.; Turquety, S.; Cozic, A.; Déandreis, C.; Hauglustaine, D.; Idelkadi, A.; Lathière, J.; Lefevre, F.; Marchand, M.; Vuolo, R.; Yan, N.; Dufresne, J.-L.

    2013-05-01

    Global aerosol and ozone distributions and their associated radiative forcings were simulated between 1850 and 2100 following a recent historical emission dataset and under the representative concentration pathways (RCP) for the future. These simulations were used in an Earth System Model to account for the changes in both radiatively and chemically active compounds, when simulating the climate evolution. The past negative stratospheric ozone trends result in a negative climate forcing culminating at -0.15 W m-2 in the 1990s. In the meantime, the tropospheric ozone burden increase generates a positive climate forcing peaking at 0.41 W m-2. The future evolution of ozone strongly depends on the RCP scenario considered. In RCP4.5 and RCP6.0, the evolution of both stratospheric and tropospheric ozone generate relatively weak radiative forcing changes until 2060-2070 followed by a relative 30 % decrease in radiative forcing by 2100. In contrast, RCP8.5 and RCP2.6 model projections exhibit strongly different ozone radiative forcing trajectories. In the RCP2.6 scenario, both effects (stratospheric ozone, a negative forcing, and tropospheric ozone, a positive forcing) decline towards 1950s values while they both get stronger in the RCP8.5 scenario. Over the twentieth century, the evolution of the total aerosol burden is characterized by a strong increase after World War II until the middle of the 1980s followed by a stabilization during the last decade due to the strong decrease in sulfates in OECD countries since the 1970s. The cooling effects reach their maximal values in 1980, with -0.34 and -0.28 W m-2 respectively for direct and indirect total radiative forcings. According to the RCP scenarios, the aerosol content, after peaking around 2010, is projected to decline strongly and monotonically during the twenty-first century for the RCP8.5, 4.5 and 2.6 scenarios. While for RCP6.0 the decline occurs later, after peaking around 2050. As a consequence the relative

  19. Black carbon radiative forcing at TOA decreased during aging

    NASA Astrophysics Data System (ADS)

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-01

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  20. Black carbon radiative forcing at TOA decreased during aging

    PubMed Central

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-01-01

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change. PMID:27917943

  1. Black carbon radiative forcing at TOA decreased during aging.

    PubMed

    Wu, Yu; Cheng, Tianhai; Zheng, Lijuan; Chen, Hao

    2016-12-05

    During aging processing, black carbon (also called soot) particles may tend to be mixed with other aerosols, and highly influence their radiative forcing. In this study, freshly emitted soot particles were simulated as fractal aggregates composed of small spherical primary monomers. After aging in the atmosphere, soot monomers were coated by a thinly layer of sulfate as thinly coated soot particles. These soot particles were entirely embedded into large sulfate particle by further aging, and becoming heavily coated soot particles. In clear-sky conditions, black carbon radiative forcing with different aging states were investigated for the bottom and top of atmosphere (BOA and TOA). The simulations showed that black carbon radiative forcing increased at BOA and decreased at TOA after their aging processes. Thinly and heavily coated states increased up to ~12% and ~35% black carbon radiative forcing at BOA, and black carbon radiative forcing at TOA can reach to ~20% and ~100% smaller for thinly and heavily coated states than those of freshly emitted states, respectively. The effect of aging states of black carbon radiative forcing was varied with surface albedo, aerosol optical depth and solar zenith angles. These findings would be helpful for the assessments of climate change.

  2. Radiative Effects of Aerosols Generated from Biomass Burning, Dust Storms, and Forest Fires

    NASA Technical Reports Server (NTRS)

    Christopher Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1996-01-01

    Atmospheric aerosol particles, both natural and anthropogenic, are important to the earth's radiative balance. They scatter the incoming solar radiation and modify the shortwave reflective properties of clouds by acting as Cloud Condensation Nuclei (CCN). Although it has been recognized that aerosols exert a net cooling influence on climate (Twomey et al. 1984), this effect has received much less attention than the radiative forcings due to clouds and greenhouse gases. The radiative forcing due to aerosols is comparable in magnitude to current anthropogenic greenhouse gas forcing but opposite in sign (Houghton et al. 1990). Atmospheric aerosol particles generated from biomass burning, dust storms and forest fires are important regional climatic variables. A recent study by Penner et al. (1992) proposed that smoke particles from biomass burning may have a significant impact on the global radiation balance. They estimate that about 114 Tg of smoke is produced per year in the tropics through biomass burning. The direct and indirect effects of smoke aerosol due to biomass burning could add up globally to a cooling effect as large as 2 W/sq m. Ackerman and Chung (1992) used model calculations and the Earth Radiation Budget Experiment (ERBE) data to show that in comparison to clear days, the heavy dust loading over the Saudi Arabian peninsula can change the Top of the Atmosphere (TOA) clear sky shortwave and longwave radiant exitance by 40-90 W/sq m and 5-20 W/sq m, respectively. Large particle concentrations produced from these types of events often are found with optical thicknesses greater than one. These aerosol particles are transported across considerable distances from the source (Fraser et al. 1984). and they could perturb the radiative balance significantly. In this study, the regional radiative effects of aerosols produced from biomass burning, dust storms and forest fires are examined using the Advanced Very High Resolution Radiometer (AVHRR) Local Area

  3. Radiative forcing in the ACCMIP historical and future climate simulations

    SciTech Connect

    Shindell, D. T.; Lamarque, J. -F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R.; Sudo, K.; Szopa, S.; Takemura, T.; Voulgarakis, A.; Yoon, J. -H.; Lo, F.

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) examined the short-lived drivers of climate change in current climate models. Here we evaluate the 10 ACCMIP models that included aerosols, 8 of which also participated in the Coupled Model Intercomparison Project phase 5 (CMIP5). The models reproduce present-day total aerosol optical depth (AOD) relatively well, though many are biased low. Contributions from individual aerosol components are quite different, however, and most models underestimate east Asian AOD. The models capture most 1980-2000 AOD trends well, but underpredict increases over the Yellow/Eastern Sea. They strongly underestimate absorbing AOD in many regions. We examine both the direct radiative forcing (RF) and the forcing including rapid adjustments (effective radiative forcing; ERF, including direct and indirect effects). The models’ all-sky 1850 to 2000 global mean annual average total aerosol RF is (mean; range) -0.26Wm-2-2. Screening based on model skill in capturing observed AOD yields a best estimate of -0.42Wm-2-2aerosol components in some models. Many ACCMIP and CMIP5 models appear to produce substantially smaller aerosol RF than this best estimate. Climate feedbacks contribute substantially (35 to -58 %) to modeled historical aerosol RF. The 1850 to 2000 aerosol ERF is -1.17Wm-2-2forcing than direct RF. Despite this, the multi-model spread relative to the mean is typically the same for ERF as it is for RF, or even smaller, over areas with substantial forcing. The largest 1850 to 2000 negative aerosol RF and ERF values are over and near Europe, south and east Asia and North America. ERF, however, is positive over the Sahara, the Karakoram, high Southern latitudes and especially the Arctic. Global

  4. Direct shortwave forcing of climate by anthropogenic sulfate aerosol: Sensitivity to particle size, composition, and relative humidity

    SciTech Connect

    Nemesure, S.; Wagener, R.; Schwartz, S.E.

    1996-04-01

    Recent estimates of global or hemispheric average forcing of climate by anthropogenic sulfate aerosol due to scattering of shortwave radiation are uncertain by more than a factor of 2. This paper examines the sensitivity of forcing to these microphysical properties for the purposes of obtaining a better understanding of the properties required to reduce the uncertainty in the forcing.

  5. Megacity Radiative Forcing: A Mexico City Case Study

    NASA Astrophysics Data System (ADS)

    Olsen, S. C.; Dubey, M. K.; Chylek, P.; Mazzoleni, C.; Zhang, Y.; Randerson, J. T.; Horowitz, L.

    2006-12-01

    We assess the radiative forcing budget of the largest megacity in North America, Mexico City. While particular aspects of the regional environmental impacts of cities on their surroundings have been thoroughly investigated, e.g., air quality and acid rain, relatively little effort has been focused on the net radiative impact of a megacity on global climate. The range of radiative impacts from a megacity covers many spatial and temporal scales from short-term regional-scale effects due to aerosols and relatively short-lived gases (O3) to long-term global-scale impacts due to long-lived trace gases (e.g., CH4, CO2). In this study we use both bottom-up and top-down approaches to evaluate these radiative forcings. From the bottom up we utilize emission inventories and the Model for Ozone And Related Chemical Tracers (MOZART-2) chemistry-aerosol model. From the top down we use observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, the Aerosol Robotic Network (AERONET), and in situ aerosol single scattering albedo measurements collected during the Megacity Initiative-Local and Global Research Observations (MILAGRO) campaign. We also explore the radiative impact of various emission control strategies that focus on improving urban air quality. We show that the warming by greenhouse gases like CO2 and ozone can be moderated or exacerbated by aerosols depending on their optical properties. As the size and number of megacities increase and clean air regulations are implemented, metrics such as the net radiative forcing may become increasingly important in comparing the impact of urban centers and assessing pollution abatement policies.

  6. Advances in Quantifying the Radiative Effects of Aerosol Particles on Climate from Airborne Field Studies

    NASA Astrophysics Data System (ADS)

    Pilewskie, P.; Schmidt, K. S.; Coddington, O.; Bergstrom, R.; Redemann, J.

    2007-12-01

    In the fourth assessment report of the Intergovernmental Panel on Climate Change, large uncertainties persist in estimates of climate forcing by aerosol particles. One contributor to this uncertainty is the poorly quantified vertical distribution of solar radiation absorbed by aerosol particles, from the regional to global scale. Another is the spectral and spatial variability of surface albedo, an effect that can dominate the top-of-atmosphere perturbations due to aerosol scattering and absorption, particularly over land. Over the past three years a number of intensive airborne field experiments (ICARTT, MILAGRO, GoMACCS) have contributed significantly to our understanding of the impact of pollution outflow from urban-industrial centers on radiative forcing, using spectrally resolved radiometric measurements and novel observationally-based methods to derive forcing efficiency and flux divergence. We present an overview of some of the most significant advances in direct radiative forcing realized by these studies, and recommendations on where the greatest challenges remain. In addition we present findings from these experiments on the influence of aerosol particles on cloud radiative properties, a potentially greater effect but even more uncertain than direct radiative forcing.

  7. Atmospheric Feedbacks, Aerosol Forcings, and Tropical Precipitation Shifts

    NASA Astrophysics Data System (ADS)

    Hwang, Y.; Frierson, D. M.; Kang, S.

    2011-12-01

    It is well known that variations in climate sensitivity among global climate models (GCMs) are largely attributable to differences in atmospheric feedbacks that affect the top of the atmosphere radiation budget. Here, we demonstrate how the hemispheric asymmetry of these feedbacks influence cross-equatorial energy transport, and thus explain differences in models projection of tropical precipitation. The framework we use is based on fundamental energetic constraints of the system: since both moisture transports and energy transports within the deep tropical atmosphere are governed by the Hadley circulation, a southward shift of the intertropical conversion zone (ITCZ) is associated with a northward transport of moist static energy. This situation is typically associated with enhanced heating of the Southern Hemisphere, often due to hemispheric differences in aerosols, clouds, water vapor, surface albedo changes. We find that the ITCZ appears to shift southward in the 20th century in both rain gauges (GHCN) and reanalysis (20CRP) data. Most of the global climate models (GCMs) in the CMIP3 archive reproduce the direction of this shift. However, they all underestimate the shift with greatly varying degree. Using the energetic framework, we conclude that (1) aerosol cooling in the northern hemisphere shifts the ITCZ south in all of the GCMs (2) differences in feedbacks (particularly cloud feedbacks) in GCMs are responsible for the spread in the ITCZ shifts. This result emphasizes that biases in feedbacks and forcings will not only affect global mean temperature, but will also influence climate in various latitudes through energy transport.

  8. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2015-09-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (all anthropogenic, biomass burning and non-biomass burning) are investigated by performing sensitivity experiments. On the global scale, our results show that land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ~ 9 %. At the regional scale, plant productivity (GPP) and isoprene emission show a robust but opposite sensitivity to pollution aerosols, in regions where complex canopies dominate. In eastern North America and Europe, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +8-12 % on an annual average, with a stronger increase during the growing season (> 12 %). In the Amazon basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the Amazon basin during the dry-fire season (+5-8 %). In Europe and China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on the annual average. Anthropogenic aerosols affect land carbon fluxes via different mechanisms and we suggest that the dominant mechanism varies across regions: (1) light scattering dominates in the eastern US; (2) cooling in the Amazon basin; and (3) reduction in direct radiation in Europe and China.

  9. Pollution trends over Europe constrain global aerosol forcing as simulated by climate models

    NASA Astrophysics Data System (ADS)

    Cherian, Ribu; Quaas, Johannes; Salzmann, Marc; Wild, Martin

    2014-03-01

    An increasing trend in surface solar radiation (solar brightening) has been observed over Europe since the 1990s, linked to economic developments and air pollution regulations and their direct as well as cloud-mediated effects on radiation. Here, we find that the all-sky solar brightening trend (1990-2005) over Europe from seven out of eight models (historical simulations in the Fifth Coupled Model Intercomparison Project) scales well with the regional and global mean effective forcing by anthropogenic aerosols (idealized "present-day" minus "preindustrial" runs). The reason for this relationship is that models that simulate stronger forcing efficiencies and stronger radiative effects by aerosol-cloud interactions show both a stronger aerosol forcing and a stronger solar brightening. The all-sky solar brightening is the observable from measurements (4.06±0.60 W m-2 decade-1), which then allows to infer a global mean total aerosol effective forcing at about -1.30 W m-2 with standard deviation ±0.40 W m-2.

  10. Black Carbon Vertical Profiles Strongly Affect Its Radiative Forcing Uncertainty

    NASA Technical Reports Server (NTRS)

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, S.; Berntsen, T. K.; Bian, H.; Bellouin, N.; Diehl, T.; Easter, R. C.; Ghan, S. J.; Iversen, T.; Kinne, S.; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, X.; Penner, J. E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, K.

    2013-01-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  11. Black Carbon Vertical Profiles Strongly Affect its Radiative Forcing Uncertainty

    SciTech Connect

    Samset, B. H.; Myhre, G.; Schulz, M.; Balkanski, Y.; Bauer, Susanne E.; Berntsen, T.; Bian, Huisheng; Bellouin, N.; Diehl, T.; Easter, Richard C.; Ghan, Steven J.; Iversen, T.; Kinne, Stefan; Kirkevag, A.; Lamarque, J.-F.; Lin, G.; Liu, Xiaohong; Penner, Joyce E.; Seland, O.; Skeie, R. B.; Stier, P.; Takemura, T.; Tsigaridis, K.; Zhang, Kai

    2013-03-01

    The impact of black carbon (BC) aerosols on the global radiation balance is not well constrained. Here twelve global aerosol models are used to show that at least 20% of the present uncertainty in modeled BC direct radiative forcing (RF) is due to diversity in the simulated vertical profile of BC mass. Results are from phases 1 and 2 of the global aerosol model intercomparison project (AeroCom). Additionally, a significant fraction of the variability is shown to come from high altitudes, as, globally, more than 40% of the total BC RF is exerted above 5 km. BC emission regions and areas with transported BC are found to have differing characteristics. These insights into the importance of the vertical profile of BC lead us to suggest that observational studies are needed to better characterize the global distribution of BC, including in the upper troposphere.

  12. War Induced Aerosol Optical, Microphysical and Radiative Effects

    NASA Astrophysics Data System (ADS)

    Munshi, Pavel; Tiwari, Shubhansh

    2017-01-01

    The effect of war on air pollution and climate is assessed in this communication. War today in respect of civil wars and armed conflict in the Middle East area is taken into consideration. Impacts of war are not only in loss of human life and property, but also in the environment. It is well known that war effects air pollution and in the long run contribute to anthropogenic climate change, but general studies on this subject are few because of the difficulties of observations involved. In the current scenario of the ongoing conflict in the Middle East regions, deductions in parameters of atmosphere are discussed. Aerosol Optical Depth, Aerosol loads, Black Carbon, Ozone,Dust, regional haze and many more are analyzed using various satellite data. Multi-model analysis is also studied to verify the analysis. Type segregation of aerosols, in-depth constraints to atmospheric chemistry, biological effects and particularly atmospheric physics in terms of radiative forcing, etc. are discussed. Undergraduate in Earth Sciences.

  13. New approaches to quantifying aerosol influence on the cloud radiative effect.

    PubMed

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S; Carslaw, Kenneth S; Schmidt, K Sebastian

    2016-05-24

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  14. New approaches to quantifying aerosol influence on the cloud radiative effect

    NASA Astrophysics Data System (ADS)

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; Johnson, Jill S.; Carslaw, Kenneth S.; Schmidt, K. Sebastian

    2016-05-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution to represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.

  15. New approaches to quantifying aerosol influence on the cloud radiative effect

    DOE PAGES

    Feingold, Graham; McComiskey, Allison; Yamaguchi, Takanobu; ...

    2016-02-01

    The topic of cloud radiative forcing associated with the atmospheric aerosol has been the focus of intense scrutiny for decades. The enormity of the problem is reflected in the need to understand aspects such as aerosol composition, optical properties, cloud condensation, and ice nucleation potential, along with the global distribution of these properties, controlled by emissions, transport, transformation, and sinks. Equally daunting is that clouds themselves are complex, turbulent, microphysical entities and, by their very nature, ephemeral and hard to predict. Atmospheric general circulation models represent aerosol-cloud interactions at ever-increasing levels of detail, but these models lack the resolution tomore » represent clouds and aerosol-cloud interactions adequately. There is a dearth of observational constraints on aerosol-cloud interactions. We develop a conceptual approach to systematically constrain the aerosol-cloud radiative effect in shallow clouds through a combination of routine process modeling and satellite and surface-based shortwave radiation measurements. We heed the call to merge Darwinian and Newtonian strategies by balancing microphysical detail with scaling and emergent properties of the aerosol-cloud radiation system.« less

  16. Stratospheric aerosol properties and their effects on infrared radiation.

    NASA Technical Reports Server (NTRS)

    Remsberg, E. E.

    1973-01-01

    This paper presents a stratospheric aerosol model and infers its effects on terrestrial radiation. Composition of the aerosol is assumed to be concentrated sulfuric acid. An appropriate size distribution has been determined from available size distribution measurements of other investigators. Aerosols composed of concentrated sulfuric acid emit energy in the atmospheric window region of the infrared spectrum, 8-13 microns. Laboratory measurements of optical constant data obtained at room temperature are presented for 75 and 90% aqueous sulfuric acid. Calculations of an aerosol extinction coefficient are then performed by using the above data. Effects of changes in aerosol phase and temperature are discussed but not resolved.

  17. The aerosol radiative effects of uncontrolled combustion of domestic waste

    NASA Astrophysics Data System (ADS)

    Kodros, John K.; Cucinotta, Rachel; Ridley, David A.; Wiedinmyer, Christine; Pierce, Jeffrey R.

    2016-06-01

    Open, uncontrolled combustion of domestic waste is a potentially significant source of aerosol; however, this aerosol source is not generally included in many global emissions inventories. To provide a first estimate of the aerosol radiative impacts from domestic-waste combustion, we incorporate the Wiedinmyer et al. (2014) emissions inventory into GEOS-Chem-TOMAS, a global chemical-transport model with online aerosol microphysics. We find domestic-waste combustion increases global-mean black carbon and organic aerosol concentrations by 8 and 6 %, respectively, and by greater than 40 % in some regions. Due to uncertainties regarding aerosol optical properties, we estimate the globally averaged aerosol direct radiative effect to range from -5 to -20 mW m-2; however, this range increases from -40 to +4 mW m-2 when we consider uncertainties in emission mass and size distribution. In some regions with significant waste combustion, such as India and China, the aerosol direct radiative effect may exceed -0.4 W m-2. Similarly, we estimate a cloud-albedo aerosol indirect effect of -13 mW m-2, with a range of -4 to -49 mW m-2 due to emission uncertainties. In the regions with significant waste combustion, the cloud-albedo aerosol indirect effect may exceed -0.4 W m-2.

  18. Radiative Forcing in the ACCMIP Historical and Future Climate Simulations

    NASA Technical Reports Server (NTRS)

    Shindell, Drew Todd; Lamarque, J.-F.; Schulz, M.; Flanner, M.; Jiao, C.; Chin, M.; Young, P. J.; Lee, Y. H.; Rotstayn, L.; Mahowald, N.; Milly, G.; Faluvegi, G.; Balkanski, Y.; Collins, W. J.; Conley, A. J.; Dalsoren, S.; Easter, R.; Ghan, S.; Horowitz, L.; Liu, X.; Myhre, G.; Nagashima, T.; Naik, V.; Rumbold, S. T.; Skeie, R.; Voulgarakis, A.

    2013-01-01

    A primary goal of the Atmospheric Chemistry and Climate Model IntercomparisonProject (ACCMIP) was to characterize the short-lived drivers of preindustrial to 2100climate change in the current generation of climate models. Here we evaluate historicaland 5 future radiative forcing in the 10 ACCMIP models that included aerosols, 8 of whichalso participated in the Coupled Model Intercomparison Project phase 5 (CMIP5).The models generally reproduce present-day climatological total aerosol opticaldepth (AOD) relatively well. components to this total, however, and most appear to underestimate AOD over East10 Asia. The models generally capture 1980-2000 AOD trends fairly well, though theyunderpredict AOD increases over the YellowEastern Sea. They appear to strongly underestimate absorbing AOD, especially in East Asia, South and Southeast Asia, SouthAmerica and Southern Hemisphere Africa.We examined both the conventional direct radiative forcing at the tropopause (RF) and the forcing including rapid adjustments (adjusted forcing AF, including direct andindirect effects). The models calculated all aerosol all-sky 1850 to 2000 global meanannual average RF ranges from 0.06 to 0.49 W m(sup -2), with a mean of 0.26 W m(sup -2) and a median of 0.27 W m(sup -2. Adjusting for missing aerosol components in some modelsbrings the range to 0.12 to 0.62W m(sup -2), with a mean of 0.39W m(sup -2). Screen20ing the models based on their ability to capture spatial patterns and magnitudes ofAOD and AOD trends yields a quality-controlled mean of 0.42W m(sup -2) and range of0.33 to 0.50 W m(sup -2) (accounting for missing components). The CMIP5 subset of ACCMIPmodels spans 0.06 to 0.49W m(sup -2), suggesting some CMIP5 simulations likelyhave too little aerosol RF. A substantial, but not well quantified, contribution to histori25cal aerosol RF may come from climate feedbacks (35 to 58). The mean aerosol AF during this period is 1.12W m(sup -2) (median value 1.16W m(sup -2), range 0.72 to1.44W m

  19. Evaluation of a size-resolved aerosol model based on satellite and ground observations and its implication on aerosol forcing

    NASA Astrophysics Data System (ADS)

    Ma, Xiaoyan; Yu, Fangqun

    2016-04-01

    The latest AeroCom phase II experiments have showed a large diversity in the simulations of aerosol concentrations, size distribution, vertical profile, and optical properties among 16 detailed global aerosol microphysics models, which contribute to the large uncertainty in the predicted aerosol radiative forcing and possibly induce the distinct climate change in the future. In the last few years, we have developed and improved a global size-resolved aerosol model (Yu and Luo, 2009; Ma et al., 2012; Yu et al., 2012), GEOS-Chem-APM, which is a prognostic multi-type, multi-component, size-resolved aerosol microphysics model, including state-of-the-art nucleation schemes and condensation of low volatile secondary organic compounds from successive oxidation aging. The model is one of 16 global models for AeroCom phase II and participated in a couple of model inter-comparison experiments. In this study, we employed multi-year aerosol optical depth (AOD) data from 2004 to 2012 taken from ground-based Aerosol Robotic Network (AERONET) measurements and Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging SpectroRadiometer (MISR) and Sea-viewing Wide Field-of-view Sensor (SeaWiFS) satellite retrievals to evaluate the performance of the GEOS-Chem-APM in predicting aerosol optical depth, including spatial distribution, reginal variation and seasonal variabilities. Compared to the observations, the modelled AOD is overall good over land, but quite low over ocean possibly due to low sea salt emission in the model and/or higher AOD in satellite retrievals, specifically MODIS and MISR. We chose 72 AERONET sites having at least 36 months data available and representative of high spatial domain to compare with the model and satellite data. Comparisons in various representative regions show that the model overall agrees well in the major anthropogenic emission regions, such as Europe, East Asia and North America. Relative to the observations, the modelled AOD is

  20. Direct radiative effect by multicomponent aerosol over China

    SciTech Connect

    Huang, Xin; Song, Yu; Zhao, Chun; Cai, Xuhui; Zhang, Hongsheng; Zhu, Tong

    2015-05-01

    The direct radiative effect (DRE) of multiple aerosol species (sulfate, nitrate, ammonium, black carbon (BC), organic carbon (OC), and mineral aerosol) and their spatiotemporal variations over China were investigated using a fully coupled meteorology–chemistry model (WRF-Chem) for the entire year of 2006. We made modifications to improve model performance, including updating land surface parameters, improving the calculation of transition metal-catalyzed oxidation of SO2, and adding in heterogeneous reactions between mineral aerosol and acid gases. The modified model well reproduced the magnitude, seasonal pattern, and spatial distribution of the measured meteorological conditions, concentrations of PM10 and its components, and aerosol optical depth (AOD). A diagnostic iteration method was used to estimate the overall DRE of aerosols and contributions from different components. At the land surface, all kinds of aerosol species reduced the incident net radiation flux with a total DRE of 10.2 W m-2 over China. Aerosols significantly warm the atmosphere with the national mean DRE of +10.8 W m-2. BC was the leading radiative-heating component (+8.7 W m-2), followed by mineral aerosol (+1.1 W m-2). At the top of the atmosphere (TOA), BC introduced the largest radiative perturbation (+4.5 W m-2), followed by sulfate (-1.4 W m-2). The overall perturbation of aerosols on radiation transfer is quite small over China, demonstrating the counterbalancing effect between scattering and adsorbing aerosols. Aerosol DRE at the TOA had distinct seasonality, generally with a summer maximum and winter minimum, mainly determined by mass loadings, hygroscopic growth, and incident radiation flux.

  1. Effect of Increasing Temperature on Carbonaceous Aerosol Direct Radiative Effect over Southeastern US

    NASA Astrophysics Data System (ADS)

    Mielonen, Tero; Kokkola, Harri; Hienola, Anca; Kühn, Thomas; Merikanto, Joonas; Korhonen, Hannele; Arola, Antti; Kolmonen, Pekka; Sogacheva, Larisa; de Leeuw, Gerrit

    2016-04-01

    Aerosols are an important regulator of the Earth's climate. They scatter and absorb incoming solar radiation and thus cool the climate by reducing the amount of energy reaching the atmospheric layers and the surface below (direct effect). A certain subset of the particles can also act as initial formation sites for cloud droplets and thereby modify the microphysics, dynamics, radiative properties and lifetime of clouds (indirect effects). The magnitude of aerosol radiative effects remains the single largest uncertainty in current estimates of anthropogenic radiative forcing. One of the key quantities needed for accurate estimates of anthropogenic radiative forcing is an accurate estimate of the radiative effects from natural unperturbed aerosol. The dominant source of natural aerosols over Earth's vast forested regions are biogenic volatile organic compounds (BVOC) which, following oxidation in the atmosphere, can condense onto aerosol particles to form secondary organic aerosol (SOA) and significantly modify the particles' properties. In accordance with the expected positive temperature dependence of BVOC emissions, several previous studies have shown that some aerosol properties, such as mass concentration and ability to act as cloud condensation nuclei (CCN), also correlate positively with temperature at many forested sites. There is conflicting evidence as to whether the aerosol direct effects have a temperature dependence due to increased BVOC emissions. The main objective of this study is to investigate the causes of the observed effect of increasing temperatures on the aerosol direct radiative effect, and to provide a quantitative estimate of this effect and of the resulting negative feedback in a warming climate. More specifically, we will investigate the causes of the positive correlation between aerosol optical depth (AOD) and land surface temperature (LST) over southeastern US where biogenic emissions are a significant source of atmospheric particles. In

  2. Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources

    SciTech Connect

    Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

    2009-02-01

    The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to

  3. Profiling Transboundary Aerosols over Taiwan and Assessing Their Radiative Effects

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Lin, Neng-Huei; Chou, Ming-Dah; Tsay, Si-Chee; Welton, Ellsworth J.; Hsu, N. Christina; Giles, David M.; Liu, Gin-Rong; Holben, Brent N.

    2010-01-01

    A synergistic process was developed to study the vertical distributions of aerosol optical properties and their effects on solar heating using data retrieved from ground-based radiation measurements and radiative transfer simulations. Continuous MPLNET and AERONET observations were made at a rural site in northern Taiwan from 2005 to 2007. The aerosol vertical extinction profiles retrieved from ground-based lidar measurements were categorized into near-surface, mixed, and two-layer transport types, representing 76% of all cases. Fine-mode (Angstrom exponent, alpha, approx.1.4) and moderate-absorbing aerosols (columnar single-scattering albedo approx.0.93, asymmetry factor approx.0.73 at 440 nm wavelength) dominated in this region. The column-integrated aerosol optical thickness at 500 nm (tau(sub 500nm)) ranges from 0.1 to 0.6 for the near-surface transport type, but can be doubled in the presence of upper-layer aerosol transport. We utilize aerosol radiative efficiency (ARE; the impact on solar radiation per unit change of tau(sub 500nm)) to quantify the radiative effects due to different vertical distributions of aerosols. Our results show that the ARE at the top-of-atmosphere (-23 W/ sq m) is weakly sensitive to aerosol vertical distributions confined in the lower troposphere. On the other hand, values of the ARE at the surface are -44.3, -40.6 and -39.7 W/sq m 38 for near-surface, mixed, and two-layer transport types, respectively. Further analyses show that the impact of aerosols on the vertical profile of solar heating is larger for the near-surface transport type than that of two-layer transport type. The impacts of aerosol on the surface radiation and the solar heating profiles have implications for the stability and convection in the lower troposphere.

  4. Influence of Observed Diurnal Cycles of Aerosol Optical Depth on Aerosol Direct Radiative Effect

    NASA Technical Reports Server (NTRS)

    Arola, A.; Eck, T. F.; Huttunen, J.; Lehtinen, K. E. J.; Lindfors, A. V.; Myhre, G.; Smirinov, A.; Tripathi, S. N.; Yu, H.

    2013-01-01

    The diurnal variability of aerosol optical depth (AOD) can be significant, depending on location and dominant aerosol type. However, these diurnal cycles have rarely been taken into account in measurement-based estimates of aerosol direct radiative forcing (ADRF) or aerosol direct radiative effect (ADRE). The objective of our study was to estimate the influence of diurnal aerosol variability at the top of the atmosphere ADRE estimates. By including all the possible AERONET sites, we wanted to assess the influence on global ADRE estimates. While focusing also in more detail on some selected sites of strongest impact, our goal was to also see the possible impact regionally.We calculated ADRE with different assumptions about the daily AOD variability: taking the observed daily AOD cycle into account and assuming diurnally constant AOD. Moreover, we estimated the corresponding differences in ADREs, if the single AOD value for the daily mean was taken from the the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra or Aqua overpass times, instead of accounting for the true observed daily variability. The mean impact of diurnal AOD variability on 24 h ADRE estimates, averaged over all AERONET sites, was rather small and it was relatively small even for the cases when AOD was chosen to correspond to the Terra or Aqua overpass time. This was true on average over all AERONET sites, while clearly there can be much stronger impact in individual sites. Examples of some selected sites demonstrated that the strongest observed AOD variability (the strongest morning afternoon contrast) does not typically result in a significant impact on 24 h ADRE. In those cases, the morning and afternoon AOD patterns are opposite and thus the impact on 24 h ADRE, when integrated over all solar zenith angles, is reduced. The most significant effect on daily ADRE was induced by AOD cycles with either maximum or minimum AOD close to local noon. In these cases, the impact on 24 h ADRE was

  5. Modeling Trends in Tropospheric Aerosol Burden & Its Radiative Effects

    EPA Science Inventory

    Large changes in emissions of aerosol precursors have occurred across the southeast U.S., North America, as well as the northern hemisphere. The spatial heterogeneity and contrasting trends in the aerosol burden is resulting in differing effects on regional radiative balance. Mul...

  6. Coupling Satellite and Ground-Based Instruments to Map Climate Forcing by Anthropogenic Aerosols

    NASA Technical Reports Server (NTRS)

    Charlson, Robert J.; Anderson, Theodore L.; Hostetler, Chris (Technical Monitor)

    2000-01-01

    Climate forcing by anthropogenic aerosols is a significant but highly uncertain factor in global climate change. Only satellites can offer the global coverage essential to reducing this uncertainty; however, satellite measurements must be coupled with correlative, in situ measurements both to constrain the aerosol optical properties required in satellite retrieval algorithms and to provide chemical identification of aerosol sources. This grant funded the first two years of a three-year project which seeks to develop methodologies for combining spaceborne lidar with in-situ aerosol data sets to improve estimates of direct aerosol climate forcing. Progress under this two-year grant consisted in the development and deployment of a new in-situ capability for measuring aerosol 180' backscatter and the extinction-to-backscatter ratio. This new measurement capacity allows definitive lidar/in-situ comparisons and improves our ability to interpret lidar data in terms of climatically relevant quantities such as the extinction coefficient and optical depth. Measurements were made along the coast of Washington State, in Central Illinois, over the Indian Ocean, and in the Central Pacific. Thus, this research, combined with previous measurements by others, is rapidly building toward a global data set of extinction-to-backscatter ratio for key aerosol types. Such information will be critical to interpreting lidar data from the upcoming PICASSO-CENA, or P-C, satellite mission. Another aspect of this project is to investigate innovative ways to couple the lidar-satellite signal with targeted in-situ measurements toward a direct determination of aerosol forcing. This aspect is progressing in collaboration with NASA Langley's P-C lidar simulator and radiative transfer modeling by the University of Lille, France.

  7. Effects of sulfate aerosol forcing on East Asian summer monsoon for 1985-2010

    NASA Astrophysics Data System (ADS)

    Kim, Minjoong J.; Yeh, Sang-Wook; Park, Rokjin J.

    2016-02-01

    We examine the effect of anthropogenic aerosol forcing on the East Asian summer monsoon (EASM) using the Community Atmosphere Model version 5.1.1. One control and two sensitivity model experiments were conducted in order to diagnose the separate roles played by sea surface temperature (SST) variations and anthropogenic sulfate aerosol forcing changes in East Asia. We find that the SST variation has been a major driver for the observed weakening of the EASM, whereas the effect of the anthropogenic aerosol forcing has been opposite and has slightly intensified the EASM over the recent decades. The reinforcement of the EASM results from radiative cooling by the sulfate aerosol forcing, which decelerates the jet stream around the jet's exit region. Subsequently, the secondary circulation induced by such a change in the jet stream leads to the increase in precipitation around 18-23°N. This result indicates that the increase in anthropogenic emissions over East Asia may play a role in compensating for the weakening of the EASM caused by the SST forcing.

  8. Aerosol Radiative Effects observed on the Coast of the Japanese Sea (Tango peninsula) during ACE-Asia

    NASA Astrophysics Data System (ADS)

    Hoeller, R.; Yabe, T.; Tohno, S.; Kasahara, M.

    2001-12-01

    The characterization of the optical properties of the atmospheric aerosol as well as its size-resolved chemical composition is on of the main objectives of ACE-Asia. This is necessary to constrain the radiative forcing by the Asian aerosol, which will become more important as emissions in this area are predicted to increase dramatically. We set up a monitoring station on the coast of the Japanese Sea (Tango Peninsula, Kyoto Prefecture) for the measurements of aerosol optical and chemical properties as well as sky radiation during ACE-Asia in spring 2001. The instrumentation at Tango includes a 3-wavelenght nephelometer (TSI 3563), an OPC (RION KC-01D), a pyrheliometer (EKO MS-53), a 5-wavelength sunphotometer (EKO MS-110A), and a pyranometer (EKO MS-801). The sunphotometer also has a near infrared channel (938 nm) for evaluations of precipitable water; visible channels are used to retrieve aerosol optical depth and Ångström exponents. Filter sampling is performed collocated to the optical measurements for subsequent analysis of elemental and ionic composition of the aerosol. Filters are also analyzed by the integrating plate method for measurements of aerosol absorption coefficients. Size-resolved chemical composition obtained from low-pressure impactor samples are used to calculate aerosol optical properties and compare them to directly measured optical properties. Quality checked parameters are henceforth input into a radiative transfer model (MODTRAN 4.0) to calculate the radiative forcing of the aerosol. This enables us to evaluate which chemical species control the optical properties and radiative forcing of the aerosol. We also compare the radiative impact of clear days with days with heavy dust loadings. >http://aerosol.energy.kyoto- u.ac.jp/~hoeller/ACEmineyama.html

  9. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-12-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  10. Radiative Flux Changes by Aerosols from North America, Europe, and Africa over the Atlantic Ocean: Measurements and Calculations from TARFOX and ACE-2

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Hignett, P.; Livingston, J. M.; Schmid, B.; Chien, A.; Bergstrom, R.; Durkee, P. A.; Hobbs, P. V.; Bates, T. S.; Quinn, P. K.; Condon, Estelle (Technical Monitor)

    1998-01-01

    Aerosol effects on atmospheric radiative fluxes provide a forcing function that is a major source of uncertainty in understanding the past climate and predicting climate change. To help reduce this uncertainty, the 1996 Tropospheric Aerosol Radiative Forcing Experiment (TARFOX) and the 1997 second Aerosol Characterization Experiment (ACE-2) measured the properties and radiative effects of American, European, and African aerosols over the Atlantic. In TARFOX, radiative fluxes and microphysics of the American aerosol were measured from the UK C-130 while optical depth spectra, aerosol composition, and other properties were measured by the University of Washington C-131A and the CIRPAS Pelican. Closure studies show that the measured flux changes agree with those derived from the aerosol measurements using several modelling approaches. The best-fit midvisible single-scatter albedos (approx. 0.89 to 0.93) obtained from the TARFOX flux comparisons are in accord with values derived by independent techniques. In ACE-2 we measured optical depth and extinction spectra for both European urban-marine aerosols and free-tropospheric African dust aerosols, using sunphotometers on the R/V Vodyanitskiy and the Pelican. Preliminary values for the radiative flux sensitivities (Delta Flux / Delta Optical depth) computed for ACE-2 aerosols (boundary layer and African dust) over ocean are similar to those found in TARFOX. Combining a satellite-derived optical depth climatology with the aerosol optical model validated for flux sensitivities in TARFOX provides first-cut estimates of aerosol-induced flux changes over the Atlantic Ocean.

  11. Simulating Changes in Tropospheric Aerosol Burden and its Radiative Effects across the Northern Hemisphere: Contrasting Multi-Decadal Trends between Asia and North America

    EPA Science Inventory

    Though aerosol radiative effects have been recognized as some of the largest sources of uncertainty among the forcers of climate change, the verification of the spatial and temporal variability of the magnitude and directionality of aerosol radiative forcing has remained challeng...

  12. Optical and radiative properties of aerosols over Abu Dhabi in the United Arab Emirates

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Romdhane, Haifa Ben; Ali, Mohammed Tauha; Armstrong, Peter; Ghedira, Hosni

    2016-12-01

    The present study is on the aerosol optical and radiative properties in the short-wave radiation and its climate implications at the arid city of Abu Dhabi (24.42 ∘N, 54.61 ∘E, 4.5 m MSL), in the United Arab Emirates. The direct aerosol radiative forcings (ARF) in the short-wave region at the top (TOA) and bottom of the atmosphere (BOA) are estimated using a hybrid approach, making use of discrete ordinate radiative transfer method in conjunction with the short-wave flux and spectral aerosol optical depth (AOD) measurements, over a period of 3 years (June 2012-July 2015), at Abu Dhabi located at the south-west coast of the Arabian Gulf. The inferred microphysical properties of aerosols at the measurement site indicate strong seasonal variations from the dominance of coarse mode mineral dust aerosols during spring (March-May) and summer (June-September), to the abundance of fine/accumulation mode aerosols mainly from combustion of fossil-fuel and bio-fuel during autumn (October-November) and winter (December-February) seasons. The monthly mean diurnally averaged ARF at the BOA (TOA) varies from -13.2 Wm-2 (˜-0.96 Wm-2) in November to -39.4 Wm-2 (-11.4 Wm-2) in August with higher magnitudes of the forcing values during spring/summer seasons and lower values during autumn/winter seasons. The atmospheric aerosol forcing varies from + 12.2 Wm-2 (November) to 28.2 Wm-2 (June) with higher values throughout the spring and summer seasons, suggesting the importance of mineral dust aerosols towards the solar dimming. Seasonally, highest values of the forcing efficiency at the surface are observed in spring (-85.0 ± 4.1 W m-2 τ -1) followed closely by winter (-79.2 ± 7.1 W m-2 τ -1) and the lowest values during autumn season (-54 ± 4.3 W m-2 τ -1). The study concludes with the variations of the atmospheric heating rates induced by the forcing. Highest heating rate is observed in June (0.39 K day -1) and the lowest in November (0.17 K day -1) and the temporal

  13. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already

  14. Potential sensitivity of photosynthesis and isoprene emission to direct radiative effects of atmospheric aerosol pollution

    NASA Astrophysics Data System (ADS)

    Strada, Susanna; Unger, Nadine

    2016-04-01

    A global Earth system model is applied to quantify the impacts of direct anthropogenic aerosol effective radiative forcing on gross primary productivity (GPP) and isoprene emission. The impacts of different pollution aerosol sources (anthropogenic, biomass burning, and non-biomass burning) are investigated by performing sensitivity experiments. The model framework includes all known light and meteorological responses of photosynthesis, but uses fixed canopy structures and phenology. On a global scale, our results show that global land carbon fluxes (GPP and isoprene emission) are not sensitive to pollution aerosols, even under a global decline in surface solar radiation (direct + diffuse) by ˜ 9 %. At a regional scale, GPP and isoprene emission show a robust but opposite sensitivity to pollution aerosols in regions where forested canopies dominate. In eastern North America and Eurasia, anthropogenic pollution aerosols (mainly from non-biomass burning sources) enhance GPP by +5-8 % on an annual average. In the northwestern Amazon Basin and central Africa, biomass burning aerosols increase GPP by +2-5 % on an annual average, with a peak in the northwestern Amazon Basin during the dry-fire season (+5-8 %). The prevailing mechanism varies across regions: light scattering dominates in eastern North America, while a reduction in direct radiation dominates in Europe and China. Aerosol-induced GPP productivity increases in the Amazon and central Africa include an additional positive feedback from reduced canopy temperatures in response to increases in canopy conductance. In Eurasia and northeastern China, anthropogenic pollution aerosols drive a decrease in isoprene emission of -2 to -12 % on an annual average. Future research needs to incorporate the indirect effects of aerosols and possible feedbacks from dynamic carbon allocation and phenology.

  15. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  16. Overview of ACE-Asia Spring 2001 Investigations On Aerosol-Radiation Interactions

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Flatau, P. J.; Valero, F. P. J.; Nakajima, T.; Holben, B.; Pilewskie, P.; Bergin, M.; Schmid, B.; Bergstrom, R. W.; Vogelmann, A.; Hipskind, R. Stephen (Technical Monitor)

    2002-01-01

    ACE-Asia's extensive measurements from land, ocean, air and space quantified aerosol-radiation interactions. Results from each platform type, plus satellite-suborbital combinations, include: 1. Time series of multiwavelength aerosol optical depth (ADD), Angstrom exponent (alpha), single-scattering albedo (SSA), and size distribution from AERONET radiometry at 13 stations. In China and Korea AOD and alpha were strongly anticorrelated (reflecting transient dust events); dust volume-size modes peaked near 8 microns diameter; and SSA(dust) greater than SSA(pollution). 2. Calculations and measurements of photosynthetically active radiation and aerosols in China yield 24-h average downward surface radiative forcing per AOD(500 nm) of -27 W/sq m (400-700 nm). 3. The Hawaii-Japan cruise sampled a gradient with AOD(500 nm) extremes of 0.1 and 1.1. Shipboard measurements showed that adding dust to pollution increased SSA(550 nm, 55% RH), typically from -0.91 to approx. 0.97. Downwelling 8-12 micron radiances showed aerosol effects, especially in the major April dust event, with longwave forcing estimated at -5 to 15 W/sq m. 4. Extinction profiles from airborne sunphotometry and total-direct-diffuse radiometry show wavelength dependence often varying strongly with height, reflecting layering of dust-dominated over pollution-dominated aerosols. Comparing sunphotometric extinction profiles to those from in situ measurements (number and composition vs size, or scattering and absorption) shows layer heights agree, but extinction sometimes differs. 5. Airborne solar spectral flux radiometry yields absorption spectra for layers. Combining with AOD spectra yields best-fit aerosol single scattering albedo spectra. 6. Visible, NIR and total solar fluxes combined with AOD give radiative forcing efficiencies at surface and aloft.

  17. The Radiation Magnetic Force (FmR)

    NASA Astrophysics Data System (ADS)

    Yousif, Mahmoud

    2017-01-01

    The detection of Circular Magnetic Field (CMF), associated with electrons movement, not incorporated in theoretical works; is introduced as elements of attraction and repulsion for magnetic force between two conductors carrying electric currents; it also created magnetic force between charged particles and magnetic field, or Lorentz force; CMF contain energy of Electromagnetic Radiation (EM-R); a relationship has been established between the magnetic part of the EM-R, and radiation force, showing the magnetic force as a frequency controlled entity, in which a Radiation Magnetic Force formula is derived, the force embedded EM-Wave, similar to Electromagnetic Radiation Energy given by Planck's formula; the force is accountable for electron removal from atom in the Photoelectric Effects, stabilizing orbital atoms, excitation and ionization atoms, initiating production of secondary EM-R in Compton Effect mechanism; the paper aimed at reviving the wave nature of EM-R, which could reflects in a better understanding of the microscopic-world.

  18. The impact of humidity above stratiform clouds on indirect aerosol climate forcing.

    PubMed

    Ackerman, Andrew S; Kirkpatrick, Michael P; Stevens, David E; Toon, Owen B

    2004-12-23

    Some of the global warming from anthropogenic greenhouse gases is offset by increased reflection of solar radiation by clouds with smaller droplets that form in air polluted with aerosol particles that serve as cloud condensation nuclei. The resulting cooling tendency, termed the indirect aerosol forcing, is thought to be comparable in magnitude to the forcing by anthropogenic CO2, but it is difficult to estimate because the physical processes that determine global aerosol and cloud populations are poorly understood. Smaller cloud droplets not only reflect sunlight more effectively, but also inhibit precipitation, which is expected to result in increased cloud water. Such an increase in cloud water would result in even more reflective clouds, further increasing the indirect forcing. Marine boundary-layer clouds polluted by aerosol particles, however, are not generally observed to hold more water. Here we simulate stratocumulus clouds with a fluid dynamics model that includes detailed treatments of cloud microphysics and radiative transfer. Our simulations show that the response of cloud water to suppression of precipitation from increased droplet concentrations is determined by a competition between moistening from decreased surface precipitation and drying from increased entrainment of overlying air. Only when the overlying air is humid or droplet concentrations are very low does sufficient precipitation reach the surface to allow cloud water to increase with droplet concentrations. Otherwise, the response of cloud water to aerosol-induced suppression of precipitation is dominated by enhanced entrainment of overlying dry air. In this scenario, cloud water is reduced as droplet concentrations increase, which diminishes the indirect climate forcing.

  19. The effect of volcanic aerosols on ultraviolet radiation in Antarctica

    NASA Astrophysics Data System (ADS)

    Tsitas, Steven R.; Yung, Yuk L.

    Volcanic eruptions can inject large amounts of aerosol into the atmosphere, and, at large solar zenith angles, scattering by these aerosols can actually increase the flux of UV-B (290-320 nm) radiation reaching the surface. This is surprising since aerosols increase the reflection of sunlight to space. As previous explanations of this phenomenon are heuristic and incomplete, we first provide a rigorous and complete explanation of how this surprising effect occurs. This phenomenon makes Antarctica during spring the most susceptible place on Earth to the scattering effect of volcanic aerosols, due to the combined effect of the spring ozone hole and the large solar zenith angles characteristic of this time of year. We show that an aerosol layer lying above Antarctica during spring will decrease the integrated daily dose of biologically weighted irradiance, weighted by the erythema action spectrum, by only up to 5%. Hence the effects of any significant destruction of ozone induced by volcanic aerosols will not be offset by aerosol scattering. Thus after a volcanic eruption, life in Antarctica during spring will suffer the combined effects of the spring ozone hole and ozone destruction induced by volcanic aerosols, with the latter effect only slightly offset by aerosol scattering.

  20. Assessment of the first indirect radiative effect of ammonium-sulfate-nitrate aerosols in East Asia

    NASA Astrophysics Data System (ADS)

    Han, Xiao; Zhang, Meigen; Skorokhod, Andrei

    2016-09-01

    A physically based cloud nucleation parameterization was introduced into an optical properties/radiative transfer module incorporated with the off-line air quality modeling system Regional Atmospheric Modeling System (RAMS)-Models-3 Community Multi Scale Air Quality (CMAQ) to investigate the distribution features of the first indirect radiative effects of sulfate, nitrate, and ammonium-sulfate-nitrate (ASN) over East Asia for the years of 2005, 2010, and 2013. The relationship between aerosol particles and cloud droplet number concentration could be properly described by this parameterization because the simulated cloud fraction and cloud liquid water path were generally reliable compared with Moderate Resolution Imaging Spectroradiometer (MODIS) retrieved data. Simulation results showed that the strong effect of indirect forcing was mainly concentrated in Southeast China, the East China Sea, the Yellow Sea, and the Sea of Japan. The highest indirect radiative forcing of ASN reached -3.47 W m-2 over Southeast China and was obviously larger than the global mean of the indirect forcing of all anthropogenic aerosols. In addition, sulfate provided about half of the contribution to the ASN indirect forcing effect. However, the effect caused by nitrate was weak because the mass burden of nitrate was very low during summer, whereas the cloud fraction was the highest. The analysis indicated that even though the interannual variation of indirect forcing magnitude generally followed the trend of aerosol mass burden from 2005 to 2013, the cloud fraction was an important factor that determined the distribution pattern of indirect forcing. The heaviest aerosol loading in North China did not cause a strong radiative effect because of the low cloud fraction over this region.

  1. The effect of sea ice loss on sea salt aerosol concentrations and the radiative balance in the Arctic

    NASA Astrophysics Data System (ADS)

    Struthers, H.; Ekman, A. M. L.; Glantz, P.; Iversen, T.; Kirkevåg, A.; Mårtensson, E. M.; Seland, Ø.; Nilsson, E. D.

    2011-04-01

    Understanding Arctic climate change requires knowledge of both the external and the local drivers of Arctic climate as well as local feedbacks within the system. An Arctic feedback mechanism relating changes in sea ice extent to an alteration of the emission of sea salt aerosol and the consequent change in radiative balance is examined. A set of idealized climate model simulations were performed to quantify the radiative effects of changes in sea salt aerosol emissions induced by prescribed changes in sea ice extent. The model was forced using sea ice concentrations consistent with present day conditions and projections of sea ice extent for 2100. Sea salt aerosol emissions increase in response to a decrease in sea ice, the model results showing an annual average increase in number emission over the polar cap (70-90° N) of 86 × 106 m-2 s-1 (mass emission increase of 23 μg m-2 s-1). This in turn leads to an increase in the natural aerosol optical depth of approximately 23%. In response to changes in aerosol optical depth, the natural component of the aerosol direct forcing over the Arctic polar cap is estimated to be between -0.2 and -0.4 W m-2 for the summer months, which results in a negative feedback on the system. The model predicts that the change in first indirect aerosol effect (cloud albedo effect) is approximately a factor of ten greater than the change in direct aerosol forcing although this result is highly uncertain due to the crude representation of Arctic clouds and aerosol-cloud interactions in the model. This study shows that both the natural aerosol direct and first indirect effects are strongly dependent on the surface albedo, highlighting the strong coupling between sea ice, aerosols, Arctic clouds and their radiative effects.

  2. Elevated aerosol layers and their radiative impact over Kanpur during monsoon onset period

    NASA Astrophysics Data System (ADS)

    Sarangi, Chandan; Tripathi, S. N.; Mishra, A. K.; Goel, A.; Welton, E. J.

    2016-07-01

    Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (σ) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5 km (where σ decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5 km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (˜2-3°C) of lower troposphere (below 3 km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high aerosol loading

  3. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  4. Radiation Forces and Torques without Stress (Tensors)

    ERIC Educational Resources Information Center

    Bohren, Craig F.

    2011-01-01

    To understand radiation forces and torques or to calculate them does not require invoking photon or electromagnetic field momentum transfer or stress tensors. According to continuum electromagnetic theory, forces and torques exerted by radiation are a consequence of electric and magnetic fields acting on charges and currents that the fields induce…

  5. Aerosol impacts on radiative and microphysical properties of clouds and precipitation formation

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, O.; Gharaylou, M.

    2017-03-01

    Through modifying the number concentration and size of cloud droplets, aerosols have intricate impacts on radiative and microphysical properties of clouds, which together influence precipitation processes. Aerosol-cloud interactions for a mid-latitude convective cloud system are investigated using a two-moment aerosol-aware bulk microphysical scheme implemented into the Weather Research and Forecasting (WRF) model. Three sensitivity experiments with initial identical dynamic and thermodynamic conditions, but different cloud-nucleating aerosol concentrations were conducted. Increased aerosol number concentration has resulted in more numerous cloud droplets of overall smaller sizes, through which the optical properties of clouds have been changed. While the shortwave cloud forcing is significantly increased in more polluted experiments, changes in the aerosol number concentration have negligible impacts on the longwave cloud forcing. For the first time, it is found that polluted clouds have higher cloud base heights, the feature that is caused by more surface cooling due to a higher shortwave cloud forcing, as well as a drier boundary layer in the polluted experiment compared to the clean. The polluted experiment was also associated with a higher liquid water content (LWC), caused by an increase in the number of condensation of water vapor due to higher concentration of hygroscopic aerosols acting as condensation nuclei. The domain-averaged accumulated precipitation is little changed under both polluted and clean atmosphere. Nevertheless, changes in the rate of precipitation are identified, such that under polluted atmosphere light rain is reduced, while both moderate and heavy rain are intensified, confirming the fact that if an ample influx of water vapor exists, an increment of hygroscopic aerosols can increase the amount of precipitation.

  6. Effects of ozone and aerosol on surface UV radiation variability.

    PubMed

    Kim, Jhoon; Cho, Hi-Ku; Mok, Jungbin; Yoo, Hee Dong; Cho, Nayeong

    2013-02-05

    Global (direct+diffuse) spectral ultraviolet (UV, 290-363nm) and total ozone measurements made on the roof of the Main Science Building, Yonsei University at Seoul (37.57°, 128.98°E) were analyzed to quantify the effects of ozone and aerosol on the variability of surface erythemal UV (EUV) irradiance. The measurements have been made with a Brewer Spectrophotometer MKIV (SCI-TEC#148) and a Dobson Ozone Spectrophotometer (Beck#123), respectively, during 2004-2008. The overall mean radiation amplification factor, RAF(AOD, SZA) [23,24] due to total ozone (O(3)) (hereafter O(3) RAF) shows that 1% decrease in total ozone results in an increase of 1.18±0.02% in the EUV irradiance with the range of 0.67-1.74% depending on solar zenith angles (SZAs) (40-70°) and on aerosol optical depths (AODs) (<4.0), under both clear (cloud cover<25%) and all sky conditions. For the mean AOD, the O(3) RAFs(SZA) for both sky conditions increased as SZA increased from 40° to 60°, and then decreased for higher SZA 70°, where the patterns are consistent with results of the previous studies [2,10]. A similar analysis of the RAF(O(3), SZA) due to AOD (hereafter AOD RAF) under clear and all-sky conditions shows that on average, a 1% increase in AOD forces a decrease of 0.29±0.06% in the EUV irradiance with the maximum range 0.18-0.63% depending on SZAs and O(3). Thus, overall sensitivity of UV to ozone (O(3), RAF) was estimated to be about four times higher than to the aerosol (AOD RAF). At the mean O(3), the AOD RAFs(SZA) for both skies appears to be almost independent of SZAs. It is shown that the O(3) RAFs are nearly independent of the sky conditions, whereas the AOD RAFs depend distinctly on the sky conditions with the larger values for all skies. Under cloud free conditions, the overall mean ratio for measured-to-modeled O(3), RAF(AOD, SZA) is 1.13, whereas the ratio for AOD RAF(O(3), SZA) shows 0.82 in the EUV irradiance. Overall, the RAF measurements are corroborated by radiative

  7. Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects

    NASA Technical Reports Server (NTRS)

    Schmid, Beat; Bergstrom, Robert W.; Redemann, Jens

    2002-01-01

    This report is the final report for "Analysis of Atmospheric Aerosol Data Sets and Application of Radiative Transfer Models to Compute Aerosol Effects". It is a bibliographic compilation of 29 peer-reviewed publications (published, in press or submitted) produced under this Cooperative Agreement and 30 first-authored conference presentations. The tasks outlined in the various proposals are listed below with a brief comment as to the research performed. Copies of title/abstract pages of peer-reviewed publications are attached.

  8. Effects of morphology on the radiative properties of internally mixed light absorbing carbon aerosols with different aging status.

    PubMed

    Cheng, Tianhai; Wu, Yu; Chen, Hao

    2014-06-30

    Light absorbing carbon aerosols play a substantial role in climate change through radiative forcing, which is the dominant absorber of solar radiation. Radiative properties of light absorbing carbon aerosols are strongly dependent on the morphological factors and the mixing mechanism of black carbon with other aerosol components. This study focuses on the morphological effects on the optical properties of internally mixed light absorbing carbon aerosols using the numerically exact superposition T-matrix method. Three types aerosols with different aging status such as freshly emitted BC particles, thinly coated light absorbing carbon aerosols, heavily coated light absorbing carbon aerosols are studied. Our study showed that morphological factors change with the aging of internally mixed light absorbing carbon aerosols to result in a dramatic change in their optical properties. The absorption properties of light absorbing carbon aerosols can be enhanced approximately a factor of 2 at 0.67 um, and these enhancements depend on the morphological factors. A larger shell/core diameter ratio of volume-equivalent shell-core spheres (S/C), which indicates the degree of coating, leads to stronger absorption. The enhancement of absorption properties accompanies a greater enhancement of scattering properties, which is reflected in an increase in single scattering albedo (SSA). The enhancement of single scattering albedo due to the morphological effects can reach a factor of 3.75 at 0.67 μm. The asymmetry parameter has a similar yet smaller enhancement. Moreover, the corresponding optical properties of shell-and-core model determined by using Lorenz -Mie solutions are presented for comparison. We found that the optical properties of internally mixed light absorbing carbon aerosol can differ fundamentally from those calculated for the Mie theory shell-and-core model, particularly for thinly coated light absorbing carbon aerosols. Our studies indicate that the complex morphology

  9. The Radiative Forcing Model Intercomparison Project (RFMIP): experimental protocol for CMIP6

    NASA Astrophysics Data System (ADS)

    Pincus, Robert; Forster, Piers M.; Stevens, Bjorn

    2016-09-01

    The phrasing of the first of three questions motivating CMIP6 - "How does the Earth system respond to forcing?" - suggests that forcing is always well-known, yet the radiative forcing to which this question refers has historically been uncertain in coordinated experiments even as understanding of how best to infer radiative forcing has evolved. The Radiative Forcing Model Intercomparison Project (RFMIP) endorsed by CMIP6 seeks to provide a foundation for answering the question through three related activities: (i) accurate characterization of the effective radiative forcing relative to a near-preindustrial baseline and careful diagnosis of the components of this forcing; (ii) assessment of the absolute accuracy of clear-sky radiative transfer parameterizations against reference models on the global scales relevant for climate modeling; and (iii) identification of robust model responses to tightly specified aerosol radiative forcing from 1850 to present. Complete characterization of effective radiative forcing can be accomplished with 180 years (Tier 1) of atmosphere-only simulation using a sea-surface temperature and sea ice concentration climatology derived from the host model's preindustrial control simulation. Assessment of parameterization error requires trivial amounts of computation but the development of small amounts of infrastructure: new, spectrally detailed diagnostic output requested as two snapshots at present-day and preindustrial conditions, and results from the model's radiation code applied to specified atmospheric conditions. The search for robust responses to aerosol changes relies on the CMIP6 specification of anthropogenic aerosol properties; models using this specification can contribute to RFMIP with no additional simulation, while those using a full aerosol model are requested to perform at least one and up to four 165-year coupled ocean-atmosphere simulations at Tier 1.

  10. Radiative Forcing and Climate Response: From Paleoclimate to Future Climate

    NASA Astrophysics Data System (ADS)

    Caldeira, K.; Cao, L.

    2011-12-01

    The concept of radiative forcing was introduced to allow comparison of climate effects of different greenhouse gases. In the classic view, radiative forcing is applied to the climate system and the climate responds to this forcing, approaching some equilibrium temperature change that is the product of the radiative forcing times the 'climate sensitivity' to radiative forcing. However, this classic view is oversimplified in several respects. Climate forcing and response often cannot be clearly separated. When carbon dioxide is added to the atmosphere, within days, the increased absorption of longwave radiation begins to warm the interior of the troposphere, affecting various tropospheric properties. Especially in the case of aerosols, it has been found that considering rapid tropospheric adjustment gives a better predictor of "equilibrium" climate change than does the classic definition of radiative forcing. Biogeochemistry also provides additional feedbacks on the climate system. It is generally thought that biogeochemistry helps diminish climate sensitivity to a carbon dioxide emission, since carbon dioxide tends to stimulate carbon dioxide uptake by land plants and the ocean. However, there is potential to destabilize carbon locked up in permafrost and at least some possibility to destabilize methane in continental shelf sediments. Furthermore, wetlands may provide a significant methane feedback. These and other possible biogeochemical feedbacks have the potential to greatly increase the sensitivity of the climate system to carbon dioxide emissions. As time scales extend out to millennia, the large ice sheets can begin to play an important role. In addition to affecting atmospheric flows by their sheer bulk, ice sheets tend to reflect a lot of energy to space. If carbon dioxide remains in the atmosphere long enough, there is potential to melt back the large ice sheets, which would add additional warming to the climate system. It is likely that these millennial

  11. Aerosol forcing in the Climate Model Intercomparison Project (CMIP5) simulations by HadGEM2-ES and the role of ammonium nitrate

    NASA Astrophysics Data System (ADS)

    Bellouin, Nicolas; Rae, Jamie; Jones, Andy; Johnson, Colin; Haywood, Jim; Boucher, Olivier

    2011-10-01

    The latest Hadley Centre climate model, HadGEM2-ES, includes Earth system components such as interactive chemistry and eight species of tropospheric aerosols. It has been run for the period 1860-2100 in support of the fifth phase of the Climate Model Intercomparison Project (CMIP5). Anthropogenic aerosol emissions peak between 1980 and 2020, resulting in a present-day all-sky top of the atmosphere aerosol forcing of -1.6 and -1.4 W m-2 with and without ammonium nitrate aerosols, respectively, for the sum of direct and first indirect aerosol forcings. Aerosol forcing becomes significantly weaker in the 21st century, being weaker than -0.5 W m-2 in 2100 without nitrate. However, nitrate aerosols become the dominant species in Europe and Asia and decelerate the decrease in global mean aerosol forcing. Considering nitrate aerosols makes aerosol radiative forcing 2-4 times stronger by 2100 depending on the representative concentration pathway, although this impact is lessened when changes in the oxidation properties of the atmosphere are accounted for. Anthropogenic aerosol residence times increase in the future in spite of increased precipitation, as cloud cover and aerosol-cloud interactions decrease in tropical and midlatitude regions. Deposition of fossil fuel black carbon onto snow and ice surfaces peaks during the 20th century in the Arctic and Europe but keeps increasing in the Himalayas until the middle of the 21st century. Results presented here confirm the importance of aerosols in influencing the Earth's climate, albeit with a reduced impact in the future, and suggest that nitrate aerosols will partially replace sulphate aerosols to become an important anthropogenic species in the remainder of the 21st century.

  12. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested.

  13. Black Carbon Radiative Forcing over the Tibetan Plateau

    SciTech Connect

    He, Cenlin; Li, Qinbin; Liou, K. N.; Takano, Y.; Gu, Yu; Qi, L.; Mao, Yuhao; Leung, Lai-Yung R.

    2014-11-28

    We estimate the snow albedo forcing and direct radiative forcing (DRF) of black carbon (BC) in the Tibetan Plateau using a global chemical transport model in conjunction with a stochastic snow model and a radiative transfer model. Our best estimate of the annual BC snow albedo forcing in the Plateau is 2.9 W m-2 (uncertainty: 1.5–5.0 W m-226 ). We find that BC-snow internal mixing increases the albedo forcing by 40-60% compared with external mixing and coated BC increases the forcing by 30-50% compared with uncoated BC, whereas Koch snowflakes reduce the forcing by 20-40% relative to spherical snow grains. Our best estimate of the annual BC DRF at the top of the atmosphere is 2.3 W m-2 (uncertainty: 0.7–4.3 W m-230 ) in the Plateau after scaling the modeled BC absorption optical depth to Aerosol Robotic Network (AERONET) observations. The BC forcings are attributed to emissions from different regions.

  14. Radiative effects of absorbing aerosols over northeastern India: Observations and model simulations

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Babu, S. Suresh; Moorthy, K. Krishna; Bhuyan, Pradip Kumar; Pathak, Binita; Subba, Tamanna; Chutia, Lakhima; Kundu, Shyam Sundar; Bharali, Chandrakala; Borgohain, Arup; Guha, Anirban; De, Barin Kumar; Singh, Brajamani; Chin, Mian

    2017-01-01

    Multiyear measurements of spectral properties of aerosol absorption are examined over four geographically distinct locations of northeastern India. Results indicated significant spatiotemporal variation in aerosol absorption coefficients (σabs) with highest values in winter and lowest in monsoon. The western parts of the region, close to the outflow of Indo-Gangetic Plains, showed higher values of σabs and black carbon (BC) concentration—mostly associated with fossil fuel combustion. But, the eastern parts showed higher contributions from biomass-burning aerosols, as much as 20-25% to the total aerosol absorption, conspicuously during premonsoon season. This is attributed to a large number of burning activities over the Southeast Asian region, as depicted from Moderate Resolution Imaging Spectroradiometer fire count maps, whose spatial extent and magnitude peaks during March/April. The nearly consistent high values of aerosol index (AI) and layer height from Ozone Monitoring Instrument indicate the presence of absorbing aerosols in the upper atmosphere. The observed seasonality has been captured fairly well by Goddard Chemistry Aerosol Radiation and Transport (GOCART) as well as Weather Research and Forecasting-Chemistry (WRF-Chem) model simulations. The ratio of column-integrated optical depths due to particulate organic matter and BC from GOCART showed good coincidence with satellite-based observations, indicating the increased vertical dispersion of absorbing aerosols, probably by the additional local convection due to higher fire radiative power caused by the intense biomass-burning activities. In the WRF-Chem though underperformed by different magnitude in winter, the values are closer or overestimated near the burnt areas. Atmospheric forcing due to BC was highest ( 30 Wm-2) over the western part associated with the fossil fuel combustion.

  15. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    NASA Astrophysics Data System (ADS)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  16. Radiation damping forces and radiation from charged particles

    NASA Astrophysics Data System (ADS)

    Klepikov, N. P.

    1985-06-01

    In the present evaluation of reported results on the radiation reaction force to which a charged particle is subject, the expression obtained for this force by Lorentz (1909), Abraham (1904), and Dirac (1938) is noted to be in physically reasonable agreement with the radiation of energy, momentum and angular momentum; it has, moreover, been successfully used in investigations of the motion of particles in a field. A theory is presented for the losses of energy, momentum, and angular momentum by a system of charged particles as they move together, taking the external field, the radiation damping forces, and the retarded Lienard-Wiechert forces into account. Formulas are given for the spectral and angular distribution of the radiation from a system of particles, and a system of equations is constructed for finding the angular momenta of EM waves radiated by particles of the system.

  17. Aerosol forcing efficiency in the UVA region from spectral solar irradiance measurements at an urban environment

    NASA Astrophysics Data System (ADS)

    Kazadzis, S.; Kouremeti, N.; Bais, A.; Kazantzidis, A.; Meleti, C.

    2009-06-01

    Spectral Ultraviolet (UV) measurements using a Brewer MKIII double spectroradiometer were used for the determination of the aerosol forcing efficiency (RFE) under cloud free conditions at Thessaloniki, Greece for the period 1998-2006. Using measured spectral UVA irradiance in combination with synchronous aerosol optical depth (AOD) measurements at 340 nm, we calculated the seasonal and the percent RFE changes with the help of radiative transfer model calculations used for cloud and aerosol free conditions reference. The calculated RFE for the 325-340 nm wavelength integral was found to be -0.71±0.30 W m-2/τs340 nm and corresponds to a mean calculated RFE% value of -15.2%±3.8% (2 σ) per unit of τs340 nm, for the whole period. This indicates a mean reduction of 15.2% of the 325-340 nm irradiance for a unit of aerosol optical depth slant column increase. Lower RFE% was found during summertime, which is a possible indication of lower absorbing aerosols. Mean AOD slant at 340 nm for the city of Thessaloniki were processed in combination with RFE% and a mean monthly UVA attenuation of ~10% for the whole period was revealed. The nine years' analysis results showed a reduction in RFE%, which provides a possible indication of the changes in the optical properties over the city area. If such changes are only due to changes in the aerosol absorbing properties, the above finding suggests a 2% per decade increase in UVA due to changes in the aerosol absorption properties, in addition to the calculated increase by 4.2%, which is attributed only to AOD decrease at Thessaloniki area over the 1998-2006 period.

  18. Sensitivity Analysis on Fu-Liou-Gu Radiative Transfer Model for different lidar aerosol and cloud profiles

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Pappalardo, Gelsomina; Welton, Ellsworth J.

    2016-04-01

    The aerosol and cloud impact on climate change is evaluated in terms of enhancement or reduction of the radiative energy, or heat, available in the atmosphere and at the Earth's surface, from the surface (SFC) to the Top Of the Atmosphere (TOA) covering a spectral range from the UV (extraterrestrial shortwave solar radiation) to the far-IR (outgoing terrestrial longwave radiation). Systematic Lidar network measurements from permanent observational sites across the globe are available from the beginning of this current millennium. From the retrieved lidar atmospheric extinction profiles, inputted in the Fu-Liou-Gu (FLG) Radiative Transfer code, it is possible to evaluate the net radiative effect and heating rate of the different aerosol species and clouds. Nevertheless, the lidar instruments may use different techniques (elastic lidar, Raman lidar, multi-wavelength lidar, etc) that translate into uncertainty of the lidar extinction retrieval. The goal of this study is to assess, applying a MonteCarlo technique and the FLG Radiative Transfer model, the sensitivity in calculating the net radiative effect and heating rate of aerosols and clouds for the different lidar techniques, using both synthetic and real lidar data. This sensitivity study is the first step to implement an automatic algorithm to retrieve the net radiative forcing effect of aerosols and clouds from the long records of aerosol measurements available in the frame of EARLINET and MPLNET lidar networks.

  19. Radiative transfer in finite participating atmospheric aerosol media

    NASA Astrophysics Data System (ADS)

    Degheidy, A. R.; Elgarayhi, A.; Sallah, M.; Shaaban, S. M.

    2014-01-01

    The properties of radiation transfer through a plane-parallel atmospheric aerosol medium has been studied. It has been done by employing Mie theory to calculate the radiation transfer scattering parameters of the medium in the form of extinction, scattering, and absorption efficiencies. Then, the equation of radiative transfer through a plane-parallel atmosphere of aerosol has been solved for partial heat fluxes using two different analytical techniques, namely, the Variational Pomraning -Eddington approximation and Galerkin technique. Average efficiencies over log-normal and modified gamma size distributions are calculated. Therefore, the radiative properties of Carbon, Anthracite, Bituminous, Lignite, and Fly ash have been calculated. The obtained numerical results show very good agreement with each other in addition to the previous published work.

  20. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-05-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer

  1. Climate Impacts of Inter-hemispherically Asymmetric Radiative Forcing

    NASA Astrophysics Data System (ADS)

    Clark, S.; Ming, Y.; Held, I.

    2015-12-01

    It has been demonstrated in a number of modeling studies that the tropical circulation of the atmosphere is sensitive to changes in the inter-hemispheric energy budget. Examples of perturbations to the inter-hemispheric energy budget include changes in the Atlantic Meridional Overturning Circulation or spatially heterogeneous changes in the distribution of radiatively active aerosols. Whether aspects of the response of the circulation to the forcing are dependent on the forcing's latitudinal position is the subject of this study. Here we investigate the impact of the location of the asymmetric perturbation on the tropical circulation in the context of the gross moist stability framework using simulations from both an idealized moist model and a comprehensive GCM. In each model we artificially impose a negative radiative forcing between 0 and 30 degrees North and 30 and 90 degrees North, and discuss changes in precipitation patterns, meridional moist static energy transport, zonal mean mass streamfunction, and gross moist stability. In the idealized moist model, for a given asymmetric negative radiative forcing, the ITCZ shift is greater when the forcing is placed in the tropics instead of the extratropics. This difference in behavior can partially be explained by the fact that in the tropical case we decrease the net shortwave radiation at the equator, while in the extratropical case it is left unchanged. From Bischoff and Schneider (2014), decreasing the shortwave radiation at the equator increases the sensitivity of the ITCZ position to the moist static energy flux there. However we show that this increase in sensitivity cannot fully explain the differences seen between the idealized tropical and extratropical cases. In the full GCM, due to zonal asymmetries, the response in the tropical and extratropical cases is more complicated; an interesting result from those cases in the full GCM is that over the Sahel and Maritime Continent we see opposing precipitation

  2. Contrasting regional versus global radiative forcing by megacity pollution emissions

    NASA Astrophysics Data System (ADS)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  3. Global Observations of Aerosols and Clouds from Combined Lidar and Passive Instruments to Improve Radiation Budget and Climate Studies

    NASA Technical Reports Server (NTRS)

    Winker, David M.

    1999-01-01

    Current uncertainties in the effects of clouds and aerosols on the Earth radiation budget limit our understanding of the climate system and the potential for global climate change. Pathfinder Instruments for Cloud and Aerosol Spaceborne Observations - Climatologie Etendue des Nuages et des Aerosols (PICASSO-CENA) is a recently approved satellite mission within NASA's Earth System Science Pathfinder (ESSP) program which will address these uncertainties with a unique suite of active and passive instruments. The Lidar In-space Technology Experiment (LITE) demonstrated the potential benefits of space lidar for studies of clouds and aerosols. PICASSO-CENA builds on this experience with a payload consisting of a two-wavelength polarization-sensitive lidar, an oxygen A-band spectrometer (ABS), an imaging infrared radiometer (IIR), and a wide field camera (WFC). Data from these instruments will be used to measure the vertical distributions of aerosols and clouds in the atmosphere, as well as optical and physical properties of aerosols and clouds which influence the Earth radiation budget. PICASSO-CENA will be flown in formation with the PM satellite of the NASA Earth Observing System (EOS) to provide a comprehensive suite of coincident measurements of atmospheric state, aerosol and cloud optical properties, and radiative fluxes. The mission will address critical uncertainties iin the direct radiative forcing of aerosols and clouds as well as aerosol influences on cloud radiative properties and cloud-climate radiation feedbacks. PICASSO-CENA is planned for a three year mission, with a launch in early 2003. PICASSO-CENA is being developed within the framework of a collaboration between NASA and CNES.

  4. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC

    PubMed Central

    Brühl, C; Lelieveld, J; Tost, H; Höpfner, M; Glatthor, N

    2015-01-01

    Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO2, the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO2 sources, including strong anthropogenic emissions in China, are found to play a minor role except in the lowermost stratosphere. Estimates of volcanic SO2 emissions are based on satellite observations using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument for total injected mass and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat or Stratospheric Aerosol and Gases Experiment for the spatial distribution. The 10 year SO2 and COS data set of MIPAS is also used for model evaluation. The calculated radiative forcing of stratospheric background aerosol including sulfate from COS and small contributions by DMS oxidation, and organic aerosol from biomass burning, is about 0.07W/m2. For stratospheric sulfate aerosol from medium and small volcanic eruptions between 2005 and 2011 a global radiative forcing up to 0.2W/m2 is calculated, moderating climate warming, while for the major Pinatubo eruption the simulated forcing reaches 5W/m2, leading to temporary climate cooling. The Pinatubo simulation demonstrates the importance of radiative feedback on dynamics, e.g., enhanced tropical upwelling, for large volcanic eruptions. PMID:25932352

  5. Stratospheric sulfur and its implications for radiative forcing simulated by the chemistry climate model EMAC

    NASA Astrophysics Data System (ADS)

    Brühl, C.; Lelieveld, J.; Tost, H.; Höpfner, M.; Glatthor, N.

    2015-03-01

    Multiyear simulations with the atmospheric chemistry general circulation model EMAC with a microphysical modal aerosol module at high vertical resolution demonstrate that the sulfur gases COS and SO2, the latter from low-latitude and midlatitude volcanic eruptions, predominantly control the formation of stratospheric aerosol. Marine dimethyl sulfide (DMS) and other SO2 sources, including strong anthropogenic emissions in China, are found to play a minor role except in the lowermost stratosphere. Estimates of volcanic SO2 emissions are based on satellite observations using Total Ozone Mapping Spectrometer and Ozone Monitoring Instrument for total injected mass and Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) on Envisat or Stratospheric Aerosol and Gases Experiment for the spatial distribution. The 10 year SO2 and COS data set of MIPAS is also used for model evaluation. The calculated radiative forcing of stratospheric background aerosol including sulfate from COS and small contributions by DMS oxidation, and organic aerosol from biomass burning, is about 0.07W/m2. For stratospheric sulfate aerosol from medium and small volcanic eruptions between 2005 and 2011 a global radiative forcing up to 0.2W/m2 is calculated, moderating climate warming, while for the major Pinatubo eruption the simulated forcing reaches 5W/m2, leading to temporary climate cooling. The Pinatubo simulation demonstrates the importance of radiative feedback on dynamics, e.g., enhanced tropical upwelling, for large volcanic eruptions.

  6. METHODOLOGICAL NOTES: Radiation damping forces and radiation from charged particles

    NASA Astrophysics Data System (ADS)

    Klepikov, N. P.

    1985-06-01

    A review of the literature on the radiation reaction force on a charged particle shows that the expression given for this force obtained by Lorentz, Abraham, and Dirac is in physically reasonable agreement with the radiation of energy, momentum, and angular momentum, and is successfully used in investigating the motion of particles in a field. A selection of physical solutions by the methods presented herein guarantees that the conservation laws are satisfied. In the first approximation, which is the only one utilized in the majority of physical situations, radiation damping does not depend on assumptions concerning the structure of the charge of the particle. A theory is presented of the losses of energy, momentum and angular momentum by a system of charged particles in the course of their moving together taking into account the external field, the radiation damping forces, and the retarded Lienard-Wiechert forces. Formulas are given for the spectral and angular distribution of the radiation from a system of particles. The concept of a center of a system of events with relativistic particles is utilized in constructing a system of equations for finding the angular momenta of the electromagnetic waves radiated by particles of the system. The angular distribution and the total intensity of the radiation from a system of particles at an arbitrary instant of time is obtained. Using the example of the joint synchrotron radiation from two particles the consistency of all three approaches to the radiation from a system of particles is demonstrated.

  7. The relative roles of sulfate aerosols and greenhouse gases in climate forcing

    NASA Technical Reports Server (NTRS)

    Kiehl, J. T.; Briegleb, B. P.

    1993-01-01

    Calculations of the effects of both natural and anthropogenic tropospheric sulfate aerosols indicate that the aerosol climate forcing is sufficiently large in a number of regions of the Northern Hemisphere to reduce significantly the positive forcing from increased greenhouse gases. Summer sulfate aerosol forcing in the Northern Hemisphere completely offsets the greenhouse forcing over the eastern United States and central Europe. Anthropogenic sulfate aerosols contribute a globally averaged annual forcing of -0.3 watt per square meter as compared with +2.1 watts per square meter for greenhouse gases. Sources of the difference in magnitude with the previous estimate of Charlson et al. (1992) are discussed.

  8. Aerosol Direct Radiative Effects Over the Northwest Atlantic, Northwest Pacific, and North Indian Oceans: Estimates Based on In-situ Chemical and Optical Measurements and Chemical Transport Modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J. A.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2005-12-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean during INDOEX, the Northwest Pacific Ocean during ACE-Asia, and the Northwest Atlantic Ocean during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth, and direct radiative effect of aerosols (change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Such comparisons with observations and resultant reductions in uncertainties are

  9. Radiative forcing from household fuel burning in Asia

    NASA Astrophysics Data System (ADS)

    Aunan, Kristin; Berntsen, Terje K.; Myhre, Gunnar; Rypdal, Kristin; Streets, David G.; Woo, Jung-Hun; Smith, Kirk R.

    Household fuel use in developing countries, particularly as biomass and coal, is a major source of carbonaceous aerosols and other air pollutants affecting health and climate. Using state-of-the-art emission inventories, a global three-dimensional photochemical tracer/transport model of the troposphere, and a global radiative transfer model based on methods presented in the latest IPCC Assessment Report (2007-AR4), we estimate the radiative forcing (RF) attributable to household fuel combustion in Asia in terms of current global annual-mean RF and future global integrated RF for a one-year pulse of emissions (2000) over two time horizons (100 and 20 years). Despite the significant emissions of black carbon (BC) aerosols, these estimates indicate that shorter-lived (non-Kyoto) air pollutants from household fuel use in the region overall seem to exert a small net negative RF because of the strong influence of reflective aerosols. There are, however, major uncertainties in emission estimates for solid fuel burning, and about the sustainability of household fuel wood harvesting in Asia (the carbon neutrality of harvesting). In addition, there is still substantial uncertainty associated with the BC radiative forcing. As a result we find that the sign of the RF from household biomass burning in the region cannot be established. While recognizing the value of integrating climate change and air pollution policies, we are concerned that for a 'Kyoto style' post-Kyoto treaty (with global cap-and-trade and the Global Warming Potential as the metric) expanding the basket of components with a selection of short-lived species without also including the wider range of co-emitted species may lead to unintended consequences for global-scale climate. Additional measurement, modelling, and policy research is urgently needed to reduce the uncertainties so that the net impact on climate of emissions and mitigation measures in this sector can be accurately assessed.

  10. Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia-rich urban environment

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Lack, Daniel; Brock, Charles A.; Bahreini, Roya; Middlebrook, Ann M.; Neuman, J. Andrew; Nowak, John B.; Perring, Anne E.; Schwarz, Joshua P.; Spackman, J. Ryan; Holloway, John S.; Pollack, Ilana B.; Ryerson, Thomas B.; Roberts, James M.; Warneke, Carsten; Gouw, Joost A.; Trainer, Michael K.; Murphy, Daniel M.

    2011-11-01

    Airborne measurements of sub-micron aerosol and trace gases downwind of Los Angeles are used to investigate the influence of aging on aerosol properties relevant to climate forcing and visibility. The analysis focuses on the Los Angeles plume, which in addition to strong urban emissions is influenced by local agricultural emissions. Secondary organic aerosol formation and repartitioning of semi-volatile ammonium nitrate were identified as key factors controlling the optical behavior observed. For one case study, ammonium nitrate contributed up to 50% of total dry extinction. At 85% relative humidity, extinction in the fresh plume was enhanced by a factor of ˜1.7, and 60-80% of this was from water associated with ammonium nitrate. On this day, loss of ammonium nitrate resulted in decreasing aerosol hygroscopicity with aging. Failing to account for loss of ammonium nitrate led to overestimation of the radiative cooling exerted by the most aged aerosol by ˜35% under dry conditions. These results show that changes to aerosol behavior with aging can impact visibility and climate forcing significantly. The importance of ammonium nitrate and water also highlight the need to improve the current representation of semi-volatile aerosol species in large-scale climate models.

  11. Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia-rich urban environment

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Lack, Daniel; Brock, Charles A.; Bahreini, Roya; Middlebrook, Ann M.; Neuman, J. Andrew; Nowak, John B.; Perring, Anne E.; Schwarz, Joshua P.; Spackman, J. Ryan; Holloway, John S.; Pollack, Ilana B.; Ryerson, Thomas B.; Roberts, James M.; Warneke, Carsten; de Gouw, Joost A.; Trainer, Michael K.; Murphy, Daniel M.

    2012-03-01

    Airborne measurements of sub-micron aerosol and trace gases downwind of Los Angeles are used to investigate the influence of aging on aerosol properties relevant to climate forcing and visibility. The analysis focuses on the Los Angeles plume, which in addition to strong urban emissions is influenced by local agricultural emissions. Secondary organic aerosol formation and repartitioning of semi-volatile ammonium nitrate were identified as key factors controlling the optical behavior observed. For one case study, ammonium nitrate contributed up to 50% of total dry extinction. At 85% relative humidity, extinction in the fresh plume was enhanced by a factor of ˜1.7, and 60-80% of this was from water associated with ammonium nitrate. On this day, loss of ammonium nitrate resulted in decreasing aerosol hygroscopicity with aging. Failing to account for loss of ammonium nitrate led to overestimation of the radiative cooling exerted by the most aged aerosol by ˜35% under dry conditions. These results show that changes to aerosol behavior with aging can impact visibility and climate forcing significantly. The importance of ammonium nitrate and water also highlight the need to improve the current representation of semi-volatile aerosol species in large-scale climate models.

  12. Radiative Screening of Fifth Forces

    NASA Astrophysics Data System (ADS)

    Burrage, Clare; Copeland, Edmund J.; Millington, Peter

    2016-11-01

    We describe a symmetron model in which the screening of fifth forces arises at the one-loop level through the Coleman-Weinberg mechanism of spontaneous symmetry breaking. We show that such a theory can avoid current constraints on the existence of fifth forces but still has the potential to give rise to observable deviations from general relativity, which could be seen in cold atom experiments.

  13. The radiative effect of aerosols in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Wang, W.-C.; Domoto, G. A.

    1974-01-01

    A modified two-flux approximation is employed to compute the transfer of radiation in a finite, inhomogeneous, turbid atmosphere. A perturbation technique is developed to allow the treatment of nongray gaseous absorption with multiple scattering. The perturbation method, which employs a backscatter factor as a parameter, can be used with anisotropic particle scattering as well as Rayleigh scattering. This method is used to study the effect of aerosols on radiative solar heating and infrared cooling as well as the radiative-convective temperature distribution in the earth's atmosphere. It is found that the effect of aerosols in the infrared cannot be neglected; while in the visible, the effect can be of the same order as that due to absorption by water vapor. For a high surface albedo (greater than 0.30) heating of the earth-atmosphere system results due to the presence of aerosols. The aerosols also reduce the amount of convection needed to maintain a stable atmosphere. For the case of a dense haze a temperature inversion is found to exist close to the ground.

  14. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    NASA Astrophysics Data System (ADS)

    Bates, T. S.; Anderson, T. L.; Baynard, T.; Bond, T.; Boucher, O.; Carmichael, G.; Clarke, A.; Erlick, C.; Guo, H.; Horowitz, L.; Howell, S.; Kulkarni, S.; Maring, H.; McComiskey, A.; Middlebrook, A.; Noone, K.; O'Dowd, C. D.; Ogren, J.; Penner, J.; Quinn, P. K.; Ravishankara, A. R.; Savoie, D. L.; Schwartz, S. E.; Shinozuka, Y.; Tang, Y.; Weber, R. J.; Wu, Y.

    2006-01-01

    The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar) radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001). Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO) during INDOEX, the Northwest Pacific Ocean (NWP) during ACE-Asia, and the Northwest Atlantic Ocean (NWA) during ICARTT), incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART). Measurements of burdens, extinction optical depth (AOD), and direct radiative effect of aerosols (DRE - change in radiative flux due to total aerosols) are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity) are used as input parameters to two radiative transfer models (GFDL and University of Michigan) to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative transfer

  15. Air pollution and climate response to aerosol direct radiative ...

    EPA Pesticide Factsheets

    Decadal hemispheric Weather Research and Forecast-Community Multiscale Air Quality simulations from 1990 to 2010 were conducted to examine the meteorology and air quality responses to the aerosol direct radiative effects. The model's performance for the simulation of hourly surface temperature, relative humidity, wind speed, and direction was evaluated through comparison with observations from NOAA's National Climatic Data Center Integrated Surface Data. The inclusion of aerosol direct radiative effects improves the model's ability to reproduce the trend in daytime temperature range which over the past two decades was increasing in eastern China but decreasing in eastern U.S. and Europe. Trends and spatial and diurnal variations of the surface-level gaseous and particle concentrations to the aerosol direct effect were analyzed. The inclusion of aerosol direct radiative effects was found to increase the surface-level concentrations of SO2, NO2, O3, SO42−, NO3−, and particulate matter 2.5 in eastern China, eastern U.S., and Europe by 1.5–2.1%, 1–1.5%, 0.1–0.3%, 1.6–2.3%, 3.5–10.0%, and 2.2–3.2%, respectively, on average over the entire 21 year period. However, greater impacts are noted during polluted days with increases of 7.6–10.6%, 6.2–6.7%, 2.0–3.0%, 7.8–9.5%, 11.1–18.6%, and 7.2–10.1%, respectively. Due to the aerosol direct radiative effects, stabilizing of the atmosphere associated with reduced planetary boundary layer height a

  16. EVALUATION OF ACOUSTIC FORCES ON A PARTICLE IN AEROSOL MEDIUM

    SciTech Connect

    Lee, S; Richard Dimenna, R

    2007-09-27

    The acoustic force exerted on a solid particle was evaluated to develop a fundamental understanding of the critical physical parameters or constraints affecting particle motion and capture in a collecting device. The application of an acoustic force to the collection of a range of submicron-to-micron particles in a highly turbulent airflow stream laden with solid particles was evaluated in the presence of other assisting and competing forces. This scoping estimate was based on the primary acoustic force acting directly on particles in a dilute aerosol system, neglecting secondary interparticle effects such as agglomeration of the sub-micron particles. A simplified analysis assuming a stable acoustic equilibrium with an infinite sound speed in the solid shows that for a solid-laden air flow in the presence of a standing wave, particles will move toward the nearest node. The results also show that the turbulent drag force on a 1-{micro}m particle resulting from eddy motion is dominant when compared with the electrostatic force or the ultrasonic acoustic force. At least 180 dB acoustic pressure level at 1 MHz is required for the acoustic force to be comparable to the electrostatic or turbulent drag forces in a high-speed air stream. It is noted that particle size and pressure amplitude are dominant parameters for the acoustic force. When acoustic pressure level becomes very large, the acoustic energy will heat up the surrounding air medium, which may cause air to expand. With an acoustic power of about 600 watts applied to a 2000-lpm air flow, the air temperature can increase by as much as 15 C at the exit of the collector.

  17. Will black carbon mitigation dampen aerosol indirect forcing?

    NASA Astrophysics Data System (ADS)

    Chen, W.-T.; Lee, Y. H.; Adams, P. J.; Nenes, A.; Seinfeld, J. H.

    2010-05-01

    If mitigation of black carbon (BC) particulate matter is accompanied by a decrease in particle number emissions, and thereby by a decrease in global cloud condensation nuclei (CCN) concentrations, a decrease in global cloud radiative forcing (a reverse “cloud albedo effect”) results. We consider two present-day mitigation scenarios: 50% reduction of primary black carbon/organic carbon (BC/OC) mass and number emissions from fossil fuel combustion (termed HF), and 50% reduction of primary BC/OC mass and number emissions from all primary carbonaceous sources (fossil fuel, domestic biofuel, and biomass burning) (termed HC). Radiative forcing effects of these scenarios are assessed through present-day equilibrium climate simulations. Global average top-of-the-atmosphere changes in radiative forcing for the two scenarios, relative to present day conditions, are +0.13 ± 0.33 W m-2 (HF) and + 0.31 ± 0.33 W m-2 (HC).

  18. Enhancement of atmospheric radiation by an aerosol layer

    NASA Technical Reports Server (NTRS)

    Michelangeli, Diane V.; Yung, Yuk L.; Shia, Run-Lie; Eluszkiewicz, Janusz; Allen, Mark; Crisp, David

    1992-01-01

    The presence of a stratospheric haze layer may produce increases in both the actinic flux and the irradiance below this layer. Such haze layers result from the injection of aerosol-forming material into the stratosphere by volcanic eruptions. Simple heuristic arguments show that the increase in flux below the haze layer, relative to a clear sky case, is a consequence of 'photon trapping'. The magnitude of these flux perturbations, as a function of aerosol properties and illumination conditions, is explored with a new radiative transfer model that can accurately compute fluxes in an inhomogeneous atmosphere with nonconservative scatterers having arbitrary phase function. One calculated consequence of the El Chichon volcanic eruption is an increase in the midday surface actinic flux at 20 deg N latitude, summer, by as much as 45 percent at 2900 A. This increase in flux in the UV-B wavelength range was caused entirely by aerosol scattering, without any reduction in the overhead ozone column.

  19. Does temperature nudging overwhelm aerosol radiative effects in regional integrated climate models?

    NASA Astrophysics Data System (ADS)

    He, Jian; Glotfelty, Timothy; Yahya, Khairunnisa; Alapaty, Kiran; Yu, Shaocai

    2017-04-01

    Nudging (data assimilation) is used in many regional integrated meteorology-air quality models to reduce biases in simulated climatology. However, in such modeling systems, temperature changes due to nudging could compete with temperature changes induced by radiatively active and hygroscopic short-lived tracers leading to two interesting dilemmas: when nudging is continuously applied, what are the relative sizes of these two radiative forces at regional and local scales? How do these two forces present in the free atmosphere differ from those present at the surface? This work studies these two issues by converting temperature changes due to nudging into pseudo radiative effects (PRE) at the surface (PRE_sfc), in troposphere (PRE_atm), and at the top of atmosphere (PRE_toa), and comparing PRE with the reported aerosol radiative effects (ARE). Results show that the domain-averaged PRE_sfc is smaller than ARE_sfc estimated in previous studies and this work, but could be significantly larger than ARE_sfc at local scales. PRE_atm is also much smaller than ARE_atm. These results indicate that appropriate nudging methodology could be applied to the integrated models to study aerosol radiative effects at continental/regional scales, but it should be treated with caution for local scale applications.

  20. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  1. Radiation force and balance of electromagnetic momentum

    NASA Astrophysics Data System (ADS)

    Campos, I.; Jiménez, J. L.; Roa-Neri, J. A. E.

    2016-07-01

    Some force densities can be expressed as a divergence of a stress tensor, as is the case with the electromagnetic force density. We have shown elsewhere that from the Maxwell equations several balance equations of electromagnetic momentum can be derived, depending on the form these equations are expressed in terms of fields E, D, B, H, and polarisations P and M. These balance equations imply different force densities and different stress tensors, providing a great flexibility to solve particular problems. Among these force densities we have found some proposed in the past with plausibility arguments, like the Einstein-Laub force density, while other proposed force densities appear as particular or limit cases of these general force densities, like the Helmholtz force density. We calculate the radiation force of an electromagnetic wave incident on a semi-infinite negligibly absorbing material using these balance equations, corroborating in this way that the surface integration of the stress tensor gives the same result that the calculation made through a volume integration of the force density, as done by Bohren. As is usual in applications of Gauss’s theorem, the surface on which the surface integral is to be performed must be chosen judiciously, and due care of discontinuities on the boundary conditions must be taken. Advanced undergraduates and graduate students will find a different approach to new aspects of the interaction of radiation with matter.

  2. Radiative effects of aerosols on the environment in China

    NASA Astrophysics Data System (ADS)

    Yu, Hongbin

    Anthropogenic emissions and concentrations of aerosol precursors and aerosols over China are among the highest in major countries of the world. Due to large emissions of soot and dust, aerosol absorption is high. Based on the observed direct and diffuse irradiance, a single scattering albedo of about 0.8 is derived for two large agri/eco/industrial areas. Aerosol direct effect can exert various environmental impacts in China. Photochemical activities in the atmospheric boundary layer (ABL) are significantly reduced because of reductions in photolysis rates and in emissions of biogenic hydrocarbons. Crop yields under optimal conditions can be reduced due to the reduction in surface solar irradiance. The most significant aerosol radiative perturbation is in changing the air-surface interaction and diurnal evolution of ABL. Reductions in various surface heat fluxes due to aerosols depend on soil moisture. Over a relatively dry surface, the evaporation has a small change, leading to the largest decrease of surface skin temperature at noon. Over a relatively wet surface, a substantial reduction in evaporation results in the largest surface cooling in the early morning. The diurnal temperature range (DTR) can be reduced by an amount comparable to the observed decrease of DTR. The longwave absorption of aerosols can lead to an increase of the daily minimum temperature and contributes to about 20% of the decrease in the DTR. The near-surface air temperature has the largest cooling in the early morning because the ABL is shallow and the temperature is sensitive to the radiative perturbation. As a result of the reduced sensible heat flux, the surface layer becomes more stable. Moreover, the aerosol heating enhances the stabilization of surface layer and in turn further reduces the sensible heat flux. As a result the ABL height can be reduced substantially. This will have many important ramifications, including trapping/accumulation of air pollutants, and perturbing the water

  3. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-04-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  4. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2012-12-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  5. Ground-based remote sensing of aerosol optical properties and their radiative impacts in PRD region of China

    NASA Astrophysics Data System (ADS)

    Mai, Boru; Deng, XueJiao; Li, Zhanqing; Li, Fei; Zou, Yu; Deng, Tao; Liu, Xiantong

    2015-04-01

    Aerosol direct effects on surface irradiance were explored by using 7 years' ground-based broadband and spectral radiation data at Panyu, the main site of atmospheric composition monitoring in Pearl River Delta (PRD) . Aerosol optical properties were derived from a Sun photometer, and the radiations were calculated by SBDART model. Results demonstrated that in dry seasons(from October to next February), the annual mean aerosol optical depth (AOD) at 550nm was 0.535, and more than 60% AOD was in a range of 0.2-0.6. Due to the fact that few dust taken place in PRD region, the course mode of weak or strong absorbing aerosol was negligible. However, the proportion of fine mode, weak radiation absorbing particle was about 9.52%, with the Angstrom exponent (α440/470) = 1.30, single scatter co-albedo (ω0) =0.04.Up to 90% of the aerosol was dominated by fine mode, strong absorbing particles, as given by mean α440/470 = 1.35, ω0 =0.14. Because of strong absorption, the variations in aerosol concentration significantly heated the air, and cooled down the surface. The annual mean shortwave direct radiation forcing at the surface (SFC), inside the atmosphere (ATM), and at the top of atmosphere (TOA) was -33.51

  6. Investigation on seasonal variations of aerosol properties and its influence on radiative effect over an urban location in central India

    NASA Astrophysics Data System (ADS)

    Jose, Subin; Gharai, Biswadip; Niranjan, K.; Rao, P. V. N.

    2016-05-01

    Aerosol plays an important role in modulating solar radiation, which are of great concern in perspective of regional climate change. The study analysed the physical and optical properties of aerosols over an urban area and estimated radiative effect using three years in-situ data from sunphotometer, aethalometer and nephelometer as input to radiative transfer model. Aerosols properties indicate the dominance of fine mode aerosols over the study area. However presence of coarse mode aerosols is also found during pre-monsoon [March-April-May]. Daily mean aerosol optical depth showed a minimum during winter [Dec-Jan-Feb] (0.45-0.52) and a maximum during pre-monsoon (0.6-0.7), while single scattering albedo (ω) attains its maximum (0.78 ± 0.05) in winter and minimum (0.67 ± 0.06) during pre-monsoon and asymmetry factor varied in the range between 0.48 ± 0.02 to 0.53 ± 0.04. Episodic events of dust storm and biomass burning are identified by analyzing intrinsic aerosol optical properties like scattering Ångström exponent (SAE) and absorption Ångström exponent (AAE) during the study periods and it has been observed that during dust storm events ω is lower (˜0.77) than that of during biomass burning (˜0.81). The aerosol direct radiative effect at top of the atmosphere during winter is -11.72 ± 3.5 Wm-2, while during pre-monsoon; it is -5.5 ± 2.5 Wm-2, which can be due to observed lower values of ω during pre-monsoon. A large positive enhancement of atmospheric effect of ˜50.53 Wm-2 is observed during pre-monsoon compared to winter. Due to high aerosol loading in pre-monsoon, a twofold negative surface forcing is also observed in comparison to winter.

  7. Radiative Forcing Over Ocean by Ship Wakes

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; Wilcox, E.; Poudyal, R.; Wang, J.

    2011-01-01

    Changes in surface albedo represent one of the main forcing agents that can counteract, to some extent, the positive forcing from increasing greenhouse gas concentrations. Here, we report on enhanced ocean reflectance from ship wakes over the Pacific Ocean near the California coast, where we determined, based on airborne radiation measurements that ship wakes can increase reflected sunlight by more than 100%. We assessed the importance of this increase to climate forcing, where we estimated the global radiative forcing of ship wakes to be -0.00014 plus or minus 53% Watts per square meter assuming a global distribution of 32331 ships of size of greater than or equal to 100000 gross tonnage. The forcing is smaller than the forcing of aircraft contrails (-0.007 to +0.02 Watts per square meter), but considering that the global shipping fleet has rapidly grown in the last five decades and this trend is likely to continue because of the need of more inter-continental transportation as a result of economic globalization, we argue that the radiative forcing of wakes is expected to be increasingly important especially in harbors and coastal regions.

  8. Small global-mean cooling due to volcanic radiative forcing

    NASA Astrophysics Data System (ADS)

    Gregory, J. M.; Andrews, T.; Good, P.; Mauritsen, T.; Forster, P. M.

    2016-12-01

    In both the observational record and atmosphere-ocean general circulation model (AOGCM) simulations of the last ˜150 years, short-lived negative radiative forcing due to volcanic aerosol, following explosive eruptions, causes sudden global-mean cooling of up to ˜0.3 K. This is about five times smaller than expected from the transient climate response parameter (TCRP, K of global-mean surface air temperature change per W m-2 of radiative forcing increase) evaluated under atmospheric CO2 concentration increasing at 1 % yr-1. Using the step model (Good et al. in Geophys Res Lett 38:L01703, 2011. doi: 10.1029/2010GL045208), we confirm the previous finding (Held et al. in J Clim 23:2418-2427, 2010. doi: 10.1175/2009JCLI3466.1) that the main reason for the discrepancy is the damping of the response to short-lived forcing by the thermal inertia of the upper ocean. Although the step model includes this effect, it still overestimates the volcanic cooling simulated by AOGCMs by about 60 %. We show that this remaining discrepancy can be explained by the magnitude of the volcanic forcing, which may be smaller in AOGCMs (by 30 % for the HadCM3 AOGCM) than in off-line calculations that do not account for rapid cloud adjustment, and the climate sensitivity parameter, which may be smaller than for increasing CO2 (40 % smaller than for 4 × CO2 in HadCM3).

  9. A study of regional aerosol radiative properties and effects on ultraviolet-B radiation

    NASA Astrophysics Data System (ADS)

    Wenny, B. N.; Schafer, J. S.; Deluisi, J. J.; Saxena, V. K.; Barnard, W. F.; Petropavlovskikh, I. V.; Vergamini, A. J.

    1998-07-01

    A field experiment was conducted in western North Carolina to investigate the relationship between aerosol optical properties and atmospheric transmission. Two research measurement sites in close horizontal proximity but at different altitudes were established to measure the transmission of UV radiation through a slab of atmosphere. An identical set of radiation sensing instruments, including a broadband UV-B radiometer, a direct Sun pyrheliometer, a shadowband radiometer, and a spectral photometer, was placed at both sites, a mountaintop site (Mount Gibbes 35.78°N, 82.29°W, 2004 m elevation) and a valley site (Black Mountain, North Carolina 35.66°N, 82.38°N, 951 m elevation). Aerosol size distribution sampling equipment was located at the valley site. Broadband solar pseudo-optical depth and aerosol optical depths at 415 nm, 500 nm, and 673 nm were measured for the lowest 1-km layer of the troposphere. The measurements exhibited variations based on an air mass source region as determined by back trajectory analysis. Broadband UV-B transmission through the layer also displayed variations relating to air mass source region. Spectral UV transmission revealed a dependence upon wavelength, with decreased transmission in the UV-B region (300-320 nm) versus UV-A region (320-363.5 nm). UV-B transmission was found to be negatively correlated with aerosol optical depth. Empirical relations were developed to allow prediction of solar noon UV-B transmission if aerosol optical depth at two visible wavelengths (415 and 500 nm) is known. A new method was developed for determining aerosol optical properties from the radiation and aerosol size distribution measurements. The aerosol albedo of single scatter was found to range from 0.75 to 0.93 and the asymmetry factor ranged from 0.63 to 0.76 at 312 nm, which is close to the peak response of human skin to UV radiation.

  10. Determination of Radiative Forcing of Saharan Dust using Combined TOMS and ERBE Data

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Herman, Jay R.; Weaver, Clark

    1999-01-01

    The direct radiative forcing of Saharan dust aerosols has been determined by combining aerosol information derived from Nimbus-7 TOMS with radiation measurements observed at the top of atmosphere (TOA) by NOAA-9 ERBE made during February-July 1985. Cloud parameters and precipitable water derived from the NOAA-9 HIRS2 instrument were used to aid in screening for clouds and water vapor in the analyses. Our results indicate that under "cloud-free" and "dry" conditions there is a good correlation between the ERBE TOA outgoing longwave fluxes and the TOMS aerosol index measurements over both land and ocean in areas under the influence of airborne Saharan dust. The ERBE TOA outgoing shortwave fluxes were also found to correlate well with the dust loading derived from TOMS over ocean. However, the calculated shortwave forcing of Saharan dust aerosols is very weak and noisy over land for the range of solar zenith angle viewed by the NOAA-9 ERBE in 1985. Sensitivity factors of the TOA outgoing fluxes to changes in aerosol index were estimated using a linear regression fit to the ERBE and TOMS measurements. The ratio of the shortwave-to-longwave response to changes in dust loading over the ocean is found to be roughly 2 to 3, but opposite in sign. The monthly averaged "clear-sky" TOA direct forcing of airborne Saharan dust was also calculated by multiplying these sensitivity factors by the TOMS monthly averaged "clear-sky" aerosol index. Both the observational and theoretical analyses indicate that the dust layer height, ambient moisture content as well as the presence of cloud all play an important role in determining the TOA direct radiative forcing due to mineral aerosols.

  11. Impacts of oxidation aging on secondary organic aerosol formation, particle growth rate, cloud condensation nuclei abundance, and aerosol climate forcing

    NASA Astrophysics Data System (ADS)

    Yu, F.; Luo, G.

    2014-12-01

    variations. CAM5-APM simulations show similar magnitude of impacts. The implication of oxidation aging to net direct and indirect radiative forcing of anthropogenic aerosols based on both GEOS-Chem-APM and CAM5-APM will be discussed.

  12. Constraining Carbonaceous Aerosol Climate Forcing by Bridging Laboratory, Field and Modeling Studies

    NASA Astrophysics Data System (ADS)

    Dubey, M. K.; Aiken, A. C.; Liu, S.; Saleh, R.; Cappa, C. D.; Williams, L. R.; Donahue, N. M.; Gorkowski, K.; Ng, N. L.; Mazzoleni, C.; China, S.; Sharma, N.; Yokelson, R. J.; Allan, J. D.; Liu, D.

    2014-12-01

    enhanced light absorption by internally mixed BC parameterizations in models and identify mixed biomass and fossil combustion regions where this effect is large. We unify the treatment of carbonaceous aerosol components and their interactions to simplify and verify their representation in climate models, and re-evaluate their direct radiative forcing.

  13. Interactive Soil Dust Aerosol Model in the GISS GCM. Part 1; Sensitivity of the Soil Dust Cycle to Radiative Properties of Soil Dust Aerosols

    NASA Technical Reports Server (NTRS)

    Perlwitz, Jan; Tegen, Ina; Miller, Ron L.

    2000-01-01

    The sensitivity of the soil dust aerosol cycle to the radiative forcing by soil dust aerosols is studied. Four experiments with the NASA/GISS atmospheric general circulation model, which includes a soil dust aerosol model, are compared, all using a prescribed climatological sea surface temperature as lower boundary condition. In one experiment, dust is included as dynamic tracer only (without interacting with radiation), whereas dust interacts with radiation in the other simulations. Although the single scattering albedo of dust particles is prescribed to be globally uniform in the experiments with radiatively active dust, a different single scattering albedo is used in those experiments to estimate whether regional variations in dust optical properties, corresponding to variations in mineralogical composition among different source regions, are important for the soil dust cycle and the climate state. On a global scale, the radiative forcing by dust generally causes a reduction in the atmospheric dust load corresponding to a decreased dust source flux. That is, there is a negative feedback in the climate system due to the radiative effect of dust. The dust source flux and its changes were analyzed in more detail for the main dust source regions. This analysis shows that the reduction varies both with the season and with the single scattering albedo of the dust particles. By examining the correlation with the surface wind, it was found that the dust emission from the Saharan/Sahelian source region and from the Arabian peninsula, along with the sensitivity of the emission to the single scattering albedo of dust particles, are related to large scale circulation patterns, in particular to the trade winds during Northern Hemisphere winter and to the Indian monsoon circulation during summer. In the other regions, such relations to the large scale circulation were not found. There, the dependence of dust deflation to radiative forcing by dust particles is probably

  14. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2004-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of backscattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The BUV aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the BUV data collected by a series of TOMS instruments. We will also discuss how the data from the OM1 instrument launched on July 15,2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OM1 and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train". The CALIPSO satellite is expected to join this constellation in mid 2005.

  15. Ozone and Aerosol Retrieval from Backscattered Ultraviolet Radiation

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2012-01-01

    In this presentation we will discuss the techniques to estimate total column ozone and aerosol absorption optical depth from the measurements of back scattered ultraviolet (buv) radiation. The total ozone algorithm has been used to create a unique record of the ozone layer, spanning more than 3 decades, from a series of instruments (BUV, SBUV, TOMS, SBUV/2) flown on NASA, NOAA, Japanese and Russian satellites. We will discuss how this algorithm can be considered a generalization of the well-known Dobson/Brewer technique that has been used to process data from ground-based instruments for many decades, and how it differs from the DOAS techniques that have been used to estimate vertical column densities of a host of trace gases from data collected by GOME and SCIAMACHY instruments. The buv aerosol algorithm is most suitable for the detection of UV absorbing aerosols (smoke, desert dust, volcanic ash) and is the only technique that can detect aerosols embedded in clouds. This algorithm has been used to create a quarter century record of aerosol absorption optical depth using the buv data collected by a series of TOMS instruments. We will also discuss how the data from the OMI instrument launched on July 15, 2004 will be combined with data from MODIS and CALIPSO lidar data to enhance the accuracy and information content of satellite-derived aerosol measurements. The OMI and MODIS instruments are currently flying on EOS Aura and EOS Aqua satellites respectively, part of a constellation of satellites called the "A-train".

  16. Radiative properties of Bay of Bengal aerosols: Spatial distinctiveness and source impacts

    NASA Astrophysics Data System (ADS)

    Babu, S. Suresh; Gogoi, Mukunda M.; Kumar, V. H. Arun; Nair, Vijayakumar S.; Moorthy, K. Krishna

    2012-03-01

    Simultaneous and collocated measurements of spectrally resolved scattering and absorption coefficients and mass concentration of near-surface composite aerosols in the marine atmosphere over the Bay of Bengal (BOB), along with incoming shortwave (0.3-3 μm) global solar radiation and columnar spectral aerosol optical depths (AOD), were made on a research cruise during the winter phase of the Integrated Campaign for Aerosols, Gases and Radiation Budget (W-ICARB). The aerosol radiative properties revealed distinct spatial features associated with the contrasting outflows from Indo-Gangetic Plain (IGP) and East Asia. Both scattering and absorption coefficients depicted very high values (>200 and >15 Mm-1) over the northwestern and southeastern BOB and extremely low values (<50 and <10 Mm-1) over the central BOB. The mean value of the total scattering coefficient at 550 nm (˜123.7 ± 85.3 Mm-1) over the entire BOB during winter was higher than the mean values (˜94 ± 47 Mm-1) reported for the premonsoon season. While SSA at 550 nm showed very low values (<0.8) over a very large region in the central BOB and moderately low values over the southern BOB (˜0.85-0.9), the columnar AOD varied from the least values of ˜0.1 over the northeastern BOB to the highest values of ˜0.8 over the northwestern BOB. While significant cooling was observed at the top of the atmosphere and surface over the northwestern BOB, the atmospheric forcing was found to be significantly high (˜15 W m-2) over the southern BOB, where the aerosol radiative forcing efficiency (ARFE) at the surface was also found to be high. Examination of the Moderate Resolution Imaging Spectroradiometer (MODIS)-derived fire count along with the advection pathways revealed a strong contribution from the emissions of biomass smoke from East Asia, which might be contributing to the enhanced aerosol induced warming over the southern BOB. However, the ARFE at the surface was low over the northwestern BOB, where the

  17. Non-Kyoto Radiative Forcing in Long-Run Greenhouse Gas Emissions and Climate Change Scenarios

    SciTech Connect

    Rose, Steven K.; Richels, Richard G.; Smith, Steven J.; Riahi, Keywan; Stefler, Jessica; Van Vuuren, Detlef

    2014-04-27

    Climate policies designed to achieve climate change objectives must consider radiative forcing from the Kyoto greenhouse gas, as well as other forcing constituents, such as aerosols and tropospheric ozone. Net positive forcing leads to global average temperature increases. Modeling of non-Kyoto forcing is a relatively new component of climate management scenarios. Five of the nineteen models in the EMF-27 Study model both Kyoto and non-Kyoto forcing. This paper describes and assesses current non-Kyoto radiative forcing modeling within these integrated assessment models. The study finds negative forcing from aerosols masking significant positive forcing in reference non-climate policy projections. There are however large differences across models in projected non-Kyoto emissions and forcing, with differences stemming from differences in relationships between Kyoto and non-Kyoto emissions and fundamental differences in modeling structure and assumptions. Air pollution and non-Kyoto forcing decline in the climate policy scenarios. However, non-Kyoto forcing appears to be influencing mitigation results, including allowable carbon dioxide emissions, and further evaluation is merited. Overall, there is substantial uncertainty related to non-Kyoto forcing that must be considered.

  18. The Potential Radiative Forcing of Global Land Use and Land Cover Change Activities

    NASA Astrophysics Data System (ADS)

    Ward, D. S.; Mahowald, N. M.; Kloster, S.

    2014-12-01

    Given the expected increase in pressure on land resources over the next century, there is a need to understand the total impacts of activities associated with land use and land cover change (LULCC). Here we quantify these impacts using the radiative forcing metric, including forcings from changes in long-lived greenhouse gases, tropospheric ozone, aerosol effects, and land surface albedo. We estimate radiative forcings from the different agents for historical LULCC and for six future projections using simulations from the National Center for Atmospheric Research Community Land Model and Community Atmosphere Models and additional offline analyses. When all forcing agents are considered together we show that 45% (+30%, -20%) of the present-day (2010) anthropogenic radiative forcing can be attributed to LULCC. Changes in the emission of non-CO2 greenhouse gases and aerosols from LULCC enhance the total LULCC radiative forcing by a factor of 2 to 3 with respect to the forcing from CO2 alone. In contrast, the non-CO2 forcings from fossil fuel burning are roughly neutral, due largely to the negative (cooling) impact of aerosols from these sources. We partition the global LULCC radiative forcing into three major sources: direct modification of land cover (e.g. deforestation), agricultural activities, and fire regime changes. Contributions from deforestation and agriculture are roughly equal in the present day, while changes to wildfire activity impose a small negative forcing globally. In 2100, deforestation activities comprise the majority of the LULCC radiative forcing for all projections except one (Representative Concentration Pathway (RCP) 4.5). This suggests that realistic scenarios of future forest area change are essential for projecting the contribution of LULCC to climate change. However, the commonly used RCP land cover change projections all include decreases in global deforestation rates over the next 85 years. To place an upper bound on the potential

  19. Impact of Asian aerosols on air quality over the United States: A perspective from aerosol-cloud-radiation coupling

    NASA Astrophysics Data System (ADS)

    Tao, Z.; Yu, H.; Chin, M.

    2013-12-01

    It has well been established, through satellite/ground observations, that dust and aerosols from various Asian sources can travel across the Pacific and reach North America (NA) at least on episode bases. Once reaching NA, these inflow aerosols would compete with local emissions to influence atmospheric composition and air quality over the United States (US). The previous studies, typically based on one or multiple satellite measurements in combination with global/regional model simulations, suggest that the impact of Asian dust/aerosols on US air quality tend to be small since most inflow aerosols stay aloft. On the other hand, aerosols affect many key meteorological processes that will ultimately channel down to impact air quality. Aerosols absorb and scatter solar radiation that change the atmospheric stability, thus temperature, wind, and planetary boundary layer structure that would directly alter air quality. Aerosols can serve as cloud condensation nuclei and ice nuclei to modify cloud properties and precipitation that would also affect aerosol removal and concentration. This indirect impact of Asian aerosol inflow on US air quality may be substantial and need to be investigated. This study employs the NASA Unified WRF (NU-WRF) to address the question from the aerosol-radiation-cloud interaction perspective. The simulation period was selected from April to June of 2010 during which the Asian dust continuously reached NA based on CALIPSO satellite observation. The preliminary results show that the directly-transported Asian aerosol increases surface PM2.5 concentration by less than 2 μg/m3 over the west coast areas of US, and the aerosol-radiation-cloud feedback has a profound effect on air quality over the central to eastern US. A more detailed analysis links this finding to a series of meteorological conditions modified by aerosol effects.

  20. Reduction of photosynthetically active radiation under extreme stratospheric aerosol loads

    SciTech Connect

    Gerstl, S.A.W.; Zardecki, A.

    1981-08-01

    The recently published hypothesis that the Cretaceous-Tertiary extinctions might be caused by an obstruction of sunlight is tested by model calculations. First we compute the total mass of stratospheric aerosols under normal atmospheric conditions for four different (measured) aerosol size distributions and vertical profiles. For comparison, the stratospheric dust masses after four volcanic eruptions are also evaluated. Detailed solar radiative transfer calculations are then performed for artificially increased aerosol amounts until the postulated darkness scenario is obtained. Thus we find that a total stratospheric aerosol mass between 1 and 4 times 10/sup 1/ g is sufficient to reduce photosynthesis to 10/sup -3/ of normal. We also infer from this result tha the impact of a 0.4- to 3-km-diameter asteroid or a close encounter with a Halley-size comet may deposit that amount of particulates into the stratosphere. The darkness scenario of Alvarez et al. is thus shown to be a possible extinction mechanism, even with smaller size asteroids of comets than previously estimated.

  1. Sensitivity of dust emissions to aerosol feedback and the impact of dust loading on climate forcing with varied resolutions using FIM-Chem

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Grell, Georg; Henze, Daven; Mckeen, Stuart; Sun, Shan; Li, Haiqin

    2016-04-01

    Meteorological conditions directly impact aerosol loading, especially dust emissions. Variations in dust emissions on the other hand, will also impact meteorology and climate through direct and indirect aerosol forcing. To study these impacts in more detail we use the global Flow-following finite-volume Icosahedra Model (FIM, http://fim.noaa.gov/), a new global weather prediction model currently under development in the Global Systems Division of NOAA/ESRL, as it is coupled online with the aerosol modules from the Goddard Gobal Ozone Chemistry Aerosol Radiation and Transport (GOCART) model (FIM-Chem). FIM-Chem includes direct and semi direct feedback, and uses the dust schemes of GOCART and the Air Force Weather Agency (AFWA). FIM-Chem is able to investigate the contribution of climate feedbacks to simulated hyperspectral data by considering a range of simulations with different dust emissions and different levels of aerosol feedbacks enabled at four different spatial resolutions. The emitted dust flux and total emissions are highly depending on the wind, soil moisture and model resolution. We compare the dust emissions by including and excluding the aerosol radiative feedback in the simulations to quantify the sensitivity of dust emissions to aerosol feedback. The results show that all aerosol-induced dust emissions increase about 10% globally, which is mainly dominated by the contributions of anthropogenic black carbon (EC) aerosol. While the dust-induced percentage changes of dust emissions are about -5.5%, that indicates reduction effect globally. Also, the simulations based on different resolutions of 240x240 km, 120x120 km, 60x60 km and 30x30 km are performed to test the impacts of model resolution on total dust emissions. By comparing the dust emission sensitivity to aerosol feedback and model resolution, we can estimate the uncertainty of model resolution versus aerosol feedback. We also conduct FIM-Chem simulations to investigate the sensitivity of dust

  2. Easy Aerosol - a model intercomparison project to study aerosol-radiative interactions and their impact on regional climate

    NASA Astrophysics Data System (ADS)

    Voigt, A.; Bony, S.; Stevens, B. B.; Boucher, O.; Medeiros, B.; Pincus, R.; Wang, Z.; Zhang, K.; Lewinschal, A.; Bellouin, N.; Yang, Y. M.

    2015-12-01

    Recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns, but it remains unclear to what extent the proposed aerosol-induced changes reflect robust model behavior and are affected by the climate system's internal variability. "Easy Aerosol" addresses this question by subjecting nine comprehensive climate models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. They both scatter and absorb shortwave radiation, but to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects is compared to six perturbed simulations with differing aerosol l