Science.gov

Sample records for aerosol research laboratory

  1. Naval biomedical research laboratory, programmed environment, aerosol facility.

    PubMed

    Goldberg, L J

    1971-02-01

    Mathematical considerations of the behavior of aerosolized particles in a rotating drum are presented, and the rotating drum as an aerosol-holding device is compared with a stirred settling chamber. The basic overall design elements of a facility employing eight rotating drums are presented. This facility provides an environment in which temperature can be maintained within 0.5 F (0.25 C) of any set point over a range of 50 to 120 F (10 to 49 C); concomitantly the relative humidity within any selected drum may be controlled in a nominal range of 0 to 90%. Some of the major technical aspects of operating this facility are also presented, including handling of air support systems, aerosol production, animal exposure, aerosol monitoring, and sampling. PMID:5549701

  2. Naval Biomedical Research Laboratory, Programmed Environment, Aerosol Facility

    PubMed Central

    Goldberg, L. J.

    1971-01-01

    Mathematical considerations of the behavior of aerosolized particles in a rotating drum are presented, and the rotating drum as an aerosol-holding device is compared with a stirred settling chamber. The basic overall design elements of a facility employing eight rotating drums are presented. This facility provides an environment in which temperature can be maintained within 0.5 F (0.25 C) of any set point over a range of 50 to 120 F (10 to 49 C); concomitantly the relative humidity within any selected drum may be controlled in a nominal range of 0 to 90%. Some of the major technical aspects of operating this facility are also presented, including handling of air support systems, aerosol production, animal exposure, aerosol monitoring, and sampling. Images PMID:5549701

  3. Research highlights: laboratory studies of the formation and transformation of atmospheric organic aerosols.

    PubMed

    Borduas, Nadine; Lin, Vivian S

    2016-04-01

    Atmospheric particles are emitted from a variety of anthropogenic and natural precursors and have direct impacts on climate, by scattering solar irradiation and nucleating clouds, and on health, by causing oxidative stress in the lungs when inhaled. They may also form from gaseous precursors, creating complex mixtures of organic and inorganic material. The chemical composition and the physical properties of aerosols will evolve during their one-week lifetime which will consequently change their impact on climate and health. The heterogeneity of aerosols is difficult to model and thus atmospheric aerosol research strives to characterize the mechanisms involved in nucleating and transforming particles in the atmosphere. Recent advances in four laboratory studies of aerosol formation and aging are highlighted here.

  4. A State-of-the-Art Experimental Laboratory for Cloud and Cloud-Aerosol Interaction Research

    NASA Technical Reports Server (NTRS)

    Fremaux, Charles M.; Bushnell, Dennis M.

    2011-01-01

    The state of the art for predicting climate changes due to increasing greenhouse gasses in the atmosphere with high accuracy is problematic. Confidence intervals on current long-term predictions (on the order of 100 years) are so large that the ability to make informed decisions with regard to optimum strategies for mitigating both the causes of climate change and its effects is in doubt. There is ample evidence in the literature that large sources of uncertainty in current climate models are various aerosol effects. One approach to furthering discovery as well as modeling, and verification and validation (V&V) for cloud-aerosol interactions is use of a large "cloud chamber" in a complimentary role to in-situ and remote sensing measurement approaches. Reproducing all of the complex interactions is not feasible, but it is suggested that the physics of certain key processes can be established in a laboratory setting so that relevant fluid-dynamic and cloud-aerosol phenomena can be experimentally simulated and studied in a controlled environment. This report presents a high-level argument for significantly improved laboratory capability, and is meant to serve as a starting point for stimulating discussion within the climate science and other interested communities.

  5. Clays as mineral dust aerosol: An integrated approach to studying climate, atmospheric chemistry, and biogeochemical effects of atmospheric clay minerals in an undergraduate research laboratory

    NASA Astrophysics Data System (ADS)

    Hatch, C. D.; Crane, C. C.; Harris, K. J.; Thompson, C. E.; Miles, M. K.; Weingold, R. M.; Bucuti, T.

    2011-12-01

    Entrained mineral dust aerosol accounts for 45% of the global annual atmospheric aerosol load and can have a significant influence on important environmental issues, including climate, atmospheric chemistry, cloud formation, biogeochemical processes, visibility, and human health. 70% of all mineral aerosol mass originating from Africa consists of layered aluminosilicates, including illite, kaolinite, and montmorillonite clays. Clay minerals are a largely neglected component of mineral aerosol, yet they have unique physiochemical properties, including a high reactive surface area, large cation exchange capacities, small particle sizes, and a relatively large capacity to take up adsorbed water, resulting in expansion of clay layers (and a larger reactive surface area for heterogeneous interactions) in some cases. An integrated laboratory research approach has been implemented at Hendrix College, a Primarily Undergraduate Institution, in which undergraduate students are involved in independent and interdisciplinary research projects that relate the chemical aging processes (heterogeneous chemistry) of clay minerals as a major component of mineral aerosol to their effects on climate (water adsorption), atmospheric chemistry (trace gas uptake), and biogeochemistry (iron dissolution and phytoplankton biomarker studies). Preliminary results and future directions will be reported.

  6. Aerosol and nucleation research in support of NASA cloud physics experiments in space. [ice nuclei generator for the atmospheric cloud physics laboratory on Spacelab

    NASA Technical Reports Server (NTRS)

    Vali, G.; Rogers, D.; Gordon, G.; Saunders, C. P. R.; Reischel, M.; Black, R.

    1978-01-01

    Tasks performed in the development of an ice nucleus generator which, within the facility concept of the ACPL, would provide a test aerosol suitable for a large number and variety of potential experiments are described. The impact of Atmospheric Cloud Physics Laboratory scientific functional requirements on ice nuclei generation and characterization subsystems was established. Potential aerosol generating systems were evaluated with special emphasis on reliability, repeatability and general suitability for application in Spacelab. Possible contamination problems associated with aerosol generation techniques were examined. The ice nucleating abilities of candidate test aerosols were examined and the possible impact of impurities on the nucleating abilities of those aerosols were assessed as well as the relative merits of various methods of aerosol size and number density measurements.

  7. DOE research on atmospheric aerosols

    SciTech Connect

    Schwartz, S.E.

    1995-11-01

    Atmospheric aerosols are the subject of a significant component of research within DOE`s environmental research activities, mainly under two programs within the Department`s Environmental Sciences Division, the Atmospheric Radiation Measurement (ARM) Program and the Atmospheric Chemistry Program (ACP). Research activities conducted under these programs include laboratory experiments, field measurements, and theoretical and modeling studies. The objectives and scope of these programs are briefly summarized. The ARM Program is the Department`s major research activity focusing on atmospheric processes pertinent to understanding global climate and developing the capability of predicting global climate change in response to energy related activities. The ARM approach consists mainly of testing and improving models using long-term measurements of atmospheric radiation and controlling variables at highly instrumented sites in north central Oklahoma, in the Tropical Western Pacific, and on the North Slope of Alaska. Atmospheric chemistry research within DOE addresses primarily the issue of atmospheric response to emissions from energy-generation sources. As such this program deals with the broad topic known commonly as the atmospheric source-receptor sequence. This sequence consists of all aspects of energy-related pollutants from the time they are emitted from their sources to the time they are redeposited at the Earth`s surface.

  8. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  9. Spectra Aerosol Light Scattering and Absorption for Laboratory and Urban Aerosol

    NASA Astrophysics Data System (ADS)

    Gyawali, Madhu S.

    Atmospheric aerosols considerably influence the climate, reduce visibility, and cause problems in human health. Aerosol light absorption and scattering are the important factors in the radiation transfer models. However, these properties are associated with large uncertainties in climate modeling. In addition, atmospheric aerosols widely vary in composition and size; their optical properties are highly wavelength dependent. This work presents the spectral dependence of aerosol light absorption and scattering throughout the ultraviolet to near-infrared regions. Data were collected in Reno, NV from 2008 to 2010. Also presented in this study are the aerosol optical and physical properties during carbonaceous aerosols and radiative effects study (CARES) conducted in Sacramento area during 2010. Measurements were made using photoacoustic instruments (PA), including a novel UV 355 nm PA of our design and manufacture. Comparative analyses are presented for three main categories: (1) aerosols produced by wildfires and traffic emissions, (2) laboratory-generated and wintertime ambient urban aerosols, and (3) urban plume and biogenic emissions. In these categories, key questions regarding the light absorption by secondary organic aerosols (SOA), so-called brown carbon (BrC), and black carbon (BC) will be discussed. An effort is made to model the emission and aging of urban and biomass burning aerosol by applying shell-core calculations. Multispectral PA measurements of aerosols light absorption and scattering coefficients were used to calculate the Angstrom exponent of absorption (AEA) and single scattering albedo (SSA). The AEA and SSA values were analyzed to differentiate the aerosol sources. The California wildfire aerosols exhibited strong wavelength dependence of aerosol light absorption with AEA as lambda -1 for 405 and 870 nm, in contrast to the relatively weak wavelength dependence of traffic emissions aerosols for which AEA varied approximately as lambda-1. By using

  10. Laboratory studies of stratospheric aerosol chemistry

    NASA Technical Reports Server (NTRS)

    Molina, Mario J.

    1996-01-01

    In this report we summarize the results of the two sets of projects funded by the NASA grant NAG2-632, namely investigations of various thermodynamic and nucleation properties of the aqueous acid system which makes up stratospheric aerosols, and measurements of reaction probabilities directly on ice aerosols with sizes corresponding to those of polar stratospheric cloud particles. The results of these investigations are of importance for the assessment of the potential stratospheric effects of future fleets of supersonic aircraft. In particular, the results permit to better estimate the effects of increased amounts of water vapor and nitric acid (which forms from nitrogen oxides) on polar stratospheric clouds and on the chemistry induced by these clouds.

  11. Green Building Research Laboratory

    SciTech Connect

    Sailor, David Jean

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  12. Field and Laboratory Studies of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew Mitchell

    This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of

  13. An Aerosolized Brucella spp. Challenge Model for Laboratory Animals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To characterize the optimal aerosol dosage of Brucella abortus strain 2308 (S2308) and B. melitensis (S16M) in a laboratory animal model of brucellosis, dosages of 10**3 to 10**10 CFU were nebulized to mice. Although tissue weights were minimally influenced, total colony-forming units (CFU) per tis...

  14. Chemical and Aerosol Signatures of Biomass Burning via Long Range Transport observed at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; Obrist, D.; McCubbin, I. B.; Fain, X.; Rahn, T.

    2008-12-01

    The Desert Research Institute operates a high elevation facility, Storm Peak Laboratory (SPL), located on the Steamboat Springs Ski Resort in Colorado at an elevation 3.2 km. During the spring of 2008, two field projects were conducted at SPL; Storm Peak Cloud and Aerosol Characterization (SPACC) and a State of Colorado Mercury Monitoring project. Measurements of gaseous elemental mercury (GEM), along with CO, ozone and aerosol concentrations and aerosol size distributions will be presented from April 28 to July 1st 2008. This work focuses on specific case studies pertaining to long range transport events. Specifically, high levels of GEM and CO will be presented from May 15, 2008. This data will be coupled with HYSPLIT backtrajectories, chemical modeling via MOZART, and satellite imagery (MODIS) to present evidence that Siberian wildfires impacted the air quality at Storm Peak Laboratory.

  15. Field and Laboratory Studies of Atmospheric Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew Mitchell

    This thesis is the culmination of field and laboratory studies aimed at assessing processes that affect the composition and distribution of atmospheric organic aerosol. An emphasis is placed on measurements conducted using compact and high-resolution Aerodyne Aerosol Mass Spectrometers (AMS). The first three chapters summarize results from aircraft campaigns designed to evaluate anthropogenic and biogenic impacts on marine aerosol and clouds off the coast of California. Subsequent chapters describe laboratory studies intended to evaluate gas and particle-phase mechanisms of organic aerosol oxidation. The 2013 Nucleation in California Experiment (NiCE) was a campaign designed to study environments impacted by nucleated and/or freshly formed aerosol particles. Terrestrial biogenic aerosol with > 85% organic mass was observed to reside in the free troposphere above marine stratocumulus. This biogenic organic aerosol (BOA) originated from the Northwestern United States and was transported to the marine atmosphere during periodic cloud-clearing events. Spectra recorded by a cloud condensation nuclei counter demonstrated that BOA is CCN active. BOA enhancements at latitudes north of San Francisco, CA coincided with enhanced cloud water concentrations of organic species such as acetate and formate. Airborne measurements conducted during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE) were aimed at evaluating the contribution of ship emissions to the properties of marine aerosol and clouds off the coast of central California. In one study, analysis of organic aerosol mass spectra during periods of enhanced shipping activity yielded unique tracers indicative of cloud-processed ship emissions (m/z 42 and 99). The variation of their organic fraction (f42 and f 99) was found to coincide with periods of heavy (f 42 > 0.15; f99 > 0.04), moderate (0.05 < f42 < 0.15; 0.01 < f99 < 0.04), and negligible (f42 < 0.05; f99 < 0.01) ship influence. Application of

  16. Research Opportunities at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. G.; McCubbin, I. B.

    2006-12-01

    The Desert Research Institute (DRI) operates a high elevation facility, Storm Peak Laboratory (SPL), located on the west summit of Mt. Werner in the Park Range near Steamboat Springs, Colorado at an elevation of 3210 m MSL (Borys and Wetzel, 1997). SPL provides an ideal location for long-term research on the interactions of atmospheric aerosol and gas- phase chemistry with cloud and natural radiation environments. The ridge-top location produces almost daily transition from free tropospheric to boundary layer air which occurs near midday in both summer and winter seasons. Long-term observations at SPL document the role of orographically induced mixing and convection on vertical pollutant transport and dispersion. During winter, SPL is above cloud base 25% of the time, providing a unique capability for studying aerosol-cloud interactions (Borys and Wetzel, 1997). A comprehensive set of continuous aerosol measurements was initiated at SPL in 2002. SPL includes an office-type laboratory room for computer and instrumentation setup with outside air ports and cable access to the roof deck, a cold room for precipitation and cloud rime ice sample handling and ice crystal microphotography, a 150 m2 roof deck area for outside sampling equipment, a full kitchen and two bunk rooms with sleeping space for nine persons. The laboratory is currently well equipped for aerosol and cloud measurements. Particles are sampled from an insulated, 15 cm diameter manifold within approximately 1 m of its horizontal entry point through an outside wall. The 4 m high vertical section outside the building is capped with an inverted can to exclude large particles.

  17. Guidelines for the aerosol climatic effects special study: An element of the NASA climate research program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Research to help develop better understanding of the role of aerosols in the Earth's radiative balance is summarized. Natural volcanic injections of aerosols into the stratosphere to understand and model any resultant evidence of climate change are considered. The approach involves: (1) measurements from aircraft, balloon and ground based platforms which complement and enhance the aerosol information derived from satellite data; (2) development of instruments required for some of these measurements; (3) theoretical and laboratory work to aid in interpreting and utilizing space based and in situ data; and (4) preparation for and execution of concentrated observations of stratospheric aerosols following a future large volcanic eruption.

  18. Alternative Fuels Research Laboratory

    NASA Technical Reports Server (NTRS)

    Surgenor, Angela D.; Klettlinger, Jennifer L.; Nakley, Leah M.; Yen, Chia H.

    2012-01-01

    NASA Glenn has invested over $1.5 million in engineering, and infrastructure upgrades to renovate an existing test facility at the NASA Glenn Research Center (GRC), which is now being used as an Alternative Fuels Laboratory. Facility systems have demonstrated reliability and consistency for continuous and safe operations in Fischer-Tropsch (F-T) synthesis and thermal stability testing. This effort is supported by the NASA Fundamental Aeronautics Subsonic Fixed Wing project. The purpose of this test facility is to conduct bench scale F-T catalyst screening experiments. These experiments require the use of a synthesis gas feedstock, which will enable the investigation of F-T reaction kinetics, product yields and hydrocarbon distributions. Currently the facility has the capability of performing three simultaneous reactor screening tests, along with a fourth fixed-bed reactor for catalyst activation studies. Product gas composition and performance data can be continuously obtained with an automated gas sampling system, which directly connects the reactors to a micro-gas chromatograph (micro GC). Liquid and molten product samples are collected intermittently and are analyzed by injecting as a diluted sample into designated gas chromatograph units. The test facility also has the capability of performing thermal stability experiments of alternative aviation fuels with the use of a Hot Liquid Process Simulator (HLPS) (Ref. 1) in accordance to ASTM D 3241 "Thermal Oxidation Stability of Aviation Fuels" (JFTOT method) (Ref. 2). An Ellipsometer will be used to study fuel fouling thicknesses on heated tubes from the HLPS experiments. A detailed overview of the test facility systems and capabilities are described in this paper.

  19. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  20. The Columbia River Research Laboratory

    USGS Publications Warehouse

    Waste, Steve; Reagan, Rachel

    2012-01-01

    The mission of the Columbia River Research Laboratory is to serve the public by providing scientific information to support the stewardship of our Nation's fish and aquatic resources, with emphasis on the Columbia River basin. As a part of the U.S. Geological Survey (USGS) Western Fisheries Research Center, we conduct objective, relevant research and seek partnerships to help fulfill this mission.

  1. The Columbia River Research Laboratory

    USGS Publications Warehouse

    Maule, Alec

    2005-01-01

    The U.S. Geological Survey's Columbia River Research Laboratory (CRRL) was established in 1978 at Cook, Washington, in the Columbia River Gorge east of Portland, Oregon. The CRRL, as part of the Western Fisheries Research Center, conducts research on fishery issues in the Columbia River Basin. Our mission is to: 'Serve the public by providing scientific information to support the stewardship of our Nation's fish and aquatic resources...by conducting objective, relevant research'.

  2. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  3. Present role of PIXE in atmospheric aerosol research

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy

    2015-11-01

    In the 1980s and 1990s nearly half of the elemental analyses of atmospheric aerosol samples were performed by PIXE. Since then, other techniques for elemental analysis became available and there has been a steady increase in studies on organic aerosol constituents and other aspects of aerosols, especially in the areas of nucleation (new particle formation), optical properties, and the role of aerosol particles in cloud formation and properties. First, a brief overview and discussion is given of the developments and trends in atmospheric aerosol analysis and research of the past three decades. Subsequently, it is indicated that there is still invaluable work to be done by PIXE in atmospheric aerosol research, especially if one teams up with other aerosol researchers and performs complementary measurements, e.g., on small aerosol samples that are taken with high-time resolution. Fine examples of such research are the work done by the Lund group in the CARIBIC aircraft studies and the analysis of circular streaker samples by the Florence PIXE group. These and other examples are presented and other possibilities of PIXE are indicated.

  4. From Cradle to Grave: Research on Atmospheric Aerosols (Vilhelm Bjerknes Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Baltensperger, Urs

    2014-05-01

    mixed phase clouds has been performed in a series of Cloud Aerosol Characterization Experiments (CLACE) at the high altitude research station Jungfraujoch (3580 m asl). This presentation will give an overview on recent laboratory experiments and field campaigns. The lab studies relate to SOA formation from a variety of precursors as well as the formation of new particles from gaseous sulfuric acid in combination with other precursor gases where the latter experiments have been performed in the CLOUD experiment at CERN. The field studies relate to the latest developments of source apportionment studies for the organic aerosol, which build on positive matrix factorization of aerosol mass spectrometer data, as well as to aerosol cloud interaction studies on the Jungfraujoch.

  5. Optical Properties of Black and Brown Carbon Aerosols from Laboratory Combustion of Wildland Fuels

    NASA Astrophysics Data System (ADS)

    Beres, N. D.; Molzan, J.

    2015-12-01

    Aerosol light absorption in the solar spectral region (300 nm - 2300 nm) of the atmosphere is key for the direct aerosol radiative forcing, which is determined by aerosol single scattering albedo (SSA), asymmetry parameter, and by the albedo of the underlying surface. SSA is of key importance for the sign and quantity of aerosol direct radiative forcing; that is, does the aerosol make the earth look darker (heating) or whiter (cooling)? In addition, these optical properties are needed for satellite retrievals of aerosol optical depth and properties. During wildland fires, aerosol optical absorption is largely determined by black carbon (BC) and brown carbon (BrC) emissions. BC is strongly absorbing throughout the solar spectrum, while BrC absorption strongly increases toward shorter wavelength and can be neglected in the red and infrared. Optical properties of BrC emitted from wildland fires are poorly understood and need to be studied as function of fuel type and moisture content and combustion conditions. While much more is known about BC optical properties, knowledge for the ultraviolet (UV) spectral region is still lacking and critically needed for satellite remote sensing (e.g., TOMS, OMI) and for modeling of tropospheric photochemistry. Here, a project to better characterize biomass burning aerosol optical properties is described. It utilizes a laboratory biomass combustion chamber to generate aerosols through combustion of different wildland fuels of global and regional importance. Combustion aerosol optics is characterized with an integrating nephelometer to measure aerosol light scattering and a photoacoustic instrument to measure aerosol light absorption. These measurements will yield optical properties that are needed to improve qualitative and quantitative understanding of aerosol radiative forcing and satellite retrievals for absorbing carbonaceous aerosols from combustion of wildland fuels.

  6. Laboratory directed research and development

    SciTech Connect

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  7. Commissioning a materials research laboratory

    SciTech Connect

    SAVAGE,GERALD A.

    2000-03-28

    This presentation covers the process of commissioning a new 150,000 sq. ft. research facility at Sandia National Laboratories. The laboratory being constructed is a showcase of modern design methods being built at a construction cost of less than $180 per sq. ft. This is possible in part because of the total commissioning activities that are being utilized for this project. The laboratory's unique approach to commissioning will be presented in this paper. The process will be followed through from the conceptual stage on into the actual construction portion of the laboratory. Lessons learned and cost effectiveness will be presented in a manner that will be usable for others making commissioning related decisions. Commissioning activities at every stage of the design will be presented along with the attributed benefits. Attendees will hear answers to the what, when, who, and why questions associated with commissioning of this exciting project.

  8. Impact of aerosol composition and foliage characteristics on forest canopy deposition rates: A laboratory study

    NASA Astrophysics Data System (ADS)

    Hornsby, K. E.; Pryor, S. C.

    2013-12-01

    concentrations using a Licor LI-7000 and dew point (Buck Research Instruments model CR-1A). A suite of experiments was conducted in which the; (i) Aerosol particle composition was varied (4 chemical compounds) (ii) Aerosol particle GMD was varied (40-80 nm) (iii) Aerosol particle total number concentration was varied (2 orders of magnitude) (iv) Tree type was varied (using a range of species and alternately lacquering the trees to prevent active uptake) (v) Light, water vapor content and CO2 concentrations inside the chamber were varied in order to mimic the range of conditions observed at our experimental particle flux site in southern Indiana (see related abstract by Pryor and Hornsby that describes the in situ flux estimates). The results of these laboratory experiments are used to quantify the relative importance of these factors in dictating aerosol particle uptake and specifically the importance of the foliage collection mechanisms at the leaf scale and deposition flux partitioning between foliage and non-foliage elements.

  9. SESAME/Environmental Research Laboratories

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The Environmental Research Laboratories (ERL) have been designated as the basic research group of the National Oceanic and Atmospheric Administration (NOAA). ERL performs an integrated program of research and research services directed toward understanding the geophysical environment, protecting the environment, and improving the forecasting ability of NOAA. Twenty-four laboratories located throughout the United States comprise ERL. The Project SESAME (Severe Environmental Storms and Mesoscale Experiment) Planning Office is a project office within ERL. SESAME is conceived as a joint effort involving NOAA, NASA, NSF, and the atmospheric science community to lay the foundation for improved prediction of severe convective storms. The scientific plan for SESAME includes a phased buildup of analysis, modeling, instrumentation development and procurement, and limited-scale observational activities.

  10. Laboratory Experiments and Instrument Development for the Study of Atmospheric Aerosols

    SciTech Connect

    Davidovits, Paul

    2011-12-10

    Soot particles are generated by incomplete combustion of fossil and biomass fuels. Through direct effects clear air aerosols containing black carbon (BC) such as soot aerosols, absorb incoming light heating the atmosphere, while most other aerosols scatter light and produce cooling. Even though BC represents only 1-2% of the total annual emissions of particulate mass to the atmosphere, it has been estimated that the direct radiative effect of BC is the second-most important contributor to global warming after absorption by CO2. Ongoing studies continue to underscore the climate forcing importance of black carbon. However, estimates of the radiative effects of black carbon on climate remain highly uncertain due to the complexity of particles containing black carbon. Quantitative measurement of BC is challenging because BC often occurs in highly non-spherical soot particles of complex morphology. Freshly emitted soot particles are typically fractal hydrophobic aggregates. The aggregates consist of black carbon spherules with diameters typically in the range of about 15-40 nm, and they are usually coated by adsorbed polyaromatic hydrocarbons (PAHs) produced during combustion. Diesel-generated soot particles are often emitted with an organic coating composed primarily of lubricating oil and unburned fuel, as well as well as PAH compounds. Sulfuric acid has also been detected in diesel and aircraft-emitted soot particles. In the course of aging, these particle coatings may be substantially altered by chemical reactions and/or the deposition of other materials. Such processes transform the optical and CCN properties of the soot aerosols in ways that are not yet well understood. Our work over the past seven years consisted of laboratory research, instrument development and characterization, and field studies with the central focus of improving our understanding of the black carbon aerosol climate impacts. During the sixth year as well as during this seventh year (no

  11. Current and Future Perspectives of Aerosol Research at NASA Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Ichoku, Charles; Randles, Cynthia; Yuan, Tianle; Da Silva, Arlindo M.; Colarco, Peter R.; Kim, Dongchul; Levy, Robert; Sayer, Andrew; Chin, Mian; Giles, David; Holben, Brent; Welton, Ellsworth; Eck, Thomas; Remer, Lorraine

    2014-01-01

    Aerosols are tiny atmospheric particles that are emitted from various natural and anthropogenic sources. They affect climate through direct and indirect interactions with solar and thermal radiation, clouds, and atmospheric circulation (Solomon et al. 2007). The launch of a variety of sophisticated satellite-based observing systems aboard the Terra, Aqua, Aura, SeaWiFS (see appendix for all acronym expansions), CALIPSO, and other satellites in the late 1990s to mid-2000s through the NASA EOS and other U.S. and non-U.S. programs ushered in a golden era in aerosol research. NASA has been a leader in providing global aerosol characterizations through observations from satellites, ground networks, and field campaigns, as well as from global and regional modeling. AeroCenter (http://aerocenter.gsfc.nasa.gov/), which was formed in 2002 to address the many facets of aerosol research in a collaborative manner, is an interdisciplinary union of researchers (200 members) at NASA GSFC and other nearby institutions, including NOAA, several universities, and research laboratories. AeroCenter hosts a web-accessible regular seminar series and an annual meeting to present up-to-date aerosol research, including measurement techniques; remote sensing algorithms; modeling development; field campaigns; and aerosol interactions with radiation, clouds, precipitation, climate, biosphere, atmospheric chemistry, air quality, and human health. The 2013 annual meeting was held at the NASA GSFC Visitor Center on 31 May 2013, which coincided with the seventh anniversary of the passing of Yoram Kaufman, a modern pioneer in satellite-based aerosol science and the founder of AeroCenter. The central theme of this year's meeting was "current and future perspectives" of NASA's aerosol science and satellite missions.

  12. THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY (DEARS)

    EPA Science Inventory

    Field data collections for the Detroit Exposure and Aerosol Research Study (DEARS) have completed one-half of the planned study design. The DEARS is collecting personal, residential indoor, residential outdoor and central community monitoring data involving particulate matter, v...

  13. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    SciTech Connect

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    The atmosphere is composed of a complex mixture of gases and suspended microscopic aerosol particles. The ability of these particles to take up water (hygroscopicity) and to act as nuclei for cloud droplet formation significantly impacts aerosol light scattering and absorption, and cloud formation, thereby influencing air quality, visibility, and climate in important ways. A substantial, yet poorly characterized component of the atmospheric aerosol is organic matter. Its major sources are direct emissions from combustion processes, which are referred to as primary organic aerosol (POA), or in situ processes in which volatile organic compounds (VOCs) are oxidized in the atmosphere to low volatility reaction products that subsequent condense to form particles that are referred to as secondary organic aerosol (SOA). POA and VOCs are emitted to the atmosphere from both anthropogenic and natural (biogenic) sources. The overall goal of this experimental research project was to conduct laboratory studies under simulated atmospheric conditions to investigate the effects of the chemical composition of organic aerosol particles on their hygroscopicity and cloud condensation nucleation (CCN) activity, in order to develop quantitative relationships that could be used to more accurately incorporate aerosol-cloud interactions into regional and global atmospheric models. More specifically, the project aimed to determine the products, mechanisms, and rates of chemical reactions involved in the processing of organic aerosol particles by atmospheric oxidants and to investigate the relationships between the chemical composition of organic particles (as represented by molecule sizes and the specific functional groups that are present) and the hygroscopicity and CCN activity of oxidized POA and SOA formed from the oxidation of the major classes of anthropogenic and biogenic VOCs that are emitted to the atmosphere, as well as model hydrocarbons. The general approach for this project was

  14. Molecular transformations accompanying the aging of laboratory secondary organic aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aging of fresh secondary organic aerosol, generated by alpha-pinene ozonolysis in a flow tube reactor, was studied by passing it through a second reaction chamber where hydroxyl radicals were generated. Two types of experiments were performed: plug injection experiments where the particle mass a...

  15. Laboratory Investigation of Organic Aerosol Formation from Aromatic Hydrocarbons

    DOE R&D Accomplishments Database

    Molina, Luisa T.; Molina, Mario J.; Zhang, Renyi

    2006-08-23

    Our work for this DOE funded project includes: (1) measurements of the kinetics and mechanism of the gas-phase oxidation reactions of the aromatic hydrocarbons initiated by OH; (2) measurements of aerosol formation from the aromatic hydrocarbons; and (3) theoretical studies to elucidate the OH-toluene reaction mechanism using quantum-chemical and rate theories.

  16. Laboratory Testing of Aerosol for Enclosure Air Sealing

    SciTech Connect

    Harrington, Curtis; Modera, Mark

    2012-05-01

    This report presents a process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

  17. METAL AEROSOL FORMATION IN A LABORATORY SWIRL FLAME INCINERATOR

    EPA Science Inventory

    The paper describes experiments performed using an 82 kW (280,000 Btu/hr) refractory-lined horizontal tunnel combustor to examine the aerosol particle size distribution (PSD) produced by simulated nickel, cadmium, and lead wastes injected into an incineration environment. Metal c...

  18. Laboratory studies of thin films representative of atmospheric sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Fortin, Tara Jean

    Sulfate aerosols are present globally in both the upper troposphere and lower stratosphere. These aerosols are of great interest because they have a profound influence on Earth's radiation balance, heterogeneous chemistry, and cloud formation mechanisms throughout the atmosphere. The magnitude of these effects is ultimately determined by the size, phase, and chemical composition of the aerosols themselves. This thesis explores some of the questions that remain concerning the phase of these aerosols under atmospheric conditions and the effects of their chemical composition on heterogeneous chemistry and cloud formation mechanisms. In the upper troposphere, cirrus clouds are thought to form via the homogeneous nucleation of ice out of dilute sulfate aerosols such as ammonium sulfate ((NH4)2SO4). To investigate this, the low-temperature phase behavior of ammonium sulfate films has been studied using Fourier transform infrared (FTIR) spectroscopy. Experiments performed as a function of increasing relative humidity demonstrate that a phase transition from crystalline (NH 4)2SO4 to a metastable aqueous solution can occur at temperatures below the eutectic at 254 K. However, on occasion, direct deposition of ice from the vapor phase was observed, possibly indicating selective heterogeneous nucleation. In addition to serving as nuclei for cirrus clouds, sulfate aerosols can participate in heterogeneous reactions. The interaction of HNO3 with ammonium sulfate has been investigated as a possible loss mechanism for gas-phase HNO3 using a Knudsen cell reactor coupled with transmission FTIR spectroscopy. The results show that HNO3 reacts with solid ammonium sulfate to produce ammonium nitrate and letovicite at 203 K. Furthermore, this reaction is enhanced as a function of relative humidity from 0 to 41%. In the lower stratosphere, polar stratospheric clouds (PSCs) are important for springtime ozone depletion. The vapor deposition of ice on sulfuric acid tetrahydrate (SAT) has

  19. Laboratory Testing of Aerosol for Enclosure Air Sealing

    SciTech Connect

    Harrington, C.; Modera, M.

    2012-05-01

    Space conditioning energy use can be significantly reduced by addressing uncontrolled infiltration and exfiltration through the envelope of a building. A process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology is presented. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

  20. NASA's Atmospheric Effects of Aviation Project: Results of the August 1999 Aerosol Measurement Intercomparison Workshop, Laboratory Phase

    NASA Technical Reports Server (NTRS)

    Cofer, W. Randy, III; Anderson, Bruce E.; Connors, V. S.; Wey, C. C.; Sanders, T.; Twohy, C.; Brock, C. A.; Winstead, E. L.; Pui, D.; Chen, Da-Ren

    2001-01-01

    During August 1-14, 1999, NASA's Atmospheric Effects of Aviation Project (AEAP) convened a workshop at the NASA Langley Research Center to try to determine why such a wide variation in aerosol emissions indices and chemical and physical properties have been reported by various independent AEAP-supported research teams trying to characterize the exhaust emissions of subsonic commercial aircraft. This workshop was divided into two phases, a laboratory phase and a field phase. The laboratory phase consisted of supplying known particle number densities (concentrations) and particle size distributions to a common manifold for the participating research teams to sample and analyze. The field phase was conducted on an aircraft run-up pad. Participating teams actually sampled aircraft exhaust generated by a Langley T-38 Talon aircraft at 1 and 9 m behind the engine at engine powers ranging from 48 to 100 percent. Results from the laboratory phase of this intercomparison workshop are reported in this paper.

  1. Aerosol Properties and Processes: A Path from Field and Laboratory Measurements to Global Climate Models

    SciTech Connect

    Ghan, Steven J.; Schwartz, Stephen E.

    2007-07-01

    Aerosols exert a substantial influence on climate and climate change through a variety of complex mechanisms. Consequently there is a need to represent aerosol effects in global climate models, and models have begun to include representations of these effects. However, the treatment of aerosols in current global climate models is presently highly simplified, omitting many important processes and feedbacks. Consequently there is need for substantial improvement. Here we describe the U. S. Department of Energy strategy for improving the treatment of aerosol properties and processes in global climate models. The strategy begins with a foundation of field and laboratory measurements that provide the basis for modules of selected aerosol properties and processes. These modules are then integrated in regional aerosol models, which are evaluated by comparing with field measurements. Issues of scale are then addressed so that the modules can be applied to global aerosol models, which are evaluated by comparing with global satellite measurements. Finally, the validated set of modules are applied to global climate models for multi-century simulations. This strategy can be applied to successive generations of global climate models.

  2. Photobiology Research Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2012-06-01

    This fact sheet provides information about Photobiology Research Laboratory capabilities and applications at NREL. The photobiology group's research is in four main areas: (1) Comprehensive studies of fuel-producing photosynthetic, fermentative, and chemolithotrophic model microorganisms; (2) Characterization and engineering of redox enzymes and proteins for fuel production; (3) Genetic and pathway engineering of model organisms to improve production of hydrogen and hydrocarbon fuels; and (4) Studies of nanosystems using biological and non-biological materials in hybrid generation. NREL's photobiology research capabilities include: (1) Controlled and automated photobioreactors and fermenters for growing microorganisms under a variety of environmental conditions; (2) High-and medium-throughput screening of H{sub 2}-producing organisms; (3) Homologous and heterologous expression, purification, and biochemical/biophysical characterization of redox enzymes and proteins; (4) Qualitative and quantitative analyses of gases, metabolites, carbohydrates, lipids, and proteins; (5) Genetic and pathway engineering and development of novel genetic toolboxes; and (6) Design and spectroscopic characterization of enzyme-based biofuel cells and energy conversion nanodevices.

  3. Aerosol Formation In The Free Troposphere: Aircraft and Laboratory Measurements of Ionic and Gaseous Aerosol Precursors

    NASA Astrophysics Data System (ADS)

    Arnold, F.

    Aerosol formation seems to be very efficient in the upper troposphere (UT) as in- dicated by the frequent presence of numerous very small and therefore very young aerosol particles. Aersosol formation proceeds via nucleation of supersaturated low volatility trace gases (LVG) involving either a homogeneous (HONU) or an ion- induced (INU) mechanism. LVG experience rapid removal by condenstation on prefer- ably pre-existing aerosol particles and therefore LVG must be formed locally in the UT by photochemical conversion of precursor gases. A prominent example is gaseous sulfuric acid which is formed from SO2. This SO2 originates at least in the northern hemisphere mostly from fossil fuel combustion at ground-level and to some part origi- nates also from jet aircraft cruising in the UT. Other conceivable LVG's are low volatil- ity organic compounds. After formation by nucleation new particles may experience condensational growth involving LVG. Alternatively new particles may experience scavenging by attachment to pre-existing larger particles. The LVG-concentration has a strong influence on the growth-rate of new particles and thereby on the possibil- ity for growth to the size of a cloud condensation nucleus. Unfortunately present knowledge on free tropospheric LVG is rather poor. Here will be reported free tropo- spheric aircraft-based measurements of ionic and gaseous aerosol-precursors. These include both measurements in the "background" FT as well as measurements in ex- haust plumes of jet aircraft cruising in the UT. Furthermore accompanying new labo- ratory investigations of INU and measurements behind aircraft jet engines at ground- level will also be adressed.

  4. A novel aerosol generator for homogenous distribution of powder over the lungs after pulmonary administration to small laboratory animals.

    PubMed

    Tonnis, Wouter F; Bagerman, Marieke; Weij, Michel; Sjollema, Jelmer; Frijlink, Henderik W; Hinrichs, Wouter L J; de Boer, Anne H

    2014-11-01

    To evaluate powder formulations for pulmonary administration in pre-clinic research, the powder should be administered to the lungs of small laboratory animals. To do so properly, a device is needed that generates particles small enough to reach deep into the lungs. In this study a newly developed aerosol generator was tested for pulmonary administration of powder to the lungs of mice and its performance was compared to the only currently available device, the Penn-Century insufflator. Results showed that both devices generated powder particles of approximately the same size distribution, but the fine particle fraction needed for deep lung administration was strongly improved when the aerosol generator was used.Imaging studies in mice showed that powder particles from the aerosol generator deposited into the deep lung, where powder from the Penn-Century insufflator did not reach further than the conducting airways.Furthermore, powder administered by using the aerosol generator was more homogenously distributed over the five individual lungs lobes than powder administrated by using the Penn-Century insufflator.

  5. Development of Particulates and Aerosols Research

    NASA Technical Reports Server (NTRS)

    DeWitt, Kenneth; Rivera, Monica

    2005-01-01

    shared her understanding of the aerosol technology with them. She also provided input for their end of the summer presentations. And attended the Aviation and Particle Emissions workshop. This workshop brought together experts in the aircraft particulate emissions field. As a result Ms. Rivera made two significant contacts with academia (UMR) and government (WPAFB) which could lead to future collaboration. She also attended the Aerosol and Particle Measurement Class held at the University of Minnesota. This class refreshed her particulate knowledge and introduced her to new aerosol applications and technology. Furthermore at the class contacts were made with private industry (TSI) and government (WPAFB). Ms. Rivera also enhanced her education by taking an in-house class on aircraft design and operation.

  6. The formation of sulfate and elemental sulfur aerosols under varying laboratory conditions: implications for early earth.

    PubMed

    DeWitt, H Langley; Hasenkopf, Christa A; Trainer, Melissa G; Farmer, Delphine K; Jimenez, Jose L; McKay, Christopher P; Toon, Owen B; Tolbert, Margaret A

    2010-10-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 × 10(9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO(2)) by UV light with λ < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S(8)) and sulfuric acid (H(2)SO(4)) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO(2) either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H(2)) or methane (CH(4)), increased the formation of S(8). With UV photolysis, formation of S(8) aerosols is highly dependent on the initial SO(2) pressure; and S(8) is only formed at a 2% SO(2) mixing ratio and greater in the absence of a reductant, and at a 0.2% SO(2) mixing ratio and greater in the presence of 1000 ppmv CH(4). We also found that organosulfur compounds are formed from the photolysis of CH(4) and moderate amounts of SO(2). The implications for sulfur aerosols on early Earth are discussed. Key Words: S-MIF-Archean atmosphere-Early Earth-Sulfur aerosols.

  7. (PORTUGAL)THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) represents an intensive examination of personal, residential and community-based particulate matter and related co-pollutant measurements in Detroit, Michigan. Data from the DEARS will be used as inputs into air quality, la...

  8. What Can We Learn From Laboratory Studies of Inorganic Sea Spray Aerosol?

    NASA Astrophysics Data System (ADS)

    Salter, M. E.; Zieger, P.; Acosta Navarro, J. C.; Grythe, H.; Kirkevag, A.; Rosati, B.; Riipinen, I.; Nilsson, E. D.

    2015-12-01

    Since 2013 we have been operating a temperature-controlled plunging-jet sea spray aerosol chamber at Stockholm University using inorganic artificial seawater. Using size-resolved measurements of the foam bubbles responsible for the aerosol production we were able to show that it is changes to these foam bubbles which drive the observed changes in aerosol production and size distribution as water temperature changes (Salter et al., 2014). Further, by combining size-resolved measurements of aerosol production as a function of water temperature with measurements of air entrainment by the plunging-jet we have developed a temperature-dependent sea spray source function for deployment in large-scale models (Salter et al., 2015). We have also studied the hygroscopicity, morphology, and chemical composition of the inorganic sea spray aerosol produced in the chamber. The sea spray aerosol generated from artificial seawater exhibited lower hygroscopic growth than both pure NaCl and output from the E-AIM aerosol thermodynamics model when all relevant inorganic ions in the sea salt were included. Results from sensitivity tests using a large-scale earth system model suggest that the lower hygroscopicity observed in our laboratory measurements has important implications for calculations of the radiative balance of the Earth. In addition, size-dependent chemical fractionation of several inorganic ions was observed relative to the artificial seawater with potentially important implications for the chemistry of the marine boundary layer. Each of these studies suggest that there is still much to be learned from rigorous experiments using inorganic seawater proxies. Salter et al., (2014), On the seawater temperature dependence of the sea spray aerosol generated by a continuous plunging jet. J. Geophys. Res. Atmos., 119, 9052-9072, doi: 10.1002/2013JD021376 Salter et al., (2015), An empirically derived inorganic sea spray source function incorporating sea surface temperature. Atmos

  9. The AERONET network: atmospheric aerosol research in Ukraine

    NASA Astrophysics Data System (ADS)

    Milinevsky, G. P.

    2013-12-01

    The AERONET network is one of the most developed ground-based networks for aerosol monitoring. Solar radiance extinction, aureole brightness and sky light polarization measurements are used by the AERONET inversion retrieval algorithm to derive a variety of aerosol particle properties and parameters that are important for estimations of aerosol influences on air quality and climate change. In 2008 the AERONET has been extended in Ukraine: in addition to Sevastopol site (operated since 2006) the sunphotometer CIMEL CE318-2 has been installed at Kyiv site. New generation of sunphotometer (CE318N) has been used widely since 2011 in various sites of Ukraine as mobile station together with portable sunphotometer Microtops II. This article presents a short description of the AERONET, its development in Ukraine and prospects for future atmospheric research.

  10. Earth Resources Laboratory research and technology

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The accomplishments of the Earth Resources Laboratory's research and technology program are reported. Sensors and data systems, the AGRISTARS project, applied research and data analysis, joint research projects, test and evaluation studies, and space station support activities are addressed.

  11. A mobile remote sensing laboratory for water vapor, trace gas, aerosol, and wind speed measurements

    SciTech Connect

    Slaughter, D.; White, W.; Tulloch, W.; DeSlover, D.

    1993-03-19

    The Lawrence Livermore National Laboratory has developed a mobile field laboratory for remote measurement of atmospheric processes and observables that are important in global climate change, dispersal of hazardous materials, and atmospheric pollution. Specific observables of interest are water vapor, trace gases, aerosol size and density, wind, and temperature. The goal is to study atmospheric processes continuously for extended periods in remote field locations. This laboratory has just reached field ready status with sensors for aerosol and trace gas measurement based on established techniques. A development program is underway to enhance the sensor suite with several new techniques and instruments that are expected to significantly extend the state of the art in remote trace gas analysis. The new sensors will be incorporated into the lab during the next two years.

  12. Physical properties of ambient and laboratory-generated secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda C.; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey A.; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-01

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory-generated secondary organic aerosols (SOA). Scanning transmission X-ray microscopy was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Particles with higher viscosity/surface tension can be identified by a steeper slope on a plot of TCA versus size because they flatten less upon impaction. The slopes of the ambient data are statistically similar indicating a small range of average viscosities/surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory-generated SOA. This comparison indicates that ambient organic particles have higher viscosities/surface tensions than those typically generated in laboratory SOA studies.

  13. Physical Properties of Ambient and Laboratory-Generated Secondary Organic Aerosol

    SciTech Connect

    O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.

    2014-06-17

    The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory generated secondary organic aerosols (SOA). Scanning transmission x-ray microscopy (STXM) was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Because they flatten less upon impaction, particles with higher viscosity and surface tension can be identified by a steeper slope on a plot of TCA vs. size. The slopes of the ambient data are statistically similar indicating a small range of average viscosities and surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory generated SOA. This comparison indicates that ambient organic particles have higher viscosities and surface tensions than those typically generated in laboratory SOA studies.

  14. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements

    NASA Astrophysics Data System (ADS)

    May, A. A.; McMeeking, G. R.; Lee, T.; Taylor, J. W.; Craven, J. S.; Burling, I.; Sullivan, A. P.; Akagi, S.; Collett, J. L.; Flynn, M.; Coe, H.; Urbanski, S. P.; Seinfeld, J. H.; Yokelson, R. J.; Kreidenweis, S. M.

    2014-10-01

    Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California; coastal plain ecosystem in South Carolina) and from open burning of over 15 individual plant species in the laboratory. We report emission ratios and emission factors for refractory black carbon (rBC) and submicron nonrefractory aerosol and compare field and laboratory measurements to assess the representativeness of our laboratory-measured emissions. Laboratory measurements of organic aerosol (OA) emission factors for some fires were an order of magnitude higher than those derived from any of our aircraft observations; these are likely due to higher-fuel moisture contents, lower modified combustion efficiencies, and less dilution compared to field studies. Nonrefractory inorganic aerosol emissions depended more strongly on fuel type and fuel composition than on combustion conditions. Laboratory and field measurements for rBC were in good agreement when differences in modified combustion efficiency were considered; however, rBC emission factors measured both from aircraft and in the laboratory during the present study using the Single Particle Soot Photometer were generally higher than values previously reported in the literature, which have been based largely on filter measurements. Although natural variability may account for some of these differences, an increase in the BC emission factors incorporated within emission inventories may be required, pending additional field measurements for a wider variety of fires.

  15. The Formation of Sulfate and Elemental Sulfur Aerosols Under Varying Laboratory Conditions: Implications for Early Earth

    NASA Technical Reports Server (NTRS)

    DeWitt, H. Langley; Hasenkopf, Christa A.; Trainer, Melissa G.; Farmer, Delphine K.; Jimenez, Jose L.; McKay, Christopher P.; Toon, Owen B.; Tolbert, Margaret A.

    2010-01-01

    The presence of sulfur mass-independent fractionation (S-MIF) in sediments more than 2.45 x 10(exp 9) years old is thought to be evidence for an early anoxic atmosphere. Photolysis of sulfur dioxide (SO2) by UV light with lambda < 220 nm has been shown in models and some initial laboratory studies to create a S-MIF; however, sulfur must leave the atmosphere in at least two chemically different forms to preserve any S-MIF signature. Two commonly cited examples of chemically different sulfur species that could have exited the atmosphere are elemental sulfur (S8) and sulfuric acid (H2S04) aerosols. Here, we use real-time aerosol mass spectrometry to directly detect the sulfur-containing aerosols formed when SO2 either photolyzes at wavelengths from 115 to 400 nm, to simulate the UV solar spectrum, or interacts with high-energy electrons, to simulate lightning. We found that sulfur-containing aerosols form under all laboratory conditions. Further, the addition of a reducing gas, in our experiments hydrogen (H2) or methane (CH4), increased the formation of S8. With UV photolysis, formation of S8 aerosols is highly dependent on the initial SO2 pressure; and S8 is only formed at a 2% SO2 mixing ratio and greater in the absence of a reductant, and at a 0.2% SO2 mixing ratio and greater in the presence of 1000 ppmv CH4. We also found that organosulfur compounds are formed from the photolysis of CH4 and moderate amounts of SO2, The implications for sulfur aerosols on early Earth are discussed.

  16. Mathematics Laboratories: Implementation, Research, and Evaluation.

    ERIC Educational Resources Information Center

    Fitzgerald, William M., Ed.; Higgins, Jon L., Ed.

    This publication reviews the mathematical laboratory from three perspectives: a practical view of laboratories in operation, a review of related research, and a view of current laboratory evaluation procedures. After a discussion of definitions, types, and purposes of math labs, the first paper concentrates on their historical development in…

  17. Demonstration of the Applicability of Novel Photoacoustic Aerosol Monitor for Optical Absorption Coefficient Determination. Laboratory and Field Test.

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Schnaiter, M.; Linke, C.; Vragel, M.; Filep, Á.; Fődi, L.; Motika, G.; Bozóki, Z.; Szabó, G.

    2009-04-01

    apportionment studies. The present system was successfully tested both under the laboratory and field circumstances. The results of these studied, demonstrated here, is shown excellent agreements with reference methods and presents the main characteristic performances of the system verifying the potential of Wasul-MuWaPas to characterizing the spectral properties of atmospheric aerosols. These researches were funded by Hungarian Ministry of Economy and Transport NKFP_07_A4_AEROS_EU.

  18. Laboratory measurements of light scattering by simulated atmospheric aerosols.

    PubMed

    Quiney, R G; Carswell, A I

    1972-07-01

    Using the Stokes vector formulation measurements are reported of the four principal components of the scattering matrix under controlled laboratory conditions. Two ranges of scattering conditions are considered: atmospheric air as a function of relative humidity (HAZE) and water droplet clouds (FOGS). A 50-mW (63284-A) He-Ne laser is used as the light source. A sensitive automated polar nephelometer, which has been developed for these measurements, records the scattered light as a function of scattering angle from 6 degrees to 174 degrees . A digital computer is used to calculate the matrix elements from the raw experimental data. The results may be compared with the theoretical computations of Deirmendjian and the field work of Rozenberg. The results of the experiments show pronounced dependence upon the relative humidity and the properties of the fogs that are explicable qualitatively. However, quantitative inversion of light scattering data to obtain such information as the size distribution requires comprehensive experiments of high precision and large amounts of computer time.

  19. Virtual Instruction: A Qualitative Research Laboratory Course

    ERIC Educational Resources Information Center

    Stadtlander, Lee M.; Giles, Martha J.

    2010-01-01

    Online graduate programs in psychology are becoming common; however, a concern has been whether instructors in the programs provide adequate research mentoring. One issue surrounding research mentoring is the absence of research laboratories in the virtual university. Students attending online universities often do research without peer or lab…

  20. Risk assessment technique for evaluating research laboratories

    SciTech Connect

    Bolander, T.W.; Meale, B.M.; Eide, S.A.

    1992-01-01

    A technique has been developed to evaluate research laboratories according to risk, where risk is defined as the product of frequency and consequence. This technique was used to evaluate several laboratories at the Idaho National Engineering Laboratory under the direction of the Department of Energy, Idaho Field Office to assist in the risk management of the Science and Technology Department laboratories. With this technique, laboratories can be compared according to risk, and management can use the results to make cost effective decisions associated with the operation of the facility.

  1. Risk assessment technique for evaluating research laboratories

    SciTech Connect

    Bolander, T.W.; Meale, B.M.; Eide, S.A.

    1992-09-01

    A technique has been developed to evaluate research laboratories according to risk, where risk is defined as the product of frequency and consequence. This technique was used to evaluate several laboratories at the Idaho National Engineering Laboratory under the direction of the Department of Energy, Idaho Field Office to assist in the risk management of the Science and Technology Department laboratories. With this technique, laboratories can be compared according to risk, and management can use the results to make cost effective decisions associated with the operation of the facility.

  2. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    SciTech Connect

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, M. A.; Pratt, Kerri; Kulkarni, Gourihar R.; Hallar, Anna G.; Tolbert, Margaret A.

    2012-03-30

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  3. Importance of aerosol composition, mixing state, and morphology for heterogeneous ice nucleation: A combined field and laboratory approach

    NASA Astrophysics Data System (ADS)

    Baustian, Kelly J.; Cziczo, Daniel J.; Wise, Matthew E.; Pratt, Kerri A.; Kulkarni, Gourihar; Hallar, A. Gannet; Tolbert, Margaret A.

    2012-03-01

    In this study chemical compositions of background aerosol and ice nuclei were examined through laboratory investigations using Raman spectroscopy and field measurements by single-particle mass spectrometry. Aerosol sampling took place at Storm Peak Laboratory in Steamboat Springs, Colorado (elevation of 3210 m). A cascade impactor was used to collect coarse-mode aerosol particles for laboratory analysis by Raman spectroscopy; the composition, mixing state, and heterogeneous ice nucleation activity of individual particles were examined. For in situ analysis of fine-mode aerosol, ice nucleation on ambient particles was observed using a compact ice nucleation chamber. Ice crystals were separated from unactivated aerosol using a pumped counterflow virtual impactor, and ice nuclei were analyzed using particle analysis by laser mass spectrometry. For both fine and coarse modes, the ice nucleating particle fractions were enriched in minerals and depleted in sulfates and nitrates, compared to the background aerosol sampled. The vast majority of particles in both the ambient and ice active aerosol fractions contained a detectable amount of organic material. Raman spectroscopy showed that organic material is sometimes present in the form of a coating on the surface of inorganic particles. We find that some organic-containing particles serve as efficient ice nuclei while others do not. For coarse-mode aerosol, organic particles were only observed to initiate ice formation when oxygen signatures were also present in their spectra.

  4. Crime Laboratory Proficiency Testing Research Program.

    ERIC Educational Resources Information Center

    Peterson, Joseph L.; And Others

    A three-year research effort was conducted to design a crime laboratory proficiency testing program encompassing the United States. The objectives were to: (1) determine the feasibility of preparation and distribution of different classes of physical evidence; (2) assess the accuracy of criminalistics laboratories in the processing of selected…

  5. Solubilisation of aerosol trace metals by cloud processing: A laboratory study

    SciTech Connect

    Spokes, L.J.; Jickells, T.D.; Lim, B. )

    1994-08-01

    The atmosphere has now been recognized as a major source of both trace metals and nutrients to the oceans, with wet deposition being a major contributor to the flux. Solution pH has been suggested to be the major control on metal solubility in rainwater, but for many trace metals this relationship is not a simple one. Aerosols are typically exposed to [approximately]10 condensation/evaporation cloud cycles before removal in rain and, as a result of H[sub 2]SO[sub 4] and HNO[sub 3] uptake and SO[sub 2] oxidation, cloudwater pH can be very low. Laboratory studies have been conducted, using Saharan and Urban aerosols, to assess the effect of pH on trace metal solubility. The results for the crustal elements Al and Fe in the Saharan aerosol show that metal solubility is a strong function of pH with highest solubilities seen under low pH conditions, comparable to those found in clouds. Increasing the pH to simulate neutralization of acidity by ammonia and crustal material results in almost complete removal of these elements from the solution phase, suggesting that a simple relationship between pH and solubility should exist in rainwater. For Al and Fe in the Urban aerosol there is evidence that some of the material solubilized at low pH is kept in solution at high pH, perhaps as the result of complexation by organic matter. Manganese shows high solubility after the initial acidification from both the Saharan and Urban materials with only slight removal from solution at increased pH. For this element it appears, therefore, that the pH-dependent dissolution process is not reversible. It is tentatively suggested that Fe in the Urban aerosol, under these experimental conditions, is under solubility control.

  6. Photoacoustic optical properties at UV, VIS, and near IR wavelengths for laboratory generated and winter time ambient urban aerosols

    SciTech Connect

    Gyawali, Madhu S.; Arnott, W. Patrick; Zaveri, Rahul A.; Song, Chen; Moosmuller, H.; Liu, Li; Mishchenko, M.; Chen, L-W A.; Green, M.; Watson, J. G.; Chow, J. C.

    2012-03-08

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM{sub 2.5} and PM{sub 10} (particulate matter with aerodynamic diameters less than 2.5 {mu}m and 10 {mu}m, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO{sub 2}). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In general

  7. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  8. Stirling laboratory research engine survey report

    NASA Technical Reports Server (NTRS)

    Anderson, J. W.; Hoehn, F. W.

    1979-01-01

    As one step in expanding the knowledge relative to and accelerating the development of Stirling engines, NASA, through the Jet Propulsion Laboratory (JPL), is sponsoring a program which will lead to a versatile Stirling Laboratory Research Engine (SLRE). An objective of this program is to lay the groundwork for a commercial version of this engine. It is important to consider, at an early stage in the engine's development, the needs of the potential users so that the SLRE can support the requirements of educators and researchers in academic, industrial, and government laboratories. For this reason, a survey was performed, the results of which are described.

  9. Laboratory research in homeopathy: pro.

    PubMed

    Khuda-Bukhsh, Anisur R

    2006-12-01

    Homeopathy is a holistic method of treatment that uses ultralow doses of highly diluted natural substances originating from plants, minerals, or animals and is based on the principle of "like cures like." Despite being occasionally challenged for its scientific validity and mechanism of action, homeopathy continues to enjoy the confidence of millions of patients around the world who opt for this mode of treatment. Contrary to skeptics' views, research on home-opathy using modern tools mostly tends to support its efficacy and advocates new ideas toward understanding its mechanism of action. As part of a Point-Counterpoint feature, this review and its companion piece in this issue by Moffett et al (Integr Cancer Ther. 2006;5:333-342) are composed of a thesis section, a response section in reaction to the companion thesis, and a rebuttal section to address issues raised in the companion response. PMID:17101761

  10. Stirling Laboratory Research Engine: Preprototype configuration report

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1982-01-01

    The concept of a simple Stirling research engine that could be used by industrial, university, and government laboratories was studied. The conceptual and final designs, hardware fabrication and the experimental validation of a preprototype stirling laboratory research engine (SLRE) were completed. Also completed was a task to identify the potential markets for research engines of this type. An analytical effort was conducted to provide a stirling cycle computer model. The versatile engine is a horizontally opposed, two piston, single acting stirling engine with a split crankshaft drive mechanism; special instrumentation is installed at all component interfaces. Results of a thermodynamic energy balance for the system are reported. Also included are the engine performance results obtained over a range of speeds, working pressures, phase angles and gas temperatures. The potential for a stirling research engine to support the laboratory requirements of educators and researchers was demonstrated.

  11. Chemical research at Argonne National Laboratory

    SciTech Connect

    1997-04-01

    Argonne National Laboratory is a research and development laboratory located 25 miles southwest of Chicago, Illinois. It has more than 200 programs in basic and applied sciences and an Industrial Technology Development Center to help move its technologies to the industrial sector. At Argonne, basic energy research is supported by applied research in diverse areas such as biology and biomedicine, energy conservation, fossil and nuclear fuels, environmental science, and parallel computer architectures. These capabilities translate into technological expertise in energy production and use, advanced materials and manufacturing processes, and waste minimization and environmental remediation, which can be shared with the industrial sector. The Laboratory`s technologies can be applied to help companies design products, substitute materials, devise innovative industrial processes, develop advanced quality control systems and instrumentation, and address environmental concerns. The latest techniques and facilities, including those involving modeling, simulation, and high-performance computing, are available to industry and academia. At Argonne, there are opportunities for industry to carry out cooperative research, license inventions, exchange technical personnel, use unique research facilities, and attend conferences and workshops. Technology transfer is one of the Laboratory`s major missions. High priority is given to strengthening U.S. technological competitiveness through research and development partnerships with industry that capitalize on Argonne`s expertise and facilities. The Laboratory is one of three DOE superconductivity technology centers, focusing on manufacturing technology for high-temperature superconducting wires, motors, bearings, and connecting leads. Argonne National Laboratory is operated by the University of Chicago for the U.S. Department of Energy.

  12. NASA Ames Fluid Mechanics Laboratory research briefs

    NASA Technical Reports Server (NTRS)

    Davis, Sanford (Editor)

    1994-01-01

    The Ames Fluid Mechanics Laboratory research program is presented in a series of research briefs. Nineteen projects covering aeronautical fluid mechanics and related areas are discussed and augmented with the publication and presentation output of the Branch for the period 1990-1993.

  13. National Renewable Energy Laboratory 2004 Research Review

    SciTech Connect

    Not Available

    2005-03-01

    In-depth articles on several NREL technologies and advances, including: aligning quantum dots and related nanoscience and nanotechnology research; using NREL's Advanced Automotive Manikin (ADAM) to help test and design ancillary automotive systems; and harvesting ocean wind to generate electricity with deep-water wind turbines. Also covered are NREL news, research updates, and awards and honors received by the Laboratory.

  14. Laboratory Investigation of Contact Freezing and the Aerosol to Ice Crystal Transformation Process

    SciTech Connect

    Shaw, Raymond A.

    2014-10-28

    This project has been focused on the following objectives: 1. Investigations of the physical processes governing immersion versus contact nucleation, specifically surface-induced crystallization; 2. Development of a quadrupole particle trap with full thermodynamic control over the temperature range 0 to –40 °C and precisely controlled water vapor saturation ratios for continuous, single-particle measurement of the aerosol to ice crystal transformation process for realistic ice nuclei; 3. Understanding the role of ice nucleation in determining the microphysical properties of mixed-phase clouds, within a framework that allows bridging between laboratory and field measurements.

  15. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol

    PubMed Central

    Prather, Kimberly A.; Bertram, Timothy H.; Grassian, Vicki H.; Deane, Grant B.; Stokes, M. Dale; DeMott, Paul J.; Aluwihare, Lihini I.; Palenik, Brian P.; Azam, Farooq; Seinfeld, John H.; Moffet, Ryan C.; Molina, Mario J.; Cappa, Christopher D.; Geiger, Franz M.; Roberts, Gregory C.; Russell, Lynn M.; Ault, Andrew P.; Baltrusaitis, Jonas; Collins, Douglas B.; Corrigan, Craig E.; Cuadra-Rodriguez, Luis A.; Ebben, Carlena J.; Forestieri, Sara D.; Guasco, Timothy L.; Hersey, Scott P.; Kim, Michelle J.; Lambert, William F.; Modini, Robin L.; Mui, Wilton; Pedler, Byron E.; Ruppel, Matthew J.; Ryder, Olivia S.; Schoepp, Nathan G.; Sullivan, Ryan C.; Zhao, Defeng

    2013-01-01

    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60–180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties. PMID:23620519

  16. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol.

    PubMed

    Prather, Kimberly A; Bertram, Timothy H; Grassian, Vicki H; Deane, Grant B; Stokes, M Dale; Demott, Paul J; Aluwihare, Lihini I; Palenik, Brian P; Azam, Farooq; Seinfeld, John H; Moffet, Ryan C; Molina, Mario J; Cappa, Christopher D; Geiger, Franz M; Roberts, Gregory C; Russell, Lynn M; Ault, Andrew P; Baltrusaitis, Jonas; Collins, Douglas B; Corrigan, Craig E; Cuadra-Rodriguez, Luis A; Ebben, Carlena J; Forestieri, Sara D; Guasco, Timothy L; Hersey, Scott P; Kim, Michelle J; Lambert, William F; Modini, Robin L; Mui, Wilton; Pedler, Byron E; Ruppel, Matthew J; Ryder, Olivia S; Schoepp, Nathan G; Sullivan, Ryan C; Zhao, Defeng

    2013-05-01

    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60-180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties.

  17. Bringing the ocean into the laboratory to probe the chemical complexity of sea spray aerosol.

    PubMed

    Prather, Kimberly A; Bertram, Timothy H; Grassian, Vicki H; Deane, Grant B; Stokes, M Dale; Demott, Paul J; Aluwihare, Lihini I; Palenik, Brian P; Azam, Farooq; Seinfeld, John H; Moffet, Ryan C; Molina, Mario J; Cappa, Christopher D; Geiger, Franz M; Roberts, Gregory C; Russell, Lynn M; Ault, Andrew P; Baltrusaitis, Jonas; Collins, Douglas B; Corrigan, Craig E; Cuadra-Rodriguez, Luis A; Ebben, Carlena J; Forestieri, Sara D; Guasco, Timothy L; Hersey, Scott P; Kim, Michelle J; Lambert, William F; Modini, Robin L; Mui, Wilton; Pedler, Byron E; Ruppel, Matthew J; Ryder, Olivia S; Schoepp, Nathan G; Sullivan, Ryan C; Zhao, Defeng

    2013-05-01

    The production, size, and chemical composition of sea spray aerosol (SSA) particles strongly depend on seawater chemistry, which is controlled by physical, chemical, and biological processes. Despite decades of studies in marine environments, a direct relationship has yet to be established between ocean biology and the physicochemical properties of SSA. The ability to establish such relationships is hindered by the fact that SSA measurements are typically dominated by overwhelming background aerosol concentrations even in remote marine environments. Herein, we describe a newly developed approach for reproducing the chemical complexity of SSA in a laboratory setting, comprising a unique ocean-atmosphere facility equipped with actual breaking waves. A mesocosm experiment was performed in natural seawater, using controlled phytoplankton and heterotrophic bacteria concentrations, which showed SSA size and chemical mixing state are acutely sensitive to the aerosol production mechanism, as well as to the type of biological species present. The largest reduction in the hygroscopicity of SSA occurred as heterotrophic bacteria concentrations increased, whereas phytoplankton and chlorophyll-a concentrations decreased, directly corresponding to a change in mixing state in the smallest (60-180 nm) size range. Using this newly developed approach to generate realistic SSA, systematic studies can now be performed to advance our fundamental understanding of the impact of ocean biology on SSA chemical mixing state, heterogeneous reactivity, and the resulting climate-relevant properties. PMID:23620519

  18. The influence of marine microbial activities on aerosol production: A laboratory mesocosm study

    NASA Astrophysics Data System (ADS)

    Alpert, Peter A.; Kilthau, Wendy P.; Bothe, Dylan W.; Radway, JoAnn C.; Aller, Josephine Y.; Knopf, Daniel A.

    2015-09-01

    The oceans cover most of the Earth's surface, contain nearly half the total global primary biomass productivity, and are a major source of atmospheric aerosol particles. Here we experimentally investigate links between biological activity in seawater and sea spray aerosol (SSA) flux, a relationship of potential significance for organic aerosol loading and cloud formation over the oceans and thus for climate globally. Bubbles were generated in laboratory mesocosm experiments either by recirculating impinging water jets or glass frits. Experiments were conducted with Atlantic Ocean seawater collected off the eastern end of Long Island, NY, and with artificial seawater containing cultures of bacteria and phytoplankton Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Changes in SSA size distributions occurred during all phases of bacterial and phytoplankton growth, as characterized by cell concentrations, dissolved organic carbon, total particulate carbon, and transparent exopolymer particles (gel-forming polysaccharides representing a major component of biogenic exudate material). Over a 2 week growth period, SSA particle concentrations increased by a factor of less than 2 when only bacteria were present and by a factor of about 3 when bacteria and phytoplankton were present. Production of jet-generated SSA particles of diameter less than 200 nm increased with time, while production of all particle diameters increased with time when frits were used. The implications of a marine biological activity dependent SSA flux are discussed.

  19. Use of a toxic and hazardous aerosol research facility to evaluate fate and effects of Army smoke screen materials

    SciTech Connect

    Van Voris, P.; Ligotke, M.W.; Cataldo, D.A.; McFadden, K.M.; Garland, T.R.

    1985-10-01

    Aerosols are generated and injected into a new specialized wind tunnel that can reproduce a range of environmental conditions.The wind tunnel is part of the Toxic and Hazardous Aerosol Exposure Facility (T/HAEF) located at Pacific Northwest Laboratory on the Department of Energy's Hanford Site in Richland, Washington. The T/HAEF is designed for total containment (P-3 rated) and houses a sealed, negative pressure, recirculating wind tunnel, controlled environment chambers, microcomputer and an analytical support laboratory. The facility offers a unique ability to conduct aerosol research in a dynamic environment simulating natural field conditions. Wind speeds from 0.2 to 30.0 m/s (65 mph), temperatures between 0 and 45/sup 0/C, and relative humidities from 20% to 95% with mist and rainfall simulation are controlled and programmable through the microcomputer system. The T/HAEF enables researchers to evaluate physical and chemical interactions along with biological and environmental fate and effects of both aerosols and gases. Research currently being performed in this facility and presented in this paper evaluates the environmental fate and effects of various smokes used by the US Army throughout the United States to screen both troop and track vehicle movements during training. 6 refs., 3 figs., 2 tabs.

  20. US Naval Research Laboratory focus issue: introduction.

    PubMed

    Hoffman, Craig A

    2015-11-01

    Rather than concentrate on a single topic, this feature issue presents the wide variety of research in optics that takes place at a single institution, the United States Naval Research Laboratory (NRL) and is analogous to an NRL feature issue published in Applied Optics in 1967. NRL is the corporate research laboratory for the Navy and Marine Corps. It conducts a broadly based multidisciplinary program of scientific research and advanced technological development in the physical, engineering, space, and environmental sciences related to maritime, atmospheric, and space domains. NRL's research is directed toward new and improved materials, techniques, equipment, and systems in response to identified and anticipated Navy needs. A number of articles in this issue review progress in broader research areas while other articles present the latest results on specific topics.

  1. Emissions and Characteristics of Ice Nucleating Particles Associated with Laboratory Generated Nascent Sea Spray Aerosol

    NASA Astrophysics Data System (ADS)

    McCluskey, C. S.; Hill, T. C. J.; Beall, C.; Sultana, C. M.; Moore, K.; Cornwell, G.; Lee, C.; Al-Mashat, H.; Laskina, O.; Trueblood, J.; Grassian, V. H.; Prather, K. A.; Kreidenweis, S. M.; DeMott, P. J.

    2015-12-01

    Accurate emission rates and activity spectra of atmospheric ice nucleating particles (INPs) are required for proper representation of aerosol-cloud interactions in atmospheric modeling studies. However, few investigations have quantified or characterized oceanic INP emissions. In conjunction with the Center for Aerosol Impacts on the Climate and the Environment, we have directly measured changes in INP emissions and properties of INPs from nascent sea spray aerosol (SSA) through the evolution of phytoplankton blooms. Multiple offline and online instruments were used to monitor aerosol chemistry and size, and bulk water characteristics during two phytoplankton bloom experiments. Two methods were utilized to monitor the number concentrations of INPs from 0 to -34 °C: The online CSU continuous flow diffusion chamber (CFDC) and collections processed offline using the CSU ice spectrometer. Single particle analyses were performed on ice crystal residuals downstream of the CFDC, presumed to be INPs, via scanning transmission electron microscopy (STEM) and Raman microspectroscopy. Preliminary results indicate that laboratory-generated nascent SSA corresponds to number concentrations of INPs that are generally consistent with open ocean regions, based on current knowledge. STEM analyses revealed that the sizes of ice crystal residuals that were associated with nascent SSA ranged from 0.3 to 2.5 μm. Raman microspectroscopy analysis of 1 μm sized residuals found a variety of INP identities, including long chain organics, diatom fragments and polysaccharides. Our data suggest that biological processes play a significant role in ocean INP emissions by generating the species and compounds that were identified during these studies.

  2. Sea spray aerosol production measured in-situ and in a laboratory high-speed wind-wave tunnel

    NASA Astrophysics Data System (ADS)

    Savelyev, I.; Frick, G.; Anguelova, M. D.; Haus, B. K.

    2012-12-01

    This presentation overviews a series of experiments recently conducted in the open ocean onboard of Research Platform FLIP, as well as in the high speed Air-Sea Interaction Saltwater Tank (ASIST). In both experiments vertical profiles of size-dependent aerosol concentrations (0.01 - 47 μm range) were measured in close proximity to the air-sea interface using Scattering Aerosol Spectrometer and Differential Mobility Analyzer. Within ~7 days of useful open ocean measurements wind speed U10 varied in ~ 3 - 18 m/s range with significant wave height reaching up to ~ 5 m, whereas U10 wind speed equivalent in ASIST varied up to 40 m/s in addition to mechanically superimposed waves of arbitrary amplitudes. In both cases air-sea interface processes were observed with visible and infrared cameras and other standard instrumentation. This study seeks to evaluate the extent to which laboratory data can complement and aid in the analysis of open ocean measurements. The overall goal is to develop better understanding of underlying physical processes of spray production and its near-surface dynamics, which is needed for uncertainty reduction of existing sea spray source function formulations.

  3. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  4. Idaho National Laboratory Research & Development Impacts

    SciTech Connect

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  5. Mobile robotics research at Sandia National Laboratories

    SciTech Connect

    Morse, W.D.

    1998-09-01

    Sandia is a National Security Laboratory providing scientific and engineering solutions to meet national needs for both government and industry. As part of this mission, the Intelligent Systems and Robotics Center conducts research and development in robotics and intelligent machine technologies. An overview of Sandia`s mobile robotics research is provided. Recent achievements and future directions in the areas of coordinated mobile manipulation, small smart machines, world modeling, and special application robots are presented.

  6. The impact of marine surface organic enrichment on the measured hygroscopicity parameter of laboratory generated sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Schill, S.; Novak, G.; Zimmermann, K.; Bertram, T. H.

    2014-12-01

    The ocean serves as a major source for atmospheric aerosol particles, yet the chemicophysical properties of sea spray aerosol to date are not well characterized. Understanding the transfer of organic compounds, present in the sea surface microlayer (SSML), to sea-spray particles and their resulting impact on cloud formation is important for predicting aerosol impact on climate in remote marine environments. Here, we present a series of laboratory experiments designed to probe the fractionation of select organic molecules during wave breaking. We use a representative set of organic mimics (e.g. sterols, sugars, lipids, proteins, fatty acids) to test a recent physically based model of organic enrichment in sea-spray aerosol [Burrows et al., 2014] that is based on Langmuir absorption equilibria. Experiments were conducted in the UCSD Marine Aerosol Reference Tank (MART) permitting accurate representation of wave breaking processes in the laboratory. We report kappa values for the resulting sea-spray aerosols and compare them to a predictions made using Kappa-Köhler Theory driven by a linear combination of the pure component kappa values. Hygroscopicity determinations made using the model systems are discussed within the context of measurements of CCN activity made using natural, coastal water.

  7. Stirling engine research at Argonne National Laboratory

    SciTech Connect

    Holtz, R.E.; Daley, J.G.; Roach, P.D.

    1986-06-01

    Stirling engine research at Argonne National Laboratory has been focused at (1) development of mathematical models and analytical tools for predicting component and engine performance, and (2) experimental research into fundamental heat transfer and fluid flow phenomena occurring in Stirling cycle devices. A result of the analytical effort has been the formation of a computer library specifically for Stirling engine researchers and developers. The library contains properties of structural materials commonly used, thermophysical properties of several working fluids, correlations for heat transfer calculations and general specifications of mechanical arrangements (including various drive mechanisms) that can be utilized to model a particular engine. The library also contains alternative modules to perform analysis at different levels of sophistication, including design optimization. A reversing flow heat transfer facility is operating at Argonne to provide data at prototypic Stirling engine operating conditions under controlled laboratory conditions. This information is needed to validate analytical models.

  8. Laboratory Directed Research and Development Program

    SciTech Connect

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  9. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  10. Laboratory Directed Research and Development FY 2000

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  11. The NASA-Ames Research Center stratospheric aerosol model. 2. Sensitivity studies and comparison with observatories

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Turco, R. P.; Hamill, P.; Kiang, C. S.; Whitten, R. C.

    1979-01-01

    Sensitivity tests were performed on a one-dimensional, physical-chemical model of the unperturbed stratospheric aerosols, and model calculations were compared with observations. The tests and comparisons suggest that coagulation controls the particle number mixing ratio, although the number of condensation nuclei at the tropopause and the diffusion coefficient at high altitudes are also important. The sulfur gas source strength and the aerosol residence time are much more important than the supply of condensation nuclei in establishing mass and large particle concentrations. The particle size is also controlled mainly by gas supply and residence time. In situ observations of the aerosols and laboratory measurements of aerosols, parameters that can provide further information about the physics and chemistry of the stratosphere and the aerosols found there are provided.

  12. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  13. National Renewable Energy Laboratory 2005 Research Review

    SciTech Connect

    Brown, H.; Gwinner, D.; Miller, M.; Pitchford, P.

    2006-06-01

    Science and technology are at the heart of everything we do at the National Renewable Energy Laboratory, as we pursue innovative, robust, and sustainable ways to produce energy--and as we seek to understand and illuminate the physics, chemistry, biology, and engineering behind alternative energy technologies. This year's Research Review highlights the Lab's work in the areas of alternatives fuels and vehicles, high-performing commercial buildings, and high-efficiency inverted, semi-mismatched solar cells.

  14. Air Force Research Laboratory Cryocooler Technology Development

    NASA Astrophysics Data System (ADS)

    Davis, Thomas M.; Smith, D. Adam; Easton, Ryan M.

    2004-06-01

    This paper presents an overview of the cryogenic refrigerator and cryogenic integration programs in development and characterization under the Cryogenic Cooling Technology Group, Space Vehicles Directorate of the Air Force Research Laboratory (AFRL). The vision statement for the group is to support the space community as the center of excellence for developing and transitioning space cryogenic thermal management technologies. This paper will describe the range of Stirling, pulse tube; reverse Brayton, and Joule-Thomson cycle cryocoolers currently under development to meet current and future Air Force and Department of Defense requirements. Cooling requirements at 10K, 35K, 60K, 95K, and multistage cooling requirements at 35/85K are addressed. In order to meet these various requirements, the Air Force Research Laboratory, Space Vehicles Directorate is pursuing various strategic cryocooler and cryogenic integration options. The Air Force Research Laboratory, working with industry partners, is also developing several advanced cryogenic integration technologies that will result in the reduction in current cryogenic system integration penalties and design time. These technologies include the continued development of gimbaled transport systems, 35K and 10K thermal storage units, heat pipes, cryogenic straps, and thermal switches.

  15. MSU-DOE Plant Research Laboratory

    SciTech Connect

    Not Available

    1991-01-01

    This document is the compiled progress reports of research funded through the Michigan State University/Department of Energy Plant Research Laboratory. Fourteen reports are included, covering the molecular basis of plant/microbe symbiosis, cell wall biosynthesis and proteins, gene expression, stress responses, plant hormone biosynthesis, interactions between the nuclear and organelle genomes, sensory transduction and tropisms, intracellular sorting and trafficking, regulation of lipid metabolism, molecular basis of disease resistance and plant pathogenesis, developmental biology of Cyanobacteria, and hormonal involvement in environmental control of plant growth. 320 refs., 26 figs., 3 tabs. (MHB)

  16. Application of laser light scattering for determination of the border aerosol-air in a specialized physical laboratory setup

    NASA Astrophysics Data System (ADS)

    Damov, K. S.; Iliev, M. T.

    2016-02-01

    The current article examines the application of laser light scattering in a specialized laboratory setup. It is used for determination of the kinematic viscosity and mass density of Aerodispersed Systems formed in Limited Volume (High Concentration Aerosols) by the method of free flow out. The measurement chamber is first filled with the investigated aerosol. After a predetermined delay time the aerosol is allowed to flow out through a calibrated pipe with fixed size located few centimetres above the chamber's bottom. The lowering of the upper border aerosol-air is continuously scanned using a laser beam directed along the axis of the cylindrical chamber. The kinematic viscosity and mass density of the investigated aerosol phase are calculated by formulas obtained by the authors. The suggested application of laser light scattering led to higher accuracy of the determination the position of aerosol-air border, thence the certainty of this method. This improvement allowed the use of computer controlled optoelectronic setting. The use of laser light scattering significantly improves the method for determination of the kinematic viscosity and mass density of Aerodispersed Systems formed in Limited Volume.

  17. The optical, chemical, and physical properties of aerosols and gases emitted by the laboratory combustion of wildland fuels

    NASA Astrophysics Data System (ADS)

    McMeeking, Gavin R.

    Biomass burning is a major source of trace gases and particles that have a profound impact on the atmosphere. Trace gases emitted by fires include the greenhouse gases CO2 and CH4, as well as CO and volatile organic compounds that affect air quality. Particle emissions affect climate, visibility, the hydrologic cycle, and human health. This work presents measurements of trace gas and aerosol emissions from a series of controlled laboratory burns for various plant species common to North America. Over 30 fuels were tested through ˜250 individual burns during the Fire Laboratory at Missoula Experiment. Emission factors are presented as a function of modified combustion efficiency (MCE), a measure of the fire combustion conditions. The emissions of many trace gas and aerosol species depended strongly on MCE: smoldering-phase combustion dominated fires (low MCE) emitted roughly four times as much gas-phase hydrocarbon species and organic aerosols than flaming-phase dominated fires (high MCE). Inorganic aerosol emissions depended more strongly on plant species and components than on MCE. Flaming-phase dominated fires tended to produce aerosol with high mass fractions of strongly light-absorbing elemental carbon. Smoldering-phase fires produced aerosol with large mass fractions of more weakly light absorbing organic carbon, but this material was found to have a strong wavelength dependence of absorption, greater than the inverse wavelength relationship typically assumed for light absorbing aerosol. A two component model---featuring elemental carbon with a weak wavelength dependence but high mass-normalized absorption efficiency and organic carbon with a strong wavelength dependence but low mass-normalized absorption efficiency---is shown to represent the bulk absorption spectra of biomass burning aerosol. The results show that at wavelengths below ˜450 nm, organic carbon light absorption could rival that of elemental carbon for aerosol dominated by organic carbon. If

  18. MISR research-aerosol-algorithm refinements for dark water retrievals

    NASA Astrophysics Data System (ADS)

    Limbacher, J. A.; Kahn, R. A.

    2014-11-01

    We explore systematically the cumulative effect of many assumptions made in the Multi-angle Imaging SpectroRadiometer (MISR) research aerosol retrieval algorithm with the aim of quantifying the main sources of uncertainty over ocean, and correcting them to the extent possible. A total of 1129 coincident, surface-based sun photometer spectral aerosol optical depth (AOD) measurements are used for validation. Based on comparisons between these data and our baseline case (similar to the MISR standard algorithm, but without the "modified linear mixing" approximation), for 558 nm AOD < 0.10, a high bias of 0.024 is reduced by about one-third when (1) ocean surface under-light is included and the assumed whitecap reflectance at 672 nm is increased, (2) physically based adjustments in particle microphysical properties and mixtures are made, (3) an adaptive pixel selection method is used, (4) spectral reflectance uncertainty is estimated from vicarious calibration, and (5) minor radiometric calibration changes are made for the 672 and 866 nm channels. Applying (6) more stringent cloud screening (setting the maximum fraction not-clear to 0.50) brings all median spectral biases to about 0.01. When all adjustments except more stringent cloud screening are applied, and a modified acceptance criterion is used, the Root-Mean-Square-Error (RMSE) decreases for all wavelengths by 8-27% for the research algorithm relative to the baseline, and is 12-36% lower than the RMSE for the Version 22 MISR standard algorithm (SA, with no adjustments applied). At 558 nm, 87% of AOD data falls within the greater of 0.05 or 20% of validation values; 62% of the 446 nm AOD data, and > 68% of 558, 672, and 866 nm AOD values fall within the greater of 0.03 or 10%. For the Ångström exponent (ANG), 67% of 1119 validation cases for AOD > 0.01 fall within 0.275 of the sun photometer values, compared to 49% for the SA. ANG RMSE decreases by 17% compared to the SA, and the median absolute error drops by

  19. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: linking laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan; Fuller, Stephen; Aalto, Juho; Healy, Robert; Alfara, Rami; Ruuskanen, Taina; Wenger, John; McFiggans, Gordon; Kulmala, Markku; Kalberer, Markus

    2013-04-01

    Biogenic volatile organic compounds (BVOCs) play an important role in atmospheric chemistry and give rise to secondary organic aerosols (SOA), which have effects on climate and human health. Laboratory chamber experiments have been performed during several decades in an attempt to mimic atmospheric SOA formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. To date, most laboratory experiments have been performed using a single organic precursor (e.g., alpha- or beta-pinene, isoprene) while in the atmosphere a wide range of precursors contribute to SOA, which results most likely in a more complex SOA composition compared to the one-precursor laboratory systems. The objective of this work is to compare laboratory generated SOA from oxidation of BVOCs mixtures and remote ambient samples using ultrahigh-resolution mass spectrometry (UHR-MS) that allows detection of hundreds of individual SOA constituents. We examined aerosol samples from a boreal forest site, Hyytiälä, Finland and determined that a dominant fraction of the detected compounds are reaction products of a multi-component mixture of BVOCs. In the subsequent smog chamber experiments, SOA was generated from the ozonolysis and OH initiated reactions with BVOC mixtures containing species (alpha- and beta-pinene, delta-3-carene, and isoprene) that are most abundant in Hyytiälä's environment. The laboratory experiments were performed at conditions (e.g., RH, aerosol seed, and VOC ratios) that would resemble those at the boreal sampling site during the summer period. The elemental composition of the complex mixtures from laboratory generated SOA samples were compared with field samples using statistical data analysis methods.

  20. Research on aerosol profiles and parameterization scheme in Southeast China

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Deng, Tao; Tan, Haobo; Liu, Xiantong; Yang, Honglong

    2016-09-01

    The vertical distribution of the aerosol extinction coefficient serves as a basis for evaluating aerosol radiative forcing and air quality modeling. In this study, MODIS AOD data and ground-based lidar extinction coefficients were employed to verify 6 years (2009-2014) aerosol extinction data obtained via CALIOP for Southeast China. The objective was mainly to provide the parameterization scheme of annual and seasonal aerosol extinction profiles. The results showed that the horizontal and vertical distributions of CALIOP extinction data were highly accurate in Southeast China. The annual average AOD below 2 km accounted for 64% of the total layer, with larger proportions observed in winter (80%) and autumn (80%) and lower proportions observed in summer (70%) and spring (59%). The AOD was maximum in the spring (0.58), followed by the autumn and winter (0.44), and reached a minimum in the summer (0.40). The near-surface extinction coefficient increased from summer, spring, autumn and winter, in that order. The Elterman profile is obviously lower than the profiles observed by CALIOP in Southeast China. The annual average and seasonal aerosol profiles showed an exponential distribution, and could be divided into two sections. Two sections exponential fitting was used in the parameterization scheme. In the first section, the aerosol scale height reached 2200 m with a maximum (3,500 m) in summer and a minimum (1,230 m) in winter, which meant that the aerosol extinction decrease with height slower in summer, but more rapidly in winter. In second section, the aerosol scale height was maximum in spring, which meant that the higher aerosol diffused in spring.

  1. Chemical and hygroscopic properties of aerosol organics at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Hallar, A. Gannet; Lowenthal, Douglas H.; Clegg, Simon L.; Samburova, Vera; Taylor, Nathan; Mazzoleni, Lynn R.; Zielinska, Barbara K.; Kristensen, Thomas B.; Chirokova, Galina; McCubbin, Ian B.; Dodson, Craig; Collins, Don

    2013-05-01

    A combined field and laboratory study was conducted to improve our understanding of the chemical and hygroscopic properties of organic compounds in aerosols sampled in the background continental atmosphere. PM2.5 (particles with aerodynamic diameters smaller than 2.5 µm) aerosols were collected from 24 June to 28 July 2010 at Storm Peak Laboratory (SPL) in the Park Range of northwestern Colorado. New particle formation (NPF) was frequent at SPL during this campaign, and the samples were not influenced by regional dust storms. Filter samples were analyzed for organic carbon (OC) and elemental carbon (EC), water soluble OC (WSOC), major inorganic ions, and detailed organic speciation. WSOC was isolated from inorganic ions using solid phase absorbents. Hygroscopic growth factors (GFs) and cloud condensation nucleus (CCN) activity of the WSOC were measured in the laboratory. Organic compounds compose the majority (average of 64% with a standard deviation (SD) of 9%) of the mass of measured species and WSOC accounted for an average of 89% (with a SD of 21%) of OC mass. Daily samples were composited according to back trajectories. On average, organic acids, sugars, and sugar alcohols accounted for 12.5 ± 6.2% (average ± SD) of WSOC. Based on the composition of these compounds and that of high molecular weight compounds identified using ultra high resolution mass spectrometry, the organic mass to OC ratio of the WSOC is estimated to be 2.04. The average hygroscopic GFs at RH = 80% (GF80) were 1.10 ± 0.03 for particles derived from isolated WSOC and 1.27 ± 0.03 for particles derived from the total water-soluble material (WSM). CCN activity followed a similar pattern. The critical diameters at a super-saturation of 0.35% were 0.072 ± 0.009 and 0.094 ± 0.006 µm for particles derived from WSM and isolated WSOC, respectively. These GF results compare favorably with estimates from thermodynamic models, which explicitly relate the water activity (RH) to concentration for

  2. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  3. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated June 22, 1988: 'A dwarf wheat variety known as Yecoro Rojo flourishes in KSC's Biomass Production Chamber. Researchers are gathering information on the crop's ability to produce food, water and oxygen, and then remove carbon dioxide. The confined quarters associated with space travel require researchers to focus on smaller plants that yield proportionately large amounts of biomass. This wheat crop takes about 85 days to grow before harvest.' Plant experiments such as this are the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  4. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  5. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  6. Organic aerosol emission ratios from the laboratory combustion of biomass fuels

    NASA Astrophysics Data System (ADS)

    Jolleys, Matthew D.; Coe, Hugh; McFiggans, Gordon; McMeeking, Gavin R.; Lee, Taehyoung; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Sullivan, Amy P.

    2014-11-01

    Organic aerosol (OA) emission ratios (ER) have been characterized for 67 burns during the second Fire Laboratory at Missoula Experiment. These fires involved 19 different species representing 6 major fuels, each of which forms an important contribution to the U.S. biomass burning inventory. Average normalized ΔOA/ΔCO ratios show a high degree of variability, both between and within different fuel types and species, typically exceeding differen-ces between separate plumes in ambient measurements. This variability is strongly influenced by highly contrasting ΔOA levels between burns and the increased partitioning of semivolatile organic compounds to the particle phase at high ΔOA concentrations. No correlation across all fires was observed between ΔOA/ΔCO and modified combustion efficiency (MCE), which acts as an indicator of the proportional contributions of flaming and smoldering combustion phases throughout each burn. However, a negative correlation exists with MCE for some coniferous species, most notably Douglas fir, for which there is also an influence from fuel moisture content. Changes in fire efficiency were also shown to dramatically alter emissions for fires with very similar initial conditions. Although the relationship with MCE is variable between species, there is greater consistency with the level of oxygenation in OA. The ratio of the m/z 44 fragment to total OA mass concentration (f44) as measured by aerosol mass spectrometer provides an indication of oxygenation as influenced by combustion processes at source, with ΔOA/ΔCO decreasing with increasing f44 for all fuel types. Inconsistencies in the magnitude of the effects associated with each potential influence on ΔOA/ΔCO emphasize the lack of a single dominant control on fire emissions, and a dependency on both fuel properties and combustion conditions.

  7. The Automated Primate Research Laboratory (APRL)

    NASA Technical Reports Server (NTRS)

    Pace, N.; Smith, G. D.

    1972-01-01

    A description is given of a self-contained automated primate research laboratory to study the effects of weightlessness on subhuman primates. Physiological parameters such as hemodynamics, respiration, blood constituents, waste, and diet and nutrition are analyzed for abnormalities in the simulated space environment. The Southeast Asian pig-tailed monkey (Macaca nemistrina) was selected for the experiments owing to its relative intelligence and learning capacity. The objective of the program is to demonstrate the feasibility of a man-tended primate space flight experiment.

  8. Modeling of Army Research Laboratory EMP simulators

    SciTech Connect

    Miletta, J.R.; Chase, R.J.; Luu, B.B. ); Williams, J.W.; Viverito, V.J. )

    1993-12-01

    Models are required that permit the estimation of emitted field signatures from EMP simulators to design the simulator antenna structure, to establish the usable test volumes, and to estimate human exposure risk. This paper presents the capabilities and limitations of a variety of EMP simulator models useful to the Army's EMP survivability programs. Comparisons among frequency and time-domain models are provided for two powerful US Army Research Laboratory EMP simulators: AESOP (Army EMP Simulator Operations) and VEMPS II (Vertical EMP Simulator II).

  9. Collaborative research. Study of aerosol sources and processing at the GVAX Pantnagar Supersite

    SciTech Connect

    Worsnop, Doug; Volkamer, Rainer

    2012-08-13

    during TCAP, and conducted laboratory experiments to quantify for the first time the Setschenow salting constant, KS, of glyoxal in sulfate aerosols. Knowledge about KS is prerequisite to predict how increasing sulfate concentrations since pre-industrial times have modified the formation of SOA from biogenic gases in atmospheric models.

  10. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    SciTech Connect

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jr., Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmuller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-05-15

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly-burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern US (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO{sub 2}, CO, CH{sub 4}, C{sub 2-4} hydrocarbons, NH{sub 3}, SO{sub 2}, NO, NO{sub 2}, HNO{sub 3} and particle-phase organic carbon (OC), elemental carbon (EC), SO{sub 4}{sup 2-}, NO{sub 3}{sup -}, Cl{sup -}, Na{sup +}, K{sup +}, and NH{sub 4}{sup +} generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed EF for total fine particulate matter. Our measurements often spanned a larger range of MCE than prior studies, and thus help to improve estimates for individual fuels of the variation of emissions with combustion conditions.

  11. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory

    NASA Astrophysics Data System (ADS)

    McMeeking, Gavin R.; Kreidenweis, Sonia M.; Baker, Stephen; Carrico, Christian M.; Chow, Judith C.; Collett, Jeffrey L.; Hao, Wei Min; Holden, Amanda S.; Kirchstetter, Thomas W.; Malm, William C.; Moosmüller, Hans; Sullivan, Amy P.; Wold, Cyle E.

    2009-10-01

    We characterized the gas- and speciated aerosol-phase emissions from the open combustion of 33 different plant species during a series of 255 controlled laboratory burns during the Fire Laboratory at Missoula Experiments (FLAME). The plant species we tested were chosen to improve the existing database for U.S. domestic fuels: laboratory-based emission factors have not previously been reported for many commonly burned species that are frequently consumed by fires near populated regions and protected scenic areas. The plants we tested included the chaparral species chamise, manzanita, and ceanothus, and species common to the southeastern United States (common reed, hickory, kudzu, needlegrass rush, rhododendron, cord grass, sawgrass, titi, and wax myrtle). Fire-integrated emission factors for gas-phase CO2, CO, CH4, C2-4 hydrocarbons, NH3, SO2, NO, NO2, HNO3, and particle-phase organic carbon (OC), elemental carbon (EC), SO42-, NO3-, Cl-, Na+, K+, and NH4+ generally varied with both fuel type and with the fire-integrated modified combustion efficiency (MCE), a measure of the relative importance of flaming- and smoldering-phase combustion to the total emissions during the burn. Chaparral fuels tended to emit less particulate OC per unit mass of dry fuel than did other fuel types, whereas southeastern species had some of the largest observed emission factors for total fine particulate matter. Our measurements spanned a larger range of MCE than prior studies, and thus help to improve estimates of the variation of emissions with combustion conditions for individual fuels.

  12. The Joint Aerosol-Monsoon Experiment: A New Challenge to Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2008-01-01

    Aerosol and monsoon related droughts and floods are two of the most serious environmental hazards confronting more than 60% of the population of the world living in the Asian monsoon countries. In recent years, thanks to improved satellite and in-situ observations, and better models, great strides have been made in aerosol, and monsoon research respectively. There is now a growing body of evidence suggesting that interaction of aerosol forcing with water cycle dynamics in monsoon regions may substantially alter the redistribution of energy at the earth surface and in the atmosphere, and therefore significantly impact monsoon rainfall variability and long term trends. In this talk, I will describe issues related to societal needs, scientific background, and challenges in studies of aerosol-water cycle interaction in Asian monsoon regions. As a first step towards addressing these issues, the authors call for an integrated observation and modeling research approach aimed at the interactions between aerosol chemistry and radiative effects and monsoon dynamics of the coupled ocean-atmosphere-land system. A Joint Aerosol-Monsoon Experiment (JAMEX) is proposed for 2007-2011, with an enhanced observation period during 2008-09, encompassing diverse arrays of observations from surface, aircraft, unmanned aerial vehicles, and satellites of physical and chemical properties of aerosols, long range aerosol transport as well as meteorological and oceanographic parameters in the Indo-Pacific Asian monsoon region. JAMEX will leverage on coordination among many ongoing and planned national programs on aerosols and monsoon research in China, India, Japan, Nepal, Italy, US, as well as international research programs of the World Climate Research Program (WCRP) and the World Meteorological Organization (WMO).

  13. Microbe Hunting in Laboratory Animal Research

    PubMed Central

    Palacios, Gustavo; Briese, Thomas; Lipkin, W. Ian

    2014-01-01

    Recent advances in nucleic acid diagnostic technologies have revolutionized microbiology by facilitating rapid, sensitive pathogen surveillance and differential diagnosis of infectious diseases. With the expansion and dissemination of genomic sequencing technology scientists are discovering new microbes at an accelerating pace. In this article we review recent progress in the field of pathogen surveillance and discovery with a specific focus on applications in the field of laboratory animal research. We discuss the challenges in proving a causal relationship between the presence of a candidate organism and disease. We also discuss the strengths and limitations of various assay platforms and describe a staged strategy for viral diagnostics. To illustrate the complexity of pursuing pathogen discovery research, we include examples from our own work that are intended to provide insights into the process that led to the selection of particular strategies. PMID:21131725

  14. New working paradigms in research laboratories.

    PubMed

    Keighley, Wilma; Sewing, Andreas

    2009-07-01

    Work in research laboratories, especially within centralised functions in larger organisations, is changing fast. With easier access to external providers and Contract Research Organisations, and a focus on budgets and benchmarking, scientific expertise has to be complemented with operational excellence. New concepts, globally shared projects and restricted resources highlight the constraints of traditional operating models working from Monday to Friday and nine to five. Whilst many of our scientists welcome this new challenge, organisations have to enable and foster a more business-like mindset. Organisational structures, remuneration, as well as systems in finance need to be adapted to build operations that are best-in-class rather than merely minimising negative impacts of current organisational structures. PMID:19477291

  15. New working paradigms in research laboratories.

    PubMed

    Keighley, Wilma; Sewing, Andreas

    2009-07-01

    Work in research laboratories, especially within centralised functions in larger organisations, is changing fast. With easier access to external providers and Contract Research Organisations, and a focus on budgets and benchmarking, scientific expertise has to be complemented with operational excellence. New concepts, globally shared projects and restricted resources highlight the constraints of traditional operating models working from Monday to Friday and nine to five. Whilst many of our scientists welcome this new challenge, organisations have to enable and foster a more business-like mindset. Organisational structures, remuneration, as well as systems in finance need to be adapted to build operations that are best-in-class rather than merely minimising negative impacts of current organisational structures.

  16. Model analysis of secondary organic aerosol formation by glyoxal in laboratory studies: the case for photoenhanced chemistry.

    PubMed

    Sumner, Andrew J; Woo, Joseph L; McNeill, V Faye

    2014-10-21

    The reactive uptake of glyoxal by atmospheric aerosols is believed to be a significant source of secondary organic aerosol (SOA). Several recent laboratory studies have been performed with the goal of characterizing this process, but questions remain regarding the effects of photochemistry on SOA growth. We applied GAMMA (McNeill et al. Environ. Sci. Technol. 2012, 46, 8075-8081), a photochemical box model with coupled gas-phase and detailed aqueous aerosol-phase chemistry, to simulate aerosol chamber studies of SOA formation by the uptake of glyoxal by wet aerosol under dark and irradiated conditions (Kroll et al. J. Geophys. Res. 2005, 110 (D23), 1-10; Volkamer et al. Atmos. Chem. Phys. 2009, 9, 1907-1928; Galloway et al. Atmos. Chem. Phys. 2009, 9, 3331- 306 3345 and Geophys. Res. Lett. 2011, 38, L17811). We find close agreement between simulated SOA growth and the results of experiments conducted under dark conditions using values of the effective Henry's Law constant of 1.3-5.5 × 10(7) M atm(-1). While irradiated conditions led to the production of some organic acids, organosulfates, and other oxidation products via well-established photochemical mechanisms, these additional product species contribute negligible aerosol mass compared to the dark uptake of glyoxal. Simulated results for irradiated experiments therefore fell short of the reported SOA mass yield by up to 92%. This suggests a significant light-dependent SOA formation mechanism that is not currently accounted for by known bulk photochemistry, consistent with recent laboratory observations of SOA production via photosensitizer chemistry.

  17. Laboratory Directed Research and Development FY 1992

    SciTech Connect

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  18. Career research opportunities for the medical laboratory scientist.

    PubMed

    McGlasson, David L

    2011-01-01

    Medical Laboratory Scientists (MLS) typically practice in hospital laboratories; however there are multiple alternatives in research. This article details the advantages of working in a variety of research laboratory settings. These include public institutions, federal laboratory workplaces, private facilities, and industry settings. A view of the different research laboratory settings such as public institutions, federal laboratory workplaces, private facilities, and industry settings will be provided. An assessment on how MLS professionals can prepare for a career in research is outlined and the report concludes with a brief summary of the various aspects of the research setting.

  19. SAVANNAH RIVER NATIONAL LABORATORY HYDROGEN TECHNOLOGY RESEARCH

    SciTech Connect

    Danko, E

    2008-02-08

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including

  20. Progress, prospects, and research needs on the health effects of acid aerosols.

    PubMed

    Lippmann, M

    1989-02-01

    Research on human exposure to acidic aerosols and the health effects of such exposures has substantially strengthened the hypothesis that such aerosols are a causal factor for excesses in human mortality and morbidity that have been previously associated with crude exposure indices such as British Smoke, total suspended particulate matter, and sulfur dioxide. Research reported at this symposium also showed that combined exposures to acid aerosols and other ubiquitous air pollutants such as O3, NO2, HNO3, and SO2 produce greater effects in both humans and animals than exposures to each agent separately. The responses reported ranged from physiological functions to lung structure. Furthermore, some of the effects were cumulative with increasing duration of daily exposure and number of repetitive exposures. Critical areas for further research include better definition of the critical temporal parameters affecting exposure and response, effects of mixed pollutant exposures, and pathogenetic mechanisms for acid aerosol-induced chronic lung damage.

  1. Laboratory investigation of photochemical oxidation of organic aerosol from wood fires 1: measurement and simulation of organic aerosol evolution

    NASA Astrophysics Data System (ADS)

    Grieshop, A. P.; Logue, J. M.; Donahue, N. M.; Robinson, A. L.

    2009-02-01

    Experiments were conducted to investigate the effects of photo-oxidation on organic aerosol (OA) emissions from flaming and smoldering hard- and soft-wood fires under plume-like conditions. This was done by exposing the dilute emissions from a small wood stove to UV light in a smog chamber and measuring the gas- and particle-phase pollutant concentrations with a suite of instruments including a Proton Transfer Reaction Mass Spectrometer (PTR-MS), an Aerosol Mass Spectrometer (AMS) and a thermodenuder. The measurements highlight how atmospheric processing can lead to considerable evolution of the mass and volatility of biomass-burning OA. Photochemical oxidation produced substantial new OA, increasing concentrations by a factor of 1.5 to 2.8 after several hours of exposure to typical summertime hydroxyl radical (OH) concentrations. Less than 20% of this new OA could be explained using a state-of-the-art secondary organic aerosol model and the measured decay of traditional SOA precursors. The thermodenuder data indicate that the primary OA is semivolatile; at 50°C between 50 and 80% of the fresh primary OA evaporated. Aging reduced the volatility of the OA; at 50°C only 20 to 40% of aged OA evaporated. The predictions of a volatility basis-set model that explicitly tracks the partitioning and aging of low-volatility organics was compared to the chamber data. The OA production can be explained by the oxidation of low-volatility organic vapors; the model can also reproduce observed changes in OA volatility and composition. The model was used to investigate the competition between photochemical processing and dilution on OA concentrations in plumes.

  2. Laboratory analogues simulating Titan's atmospheric aerosols: Compared chemical compositions of grains and thin films

    NASA Astrophysics Data System (ADS)

    Carrasco, Nathalie; Jomard, François; Vigneron, Jackie; Etcheberry, Arnaud; Cernogora, Guy

    2016-09-01

    Two sorts of solid organic samples can be produced in laboratory experiments simulating Titan's atmospheric reactivity: grains in the volume and thin films on the reactor walls. We expect that grains are more representative of Titan's atmospheric aerosols, but films are used to provide optical indices for radiative models of Titan's atmosphere. The aim of the present study is to address if these two sorts of analogues are chemically equivalent or not, when produced in the same N2-CH4 plasma discharge. The chemical compositions of both these materials are measured by using elemental analysis, XPS analysis and Secondary Ion Mass Spectrometry. The main parameter probed is the CH4/N2 ratio to explore various possible chemical regimes. We find that films are homogeneous but significantly less rich in nitrogen and hydrogen than grains produced in the same experimental conditions. This surprising difference in their chemical compositions could be explained by the efficient etching occurring on the films, which stay in the discharge during the whole plasma duration, whereas the grains are ejected after a few minutes. The higher nitrogen content in the grains possibly involves a higher optical absorption than the one measured on the films, with a possible impact on Titan's radiative models.

  3. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 41 Public Contracts and Property Management 2 2014-07-01 2012-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  4. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 41 Public Contracts and Property Management 2 2013-07-01 2012-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  5. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 41 Public Contracts and Property Management 2 2012-07-01 2012-07-01 false Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls for use by Federal agencies in managing laboratory and research equipment in Federal...

  6. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... equipped and/or used for scientific research, testing, or analysis, except clinical laboratories operating... 41 Public Contracts and Property Management 2 2011-07-01 2007-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls...

  7. 41 CFR 101-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipped and/or used for scientific research, testing, or analysis, except clinical laboratories operating... 41 Public Contracts and Property Management 2 2010-07-01 2010-07-01 true Laboratory and research...-General Policies § 101-25.109 Laboratory and research equipment. (a) This section prescribes controls...

  8. Laboratory Simulation of Haze/Aerosol formation in warm and hot Jupiters

    NASA Astrophysics Data System (ADS)

    Gharib-Nezhad, Ehsan; Lyons, James R.; Wright, David P.

    2016-10-01

    During the transit of an exoplanet across its host star, transmitted starlight through exoplanet atmosphere is absorbed and scattered, and the recorded transit spectra reveal important chemical information. There are many detected exoplanets in which hazes/aerosols obscure the incident photons, and consequently, fewer photons are transmitted through the atmosphere, contributing to a flat/nearly flat transit spectrum. Here, we have carried out two complementary approaches to address haze formation. First, laboratory simulations of haze condensation in exoplanet atmospheres are carried out using an electric discharge tube. A mixture of likely gas species (i.e. H2, He, H2O, CH4, N2 and H2S) is inserted into a glass manifold on a vacuum line, at a pressure ~100-10 mbar, and depending on the exoplanet category (e.g., warm or hot Jupiters), the temperature is set. Applying a few kilovolts produces plasma in the discharge tube, and as a result, particles are formed. We use spectroscopic ellipsometry to measure the optical constants (complex refractive index) of the collected laboratory hazes. Then, chemical characterization is made using RBS (Rutherford Backscattering Spectroscopy) and XPS (X-ray Photoelectron Spectroscopy). Second, we developed a transit modeling code by which the transit spectra are generated using observational and laboratory data as an input. The model accounts for Mie scattering from haze particles in the vis-NIR spectral region, and Rayleigh scattering which comes from gases and particles (effective in UV-vis). The measured refractive indexes (real and imaginary part) describe the absorption and scattering in the vis-NIR transmission region, and, by generating transit spectra close to the observed ones from exoplanets, constraints on atmospheric chemical characterization can be revealed. Our laboratory results show that haze particles formed in the presence of water and with the solar C/O ratio = 0.5. The other outcome of our experiment is that

  9. Research of transport and deposition of aerosol in human airway replica

    NASA Astrophysics Data System (ADS)

    Lizal, Frantisek; Jedelsky, Jan; Elcner, Jakub; Durdina, Lukas; Halasova, Tereza; Mravec, Filip; Jicha, Miroslav

    2012-04-01

    Growing concern about knowledge of aerosol transport in human lungs is caused by great potential of use of inhaled pharmaceuticals. Second substantial motive for the research is an effort to minimize adverse effects of particular matter emitted by traffic and industry on human health. We created model geometry of human lungs to 7th generation of branching. This model geometry was used for fabrication of two physical models. The first one is made from thin walled transparent silicone and it allows a measurement of velocity and size of aerosol particles by Phase Doppler Anemometry (PDA). The second one is fabricated by stereolithographic method and it is designed for aerosol deposition measurements. We provided a series of measurements of aerosol transport in the transparent model and we ascertained remarkable phenomena linked with lung flow. The results are presented in brief. To gather how this phenomena affects aerosol deposition in human lungs we used the second model and we developed a technique for deposition fraction and deposition efficiency assessment. The results confirmed that non-symmetric and complicated shape of human airways essentially affects transport and deposition of aerosol. The research will now focus on deeper insight in aerosol deposition.

  10. Evaporation kinetics and phase of laboratory and ambient secondary organic aerosol.

    PubMed

    Vaden, Timothy D; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2011-02-01

    Field measurements of secondary organic aerosol (SOA) find significantly higher mass loads than predicted by models, sparking intense effort focused on finding additional SOA sources but leaving the fundamental assumptions used by models unchallenged. Current air-quality models use absorptive partitioning theory assuming SOA particles are liquid droplets, forming instantaneous reversible equilibrium with gas phase. Further, they ignore the effects of adsorption of spectator organic species during SOA formation on SOA properties and fate. Using accurate and highly sensitive experimental approach for studying evaporation kinetics of size-selected single SOA particles, we characterized room-temperature evaporation kinetics of laboratory-generated α-pinene SOA and ambient atmospheric SOA. We found that even when gas phase organics are removed, it takes ∼24 h for pure α-pinene SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ∼10 min time scale predicted by current kinetic models. Adsorption of "spectator" organic vapors during SOA formation, and aging of these coated SOA particles, dramatically reduced the evaporation rate, and in some cases nearly stopped it. Ambient SOA was found to exhibit evaporation behavior very similar to that of laboratory-generated coated and aged SOA. For all cases studied in this work, SOA evaporation behavior is nearly size-independent and does not follow the evaporation kinetics of liquid droplets, in sharp contrast with model assumptions. The findings about SOA phase, evaporation rates, and the importance of spectator gases and aging all indicate that there is need to reformulate the way SOA formation and evaporation are treated by models.

  11. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... specialties within the general areas of biomedical, behavioral, and clinical science research. The...

  12. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... medical specialties within the general areas of biomedical, behavioral and clinical science research....

  13. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... medical specialties within the general areas of biomedical, behavioral and clinical science research....

  14. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... medical specialties within the general areas of biomedical, behavioral and clinical science research....

  15. 77 FR 23810 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to...

  16. Eagleworks Laboratories: Advanced Propulsion Physics Research

    NASA Technical Reports Server (NTRS)

    White, Harold; March, Paul; Williams, Nehemiah; ONeill, William

    2011-01-01

    NASA/JSC is implementing an advanced propulsion physics laboratory, informally known as "Eagleworks", to pursue propulsion technologies necessary to enable human exploration of the solar system over the next 50 years, and enabling interstellar spaceflight by the end of the century. This work directly supports the "Breakthrough Propulsion" objectives detailed in the NASA OCT TA02 In-space Propulsion Roadmap, and aligns with the #10 Top Technical Challenge identified in the report. Since the work being pursued by this laboratory is applied scientific research in the areas of the quantum vacuum, gravitation, nature of space-time, and other fundamental physical phenomenon, high fidelity testing facilities are needed. The lab will first implement a low-thrust torsion pendulum (<1 uN), and commission the facility with an existing Quantum Vacuum Plasma Thruster. To date, the QVPT line of research has produced data suggesting very high specific impulse coupled with high specific force. If the physics and engineering models can be explored and understood in the lab to allow scaling to power levels pertinent for human spaceflight, 400kW SEP human missions to Mars may become a possibility, and at power levels of 2MW, 1-year transit to Neptune may also be possible. Additionally, the lab is implementing a warp field interferometer that will be able to measure spacetime disturbances down to 150nm. Recent work published by White [1] [2] [3] suggests that it may be possible to engineer spacetime creating conditions similar to what drives the expansion of the cosmos. Although the expected magnitude of the effect would be tiny, it may be a "Chicago pile" moment for this area of physics.

  17. CLOUDS, AEROSOLS, RADIATION AND THE AIR-SEA INTERFACE OF THE SOUTHERN OCEAN: ESTABLISHING DIRECTIONS FOR FUTURE RESEARCH

    SciTech Connect

    Wood, Robert; Bretherton, Chris; McFarquhar, Greg; Protat, Alain; Quinn, Patricia; Siems, Steven; Jakob, Christian; Alexander, Simon; Weller, Bob

    2014-09-29

    A workshop sponsored by the Department of Energy was convened at the University of Washington to discuss the state of knowledge of clouds, aerosols and air-sea interaction over the Southern Ocean and to identify strategies for reducing uncertainties in their representation in global and regional models. The Southern Ocean plays a critical role in the global climate system and is a unique pristine environment, yet other than from satellite, there have been sparse observations of clouds, aerosols, radiation and the air-sea interface in this region. Consequently, much is unknown about atmospheric and oceanographic processes and their linkage in this region. Approximately 60 scientists, including graduate students, postdoctoral fellows and senior researchers working in atmospheric and oceanic sciences at U.S. and foreign universities and government laboratories, attended the Southern Ocean Workshop. It began with a day of scientific talks, partly in plenary and partly in two parallel sessions, discussing the current state of the science for clouds, aerosols and air-sea interaction in the Southern Ocean. After the talks, attendees broke into two working groups; one focused on clouds and meteorology, and one focused on aerosols and their interactions with clouds. This was followed by more plenary discussion to synthesize the two working group discussions and to consider possible plans for organized activities to study clouds, aerosols and the air-sea interface in the Southern Ocean. The agenda and talk slides, including short summaries of the highlights of the parallel session talks developed by the session chars, are available at http://www.atmos.washington.edu/socrates/presentations/SouthernOceanPresentations/.

  18. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    NASA Astrophysics Data System (ADS)

    Wang, J.; Doussin, J.-F.; Perrier, S.; Perraudin, E.; Katrib, Y.; Pangui, E.; Picquet-Varrault, B.

    2011-01-01

    A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA). The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) is designed to allow research in multiphase atmospheric (photo-)chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290-297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10-3 s-1) for JNO2 and (1.4 × 10-5 s-1) for J O1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber clouds by fast expansion or saturation with or without the presence of pre-existing particles, which will provide a multiphase environment for aerosol-droplet interaction.

  19. Design of a new multi-phase experimental simulation chamber for atmospheric photosmog, aerosol and cloud chemistry research

    NASA Astrophysics Data System (ADS)

    Wang, J.; Doussin, J. F.; Perrier, S.; Perraudin, E.; Katrib, Y.; Pangui, E.; Picquet-Varrault, B.

    2011-11-01

    A new simulation chamber has been built at the Interuniversitary Laboratory of Atmospheric Systems (LISA). The CESAM chamber (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) is designed to allow research in multiphase atmospheric (photo-) chemistry which involves both gas phase and condensed phase processes including aerosol and cloud chemistry. CESAM has the potential to carry out variable temperature and pressure experiments under a very realistic artificial solar irradiation. It consists of a 4.2 m3 stainless steel vessel equipped with three high pressure xenon arc lamps which provides a controlled and steady environment. Initial characterization results, all carried out at 290-297 K under dry conditions, concerning lighting homogeneity, mixing efficiency, ozone lifetime, radical sources, NOy wall reactivity, particle loss rates, background PM, aerosol formation and cloud generation are given. Photolysis frequencies of NO2 and O3 related to chamber radiation system were found equal to (4.2 × 10-3 s-1) for JNO2 and (1.4 × 10-5 s-1) for JO1D which is comparable to the solar radiation in the boundary layer. An auxiliary mechanism describing NOy wall reactions has been developed. Its inclusion in the Master Chemical Mechanism allowed us to adequately model the results of experiments on the photo-oxidation of propene-NOx-Air mixtures. Aerosol yields for the α-pinene + O3 system chosen as a reference were determined and found in good agreement with previous studies. Particle lifetime in the chamber ranges from 10 h to 4 days depending on particle size distribution which indicates that the chamber can provide high quality data on aerosol aging processes and their effects. Being evacuable, it is possible to generate in this new chamber clouds by fast expansion or saturation with or without the presence of pre-existing particles, which will provide a multiphase environment for aerosol-droplet interaction.

  20. Molecular composition of biogenic secondary organic aerosols using ultrahigh-resolution mass spectrometry: comparing laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Fuller, S. J.; Giorio, C.; Healy, R. M.; Wilson, E.; O'Connor, I.; Wenger, J. C.; McLeod, M.; Aalto, J.; Ruuskanen, T. M.; Maenhaut, W.; Jones, R.; Venables, D. S.; Sodeau, J. R.; Kulmala, M.; Kalberer, M.

    2014-02-01

    Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh-resolution mass spectrometry. Kendrick mass defect and van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the BVOC mixtures when compared to the one component precursor system. The molecular composition of SOA from both the BVOC mixture and α-pinene represented the overall composition of the ambient sample from the boreal forest site reasonably well, with 72.3 ± 2.5% (n = 3) and 69.1 ± 3.0% (n = 3) common ions, respectively. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

  1. Molecular composition of biogenic secondary organic aerosols using ultrahigh resolution mass spectrometry: comparing laboratory and field studies

    NASA Astrophysics Data System (ADS)

    Kourtchev, I.; Fuller, S. J.; Giorio, C.; Healy, R. M.; Wilson, E.; O'Connor, I. P.; Wenger, J. C.; McLeod, M.; Aalto, J.; Ruuskanen, T. M.; Maenhaut, W.; Jones, R.; Venables, D. S.; Sodeau, J. R.; Kulmala, M.; Kalberer, M.

    2013-11-01

    Numerous laboratory experiments have been performed in an attempt to mimic atmospheric secondary organic aerosol (SOA) formation. However, it is still unclear how close the aerosol particles generated in laboratory experiments resemble atmospheric SOA with respect to their detailed chemical composition. In this study, we generated SOA in a simulation chamber from the ozonolysis of α-pinene and a biogenic volatile organic compound (BVOC) mixture containing α- and β-pinene, Δ3-carene, and isoprene. The detailed molecular composition of laboratory-generated SOA was compared with that of background ambient aerosol collected at a boreal forest site (Hyytiälä, Finland) and an urban location (Cork, Ireland) using direct infusion nanoelectrospray ultrahigh resolution mass spectrometry. Kendrick Mass Defect and Van Krevelen approaches were used to identify and compare compound classes and distributions of the detected species. The laboratory-generated SOA contained a distinguishable group of dimers that was not observed in the ambient samples. The presence of dimers was found to be less pronounced in the SOA from the VOC mixtures when compared to the one component precursor system. The elemental composition of the compounds identified in the monomeric region from the ozonolysis of both α-pinene and VOC mixtures represented the ambient organic composition of particles collected at the boreal forest site reasonably well, with about 70% of common molecular formulae. In contrast, large differences were found between the laboratory-generated BVOC samples and the ambient urban sample. To our knowledge this is the first direct comparison of molecular composition of laboratory-generated SOA from BVOC mixtures and ambient samples.

  2. Research programs at the Department of Energy National Laboratories. Volume 2: Laboratory matrix

    SciTech Connect

    1994-12-01

    For nearly fifty years, the US national laboratories, under the direction of the Department of Energy, have maintained a tradition of outstanding scientific research and innovative technological development. With the end of the Cold War, their roles have undergone profound changes. Although many of their original priorities remain--stewardship of the nation`s nuclear stockpile, for example--pressing budget constraints and new federal mandates have altered their focus. Promotion of energy efficiency, environmental restoration, human health, and technology partnerships with the goal of enhancing US economic and technological competitiveness are key new priorities. The multiprogram national laboratories offer unparalleled expertise in meeting the challenge of changing priorities. This volume aims to demonstrate each laboratory`s uniqueness in applying this expertise. It describes the laboratories` activities in eleven broad areas of research that most or all share in common. Each section of this volume is devoted to a single laboratory. Those included are: Argonne National Laboratory; Brookhaven National Laboratory; Idaho National Engineering Laboratory; Lawrence Berkeley Laboratory; Lawrence Livermore National Laboratory; Los Alamos National Laboratory; National Renewable Energy Laboratory; Oak Ridge National Laboratory; Pacific Northwest Laboratory; and Sandia National Laboratories. The information in this volume was provided by the multiprogram national laboratories and compiled at Lawrence Berkeley Laboratory.

  3. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession of... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Laboratory and...

  4. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession of... 41 Public Contracts and Property Management 3 2013-07-01 2013-07-01 false Laboratory and...

  5. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession of... 41 Public Contracts and Property Management 3 2014-01-01 2014-01-01 false Laboratory and...

  6. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession of... 41 Public Contracts and Property Management 3 2011-01-01 2011-01-01 false Laboratory and...

  7. 41 CFR 109-25.109 - Laboratory and research equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... PROCUREMENT 25-GENERAL 25.1-General Policies § 109-25.109 Laboratory and research equipment. The provisions of 41 CFR 101-25.109 and this section apply to laboratory and research equipment in the possession of... 41 Public Contracts and Property Management 3 2012-01-01 2012-01-01 false Laboratory and...

  8. Aerosol Direct Radiative Forcing in the Southern Appalachian Mountains: Initial Results from the Appalachian Atmospheric Interdisciplinary Research (AppalAIR) Facility

    NASA Astrophysics Data System (ADS)

    Taubman, B.; Sherman, J.; Sheridan, P. J.; Perry, L. B.; Neufeld, H.; Emanuel, R. E.; Tashakkori, R.; Bowman, D.; Long, C.

    2009-12-01

    AppalAIR (Appalachian Atmospheric Interdisciplinary Research, http://appalair.appstate.edu/) is a new interdisciplinary, atmospheric research facility located on the campus of Appalachian State University (1076 m; 36.2° N, 81.7° W) in the southern Appalachian Mountains. The facility was designed to investigate air pollution formation and transport, the relationships among biogenic and anthropogenic inputs to a changing climate, and the effects of these factors on regional ecosystems. AppalAIR is a collaborating member of the NOAA Earth System Research Laboratory Global Monitoring Division (NOAA/ESRL GMD) Collaborative Global Aerosol Network (http://www.esrl.noaa.gov/gmd/aero/net/app/index.html). Measurements are made from a 34 m tower and include aerosol light scattering (3-λ nephelometer) and absorption (3-λ PSAP, 7-λ aethalometer, 6-λ UV aethalometer), particle number concentration (CPC), and aerosol chemistry, size, and morphology using SPME/GC-MS and SEM analyses on 24 h filter samples. Initial results indicate alternating periods of small, highly absorptive (ssa < 0.90) fractal agglomerates and large, highly scattering (ssa > 0.95) spherical particles that are strongly dependent upon the highly variably meteorological patterns that have occurred over the summertime (JJA) in the southeastern U.S. By quantifying the aerosol direct radiative forcing during discrete meteorological patterns as defined by statistical cluster analysis as well as from specific aerosol chemical sources, we are able to extrapolate the results beyond the immediate region.

  9. Development of Multi-Wavelength Raman Lidar and its Application on Aerosol and Cloud Research

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Wang, Yingjian; Wang, Zhenzhu; Tao, Zongming; Wu, Decheng; Wang, Bangxin; Zhong, Zhiqing; Xie, Chenbo

    2016-06-01

    A movable multi-wavelength Raman lidar (TMPRL) was built in Hefei, China. Emitting with three wavelengths at 1064, 532, and 355nm, receiving three above Mie scattering signals and two nitrogen Raman signals at 386 and 607nm, and depolarization signal at 532nm, TMPRL has the capacity to investigate the height resolved optical and microphysical properties of aerosol and cloud. The retrieval algorithms of optical parameters base on Mie-Raman technique and the microphysical parameters based on Bayesian optimization method were also developed and applied to observed lidar data. Designing to make unattended operation and 24/7 continuous working, TMPRL has joined several field campaigns to study on the aerosol, cloud and their interaction researches. Some observed results of aerosol and cloud optical properties and the first attempt to validate the vertical aerosol size distribution retrieved by TMPRL and in-situ measurement by airplane are presented and discussed.

  10. Hyperspectral imager development at Army Research Laboratory

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2008-04-01

    Development of robust compact optical imagers that can acquire both spectral and spatial features from a scene of interest is of utmost importance for standoff detection of chemical and biological agents as well as targets and backgrounds. Spectral features arise due to the material properties of objects as a result of the emission, reflection, and absorption of light. Using hyperspectral imaging one can acquire images with narrow spectral bands and take advantage of the characteristic spectral signatures of different materials making up the scene in detection of objects. Traditional hyperspectral imaging systems use gratings and prisms that acquire one-dimensional spectral images and require relative motion of sensor and scene in addition to data processing to form a two-dimensional image cube. There is much interest in developing hyperspectral imagers using tunable filters that acquire a two-dimensional spectral image and build up an image cube as a function of time. At the Army Research Laboratory (ARL), we are developing hyperspectral imagers using a number of novel tunable filter technologies. These include acousto-optic tunable filters (AOTFs) that can provide adaptive no-moving-parts imagers from the UV to the long wave infrared, diffractive optics technology that can provide image cubes either in a single spectral region or simultaneously in different spectral regions using a single moving lens or by using a lenslet array, and micro-electromechanical systems (MEMS)-based Fabry-Perot (FP) tunable etalons to develop miniature sensors that take advantage of the advances in microfabrication and packaging technologies. New materials are being developed to design AOTFs and a full Stokes polarization imager has been developed, diffractive optics lenslet arrays are being explored, and novel FP tunable filters are under fabrication for the development of novel miniature hyperspectral imagers. Here we will brief on all the technologies being developed and present

  11. Laboratory Directed Research and Development FY 2000 Annual Report

    SciTech Connect

    Al-Ayat, R

    2001-05-24

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  12. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  13. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  14. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration

    NASA Astrophysics Data System (ADS)

    Zábori, J.; Matisāns, M.; Krejci, R.; Nilsson, E. D.; Ström, J.

    2012-11-01

    Primary marine aerosols are an important component of the climate system, especially in the remote marine environment. With diminishing sea-ice cover, better understanding of the role of sea spray aerosol on climate in the polar regions is required. As for Arctic Ocean water, laboratory experiments with NaCl water confirm that a few degrees change in the water temperature (Tw) gives a large change in the number of primary particles. Small particles with a dry diameter between 0.01 μm and 0.25 μm dominate the aerosol number density, but their relative dominance decreases with increasing water temperature from 0 °C where they represent 85-90% of the total aerosol number to 10 °C, where they represent 60-70% of the total aerosol number. This effect is most likely related to a change in physical properties and not to modification of sea water chemistry. A change of salinity between 15 g kg-1 and 35 g kg-1 did not influence the shape of a particle number size distribution. Although the magnitude of the size distribution for a water temperature change between 0 °C and 16 °C changed, the shape did not. An experiment where succinic acid was added to a NaCl water solution showed, that the number concentration of particles with 0.010 μm < Dp < 4.5 μm decreased on average by 10% when the succinic acid concentration in NaCl water at a water temperature of 0 °C was increased from 0 μmol L-1 to 94 μmol L-1. A shift to larger sizes in the particle number size distribution is observed from pure NaCl water to Arctic Ocean water. This is likely a consequence of organics and different inorganic salts present in Arctic Ocean water in addition to the NaCl.

  15. Frontiers for Laboratory Research of Magnetic Reconnection

    SciTech Connect

    Ji, Hantao; Guo, Fan

    2015-07-16

    Magnetic reconnection occcurs throughout heliophysical and astrophysical plasmas as well as in laboratory fusion plasmas. Two broad categories of reconnection models exist: collisional MHD and collisionless kinetic. Eight major questions with respect to magnetic connection are set down, and past and future devices for studying them in the laboratory are described. Results of some computerized simulations are compared with experiments.

  16. A Decade of Field Changing Atmospheric Aerosol Research: Outcomes of EPA’s STAR Program

    EPA Science Inventory

    Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri ...

  17. Stirling engine research at national and university laboratories in Japan

    SciTech Connect

    Hane, G.J.; Hutchinson, R.A.

    1987-09-01

    Pacific Northwest Laboratory (PNL) reviewed research projects that are related to the development of Stirling engines and that are under way at Japanese national laboratories and universities. The research and development focused on component rather than on whole engine development. PNL obtained the information from a literature review and interviews conducted at the laboratories and universities. The universities have less equipment available and operate with smaller staffs for research than do the laboratories. In particular, the Mechanical Engineering Laboratory and the Aerospace Laboratory conduct high-quality component and fundamental work. Despite having less equipment, some of the researchers at the universities conduct high-quality fundamental research. As is typical in Japan, several of the university professors are very active in consulting and advisory capacities to companies engaged in Stirling engine development, and also with government and association advisory and technical committees. Contacts with these professors and selective examination of their research are good ways to keep abreast of Japanese Stirling developments.

  18. 25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass. Climatic Building, First Floor Plan, Refrigeration and Engineering. Drawing No. 35-07-01, Sheet 52 of 72, 1952. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  19. 24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass, Climatic Building, First Floor Plan, Architectural. Drawing No. 35-07-01, Sheet 2 of 72, 1952, updated to 1985. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  20. Carbonaceous aerosols observed at Ieodo Ocean Research Station and implication for the role of secondary aerosols in fog formation

    NASA Astrophysics Data System (ADS)

    Han, J.; Shin, B.; Hwang, G.; Kim, J.; Lee, M.; Shim, J.

    2014-12-01

    Carbonaceous components and soluble ions of PM2.5 were measured at Ieodo Ocean Research Station (IORS) from December 2004 to June 2008. IORS is a 40-m research tower and located in the East China Sea (32.07°N, 125.10°E). As IORS is distanced equally from South Korea, China, and Japan, it is an ideal place to monitor Asian outflows with the least influence of local emissions. The mean concentration of PM2.5 mass was 21.8 ± 14.9 μg/m3 with the maximum of 35.3 μg/m3 (March) and the minimum of 11.2 μg/m3 (September). The monthly variation of PM2.5 mass was similar to that of O3 due to meteorological conditions, which determines the degree of influence from nearby lands. Chinese outflows were mostly responsible for the enhancement of mass and major constituents of PM2.5 such as sulfate, OC, and EC. Their concentrations were the lowest in summer when aged marine air masses were dominant. It is noteworthy that sulfate was also enhanced when air mass passed through Japan, even though its concentration was not as high as that of Chinese outflows. In June, OC concentration was distinctively high with high OC/EC ratio of ~9.5. At IORS, June is characterized by the most frequent occurrence of fog and the lowest visibility with the highest relative humidity. In China, the clearing fire of agricultural residues is the major source of fine aerosols in June, leading to severe haze (e.g., Cheng et al., 2014). In addition, the aerosol optical depth was also observed to be the maximum over northeast Asia in June (Kim et al., 2007). Consequently, our results suggest that organic aerosol played a critical role in fog formation in the study region. References Cheng, Z., et al. (2014) Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 2011, Atmos. Chem. Phys., 14, 4573-4585, doi:10.5194/acp-14-4573-2014. Kim, S.-W., et al. (2007) Seasonal and monthly variations of columnar aerosol optical properties over east Asia determined from

  1. Protection factor for N95 filtering facepiece respirators exposed to laboratory aerosols containing different concentrations of nanoparticles.

    PubMed

    Rengasamy, Samy; Walbert, Gary; Newcomb, William; Coffey, Christopher; Wassell, James Terrence; Szalajda, Jonathan

    2015-04-01

    A previous study used a PortaCount Plus to measure the ratio of particle concentrations outside (C out) to inside (C in) of filtering facepiece respirators (FFRs) worn by test subjects and calculated the total inward leakage (TIL) (C in/C out) to evaluate the reproducibility of the TIL test method between two different National Institute for Occupational Safety and Health laboratories (Laboratories 1 and 2) at the Pittsburgh Campus. The purpose of this study is to utilize the originally obtained PortaCount C out/C in ratio as a measure of protection factor (PF) and evaluate the influence of particle distribution and filter efficiency. PFs were obtained for five N95 model FFRs worn by 35 subjects for three donnings (5 models × 35 subjects × 3 donnings) for a total of 525 tests in each laboratory. The geometric mean of PFs, geometric standard deviation (GSD), and the 5th percentile values for the five N95 FFR models were calculated for the two laboratories. Filter efficiency was obtained by measuring the penetration for four models (A, B, C, and D) against Laboratory 2 aerosol using two condensation particle counters. Particle size distribution, measured using a Scanning Mobility Particle Sizer, showed a mean count median diameter (CMD) of 82 nm in Laboratory 1 and 131 nm in Laboratory 2. The smaller CMD showed relatively higher concentration of nanoparticles in Laboratory 1 than in Laboratory 2. Results showed that the PFs and 5th percentile values for two models (B and E) were larger than other three models (A, C, and D) in both laboratories. The PFs and 5th percentile values of models B and E in Laboratory 1 with a count median diameter (CMD) of 82 nm were smaller than in Laboratory 2 with a CMD of 131 nm, indicating an association between particle size distribution and PF. The three lower efficiency models (A, C, and D) showed lower PF values than the higher efficiency model B showing the influence of filter efficiency on PF value. Overall, the data show that

  2. Protection Factor for N95 Filtering Facepiece Respirators Exposed to Laboratory Aerosols Containing Different Concentrations of Nanoparticles

    PubMed Central

    Rengasamy, Samy; Walbert, Gary; Newcomb, William; Coffey, Christopher; Wassell, James Terrence; Szalajda, Jonathan

    2015-01-01

    A previous study used a PortaCount Plus to measure the ratio of particle concentrations outside (Cout) to inside (Cin) of filtering facepiece respirators (FFRs) worn by test subjects and calculated the total inward leakage (TIL) (Cin/Cout) to evaluate the reproducibility of the TIL test method between two different National Institute for Occupational Safety and Health laboratories (Laboratories 1 and 2) at the Pittsburgh Campus. The purpose of this study is to utilize the originally obtained PortaCount Cout/Cin ratio as a measure of protection factor (PF) and evaluate the influence of particle distribution and filter efficiency. PFs were obtained for five N95 model FFRs worn by 35 subjects for three donnings (5 models × 35 subjects × 3 donnings) for a total of 525 tests in each laboratory. The geometric mean of PFs, geometric standard deviation (GSD), and the 5th percentile values for the five N95 FFR models were calculated for the two laboratories. Filter efficiency was obtained by measuring the penetration for four models (A, B, C, and D) against Laboratory 2 aerosol using two condensation particle counters. Particle size distribution, measured using a Scanning Mobility Particle Sizer, showed a mean count median diameter (CMD) of 82 nm in Laboratory 1 and 131 nm in Laboratory 2. The smaller CMD showed relatively higher concentration of nanoparticles in Laboratory 1 than in Laboratory 2. Results showed that the PFs and 5th percentile values for two models (B and E) were larger than other three models (A, C, and D) in both laboratories. The PFs and 5th percentile values of models B and E in Laboratory 1 with a count median diameter (CMD) of 82 nm were smaller than in Laboratory 2 with a CMD of 131 nm, indicating an association between particle size distribution and PF. The three lower efficiency models (A, C, and D) showed lower PF values than the higher efficiency model B showing the influence of filter efficiency on PF value. Overall, the data show that

  3. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-06-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  4. Uncertainty Analysis And Synergy Of Aerosol Products From Multiple Satellite Sensors For Advanced Atmospheric Research

    NASA Astrophysics Data System (ADS)

    Ichoku, C. M.; Petrenko, M.

    2013-05-01

    Aerosols are tiny particles suspended in the air, and can be made up of wind-blown dust, smoke from fires, and particulate emissions from automobiles, industries, and other natural and man-made sources. Aerosols can have significant impacts on the air quality, and can interact with clouds and solar radiation in such a way as to affect the water cycle and climate. However, the extent and scale of these impacts are still poorly understood, and this represents one of the greatest uncertainties in climate research to date. To fill this gap in our knowledge, the global and local properties of atmospheric aerosols are being extensively observed and measured, especially during the last decade, using both satellite and ground-based instruments, including such spaceborne sensors as MODIS on the Terra and Aqua satellites, MISR on Terra, OMI on Aura, POLDER on PARASOL, CALIOP on CALIPSO, SeaWiFS on SeaStar, and the ground-based Aerosol Robotic Network (AERONET) of sunphotometers. The aerosol measurements collected by these instruments over the last decade contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. Still, to be able to utilize these measurements synergistically, they have to be carefully and uniformly analyzed and inter-compared, in order to understand the uncertainties and limitations of the products - a process that is greatly complicated by the diversity of differences that exist among them. In this presentation, we will show results of a coherent comparative uncertainty analysis of aerosol measurements from the above-named satellite sensors relative to AERONET. We use these results to demonstrate how these sensors perform in different parts of the world over different landcover types as well as their performance relative to one another, thereby facilitating product selection and integration for specific research and applications needs.

  5. Latin American Lidar Network (LALINET) for aerosol research: Diagnosis on network instrumentation

    NASA Astrophysics Data System (ADS)

    Guerrero-Rascado, Juan Luis; Landulfo, Eduardo; Antuña, Juan Carlos; de Melo Jorge Barbosa, Henrique; Barja, Boris; Bastidas, Álvaro Efrain; Bedoya, Andrés Esteban; da Costa, Renata Facundes; Estevan, René; Forno, Ricardo; Gouveia, Diego Alvés; Jiménez, Cristofer; Larroza, Eliane Gonçalves; da Silva Lopes, Fábio Juliano; Montilla-Rosero, Elena; Arruda Moreira, Gregori de; Nakaema, Walker Morinobu; Nisperuza, Daniel; Alegria, Dairo; Múnera, Mauricio; Otero, Lidia; Papandrea, Sebastián; Pallota, Juan Vicente; Pawelko, Ezequiel; Quel, Eduardo Jaime; Ristori, Pablo; Rodrigues, Patricia Ferrini; Salvador, Jacobo; Sánchez, Maria Fernanda; Silva, Antonieta

    2016-02-01

    LALINET (Latin American Lidar Network), previously known as ALINE, is the first fully operative lidar network for aerosol research in South America, probing the atmosphere on regular basis since September 2013. The general purpose of this network is to attempt to fill the gap in the knowledge on aerosol vertical distribution over South America and its direct and indirect impact on weather and climate by the establishment of a vertically-resolved dataset of aerosol properties. Similarly to other lidar research networks, most of the LALINET instruments are not commercially produced and, consequently, configurations, capabilities and derived-products can be remarkably different among stations. It is a fact that such un-biased 4D dataset calls for a strict standardization from the instrumental and data processing point of view. This study has been envisaged to investigate the ongoing network configurations with the aim of highlighting the instrumental strengths and weaknesses of LALINET.

  6. Laboratory studies of nitric acid hydrate and sulfuric acid aerosols: Implications for polar stratospheric cloud formation

    SciTech Connect

    Miller, R.E.

    1995-12-31

    The optical properties of atmospheric aerosols are important in a number of modeling and remote sensing applications. We have devised a new approach for determining the frequency dependent real and imaginary refractive indices directly from the observation of the infrared spectra of the aerosols. We have applied this method to the study of water ice aerosols and comparisons with previous measurements confirm that the method is sound and accurate. The temperature dependence of the refractive index of ice has also been measured over the range 130 K to 210 K, which includes the region of interest for the study of Polar Stratospheric Clouds (PSC`s). The method has also been applied to the study of nitric acid dehydrate (NAD) and nitric acid trihydrate (NAT). Sulfuric acid/nitric acid/water ternary systems are also being studied with the aim of determining the nature of the phases formed and the associated freezing points as a function of the concentrations of the acids.

  7. Lifting the lid on toilet plume aerosol: A literature review with suggestions for future research

    PubMed Central

    Johnson, David L.; Mead, Kenneth R.; Lynch, Robert A.; Hirst, Deborah V.L.

    2015-01-01

    Background The potential risks associated with “toilet plume” aerosols produced by flush toilets is a subject of continuing study. This review examines the evidence regarding toilet plume bioaerosol generation and infectious disease transmission. Methods The peer-reviewed scientific literature was searched to identify articles related to aerosol production during toilet flushing, as well as epidemiologic studies examining the potential role of toilets in infectious disease outbreaks. Results The studies demonstrate that potentially infectious aerosols may be produced in substantial quantities during flushing. Aerosolization can continue through multiple flushes to expose subsequent toilet users. Some of the aerosols desiccate to become droplet nuclei and remain adrift in the air currents. However, no studies have yet clearly demonstrated or refuted toilet plume-related disease transmission, and the significance of the risk remains largely uncharacterized. Conclusion Research suggests that toilet plume could play a contributory role in the transmission of infectious diseases. Additional research in multiple areas is warranted to assess the risks posed by toilet plume, especially within health care facilities. PMID:23040490

  8. Sandia, California Tritium Research Laboratory transition and reutilization project

    SciTech Connect

    Garcia, T.B.

    1997-02-01

    This paper describes a project within Sandia National Laboratory to convert the shut down Tritium Research Laboratory into a facility which could be reused within the laboratory complex. In the process of decommissioning and decontaminating the facility, the laboratory was able to save substantial financial resources by transferring much existing equipment to other DOE facilities, and then expeditiously implementing a decontamination program which has resulted in the building being converted into laboratory space for new lab programs. This project of facility reuse has been a significant financial benefit to the laboratory.

  9. Maritime security laboratory for maritime security research

    NASA Astrophysics Data System (ADS)

    Bunin, Barry J.; Sutin, Alexander; Bruno, Michael S.

    2007-04-01

    Stevens Institute of Technology has established a new Maritime Security Laboratory (MSL) to facilitate advances in methods and technologies relevant to maritime security. MSL is designed to enable system-level experiments and data-driven modeling in the complex environment of an urban tidal estuary. The initial focus of the laboratory is on the threats posed by divers and small craft with hostile intent. The laboratory is, however, evolvable to future threats as yet unidentified. Initially, the laboratory utilizes acoustic, environmental, and video sensors deployed in and around the Hudson River estuary. Experimental data associated with boats and SCUBA divers are collected on a computer deployed on board a boat specifically designed and equipped for these experiments and are remotely transferred to a Visualization Center on campus. Early experiments utilizing this laboratory have gathered data to characterize the relevant parameters of the estuary, acoustic signals produced by divers, and water and air traffic. Hydrophones were deployed to collect data to enable the development of passive acoustic methodologies for maximizing SCUBA diver detection distance. Initial results involving characteristics of the estuary, acoustic signatures of divers, ambient acoustic noise in an urban estuary, and transmission loss of acoustic signals in a wide frequency band are presented. These results can also be used for the characterization of abnormal traffic and improvement of underwater communication in a shallow water estuary.

  10. Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, Natasha; Zuend, Andreas; Schilling, Katherine; Berkemeier, Thomas; Shiraiwa, Manabu; Flagan, Richard C.; Seinfeld, John H.

    2016-10-01

    Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN) activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG) with average molecular masses ranging from 200 to 10 000 g mol-1 and mixtures of PEG with ammonium sulfate (AS) were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid-liquid phase separation (LLPS), was also modeled with AIOMFAC. Under subsaturated relative humidity (RH) conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG-AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000-AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a supersaturation of 0.8 %. We also

  11. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  12. A study on the extent of neutralization of sulphate aerosol through laboratory and field experiments using an ATOFMS and a GPIC

    NASA Astrophysics Data System (ADS)

    Yao, Xiaohong; Rehbein, Peter J. G.; Lee, Colin J.; Evans, Greg J.; Corbin, Joel; Jeong, Cheol-Heon

    2011-11-01

    Extent of neutralization (EoN) of atmospheric aerosol is an important parameter in understanding related nucleation mechanisms, acid-catalyzed reactions and gas-aerosol partitioning. Ion m/ z -195 (HSOHSO4-) detected by the Aerosol Time-of-Flight Mass Spectrometer (ATOFMS) has been used as an indicator of incompletely-neutralized sulphate aerosol, but there are no laboratory data to support this assumption. In this study, experiments using artificially generated sulphuric acid nucleated aerosol and metal sulphate aerosol across a range of EoN found that the peak area ratio and hit ratio of ion m/ z -195 (HSOHSO4-) to ion m/ z -97 (HSO4-) detected by the ATOFMS increased with decreasing EoN. Area ratio and hit ratio are sensitive to EoN at the low and high value zones, respectively. In ambient air measured by the ATOFMS and a Gas Particle Ion Chromatograph (GPIC) in Toronto, Canada, ion m/ z -195 was always detected in ammonium sulphate aerosol, and its hit number and peak area varied widely, regardless of EoN indicated by the equivalent ratio of NH4+ to (SO42-+NO3-). Thus, ion m/ z -195 alone is not an indicator of acidic sulphate aerosol. The combined approach using the ATOFMS and the GPIC found that cloud-processing formed incompletely-neutralized acidic sulphate aerosol in 2 out of 35 days sampled in winter in Toronto, Canada. It is interesting that the two episodes both occurred at night. Formation of incompletely-neutralized acidic sulphate aerosol caused a decrease in the concentration of particulate nitrate. This can be explained by acidic sulphate aerosol reacting with ammonium nitrate, leading to the release of HNO 3 to the gas phase. It was also found that the GPIC results occasionally suffered a positive artifact of NH4+ concentration caused by the clogging-induced high back-pressure in the instrument.

  13. Reservoir sedimentation research at the National Sedimentation Laboratory

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers at the National Sedimentation Laboratory have made important contributions to reservoir sedimentation research for most of the 50 years that the laboratory has existed. Early publications from the mid 1960s to the mid 1970s reported work on the development of gamma ray sediment measurem...

  14. Laboratory and cyclotron requirements for PET research

    SciTech Connect

    Schlyer, D.J.

    1993-06-01

    This report describes four types of PET facilities: Clinical PET with no radionuclide production; clinical PET with a small accelerator; clinical PET with research support; and research PET facilities. General facility considerations are also discussed.

  15. A review of research on human activity induced climate change I. Greenhouse gases and aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Mingxing; Liu, Qiang; Yang, Xin

    2004-06-01

    Extensive research on the sources and sinks of greenhouse gases, carbon cycle modeling, and the characterization of atmospheric aerosols has been carried out in China during the last 10 years or so. This paper presents the major achievements in the fields of emissions of greenhouse gases from agricultural lands, carbon cycle modeling, the characterization of Asian mineral dust, source identification of the precursors of the tropospheric ozone, and observations of the concentrations of atmospheric organic compounds. Special, more detailed information on the emissions of methane from rice fields and the physical and chemical characteristics of mineral aerosols are presented.

  16. Atmospheric lidar research applying to H2O, O2 and aerosols

    NASA Technical Reports Server (NTRS)

    Mcilrath, T. J.; Wilkerson, T. D.

    1977-01-01

    Experimental research on a near infrared tunable dye laser was reported, and theoretical simulations were presented for various lidar configurations. The visible and nearinfrared wavelengths considered were suitable for observations of aerosols, water vapor, molecular oxygen pressure and temperature in the troposphere and above. The first phase of development work was described on a ruby pumped, tunable dye laser for the wavelength region 715 to 740 nanometers. Lidar simulations were summarized for measurements of H2O and for two color lidar observations of aerosols in the atmosphere.

  17. Laboratory Technology Research: Abstracts of FY 1996 projects

    SciTech Connect

    1996-12-31

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program are conducted by the five ER multi-program laboratories: Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge, and Pacific Northwest National Laboratories. These projects explore the applications of basic research advances relevant to Department of Energy`s (DOE) mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing/manufacturing research, and sustainable environments.

  18. Generation and characterization of sodium sulfite aerosols for applications in inhalation toxicologic research

    SciTech Connect

    Dasgupta, P.K.; Raabe, O.G.; Duvall, T.R.; Tarkington, B.K.

    1980-09-01

    A method was developed for generation of submicrometer aerosols of sodium sulfite suitable for use in inhalation toxicologic research. Concentrations ranging up to about 30 mg/m/sup 3/Na/sub 2/SO/sub 3/ were achieved in a 0.44 m/sup 3/ exposure chamber with an air flow rate of 0.20 m/sup 3//min for periods up to 16 days. The coefficient of variation of the sulfite aerosol mass concentration was about 4% during a typical exposure period. The measured mass median aerodynamic diameters (MMAD/sub ar/) of the generated aerosols were 1.2 (+-0.2SD) ..mu..m with a geometric standard deviation (sigma g) of 1.9 (+-0.3SD). The chamber was sampled for gas phase SO/sub 2/ concentration, and aerosol samples were analyzed for particulate sulfite and sulfate. The fraction of sulfur as sulfite in the aerosol was usually 95% and was always greater than 90%. Gas phase SO/sub 2/ amounted to less than 2% of the total S(IV) present in the chamber.

  19. Laboratory Directed Research and Development annual report, fiscal year 1997

    SciTech Connect

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  20. Development of the Ensemble Navy Aerosol Analysis Prediction System (ENAAPS) and its application of the Data Assimilation Research Testbed (DART) in support of aerosol forecasting

    NASA Astrophysics Data System (ADS)

    Rubin, J. I.; Reid, J. S.; Hansen, J. A.; Anderson, J. L.; Collins, N.; Hoar, T. J.; Hogan, T.; Lynch, P.; McLay, J.; Reynolds, C. A.; Sessions, W. R.; Westphal, D. L.; Zhang, J.

    2015-10-01

    An ensemble-based forecast and data assimilation system has been developed for use in Navy aerosol forecasting. The system makes use of an ensemble of the Navy Aerosol Analysis Prediction System (ENAAPS) at 1° × 1°, combined with an Ensemble Adjustment Kalman Filter from NCAR's Data Assimilation Research Testbed (DART). The base ENAAPS-DART system discussed in this work utilizes the Navy Operational Global Analysis Prediction System (NOGAPS) meteorological ensemble to drive offline NAAPS simulations coupled with the DART Ensemble Kalman Filter architecture to assimilate bias-corrected MODIS Aerosol Optical Thickness (AOT) retrievals. This work outlines the optimization of the 20-member ensemble system, including consideration of meteorology and source-perturbed ensemble members as well as covariance inflation. Additional tests with 80 meteorological and source members were also performed. An important finding of this work is that an adaptive covariance inflation method, which has not been previously tested for aerosol applications, was found to perform better than a temporally and spatially constant covariance inflation. Problems were identified with the constant inflation in regions with limited observational coverage. The second major finding of this work is that combined meteorology and aerosol source ensembles are superior to either in isolation and that both are necessary to produce a robust system with sufficient spread in the ensemble members as well as realistic correlation fields for spreading observational information. The inclusion of aerosol source ensembles improves correlation fields for large aerosol source regions such as smoke and dust in Africa, by statistically separating freshly emitted from transported aerosol species. However, the source ensembles have limited efficacy during long range transport. Conversely, the meteorological ensemble produces sufficient spread at the synoptic scale to enable observational impact through the ensemble data

  1. Development of the Ensemble Navy Aerosol Analysis Prediction System (ENAAPS) and its application of the Data Assimilation Research Testbed (DART) in support of aerosol forecasting

    NASA Astrophysics Data System (ADS)

    Rubin, Juli I.; Reid, Jeffrey S.; Hansen, James A.; Anderson, Jeffrey L.; Collins, Nancy; Hoar, Timothy J.; Hogan, Timothy; Lynch, Peng; McLay, Justin; Reynolds, Carolyn A.; Sessions, Walter R.; Westphal, Douglas L.; Zhang, Jianglong

    2016-03-01

    An ensemble-based forecast and data assimilation system has been developed for use in Navy aerosol forecasting. The system makes use of an ensemble of the Navy Aerosol Analysis Prediction System (ENAAPS) at 1 × 1°, combined with an ensemble adjustment Kalman filter from NCAR's Data Assimilation Research Testbed (DART). The base ENAAPS-DART system discussed in this work utilizes the Navy Operational Global Analysis Prediction System (NOGAPS) meteorological ensemble to drive offline NAAPS simulations coupled with the DART ensemble Kalman filter architecture to assimilate bias-corrected MODIS aerosol optical thickness (AOT) retrievals. This work outlines the optimization of the 20-member ensemble system, including consideration of meteorology and source-perturbed ensemble members as well as covariance inflation. Additional tests with 80 meteorological and source members were also performed. An important finding of this work is that an adaptive covariance inflation method, which has not been previously tested for aerosol applications, was found to perform better than a temporally and spatially constant covariance inflation. Problems were identified with the constant inflation in regions with limited observational coverage. The second major finding of this work is that combined meteorology and aerosol source ensembles are superior to either in isolation and that both are necessary to produce a robust system with sufficient spread in the ensemble members as well as realistic correlation fields for spreading observational information. The inclusion of aerosol source ensembles improves correlation fields for large aerosol source regions, such as smoke and dust in Africa, by statistically separating freshly emitted from transported aerosol species. However, the source ensembles have limited efficacy during long-range transport. Conversely, the meteorological ensemble generates sufficient spread at the synoptic scale to enable observational impact through the ensemble data

  2. From Laboratory Research to a Clinical Trial

    PubMed Central

    Keevil, C. William; Salgado, Cassandra D.; Schmidt, Michael G.

    2015-01-01

    Objective: This is a translational science article that discusses copper alloys as antimicrobial environmental surfaces. Bacteria die when they come in contact with copper alloys in laboratory tests. Components made of copper alloys were also found to be efficacious in a clinical trial. Background: There are indications that bacteria found on frequently touched environmental surfaces play a role in infection transmission. Methods: In laboratory testing, copper alloy samples were inoculated with bacteria. In clinical trials, the amount of live bacteria on the surfaces of hospital components made of copper alloys, as well as those made from standard materials, was measured. Finally, infection rates were tracked in the hospital rooms with the copper components and compared to those found in the rooms containing the standard components. Results: Greater than a 99.9% reduction in live bacteria was realized in laboratory tests. In the clinical trials, an 83% reduction in bacteria was seen on the copper alloy components, when compared to the surfaces made from standard materials in the control rooms. Finally, the infection rates were found to be reduced by 58% in patient rooms with components made of copper, when compared to patients' rooms with components made of standard materials. Conclusions: Bacteria die on copper alloy surfaces in both the laboratory and the hospital rooms. Infection rates were lowered in those hospital rooms containing copper components. Thus, based on the presented information, the placement of copper alloy components, in the built environment, may have the potential to reduce not only hospital-acquired infections but also patient treatment costs. PMID:26163568

  3. Laboratory Directed Research and Development FY2001 Annual Report

    SciTech Connect

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts that started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.

  4. Method for chronic nose-only exposures of laboratory animals to inhaled fibrous aerosols

    SciTech Connect

    Smith, D.M.; Ortiz, L.W.; Archuleta, R.F.; Spalding, J.F.; Ettinger, H.J.; Thomas, R.G.

    1980-01-01

    A study is currently being conducted to determine any biological effects when rats and hamsters inhale man-made mineral fibers (MMMFs). The MMMF's to be tested include glass fibers, mineral wool, and ceramic fibers, with crocidolite asbestos serving as a positive control aerosol material. A prime objective of this study is to expose animals to high airborne concentrations of long thin fibers. Animal exposures are currently being conducted with a 0.45 ..mu..m mean diameter glass microfiber material and the standard UICC crocidolite. A specialized method of restraining rats and hamsters for inhalation exposure was developed providing for aerosol exposure only to the nose and a small fraction of the animal's head. This method eliminates external contamination and prevents animals from burying their noses in their fur to filter out aerosolized particles. Stainless steel chambers have been modified by placing two metal insert panels in place of doors, each containing 45 insert ports for Syrian hamsters or 32 for rats. Animals are loaded into tapered polycarbonate holding tubes and the tubes placed in the panel inserts for exposure. Body weights, rectal temperatures, clinical chemistry profiles, complete blood counts, and plasma corticosterone levels clearly indicate that this technique does not produce measurable stress in the animals.

  5. North American deep underground laboratories: Soudan Underground Laboratory, SNOLab, and the Sanford Underground Research Facility

    NASA Astrophysics Data System (ADS)

    Lesko, Kevin T.

    2015-08-01

    Over the past several decades, fundamental physics experiments have required access to deep underground laboratories to satisfy the increasingly strict requirements for ultra-low background environments and shielding from cosmic rays. In this presentation, I summarize the existing and anticipated physics programs and laboratory facilities of North America's deep facilities: The Soudan Underground Laboratory in Minnesota, SNOLab in Ontario, Canada, and the Sanford Underground Research Facility in Lead, South Dakota.

  6. Introducing Undergraduates to a Research Laboratory

    ERIC Educational Resources Information Center

    Weinberg, Robert

    1974-01-01

    Discusses a student project which is intended to teach undergraduates concepts and techniques of nuclear physics, experimental methods used in particle detection, and provide experience in a functioning research environment. Included are detailed procedures for carrying out the project. (CC)

  7. Production, Organic Characterization, and Phase Transformations of Marine Particles Aerosolized from a Laboratory Mesocosm Phytoplankton Bioreactor

    NASA Astrophysics Data System (ADS)

    Alpert, P. A.; Knopf, D. A.; Aller, J. Y.; Radway, J.; Kilthau, W.

    2012-12-01

    Previous studies have shown that particles emitted from bubble bursting and wave breaking of ocean waters with high biological activity can contain sea salts associated with organic material, with smaller particles containing a larger mass fraction of organics than larger particles. This likely indicates a link between phytoplankton productivity in oceans and particulate organic material in marine air. Once aerosolized, particles with significant amount of organic material can affect cloud activation and formation of ice crystals, among other atmospheric processes, thus influencing climate. This is significant for clouds and climate particularly over nutrient rich polar seas, in which concentrations of biological organisms can reach up to 109 cells per ml during spring phytoplankton blooms. Here we present results of bubble bursting aerosol production from a seawater mesocosm containing artificial seawater, natural seawater and unialgal cultures of three representative phytoplankton species. These phytoplankton (Thalassiosira pseudonana, Emilianaia huxleyi, and Nannochloris atomus), possessed siliceous frustules, calcareous frustules and no frustules, respectively. Bubbles were generated employing recirculating impinging water jets or glass frits. Dry and humidified aerosol size distributions and bulk aerosol organic composition were measured as a function of phytoplankton growth, and chlorophyll composition and particulate and dissolved organic carbon in the water were determined. Finally, particles were collected on substrates for ice nucleation and water uptake experiments, their elemental compositions were determined using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEMEDAX), and their carbon speciation was determined using scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Particle size distributions exposed to dry and humidified air employing

  8. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit..., behavioral and clinical science research. The panel meetings will be open to the public for approximately...

  9. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  10. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and ] Development Services Scientific Merit.... Clinical Research Program June 9, 2010 *VA Central Office. Oncology June 10-11, 2010....... L'Enfant...

  11. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... science research. The panel meetings will be open to the public for approximately one-half hour at...

  12. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services..., behavioral and clinical science research. The panel meetings will be open to the public for approximately...

  13. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  14. Refinement of experimental design and conduct in laboratory animal research.

    PubMed

    Bailoo, Jeremy D; Reichlin, Thomas S; Würbel, Hanno

    2014-01-01

    The scientific literature of laboratory animal research is replete with papers reporting poor reproducibility of results as well as failure to translate results to clinical trials in humans. This may stem in part from poor experimental design and conduct of animal experiments. Despite widespread recognition of these problems and implementation of guidelines to attenuate them, a review of the literature suggests that experimental design and conduct of laboratory animal research are still in need of refinement. This paper will review and discuss possible sources of biases, highlight advantages and limitations of strategies proposed to alleviate them, and provide a conceptual framework for improving the reproducibility of laboratory animal research.

  15. Laboratory simulation, a tool for comet research

    NASA Astrophysics Data System (ADS)

    Grun, E.; Kochan, H.; Seidensticker, K. J.

    1991-02-01

    Recent efforts to simulate comet morphology and evolution in the laboratory are reviewed, with an emphasis on the KOSI project using the Space Simulator at DLR Koeln. In KOSI, 30-cm-diameter 15-cm-thick specimens of water ice mixed with frozen CO2, methanol, and/or dust (mixtures of olivine, montmorillonite, kaolinite, and carbon) are exposed to Xe-lamp irradiation at temperature 77 K and pressure 100 microPa. Preliminary findings from KOSI experiments include measurements of the time lag between the onset of insolation and the release of gases and observations of (1) heat conduction by sublimating gases within the sample, (2) compositional fractionation, (3) emission of icy grains at speeds of a few m/sec, and (4) gas compositions significantly different from the original sample composition.

  16. Laboratory Directed Research and Development Program FY 2006 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  17. Laboratory directed research and development program, FY 1996

    SciTech Connect

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  18. Laboratory Directed Research and Development Program Assessment for FY 2014

    SciTech Connect

    Hatton, D.

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  19. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor.

    PubMed

    Grover, Brett D; Kleinman, Michael; Eatough, Norman L; Eatough, Delbert J; Cary, Robert A; Hopke, Philip K; Wilson, William E

    2008-01-01

    Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).

  20. QUALITY ASSURANCE IN RESEARCH LABORATORIES: RULES AND REASON

    EPA Science Inventory

    Quality Assurance in Research Laboratories: Rules and Reason

    Ron Rogers, Quality Assurance and Records Manager, Environmental Carcinogenesis Division, NHEERL/ORD/US EPA, Research Triangle Park, NC, 27709

    To anyone who has actively participated in research, as I have...

  1. Identifying and Addressing Challenges to Research in University Laboratory Preschools

    ERIC Educational Resources Information Center

    File, Nancy

    2012-01-01

    Research Findings: This essay offers a review of challenges that university laboratory preschools face in providing a site for research that fits with other components of the program mission. An argument is made to consider paradigm shifts in research questions and methods that move away from traditions within the fields that study children's…

  2. Space Station life science research facility - The vivarium/laboratory

    NASA Technical Reports Server (NTRS)

    Hilchey, J. D.; Arno, R. D.

    1985-01-01

    Research opportunities possible with the Space Station are discussed. The objective of the research program will be study gravity relationships for animal and plant species. The equipment necessary for space experiments including vivarium facilities are described. The cost of the development of research facilities such as the vivarium/laboratory and a bioresearch centrifuge is examined.

  3. SOA Formation from Glyoxal in the Aerosol Aqueous Phase: A case study from Mexico City using an explicit laboratory-based model

    NASA Astrophysics Data System (ADS)

    Waxman, E.; Dzepina, K.; Lee-Taylor, J.; Ervens, B.; Volkamer, R.

    2012-04-01

    Glyoxal is an important contributor to secondary organic aerosol (SOA) formation via aerosol aqueous phase processing. This work takes a glyoxal-SOA model parameterization based on laboratory data and applies the box model to ambient measurements. For the Mexico City Metropolitan Area (MCMA) case study on April 9, 2003 the aerosol uptake and processing of glyoxal in aerosol water is investigated, and found able to rationalize the previously observed gas phase glyoxal imbalance (Volkamer et al., 2007) for the first time based on laboratory data. Our aerosol size distribution resolving model is constrained with time resolved distributions of aerosol chemical composition, and supports a surface limited uptake mechanism of glyoxal in Mexico City. We compare the AMS-measured OOA to SOA predictions using our glyoxal model combined with background aerosol, traditional VOC precursor (e.g., aromatics) SOA, and three parameterizations for SOA formation from S/IVOC, i.e., based on (1) Robinson et al., 2007, (2) Grieshop et al., 2009, and (3) GECKO-A (Lee-Taylor et al., 2011), which account for the bulk of SOA mass, but give very different results for the O/C ratio of predicted SOA. This presents to our knowledge the first comparison of a molecular perspective of S/IVOC ageing with empirical parameterizations. We compare the mass weighted O/C ratio from these different SOA sources to AMS-measured O/C ratios, in an attempt to use the rapidly increasing O/C to test for closure, and advance our understanding of aerosol ageing in Mexico City.

  4. Laboratory directed research and development 2006 annual report.

    SciTech Connect

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  5. Research and Laboratory Instruction--An Experiment in Teaching

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1976-01-01

    Describes an attempt to incorporate research into laboratory work in an introductory ecology class and a senior seminar. The investigation involves the examination of rhythms of food consumption and circadian activities in humans. (GS)

  6. NASA/WVU Software Research Laboratory, 1995

    NASA Technical Reports Server (NTRS)

    Sabolish, George J.; Callahan, John R.

    1995-01-01

    In our second year, the NASA/WVU Software Research Lab has made significant strides toward analysis and solution of major software problems related to V&V activities. We have established working relationships with many ongoing efforts within NASA and continue to provide valuable input into policy and decision-making processes. Through our publications, technical reports, lecture series, newsletters, and resources on the World-Wide-Web, we provide information to many NASA and external parties daily. This report is a summary and overview of some of our activities for the past year. This report is divided into 6 chapters: Introduction, People, Support Activities, Process, Metrics, and Testing. The Introduction chapter (this chapter) gives an overview of our project beginnings and targets. The People chapter focuses on new people who have joined the Lab this year. The Support chapter briefly lists activities like our WWW pages, Technical Report Series, Technical Lecture Series, and Research Quarterly newsletter. Finally, the remaining four chapters discuss the major research areas that we have made significant progress towards producing meaningful task reports. These chapters can be regarded as portions of drafts of our task reports.

  7. Biological and Physical Space Research Laboratory 2002 Science Review

    NASA Technical Reports Server (NTRS)

    Curreri, P. A. (Editor); Robinson, M. B. (Editor); Murphy, K. L. (Editor)

    2003-01-01

    With the International Space Station Program approaching core complete, our NASA Headquarters sponsor, the new Code U Enterprise, Biological and Physical Research, is shifting its research emphasis from purely fundamental microgravity and biological sciences to strategic research aimed at enabling human missions beyond Earth orbit. Although we anticipate supporting microgravity research on the ISS for some time to come, our laboratory has been vigorously engaged in developing these new strategic research areas.This Technical Memorandum documents the internal science research at our laboratory as presented in a review to Dr. Ann Whitaker, MSFC Science Director, in July 2002. These presentations have been revised and updated as appropriate for this report. It provides a snapshot of the internal science capability of our laboratory as an aid to other NASA organizations and the external scientific community.

  8. Microphysical Properties of Aerosols Encountered During the 2012 TCAP Campaign Using the Research Scanning Polarimeter

    NASA Astrophysics Data System (ADS)

    Stamnes, S.; Ferrare, R. A.; Hostetler, C. A.; Burton, S. P.; Liu, X.; Cairns, B.

    2015-12-01

    The Two-Column Aerosol Project (TCAP) campaign was conducted during the summer of 2012, off the East coast of the United States by Cape Cod. The NASA GISS Research Scanning Polarimeter, a multi-angle, multi-spectral polarimeter measured the upwelling polarized radiances from a B200 aircraft over a period of several weeks and over a distance of several hundred kilometers. A new algorithm based on optimal estimation that can retrieve aerosol microphysical properties using highly accurate radiative transfer and Mie calculations is presented. First, results for synthetic simulated data are discussed. The algorithm is then applied to real data collected during TCAP to retrieve the aerosol microphysical state vector and corresponding uncertainty for the aerosols that were encountered. Simultaneous measurements were also made by the NASA Langley airborne High Spectral Resolution Lidar (HSRL2), which provided extinction and backscatter profiles. The RSP-retrieved microphysical properties are compared to the extinction and backscatter products, and to the HSRL2-retrieved microphysical products.

  9. Reservoir technology research at Lawrence Berkeley Laboratory

    SciTech Connect

    Lippmann, M.J.

    1987-04-01

    The research being carried out at LBL as part of DOE/GTD's Reservoir Technology Program includes field, theoretical and modeling activities. The purpose is to develop, improve and validate methods and instrumentation to: (1) determine geothermal reservoir parameters, (2) detect and characterize reservoir fractures and boundaries, and (3) identify and evaluate the importance of reservoir processes. The ultimate objective of this work is to advance the state-of-the-art for characterizing geothermal reservoirs and evaluating their productive capacity and longevity under commercial exploitation. LBL's FY1986 accomplishments, FY1987 progress to date, and possible future activities under DOE's Reservoir Technology Program are discussed.

  10. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following four panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... clinical science research. The panel meetings will be open to the public for approximately one hour at...

  11. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science..., behavioral and clinical science research. The panel meetings will be open to the public for approximately...

  12. Laboratory Testing and Calibration of the Nuclei-Mode Aerosol Size Spectrometer

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.

    1999-01-01

    This grant was awarded to complete testing and calibration of a new instrument, the nuclei-mode aerosol size spectrometer (N-MASS), following its use in the WB-57F Aerosol Measurement (WAM) campaign in early 1998. The N-MASS measures the size distribution of particles in the 4-60 nm diameter range with 1-Hz response at typical free tropospheric conditions. Specific tasks to have been completed under the auspices of this award were: 1) to experimentally determine the instrumental sampling efficiency; 2) to determine the effects of varying temperatures and flows on N-MASS performance; and 3) to calibrate the N-MASS at typical flight conditions as operated in WAM. The work outlined above has been completed, and a journal manuscript based on this work and that describes the performance of the N-MASS is in preparation. Following a brief description of the principles of operation of the instrument, the major findings of this study are described.

  13. Evaporation Kinetics of Laboratory Generated Secondary Organic Aerosols at Elevated Relative Humidity

    SciTech Connect

    Wilson, Jacqueline M.; Imre, D.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2015-01-06

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semi-solid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on SOA particles generated, evaporated, and aged at 0%, 50% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30% to 70% of the particle mass evaporates in 2 hours, followed by a much slower evaporation rate. Evaporation kinetics at 0% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses, with aging at elevated RH leading to more significant effect. In all cases, SOA evaporation is nearly size-independent, providing direct evidence that oligomers play a crucial role in determining the evaporation kinetics.

  14. Evaporation kinetics of laboratory-generated secondary organic aerosols at elevated relative humidity.

    PubMed

    Wilson, Jacqueline; Imre, Dan; Beránek, Josef; Shrivastava, Manish; Zelenyuk, Alla

    2015-01-01

    Secondary organic aerosols (SOA) dominate atmospheric organic aerosols that affect climate, air quality, and health. Recent studies indicate that, contrary to previously held assumptions, at low relative humidity (RH) these particles are semisolid and evaporate orders of magnitude slower than expected. Elevated relative humidity has the potential to affect significantly formation, properties, and atmospheric evolution of SOA particles. Here we present a study of the effect of RH on the room-temperature evaporation kinetics of SOA particles formed by ozonolysis of α-pinene and limonene. Experiments were carried out on α-pinene SOA particles generated, evaporated, and aged at <5%, 50 and 90% RH, and on limonene SOA particles at <5% and 90% RH. We find that in all cases evaporation begins with a relatively fast phase, during which 30-70% of the particle mass evaporates in 2 h, followed by a much slower evaporation rate. Evaporation kinetics at <5% and 50% RH are nearly the same, while at 90% RH a slightly larger fraction evaporates. In all cases, aging the particles prior to inducing evaporation reduces the evaporative losses; with aging at elevated RH leading to a more significant effect. In all cases, the observed SOA evaporation is nearly size-independent.

  15. 1995 Laboratory-Directed Research and Development Annual report

    SciTech Connect

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  16. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research. Part 3, Atmospheric and climate research

    SciTech Connect

    Schrempf, R.E.

    1993-04-01

    Within the US Department of Energy`s (DOE`s) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE`s long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE`s program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE`s contribution to the US Global Change Research Program.

  17. Laboratory Directed Research and Development Program Assessment for FY 2008

    SciTech Connect

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within

  18. Life extension research at Sandia National Laboratories

    SciTech Connect

    Bustard, L.D.; DuCharme, A.R. Jr.; DeBey, T.M.

    1986-01-01

    As part of the Department of Energy (DOE) plant life extension (PLEX) effort, the DOE Technology Management Center at Sandia is actively participating in life extension research efforts. In the areas of reliability and surveillance, systems modelling techniques are being explored to identify those components which, if their reliability changes, could most impact safety. Results of an application of these techniques to the Surry nuclear plant were compared to an industry life extension categorization also performed at Surry. For selected types of components identified during this study, the degradation and failure mechanisms are being explored and state-of-the-art monitoring techniques are being evaluated. Initial results are presented. In the area of cable life extension, a definition study is under way to define utility-specific as well as collective industry actions that would facilitate extending cable life. Some recommendations of this study are also provided.

  19. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    PubMed

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training.

  20. The Johns Hopkins Hunterian Laboratory Philosophy: Mentoring Students in a Scientific Neurosurgical Research Laboratory.

    PubMed

    Tyler, Betty M; Liu, Ann; Sankey, Eric W; Mangraviti, Antonella; Barone, Michael A; Brem, Henry

    2016-06-01

    After over 50 years of scientific contribution under the leadership of Harvey Cushing and later Walter Dandy, the Johns Hopkins Hunterian Laboratory entered a period of dormancy between the 1960s and early 1980s. In 1984, Henry Brem reinstituted the Hunterian Neurosurgical Laboratory, with a new focus on localized delivery of therapies for brain tumors, leading to several discoveries such as new antiangiogenic agents and Gliadel chemotherapy wafers for the treatment of malignant gliomas. Since that time, it has been the training ground for 310 trainees who have dedicated their time to scientific exploration in the lab, resulting in numerous discoveries in the area of neurosurgical research. The Hunterian Neurosurgical Laboratory has been a unique example of successful mentoring in a translational research environment. The laboratory's philosophy emphasizes mentorship, independence, self-directed learning, creativity, and people-centered collaboration, while maintaining productivity with a focus on improving clinical outcomes. This focus has been served by the diverse backgrounds of its trainees, both in regard to educational status as well as culturally. Through this philosophy and strong legacy of scientific contribution, the Hunterian Laboratory has maintained a positive and productive research environment that supports highly motivated students and trainees. In this article, the authors discuss the laboratory's training philosophy, linked to the principles of adult learning (andragogy), as well as the successes and the limitations of including a wide educational range of students in a neurosurgical translational laboratory and the phenomenon of combining clinical expertise with rigorous scientific training. PMID:26934692

  1. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  2. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  3. Final Report for LDRD Project ''A New Era of Research in Aerosol/Cloud/Climate Interactions at LLNL''

    SciTech Connect

    Chuang, C; Bergman, D J; Dignon, J E; Connell, P S

    2002-01-31

    of aerosol/cloud interactions on climate forcing [Chuang and Penner, 1995]. Our research has been recognized as one of a few studies attempting to quantify the effects of anthropogenic aerosols on climate in the IPCC Third Assessment Report [IPCC, 2001]. Our previous assessments of aerosol climate effects were based on a general circulation model (NCAR CCM1) fully coupled to a global tropospheric chemistry model (GRANTOUR). Both models, however, were developed more than a decade ago. The lack of advanced physics representation and techniques in our current models limits us from further exploring the interrelationship between aerosol, cloud, and climate variation. Our objective is to move to a new era of aerosol/cloud/climate modeling at LLNL by coupling the most advanced chemistry and climate models and by incorporating an aerosol microphysics module. This modeling capability will enable us to identify and analyze the responsible processes in aerosol/cloud/climate interactions and therefore, to improve the level of scientific understanding for aerosol climate effects. This state-of-the-art coupled models will also be used to address the relative importance of anthropogenic and natural emissions in the spatial pattern of aerosol climate forcing in order to assess the potential of human induced climate change.

  4. Laboratory Directed Research and Development annual report, Fiscal year 1993

    SciTech Connect

    Not Available

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  5. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of

  6. Speech coding research at Bell Laboratories

    NASA Astrophysics Data System (ADS)

    Atal, Bishnu S.

    2001-05-01

    The field of speech coding is now over 70 years old. It started from the desire to transmit voice signals over telegraph cables. The availability of digital computers in the mid 1960s made it possible to test complex speech coding algorithms rapidly. The introduction of linear predictive coding (LPC) started a new era in speech coding. The fundamental philosophy of speech coding went through a major shift, resulting in a new generation of low bit rate speech coders, such as multi-pulse and code-excited LPC. The semiconductor revolution produced faster and faster DSP chips and made linear predictive coding practical. Code-excited LPC has become the method of choice for low bit rate speech coding applications and is used in most voice transmission standards for cell phones. Digital speech communication is rapidly evolving from circuit-switched to packet-switched networks to provide integrated transmission of voice, data, and video signals. The new communication environment is also moving the focus of speech coding research from compression to low cost, reliable, and secure transmission of voice signals on digital networks, and provides the motivation for creating a new class of speech coders suitable for future applications.

  7. Laboratory Directed Research and Development Program

    SciTech Connect

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  8. Laboratory technology research - abstracts of FY 1997 projects

    SciTech Connect

    1997-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of this country: the world-class basic research capability of the DOE Energy Research (ER) multi-program national laboratories and the unparalleled entrepreneurial spirit of American industry. A distinguishing feature of the ER multi-program national laboratories is their ability to integrate broad areas of science and engineering in support of national research and development goals. The LTR program leverages this strength for the Nation`s benefit by fostering partnerships with US industry. The partners jointly bring technology research to a point where industry or the Department`s technology development programs can pursue final development and commercialization. Projects supported by the LTR program are conducted by the five ER multi-program laboratories. These projects explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials; intelligent processing/manufacturing research; and sustainable environments.

  9. A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements

    SciTech Connect

    Brown, G.S. ); Weiss, R.E. )

    1990-08-01

    Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

  10. Laboratory conditions and safety in a chemical warfare agent analysis and research laboratory.

    PubMed

    Kenar, Levent; Karayilanoğlu, Turan; Kose, Songul

    2002-08-01

    Toxic chemicals have been used as weapons of war and also as means of terrorist attacks on civilian populations. Research focusing on chemical warfare agents (CWAs) may be associated with an increased risk of exposure to and contamination by these agents. This article summarizes some of the regulations concerning designation and safety in a CWA analysis and research laboratory and medical countermeasures in case of an accidental exposure. The design of such a laboratory, coupled with a set of safety guidelines, provides for the safe conduct of research and studies involving CWAs. Thus, a discussion of decontamination and protection means against CWAs is also presented.

  11. ANALYSIS OF RESPIRATORY DESPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION DOSE OF INHALED AMBIENT AEROSOLS FOR DIFFERENT SIZE FRACTIONS. Chong S. Kim, SC. Hu**, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, Research Triangle Park, NC 27711; **IIT Research Institute, Chicago, IL; *S...

  12. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    NASA Technical Reports Server (NTRS)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  13. Chemical characterization and physico-chemical properties of aerosols at Villum Research Station, Greenland during spring 2015

    NASA Astrophysics Data System (ADS)

    Glasius, M.; Iversen, L. S.; Svendsen, S. B.; Hansen, A. M. K.; Nielsen, I. E.; Nøjgaard, J. K.; Zhang, H.; Goldstein, A. H.; Skov, H.; Massling, A.; Bilde, M.

    2015-12-01

    The effects of aerosols on the radiation balance and climate are of special concern in Arctic areas, which have experienced warming at twice the rate of the global average. As future scenarios include increased emissions of air pollution, including sulfate aerosols, from ship traffic and oil exploration in the Arctic, there is an urgent need to obtain the fundamental scientific knowledge to accurately assess the consequences of pollutants to environment and climate. In this work, we studied the chemistry of aerosols at the new Villum Research Station (81°36' N, 16°40' W) in north-east Greenland during the "inauguration campaign" in spring 2015. The chemical composition of sub-micrometer Arctic aerosols was investigated using a Soot Particle Time-of-Flight Aerosol Mass Spectrometer (SP-ToF-AMS). Aerosol samples were also collected on filters using both a high-volume sampler and a low-volume sampler equipped with a denuder for organic gases. Chemical analyses of filter samples include determination of inorganic anions and cations using ion-chromatography, and analysis of carboxylic acids and organosulfates of anthropogenic and biogenic origin using ultrahigh-performance liquid chromatography coupled to quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS). Previous studies found that organosulfates constitute a surprisingly high fraction of organic aerosols during the Arctic Haze period in winter and spring. Investigation of organic molecular tracers provides useful information on aerosol sources and atmospheric processes. The physico-chemical properties of Arctic aerosols are also under investigation. These measurements include particle number size distribution, water activity and surface tension of aerosol samples in order to deduct information on their hygroscopicity and cloud-forming potential. The results of this study are relevant to understanding aerosol sources and processes as well as climate effects in the Arctic, especially during the Arctic haze

  14. Evaporation Kinetics and Phase of Laboratory and Ambient Secondary Organic Aerosol

    SciTech Connect

    Vaden, Timothy D.; Imre, Dan G.; Beranek, Josef; Shrivastava, ManishKumar B.; Zelenyuk, Alla

    2011-02-08

    Field measurements of secondary organic aerosol (SOA) find higher mass loads than predicted by models, sparking intense efforts to find additional SOA sources but leaving the assumption of rapid SOA evaporation unchallenged. We characterized room-temperature evaporation of pure SOA and SOA formed in the presence of spectator organic vapors with and without aging. We find that it takes ~24 hrs for pure SOA particles to evaporate 75% of their mass, which is in sharp contrast to the ~10 minutes timescales predicted by models. The presence of spectator organic vapors and aging dramatically reduces the evaporation, and in some cases nearly stops it. For all cases, SOA evaporation behavior is size independent and does not follow the liquid droplet evaporation kinetics assumed by models.

  15. Laboratory and field studies of stratospheric aerosols: Phase changes under high supersaturation

    NASA Technical Reports Server (NTRS)

    Hallet, John

    1991-01-01

    It is well known that water in the form of isolated small droplets supercool as much as 40 C below their equilibrium melting point. Solutions similarly supercool (with respect to water) and supersaturate (with respect of the solute). Experiments are described in which bulk solutions typical of atmospheric aerosols (nitric acid, sulfuric acid, and hydrates; ammonium sulfate; ammonium bisulfate; sodium chloride) are supercooled and/or supersaturated and nucleated to initiate crystal growth. Supersaturation of 300 percent is readily attainable, with linear growth of crystals increasing roughly as (supercooling/supersaturation)sup 2. The implication of the experiments is that the situation of metastability in polar stratosphere clouds is very likely, with nucleation only occuring under a high degree of supercooling or supersaturation.

  16. Pacific Northwest Laboratory annual report for 1992 to the DOE Office of Energy Research

    SciTech Connect

    Schrempf, R.E.

    1993-04-01

    Within the US Department of Energy's (DOE's) Office of Health and Environmental Research (OHER), the atmospheric sciences and carbon dioxide research programs are part of the Environmental Sciences Division (ESD). One of the central missions of the division is to provide the DOE with scientifically defensible information on the local, regional, and global distributions of energy-related pollutants and their effects on climate. This information is vital to the definition and implementation of a sound national energy strategy. This volume reports on the progress and status of all OHER atmospheric science and climate research projects at the Pacific Northwest Laboratory (PNL). PNL has had a long history of technical leadership in the atmospheric sciences research programs within OHER. Within the ESD, the Atmospheric Chemistry Program (ACP) continues DOE's long-term commitment to study the continental and oceanic fates of energy-related air pollutants. Research through direct measurement, numerical modeling, and laboratory studies in the ACP emphasizes the long-range transport, chemical transformation, and removal of emitted pollutants, oxidant species, nitrogen-reservoir species, and aerosols. The Atmospheric Studies in Complex Terrain (ASCOT) program continues to apply basic research on density-driven circulations and on turbulent mixing and dispersion in the atmospheric boundary layer to the micro- to mesoscale meteorological processes that affect air-surface exchange and to emergency preparedness at DOE and other facilities. Research at PNL provides basic scientific underpinnings to DOE's program of global climate research. Research projects within the core carbon dioxide and ocean research programs are now integrated with those in the Atmospheric Radiation Measurements (ARM), the Computer Hardware, Advanced Mathematics and Model Physics (CHAMMP), and Quantitative Links programs to form DOE's contribution to the US Global Change Research Program.

  17. Laboratory Directed Research and Development Program Assessment for FY 2007

    SciTech Connect

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining

  18. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    SciTech Connect

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and

  19. Laboratory technology research: Abstracts of FY 1998 projects

    SciTech Connect

    1998-11-01

    The Laboratory Technology Research (LTR) program supports high-risk, multidisciplinary research partnerships to investigate challenging scientific problems whose solutions have promising commercial potential. These partnerships capitalize on two great strengths of the country: the world-class basic research capability of the DOE Office of Science (SC) national laboratories and the unparalleled entrepreneurial spirit of American industry. Projects supported by the LTR program in FY 1998 explore the applications of basic research advances relevant to DOE`s mission over a full range of scientific disciplines. The program presently emphasizes three critical areas of mission-related research: advanced materials, intelligent processing and manufacturing research, and environmental and biomedical research. Abstracts for 85 projects are contained in this report.

  20. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  1. Field Research Studying Whales in an Undergraduate Animal Behavior Laboratory

    ERIC Educational Resources Information Center

    MacLaren, R. David; Schulte, Dianna; Kennedy, Jen

    2012-01-01

    This work describes a new field research laboratory in an undergraduate animal behavior course involving the study of whale behavior, ecology and conservation in partnership with a non-profit research organization--the Blue Ocean Society for Marine Conservation (BOS). The project involves two weeks of training and five weekend trips on whale watch…

  2. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  3. Enabling UAS Research at the NASA EAV Laboratory

    NASA Technical Reports Server (NTRS)

    Ippolito, Corey A.

    2015-01-01

    The Exploration Aerial Vehicles (EAV) Laboratory at NASA Ames Research Center leads research into intelligent autonomy and advanced control systems, bridging the gap between simulation and full-scale technology through flight test experimentation on unmanned sub-scale test vehicles.

  4. Strategic Plan for the ORD National Exposure Research Laboratory (NERL)

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) has a valued reputation for supporting the Agency’s mission of protecting human health and the environment with multidisciplinary expertise that brings cutting-edge research and technology to address critical exposure questions and...

  5. Photonics at Sandia National Laboratories: From research to applications

    SciTech Connect

    Meyer, J.; Owyoung, A.; Zipperian, T.E.; Tsao, J.Y.; Myers, D.R.

    1994-02-01

    Photonics activities at Sandia National Laboratories (SNL) are founded on a strong materials research program. The advent of the Compound Semiconductor Research Laboratory (CSRL) in 1988, accelerated device and materials research and development. Recently, industrial competitiveness has been added as a major mission of the labs. Photonics projects have expanded towards applications-driven programs requiring device and subsystem prototype deliveries and demonstrations. This evolution has resulted in a full range of photonics programs from materials synthesis and device fabrication to subsystem packaging and test.

  6. Improved Arctic Cloud and Aerosol Research and Model Parameterizations

    SciTech Connect

    Kenneth Sassen

    2007-03-01

    In this report are summarized our contributions to the Atmospheric Measurement (ARM) program supported by the Department of Energy. Our involvement commenced in 1990 during the planning stages of the design of the ARM Cloud and Radiation Testbed (CART) sites. We have worked continuously (up to 2006) on our ARM research objectives, building on our earlier findings to advance our knowledge in several areas. Below we summarize our research over this period, with an emphasis on the most recent work. We have participated in several aircraft-supported deployments at the SGP and NSA sites. In addition to deploying the Polarization Diversity Lidar (PDL) system (Sassen 1994; Noel and Sassen 2005) designed and constructed under ARM funding, we have operated other sophisticated instruments W-band polarimetric Doppler radar, and midinfrared radiometer for intercalibration and student training purposes. We have worked closely with University of North Dakota scientists, twice co-directing the Citation operations through ground-to-air communications, and serving as the CART ground-based mission coordinator with NASA aircraft during the 1996 SUCCESS/IOP campaign. We have also taken a leading role in initiating case study research involving a number of ARM coinvestigators. Analyses of several case studies from these IOPs have been reported in journal articles, as we show in Table 1. The PDL has also participated in other major field projects, including FIRE II and CRYSTAL-FACE. In general, the published results of our IOP research can be divided into two categories: comprehensive cloud case study analyses to shed light on fundamental cloud processes using the unique CART IOP measurement capabilities, and the analysis of in situ data for the testing of remote sensing cloud retrieval algorithms. One of the goals of the case study approach is to provide sufficiently detailed descriptions of cloud systems from the data-rich CART environment to make them suitable for application to

  7. A Research-Based Laboratory Course Designed to Strengthen the Research-Teaching Nexus

    ERIC Educational Resources Information Center

    Parra, Karlett J.; Osgood, Marcy P.; Pappas, Donald L., Jr.

    2010-01-01

    We describe a 10-week laboratory course of guided research experiments thematically linked by topic, which had an ultimate goal of strengthening the undergraduate research-teaching nexus. This undergraduate laboratory course is a direct extension of faculty research interests. From DNA isolation, characterization, and mutagenesis, to protein…

  8. Current safety practices in nano-research laboratories in China.

    PubMed

    Zhang, Can; Zhang, Jing; Wang, Guoyu

    2014-06-01

    China has become a key player in the global nanotechnology field, however, no surveys have specifically examined safety practices in the Chinese nano-laboratories in depth. This study reports results of a survey of 300 professionals who work in research laboratories that handle nanomaterials in China. We recruited participants at three major nano-research laboratories (which carry out research in diverse fields such as chemistry, material science, and biology) and the nano-chemistry session of the national meeting of the Chinese Chemical Society. Results show that almost all nano-research laboratories surveyed had general safety regulations, whereas less than one third of respondents reported having nanospecific safety rules. General safety measures were in place in most surveyed nano-research laboratories, while nanospecific protective measures existed or were implemented less frequently. Several factors reported from the scientific literature including nanotoxicology knowledge gaps, technical limitations on estimating nano-exposure, and the lack of nano-occupational safety legislation may contribute to the current state of affairs. With these factors in mind and embracing the precautionary principle, we suggest strengthening or providing nanosafety training (including raising risk awareness) and establishing nanosafety guidelines in China, to better protect personnel in the nano-workplace.

  9. Tree Topping Ceremony at NASA's Propulsion Research Laboratory

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A new, world-class laboratory for research into future space transportation technologies is under construction at the Marshall Space Flight Center (MSFC) in Huntsville, AL. The state-of-the-art Propulsion Research Laboratory will serve as a leading national resource for advanced space propulsion research. Its purpose is to conduct research that will lead to the creation and development of irnovative propulsion technologies for space exploration. The facility will be the epicenter of the effort to move the U.S. space program beyond the confines of conventional chemical propulsion into an era of greatly improved access to space and rapid transit throughout the solar system. The Laboratory is designed to accommodate researchers from across the United States, including scientists and engineers from NASA, the Department of Defense, the Department of Energy, universities, and industry. The facility, with 66,000 square feet of useable laboratory space, will feature a high degree of experimental capability. Its flexibility will allow it to address a broad range of propulsion technologies and concepts, such as plasma, electromagnetic, thermodynamic, and propellantless propulsion. An important area of emphasis will be development and utilization of advanced energy sources, including highly energetic chemical reactions, solar energy, and processes based on fission, fusion, and antimatter. The Propulsion Research Laboratory is vital for developing the advanced propulsion technologies needed to open up the space frontier, and will set the stage of research that could revolutionize space transportation for a broad range of applications. This photo depicts construction workers taking part in a tree topping ceremony as the the final height of the laboratory is framed. The ceremony is an old German custom of paying homage to the trees that gave their lives in preparation of the building site.

  10. Laboratory Studies of the Reactive Chemistry and Changing CCN Properties of Secondary Organic Aerosol, Including Model Development

    SciTech Connect

    Scot Martin

    2013-01-31

    The chemical evolution of secondary-organic-aerosol (SOA) particles and how this evolution alters their cloud-nucleating properties were studied. Simplified forms of full Koehler theory were targeted, specifically forms that contain only those aspects essential to describing the laboratory observations, because of the requirement to minimize computational burden for use in integrated climate and chemistry models. The associated data analysis and interpretation have therefore focused on model development in the framework of modified kappa-Koehler theory. Kappa is a single parameter describing effective hygroscopicity, grouping together several separate physicochemical parameters (e.g., molar volume, surface tension, and van't Hoff factor) that otherwise must be tracked and evaluated in an iterative full-Koehler equation in a large-scale model. A major finding of the project was that secondary organic materials produced by the oxidation of a range of biogenic volatile organic compounds for diverse conditions have kappa values bracketed in the range of 0.10 +/- 0.05. In these same experiments, somewhat incongruently there was significant chemical variation in the secondary organic material, especially oxidation state, as was indicated by changes in the particle mass spectra. Taken together, these findings then support the use of kappa as a simplified yet accurate general parameter to represent the CCN activation of secondary organic material in large-scale atmospheric and climate models, thereby greatly reducing the computational burden while simultaneously including the most recent mechanistic findings of laboratory studies.

  11. FY03 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Minichino, C

    2004-03-05

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2003, and exemplifies Engineering's 50-year history of researching and developing the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Engineering's investment in technologies is carried out through two programs, the LDRD program and the ''Tech Base'' program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2003, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the science and technology investments for the Directorate. The Centers represent technology areas that have been identified as critical for the present and future work of the Laboratory, and are

  12. Proceedings: EPRI Cancer Workshop II on laboratory research

    SciTech Connect

    Kavet, R.

    1993-09-01

    A workshop on Electric and Magnetic Fields (EMF) and Cancer was held in Washington, DC, on September 6, 1991, organized by the Electric Power Research Institute (EPRI) EMF Health Studies Program. The primary objective of the EPRI Cancer Research Workshop II was to review the status and future of the Institute`s laboratory research program on EMF and cancer; program direction had been determined based on recommendations from EPRI`s first cancer workshop in July 1988. Research that addressed these recommendations in the intervening three years, either within the EPRI program or in other programs around the world, was reviewed. To identify laboratory research that would be responsive to current needs, workshop participants discussed four experimental systems, key results, and areas for further research. These systems include the mouse skin tumor model, use of C3H/l0T1/2 cells and their derivatives, the nude mouse model, and pineal research. In the final phase of the workshop participants developed recommendations for future research that could help resolve what role, if any, EMF exposure plays in carcinogenesis. EPRI`s EMF Health Studies Program is considering these recommendations within the process of evaluating existing projects and developing new laboratory research.

  13. Tom O'Connor: His legacy of atmospheric aerosol research in Ireland

    NASA Astrophysics Data System (ADS)

    Jennings, S. Gerard

    2013-05-01

    Dr. Thomas C. (Tom) O'Connor received his foundation in atmospheric aerosols through his M. Sc. work at University College Dublin (with P.J. Nolan) and then as research scholar with Leo W. Pollak at the Dublin Institute of Advanced Studies. On moving to Galway in 1956, a significant legacy was his choosing of a field station site at Mace Head and his pioneering measurements there. He played a pivotal role in the development and progression of the Mace Head Atmospheric Research Station (www.macehead.org) for some 50 years. He passed away peacefully in November 2012.

  14. Addressing the ice nucleating abilities of marine aerosol: A combination of deposition mode laboratory and field measurements

    NASA Astrophysics Data System (ADS)

    Ladino, L. A.; Yakobi-Hancock, J. D.; Kilthau, W. P.; Mason, R. H.; Si, M.; Li, J.; Miller, L. A.; Schiller, C. L.; Huffman, J. A.; Aller, J. Y.; Knopf, D. A.; Bertram, A. K.; Abbatt, J. P. D.

    2016-05-01

    This study addresses, through two types of experiments, the potential for the oceans to act as a source of atmospheric ice-nucleating particles (INPs). The INP concentration via deposition mode nucleation was measured in situ at a coastal site in British Columbia in August 2013. The INP concentration at conditions relevant to cirrus clouds (i.e., -40 °C and relative humidity with respect to ice, RHice = 139%) ranged from 0.2 L-1 to 3.3 L-1. Correlations of the INP concentrations with levels of anthropogenic tracers (i.e., CO, SO2, NOx, and black carbon) and numbers of fluorescent particles do not indicate a significant influence from anthropogenic sources or submicron bioaerosols, respectively. Additionally, the INPs measured in the deposition mode showed a poor correlation with the concentration of particles with sizes larger than 500 nm, which is in contrast with observations made in the immersion freezing mode. To investigate the nature of particles that could have acted as deposition INP, laboratory experiments with potential marine aerosol particles were conducted under the ice-nucleating conditions used in the field. At -40 °C, no deposition activity was observed with salt aerosol particles (sodium chloride and two forms of commercial sea salt: Sigma-Aldrich and Instant Ocean), particles composed of a commercial source of natural organic matter (Suwannee River humic material), or particle mixtures of sea salt and humic material. In contrast, exudates from three phytoplankton (Thalassiosira pseudonana, Nanochloris atomus, and Emiliania huxleyi) and one marine bacterium (Vibrio harveyi) exhibited INP activity at low RHice values, down to below 110%. This suggests that the INPs measured at the field site were of marine biological origins, although we cannot rule out other sources, including mineral dust.

  15. Nano-G research laboratory for a spacecraft

    NASA Technical Reports Server (NTRS)

    Vonbun, Friedrich O. (Inventor); Garriott, Owen K. (Inventor)

    1991-01-01

    An acceleration free research laboratory is provided that is confined within a satellite but free of any physical engagement with the walls of the satellite, wherein the laboratory has adequate power, heating, cooling, and communications services to conduct basic research and development. An inner part containing the laboratory is positioned at the center-of-mass of a satellite within the satellite's outer shell. The satellite is then positioned such that its main axes are in a position parallel to its flight velocity vector or in the direction of the residual acceleration vector. When the satellite is in its desired orbit, the inner part is set free so as to follow that orbit without contacting the inside walls of the outer shell. Sensing means detect the position of the inner part with respect to the outer shell, and activate control rockets to move the outer shell; thereby, the inner part is repositioned such that it is correctly positioned at the center-of-mass of the satellite. As a consequence, all disturbing forces, such as drag forces, act on the outer shell, and the inner part containing the laboratory is shielded and is affected only by gravitational forces. Power is supplied to the inner part and to the laboratory by a balanced microwave/laser link which creates the kind of environment necessary for basic research to study critical phenomena such as the Lambda transition in helium and crystal growth, and to perform special metals and alloys research, etc.

  16. Space Station Freedom: a unique laboratory for gravitational biology research

    NASA Technical Reports Server (NTRS)

    Phillips, R. W.; Cowing, K. L.

    1993-01-01

    The advent of Space Station Freedom (SSF) will provide a permanent laboratory in space with unparalleled opportunities to perform biological research. As with any spacecraft there will also be limitations. It is our intent to describe this space laboratory and present a picture of how scientists will conduct research in this unique environment we call space. SSF is an international venture which will continue to serve as a model for other peaceful international efforts. It is hoped that as the human race moves out from this planet back to the moon and then on to Mars that SSF can serve as a successful example of how things can and should be done.

  17. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  18. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  19. Laboratory directed research and development annual report. Fiscal year 1994

    SciTech Connect

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  20. EPA Research and Development: National Exposure Research Laboratory

    EPA Science Inventory

    This course is for Biology majors, primarily those in the completed Freshman Biology. Students enrolled in the course are expected to have completed Freshman Biology. With some background in biology as a strt, students begin to think about doing some research as part of their u...

  1. Greenhouse gas aerosols and pollutants over Siberia: the YAK-AEROSIB French Russian Joint International Laboratory

    NASA Astrophysics Data System (ADS)

    Paris, Jean-Daniel; Belan, Boris D.; Ancellet, Gérard; Nédélec, Philippe; Arshinov, Mikhail Yu.; Pruvost, Arnaud; Berchet, Antoine; Arzoumanian, Emmanuel; Pison, Isabelle; Ciais, Philippe; Law, Kathy

    2014-05-01

    Despite the unique scientific value of better knowing atmospheric composition over Siberia, regional observations of the tropospheric composition over this region are still lacking. Large local anthropogenic emissions, strong ecosystem gas exchange across the vast forest expanse, and processes feeding back to global climate such as wetlands CH4 emissions, seabed hydrates destabilization and degrading permafrost make this region particularly crucial to investigate. We aim at addressing this need in the YAK-AEROSIB program by collecting high-precision in-situ measurements of the vertical distribution of CO2, CH4, CO, O3, black carbon and ultrafine particles distribution in the Siberian troposphere, as well as other parameters including aerosol lidar profiles, on a pan-Siberian aircraft transect. Campaigns are performed almost annually since 2006 until now on this regular route, while special campaigns are occasionnally arranged to sample the troposphere elsewere (e.g. Russian Arctic coast). We show the background tropospheric composition obtained from these surveys, the variability and the impact of large-scale transport of anthropogenic emissions from Europe and Asia, as well as the impact of biomass burning plumes both from local wildfires (2012) and from remote sources elsewhere in Asia. Long range transport of anthropogenic emissions is shown to have a discernible impact on O3 distribution, although its lower-tropospheric variability is largely driven by surface deposition. Regional sources and sinks drive the lower troposphere CO2 and CH4 concentrations. Recent efforts aim at better understanding the respective role of CH4 emission processes (including methanogenesis in wetlands and emissions by wildfires) in driving its large scale atmospheric variability over the region. Generally, the YAK AEROSIB provide unique observations over Siberia, documenting both direct impact of regional sources and aged air masses experiencing long range transport toward the high

  2. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Research and Development and Clinical Science Research and Development Services Scientific Merit Review... areas of biomedical, behavioral and clinical science research. The panel meetings will be open to...

  3. Laboratory Directed Research and Development Program FY 2004 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  4. Laboratory Directed Research and Development Program FY 2005 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  5. Laboratory Directed Research and Development Program FY 2007 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  6. Smart Electronic Laboratory Notebooks for the NIST Research Environment.

    PubMed

    Gates, Richard S; McLean, Mark J; Osborn, William A

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time. PMID:26958447

  7. Smart Electronic Laboratory Notebooks for the NIST Research Environment

    PubMed Central

    Gates, Richard S.; McLean, Mark J.; Osborn, William A.

    2015-01-01

    Laboratory notebooks have been a staple of scientific research for centuries for organizing and documenting ideas and experiments. Modern laboratories are increasingly reliant on electronic data collection and analysis, so it seems inevitable that the digital revolution should come to the ordinary laboratory notebook. The most important aspect of this transition is to make the shift as comfortable and intuitive as possible, so that the creative process that is the hallmark of scientific investigation and engineering achievement is maintained, and ideally enhanced. The smart electronic laboratory notebooks described in this paper represent a paradigm shift from the old pen and paper style notebooks and provide a host of powerful operational and documentation capabilities in an intuitive format that is available anywhere at any time. PMID:26958447

  8. Laboratory directed research and development FY98 annual report

    SciTech Connect

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.

  9. Laboratory measurements of the angular light-scattering properties of internally mixed organic and sea-salt aerosol particles using polar nephelometry

    NASA Astrophysics Data System (ADS)

    Curtis, D. B.; Tinilau, S. S.

    2013-12-01

    Aerosol particles play an important, but relatively poorly understood, role in Earth's climate. Sea-salt aerosol is one of the most prevalent naturally occurring aerosols and is therefore expected to have a large effect on climate by scattering incoming solar radiation back to space. While sea-salt aerosol has been thought to be mainly composed of sodium chloride and other salts, measurements have shown the presence of biogenic organic compounds, such as glucose, in primary sea-salt aerosol particles. In addition, the sea-salt aerosol particles can become coated by secondary organics from anthropogenic activities. In order to better understand the potential climate effects of internally mixed organic and sea-salt particles, the angular scattering properties of laboratory-generated aerosols were measured at a wavelength of 532 nm using polar nephelometry. The polar nephelometer collected scattered light with an elliptical mirror and focused it across a linear CCD detector. The instrument was therefore capable of measuring the scattering intensity as a function of scattering angle (the phase function). Two incident polarizations were studied, parallel and perpendicular to the scattering plane, which were then used to calculate the degree of linear polarization. The scattering measurements along with size distribution measurements were used to retrieve the refractive index of the particles by comparison with Mie theory. Particles were generated from solutions of sodium chloride with varying concentrations of organics such as glucose and oxalic acid. In addition, particles generated from authentic sea-water were studied for comparison. Preliminary results indicate that the effective refractive indices of the mixed particles differ significantly from pure sodium chloride and do not follow simple mixing rules used to calculate refractive index from individual components.

  10. Passive detection of biological aerosols in the atmosphere with a Fourier Transform Instrument (FTIR)--the results of the measurements in the laboratory and in the field.

    PubMed

    Błęcka, M I; Rataj, M; Szymański, G

    2012-06-01

    Fourier Transform Infrared Radiation (FTIR) spectroscopy is one of the most powerful methods for the detection of gaseous constituents, aerosols, and dust in planetary atmospheres. Infrared spectroscopy plays an important role in searching for biomarkers, organics and biological substances in the Universe. The possibility of detection and identifications with FTIR spectrometer of bio-aerosol spores (Bacillus atrophaeus var. globigii=BG) in the atmosphere is discussed in this paper. We describe the results of initial spectral measurements performed in the laboratory and in the field. The purpose of these experiments was to detect and to identify bio-aerosol spores in two conditions: 1) In a closed chamber where the thermal contrast between the background and aerosols was large, and 2) In open air where the thermal contrast between the background and aerosols was small. The extinction spectrum of BG spores was deduced by comparing our measurements with models, and other measurements known from the literature. Our theoretical and experimental studies indicate that, during passive remote sensing measurements, it is difficult-but possible to detect and to identify bio-aerosol clouds by their spectral signatures. The simple spectral analysis described in the paper can be useful for the detection of various kinds of trace aerosols-not only in the Earth's atmosphere, but also during planetary missions in the environments of other astronomical objects such as planets, comets etc. We expect that the interpretation of data from spectrometric sounding of Venus and Mars during the current missions Mars and Venus Express, and later during the Rosetta mission will benefit from our experimental work and numerical modelling.

  11. Passive detection of biological aerosols in the atmosphere with a Fourier Transform Instrument (FTIR)--the results of the measurements in the laboratory and in the field.

    PubMed

    Błęcka, M I; Rataj, M; Szymański, G

    2012-06-01

    Fourier Transform Infrared Radiation (FTIR) spectroscopy is one of the most powerful methods for the detection of gaseous constituents, aerosols, and dust in planetary atmospheres. Infrared spectroscopy plays an important role in searching for biomarkers, organics and biological substances in the Universe. The possibility of detection and identifications with FTIR spectrometer of bio-aerosol spores (Bacillus atrophaeus var. globigii=BG) in the atmosphere is discussed in this paper. We describe the results of initial spectral measurements performed in the laboratory and in the field. The purpose of these experiments was to detect and to identify bio-aerosol spores in two conditions: 1) In a closed chamber where the thermal contrast between the background and aerosols was large, and 2) In open air where the thermal contrast between the background and aerosols was small. The extinction spectrum of BG spores was deduced by comparing our measurements with models, and other measurements known from the literature. Our theoretical and experimental studies indicate that, during passive remote sensing measurements, it is difficult-but possible to detect and to identify bio-aerosol clouds by their spectral signatures. The simple spectral analysis described in the paper can be useful for the detection of various kinds of trace aerosols-not only in the Earth's atmosphere, but also during planetary missions in the environments of other astronomical objects such as planets, comets etc. We expect that the interpretation of data from spectrometric sounding of Venus and Mars during the current missions Mars and Venus Express, and later during the Rosetta mission will benefit from our experimental work and numerical modelling. PMID:22707349

  12. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    NASA Astrophysics Data System (ADS)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  13. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  14. 76 FR 60530 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Plastic Aerosol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-29

    ... Antitrust Division Notice Pursuant to the National Cooperative Research and Production Act of 1993--Plastic...) of the National Cooperative Research and Production Act of 1993, 15 U.S.C. 4301 et seq. (``the Act''), Plastic Aerosol Research Group, L.L.C. (``PARG'') has filed written notifications simultaneously with...

  15. Laboratory Directed Research and Development LDRD-FY-2011

    SciTech Connect

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  16. Found in translation: Integrating laboratory and clinical oncology research

    PubMed Central

    Wagner, H

    2008-01-01

    Translational research in medicine aims to inform the clinic and the laboratory with the results of each other’s work, and to bring promising and validated new therapies into clinical application. While laudable in intent, this is complicated in practice and the current state of translational research in cancer shows both striking success stories and examples of the numerous potential obstacles as well as opportunities for delays and errors in translation. This paper reviews the premises, promises, and problems of translational research with a focus on radiation oncology and suggests opportunities for improvements in future research design. PMID:21611010

  17. Laboratory directed research development annual report. Fiscal year 1996

    SciTech Connect

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  18. Laboratory directed research and development: FY 1997 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  19. Integrating teaching and research in the field and laboratory settings

    NASA Astrophysics Data System (ADS)

    Wang, L.; Kaseke, K. F.; Daryanto, S.; Ravi, S.

    2015-12-01

    Field observations and laboratory measurements are great ways to engage students and spark students' interests in science. Typically these observations are separated from rigorous classroom teaching. Here we assessed the potential of integrating teaching and research in the field and laboratory setting in both US and abroad and worked with students without strong science background to utilize simple laboratory equipment and various environmental sensors to conduct innovative projects. We worked with students in Namibia and two local high school students in Indianapolis to conduct leaf potential measurements, soil nutrient extraction, soil infiltration measurements and isotope measurements. The experience showed us the potential of integrating teaching and research in the field setting and working with people with minimum exposure to modern scientific instrumentation to carry out creative projects.

  20. Laboratory Directed Research and Development FY 1998 Progress Report

    SciTech Connect

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  1. Laboratory directed research and development program FY 1997

    SciTech Connect

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  2. First International Conference on Laboratory Research for Planetary Atmospheres

    NASA Technical Reports Server (NTRS)

    Fox, Kenneth (Editor); Allen, John E., Jr. (Editor); Stief, Louis J. (Editor); Quillen, Diana T. (Editor)

    1990-01-01

    Proceedings of the First International Conference on Laboratory Research for Planetary Atmospheres are presented. The covered areas of research include: photon spectroscopy, chemical kinetics, thermodynamics, and charged particle interactions. This report contains the 12 invited papers, 27 contributed poster papers, and 5 plenary review papers presented at the conference. A list of attendees and a reprint of the Report of the Subgroup on Strategies for Planetary Atmospheres Exploration (SPASE) are provided in two appendices.

  3. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    SciTech Connect

    Not Available

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  4. Laboratory Directed Research and Development FY2008 Annual Report

    SciTech Connect

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  5. Training physics degree students in a research optics laboratory

    NASA Astrophysics Data System (ADS)

    Vidal, Josep; Lizana, Angel; Peinado, Alba; Aso, Elena; Lopez, David; Nicolás, Josep; Campos, Juan; Yzuel, Maria J.

    2009-06-01

    The unification of the new European studies under the framework of the Bologna process creates a new adaptation within the field of Physics this academic year 08/09 and in the coming years until 2010. An adjustment to the programs is required in order to migrate to the new European Credit Transfer System (ECTS), changing the credit from 10 to 25 hours. This adaptation is mandatory for the new students. However, the current students under the previous program have the opportunity to avoid these changes and to finish the degree with the old curricula. One of the characteristics of the Image Processing Laboratory (IPL) is the feedback between the laboratory researchers and the students. From this mutual collaboration several students have participated in various scientific research studies. In general, when a student is introduced into the research group routine, they found some differences between the degree laboratory courses and the research laboratory dynamics. This paper provides an overview of the experiences acquired and the results obtained by undergraduate students in recent works related to liquid crystal display (LCD) characterization and optimization, LCD uniformity analysis, polarimeter design, LCD temporal fluctuation effects or diffractive optics and surface metrology.

  6. Chemical Structure and Accidental Explosion Risk in the Research Laboratory

    ERIC Educational Resources Information Center

    Churchill, David G.

    2006-01-01

    Tips that laboratory researchers and beginning graduate students can use to safeguard against explosion hazard with emphasis on clear illustrations of molecular structure are discussed. Those working with hazardous materials must proceed cautiously and may want to consider alternative and synthetic routes.

  7. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S CONSOLIDATED HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from 12 U.S. studies related to human activities into one comprehensive data system that can be accessed via the Internet. The data system is called the Consolidated Human Activity Database (CHAD), and it is ...

  8. THE NATIONAL EXPOSURE RESEARCH LABORATORY'S COMPREHENSIVE HUMAN ACTIVITY DATABASE

    EPA Science Inventory

    EPA's National Exposure Research Laboratory (NERL) has combined data from nine U.S. studies related to human activities into one comprehensive data system that can be accessed via the world-wide web. The data system is called CHAD-Consolidated Human Activity Database-and it is ...

  9. THE LEARNING RESEARCH AND DEVELOPMENT CENTER'S COMPUTER ASSISTED LABORATORY.

    ERIC Educational Resources Information Center

    RAGSDALE, RONALD G.

    THIS PAPER DESCRIBES THE OPERATION AND PLANNED APPLICATIONS OF A COMPUTER ASSISTED LABORATORY FOR SOCIAL SCIENCE RESEARCH. THE LAB CENTERS AROUND AN 8K PDP-7 COMPUTER AND ITS SPECIAL PERIPHERAL EQUIPMENT. SPECIAL DEVICES INCLUDE RANDOM ACCESS AUDIO AND VIDEO, GRAPHICAL INPUT, AND TOUCH-SENSITIVE AND BLOCK-MANIPULATION INPUTS. THE SYSTEM MAY BE…

  10. A Research-Inspired Laboratory Sequence Investigating Acquired Drug Resistance

    ERIC Educational Resources Information Center

    Taylor, Elizabeth Vogel; Fortune, Jennifer A.; Drennan, Catherine L.

    2010-01-01

    Here, we present a six-session laboratory exercise designed to introduce students to standard biochemical techniques in the context of investigating a high impact research topic, acquired resistance to the cancer drug Gleevec. Students express a Gleevec-resistant mutant of the Abelson tyrosine kinase domain, the active domain of an oncogenic…

  11. National Risk Management Research Laboratory Strategic plan and Implementation - Overview

    EPA Science Inventory

    This publication provides an overview of the strategic plan recently developed by the National Risk Management Research Laboratory (NRMRL). It includes a description of NRMRL's mission and goals and their alignment with Agency goals. Additionally, the overview contains a brief se...

  12. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    SciTech Connect

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  13. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  14. Evaluation of Radiometers Deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory

    SciTech Connect

    Habte, A.; Wilcox, S.; Stoffel, T.

    2014-02-01

    This study analyzes the performance of various commercially available radiometers used for measuring global horizontal irradiances and direct normal irradiances. These include pyranometers, pyrheliometers, rotating shadowband radiometers, and a pyranometer with fixed internal shading and are all deployed at the National Renewable Energy Laboratory's Solar Radiation Research Laboratory. Data from 32 global horizontal irradiance and 19 direct normal irradiance radiometers are presented. The radiometers in this study were deployed for one year (from April 1, 2011, through March 31, 2012) and compared to measurements from radiometers with the lowest values of estimated measurement uncertainties for producing reference global horizontal irradiances and direct normal irradiances.

  15. Spectral characterisation of mineralogical components of dust, HULIS and winter time aerosol using multi-wavelength photoacoustic spectrometer. A laboratory and a field study

    NASA Astrophysics Data System (ADS)

    Ajtai, Tibor; Utry, Noémi; Filep, Ágnes; Tátrai, Dávid; Bozóki, Zoltán; Szabó, Gábor

    2013-04-01

    changes in the relative strength between the traffic and residential heating emission. Finally, we demonstrated correlations between the AAE measured in different wavelength region and concurrently measured other aerosol variables such as size distribution, gas and trace element concentrations. These researches were funded by Hungarian Scientific Research Foundation (OTKA, Grant no. K101905) is gratefully acknowledged. The European Union and the European Social Fund have provided financial support to the project under the grant no. TÁMOP-4.2.2.A-11/1/KONV-2012-0047 and TÁMOP-4.2.2.A-11/1/KONV-2012-0060.

  16. Pacific Northwest Laboratory annual report for 1987 to the DOE office of energy research: Part 2, Environmental sciences

    SciTech Connect

    Not Available

    1988-07-01

    This report summarizes progress in environmental sciences research conducted by Pacific Northwest Laboratory (PNL) for the Office of Health and Environmental Research in FY 1987. Research is directed toward developing a fundamental understanding of processes controlling the long-term fate and biological effects of fugitive chemicals and other stressors resulting from energy development. The research, focused on terrestrial, subsurface, and coastal marine systems, forms the basis for defining and quantifying processes that affect humans and the environment at the regional and global levels. Research is multidisciplinary and multitiered, providing integrated system-level insights into critical environmental processes. Research initiatives in subsurface microbiology and transport, global change, radon, and molecular sciences are building on PNL technical strengths in biogeochemistry, hydrodynamics, molecular biology, and theoretical ecology. Unique PNL facilities are used to probe multiple phenomena complex relationships at increasing levels of complexity. Intermediate-scale experimental systems are used to examine arid land watershed dynamics, aerosol behavior and effects, and multidimensional subsurface transport. In addition, field laboratories (the National Environmental Research Park and Marine Research Laboratory) are used in conjunction with advanced measurement techniques to validate concepts and models, and to extrapolate the results to the system and global levels. Strong university liaisons now in existence are being markedly expanded so that PNL resources and the specialized technical capabilities in the university community can be more efficiently integrated.

  17. FY2007 Laboratory Directed Research and Development Annual Report

    SciTech Connect

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  18. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  19. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect

    Hansen , Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  20. Laboratory Directed Research and Development Program FY98

    SciTech Connect

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  1. Laboratory Directed Research and Development Program. Annual report

    SciTech Connect

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  2. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  3. Laboratory Directed Research and Development Program. FY 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  4. Laboratory directed research and development fy1999 annual report

    SciTech Connect

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD Program also

  5. Quantitative Laboratory Experiments on Contact Freezing and Secondary Ice Production induced by Aerosol- Cloud Droplet Collisions

    NASA Astrophysics Data System (ADS)

    Leisner, T.; Kiselev, A. A.; Hoffmann, N.; Pander, T.; Handmann, P.

    2014-12-01

    We report on laboratory experiments on contact freezing probabilities and secondary ice processes accompanying the contact- or immersion freezing of cloud droplets. The freezing of individual, electrodynamically levitated cloud droplets was initiated by contacting them with ice nuclei or by immersed ice nuclei. The freezing process itself and secondary ice formation by either splintering of the freezing droplet or the ejection of gas bubble membranes has been observed and analyzed by high speed light microscopy. In our contribution, we classify these processes and quantify their temperature dependent probability as a function of the mode of freezing and the presence of immersed particles. Contact freezing probabilities have been calculated from the measured freezing rates and contact rates, the latter being determined offline by counting the number of scavenged particles under and environmental scanning electron microscope.

  6. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  7. Laboratory Directed Research and Development Program FY2004

    SciTech Connect

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions

  8. Radiological Characterization and Final Facility Status Report Tritium Research Laboratory

    SciTech Connect

    Garcia, T.B.; Gorman, T.P.

    1996-08-01

    This document contains the specific radiological characterization information on Building 968, the Tritium Research Laboratory (TRL) Complex and Facility. We performed the characterization as outlined in its Radiological Characterization Plan. The Radiological Characterization and Final Facility Status Report (RC&FFSR) provides historic background information on each laboratory within the TRL complex as related to its original and present radiological condition. Along with the work outlined in the Radiological Characterization Plan (RCP), we performed a Radiological Soils Characterization, Radiological and Chemical Characterization of the Waste Water Hold-up System including all drains, and a Radiological Characterization of the Building 968 roof ventilation system. These characterizations will provide the basis for the Sandia National Laboratory, California (SNL/CA) Site Termination Survey .Plan, when appropriate.

  9. Laboratory directed research and development program FY 1999

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  10. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  11. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: laboratory experimental demonstration of the transport pathway.

    PubMed

    Ehrenhauser, Franz S; Avij, Paria; Shu, Xin; Dugas, Victoria; Woodson, Isaiah; Liyana-Arachchi, Thilanga; Zhang, Zenghui; Hung, Francisco R; Valsaraj, Kalliat T

    2014-01-01

    Oil spills in the deep-sea environment such as the 2010 Deep Water Horizon oil spill in the Gulf of Mexico release vast quantities of crude oil into the sea-surface environment. Various investigators have discussed the marine transport and fate of the oil into different environmental compartments (air, water, sediment, and biota). The transport of the oil into the atmosphere in these previous investigations has been limited to only evaporation, a volatility dependent pathway. In this work, we studied the aerosolization of oil spill matter via bursting bubbles as they occur during whitecaps in a laboratory aerosolization reactor. By evaluating the alkane content in oil mousse, crude oil, the gas phase, and particulate matter we clearly demonstrate that aerosolization via bursting bubbles is a solubility and volatility independent transport pathway for alkanes. The signature of alkane fractions in the native oil and aerosolized matter matched well especially for the less volatile alkanes (C20-C29). Scanning electron microscope interfaced with energy dispersive X-ray images identified the carbon fractions associated with salt particles of aerosols. Theoretical molecular dynamics simulations in the accompanying paper lend support to the observed propensity for alkanes at air-salt water interfaces of breaking bubbles and the produced droplets. The presence of a dispersant in the aqueous phase increased the oil ejection rate at the surface especially for the C20-C29 alkanes. The information presented here emphasizes the need to further study sea-spray aerosols as a possible transport vector for spilled oil in the sea surface environment. PMID:24296745

  12. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  13. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective

  14. The ABC-Pyramid Atmospheric Research Observatory in Himalaya for aerosol, ozone and halocarbon measurements.

    PubMed

    Bonasoni, P; Laj, P; Angelini, F; Arduini, J; Bonafè, U; Calzolari, F; Cristofanelli, P; Decesari, S; Facchini, M C; Fuzzi, S; Gobbi, G P; Maione, M; Marinoni, A; Petzold, A; Roccato, F; Roger, J C; Sellegri, K; Sprenger, M; Venzac, H; Verza, G P; Villani, P; Vuillermoz, E

    2008-03-01

    In this work we present the new ABC-Pyramid Atmospheric Research Observatory (Nepal, 27.95 N, 86.82 E) located in the Himalayas, specifically in the Khumbu valley at 5079 m a.s.l. This measurement station has been set-up with the aim of investigating natural and human-induced environmental changes at different scales (local, regional and global). After an accurate instrumental set-up at ISAC-CNR in Bologna (Italy) in autumn 2005, the ABC-Pyramid Observatory for aerosol (physical, chemical and optical properties) and trace gas measurements (ozone and climate altering halocarbons) was installed in the high Khumbu valley in February 2006. Since March 2006, continuous measurements of aerosol particles (optical and physical properties), ozone (O3) and meteorological parameters as well as weekly samplings of particulate matter (for chemical analyses) and grab air samples for the determination of 27 halocarbons, have been carried out. These measurements provide data on the typical atmospheric composition of the Himalayan area between India and China and make investigations of the principal differences and similarities between the monsoon and pre-monsoon seasons possible. The study is carried out within the framework of the Ev-K2-CNR "SHARE-Asia" (Stations at High Altitude for Research on the Environment in Asia) and UNEP-"ABC" (Atmospheric Brown Clouds) projects. With the name of "Nepal Climate Observatory-Pyramid" the station is now part of the Observatory program of the ABC project.

  15. A laboratory exposure system to study the effects of aging on super-micron aerosol particles

    SciTech Connect

    Santarpia, Joshua; Sanchez, Andres L.; Lucero, Gabriel Anthony; Servantes, Brandon Lee; Hubbard, Joshua Allen

    2014-02-01

    A laboratory system was constructed that allows the super-micron particles to be aged for long periods of time under conditions that can simulate a range of natural environments and conditions, including relative humidity, oxidizing chemicals, organics and simulated solar radiation. Two proof-of-concept experiments using a non-biological simulant for biological particles and a biological simulant demonstrate the utility of these types of aging experiments. Green Visolite®, which is often used as a tracer material for model validation experiments, does not degrade with exposure to simulated solar radiation, the actual biological material does. This would indicate that Visolite® should be a good tracer compound for mapping the extent of a biological release using fluorescence as an indicator, but that it should not be used to simulate the decay of a biological particle when exposed to sunlight. The decay in the fluorescence measured for B. thurengiensis is similar to what has been previously observed in outdoor environments.

  16. The Detroit Exposure and Aerosol Research Study (DEARS) - Article in National Ambient Air Quality Status and Trends through 2007

    EPA Science Inventory

    A research study that the U.S. Environmental Protection Agency conducted in Detroit, Michigan, named the Detroit Exposure and Aerosol Research Study (DEARS), will help develop data that improves our understanding of human exposure to various air pollutants in our environment.

  17. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  18. Research in the Mont Terri Rock laboratory: Quo vadis?

    NASA Astrophysics Data System (ADS)

    Bossart, Paul; Thury, Marc

    During the past 10 years, the 12 Mont Terri partner organisations ANDRA, BGR, CRIEPI, ENRESA, FOWG (now SWISSTOPO), GRS, HSK, IRSN, JAEA, NAGRA, OBAYASHI and SCK-CEN have jointly carried out and financed a research programme in the Mont Terri Rock Laboratory. An important strategic question for the Mont Terri project is what type of new experiments should be carried out in the future. This question has been discussed among partner delegates, authorities, scientists, principal investigators and experiment delegates. All experiments at Mont Terri - past, ongoing and future - can be assigned to the following three categories: (1) process and mechanism understanding in undisturbed argillaceous formations, (2) experiments related to excavation- and repository-induced perturbations and (3) experiments related to repository performance during the operational and post-closure phases. In each of these three areas, there are still open questions and hence potential experiments to be carried out in the future. A selection of key issues and questions which have not, or have only partly been addressed so far and in which the project partners, but also the safety authorities and other research organisations may be interested, are presented in the following. The Mont Terri Rock Laboratory is positioned as a generic rock laboratory, where research and development is key: mainly developing methods for site characterisation of argillaceous formations, process understanding and demonstration of safety. Due to geological constraints, there will never be a site specific rock laboratory at Mont Terri. The added value for the 12 partners in terms of future experiments is threefold: (1) the Mont Terri project provides an international scientific platform of high reputation for research on radioactive waste disposal (= state-of-the-art research in argillaceous materials); (2) errors are explicitly allowed (= rock laboratory as a “playground” where experience is often gained through

  19. Field and laboratory measurements of cloud-forming properties of combustion aerosols

    SciTech Connect

    Hudson, J.G.; Hallett, J.; Rogers, C.F. )

    1991-06-20

    Measurements of condensation nuclei (CN) and cloud condensation nuclei (CCN) were obtained from aircraft penetrations of controlled burns of chaparral, pine forest, and a JP-4 (jet fuel) pool fire. Vegetative burns gave rise to large numbers of CN, most of which were also CCN at a supersaturation of less than 1%. This is to be contrasted with the much lower activity of smoke from JP-4 burns which gave only 1--2% CCN activity under identical conditions. The field observations are consistent with laboratory results under conditions which simulate natural clouds. This implies that although droplets readily grow on smoke from vegetative burns leading to activation of a significant number of the particles, mutual competition ensures that a large number of interstitial haze particles remain. By contrast, in clouds produced from smoke from jet fuel combustion, a larger fraction of the nonactive interstitial particles remain after cloud formation. Penetrations of a forest fire capping cloud show high concentrations ({gt}10{sup 4} cm{sup {minus}3}) of small (2 {mu}m diameter) but optically active particles together with high concentrations (5{times}10{sup 5} cm{sup {minus}3}) of nonactivated haze particles. Photogrammetric measurements of vertical velocities of clouds from controlled burns showed that weakly sheared plumes penetrated upward more effectively than strongly sheared plumes with cloud and smoke cap velocities as large as 20 m s{sup {minus}1}. This implies vertical velocities twice this value and cloud supersaturations of {similar to}2% under the observation conditions. Implications for particle removal by in-cloud scavenging and precipitation are discussed. {copyright} American Geophysical Union 1991

  20. Preliminary test results with a Stirling Laboratory Research Engine

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.; Nguyen, B. D.; Schmit, D. D.

    1979-01-01

    The Jet Propulsion Laboratory has designed, assembled, and initiated testing of a Stirling Laboratory Research Engine (SLRE). This preprototype engine provides a research tool to support the development of a broad range of analytical modeling and experimental efforts. The SLRE is a horizontally opposed, two-piston, single-acting Stirling engine with a split crankshaft drive mechanism. The paper discusses the preliminary results obtained during engine motoring tests and compares these results with two different analytical prediction models. Comparisons are made between experiment, the classical Schmidt analysis, and the JPL Stirling Cycle Analysis Model (SCAM). SCAM is a computerized one-dimensional, cyclic, compressible flow model of the SLRE and consists of a compilation of individual component subroutines. The formulation and current state of development of the SCAM program is briefly described.

  1. Summer Research Internship Program (FY94) Brookhaven National Laboratory

    SciTech Connect

    Toler, L.T.; Indusi, J.P.

    1995-02-01

    The Summer Research Internship Program is a new program that allows high school teachers to participate and assist scientific staff at national laboratories in specific research assignments. This participation allows the high school teachers to become familiar with new technology and have ``hands-on`` experience with experiments and equipment which utilize both mathematics and science skills. Teachers also have the opportunity to advance their new and well-developed software. This enlightenment and experience is brought back into their schools and classrooms in the hopes that their peers and students will realize the excitement that knowledge and education in the areas of mathematics and science can bring. The Safeguards, Safety and Nonproliferation Division of the Department of Advanced Technology at Brookhaven National Laboratory utilized five high school teachers during FY94 in various projects. The project assignments and internship activities are outlined in this paper.

  2. Virtual Laboratory Enabling Collaborative Research in Applied Vehicle Technologies

    NASA Technical Reports Server (NTRS)

    Lamar, John E.; Cronin, Catherine K.; Scott, Laura E.

    2005-01-01

    The virtual laboratory is a new technology, based on the internet, that has had wide usage in a variety of technical fields because of its inherent ability to allow many users to participate simultaneously in instruction (education) or in the collaborative study of a common problem (real-world application). The leadership in the Applied Vehicle Technology panel has encouraged the utilization of this technology in its task groups for some time and its parent organization, the Research and Technology Agency, has done the same for its own administrative use. This paper outlines the application of the virtual laboratory to those fields important to applied vehicle technologies, gives the status of the effort, and identifies the benefit it can have on collaborative research. The latter is done, in part, through a specific example, i.e. the experience of one task group.

  3. Simple Penning ion source for laboratory research and development applications.

    PubMed

    Rovey, Joshua L; Ruzic, Brandon P; Houlahan, Thomas J

    2007-10-01

    A simple Penning ion generator (PIG) that can be easily fabricated with simple machining skills and standard laboratory accessories is described. The PIG source uses an iron cathode body, samarium cobalt permanent magnet, stainless steel anode, and iron cathode faceplate to generate a plasma discharge that yields a continuous 1 mA beam of positively charged hydrogen ions at 1 mTorr of pressure. This operating condition requires 5.4 kV and 32.4 W of power. Operation with helium is similar to hydrogen. The ion source is being designed and investigated for use in a sealed-tube neutron generator; however, this ion source is thoroughly described so that it can be easily implemented by other researchers for other laboratory research and development applications.

  4. Internal-control weaknesses at Department of Energy research laboratories

    SciTech Connect

    Not Available

    1982-12-15

    Two requests were made by Chairman, Permanent Subcommittee on Investigations, Senate Committee on Governmental Affairs, that GAO review the vulnerability of selected Department of Energy (DOE) research facilities to fraud, waste, and abuse. The review examined internal controls over payroll, procurement, and property management at six government-owned, contractor-operated (GOCO) research laboratories (Sandia, Hanford, Argonne, Oak Ridge, Fermi, and Brookhaven) and four government-owned, government-operated energy technology centers (Bartlesville, Laramie, Morgantown, and Pittsburgh). In fiscal 1982, DOE budgeted over $3 billion for its GOCO facilities and over $230 million for its energy technology centers. GAO noted specific problems at a number of the laboratories in each of the areas covered. In many instances, DOE has acknowledged the problems and corrective action is underway or is planned.

  5. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  6. CNR LARA project, Italy: Airborne laboratory for environmental research

    NASA Technical Reports Server (NTRS)

    Bianchi, R.; Cavalli, R. M.; Fiumi, L.; Marino, C. M.; Pignatti, S.

    1995-01-01

    The increasing interest for the environmental problems and the study of the impact on the environment due to antropic activity produced an enhancement of remote sensing applications. The Italian National Research Council (CNR) established a new laboratory for airborne hyperspectral imaging, the LARA Project (Laboratorio Aero per Ricerche Ambientali - Airborne Laboratory for Environmental Research), equipping its airborne laboratory, a CASA-212, mainly with the Daedalus AA5000 MIVIS (Multispectral Infrared and Visible Imaging Spectrometer) instrument. MIVIS's channels, spectral bandwidths, and locations are chosen to meet the needs of scientific research for advanced applications of remote sensing data. MIVIS can make significant contributions to solving problems in many diverse areas such as geologic exploration, land use studies, mineralogy, agricultural crop studies, energy loss analysis, pollution assessment, volcanology, forest fire management and others. The broad spectral range and the many discrete narrow channels of MIVIS provide a fine quantization of spectral information that permits accurate definition of absorption features from a variety of materials, allowing the extraction of chemical and physical information of our environment. The availability of such a hyperspectral imager, that will operate mainly in the Mediterranean area, at the present represents a unique opportunity for those who are involved in environmental studies and land-management to collect systematically large-scale and high spectral-spatial resolution data of this part of the world. Nevertheless, MIVIS deployments will touch other parts of the world, where a major interest from the international scientific community is present.

  7. Laboratory-directed research and development: FY 1996 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  8. 1996 Laboratory directed research and development annual report

    SciTech Connect

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  9. Laboratory Directed Research and Development Program, FY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  10. Environmental Research Laboratories annual report for 1979 and 1980

    SciTech Connect

    Not Available

    1981-03-01

    The Atmospheric Turbulence and Diffusion Laboratory (ATDL) research program is organized around the following subject areas: transport and diffusion over complex terrain, atmospheric turbulence and plume diffusion, and forest meteorology and climatological studies. Current research efforts involve experimental and numerical modeling studies of flow over rugged terrain, studies of transport of airborne material in and above a forest canopy, basic studies of atmospheric diffusion parameters for applications to environmental impact evaluation, plume rise studies, and scientific collaboration with personnel in DOE-funded installations, universities, and government agencies on meteorological studies in our area of expertise. Abstracts of fifty-two papers that have been published or are awaiting publication are included.

  11. Final Report for Research Conducted at The Scripps Institution of Oceanography, University of California San Diego from 2/2002 to 8/2003 for ''Aerosol and Cloud-Field Radiative Effects in the Tropical Western Pacific: Analyses and General Circulation Model Parameterizations''

    SciTech Connect

    Vogelmann, A. M.

    2004-01-27

    OAK-B135 Final report from the University of California San Diego for an ongoing research project that was moved to Brookhaven National Laboratory where proposed work will be completed. The research uses measurements made by the Atmospheric Radiation Measurement (ARM) Program to quantify the effects of aerosols and clouds on the Earth's energy balance in the climatically important Tropical Western Pacific.

  12. FORT KEOGH LIVESTOCK & RANGE RESEARCH LABORATORY, U.S. DEPARTMENT OF AGRICULTURE-AGRICULTRAL RESEARCH SERVICE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Article describes Fort Keogh Livestock and Range Research Laboratory to an audience of scientific researchers (i.e. ecologists) interested in the interactions among organisms and their environment. Article outlines the facilities, environment, history, and ongoing types of research. Emphasis is on...

  13. An overview of the Ice Nuclei Research Unit Jungfraujoch/Cloud and Aerosol Characterization Experiment 2013 (INUIT-JFJ/CLACE-2013)

    NASA Astrophysics Data System (ADS)

    Schneider, Johannes

    2014-05-01

    Ice formation in mixed phase tropospheric clouds is an essential prerequisite for the formation of precipitation at mid-latitudes. Ice formation at temperatures warmer than -35°C is only possible via heterogeneous ice nucleation, but up to now the exact pathways of heterogeneous ice formation are not sufficiently well understood. The research unit INUIT (Ice NUcleation research unIT), funded by the Deutsche Forschungsgemeinschaft (DFG FOR 1525) has been established in 2012 with the objective to investigate heterogeneous ice nucleation by combination of laboratory studies, model calculation and field experiments. The main field campaign of the INUIT project (INUIT-JFJ) was conducted at the High Alpine Research Station Jungfraujoch (Swiss Alps, 3580 m asl) during January and February 2013, in collaboration with several international partners in the framework of CLACE2013. The instrumentation included a large set of aerosol chemical and physical analysis instruments (particle counters, particle sizers, particle mass spectrometers, cloud condensation nuclei counters, ice nucleus counters etc.), that were operated inside the Sphinx laboratory and sampled in mixed phase clouds through two ice selective inlets (Ice-CVI, ISI) as well as through a total aerosol inlet that was used for out-of-cloud aerosol measurements. Besides the on-line measurements, also samples for off-line analysis (ESEM, STXM) have been taken in and out of clouds. Furthermore, several cloud microphysics instruments were operated outside the Sphinx laboratory. First results indicate that a large fraction of ice residues sampled from mixed phase clouds contain organic material, but also mineral dust. Soot and lead were not found to be enriched in ice residues. The concentration of heterogeneous ice nuclei was found to be variable (ranging between < 1 and > 100 per liter) and to be strongly dependent on the operating conditions of the respective IN counter. The number size distribution of ice residues

  14. Research and development of network virtual instrument laboratory

    NASA Astrophysics Data System (ADS)

    Cui, Hongmei; Pei, Xichun; Ma, Hongyue; Ma, Shuoshi

    2006-11-01

    A software platform of the network virtual instrument test laboratory has been developed to realize the network function of the test and signal analysis as well as the share of the hardware based on the data transmission theory and the study of the present technologies of the network virtual instrument. The whole design procedure was also presented in this paper. The main work of the research is as follows. 1. A suitable scheme of the test system with B/S mode and the virtual instrument laboratory with BSDA (Browser/Server/Database/Application) mode was determined. 2. The functions were classified and integrated by adopting the multilayer structure. The application for the virtual instruments running in the client terminal and the network management server managing the multiuser in the test laboratory according to the "Concurrent receival, sequential implementation" strategy in Java as well as the code of the test server application responding the client's requests of test and signal analysis in LabWindows/CVI were developed. As the extending part of network function of the original virtual test and analysis instruments, a software platform of network virtual instrument test laboratory was built as well. 3. The communication of the network data between Java and the LabWindows/CVI was realized. 4. The database was imported to store the data as well as the correlative information acquired by the server and help the network management server to manage the multiuser in the test laboratory. 5. A website embedding Java Applet of virtual instrument laboratory with the on-line help files was designed.

  15. How and Why I Built a Research Laboratory

    NASA Astrophysics Data System (ADS)

    Lakhdar, Zohra Ben

    2005-10-01

    The 2005 L'ORÉAL-UNESCO award for women in physics recognized Zohra Ben Lakhdar's contributions to research in Tunisia. But when Professor Ben Lakhdar was a young girl in 1950s Tunisia, girls did not go to school beyond the elementary grades, and she found herself under the tutelage of her mother learning how to take care of a family and home. Tunisia's independence in 1956 changed that, and Professor Ben Lakhdar soon became the only girl in an all-boys' college. In 1978 when she returned to Tunisia after earning her PhD in Paris, fewer than 10 Tunisians were doing research. But the number of students in the country was increasing and trained teachers were needed. Developing the capability to do research in Tunisia was urgent. So Professor Ben Lakhdar built a research laboratory in Tunisia. This paper tells the story.

  16. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  17. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  18. Governing solar geoengineering research as it leaves the laboratory.

    PubMed

    Parker, Andy

    2014-12-28

    One of the greatest controversies in geoengineering policy concerns the next stages of solar radiation management research, and when and how it leaves the laboratory. Citing numerous risks and concerns, a range of prominent commentators have called for field experiments to be delayed until there is formalized research governance, such as an international agreement. As a piece of pragmatic policy analysis, this paper explores the practicalities and implications of demands for 'governance before research'. It concludes that 'governance before research' is a desirable goal, but that a delay in experimentation-a moratorium-would probably be an ineffective and counterproductive way to achieve it. Firstly, it is very unlikely that a moratorium could be imposed. Secondly, even if it were practicable it seems that a temporary ban on field experiments would have at best a mixed effect addressing the main risks and concerns, while blocking and stigmatizing safe research and delaying the development of good governance practices from learning by doing. The paper suggests a number of steps to ensure 'governance before research' that can be taken in the absence of an international agreement or national legislation, emphasizing the roles of researchers and research funders in developing and implementing good practices.

  19. Governing solar geoengineering research as it leaves the laboratory.

    PubMed

    Parker, Andy

    2014-12-28

    One of the greatest controversies in geoengineering policy concerns the next stages of solar radiation management research, and when and how it leaves the laboratory. Citing numerous risks and concerns, a range of prominent commentators have called for field experiments to be delayed until there is formalized research governance, such as an international agreement. As a piece of pragmatic policy analysis, this paper explores the practicalities and implications of demands for 'governance before research'. It concludes that 'governance before research' is a desirable goal, but that a delay in experimentation-a moratorium-would probably be an ineffective and counterproductive way to achieve it. Firstly, it is very unlikely that a moratorium could be imposed. Secondly, even if it were practicable it seems that a temporary ban on field experiments would have at best a mixed effect addressing the main risks and concerns, while blocking and stigmatizing safe research and delaying the development of good governance practices from learning by doing. The paper suggests a number of steps to ensure 'governance before research' that can be taken in the absence of an international agreement or national legislation, emphasizing the roles of researchers and research funders in developing and implementing good practices. PMID:25404686

  20. Toward a New Era of Research in Aerosol/Cloud/Climate Interactions at LLNL

    SciTech Connect

    Chuang, C,; Dignon, J.; Grant, K.; Connell, P.; Bergman, D.; Rotman, D.; Wright, D.; McGraw, R.; Schwartz, S.

    2000-09-27

    One of the largest uncertainties in simulations of climate change over the industrial period is the impact of anthropogenic aerosols on the Earth's radiation budget. Much of this uncertainty arises from the limited capability for either precisely linking precursor gases to the formation and size distribution of the aerosols or quantitatively describing the existing levels of global aerosol loading. This project builds on our aerosol and chemistry expertise to address each of these uncertainties in a more quantitative fashion than is currently possible. With the current LDRD support, we are in the process to implement an aerosol microphysics module into our global chemistry model to more fundamentally and completely describe the processes that determine the distribution of atmospheric aerosols. Using this new modeling capability, in conjunction with the most current version of NCAR climate model, we will examine the influence of these processes on aerosol direct and indirect climate forcing.

  1. Customized laboratory information management system for a clinical and research leukemia cytogenetics laboratory.

    PubMed

    Bakshi, Sonal R; Shukla, Shilin N; Shah, Pankaj M

    2009-01-01

    We developed a Microsoft Access-based laboratory management system to facilitate database management of leukemia patients referred for cytogenetic tests in regards to karyotyping and fluorescence in situ hybridization (FISH). The database is custom-made for entry of patient data, clinical details, sample details, cytogenetics test results, and data mining for various ongoing research areas. A number of clinical research laboratoryrelated tasks are carried out faster using specific "queries." The tasks include tracking clinical progression of a particular patient for multiple visits, treatment response, morphological and cytogenetics response, survival time, automatic grouping of patient inclusion criteria in a research project, tracking various processing steps of samples, turn-around time, and revenue generated. Since 2005 we have collected of over 5,000 samples. The database is easily updated and is being adapted for various data maintenance and mining needs. PMID:19252256

  2. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  3. Design of a preprototype Stirling Laboratory Research Engine

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.; Mcdougal, A. R.

    1978-01-01

    A description is given for the design and fabrication of a first generation, preprototype Stirling Laboratory Research Engine. The engine represents the first step in providing a research tool to be used to support the development of a broad range of analytical modeling and experimental efforts, and to evaluate new approaches to the design of components for Stirling engines. The test engine is a horizontally-opposed, two-piston, single-acting machine with a dual crankshaft drive mechanism. The preprototype engine is rated at 10 kW and was designed for maximum modularity. The long term objective of the project is to provide a proven design of a standardized test engine, which can be commercially produced, for national research on Stirling cycle machines.

  4. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  5. Retrieval of Aerosol Microphysical Properties from AERONET Photo-Polarimetric Measurements. 2: A New Research Algorithm and Case Demonstration

    NASA Technical Reports Server (NTRS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; Holben, Brent N.

    2015-01-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  6. Retrieval of aerosol microphysical properties from AERONET photopolarimetric measurements: 2. A new research algorithm and case demonstration

    NASA Astrophysics Data System (ADS)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; Holben, Brent N.

    2015-07-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach. While the new algorithm has heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithm retrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarse modes, while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  7. Offshore Wind Measurements Using Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Beyon, Jeffrey Y.; Koch, Grady J.; Kavaya, Michael J.

    2014-01-01

    The latest flight demonstration of Doppler Aerosol Wind Lidar (DAWN) at NASA Langley Research Center (LaRC) is presented. The goal of the campaign was to demonstrate the improvement of DAWN system since the previous flight campaign in 2012 and the capabilities of DAWN and the latest airborne wind profiling algorithm APOLO (Airborne Wind Profiling Algorithm for Doppler Wind Lidar) developed at LaRC. The comparisons of APOLO and another algorithm are discussed utilizing two and five line-of-sights (LOSs), respectively. Wind parameters from DAWN were compared with ground-based radar measurements for validation purposes. The campaign period was June - July in 2013 and the flight altitude was 8 km in inland toward Charlotte, NC, and offshores in Virginia Beach, VA and Ocean City, MD. The DAWN system was integrated into a UC12B with two operators onboard during the campaign.

  8. The Lincoln Laboratory-Aerospace Medical Research Laboratory digital speech test facility

    NASA Astrophysics Data System (ADS)

    Tierney, J.; Schecter, H.

    1984-05-01

    A narrowband digital speech communication test facility has been established and operates between Lincoln Laboratory and the Wright-Patterson Aerospace Medical Research Laboratory. Noise fields simulating the acoustic environments of E3A and F-15 aircraft are established and Air Force personnel use the link operating at 2400 bps with a vocoder designed at Lincoln Laboratory, and a commercial telephone line modem. The facility includes a digital signal processing computer which can introduce bit errors and delay into the transmit and receive data. Communication scenarios are used to exercise the vocoder-modem channel with the dynamics and vocabulary of typical operational exchanges. Answers to a standard questionnaire provide acceptability data for the 2400 bps JTIDS class 2 voice channel. For the tests run so far, the 2400 bps voice is acceptable in the sense of positive user response to the questionnaire. Further testing using error and delay simulations will follow. An F-15 to F-15 link will be simulated at AMRL using a pair of vocoders operating back-to-back and in separate noise chambers.

  9. Solar pond research at the Los Alamos National Laboratory

    SciTech Connect

    Jones, G.F.; Meyer, K.A.; Hedstrom, J.C.; Grimmer, D.P.

    1984-01-01

    A description of solar pond research at Los Alamos National Laboratory is presented. The main issues in the theory of solar ponds are discussed. Among these are the interfacial-boundary-layer model, models for interface motion and pond performance, heat extraction, and ground heat loss. The core of the research effort at Los Alamos was the development of a one-dimensional computer program to accurately predict dynamic performance of a solar pond. The computer model and the experiments that were designed and performed to validate it are described. The experiments include two laboratory tanks wherein temperature, salinity, and flow visualization data were obtained and a 232 m/sup 2/ outdoor solar pond. Results from preliminary validation show good agreement between the pond's predicted dynamic behavior and that which actually occurred in the experiments. More validation using data from full-sized solar ponds is needed. A new correlation for the ratio of interfacial salt-flux to heat-flux is proposed which agrees well with our data. Recommendations for future research are given.

  10. Associations between personal exposures to VOCs and alterations in cardiovascular physiology: Detroit Exposure and Aerosol Research Study (DEARS) - presentation

    EPA Science Inventory

    Introduction: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007...

  11. SPATIAL AND TEMPORAL VARIABILITY OF MOBILE SOURCE AIR TOXICS IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    Data from the first two years of the Detroit Exposure and Aerosol Research Study (DEARS) were evaluated to determine spatial and temporal characteristics in concentrations of mobile source air toxics (MSATs). Outdoor concentrations of MSATs were significantly higher in samples co...

  12. Recruitment and Retention Strategies for Environmental Exposure Studies: Lessons from the Detroit Exposure and Aerosol Research Study

    EPA Science Inventory

    The Environmental Protection Agency’s Detroit Exposure and Aerosol Research Study (DEARS) was a complex 3-year personal exposure study. The six geographically defined areas in the Detroit (Wayne County), Michigan, area used as study locations are ethnically diverse; the majority ...

  13. Associations between Personal Exposures to VOCs and Alterations in Cardiovascular Physiology: Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    Background: An adult cohort consisting of 63 participants engaged in the US EPA’s recent Detroit Exposure and Aerosol Research Study (DEARS) and a University of Michigan cardiovascular sub-study conducted during summer and winter periods over 3 years between 2004 and 2007 (5 seas...

  14. DAILY VARIATION IN ORGANIC COMPOSITION OF FINE PARTICULATE MATTER IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    Organic composition of fine particulate matter (PM2.5) was investigated as a part of the Detroit Exposure and Aerosol Research Study (DEARS). A high volume (113 liters/minute) sampler was used at the Allen Park community air monitoring station to collect PM2.5 for analysis by ga...

  15. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    SciTech Connect

    Cagle, C.D.

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included.

  16. Laboratory directed research and development annual report 2004.

    SciTech Connect

    Not Available

    2005-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives.

  17. 1997 Laboratory directed research and development. Annual report

    SciTech Connect

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  18. Barrier infrared detector research at the Jet Propulsion Laboratory

    NASA Astrophysics Data System (ADS)

    Ting, David Z.; Keo, Sam A.; Liu, John K.; Mumolo, Jason M.; Khoshakhlagh, Arezou; Soibel, Alexander; Nguyen, Jean; Höglund, Linda; Rafol, B., , Sir; Hill, Cory J.; Gunapala, Sarath D.

    2012-10-01

    The barrier infrared detector device architecture offers the advantage of reduced dark current resulting from suppressed Shockley-Read-Hall (SRH) recombination and surface leakage. The versatility of the antimonide material system, with the availability of three different types of band offsets for flexibility in device design, provides the ideal setting for implementing barrier infrared detectors. We describe the progress made at the NASA Jet Propulsion Laboratory in recent years in Barrier infrared detector research that resulted in high-performance quantum structure infrared detectors, including the type-II superlattice complementary barrier infrared detector (CBIRD), and the high operating quantum dot barrier infrared detector (HOT QD-BIRD).

  19. Tritium research laboratory cleanup and transition project final report

    SciTech Connect

    Johnson, A.J.

    1997-02-01

    This Tritium Research Laboratory Cleanup and Transition Project Final Report provides a high-level summary of this project`s multidimensional accomplishments. Throughout this report references are provided for in-depth information concerning the various topical areas. Project related records also offer solutions to many of the technical and or administrative challenges that such a cleanup effort requires. These documents and the experience obtained during this effort are valuable resources to the DOE, which has more than 1200 other process contaminated facilities awaiting cleanup and reapplication or demolition.

  20. Spatial heterodyne spectroscopy at the Naval Research Laboratory.

    PubMed

    Englert, Christoph R; Harlander, John M; Brown, Charles M; Marr, Kenneth D

    2015-11-01

    Spatial heterodyne spectroscopy (SHS) is based on traditional Michelson interferometry. However, instead of employing retro-reflectors in the interferometer arms, one or both of which are moving, it uses fixed, tilted diffraction gratings and an imaging detector to spatially sample the optical path differences. This concept allows high-resolution, high-throughput spectroscopy without moving interferometer parts, particularly suitable for problems that require compact, robust instrumentation. Here, we briefly review about 20 years of ground- and space-based SHS work performed at the U.S. Naval Research Laboratory (NRL), which started with a visit by Prof. Fred Roesler to NRL in 1993.

  1. PDC (polycrystalline diamond compact) bit research at Sandia National Laboratories

    SciTech Connect

    Finger, J.T.; Glowka, D.A.

    1989-06-01

    From the beginning of the geothermal development program, Sandia has performed and supported research into polycrystalline diamond compact (PDC) bits. These bits are attractive because they are intrinsically efficient in their cutting action (shearing, rather than crushing) and they have no moving parts (eliminating the problems of high-temperature lubricants, bearings, and seals.) This report is a summary description of the analytical and experimental work done by Sandia and our contractors. It describes analysis and laboratory tests of individual cutters and complete bits, as well as full-scale field tests of prototype and commercial bits. The report includes a bibliography of documents giving more detailed information on these topics. 26 refs.

  2. ECOSYSTEM RESTORATION RESEARCH THROUGH THE NATIONAL RISK MANAGEMENT RESEARCH LABORATORY (NRMRL)

    EPA Science Inventory

    The Ecosystem Restoration Research Program underway through ORD's National Risk Management Research Laboratory (NRMRL) has the long-term goal of providing watershed managers with "..state-of-the-science field-evaluated tools, technical guidance, and decision-support systems for s...

  3. Research Update: The USDA-ARS-Conservation and Production Research Laboratory, Bushland, Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation/manuscript provide a brief summary of beef cattle feeding-related research conducted at the USDA-ARS-Conservation and Production Research Laboratory, Bushland, Texas, over the past four years. It summarizes data that has been published in scientific journals, in symposia and confer...

  4. Guidance for Human Subjects Research in the National Exposure Research Laboratory

    EPA Science Inventory

    This document provides guidance to investigators and managers associated with the U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD)’s National Exposure Research Laboratory (NERL) on the ethical conduct, regulatory review, and approval of all huma...

  5. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  6. Advances in the laboratory culture of octopuses for biomedical research.

    PubMed

    Hanlon, R T; Forsythe, J W

    1985-02-01

    Five species of Octopus were cultured in pilot, large-scale 2,600 liter circulating seawater systems. Improvements in system design, water management and culture methodology were described. These five species all produced large eggs and correspondingly large hatchlings that had no planktonic or larval stage and thus were easier to culture. Octopuses grew well only when fed live marine crustaceans, fishes and other molluscs. Growth occurred as a 4-7% increase in body weight per day during the early exponential growth phase and 2-4% during the latter 1/2 to 3/4 of the life cycle, which ranged from 6-15 months depending upon species. All species reproduced in captivity. Survival was 70-80% when octopuses were reared in individual containers, but in group culture survival dropped to as low as 40% by the adult stage. Causes of mortality were species-specific and included hatchling abnormalities, escapes, aggression, cannibalism, disease, senescence and laboratory accidents. Octopus bimaculoides showed superior qualities for laboratory culture. The future potential of providing American scientists with laboratory-cultured octopuses was discussed along with their uses in biomedical research.

  7. A design guide for energy-efficient research laboratories

    SciTech Connect

    Wishner, N.; Chen, A.; Cook, L.; Bell, G.C.; Mills, E.; Sartor, D.; Avery, D.; Siminovitch, M.; Piette, M.A.

    1996-09-24

    This document--A Design Guide for Energy-Efficient Research Laboratories--provides a detailed and holistic framework to assist designers and energy managers in identifying and applying advanced energy-efficiency features in laboratory-type environments. The Guide fills an important void in the general literature and compliments existing in-depth technical manuals. Considerable information is available pertaining to overall laboratory design issues, but no single document focuses comprehensively on energy issues in these highly specialized environments. Furthermore, practitioners may utilize many antiquated rules of thumb, which often inadvertently cause energy inefficiency. The Guide helps its user to: introduce energy decision-making into the earliest phases of the design process, access the literature of pertinent issues, and become aware of debates and issues on related topics. The Guide does focus on individual technologies, as well as control systems, and important operational factors such as building commissioning. However, most importantly, the Guide is intended to foster a systems perspective (e.g. right sizing) and to present current leading-edge, energy-efficient design practices and principles.

  8. Advances in the laboratory culture of octopuses for biomedical research.

    PubMed

    Hanlon, R T; Forsythe, J W

    1985-02-01

    Five species of Octopus were cultured in pilot, large-scale 2,600 liter circulating seawater systems. Improvements in system design, water management and culture methodology were described. These five species all produced large eggs and correspondingly large hatchlings that had no planktonic or larval stage and thus were easier to culture. Octopuses grew well only when fed live marine crustaceans, fishes and other molluscs. Growth occurred as a 4-7% increase in body weight per day during the early exponential growth phase and 2-4% during the latter 1/2 to 3/4 of the life cycle, which ranged from 6-15 months depending upon species. All species reproduced in captivity. Survival was 70-80% when octopuses were reared in individual containers, but in group culture survival dropped to as low as 40% by the adult stage. Causes of mortality were species-specific and included hatchling abnormalities, escapes, aggression, cannibalism, disease, senescence and laboratory accidents. Octopus bimaculoides showed superior qualities for laboratory culture. The future potential of providing American scientists with laboratory-cultured octopuses was discussed along with their uses in biomedical research. PMID:3981958

  9. Research Activities at Plasma Research Laboratory at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Sharma, S. P.; Rao, M. V. V. S.; Meyyappan, Meyya

    2000-01-01

    In order to meet NASA's requirements for the rapid development and validation of future generation electronic devices as well as associated materials and processes, enabling technologies are being developed at NASA-Ames Research Center using a multi-discipline approach. The first step is to understand the basic physics of the chemical reactions in the area of plasma reactors and processes. Low pressure glow discharges are indispensable in the fabrication of microelectronic circuits. These plasmas are used to deposit materials and also etch fine features in device fabrication. However, many plasma-based processes suffer from stability and reliability problems leading to a compromise in performance and a potentially increased cost for the semiconductor manufacturing industry. Although a great deal of laboratory-scale research has been performed on many of these processing plasmas, little is known about the gas-phase and surface chemical reactions that are critical in many etch and deposition processes, and how these reactions are influenced by the variation in operating conditions. Such a lack of understanding has hindered the development of process models that can aid in the scaling and improvement of plasma etch and deposition systems. Our present research involves the study of such plasmas. An inductively-coupled plasma (ICP) source in place of the standard upper electrode assembly of the Gaseous Electronics Conference (GEC) radio-frequency (RF) Reference Cell is used to investigate the discharge characteristics. This ICP source generates plasmas with higher electron densities and lower operating pressures than obtainable with the original parallel-plate version of the GEC Cell. This expanded operating regime is more relevant to new generations of industrial plasma systems being used by the microelectronics industry. The research goal is to develop an understanding of the physical phenomena involved in plasma processing and to measure much needed fundamental

  10. Laboratory Directed Research and Development Program FY2011

    SciTech Connect

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  11. Ethical boundary-work in the animal research laboratory

    PubMed Central

    Hobson-West, Pru

    2016-01-01

    The use of animals in scientific experiments continues to attract significant controversy, particularly in the UK. This article draws on in-depth interviews with senior laboratory scientists who use animals in their research. A key claim is that animal research is necessary for medical advance. However, this promissory discourse relies on the construction of three boundaries. The first is between humans and non-human animals. The second is between the positive and less positive impacts of Home Office regulation. The third is between the use of animals in medicine versus other domains such as farming. The article analyses these discourses and evaluates the applicability of ‘ethical boundary-work’ (Wainwright et al., 2006a). I conclude that the concept is a potentially useful device for foregrounding ethics but argue that it carries several dangers for sociologists interested in claim-making in areas of controversy.

  12. Ethical boundary-work in the animal research laboratory

    PubMed Central

    Hobson-West, Pru

    2016-01-01

    The use of animals in scientific experiments continues to attract significant controversy, particularly in the UK. This article draws on in-depth interviews with senior laboratory scientists who use animals in their research. A key claim is that animal research is necessary for medical advance. However, this promissory discourse relies on the construction of three boundaries. The first is between humans and non-human animals. The second is between the positive and less positive impacts of Home Office regulation. The third is between the use of animals in medicine versus other domains such as farming. The article analyses these discourses and evaluates the applicability of ‘ethical boundary-work’ (Wainwright et al., 2006a). I conclude that the concept is a potentially useful device for foregrounding ethics but argue that it carries several dangers for sociologists interested in claim-making in areas of controversy. PMID:27708461

  13. User guide to the Burner Engineering Research Laboratory

    SciTech Connect

    Fornaciari, N.; Schefer, R.; Paul, P.; Lubeck, C.; Sanford, R.; Claytor, L.

    1994-11-01

    The Burner Engineering Research Laboratory (BERL) was established with the purpose of providing a facility where manufacturers and researchers can study industrial natural gas burners using conventional and laser-based diagnostics. To achieve this goal, an octagonal furnace enclosure with variable boundary conditions and optical access that can accommodate burners with firing rates up to 2.5 MMBtu per hour was built. In addition to conventional diagnostic capabilities like input/output measurements, exhaust gas monitoring, suction pyrometry and in-furnace gas sampling, laser-based diagnostics available at BERL include planar Mie scattering, laser Doppler velocimetry and laser-induced fluorescence. This paper gives an overview of the operation of BERL and a description of the diagnostic capabilities and an estimate of the time required to complete each diagnostic for the potential user who is considering submitting a proposal.

  14. Multi-modal virtual environment research at Armstrong Laboratory

    NASA Technical Reports Server (NTRS)

    Eggleston, Robert G.

    1995-01-01

    One mission of the Paul M. Fitts Human Engineering Division of Armstrong Laboratory is to improve the user interface for complex systems through user-centered exploratory development and research activities. In support of this goal, many current projects attempt to advance and exploit user-interface concepts made possible by virtual reality (VR) technologies. Virtual environments may be used as a general purpose interface medium, an alternative display/control method, a data visualization and analysis tool, or a graphically based performance assessment tool. An overview is given of research projects within the division on prototype interface hardware/software development, integrated interface concept development, interface design and evaluation tool development, and user and mission performance evaluation tool development.

  15. Ford Research Laboratory high school science and technology program (HSSTP)

    SciTech Connect

    Hass, K.C.

    1994-12-31

    Since 1984, the Ford Motor Company Research Laboratory has offered a series of Saturday morning enrichment experiences and summer work opportunities for high school students and teachers. The goal is to increase awareness of technical careers and the importance of science and mathematics in industry. The Saturday sessions are run entirely by volunteers and are organized around current topics ranging from fundamental science (e.g., atmospheric chemistry) to advanced engineering and manufacturing (e.g., glass production). A typical session includes a lecture, laboratory tours and demonstrations, a refreshment/social break and a hands-on activity whenever possible. Over 500 students and teachers participate annually from over 120 area high schools. Nearly one third of the students are minorities from the city of Detroit. Session quality is monitored through feedback from participants and volunteers. Juniors and seniors who attend at least three sessions are eligible to compete for four-week summer internships. Typically, about twenty-five to thirty interns (out of forty to fifty applicants) are selected on the basis of a transcript, teacher recommendation and a 2500-word report on a technical topic. Ford also generally hosts about eight summer teacher fellows through a statewide program that began as an HSSTP initiative. The HSSTP was recently recognized by the industrial Research Institute as one of eleven {open_quotes}Winning [Pre-College Education] Programs{close_quotes} nationwide. Keys to success include strong grassroots and managerial support and extensive networking in the community.

  16. Laboratory Directed Research and Development 1998 Annual Report

    SciTech Connect

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  17. Progress of applied superconductivity research at Materials Research Laboratories, ITRI (Taiwan)

    NASA Technical Reports Server (NTRS)

    Liu, R. S.; Wang, C. M.

    1995-01-01

    A status report based on the applied high temperature superconductivity (HTS) research at Materials Research Laboratories (MRL), Industrial Technology Research Institute (ITRI) is given. The aim is to develop fabrication technologies for the high-TC materials appropriate to the industrial application requirements. To date, the majorities of works have been undertaken in the areas of new materials, wires/tapes with long length, prototypes of magnets, large-area thin films, SQUID's and microwave applications.

  18. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    SciTech Connect

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  19. Measurement, growth types and shrinkage of newly formed aerosol particles at an urban research platform

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Németh, Zoltán; Weidinger, Tamás; Kovács, Boldizsár; Kristóf, Gergely

    2016-06-01

    Budapest platform for Aerosol Research and Training (BpART) was created for advancing long-term on-line atmospheric measurements and intensive aerosol sample collection campaigns in Budapest. A joint study including atmospheric chemistry or physics, meteorology, and fluid dynamics on several-year-long data sets obtained at the platform confirmed that the location represents a well-mixed, average atmospheric environment for the city centre. The air streamlines indicated that the host and neighbouring buildings together with the natural orography play an important role in the near-field dispersion processes. Details and features of the airflow structure were derived, and they can be readily utilised for further interpretations. An experimental method to determine particle diffusion losses in the differential mobility particle sizer (DMPS) system of the BpART facility was proposed. It is based on CPC-CPC (condensation particle counter) and DMPS-CPC comparisons. Growth types of nucleated particles observed in 4 years of measurements were presented and discussed specifically for cities. Arch-shaped size distribution surface plots consisting of a growth phase followed by a shrinkage phase were characterised separately since they supply information on nucleated particles. They were observed in 4.5 % of quantifiable nucleation events. The shrinkage phase took 1 h 34 min in general, and the mean shrinkage rate with standard deviation was -3.8 ± 1.0 nm h-1. The shrinkage of particles was mostly linked to changes in local atmospheric conditions, especially in global radiation and the gas-phase H2SO4 concentration through its proxy, or to atmospheric mixing in few cases. Some indirect results indicate that variations in the formation and growth rates of nucleated particles during their atmospheric transport could be a driving force of shrinkage for particles of very small sizes and on specific occasions.

  20. COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite

    SciTech Connect

    Worsnop, Douglas R.

    2014-07-28

    This project funded the participation of scientists from seven research groups, running more than thirty instruments, in the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign at a rural site in Detling, UK, 45 km southeast of central London. The primary science questions for the ClearfLo Winter IOP were, 1) what is the urban increment of particulate matter (PM) and other pollutants in the greater London area, and, 2) what is the contribution of solid fuel use for home heating to wintertime PM? An additional motivation for the Detling measurements was the question of whether coatings on black carbon particles enhance absorption. The following four key accomplishments have been identified so far: 1) Chemical, physical and optical characterization of PM from local and regional sources (Figures 2, 4, 5 and 6). 2) Measurement of urban increment in particulate matter and gases in London (Figure 3). 3) Measurement of optical properties and chemical composition of coatings on black carbon containing particles indicates absorption enhancement. 4) First deployment of chemical ionization instrument (MOVI-CI-TOFMS) to measure both particle-phase and gas-phase organic acids. (See final report from Joel Thornton, University of Washington, for details.) Analysis of the large dataset acquired in Detling is ongoing and will yield further key accomplishments. These measurements of urban and rural aerosol properties will contribute to improved modeling of regional aerosol emissions, and of atmospheric aging and removal. The measurement of absorption enhancement by coatings on black carbon will contribute to improved modeling of the direct radiative properties of PM.

  1. Atmospheric Aerosol Chemistry Analyzer: Demonstration of feasibility

    SciTech Connect

    Mroz, E.J.; Olivares, J.; Kok, G.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The project objective was to demonstrate the technical feasibility of an Atmospheric Aerosol Chemistry Analyzer (AACA) that will provide a continuous, real-time analysis of the elemental (major, minor and trace) composition of atmospheric aerosols. The AACA concept is based on sampling the atmospheric aerosol through a wet cyclone scrubber that produces an aqueous suspension of the particles. This suspension can then be analyzed for elemental composition by ICP/MS or collected for subsequent analysis by other methods. The key technical challenge was to develop a wet cyclone aerosol sampler suitable for respirable particles found in ambient aerosols. We adapted an ultrasonic nebulizer to a conventional, commercially available, cyclone aerosol sampler and completed collection efficiency tests for the unit, which was shown to efficiently collect particles as small as 0.2 microns. We have completed the necessary basic research and have demonstrated the feasibility of the AACA concept.

  2. The viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames

    NASA Technical Reports Server (NTRS)

    Clipson, Colin

    1994-01-01

    This paper will review and summarize research initiatives conducted between 1987 and 1992 at NASA Ames Research Center by a research team from the University of Michigan Architecture Research Laboratory. These research initiatives, funded by a NASA grant NAG2-635, examined the viability of establishing collaborative, reconfigurable research environments for the Human Performance Research Laboratory at NASA Ames in California. Collaborative Research Environments are envisioned as a way of enhancing the work of NASA research teams, optimizing the use of shared resources, and providing superior environments for housing research activities. The Integrated Simulation Project at NASA, Ames Human Performance Research Laboratory is one of the current realizations of this initiative.

  3. HYDROGEN TECHNOLOGY RESEARCH AT THE SAVANNAH RIVER NATIONAL LABORATORY

    SciTech Connect

    Danko, E

    2009-03-02

    The Savannah River National Laboratory (SRNL) is a U.S. Department of Energy research and development laboratory located at the Savannah River Site (SRS) near Aiken, South Carolina. SRNL has over 50 years of experience in developing and applying hydrogen technology, both through its national defense activities as well as through its recent activities with the DOE Hydrogen Programs. The hydrogen technical staff at SRNL comprises over 90 scientists, engineers and technologists, and it is believed to be the largest such staff in the U.S. SRNL has ongoing R&D initiatives in a variety of hydrogen storage areas, including metal hydrides, complex hydrides, chemical hydrides and carbon nanotubes. SRNL has over 25 years of experience in metal hydrides and solid-state hydrogen storage research, development and demonstration. As part of its defense mission at SRS, SRNL developed, designed, demonstrated and provides ongoing technical support for the largest hydrogen processing facility in the world based on the integrated use of metal hydrides for hydrogen storage, separation, and compression. The SRNL has been active in teaming with academic and industrial partners to advance hydrogen technology. A primary focus of SRNL's R&D has been hydrogen storage using metal and complex hydrides. SRNL and its Hydrogen Technology Research Laboratory have been very successful in leveraging their defense infrastructure, capabilities and investments to help solve this country's energy problems. SRNL has participated in projects to convert public transit and utility vehicles for operation using hydrogen fuel. Two major projects include the H2Fuel Bus and an Industrial Fuel Cell Vehicle (IFCV) also known as the GATOR{trademark}. Both of these projects were funded by DOE and cost shared by industry. These are discussed further in Section 3.0, Demonstration Projects. In addition to metal hydrides technology, the SRNL Hydrogen group has done extensive R&D in other hydrogen technologies, including

  4. COMPARISON OF MONODISPERSE AND POLYDISPERSE AEROSOL DEPOSITION IN A PACKED BED

    EPA Science Inventory

    COMPARISON OF MONODISPERSE AND POLYDISPERSE AEROSOL DEPOSITION IN A PACKED BED. Jacky A. Rosati, Dept. of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599; Chong S. Kim, USEPA National Health and Environmental Effects Research Laboratory...

  5. Research Opportunities for Undergraduate Students at Storm Peak Laboratory

    NASA Astrophysics Data System (ADS)

    Vargas, W.; Hallar, G.

    2009-12-01

    GRASP (Geoscience Research at Storm Peak) is a program providing field research experiences for a diverse group of undergraduate students. GRASP is funded by the National Science Foundation. Its mission is to recruit students from underrepresented groups within the geoscience community allowing students to work and live at the Storm Peak Laboratory (SPL). Data previously collected at the facility forms the basis for continuing research projects that addresses climate change, atmospheric pollution, and cloud formation. Prior to arriving at SPL, students travel to the National Center for Atmospheric Research (NCAR) to learn about supercomputing, mathematical modeling, and scientific visualization. GRASP participants met at the campus of Howard University for a reunion workshop and presented their results in November 2008. This poster illustrates the given task and methods used to analyze an increased concentration of organic carbon detected between April 4 and 5, 2008 at SPL located at the summit of Mt. Warner in Steamboat Springs, Colorado at an elevation of 3,202 meters.

  6. Laboratory directed research and development program FY 2003

    SciTech Connect

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  7. Progress and Understanding Spatial and Temporal Variability of PM2.5 and its Components in the Detroit Exposure and Aerosol Research Study (DEARS)

    EPA Science Inventory

    The Detroit Exposure and Aerosol Research Study (DEARS) measured personal exposures, ambient, residential indoor and residential outdoor concentrations of select PM2.5 aerosol components (SO4, NO3, Fe, Si, Ca, K, Mn, Pb, Zn, EC and OC) over a thr...

  8. Laboratory directed research and development annual report 2003.

    SciTech Connect

    Not Available

    2004-03-01

    Science historian James Burke is well known for his stories about how technological innovations are intertwined and embedded in the culture of the time, for example, how the steam engine led to safety matches, imitation diamonds, and the landing on the moon.1 A lesson commonly drawn from his stories is that the path of science and technology (S&T) is nonlinear and unpredictable. Viewed another way, the lesson is that the solution to one problem can lead to solutions to other problems that are not obviously linked in advance, i.e., there is a ripple effect. The motto for Sandia's approach to research and development (R&D) is 'Science with the mission in mind.' In our view, our missions contain the problems that inspire our R&D, and the resulting solutions almost always have multiple benefits. As discussed below, Sandia's Laboratory Directed Research and Development (LDRD) Program is structured to bring problems relevant to our missions to the attention of researchers. LDRD projects are then selected on the basis of their programmatic merit as well as their technical merit. Considerable effort is made to communicate between investment areas to create the ripple effect. In recent years, attention to the ripple effect and to the performance of the LDRD Program, in general, has increased. Inside Sandia, as it is the sole source of discretionary research funding, LDRD funding is recognized as being the most precious of research dollars. Hence, there is great interest in maximizing its impact, especially through the ripple effect. Outside Sandia, there is increased scrutiny of the program's performance to be sure that it is not a 'sandbox' in which researchers play without relevance to national security needs. Let us therefore address the performance of the LDRD Program in fiscal year 2003 and then show how it is designed to maximize impact.

  9. A new laboratory facility to study the interactions of aerosols, cloud droplets/ice crystals, and trace gases in a turbulent environment: The Π Chamber

    NASA Astrophysics Data System (ADS)

    Cantrell, W. H., II; Chang, K.; Ciochetto, D.; Niedermeier, D.; Bench, J.; Shaw, R. A.

    2014-12-01

    A detailed understanding of gas-aerosol-cloud interaction within the turbulent atmosphere is of prime importance for an accurate understanding of Earth's climate system. As one example: While every cloud droplet began as an aerosol particle, not every aerosol particle becomes a cloud droplet. The particle to droplet transformation requires that the particle be exposed to some critical concentration of water vapor, which differs for different combinations of particle size and chemical composition. Similarly, the formation of ice particles in mixed phase clouds is also catalyzed by aerosol particles. Even in the simplest scenarios it is challenging to gain a full understanding of the aerosol activation and ice nucleation processes. At least two other factors contribute significantly to the complexity observed in the atmosphere. First, aerosols and cloud particles are not static entities, but are continuously interacting with their chemical environment, and therefore changing in their properties. Second, clouds are ubiquitously turbulent, so thermodynamic and compositional variables, such as water vapor or other trace gas concentrations, fluctuate in space and time. Indeed, the coupling between turbulence and microphysical processes is one of the major research challenges in cloud physics. We have developed a multiphase, turbulent reaction chamber, (dubbed the Π Chamber, after the internal volume of 3.14 cubic meters) designed to address the problems outlined above. It is capable of pressures ranging from sea level to ~ 100 mbar, and can sustain temperatures of +40 to -55 ºC. We can independently control the temperatures on the surfaces of three heat transfer zones. This allows us to establish a temperature gradient between the floor and ceiling inducing Rayleigh-Benard convection and inducing a turbulent environment. Interior surfaces are electropolished stainless steel to facilitate cleaning before and after chemistry experiments. At present, supporting

  10. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately

  11. Laboratory studies of collection efficiency of sub-micrometer aerosol particles by cloud droplets on a single droplet basis

    NASA Astrophysics Data System (ADS)

    Ardon-Dryer, K.; Huang, Y.-W.; Cziczo, D. J.

    2015-03-01

    An experimental setup has been constructed to measure the Collection Efficiency (CE) of sub-micrometer aerosol particles by cloud droplets. Water droplets of a dilute aqueous ammonium sulfate solution with a radius of ~20 μm fall freely into a chamber and collide with sub-micrometer Polystyrene Latex Sphere (PSL) particles of variable size and concentrations. Two RH conditions, ~15 and ~88%, hereafter termed "Low" and "High", respectively, were varied with different particles size and concentrations. After passing through the chamber, the droplets and aerosol particles were sent to the Particle Analysis by Laser Mass Spectrometry (PALMS) instrument to determine chemical compositions on a single particle basis. Coagulated droplets had mass spectra that contain signatures from both an aerosol particle and a droplet residual. CE values range from 5.7 × 10-3 to 4.6 × 10-2 for the Low RH and from 6.4 × 10-3 to 2.2 × 10-2 for the High RH cases. CE values were, within experimental uncertainty, independent of the aerosol concentrations. CE values in this work were found to be in agreement with previous experimental and theoretical studies. To our knowledge, this is the first coagulation experiment performed on a single droplet basis.

  12. Severe Weather Research at the European Severe Storms Laboratory

    NASA Astrophysics Data System (ADS)

    Groenemeijer, Pieter

    2013-04-01

    The European Severe Storms Laboratory's (ESSL) aim is to increase understanding of high-impact weather, with a particular focus on phenomena with small spatial and temporal dimensions, such as large hail, convectively-driven severe wind gusts, tornadoes and extreme precipitation.The ESSL performs and supports research activities and contributes to enhancing forecasting and warning capabilities in several ways. First, ESSL supports research by providing quality-controlled point data on severe weather events in the European Severe Weather Database. These data are collected through collaborations with networks of voluntary observers, and National HydroMeteorological Institutes throughout Europe. Second, research carried out at ESSL includes modelling the present and future occurrence of severe weather phenomena. This is done by developing proxies for severe weather events for use with reanalysis and climate model data. Third, at the ESSL Testbed, new products to support forecasting and warning operations are tested and demonstrated. Among these tools are visualizations of NWP ensemble data as well as radar, satellite and lightning detection data. Testbed participants provide feedback to the products and receive training in forecasting severe convective weather. Last, every second year ESSL organizes or co-organizes the European Conferences on Severe Storms.

  13. Sandia National Laboratories shock thermodynamics applied research (STAR) facility

    SciTech Connect

    Asay, J.R.

    1981-08-01

    The Sandia National Laboratories Shock Thermodynamics Applied Research (STAR) Facility has recently consolidated three different guns and a variety of instrumentation capabilities into a single location. The guns available at the facility consist of a single-stage light gas gun, a single-stage propellant gun and a two-stage light gas gun, which cover a velocity range from 15 m/s to 8 km/s. Instrumentation available at the facility includes optical and microwave interferometry, time-resolved holography, fast x-radiography, framing and streak photography, fast multi-wavelength pyrometry, piezoelectric and piezoresistive gauges and computer data reduction. This report discusses the guns and instrumentation available at the facility and selected recent applications.

  14. Cable condition monitoring research activities at Sandia National Laboratories

    SciTech Connect

    Jacobus, M.J.; Zigler, G.L.; Bustard, L.D.

    1988-01-01

    Sandia National Laboratories is currently conducting long-term aging research on representative samples of nuclear power plant cables. The objectives of the program are to determine the suitability of these cables for extended life (beyond 40 year design basis) and to assess various cable condition monitoring techniques for predicting remaining cable life. The cables are being aged for long times at relatively mild exposure conditions with various condition monitoring techniques to be employed during the aging process. Following the aging process, the cables will be exposed to a sequential accident profile consisting of high dose rate irradiation followed by a simulated design basis loss-of-coolant accident (LOCA) steam exposure. 12 refs., 1 fig., 1 tab.

  15. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-07-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic (BA) aerosols, for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2), malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols, whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment except for ω-oxooctanoic acid (ωC8), which showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids controls their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  16. Laboratory photochemical processing of aqueous aerosols: formation and degradation of dicarboxylic acids, oxocarboxylic acids and α-dicarbonyls

    NASA Astrophysics Data System (ADS)

    Pavuluri, C. M.; Kawamura, K.; Mihalopoulos, N.; Swaminathan, T.

    2015-01-01

    To better understand the photochemical processing of dicarboxylic acids and related polar compounds, we conducted batch UV irradiation experiments on two types of aerosol samples collected from India, which represent anthropogenic (AA) and biogenic aerosols (BA), for time periods of 0.5 to 120 h. The irradiated samples were analyzed for molecular compositions of diacids, oxoacids and α-dicarbonyls. The results show that photochemical degradation of oxalic (C2) and malonic (C3) and other C8-C12 diacids overwhelmed their production in aqueous aerosols whereas succinic acid (C4) and C5-C7 diacids showed a significant increase (ca. 10 times) during the course of irradiation experiments. The photochemical formation of oxoacids and α-dicarbonyls overwhelmed their degradation during the early stages of experiment, except for ω-oxooctanoic acid (ωC8) that showed a similar pattern to that of C4. We also found a gradual decrease in the relative abundance of C2 to total diacids and an increase in the relative abundance of C4 during prolonged experiment. Based on the changes in concentrations and mass ratios of selected species with the irradiation time, we hypothesize that iron-catalyzed photolysis of C2 and C3 diacids dominates their concentrations in Fe-rich atmospheric waters, whereas photochemical formation of C4 diacid (via ωC8) is enhanced with photochemical processing of aqueous aerosols in the atmosphere. This study demonstrates that the ambient aerosols contain abundant precursors that produce diacids, oxoacids and α-dicarbonyls, although some species such as oxalic acid decompose extensively during an early stage of photochemical processing.

  17. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  18. Laboratory studies of interaction between trace gases and sulphuric acid or sulphate aerosols using flow-tube reactors

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun

    Stratospheric ozone provides a protective shield for humanity and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical models for the calculation of ozone balance frequently used gas-phase reactions alone in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions is needed to understand this significant natural event owing to the anthropogenic emission of chlorofluorocarbons. In this review I will briefly discuss the experimental techniques for the research of heterogeneous chemistry carried out in our laboratory. These experimental instruments include flow-tube reactors, an electron-impact ionization mass spectrometer, a chemical ionization mass spectrometer and a scanning mobility particle spectrometer. Numerous measurements of uptake coefficient (or reaction probability) and solubility of trace gases in liquid sulphuric acid have been performed under the ambient conditions in the upper troposphere and lower stratosphere, mainly 190-250 K and 40-80 wt% of H

  19. The NASA-AMES Research Center Stratospheric Aerosol Model. 1. Physical Processes and Computational Analogs

    NASA Technical Reports Server (NTRS)

    Turco, R. P.; Hamill, P.; Toon, O. B.; Whitten, R. C.; Kiang, C. S.

    1979-01-01

    A time-dependent one-dimensional model of the stratospheric sulfate aerosol layer is presented. In constructing the model, a wide range of basic physical and chemical processes are incorporated in order to avoid predetermining or biasing the model predictions. The simulation, which extends from the surface to an altitude of 58 km, includes the troposphere as a source of gases and condensation nuclei and as a sink for aerosol droplets. The size distribution of aerosol particles is resolved into 25 categories with particle radii increasing geometrically from 0.01 to 2.56 microns such that particle volume doubles between categories.

  20. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called direct effect , aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called indirect effects, whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will discuss

  1. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called "direct effect", aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called "indirect effects", whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will

  2. Current and Planned Cochlear Implant Research at New York University Laboratory for Translational Auditory Research

    PubMed Central

    Svirsky, Mario A.; Fitzgerald, Matthew B.; Neuman, Arlene; Sagi, Elad; Tan, Chin-Tuan; Ketten, Darlene; Martin, Brett

    2013-01-01

    The Laboratory of Translational Auditory Research (LTAR/NYUSM) is part of the Department of Otolaryngology at the New York University School of Medicine and has close ties to the New York University Cochlear Implant Center. LTAR investigators have expertise in multiple related disciplines including speech and hearing science, audiology, engineering, and physiology. The lines of research in the laboratory deal mostly with speech perception by hearing impaired listeners, and particularly those who use cochlear implants (CIs) or hearing aids (HAs). Although the laboratory's research interests are diverse, there are common threads that permeate and tie all of its work. In particular, a strong interest in translational research underlies even the most basic studies carried out in the laboratory. Another important element is the development of engineering and computational tools, which range from mathematical models of speech perception to software and hardware that bypass clinical speech processors and stimulate cochlear implants directly, to novel ways of analyzing clinical outcomes data. If the appropriate tool to conduct an important experiment does not exist, we may work to develop it, either in house or in collaboration with academic or industrial partners. Another notable characteristic of the laboratory is its interdisciplinary nature where, for example, an audiologistandan engineer might work closely to develop an approach that would not have been feasible if each had worked singly on the project. Similarly, investigators with expertise in hearing aids and cochlear implants might join forces to study how human listeners integrate information provided by a CI and a HA. The following pages provide a flavor of the diversity and the commonalities of our research interests. PMID:22668763

  3. U.S. Army Research Laboratory (ARL) multimodal signatures database

    NASA Astrophysics Data System (ADS)

    Bennett, Kelly

    2008-04-01

    The U.S. Army Research Laboratory (ARL) Multimodal Signatures Database (MMSDB) is a centralized collection of sensor data of various modalities that are co-located and co-registered. The signatures include ground and air vehicles, personnel, mortar, artillery, small arms gunfire from potential sniper weapons, explosives, and many other high value targets. This data is made available to Department of Defense (DoD) and DoD contractors, Intel agencies, other government agencies (OGA), and academia for use in developing target detection, tracking, and classification algorithms and systems to protect our Soldiers. A platform independent Web interface disseminates the signatures to researchers and engineers within the scientific community. Hierarchical Data Format 5 (HDF5) signature models provide an excellent solution for the sharing of complex multimodal signature data for algorithmic development and database requirements. Many open source tools for viewing and plotting HDF5 signatures are available over the Web. Seamless integration of HDF5 signatures is possible in both proprietary computational environments, such as MATLAB, and Free and Open Source Software (FOSS) computational environments, such as Octave and Python, for performing signal processing, analysis, and algorithm development. Future developments include extending the Web interface into a portal system for accessing ARL algorithms and signatures, High Performance Computing (HPC) resources, and integrating existing database and signature architectures into sensor networking environments.

  4. The Mammalian Microbiome and Its Importance in Laboratory Animal Research.

    PubMed

    Bleich, André; Fox, James G

    2015-01-01

    In this issue are assembled 10 fascinating, well-researched papers that describe the emerging field centered on the microbiome of vertebrate animals and how these complex microbial populations play a fundamental role in shaping homeostasis of the host. The content of the papers will deal with bacteria and, because of relative paucity of information on these organisms, will not include discussions on viruses, fungus, protozoa, and parasites that colonize various animals. Dissecting the number and interactions of the 500-1000 bacterial species that can inhabit the intestines of animals is made possible by advanced DNA sequencing methods, which do not depend on whether the organism can be cultured or not. Laboratory animals, particularly rodents, have proven to be an indispensable component in not only understanding how the microbiome aids in digestion and protects the host against pathogens, but also in understanding the relationship of various species of bacteria to development of the immune system. Importantly, this research elucidates purported mechanisms for how the microbiome can profoundly affect initiation and progression of diseases such as type 1 diabetes, metabolic syndromes, obesity, autoimmune arthritis, inflammatory bowel disease, and irritable bowel syndrome. The strengths and limitations of the use of germfree mice colonized with single species of bacteria, a restricted flora, or most recently the use of human-derived microbiota are also discussed.

  5. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  6. Aortic function: from the research laboratory to the clinic.

    PubMed

    Boudoulas, Konstantinos Dean; Vlachopoulos, Charalambos; Raman, Subha V; Sparks, Elizabeth A; Triposciadis, Filippos; Stefanadis, Christodoulos; Boudoulas, Harisios

    2012-01-01

    For many years, much of the pioneering research on aortic function was carried out by a small group of investigators frequently working away from the clinical environment in the research laboratory. The evaluation of aortic function using aortic pulse wave velocity, aortic distensibility, or other practical indices had yet to reach clinical threshold. It was necessary for the clinicians to take over and to apply these indices to the clinic. In this Odyssey, the work by the basic scientist was important to define the fundamental mechanisms of aortic function; however, it was the vision of the clinical investigator who recognized the importance of aortic function and introduced it into clinical practice. In the near future, the clinical investigator will introduce aortic function in daily clinical practice as the measurement of left ventricular function is used today. A close collaboration between the clinical and the basic investigator will be necessary in order to define the molecular mechanisms related to aortic wall synthesis and degradation of collagen and elastin. Application of these findings by the clinical investigator may help to delay or prevent aortic dysfunction related to aging or other conditions and diseases.

  7. Enabling laboratory EUV research with a compact exposure tool

    NASA Astrophysics Data System (ADS)

    Brose, Sascha; Danylyuk, Serhiy; Tempeler, Jenny; Kim, Hyun-su; Loosen, Peter; Juschkin, Larissa

    2016-03-01

    In this work we present the capabilities of the designed and realized extreme ultraviolet laboratory exposure tool (EUVLET) which has been developed at the RWTH-Aachen, Chair for the Technology of Optical Systems (TOS), in cooperation with the Fraunhofer Institute for Laser Technology (ILT) and Bruker ASC GmbH. Main purpose of this laboratory setup is the direct application in research facilities and companies with small batch production, where the fabrication of high resolution periodic arrays over large areas is required. The setup can also be utilized for resist characterization and evaluation of its pre- and post-exposure processing. The tool utilizes a partially coherent discharge produced plasma (DPP) source and minimizes the number of other critical components to a transmission grating, the photoresist coated wafer and the positioning system for wafer and grating and utilizes the Talbot lithography approach. To identify the limits of this approach first each component is analyzed and optimized separately and relations between these components are identified. The EUV source has been optimized to achieve the best values for spatial and temporal coherence. Phase-shifting and amplitude transmission gratings have been fabricated and exposed. Several commercially available electron beam resists and one EUV resist have been characterized by open frame exposures to determine their contrast under EUV radiation. Cold development procedure has been performed to further increase the resist contrast. By analyzing the exposure results it can be demonstrated that only a 1:1 copy of the mask structure can be fully resolved by the utilization of amplitude masks. The utilized phase-shift masks offer higher 1st order diffraction efficiency and allow a demagnification of the mask structure in the achromatic Talbot plane.

  8. GPS Monitor Station Upgrade Program at the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Galysh, Ivan J.; Craig, Dwin M.

    1996-01-01

    One of the measurements made by the Global Positioning System (GPS) monitor stations is to measure the continuous pseudo-range of all the passing GPS satellites. The pseudo-range contains GPS and monitor station clock errors as well as GPS satellite navigation errors. Currently the time at the GPS monitor station is obtained from the GPS constellation and has an inherent inaccuracy as a result. Improved timing accuracy at the GPS monitoring stations will improve GPS performance. The US Naval Research Laboratory (NRL) is developing hardware and software for the GPS monitor station upgrade program to improve the monitor station clock accuracy. This upgrade will allow a method independent of the GPS satellite constellation of measuring and correcting monitor station time to US Naval Observatory (USNO) time. THe hardware consists of a high performance atomic cesium frequency standard (CFS) and a computer which is used to ensemble the CFS with the two CFS's currently located at the monitor station by use of a dual-mixer system. The dual-mixer system achieves phase measurements between the high-performance CFS and the existing monitor station CFS's to within 400 femtoseconds. Time transfer between USNO and a given monitor station is achieved via a two way satellite time transfer modem. The computer at the monitor station disciplines the CFS based on a comparison of one pulse per second sent from the master site at USNO. The monitor station computer is also used to perform housekeeping functions, as well as recording the health status of all three CFS's. This information is sent to the USNO through the time transfer modem. Laboratory time synchronization results in the sub nanosecond range have been observed and the ability to maintain the monitor station CFS frequency to within 3.0 x 10 (sup minus 14) of the master site at USNO.

  9. Deuterated glycoaldehyde: laboratory measurements, analysis and proposed astrophysical research

    NASA Astrophysics Data System (ADS)

    Walters, A.; Bouchez, A.; Margules, L.; Motiyenko, R.; Guillemin, J. C.; Bottinelli, S.; Ceccarelli, C.; Kahane, C.

    2011-05-01

    We have measured in the laboratory the spectra of all the monosubstituted isotopologues of glycoaldehyde (CH_2OD-CHO, CHDOH-CHO, CH_2OH-CDO) and one doubly substituted one (CHDOH-CDO). The spectra were measured, between 150 and 630 GHz, with the new Lille submillimetre-wave spectrometer based on harmonic generation of solid-state sources. The samples were provided by Rennes. Apart from the first listed isotopologue all species were observed simultaneously in the presence of an intense spectral impurity (pyridine), which complicated assignment. This work is part of the FORCOMS project, funded by the French National Research Agency (ANR) that concerns the Formation of Complex Organic Molecules (COMs) in Space. The goal of the project is to better understand the formation of these COMs during the earliest phases of star formation. Glycoaldehyde, a sugar-related interstellar prebiotic molecule has been detected in two star-forming regions, Sgr B2(N) (1,2) and G31.41+0.31(3). A significant overabundance of deuterated species has been observed in protostellar environments. Formation of glycoaldehyde is suspected to involve photodissociation driven ice chemistry. One of the objectives of FORCOMS is to test if a comparison of the abundance of deuterated and non-deuterated COMs can be used to trace complex organic chemistry in interstellar environments. Previous laboratory work on the D-isotopologues was restricted to less than 26 GHz (4). We hence carried out new measurements and analysis to obtain a complete set of predictions for radioastronomy. The previous measurements greatly helped in assigning the spectra. Simulations with CASSIS software have been made to select the best candidates for detection and a telescope proposal is under way.

  10. Merging of Research and Teaching in Developmental Biology: Adaptation of Current Scientific Research Papers for Use in Undergraduate Laboratory Exercises

    ERIC Educational Resources Information Center

    Lee, H. H.; and others

    1970-01-01

    Describes two laboratory exercises adopted from current research papers for use in an undergraduate developmental biology course. Gives methods, summary of student results, and student comments. Lists lecture topics, text and reprint assignments, and laboratory exercises for course. (EB)

  11. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    SciTech Connect

    Basques, Eric O.

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  12. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    SciTech Connect

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  13. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions. PMID:24601011

  14. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    classification. The harmonization of the aerosol typing procedures is a fundamental need in aerosol studies for long-term perspectives, satellite validation, and accuracy. However, the possibilities and limits in defining a common set of aerosol types for satellite missions and ground-based measurements depends on different information content among measurement techniques and for different retrieval conditions (e.g. for low aerosol content there is smaller satellite aerosol type retrieval sensitivity), as well as different historical choices. The concept of aReference database for aerosol typing (REDAT) is developed with the specific purpose of providing a dataset suitable for the comparison of typing procedures (from ground-based, and satellite measurements) and to be used as reference dataset for the modelling community. It will also allow the definition of translating rules between the different aerosol typing nomenclature, information strongly needed for the more and more increased audience of scientific data with no scientific background, as well as policy and decision makers. Acknowledgments: The research leading to these results is partially funded by ACTRIS2 Research Infrastructure Project by the European Union's Horizon 2020 research and innovation programme under the grant agreement n. 654169.

  15. A laboratory for research and teaching of microprocessor-based power system protection

    SciTech Connect

    Sachdev, M.S.; Sidhu, T.S.

    1996-05-01

    This paper describes a laboratory which is used for conducting research and teaching in the area of microprocessor-based power system protection. The details of the facilities and their functions are presented. The use of the laboratory for specific research and teaching functions is outlined. Students` experiences with the use of the laboratory are also discussed.

  16. Environmental Assessment for moving the Pacific Northwest Laboratory radon generators from Life Sciences Laboratory II, Richland North Area, to Life Sciences Laboratory I, 300 Area, and their continued use in physical and biological research

    SciTech Connect

    Nelson, I.C.

    1993-09-01

    The Pacific Northwest Laboratory (PNL) radon generators are a core resource of the overall U. S. Department of Energy`s (DOE) Radon Research Program and are administratively controlled within the ``Radon Hazards in Homes`` project. This project primarily focuses on radon exposures of animals and addresses the major biologic effects and factors influencing risks of indoor radon exposures. For example, the ``Mechanisms of Radon Injury`` and ``In vivo/In vitro Radon-Induced Cellular Damage`` projects specifically address the cytogenetic and DNA damage produced by radon exposure as part of a larger effort to understand radon carcinogenesis. Several other ongoing PNL projects, namely: ``Biological Effectiveness of Radon Alpha Particles: A Microbeam Study of Dose Rate Effects,`` ``Laser Measurements of Pb-210,`` ``Radon Transport Modeling in Soils,`` ``Oncogenes in Radiation Carcinogenesis,`` ``Mutation of DNA Targets,`` ``Dosimetry of Radon Progeny,`` and ``Aerosol Technology Development`` also use the radon exposure facilities in the conduct of their work. While most, but not all, studies in the PNL Radon Research Program are funded through DOE`s Office of Health and Environmental Research, PNL also has ongoing collaborative radon studies with investigators worldwide; many of these use the radon exposure facilities. The purpose of the proposed action is to provide for relocation of the radon generators to a DOE-owned facility and to continue to provide a controlled source of radon-222 for continued use in physical and biological research.

  17. Laboratory studies of oxidation of primary emissions: Oxidation of organic molecular markers and secondary organic aerosol production

    NASA Astrophysics Data System (ADS)

    Weitkamp, Emily A.

    Particulate matter (PM) is solid particles and liquid droplets of complex composition suspended in the atmosphere. In 1997, the National Ambient Air Quality Standards (NAAQS) for PM was modified to include new standards for fine particulate (particles smaller than 2.5mum, PM2.5) because of their association with adverse health effects, mortality and visibility reduction. Fine PM may also have large impacts on the global climate. Chemically, fine particulate is a complex mixture of organic and inorganic material, from both natural and anthropogenic sources. A large fraction of PM2.5 is organic. The first objective was to investigate heterogeneous oxidation of condensed-phase molecular markers for two major organic source categories, meat-cooking emissions and motor vehicle exhaust. Effective reaction rate constants of key molecular markers were measured over a range of atmospherically relevant experimental conditions, including a range of concentrations and relative humidities, and with SOA condensed on the particles. Aerosolized meat grease was reacted with ozone to investigate the oxidation of molecular markers for meat-cooking emissions. Aerosolized motor oil, which is chemically similar to vehicle exhaust aerosol and contains the molecular markers used in source apportionment, was reacted with the hydroxyl radical (OH) to investigate oxidation of motor vehicle molecular markers. All molecular markers of interest - oleic acid, palmitoleic acid, and cholesterol for meat-cooking emissions, and hopanes and steranes for vehicle exhaust - reacted at rates that are significant for time scales on the order of days assuming typical summertime oxidant concentrations. Experimental conditions influenced the reaction rate constants. For both systems, experiments conducted at high relative humidity (RH) had smaller reaction rate constants than those at low RH. SOA coating slowed the reaction rate constants for meat-cooking markers, but had no effect on the oxidation of

  18. The Boulby Geoscience Project Underground Research Laboratory: Initial Results of a Rock Mechanics Laboratory Testing Programme

    NASA Astrophysics Data System (ADS)

    Brain, M. J.; Petley, D. N.; Rosser, N.; Lim, M.; Sapsford, M.; Barlow, J.; Norman, E.; Williams, A.; Pybus, D.

    2009-12-01

    The Boulby Mine, which is situated on the northeast coast of England, is a major source of potash, primarily for use as a fertiliser, with a secondary product of rock salt (halite), used in highway deicing. The deposits are part of the Zechstein formation and are found at depths of between c.1100 and 1135 m below sea level. The evaporite sequence also contains a range of further lithologies, including anhydrite, dolomite and a mixed evaporate deposit. From a scientific perspective the dry, uncontaminated nature of the deposits, the range of lithologies present and the high stress conditions at the mine provide a unique opportunity to observe rock deformation in situ in varying geological and stress environments. To this end the Boulby Geoscience Project was established to examine the feasibility of developing an underground research laboratory at the mine. Information regarding the mechanical properties of the strata at the Boulby Mine is required to develop our understanding of the strength and deformation behaviour of the rock over differing timescales in response to variations in the magnitude and duration of applied stresses. As such data are currently limited, we have developed a laboratory testing programme that examines the behaviour of the deposits during the application of differential compressive stresses. We present the initial results of this testing programme here. Experiments have been carried out using a high pressure Virtual Infinite Strain (VIS) triaxial apparatus (250 kN maximum axial load; 64 MPa maximum cell pressure) manufactured by GDS Instruments. Conventional compression tests under uniaxial and triaxial conditions have been undertaken to determine the effects of axial stress application rate, axial strain rate and confining pressure on behaviour and failure mechanisms. The experimental programme also includes advanced testing into time-dependent creep behaviour under constant deviatoric stress; the effects of variations in temperature and

  19. Fire Protection Research Program at Sandia National Laboratories

    SciTech Connect

    Klamerus, L. J.

    1980-01-01

    Sandia National Laboratories is executing a program for the Nuclear Regulatory Commission to provide data needed for confirmation of the suitability of current design standards and regulatory guides for fire protection and control in water reactor power plants. This paper summarizes the activities of this ongoing program through October 1980. Characterization of electrically initiated fires revealed a margin of safety in the separation criteria of Regulatory Guide 1.75 for such fires in IEEE-383 qualified cable. However, tests confirmed that these guidelines and standards are not sufficient, in themselves, to protect against exposure fires. This paper describes both small and full scale tests to assess the adequacy of fire retardant coatings and full scale tests on fire shields to determine their effectiveness. It also describes full scale tests to determine the effects of walls and ceilings on fire propagation between cable trays. Some small-scale scoping tests have been conducted to investigate the effects of varying the furnace pressure on cable penetration performance in the ASTM-E-119 Fire Test. The Sandia Fire Research Facility has been completed and a series of tests have been run to assess the effectiveness of Halon-1301 as a suppression system in extinguishing deep-seated cable-tray fires. It was found that given sufficient soak times Halon systems are effective in extinguishing such fires.

  20. NASA Glenn Research Center Acoustical Testing Laboratory: Five year retrospective

    NASA Astrophysics Data System (ADS)

    Cooper, Beth A.; Akers, James C.; Passe, Paul J.

    2005-09-01

    In the five years since the NASA Glenn Research Center Acoustical Testing Laboratory (ATL) opened its doors in September, 2000, it has developed a comprehensive array of services and products that support hearing conservation goals within NASA and industry. The ATL provides acoustic emission testing and noise control engineering services for a variety of specialized customers, particularly developers of equipment and science experiments manifested for NASA's manned space missions. The ATL aggressively supports the vision of a low-noise on-orbit environment, which facilitates mission success as well as crew health, safety, and comfort. In concert with these goals, the ATL also produces and distributes free educational resources and low-noise advocacy tools for hearing conservation education and awareness. Among these are two compact discs of auditory demonstrations (of phenomena in acoustics, hearing conservation, and communication), and presentations, software packages, and other educational materials for use by engineers, audiologists, and other hearing conservation stakeholders. This presentation will highlight ATL's construction, history, technical capabilities, and current projects and will feature demonstrations of some of the unique educational resource materials that are distributed by the ATL.

  1. Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory.

    PubMed

    Brown, Steven W; Johnson, B Carol; Biggar, Stuart F; Zalewski, Edward F; Cooper, John; Hajek, Pavel; Hildum, Edward; Grant, Patrick; Barnes, Robert A; Butler, James J

    2005-10-20

    The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

  2. Radiometric validation of NASA's Ames Research Center's Sensor Calibration Laboratory

    SciTech Connect

    Brown, Steven W.; Johnson, B. Carol; Biggar, Stuart F.; Zalewski, Edward F.; Cooper, John; Hajek, Pavel; Hildum, Edward; Grant, Patrick; Barnes, Robert A.; Butler, James J

    2005-10-20

    The National Aeronautics and Space Administration's (NASA's) Ames Research Center's Airborne Sensor Facility (ASF) is responsible for the calibration of several airborne Earth-viewing sensor systems in support of NASA Earth Observing System (EOS) investigations. The primary artifact used to calibrate these sensors in the reflective solar region from 400 to 2500 nm is a lamp-illuminated integrating sphere source. In September 1999, a measurement comparison was made at the Ames ASF Sensor Calibration Facility to validate the radiometric scale, establish the uncertainties assigned to the radiance of this source, and examine its day-to-day repeatability. The comparison was one of a series of validation activities overseen by the EOS Calibration Program to ensure the radiometric calibration accuracy of sensors used in long-term, global, remote-sensing studies. Results of the comparison, including an evaluation of the Ames Sensor Calibration Laboratory (SCL) measurement procedures and assigned radiometric uncertainties, provide a validation of their radiometric scale at the time of the comparison. Additionally, the maintenance of the radiance scale was evaluated by use of independent, long-term, multiyear radiance validation measurements of the Ames sphere source. This series of measurements provided an independent assessment of the radiance values assigned to integrating sphere sources by the Ames SCF. Together, the measurements validate the SCF radiometric scale and assigned uncertainties over the time period from September 1999 through July 2003.

  3. Geothermal heating for the Arizona Environmental Research Laboratory greenhouses

    SciTech Connect

    White, D.H.; Goldstone, L.A.

    1982-08-01

    A preliminary study of the technical and economic feasibility of installing a retrofit geothermal heating system is analyzed for the Environmental Research Laboratory Farms greenhouse facility located in Tucson, Arizona. The facility consists of 10.6 acres of greenhouse area, of which 7.4 acres are currently operational. Natural gas or diesel fuel are presently used for heating. The maximum heating load is estimated to be 28,620,000 Btu/hr. Average annual heating energy consumption between 1974 and 1979 was 35,684 million But/year for 7.4 acres of greenhouse, costing an estimated $96,703 at 1981 natural gas prices. Two 2500 foot geothermal production wells are required, each capable of producing 1500 gpm of 130{sup 0}F water. The geothermal water is expected to contain 500 ppM total dissolved solids. Total estimated capital cost for installing the system is $902,946. The expected first year geothermal energy cost savigs are estimated to be $58,920. A simple payback of 9.1 years is calculated and the project has a net present value of $961,751. Geothermal heat could be supplied at a cost of $5.39 per million Btu in the first year of operation. The project as herein presented is marginally economic. However, it became clear after the study that an attractive economic case could be made for providing about 50 to 60 percent of the required heating load as a base load using geothermal energy.

  4. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general. PMID:10548806

  5. Airborne mass spectrometers: four decades of atmospheric and space research at the Air Force research laboratory.

    PubMed

    Viggiano, A A; Hunton, D E

    1999-11-01

    Mass spectrometry is a versatile research tool that has proved to be extremely useful for exploring the fundamental nature of the earth's atmosphere and ionosphere and in helping to solve operational problems facing the Air Force and the Department of Defense. In the past 40 years, our research group at the Air Force Research Laboratory has flown quadrupole mass spectrometers of many designs on nearly 100 sounding rockets, nine satellites, three Space Shuttles and many missions of high-altitude research aircraft and balloons. We have also used our instruments in ground-based investigations of rocket and jet engine exhaust, combustion chemistry and microwave breakdown chemistry. This paper is a review of the instrumentation and techniques needed for space research, a summary of the results from many of the experiments, and an introduction to the broad field of atmospheric and space mass spectrometry in general.

  6. Educational Technology Research: Substituting Closed-Circuit Television for the Science Laboratory.

    ERIC Educational Resources Information Center

    Menis, Yosef

    1982-01-01

    Suggests a practical approach for coping with training students in laboratory skill through the use of videotaped (VTR) materials and discusses the technical advantages of using VTR as opposed to laboratory research. Six references are provided. (MER)

  7. Chemistry and materials science progress report. Weapons-supporting research and laboratory directed research and development: FY 1995

    SciTech Connect

    1996-04-01

    This report covers different materials and chemistry research projects carried out a Lawrence Livermore National Laboratory during 1995 in support of nuclear weapons programs and other programs. There are 16 papers supporting weapons research and 12 papers supporting laboratory directed research.

  8. Outcomes of a Research-Driven Laboratory and Literature Course Designed to Enhance Undergraduate Contributions to Original Research

    ERIC Educational Resources Information Center

    Rasche, Madeline E.

    2004-01-01

    This work describes outcomes of a research-driven advanced microbiology laboratory and literature research course intended to enhance undergraduate preparation for and contributions to original research. The laboratory section was designed to teach fundamental biochemistry and molecular biology techniques in the context of an original research…

  9. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY: PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    This small, two-fold flyer contains general information introducing EPA's National Risk Management Research Laboratory and its research program. The key overarching areas of research described are: Protection of drinking water; control of air pollution; pollution prevention and e...

  10. NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY - AN ANNUAL REPORT OF ACCOMPLISHMENTS FOR FISCAL YEAR 2000

    EPA Science Inventory

    This Annual Report showcases some of the research activities of the National Health and Environmental Effects Research Laboratory (NHEERL) in various health and environmental effects research areas. The report is an indicator of the examples of progress and accomplishments that ...

  11. NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY - ACCOMPLISHMENTS FOR FY 2001

    EPA Science Inventory

    This Annual Report showcases some of the scientific activities of the National Health and Environmental Effects Research Laboratory (NHEERL) in various health and environmental effects research areas. Where appropriate, the contributions of other collaborating research organizat...

  12. Signal and Image Processing Research at the Lawrence Livermore National Laboratory

    SciTech Connect

    Roberts, R S; Poyneer, L A; Kegelmeyer, L M; Carrano, C J; Chambers, D H; Candy, J V

    2009-06-29

    Lawrence Livermore National Laboratory is a large, multidisciplinary institution that conducts fundamental and applied research in the physical sciences. Research programs at the Laboratory run the gamut from theoretical investigations, to modeling and simulation, to validation through experiment. Over the years, the Laboratory has developed a substantial research component in the areas of signal and image processing to support these activities. This paper surveys some of the current research in signal and image processing at the Laboratory. Of necessity, the paper does not delve deeply into any one research area, but an extensive citation list is provided for further study of the topics presented.

  13. Low-gravity Orbiting Research Laboratory Environment Potential Impact on Space Biology Research

    NASA Technical Reports Server (NTRS)

    Jules, Kenol

    2006-01-01

    One of the major objectives of any orbital space research platform is to provide a quiescent low gravity, preferably a zero gravity environment, to perform fundamental as well as applied research. However, small disturbances exist onboard any low earth orbital research platform. The impact of these disturbances must be taken into account by space research scientists during their research planning, design and data analysis in order to avoid confounding factors in their science results. The reduced gravity environment of an orbiting research platform in low earth orbit is a complex phenomenon. Many factors, among others, such as experiment operations, equipment operation, life support systems and crew activity (if it is a crewed platform), aerodynamic drag, gravity gradient, rotational effects as well as the vehicle structural resonance frequencies (structural modes) contribute to form the overall reduced gravity environment in which space research is performed. The contribution of these small disturbances or accelerations is precisely why the environment is NOT a zero gravity environment, but a reduced acceleration environment. This paper does not discuss other factors such as radiation, electromagnetic interference, thermal and pressure gradient changes, acoustic and CO2 build-up to name a few that affect the space research environment as well, but it focuses solely on the magnitude of the acceleration level found on orbiting research laboratory used by research scientists to conduct space research. For ease of analysis this paper divides the frequency spectrum relevant to most of the space research disciplines into three regimes: a) quasi-steady, b) vibratory and c) transient. The International Space Station is used as an example to illustrate the point. The paper discusses the impact of these three regimes on space biology research and results from space flown experiments are used to illustrate the potential negative impact of these disturbances (accelerations

  14. [Research on source profile of aerosol organic compounds in leather plant].

    PubMed

    Wang, Bo-Guang; Zhou, Yan; Feng, Zhi-Cheng; Liu, Hui-Xuan

    2009-04-15

    Through investigating current air pollution condition for PM10 in every factories of different style leather plants in Pearl River Delta, characteristic profile of semi-volatile organic compounds in PM10 emitted from leather factories and their contents were researched by using ultrasonic and gas chromatography and mass spectrum technology. The 6 types of organic compounds containing 46 species in total were found in the collected samples, including phenyl compounds, alcohols, PAHs, acids, esters and amides. The concentrations of PM10 in leather tanning plant, leather dying plant and man-made leather plant were 678.5, 454.5, 498.6 microgm x m(-3) respectively, and concentration of organic compounds in PM10 were 10.04, 6.89, 14.21 microg x m(-3) in sequence. The more important type of pollutants in each leather plants had higher contribution to total organic mass as follows, esters and amides in tanning plants profile account for 43.47% and 36.51% respectively; esters and alcohols in dying plants profiles account for 52.52% and 16.16% respectively; esters and amide in man-made leather plant have the highest content and account for 57.07% and 24.17% respectively. In the aerosol organic source profiles of tested leather plants, 9-octadecenamide was the abundant important species with the weight of 26.15% in tanning plant, and Bis(2-ethylhexyl) phthalate was up to 44.19% in the dying plant, and Bis(2-ethylhexyl) maleate and 1-hydroxy-piperidine had obviously higher weight in man-made plant than the other two plants.

  15. Pulsed power -- Research and technology at Sandia National Laboratories

    SciTech Connect

    1981-12-31

    Over the past 15 years, steady and sometimes exciting progress has been made in the hybrid technology called Pulsed Power. Based on both electrical engineering and physics, pulsed power involves the generation, modification, and use of electrical pulses up to the multitrillion-watt and multimillion-volt ranges. The final product of these powerful pulses can take diverse forms--hypervelocity projectiles or imploding liners, energetic and intense particle beams, X-ray and gamma-ray pulses, laser light beams that cover the spectrum from ultraviolet to infrared, or powerful microwave bursts. At first, the needs of specific applications largely shaped research and technology in this field. New the authors are beginning to see the reverse--new applications arising from technical capabilities that until recently were though impossible. Compressing and heating microscopic quantities of matter until they reach ultra-high energy density represents one boundary of their scientific exploration. The other boundary might be a defensive weapon that can project vast amounts of highly directed energy over long distances. Other applications of the technology may range from the use of electron beams to sterilize sewage, to laboratory simulation of radiation effects on electronics, to electromagnetic launchings of projectiles into earth or into solar orbits. Eventually the authors hope to use pulsed power to produce an inexhaustible supply of energy by means of inertial confinement fusion (ICF)--a technique for heating and containing deuterium-tritium fuel through compression. Topics covered here are: (1) inertial confinement fusion; (2) simulation technology; (3) development of new technology; and (4) application to directed energy technologies.

  16. Seismic anisotropy in granite at the Underground Research Laboratory, Manitoba

    SciTech Connect

    Holmes, G.M.; Crampin, S.; Young, R.P.

    2000-05-01

    The Shear-Wave Experiment at Atomic Energy of Canada Limited's Underground Research Laboratory was probably the first controlled-source shear-wave survey in a mine environment. Taking place in conjunction with the excavation of the Mine-by test tunnel at 420 m depth, the shear-wave experiment was designed to measure the in situ anisotropy of the rockmass and to use shear waves to observe excavation effects using the greatest variety of raypath directions of any in situ shear-wave survey to date. Inversion of the shear-wave polarizations shows that the anisotropy of the in situ rockmass is consistent with hexagonal symmetry with an approximate fabric orientation of strike 023{degree} and dip 35{degree}. The in situ anisotropy is probably due to microcracks with orientations governed by the in situ stress field and to mineral alignment within the weak gneissic layering. However, there is no unique interpretation as to the cause of the in situ anisotropy as the fabric orientation agrees approximately with both the orientation expected from extensive-dilatancy anisotropy and that of the gneissic layering. Eight raypaths with shear waves propagating wholly or almost wholly through granodiorite, rather than granite, do not show the expected shear-wave splitting and indicate a lower in situ anisotropy, which may be due to the finer grain size and/or the absence of gneissic layering within the granodiorite. These results suggest that shear waves may be used to determine crack and mineral orientations and for remote monitoring of a rockmass. This has potential applications in mining and waste monitoring.

  17. New Atomic Ion SIMS Facility at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Grabowski, K. S.; Fazel, K. C.; Fahey, A. J.

    2014-12-01

    Mass spectrometry of particulates and few micrometer regions of samples by Secondary Ion Mass Spectrometry (SIMS) is a very useful analytical tool. However, there are limitations caused by interferences from molecular species, such as hydrides, oxides, and carbides. Above mass 90 u, these interferences (> 104 M/ΔM) can exceed the resolving power of SIMS. Accelerator Mass Spectrometry (AMS) is capable of eliminating such molecular ion interferences, but lacks spatial information and generally requires use of negative ions. This requirement limits its sensitivity, since actinide and lanthanide elements preferentially generate positive atomic ions (~104 : 1). The Naval Research Laboratory (NRL) has installed a hybrid SIMS-AMS system, using a Single Stage AMS as a replacement for the normal Cameca IMS 4f SIMS electron multiplier detector. The NRL design enables analysis of either positive or negative ions. Thus, this system offers the potential to provide SIMS-like particle and micro-scale analysis without a forest of signals from molecular species, and is capable of measuring important positive atomic ions. This should improve measurement sensitivity and precision to determine isotopic distributions of actinides, lanthanides, and transition metals; and elemental abundances of trace species in particles or small features. Initial measurements show that molecule intensities can be reduced by seven orders of magnitude while atomic ion intensities are only diminished ~50%. We have chosen to call this instrument an atomic ion SIMS, or ai-SIMS, for short. The effect of basic operational parameters such as ion energy, charge state, molecule destruction gas and its pressure will be described, and examples of the benefits and capabilities of ai-SIMS will be presented.

  18. CCD research and development at Lawrence Berkeley National Laboratory

    NASA Astrophysics Data System (ADS)

    Bebek, C. J.; Coles, R. A.; Denes, P.; Dion, F.; Emes, J. H.; Frost, R.; Groom, D. E.; Groulx, R.; Haque, S.; Holland, S. E.; Karcher, A.; Kolbe, W. F.; Lee, J. S.; Palaio, N. P.; Roe, N. A.; Tran, C. H.; Wang, G.

    2012-07-01

    We describe work at Lawrence Berkeley National Laboratory (LBNL) to develop enhanced performance, fully depleted, back-illuminated charge-coupled devices for astronomy and astrophysics. The CCDs are fabricated on high-resistivity substrates and are typically 200-300 μm thick for improved near-infrared response. The primary research and development areas include methods to reduce read noise, increase quantum efficiency and readout speed, and the development of fabrication methods for the efficient production of CCDs for large focal planes. In terms of noise reduction, we will describe technology developments with our industrial partner Teledyne DALSA Semiconductor to develop a buried-contact technology for reduced floating-diffusion capacitance, as well as efforts to develop ”skipper” CCDs with sub-electron noise utilizing non-destructive readout amplifiers allowing for multiple sampling of the charge packets. Improvements in quantum efficiency in the near-infrared utilizing ultra-high resistivity substrates that allow full depletion of 500 μm and thicker substrates will be described, as well as studies to improve the blue and UV sensitivity by investigating the limits on the thickness of the back-side ohmic contact layer used in the LBNL technology. Improvements in readout speed by increasing the number of readout ports will be described, including work on high frame-rate CCDs for x-ray synchrotrons with as many as 192 amplifiers per CCD. Finally, we will describe improvements in fabrication methods, developed in the course of producing over 100 science-grade 2k × 4k CCDs for the Dark Energy Survey Camera.

  19. NATIONAL RISK MANAGEMENT RESEARCH LABORATORY - PROVIDING SOLUTIONS FOR A BETTER TOMORROW

    EPA Science Inventory

    As part of the U.S. Environmental Protection Agency's Office of Research and Development, the National Risk Management Research Laboratory (NRMRL) conducts research into ways to prevent and reduce pollution risks that threaten human health and the environment. The laboratory inve...

  20. A Place for Materials Science: Laboratory Buildings and Interdisciplinary Research at the University of Pennsylvania

    ERIC Educational Resources Information Center

    Choi, Hyungsub; Shields, Brit

    2015-01-01

    The Laboratory for Research on the Structure of Matter (LRSM), University of Pennsylvania, was built in 1965 as part of the Advanced Research Projects Agency's (ARPA) Interdisciplinary Laboratories (IDL) program intended to foster interdisciplinary research and training in materials science. The process that led to the construction of the…

  1. [The research on remote sensing dust aerosol by using split window emissivity].

    PubMed

    Xu, Hui; Yu, Tao; Gu, Xing-Fa; Cheng, Tian-Hai; Xie, Dong-Hai; Liu, Qian

    2013-05-01

    Dust aerosol can cause the change in the land surface emissivity in split window by radiative forcing (RF). Firstly, the present paper explained from the microscopic point of view the extinction properties of dust aerosols in the 11 and 12 microm channels, and their influence on the land surface emissivity. Secondly, on April 29, 2011, in the northern region of Inner Mongolia a strong sandstorm outbroke, and based on the analysis of the changes in land surface emissivity, this paper proposed a dust identification method by using the variation of emissivity. At last, the dust identification result was evaluated by the dust monitoring product provided by the National Satellite Meteorological Center. The result shows that under the assumption that the 12 microm emissivity equals to 1, using 11 microm relative emissivity could identify dust cover region effectively, and the 11 microm relative emissivity to a certain extent represented the intensity information of dust aerosol.

  2. [The research on remote sensing dust aerosol by using split window emissivity].

    PubMed

    Xu, Hui; Yu, Tao; Gu, Xing-Fa; Cheng, Tian-Hai; Xie, Dong-Hai; Liu, Qian

    2013-05-01

    Dust aerosol can cause the change in the land surface emissivity in split window by radiative forcing (RF). Firstly, the present paper explained from the microscopic point of view the extinction properties of dust aerosols in the 11 and 12 microm channels, and their influence on the land surface emissivity. Secondly, on April 29, 2011, in the northern region of Inner Mongolia a strong sandstorm outbroke, and based on the analysis of the changes in land surface emissivity, this paper proposed a dust identification method by using the variation of emissivity. At last, the dust identification result was evaluated by the dust monitoring product provided by the National Satellite Meteorological Center. The result shows that under the assumption that the 12 microm emissivity equals to 1, using 11 microm relative emissivity could identify dust cover region effectively, and the 11 microm relative emissivity to a certain extent represented the intensity information of dust aerosol. PMID:23905316

  3. It's a Sooty Problem: Black Carbon and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.

  4. DISMANTLING OF THE FUEL CELL LABORATORY AT RESEARCH CENTRE JUELICH

    SciTech Connect

    Stahn, B.; Matela, K.; Bensch, D.; Ambos, Frank

    2003-02-27

    The fuel cell laboratory was constructed in three phases and taken into operation in the years 1962 to 1966. The last experimental work was carried out in 1996. After all cell internals had been disassembled, the fuel cell laboratory was transferred to shutdown operation in 1997. Three cell complexes, which differed, in particular, by the type of shielding (lead, cast steel, concrete), were available until then for activities at nuclear components. After approval by the regulatory authority, the actual dismantling of the fuel cell laboratory started in March 2000. The BZ I laboratory area consisted of 7 cells with lead shieldings of 100 to 250 mm thickness. This area was dismantled from April to September 2000. Among other things, approx. 30,000 lead bricks with a total weight of approx. 300 Mg were dismantled and disposed of. The BZ III laboratory area essentially consisted of cells with concrete shieldings of 1200 to 1400 mm thickness. The dismantling of this area started in the fir st half of 2001 and was completed in November 2002. Among other things, approx. 900 Mg of concrete was dismantled and disposed of. Since more than 90 % of the dismantled materials was measurable for clearance, various clearance measurement devices were used during dismantling. The BZ II laboratory area essentially consists of cells with cast steel shieldings of 400 to 460 mm thickness. In September 2002 it was decided to continue using this laboratory area for future tasks. The dismantling of the fuel cell laboratory was thus completed. After appropriate refurbishment, the fuel cell laboratory will probably take up operation again in late 2003.

  5. POLLUTION PREVENTION RESEARCH ONGOING - EPA'S RISK REDUCTION ENGINEERING LABORATORY

    EPA Science Inventory

    The mission of the Risk Reduction Engineering Laboratory is to advance the understanding, development and application of engineering solutions for the prevention or reduction of risks from environmental contamination. This mission is accomplished through basic and applied researc...

  6. Optical closure study on light-absorbing aerosols

    NASA Astrophysics Data System (ADS)

    Petzold, Andreas; Bundke, Ulrich; Freedman, Andrew; Onasch, Timothy B.; Massoli, Paola; Andrews, Elizabeth; Hallar, Anna G.

    2014-05-01

    The in situ measurement of atmospheric aerosol optical properties is an important component of quantifying climate change. In particular, the in-situ measurement of the aerosol single-scattering albedo (SSA), which is the ratio of aerosol scattering to aerosol extinction, is identified as a key challenge in atmospheric sciences and climate change research. Ideally, the complete set of aerosol optical properties is measured through optical closure studies which simultaneous measure aerosol extinction, scattering and absorption coefficients. The recent development of new optical instruments have made real-time in situ optical closure studies attainable, however, many of these instruments are state-of-the-art but not practical for routine monitoring. In our studies we deployed a suit of well-established and recently developed instruments including the cavity attenuated phase shift (CAPS) method for aerosol light extinction, multi-angle absorption photometer (MAAP) and particle soot absorption photometer (PSAP) for aerosol light absorption, and an integrating nephelometer (NEPH) for aerosol light scattering measurements. From these directly measured optical properties we calculated light absorption from extinction minus scattering (difference method), light extinction from scattering plus absorption, and aerosol single-scattering albedo from combinations CAPS + MAAP, NEPH + PSAP, NEPH + MAAP, CAPS + NEPH. Closure studies were conducted for laboratory-generated aerosols composed of various mixtures of black carbon (Regal 400R pigment black, Cabot Corp.) and ammonium sulphate, urban aerosol (Billerica, MA), and background aerosol (Storm Peak Lab.). Key questions addressed in our closure studies are: (1) how well can we measure aerosol light absorption by various methods, and (2) how well can we measure the aerosol single-scattering albedo by various instrument combinations? In particular we investigated (3) whether the combination of a CAPS and NEPH provides a reasonable

  7. The NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory

    NASA Technical Reports Server (NTRS)

    Mcgaw, M. A.; Bartolotta, P. A.

    1987-01-01

    The physical organization of the NASA Lewis Research Center High Temperature Fatigue and Structures Laboratory is described. Particular attention is given to uniaxial test systems, high cycle/low cycle testing systems, axial torsional test systems, computer system capabilities, and a laboratory addition. The proposed addition will double the floor area of the present laboratory and will be equipped with its own control room.

  8. Study of aerosol hygroscopic events over the Cabauw experimental site for atmospheric research (CESAR) using the multi-wavelength Raman lidar Caeli

    NASA Astrophysics Data System (ADS)

    Fernández, A. J.; Apituley, A.; Veselovskii, I.; Suvorina, A.; Henzing, J.; Pujadas, M.; Artíñano, B.

    2015-11-01

    This article presents a study of aerosol optical and microphysical properties under different relative humidity (RH) but well mixed layer conditions using optical and microphysical aerosol properties from multi-wavelength (MW) Raman lidar and in-situ aerosol observations collected at the Cabauw Experimental Site for Atmospheric Research (CESAR). Two hygroscopic events are described through 3 backscatter (β) and 2 extinction (α) coefficients which in turn provide intensive parameters such as the backscatter-related Ångström exponent (åβ) and the lidar ratio (LR). Along with it, profiles of RH were inferred from Raman lidar observations and therefore, as a result of varying humidity conditions, a shift on the aerosol optical properties can be described. Thus, it is observed that as RH increases, aerosols uptake water vapour, augment their size and consequently the åβ diminishes whereas the LR increases. The enhancement factor based on the backscatter coefficient at 532 nm, which characterizes the aerosol from hygroscopic standpoint, is also estimated. Finally, microphysical properties that are necessary for aerosol radiative forcing estimates - such as volume, effective radii, refractive index and size distribution, all vertically resolved - are retrieved using the inversion with regularization. Using this method, two hygroscopic events are described in detail.

  9. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    PubMed

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research. PMID:23477631

  10. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    PubMed

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  11. Open- and Closed-Formula Laboratory Animal Diets and Their Importance to Research

    PubMed Central

    Barnard, Dennis E; Lewis, Sherry M; Teter, Beverly B; Thigpen, Julius E

    2009-01-01

    Almost 40 y ago the scientific community was taking actions to control environmental factors that contribute to variation in the responses of laboratory animals to scientific manipulation. Laboratory animal diet was recognized as an important variable. During the 1970s, the American Institute of Nutrition, National Academy of Science, Institute of Laboratory Animal Resources, and Laboratory Animals Centre Diets Advisory Committee supported the use of ‘standard reference diets’ in biomedical research as a means to improve the ability to replicate research. As a result the AIN76 purified diet was formulated. During this same time, the laboratory animal nutritionist at the NIH was formulating open-formula, natural-ingredient diets to meet the need for standardized laboratory animal diets. Since the development of open-formula diets, fixed-formula and constant-nutrient–concentration closed-formula laboratory animal natural ingredient diets have been introduced to help reduce the potential variation diet can cause in research. PMID:19930817

  12. PREFACE: 3rd Iberian Meeting on Aerosol Science and Technology (RICTA 2015)

    NASA Astrophysics Data System (ADS)

    Orza, J. A. G.; Costa, M. J.

    2015-12-01

    The Third Iberian Meeting on Aerosol Science and Technology (RICTA 2015) was held in the city of Elche (province of Alicante, Spain) from 29 June to 1 July 2015, at Centro de Congresos Ciutat d'Elx. This event was organized and hosted by the Statistical and Computational Physics Laboratory (SCOLAb) of Universidad Miguel Hernández under the auspices of AECyTA, the Spanish Association for Aerosol Science and Technology Research. As in previous editions, the participation of young researchers was especially welcome, with the organization of the VI Summer School on Aerosol Science and Technology and awards for the best poster and PhD thesis, in recognition of outstanding research or presentations focusing on aerosols, during the early stage of their scientific career. RICTA 2015 aims to present the latest research and advances on the field of aerosols, as well as fostering interaction among the Portuguese and Spanish communities. The meeting gathered over 70 participants from 7 different countries, covering a wide range of aerosol science and technology. It included invited lectures, keynote talks, and several specialized sessions on different issues related to atmospheric aerosols, radiation, instrumentation, fundamental aerosol science, bioaerosols and health effects. The editors would like to express their sincere gratitude to all the participants, in particular, those who contributed to this special issue by submitting their papers to convey the current science discussed at RICTA 2015. In this special issue a series of peer-reviewed papers that cover a wide range of topics are presented: aerosol formation, emission, as well as aerosol composition in terms of physical and optical properties, spatial/temporal distribution of aerosol parameters, aerosol modeling and atmospheric effects, as well as instrumentation devoted to aerosol measurements. Finally, we also thank the referees for their valuable revision of these papers.

  13. Experiences of Mentors Training Underrepresented Undergraduates in the Research Laboratory

    ERIC Educational Resources Information Center

    Prunuske, Amy J.; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science…

  14. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    SciTech Connect

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    2001-04-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  15. III-V Infrared Research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Gunapala, S. D.; Ting, D. Z.; Hill, C. J.; Soibel, A.; Liu, John; Liu, J. K.; Mumolo, J. M.; Keo, S. A.; Nguyen, J.; Bandara, S. V.; Tidrow, M. Z.

    2009-01-01

    Jet Propulsion Laboratory is actively developing the III-V based infrared detector and focal plane arrays (FPAs) for NASA, DoD, and commercial applications. Currently, we are working on multi-band Quantum Well Infrared Photodetectors (QWIPs), Superlattice detectors, and Quantum Dot Infrared Photodetector (QDIPs) technologies suitable for high pixel-pixel uniformity and high pixel operability large area imaging arrays. In this paper we report the first demonstration of the megapixel-simultaneously-readable and pixel-co-registered dual-band QWIP focal plane array (FPA). In addition, we will present the latest advances in QDIPs and Superlattice infrared detectors at the Jet Propulsion Laboratory.

  16. An Improved Dielectric Constant Cell for Use in Student and Research Laboratories.

    ERIC Educational Resources Information Center

    Thompson, H. Bradford.; Walmsley, Judith A.

    1979-01-01

    Describes the latest stage in the design of an economical dielectric constant cell, tested in both instructional and research applications, that is suitable for student laboratories and for precision research measurements. (BT)

  17. Inter-comparison of laboratory smog chamber and flow reactor systems on organic aerosol yield and composition

    NASA Astrophysics Data System (ADS)

    Bruns, E. A.; El Haddad, I.; Keller, A.; Klein, F.; Kumar, N. K.; Pieber, S. M.; Corbin, J. C.; Slowik, J. G.; Brune, W. H.; Baltensperger, U.; Prévôt, A. S. H.

    2015-06-01

    A variety of tools are used to simulate atmospheric aging, including smog chambers and flow reactors. Traditional, large-scale smog chambers age emissions over the course of hours to days, whereas flow reactors rapidly age emissions using high oxidant concentrations to reach higher degrees of oxygenation than typically attained in smog chamber experiments. The atmospheric relevance of the products generated under such rapid oxidation warrants further study. However, no previously published studies have compared the yields and chemical composition of products generated in flow reactors and smog chambers from the same starting mixture. The yields and composition of the organic aerosol formed from the photo-oxidation of α-pinene and of wood-combustion emissions in a smog chamber (SC) and two flow reactors: a potential aerosol mass reactor (PAM) and a micro-smog chamber (MSC), were determined using aerosol mass spectrometry. Reactants were sampled from the SC and aged in the MSC and the PAM using a range of hydroxyl radical (OH) concentrations and then photo-chemically aged in the SC. The chemical composition, as well as the maximum yields and emission factors, of the products in both the α-pinene and wood-combustion systems determined with the PAM and the SC agreed reasonably well. High OH exposures have been shown previously to lower yields by breaking carbon-carbon bonds and forming higher volatility species, which reside largely in the gas phase; however, fragmentation in the PAM was not observed. The yields determined using the PAM for the α-pinene system were slightly lower than in the SC, possibly from increased wall losses of gas phase species due to the higher surface area to volume ratios in the PAM, even when offset with better isolation of the sampled flow from the walls. The α-pinene SOA results for the MSC were not directly comparable, as particles were smaller than the optimal AMS transmission range. The higher supersaturation in the flow reactors

  18. The Shortwave Solar Spectroradiometer - Hemispheric: A New ARM Instrument for Aerosol and Cloud Research

    NASA Astrophysics Data System (ADS)

    Barnard, J.; Flynn, C.; Ermold, B.

    2012-12-01

    The Shortwave Array Spectroradiometer - Hemispheric (SAS-He) is a ground-based, shadowband instrument that measures all three components of the shortwave irradiance: the total irradiance, the diffuse irradiance, and the direct normal irradiance. In this regard, the instrument is similar to the Multi-Filter Rotating Shadowband Radiometer (MFRSR) - an instrument that has been in the ACRF stable for more than 15 years. However, the two instruments differ significantly in wavelength resolution and range. In particular, the SAS measures the shortwave spectrum, from about 325 nm to 1700 nm at a wavelength resolution of about 1 to several nanometers, while the MFRSR only observes the spectrum in six discrete wavelength channels of about 10 nm in width. The markedly enhanced wavelength resolution and range of the SAS-He opens a new window of opportunity for studies that will significantly improve our understanding of cloud and aerosol optical properties in the shortwave spectrum. Additionally, the shadowband of the SAS-He is able to sweep across the irradiance sensor in small steps, and this permits the applications of new algorithms (Yin et al., 2011) that use the shape of the forward scattering lobe to infer the properties of aerosols and clouds. More specifically, these algorithms can remotely determine liquid/ice water path (LWP/IWP). Ground-based retrievals of LWP/IWP are particularly difficult for the important case of clouds with low optical thickness (Turner et al., 2007), and any advance in this area is significant. Moreover, the extended wavelength range of the SAS-He facilitates, for example, more reliable retrievals of aerosol size distributions, including the coarse mode. This is particularly important because the coarse mode is now gaining more prominence as an important factor in direct aerosol radiative forcing (Kassianov et al., 2012). Here we describe the key optical features of the SAS-He and data processing, including calibration of the instrument using

  19. Frontiers: Research Highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    DOE R&D Accomplishments Database

    1996-01-01

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  20. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    ERIC Educational Resources Information Center

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are…

  1. Review of Army Research Laboratory Programs for Historically Black Colleges and Universities and Minority Institutions

    ERIC Educational Resources Information Center

    National Academies Press, 2014

    2014-01-01

    "Review of Army Research Laboratory Programs for Historically Black Colleges and Universities and Minority Institutions" examines the ways in which historically black colleges and universities and minority institutions have used the Army Research Laboratory (ARL) funds to enhance the science, technology, engineering, and mathematics…

  2. Frontiers: Research highlights 1946-1996 [50th Anniversary Edition. Argonne National Laboratory

    SciTech Connect

    1996-12-31

    This special edition of 'Frontiers' commemorates Argonne National Laboratory's 50th anniversary of service to science and society. America's first national laboratory, Argonne has been in the forefront of U.S. scientific and technological research from its beginning. Past accomplishments, current research, and future plans are highlighted.

  3. A Molecular Genetics Laboratory Course Applying Bioinformatics and Cell Biology in the Context of Original Research

    ERIC Educational Resources Information Center

    Brame, Cynthia J.; Pruitt, Wendy M.; Robinson, Lucy C.

    2008-01-01

    Research based laboratory courses have been shown to stimulate student interest in science and to improve scientific skills. We describe here a project developed for a semester-long research-based laboratory course that accompanies a genetics lecture course. The project was designed to allow students to become familiar with the use of…

  4. Natural Gas Storage Research at Savannah River National Laboratory

    SciTech Connect

    Anton, Don; Sulic, Martin; Tamburello, David A.

    2015-05-04

    As an alternative to imported oil, scientists at the Department of Energy’s Savannah River National Laboratory are looking at abundant, domestically sourced natural gas, as an alternative transportation fuel. SRNL is investigating light, inexpensive, adsorbed natural gas storage systems that may fuel the next generation of automobiles.

  5. Adsorption of Phosphate on Goethite: An Undergraduate Research Laboratory Project

    ERIC Educational Resources Information Center

    Tribe, Lorena; Barja, Beatriz C.

    2004-01-01

    A laboratory experiment on the adsorption of phosphate on goethite is presented, which also includes discussion on surface properties, interfaces, acid-base equilibrium, molecular structure and solid state chemistry. It was seen that many students were able to produce qualitatively correct results for a complex system of real interest and they…

  6. Laboratory Directed Research and Development FY2010 Annual Report

    SciTech Connect

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  7. Introduction to Biological Research: A Laboratory Course in Microbiology

    ERIC Educational Resources Information Center

    Dudley, Aimee M.; Cardozo, David Lopes

    2006-01-01

    In this paper, the authors describe their development of an introductory laboratory course in microbiology that is geared towards students in grades 8-10. The course was developed as part of the Mentoring for Science Program at Harvard Medical School, an outreach program created by the Minority Faculty Development Program, directed towards…

  8. Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Prather, Kimberly A.; Hatch, Courtney D.; Grassian, Vicki H.

    2008-07-01

    Aerosols represent an important component of the Earth's atmosphere. Because aerosols are composed of solid and liquid particles of varying chemical complexity, size, and phase, large challenges exist in understanding how they impact climate, health, and the chemistry of the atmosphere. Only through the integration of field, laboratory, and modeling analysis can we begin to unravel the roles atmospheric aerosols play in these global processes. In this article, we provide a brief review of the current state of the science in the analysis of atmospheric aerosols and some important challenges that need to be overcome before they can become fully integrated. It is clear that only when these areas are effectively bridged can we fully understand the impact that atmospheric aerosols have on our environment and the Earth's system at the level of scientific certainty necessary to design and implement sound environmental policies.

  9. Free-space optical communications research and demonstrations at the U.S. Naval Research Laboratory.

    PubMed

    Rabinovich, W S; Moore, C I; Mahon, R; Goetz, P G; Burris, H R; Ferraro, M S; Murphy, J L; Thomas, L M; Gilbreath, G C; Vilcheck, M; Suite, M R

    2015-11-01

    Free-space optical communication can allow high-bandwidth data links that are hard to detect, intercept, or jam. This makes them attractive for many applications. However, these links also require very accurate pointing, and their availability is affected by weather. These challenges have limited the deployment of free-space optical systems. The U.S. Naval Research Laboratory has, for the last 15 years, engaged in research into atmospheric propagation and photonic components with a goal of characterizing and overcoming these limitations. In addition several demonstrations of free-space optical links in real-world Navy applications have been conducted. This paper reviews this work and the principles guiding it.

  10. Copper oxide aerosol: generation and characterization.

    PubMed

    Peoples, S M; McCarthy, J F; Chen, L C; Eppelsheimer, D; Amdur, M O

    1988-06-01

    Effluent gases from high temperature systems such as fossil fuel combustion and pyrometallurgical processes contain inorganic material which has the potential to interact with sulfur dioxide (SO2) on the surface of particles to form an irritant aerosol. The submicron fraction of this inorganic material is especially important as the fine particles may penetrate deep into the lung and cause serious health effects. A laboratory furnace was designed to produce a submicrometer copper oxide aerosol to stimulate emissions from copper smelters and other pyrometallurgical operations. The ultimate aim of this research is to investigate the interaction of SO2 and the copper oxide aerosol at different temperatures and humidities in order to determine the reaction products and their potential health effects upon inhalation. The initial work, as presented in this paper, was to reproducibly generate a submicrometer copper oxide aerosol and to characterize it in terms of size, morphology and composition. Two experimental regimes were set up. One admitted filtered air, without water vapor, into the furnace, and the other admitted filtered air and water vapor. The size and morphology of the aerosols were determined using an electrical aerosol analyzer and transmission electron microscopy. The particles appear as chain aggregates with a count median diameter of 0.026 micron when no water vapor was added and 0.031 micron when water vapor was added into the furnace. Composition of the aerosol was determined using x-ray photoelectron spectroscopy. The aerosol, with or without water in the furnace, consists of a mixture of copper(I) oxide and copper(II) hydroxide. PMID:3400592

  11. The management of research institutions: A look at government laboratories

    NASA Technical Reports Server (NTRS)

    Mark, H.; Levine, A.

    1984-01-01

    Technology development; project management; employment patterns; research productivity; legal status of support services; functions of senior executives; the role of the sponsoring agency; research diversification; obstacles to technical innovation; organizational structures; and personnel management are addressed.

  12. Use of Laboratory Animals in Biomedical and Behavioral Research.

    ERIC Educational Resources Information Center

    Ministry of Education, Addis Ababa (Ethiopia).

    The use of animals in scientific research has been a controversial issue for over a hundred years. Research with animals has saved human lives, lessened human suffering, and advanced scientific understanding, yet that same research can cause pain and distress for the animals involved and may result in their death. It is hardly surprising that…

  13. Resident research associateships. Postdoctoral and senior research awards: Opportunities for research at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Opportunities for research as part of NASA-sponsored programs at the JPL cover: Earth and space sciences; systems; telecommunications science and engineering; control and energy conversion; applied mechanics; information systems; and observational systems. General information on applying for an award for tenure as a guest investigator, conditions, of the award, and details of the application procedure are provided.

  14. Mechanisms of Formation of Secondary Organic Aerosols and Implications for Global Radiative Forcing

    SciTech Connect

    John H. Seinfeld

    2011-12-08

    Organic material constitutes about 50% of global atmospheric aerosol mass, and the dominant source of organic aerosol is the oxidation of volatile hydrocarbons, to produce secondary organic aerosol (SOA). Understanding the formation of SOA is crucial to predicting present and future climate effects of atmospheric aerosols. The goal of this program is to significantly increase our understanding of secondary organic aerosol (SOA) formation in the atmosphere. Ambient measurements indicate that the amount of SOA in the atmosphere exceeds that predicted in current models based on existing laboratory chamber data. This would suggest that either the SOA yields measured in laboratory chambers are understated or that all major organic precursors have not been identified. In this research program we are systematically exploring these possibilities.

  15. Micromachined sensor and actuator research at the Microelectronics Development Laboratory

    SciTech Connect

    Smith, J.H.; Barron, C.C.; Fleming, J.G.; Montague, S.; Rodriguez, J.L.; Smith, B.K.; Sniegowski, J.J.

    1994-12-31

    An overview of the major sensor and actuator projects using the micromachining capabilities of the Microelectronics Development Laboratory at Sandia National Laboratories is presented. Development efforts are underway for a variety of micromechanical devices and control electronics for those devices. Surface micromachining is the predominant technology under development. Pressure sensors based on silicon nitride diaphragms have been developed. Hot polysilicon filaments for calorimetric gas sensing have been developed. Accelerometers based upon high-aspect ratio surface micromachining are under development. Actuation mechanisms employing either electrostatic or steam power are being combined with a three-level active (plus an additional passive level) polysilicon surface micromachining process to couple these actuators to external devices. Results of efforts toward integration of micromechanics with the driving electronics for actuators or the amplification/signal processing electronics for sensors is also described. This effort includes a tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing.

  16. Materials research at selected Japanese laboratories. Based on a 1992 visit: Overview, summary of highlights, notes on laboratories and topics

    SciTech Connect

    Not Available

    1994-02-01

    I visited Japan from June 29 to August 1, 1992. The purpose of this visit was to assess the status of materials science research at selected governmental, university and industrial laboratories and to established acquaintances with Japanese researchers. The areas of research covered by these visits included ceramics, oxide superconductors, intermetallics alloys, superhard materials and diamond films, high-temperature materials and properties, mechanical properties, fracture, creep, fatigue, defects, materials for nuclear reactor applications and irradiation effects, high pressure synthesis, self-propagating high temperature synthesis, microanalysis, magnetic properties and magnetic facilities, and surface science.

  17. Laboratory Directed Research and Development Annual Report for 2009

    SciTech Connect

    Hughes, Pamela J.

    2010-03-31

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  18. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1992-01-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  19. The High Temperature Materials Laboratory: A research and user facility at the Oak Ridge National Laboratory

    SciTech Connect

    Not Available

    1992-12-01

    HTML is a modern facility for high-temperature ceramic research; it is also a major user facility, providing industry and university communities access to special research equipment for studying microstructure and microchemistry of materials. User research equipment is divided among six User Centers: Materials Analysis, X-ray Diffraction, Physical Properties, Mechanical Properties, Ceramic Specimen Preparation, and Residual Stress. This brochure provides brief descriptions of each of the major research instruments in the User Centers: scanning Auger microprobe, field emission SEMs, electron microprobe, multitechnique surface analyzer, analytical electron microscope, HRTEM, optical microscopy & image analysis, goniometer, scanning calorimetry, simultaneous thermal analysis, thermal properties (expansion, diffusivity, conductivity), high-temperature tensile test facilities, flexure, electromechanical test facilities (flexure, compression creep, environmental), microhardness microprobe, ceramic machining. Hands-on operation by qualified users is encouraged; staff is available. Both proprietary and nonproprietary research may be performed; the former on full cost recovery basis.

  20. The Current Status of Remote Sensing of Aerosols and Clouds in China

    NASA Astrophysics Data System (ADS)

    Xue, Yong; Li, Chi

    2013-04-01

    Atmospheric aerosols play a critical role in the global radiation balance, while they are still not well understood due to their mal-distribution and rapid variation in terms of both spatial and temporal dimensions, therefore regarded as one of the main uncertainties in meteorological and other related fields of research, urgently calling for comprehensive observations and studies, including remote sensing techniques. Unlike laboratory sampling and analysis, remote sensing is a modern observation technique detecting electromagnetic signals interacted with aerosols. Satellite remote sensing is an ideal way to gain knowledge of aerosol properties, e.g. the aerosol optical depth (AOD), for its large spatial coverage and high cycling frequency. But many research works have shown that for China, the most popular AOD products were an overestimation for small AOD and underestimation for high AOD. Both daily and monthly AOD retrievals showed poor performance in extreme aerosol conditions, e.g. under dust events or heavy urban/industrial haze. This is because of complex heterogeneity of land surface in China. In recent years Chinese researchers have made great contributions to the developments and applications of remote sensing technique for aerosol observation and cloud research. In this paper, main progresses are comprehensively summarized, which can be divided in terms of three main research directions — satellite retrieval, ground based observation, and product evaluation and applications. The current ongoing projects about the aerosol and cloud research in China are also presented Keywords: Aerosol remote sensing, satellite retrieval, ground based observation, China

  1. In situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Corrigan, A. L.; Junninen, H.; Ehn, M.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Russell, L. M.; Williams, J.; Hoffmann, T.

    2013-11-01

    The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland, is presented. The focus lies on online measurements of organic acids, which were achieved by using atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (IT-MS). These measurements were accompanied by aerosol mass spectrometry (AMS) measurements and Fourier transform infrared spectroscopy (FTIR) of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas-phase measurements solely and measuring the sum of gas and particle phase. The AMS measurements of C, H and O elemental composition show that the aerosol during the campaign was highly oxidized, which appears reasonable due to high and prolonged radiation during the boreal summer measurement period as well as the long transport times of some of the aerosol. In order to contrast ambient and laboratory aerosol, an average organic acid pattern, measured by APCI-IT-MS during the campaign, was compared to terpene ozonolysis products in a laboratory reaction chamber. Identification of single organic acid species remains a major challenge due to the complexity of the boreal forest aerosol. Unambiguous online species identification was attempted by the combinatorial approach of identifying unique fragments in the MS2 mode of standards, and then comparing these results with MS2 field spectra. During the campaign, unique fragments of limonene-derived organic acids (limonic acid and ketolimononic acid) and of the biomass burning tracer vanillic acid were detected. Other specific fragments (neutral loss of 28 Da) in the MS2 suggest the occurrence of semialdehydes. Furthermore, an approach to determine the average molecular weight of the aerosol is presented. The campaign average organic molecular weight was determined to be 300 g mol-1. However, a plume of aged biomass burning aerosol, arriving at Hyytiälä from Russia

  2. In-situ submicron organic aerosol characterization at a boreal forest research station during HUMPPA-COPEC 2010 using soft and hard ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    Vogel, A. L.; Äijälä, M.; Corrigan, A. L.; Junninen, H.; Ehn, M.; Petäjä, T.; Worsnop, D. R.; Kulmala, M.; Russell, L. M.; Williams, J.; Hoffmann, T.

    2013-07-01

    The chemical composition of submicron aerosol during the comprehensive field campaign HUMPPA-COPEC 2010 at Hyytiälä, Finland is presented. The focus lies on online measurements of organic acids, which was achieved by using atmospheric pressure chemical ionization (APCI) ion trap mass spectrometry (IT-MS). These measurements were accompanied by Aerosol Mass Spectrometry (AMS) measurements and Fourier-Transform Infrared Spectroscopy (FTIR) of filter samples, all showing a high degree of correlation. The soft ionization mass spectrometer alternated between gas phase measurements solely and measuring the sum of gas- and particle-phase. The AMS measurements of C, H and O elemental composition show that the aerosol during the campaign was highly oxidized, which appears reasonable due to high and prolonged radiation during the boreal summer measurement period as well as the long transport times of some of the aerosol. In order to contrast ambient and laboratory aerosol, an average organic acid pattern, measured by APCI-IT-MS during the campaign, was compared to terpene ozonolysis products in a laboratory reaction chamber. Identification of single organic acid species remains a major challenge due to the complexity of the boreal forest aerosol. Unambiguous online species identification was attempted by the combinatorial approach of identifying unique fragments in the MS2-mode of standards, and then comparing these results with MS2 field spectra. During the campaign, unique fragments of limonene derived organic acids (limonic acid and ketolimononic acid) and of the biomass burning tracer vanillic acid were detected. Other specific fragments (neutral loss of 28 Da) in the MS2 suggest the occurrence of semialdehydes. Furthermore, an approach to determine the average molecular weight of the aerosol is presented. The campaign average organic molecular weight was determined to be 300 g mol-1. However, a plume of aged biomass burning aerosol, arriving at Hyytiälä from Russia

  3. National Renewable Energy Laboratory (NREL) 2006 Research Review

    SciTech Connect

    Not Available

    2007-07-01

    This 2006 issue of the NREL Research Review again reveals just how vital and diverse our research portfolio has become. Our feature story looks at how our move to embrace the tenants of "translational research" is strengthening our ability to meet the nation's energy goals. By closing the gap between basic science and applied research and development (R&D)--and focusing a bright light on the valuable end uses of our work--translational research promises to shorten the time it takes to push new technology off the lab bench and into the marketplace. This issue also examines our research into fuels of the future and our computer modeling of wind power deployment, both of which point out the real-world benefits of our work.

  4. Semiconductor research capabilities at the Lawrence Berkeley Laboratory

    SciTech Connect

    Not Available

    1987-02-01

    This document discusses semiconductor research capabilities (advanced materials, processing, packaging) and national user facilities (electron microscopy, heavy-ion accelerators, advanced light source). (DLC)

  5. Environmental research program: FY 1987, annual report

    SciTech Connect

    Not Available

    1988-03-01

    This multidisciplinary research program includes fundamental and applied research in physics, chemistry, engineering, and biology, as well as research on the development of advanced methods of measurement and analysis. The Program's Annual Report contains summaries of research performed during FY 1987 in the areas of atmospheric aerosols, flue gas chemistry, combustion, membrane bioenergetics, and analytical chemistry. The main research interests of the Atmospheric Aerosol Research group concern the chemical and physical processes that occur in haze, clouds, and fogs. For their studies, the group is developing novel analytical and research methods for characterizing aerosol species. Aerosol research is performed in the laboratory and in the field. Studies of smoke emissions from fires and their possible effects on climatic change, especially as related to nuclear winter, are an example of the collaboration between the Atmospheric Aerosol Research and Combustion Research Groups.

  6. Authorship Guidance in a Federal Research Laboratory: A Case Study

    EPA Science Inventory

    As science has become more specialized and collaborative, a need has emerged for research organizations to develop authorship guidance that can be shared and discussed with potential collaborators. We present the guidance developed for a United States (U.S.) federal research labo...

  7. Integrated Laboratories: Laying the Foundation for Undergraduate Research Experiences

    ERIC Educational Resources Information Center

    Dillner, Debra K.; Ferrante, Robert F.; Fitzgerald, Jeffrey P.; Schroeder, Maria J.

    2011-01-01

    Interest in undergraduate student research has grown in response to initiatives from various professional societies and educational organizations. Participation in research changes student attitudes towards courses as they realize the utility and relevance of what they are learning. At the U.S. Naval Academy, the chemistry majors' curriculum was…

  8. MOOCs as a Massive Research Laboratory: Opportunities and Challenges

    ERIC Educational Resources Information Center

    Diver, Paul; Martinez, Ignacio

    2015-01-01

    Massive open online courses (MOOCs) offer many opportunities for research into several topics related to pedagogical methods and student incentives. In the context of over 20 years of online learning research, we discuss lessons to be learned from observational comparisons and experiments on randomly chosen groups of students. We target two MOOCs…

  9. University of Illinois at Urbana-Champaign, Materials Research Laboratory progress report for FY 1991

    SciTech Connect

    Not Available

    1991-10-01

    The Materials Research Laboratory at the University of Illinois is an interdisciplinary laboratory operated in the College of Engineering. Its focus is the science of materials and it supports research in the areas of condensed matter physics, solid state chemistry, and materials science. This report addresses topics such as: an MRL overview; budget; general programmatic and institutional issues; new programs; research summaries for metallurgy, ceramics, solid state physics, and materials chemistry.

  10. Disease Diagnostics Research at Los Alamos National Laboratory

    SciTech Connect

    Mukundan, Harshini

    2015-04-10

    Human evolution and persistent diseases have existed side-by-side. A recent concern is the re-emergence of tuberculosis, one of the oldest and most challenging diseases known to man. Effective diagnosis can save lives and prevent its spread. This talk will cover how our immune system discriminates between itself and foreign entities and how a new laboratory and nature inspired strategy can detect tuberculosis equally well in human and animal populations. The approach is being extended to other applications such as the identification of strep throat and respiratory infections.

  11. Future directions for research in laboratory medicine: the findings of a Delphi survey of stakeholders.

    PubMed

    Maibach, H; Keenlyside, R; Fitzmaurice, D; Brogan, D; Essien, J

    1998-01-01

    In July 1995, we asked 101 experts to anticipate future areas for research in clinical laboratory medicine using a modified Delphi survey approach. The panel included academicians, clinical laboratory professionals, laboratory managers, practicing physicians public health officials, hospital administrators, and representatives of manufacturing industries, managed care organizations, commercial laboratories, and government health agencies. The participants predicted fewer laboratories, more automation, and fewer skilled staff needed in the future. The consensus was that laboratory quality assurance will focus on patient outcomes and be benchmarked against peer groups. They agreed that quality assurance routinely will be integrated into testing kits. Measures derived from medical informatics, such as outcomes analysis and utilization statistics, will become a standard feature of health care. A major area of concern was the effect that reorganizing health care and striving for cost containment will have on laboratory services. These views were consistent with those expressed by participants at a CDC conference on the frontiers of laboratory medicine research held shortly after the study was completed. These topics by now are familiar to most laboratory professionals, and we urge them to explore the many research issues raised with their colleagues in their clinical laboratories, health-care organizations, and industry.

  12. Results from simulated upper-plenum aerosol transport and aerosol resuspension experiments

    SciTech Connect

    Wright, A.L.; Pattison, W.L.

    1984-01-01

    Recent calculational results published as part of the Battelle-Columbus BMI-2104 source term study indicate that, for some LWR accident sequences, aerosol deposition in the reactor primary coolant system (PCS) can lead to significant reductions in the radionuclide source term. Aerosol transport and deposition in the PCS have been calculated in this study using the TRAP-MELT 2 computer code, which was developed at Battelle-Columbus; the status of validation of the TRAP-MELT 2 code has been described in an Oak Ridge National Laboratory (ORNL) report. The objective of the ORNL TRAP-MELT Validation Project, which is sponsored by the Fuel Systems Behavior Research Branch of the US Nuclear Regulatory Commission, is to conduct simulated reactor-vessel upper-plenum aerosol deposition and transport tests. The results from these tests will be used in the ongoing effort to validate TRAP-MELT 2. The TRAP-MELT Validation Project includes two experimental subtasks. In the Aerosol Transport Tests, aerosol transport in a vertical pipe is being studied; this geometry was chosen to simulate aerosol deposition and transport in the reactor-vessel upper-plenum. To date, four experiments have been performed; the results from these tests are presented in this paper. 7 refs., 4 figs., 4 tabs.

  13. Bridging the Gap between Instructional and Research Laboratories: Teaching Data Analysis Software Skills through the Manipulation of Original Research Data

    ERIC Educational Resources Information Center

    Hansen, Sarah J. R.; Zhu, Jieling; Karch, Jessica M.; Sorrento, Cristina M.; Ulichny, Joseph C.; Kaufman, Laura J.

    2016-01-01

    The gap between graduate research and introductory undergraduate teaching laboratories is often wide, but the development of teaching activities rooted within the research environment offers an opportunity for undergraduate students to have first-hand experience with research currently being conducted and for graduate students to develop…

  14. Pacific Northwest Laboratory: Director`s overview of research performed for DOE Office of Health And Environmental Research

    SciTech Connect

    1995-06-01

    A significant portion of the research undertaken at Pacific Northwest Laboratory (PNL) is focused on the strategic programs of the US Department of Energy`s (DOE) Office of Health and Environmental Research (OHER). These programs, which include Environmental Processes (Subsurface Science, Ecosystem Function and Response, and Atmospheric Chemistry), Global Change (Climate Change, Environmental Vulnerability, and Integrated Assessments), Biotechnology (Human Genome and Structural Biology), and Health (Health Effects and Medical Applications), have been established by OHER to support DOE business areas in science and technology and environmental quality. PNL uses a set of critical capabilities based on the Laboratory`s research facilities and the scientific and technological expertise of its staff to help OHER achieve its programmatic research goals. Integration of these capabilities across the Laboratory enables PNL to assemble multidisciplinary research teams that are highly effective in addressing the complex scientific and technical issues associated with OHER-sponsored research. PNL research efforts increasingly are focused on complex environmental and health problems that require multidisciplinary teams to address the multitude of time and spatial scales found in health and environmental research. PNL is currently engaged in research in the following areas for these OHER Divisions: Environmental Sciences -- atmospheric radiation monitoring, climate modeling, carbon cycle, atmospheric chemistry, ecological research, subsurface sciences, bioremediation, and environmental molecular sciences; Health Effects and Life Sciences -- cell/molecular biology, and biotechnology; Medical Applications and Biophysical Research -- analytical technology, and radiological and chemical physics. PNL`s contributions to OHER strategic research programs are described in this report.

  15. Present progress and future research in the relativistic klystron amplifier program at the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Friedman, Moshe; Serlin, Victor; Lampe, Martin; Hubbard, Richard F.

    1994-05-01

    This paper addresses the development of the relativistic klystron amplifier (RKA) which is a high power microwave (HPM) source. This source was invented at the Naval Research Laboratory and developed during the last ten years. The present RKA has a 50 db gain and is operated at a frequency of 1.3 GHz with a peak output power > 10 GW and with an efficiency > 35%. However this HPM amplifier is rather large and expensive for many applications. Moreover, extending the frequency of the NRL RKA to frequencies above 3.5 GHz was not fully successful. Recently, it was suggested that incorporation of two modifications to the RKA technology should improve the capabilities of the present NRL HPM source by orders of magnitude and extend the operational frequency to X-band. These improvements enhance the potential for successful and effective military and civilian applications. These modifications are described.

  16. Characterization of a Photoacoustic Aerosol Absorption Spectrometer for Aircraft-based Measurements

    NASA Astrophysics Data System (ADS)

    Mason, B. J.; Wagner, N. L.; Richardson, M.; Brock, C. A.; Murphy, D. M.; Adler, G.

    2015-12-01

    Atmospheric aerosol directly impacts the Earth's climate through extinction of incoming and outgoing radiation. The optical extinction is due to both scattering and absorption. In situ measurements of aerosol extinction and scattering are well established and have uncertainties less than 5%. However measurements of aerosol absorption typically have uncertainties of 20-30%. Development and characterization of more accurate and precise instrumentation for measurement of aerosol absorption will enable a deeper understand of significance and spatial distribution of black and brown carbon aerosol, the effect of atmospheric processes on aerosol optical properties, and influence of aerosol optical properties on direct radiative forcing. Here, we present a detailed characterization of a photoacoustic aerosol absorption spectrometer designed for deployment aboard research aircraft. The spectrometer operates at three colors across the visible spectrum and is calibrated in the field using ozone. The field calibration is validated in the laboratory using synthetic aerosol and simultaneous measurements of extinction and scattering. In addition, the sensitivity of the instrument is characterized under conditions typically encountered during aircraft sampling e.g. as a function of changing pressure. We will apply this instrument characterization to ambient aerosol absorption data collected during the SENEX and SEAC4RS aircraft based field campaigns.

  17. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    This SBIR Phase I project addressed the critical need for improved characterization of carbonaceous aerosol species in the atmosphere. The proposed work focused on the development of a thermodenuder (TD) system capable of systematically measuring volatility profiles of primary and secondary organic aerosol species and providing insight into the effects of absorbing and nonabsorbing organic coatings on particle absorption properties. This work provided the fundamental framework for the generation of essential information needed for improved predictions of ambient aerosol loadings and radiative properties by atmospheric chemistry models. As part of this work, Aerodyne Research, Inc. (ARI) continued to develop and test, with the final objective of commercialization, an improved thermodenuder system that can be used in series with any aerosol instrument or suite of instruments (e.g., aerosol mass spectrometers-AMS, scanning mobility particle sizers-SMPS, photoacoustic absorption spectrometers-PAS, etc.) to obtain aerosol chemical, physical, and optical properties as a function of particle volatility. In particular, we provided the proof of concept for the direct coupling of our improved TD design with a full microphysical model to obtain volatility profiles for different organic aerosol components and to allow for meaningful comparisons between different TD-derived aerosol measurements. In a TD, particles are passed through a heated zone and a denuding (activated charcoal) zone to remove semi-volatile material. Changes in particle size, number concentration, optical absorption, and chemical composition are subsequently detected with aerosol instrumentation. The aerosol volatility profiles provided by the TD will strengthen organic aerosol emission inventories, provide further insight into secondary aerosol formation mechanisms, and provide an important measure of particle absorption (including brown carbon contributions and identification, and absorption enhancements

  18. CANCELLATION OF PRINT JOURNALS AT A NATIONAL RESEARCH LABORATORY

    SciTech Connect

    C. L. HOOVER

    2001-04-01

    By de-emphasizing the print journal collection our organization has been able to accomplish several goals: provide access to additional digital resources through cost savings; support customers' requirements for information at the desktop; reduce staff costs; free staff time for higher level tasks; and reduce space costs. Print journal cancellations have now become incorporated into the regular routine of our library. We have a proven process in place that we can rely on to provide sound decisions. We have been aided in our successful accomplishments by the enormous support of our customers, our Library Advisory Board and laboratory management. Opportunities and challenges will continue to present themselves as our organization continues to emphasize digital resources over print.

  19. Fire Protection Research Program at Sandia Laboratories. [BWR; PWR

    SciTech Connect

    Klamerus, L.J.

    1980-01-01

    Sandia Laboratories is executing a program for the Nuclear Regulatory Commission to provide data needed for confirmation of the suitability of current design standards and regulatory guides for fire protection and control in water reactor power plants. This paper summarizes the activities of this ongoing program through December 1979. Characterization of electrically initiated fires revealed a margin of safety in the separation criteria of Regulatory Guide 1.75 for such fires in IEEE-383 qualified cable. However, tests confirmed that these guidelines and standards are not sufficient, in themselves, to protect against exposure fires. This paper describes both small and full scale tests to assess the adequacy of fire retardant coatings and full scale tests on fire shields to determine their effectiveness. It also describes full scale tests to determine the effects of walls and ceilings on fire propagation between cable trays.

  20. Micro-Raman spectroscopy in the undergraduate research laboratory

    NASA Astrophysics Data System (ADS)

    Voor, R.; Chow, L.; Schulte, A.

    1994-05-01

    Modern materials science requires processing and characterization techniques for microscopic structures. Molecular probes such as Raman spectroscopy are some of the most viable tools, particularly if they are supplemented by imaging to obtain spatially resolved compositional information of inhomogeneous or low volume samples. In order to introduce these techniques and materials science experiments into the advanced undergraduate laboratory, we have constructed an inexpensive micro-Raman attachment, which consists of an off-the-shelf microscope and the coupling optics to an existing Raman spectrometer. The modification of the microscope, the optical coupling, and a low cost viewing system for positioning the laser excitation on the sample are described in detail. The students study molecular spectra of new materials such as diamond films, Fullerenes, and biological compounds with spatial resolution of several microns.