Science.gov

Sample records for aerosol residence time

  1. The effect of residence time on the dynamics of a condensating aerosol in a Hiemenz-type stagnation flow

    NASA Astrophysics Data System (ADS)

    Alshaarawi, Amjad; Zhou, Kun; Scribano, Gianfranco; Attili, Antonio; Bisetti, Fabrizio; Clean Combustion Research Center Team

    2013-11-01

    The effect of residence time on the formation and growth of a condensating aerosol is simulated in a Hiemenz-type stagnation flow setup, for which a unique and well-defined time scale characterizes the velocity field. In this configuration, a hot stream saturated with dibutyle phthalate (DBP) vapor mixes with a cold dry stream. A mixing layer forms at the stagnation plane triggering supersaturation and droplets are generated by homogeneous nucleation. Aerosol dynamics are simulated using the Quadrature Method of Moments (QMOM). Two regimes related to the flow residence time are observed, i.e., a nucleation regime and a condensation regime. The nucleation regime, at short residence times, is characterized by the consumption of DBP vapor into droplets having a negligible effect on the vapor phase. In this regime, both the number density and volume fraction of droplets increase with residence time. In the condensation regime, at long residence times, vapor condensation consumes the vapor phase considerably. For longer residence times, more vapor is consumed, resulting in lower number densities due to the lower nucleation rates, whereas the volume fraction saturates.

  2. Residence times of fine tropospheric aerosols as determined by {sup 210}Pb progeny.

    SciTech Connect

    Marley, N. A.; Gaffney, J. S.; Drayton, P. J.; Cunningham, M. M.; Mielcarek, C.; Ravelo, R.; Wagner, C.

    1999-10-05

    Fine tropospheric aerosols can play important roles in the radiative balance of the atmosphere. The fine aerosols can act directly to cool the atmosphere by scattering incoming solar radiation, as well as indirectly by serving as cloud condensation nuclei. Fine aerosols, particularly carbonaceous soots, can also warm the atmosphere by absorbing incoming solar radiation. In addition, aerosols smaller than 2.5 {micro}m have recently been implicated in the health effects of air pollution. Aerosol-active radioisotopes are ideal tracers for the study of atmospheric transport processes. The source terms of these radioisotopes are relatively well known, and they are removed from the atmosphere only by radioactive decay or by wet or dry deposition of the host aerosol. The progeny of the primordial radionuclide {sup 238}U are of particular importance to atmospheric studies. Uranium-238 is common throughout Earth's crust and decays to the inert gas {sup 222}Rn, which escapes into the atmosphere. Radon-222 decays by the series of alpha and beta emissions shown in Figure 1 to the long-lived {sup 210}Pb. Once formed, {sup 210}Pb becomes attached to aerosol particles with average attachment times of 40 s to 3 min.

  3. Transport and residence times of tropospheric aerosols inferred from a global three-dimensional simulation of Pb-210

    NASA Technical Reports Server (NTRS)

    Balkanski, Yves J.; Jacob, Daniel J.; Gardner, Geraldine M.; Graustein, William C.; Turekian, Karl K.

    1993-01-01

    A global three-dimensional model is used to investigate the transport and tropospheric residence time of Pb-210, an aerosol tracer produced in the atmosphere by radioactive decay of Rn-222 emitted from soils. The model uses meteorological input with 4 deg x 5 deg horizontal resolution and 4-hour temporal resolution from the Goddard Institute for Space Studies general circulation model (GCM). It computes aerosol scavenging by convective precipitation as part of the wet convective mass transport operator in order to capture the coupling between vertical transport and rainout. Scavenging in convective precipitation accounts for 74% of the global Pb-210 sink in the model; scavenging in large-scale precipitation accounts for 12%, and scavenging in dry deposition accounts for 14%. The model captures 63% of the variance of yearly mean Pb-210 concentrations measured at 85 sites around the world with negligible mean bias, lending support to the computation of aerosol scavenging. There are, however, a number of regional and seasonal discrepancies that reflect in part anomalies in GCM precipitation. Computed residence times with respect to deposition for Pb-210 aerosol in the tropospheric column are about 5 days at southern midlatitudes and 10-15 days in the tropics; values at northern midlatitudes vary from about 5 days in winter to 10 days in summer. The residence time of Pb-210 produced in the lowest 0.5 km of atmosphere is on average four times shorter than that of Pb-210 produced in the upper atmosphere. Both model and observations indicate a weaker decrease of Pb-210 concentrations between the continental mixed layer and the free troposphere than is observed for total aerosol concentrations; an explanation is that Rn-222 is transported to high altitudes in wet convective updrafts, while aerosols and soluble precursors of aerosols are scavenged by precipitation in the updrafts. Thus Pb-210 is not simply a tracer of aerosols produced in the continental boundary layer, but

  4. Coagulation effect on the activity size distributions of long lived radon progeny aerosols and its application to atmospheric residence time estimation techniques.

    PubMed

    Anand, S; Mayya, Y S

    2015-03-01

    The long lived naturally occurring radon progeny species in the atmosphere, namely (210)Pb, (210)Bi and (210)Po, have been used as important tracers for understanding the atmospheric mixing processes and estimating aerosol residence times. Several observations in the past have shown that the activity size distribution of these species peaks at larger particle sizes as compared to the short lived radon progeny species - an effect that has been attributed to the process of coagulation of the background aerosols to which they are attached. To address this issue, a mathematical equation is derived for the activity-size distribution of tracer species by formulating a generalized distribution function for the number of tracer atoms present in coagulating background particles in the presence of radioactive decay and removal. A set of these equations is numerically solved for the progeny chain using Fuchs coagulation kernel combined with a realistic steady-state aerosol size spectrum that includes nucleation, accumulation and coarse mode components. The important findings are: (i) larger shifts in the modal sizes of (210)Pb and (210)Po at higher aerosol concentrations such as that found in certain Asian urban regions (ii) enrichment of tracer specific activity on particles as compared to that predicted by pure attachment laws (iii) sharp decline of daughter-to-parent activity ratios for decreasing particle sizes. The implication of the results to size-fractionated residence time estimation techniques is highlighted. A coagulation corrected graphical approach is presented for estimating the residence times from the size-segregated activity ratios of (210)Bi and (210)Po with respect to (210)Pb. The discrepancy between the residence times predicted by conventional formula and the coagulation corrected approach for specified activity ratios increases at higher atmospheric aerosol number concentrations (>10(10) #/m(3)) for smaller sizes (<1 μm). The results are further

  5. Aerosol residence times and changes in radioiodine-131I and radiocaesium-137 Cs activity over Central Poland after the Fukushima-Daiichi Nuclear reactor accident.

    PubMed

    Długosz-Lisiecka, Magdalena; Bem, Henryk

    2012-05-01

    The first detectable activities of radioiodine (131)I, and radiocaesium (134)Cs and (137)Cs in the air over Central Poland were measured in dust samples collected by the ASS-500 station in the period of 21(st) to 24(th) of March, 2011. However, the highest activity of both fission products, (131)I and (137)Cs: 8.3 mBq m(-3) and 0.75 mBq m(-3), respectively, were obtained in the samples collected on 30(th) March, i.e.∼18 days after the beginning of the fission products' discharge from the damaged units of the Fukushima Daiichi Nuclear Power Plant. The simultaneously determined corrected aerosol residence time for the same samples by (210)Pb/(210)Bi and (210)Pb/(210)Po methods was equal to 10 days. Additionally, on the basis of the activity ratio of two other natural cosmogenic radionuclides, (7)Be and (22)Na in these aerosol samples, it was possible to estimate the aerosol residence time at ∼150 days for the solid particles coming from the stratospheric fallout. These data, as well as the differences in the activity size distribution of (7)Be and (131)I in the air particulate matter, show, in contrast to the Chernobyl discharge, a negligible input of stratospheric transport of Fukushima-released fission products.

  6. Secondary organic aerosol formation by limonene ozonolysis: Parameterizing multi-generational chemistry in ozone- and residence time-limited indoor environments

    NASA Astrophysics Data System (ADS)

    Waring, Michael S.

    2016-11-01

    Terpene ozonolysis reactions can be a strong source of secondary organic aerosol (SOA) indoors. SOA formation can be parameterized and predicted using the aerosol mass fraction (AMF), also known as the SOA yield, which quantifies the mass ratio of generated SOA to oxidized terpene. Limonene is a monoterpene that is at sufficient concentrations such that it reacts meaningfully with ozone indoors. It has two unsaturated bonds, and the magnitude of the limonene ozonolysis AMF varies by a factor of ∼4 depending on whether one or both of its unsaturated bonds are ozonated, which depends on whether ozone is in excess compared to limonene as well as the available time for reactions indoors. Hence, this study developed a framework to predict the limonene AMF as a function of the ozone [O3] and limonene [lim] concentrations and the air exchange rate (AER, h-1), which is the inverse of the residence time. Empirical AMF data were used to calculate a mixing coefficient, β, that would yield a 'resultant AMF' as the combination of the AMFs due to ozonolysis of one or both of limonene's unsaturated bonds, within the volatility basis set (VBS) organic aerosol framework. Then, β was regressed against predictors of log10([O3]/[lim]) and AER (R2 = 0.74). The β increased as the log10([O3]/[lim]) increased and as AER decreased, having the physical meaning of driving the resultant AMF to the upper AMF condition when both unsaturated bonds of limonene are ozonated. Modeling demonstrates that using the correct resultant AMF to simulate SOA formation owing to limonene ozonolysis is crucial for accurate indoor prediction.

  7. Daily variation of radon gas and its short-lived progeny concentration near ground level and estimation of aerosol residence time

    NASA Astrophysics Data System (ADS)

    M, Mohery; A, M. Abdallah; A, Ali; S, S. Baz

    2016-05-01

    Atmospheric concentrations of radon (222Rn) gas and its short-lived progenies 218Po, 214Pb, and 214Po were continuously monitored every four hours at the ground level in Jeddah city, Kingdom of Saudi Arabia. The measurements were performed three times every week, starting from November 2014 to October 2015. A method of electrostatic precipitation of positively charged 218Po and 214Po by a positive voltage was applied for determining 222Rn gas concentration. The short-lived 222Rn progeny concentration was determined by using a filter holder connected with the alpha-spectrometric technique. The meteorological parameters (relative air humidity, air temperature, and wind speed) were determined during the measurements of 222Rn and its progeny concentrations. 222Rn gas as well as its short-lived progeny concentration display a daily and seasonal variation with high values in the night and early morning hours as compared to low values at noon and in the afternoon. The observed monthly atmospheric concentrations showed a seasonal trend with the highest values in the autumn/winter season and the lowest values in the spring/summer season. Moreover, and in parallel with alpha-spectrometric measurements, a single filter-holder was used to collect air samples. The deposited activities of 214Pb and the long-lived 222Rn daughter 210Pb on the filter were measured with the gamma spectrometric technique. The measured activity concentrations of 214Pb by both techniques were found to be relatively equal largely. The highest mean seasonally activity concentrations of 210Pb were observed in the autumn/winter season while the lowest mean were observed in the spring/summer season. The mean residence time (MRT) of aerosol particles in the atmospheric air could be estimated from the activity ratios of 210Pb/214Pb. Project supported by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah (Grant No. 291/965/1434).

  8. Variable residence time vortex combustor

    DOEpatents

    Melconian, Jerry O.

    1987-01-01

    A variable residence time vortex combustor including a primary combustion chamber for containing a combustion vortex, and a plurality of louvres peripherally disposed about the primary combustion chamber and longitudinally distributed along its primary axis. The louvres are inclined to impel air about the primary combustion chamber to cool its interior surfaces and to impel air inwardly to assist in driving the combustion vortex in a first rotational direction and to feed combustion in the primary combustion chamber. The vortex combustor also includes a second combustion chamber having a secondary zone and a narrowed waist region in the primary combustion chamber interconnecting the output of the primary combustion chamber with the secondary zone for passing only lower density particles and trapping higher density particles in the combustion vortex in the primary combustion chamber for substantial combustion.

  9. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  10. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  11. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  12. Residence times of branching diffusion processes

    NASA Astrophysics Data System (ADS)

    Dumonteil, E.; Mazzolo, A.

    2016-07-01

    The residence time of a branching Brownian process is the amount of time that the mother particle and all its descendants spend inside a domain. Using the Feynman-Kac formalism, we derive the residence-time equation as well as the equations for its moments for a branching diffusion process with an arbitrary number of descendants. This general approach is illustrated with simple examples in free space and in confined geometries where explicit formulas for the moments are obtained within the long time limit. In particular, we study in detail the influence of the branching mechanism on those moments. The present approach can also be applied to investigate other additive functionals of branching Brownian process.

  13. Controlled short residence time coal liquefaction process

    DOEpatents

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-05-04

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -455.degree. C. is an amount at least equal to that obtainable by performing the process under the same conditions except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent.

  14. Mean sediment residence time in barchan dunes

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Yang, X.; Rozier, O.; Narteau, C.

    2014-03-01

    When a barchan dune migrates, the sediment trapped on its lee side is later mobilized when exposed on the stoss side. Then sand grains may undergo many dune turnover cycles before their ejection along the horns, but the amount of time a sand grain contributes to the dune morphodynamics remains unknown. To estimate such a residence time, we analyze sediment particle motions in steady state barchans by tracking individual cells of a 3-D cellular automaton dune model. The overall sediment flux may be decomposed into advective and dispersive fluxes to estimate the relative contribution of the underlying physical processes to the barchan shape. The net lateral sediment transport from the center to the horns indicates that dispersion on the stoss slope is more efficient than the convergent sediment fluxes associated with avalanches on the lee slope. The combined effect of these two antagonistic dispersive processes restricts the lateral mixing of sediment particles in the central region of barchans. Then, for different flow strengths and dune sizes, we find that the mean residence time of sediment particles in barchans is equal to the surface of the central longitudinal dune slices divided by the input sand flux. We infer that this central slice contains most of the relevant information about barchan morphodynamics. Finally, we initiate a discussion about sediment transport and memory in the presence of bed forms using the advantages of the particle tracking technique.

  15. Mean residence time in barchan dunes

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Yang, X.; Rozier, O.; Narteau, C.

    2013-12-01

    A barchan dune migrates when the sediment trapped on its lee side is remobilized by the flow. Then, sand grains may undergo many dune turnover cycles before their ejection along the horns, but the amount of time a sand grain contributes to the dune morphodynamics remains unknown. To estimate such a residence time, we analyze sediment particle motions in steady-state barchan dunes by tracking individual cells of a 3D cellular automaton dune model. The overall sediment flux may be decomposed into advective and dispersive fluxes to estimate the relative contribution of the underlying physical processes to the barchan dune shape. The net lateral sediment transport from the center to the horns indicates that dispersion on the stoss slope is more efficient than avalanches on the lee slope. The combined effect of these two antagonistic dispersive processes restricts the lateral mixing of sediment particles in the central region of barchan dunes. Then, for different flow strengths and dune sizes, we find that the mean residence time of sediment particles in barchan dunes is equal to the surface of the central longitudinal dune slices divided by the input sand flux. We infer that this central slice contains most of the relevant information about barchan dune morphodynamics. Finally, we initiate a discussion about sediment transport and memory in presence of bed forms using the advantages of the particle tracking technique.

  16. Aerosol climate time series from ESA Aerosol_cci (Invited)

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.

    2013-12-01

    developed further, to evaluate the datasets and their regional and seasonal merits. The validation showed that most datasets have improved significantly and in particular PARASOL (ocean only) provides excellent results. The metrics for AATSR (land and ocean) datasets are similar to those of MODIS and MISR, with AATSR better in some land regions and less good in some others (ocean). However, AATSR coverage is smaller than that of MODIS due to swath width. The MERIS dataset provides better coverage than AATSR but has lower quality (especially over land) than the other datasets. Also the synergetic AATSR/SCIAMACHY dataset has lower quality. The evaluation of the pixel uncertainties shows first good results but also reveals that more work needs to be done to provide comprehensive information for data assimilation. Users (MACC/ECMWF, AEROCOM) confirmed the relevance of this additional information and encouraged Aerosol_cci to release the current uncertainties. The paper will summarize and discuss the results of three year work in Aerosol_cci, extract the lessons learned and conclude with an outlook to the work proposed for the next three years. In this second phase a cyclic effort of algorithm evolution, dataset generation, validation and assessment will be applied to produce and further improve complete time series from all sensors under investigation, new sensors will be added (e.g. IASI), and preparation for the Sentinel missions will be made.

  17. RESIDENCE TIME DISTRIBUTION OF FLUIDS IN STIRRED ANNULAR PHOTOREACTORS

    EPA Science Inventory

    When gases flow through an annular photoreactor at constant rate, some of the gas spends more or less than the average residence time in the reactor. This spread of residence time can have an important effect on the performance of the reactor. this study tested how the residence...

  18. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-06-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. This is the first 3-d modeling study that focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3-, POA and SOA by factors of 3.3, 2.6, 2.7, 2.3 and 1.2, respectively, whereas we assumed that the natural dust and sea-salt sources remained constant. The nowadays increase in carbonaceous aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has

  19. Change in global aerosol composition since preindustrial times

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Krol, M.; Dentener, F. J.; Balkanski, Y.; Lathière, J.; Metzger, S.; Hauglustaine, D. A.; Kanakidou, M.

    2006-11-01

    To elucidate human induced changes of aerosol load and composition in the atmosphere, a coupled aerosol and gas-phase chemistry transport model of the troposphere and lower stratosphere has been used. The present 3-D modeling study focuses on aerosol chemical composition change since preindustrial times considering the secondary organic aerosol formation together with all other main aerosol components including nitrate. In particular, we evaluate non-sea-salt sulfate (nss-SO4=), ammonium (NH4+), nitrate (NO3-), black carbon (BC), sea-salt, dust, primary and secondary organics (POA and SOA) with a focus on the importance of secondary organic aerosols. Our calculations show that the aerosol optical depth (AOD) has increased by about 21% since preindustrial times. This enhancement of AOD is attributed to a rise in the atmospheric load of BC, nss-SO4=, NO3aerosol loading is dampened by a 34-42% faster conversion of hydrophobic to hydrophilic carbonaceous aerosol leading to higher removal rates. These changes between the various aerosol components resulted in significant modifications of the aerosol chemical composition. The relative importance of the various aerosol components is critical for the aerosol climatic effect, since atmospheric aerosols behave differently when their chemical composition changes. According to this study, the aerosol composition changed significantly over the different continents and with height since preindustrial times. The presence of anthropogenically emitted primary particles in the atmosphere facilitates the condensation of the semi-volatile species that form SOA onto the aerosol phase, particularly in the boundary layer. The SOA burden that is dominated by the natural component has increased by 24% while its contribution to the AOD has increased

  20. Prolonged and tunable residence time using reversible covalent kinase inhibitors

    PubMed Central

    Bradshaw, J. Michael; McFarland, Jesse M.; Paavilainen, Ville O.; Bisconte, Angelina; Tam, Danny; Phan, Vernon T.; Romanov, Sergei; Finkle, David; Shu, Jin; Patel, Vaishali; Ton, Tony; Li, Xiaoyan; Loughhead, David G.; Nunn, Philip A.; Karr, Dane E.; Gerritsen, Mary E.; Funk, Jens Oliver; Owens, Timothy D.; Verner, Erik; Brameld, Ken A.; Hill, Ronald J.; Goldstein, David M.; Taunton, Jack

    2015-01-01

    Drugs with prolonged, on-target residence time often show superior efficacy, yet general strategies for optimizing drug-target residence time are lacking. Here, we demonstrate progress toward this elusive goal by targeting a noncatalytic cysteine in Bruton's tyrosine kinase (BTK) with reversible covalent inhibitors. Utilizing an inverted orientation of the cysteine-reactive cyanoacrylamide electrophile, we identified potent and selective BTK inhibitors that demonstrate biochemical residence times spanning from minutes to 7 days. An inverted cyanoacrylamide with prolonged residence time in vivo remained bound to BTK more than 18 hours after clearance from the circulation. The inverted cyanoacrylamide strategy was further utilized to discover fibroblast growth factor receptor (FGFR) kinase inhibitors with residence times of several days, demonstrating generalizability of the approach. Targeting noncatalytic cysteines with inverted cyanoacrylamides may serve as a broadly applicable platform that facilitates “residence time by design”, the ability to modulate and improve the duration of target engagement in vivo. PMID:26006010

  1. Residence time determination for adsorbent beds of different configurations

    SciTech Connect

    Otermat, J.E.; Wikoff, W.O.; Kovach, J.L.

    1995-02-01

    The residence time calculations of ASME AG-1 Code, Section FC, currently specify a screen surface area method, that is technically incorrect. Test data has been obtained on Type II adsorber trays of different configurations to establish residence time in the adsorber trays. These data indicate that the air volume/carbon volume ratio or the average screen area are more appropriate for the calculation of the residence time calculation than the currently used, smallest screen area basis.

  2. Long residence times - bad tracer tests?

    NASA Astrophysics Data System (ADS)

    Ghergut, Julia; Behrens, Horst; Sauter, Martin

    2015-04-01

    Tracer tests conducted at geothermal well doublets or triplets in the Upper Rhine Rift Valley [1] all face, with very few exceptions so far, one common issue: lack of conclusive tracer test results, or tracer signals still undetectable for longer than one or two years after tracer injection. While the reasons for this surely differ from site to site (Riehen, Landau, Insheim, Bruchsal, ...), its effects on how the usefulness of tracer tests is perceived by the non-tracer community are pretty much the same. The 'poor-signal' frustration keeps nourishing two major 'alternative' endeavours : (I) design and execute tracer tests in single-well injection-withdrawal (push-pull), 'instead of' inter-well flow-path tracing configurations; (II) use 'novel' tracer substances instead of the 'old' ones which have 'obviously failed'. Frustration experienced with most inter-well tracer tests in the Upper Rhine Rift Valley has also made them be regarded as 'maybe useful for EGS' ('enhanced', or 'engineered' geothermal systems, whose fluid RTD typically include a major share of values below one year), but 'no longer worthwhile a follow-up sampling' in natural, large-scale hydrothermal reservoirs. We illustrate some of these arguments with the ongoing Bruchsal case [2]. The inter-well tracer test conducted at Bruchsal was (and still is!) aimed at assessing inter-well connectivity, fluid residence times, and characterizing the reservoir structure [3]. Fluid samples taken at the geothermal production well after reaching a fluid turnover of about 700,000 m3 showed tracer concentrations in the range of 10-8 Minj per m3, in the liquid phase of each sample (Minj being the total quantity of tracer injected as a short pulse at the geothermal re-injection well). Tracer signals might actually be higher, owing to tracer amounts co-precipitated and/or adsorbed onto the solid phase whose accumulation in the samples was unavoidable (due to pressure relief and degassing during the very sampling

  3. Equilibration time scales of organic aerosol inside thermodenuders: Evaporation kinetics versus thermodynamics

    NASA Astrophysics Data System (ADS)

    Riipinen, Ilona; Pierce, Jeffrey R.; Donahue, Neil M.; Pandis, Spyros N.

    2010-02-01

    The interpretation of thermodenuder (TD) data often relies on the assumption that thermodynamic equilibrium is reached inside the instrument. We modeled the evaporation of three organic aerosol types (adipic acid, α-pinene SOA and aged OA) inside a thermodenuder with a mass transfer model, and calculated equilibration time scales for these systems at realistic conditions. The equilibrium times varied from less than a second to several hours, decreasing with increasing aerosol concentrations, decreasing particle sizes, decreasing volatilities and increasing mass accommodation coefficients. The results indicate that generally TDs measure particle evaporation rates rather than equilibria, and time-dependent modeling of the evaporation is usually needed to interpret the data. Measurements at varying residence times and temperatures, on the other hand, are desirable to investigate the equilibration of the studied aerosol and decouple the kinetic effects from the effects caused by the thermodynamic properties of the aerosol. Organic aerosol is likely to be further from equilibrium under typical field conditions compared with laboratory data. When determining the aerosol properties from TD data, assuming incorrectly equilibrium results in under-prediction of the vaporization enthalpy of the evaporating species. Similar under-estimation is predicted if multicomponent aerosols are approximated with single-component properties.

  4. Residence time modeling of hot melt extrusion processes.

    PubMed

    Reitz, Elena; Podhaisky, Helmut; Ely, David; Thommes, Markus

    2013-11-01

    The hot melt extrusion process is a widespread technique to mix viscous melts. The residence time of material in the process frequently determines the product properties. An experimental setup and a corresponding mathematical model were developed to evaluate residence time and residence time distribution in twin screw extrusion processes. The extrusion process was modeled as the convolution of a mass transport process described by a Gaussian probability function, and a mixing process represented by an exponential function. The residence time of the extrusion process was determined by introducing a tracer at the extruder inlet and measuring the tracer concentration at the die. These concentrations were fitted to the residence time model, and an adequate correlation was found. Different parameters were derived to characterize the extrusion process including the dead time, the apparent mixing volume, and a transport related axial mixing. A 2(3) design of experiments was performed to evaluate the effect of powder feed rate, screw speed, and melt viscosity of the material on the residence time. All three parameters affect the residence time of material in the extruder. In conclusion, a residence time model was developed to interpret experimental data and to get insights into the hot melt extrusion process.

  5. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  6. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  7. The residence time of water in the atmosphere revisited

    NASA Astrophysics Data System (ADS)

    van der Ent, Ruud J.; Tuinenburg, Obbe A.

    2017-02-01

    This paper revisits the knowledge on the residence time of water in the atmosphere. Based on state-of-the-art data of the hydrological cycle we derive a global average residence time of 8.9 ± 0.4 days (uncertainty given as 1 standard deviation). We use two different atmospheric moisture tracking models (WAM-2layers and 3D-T) to obtain atmospheric residence time characteristics in time and space. The tracking models estimate the global average residence time to be around 8.5 days based on ERA-Interim data. We conclude that the statement of a recent study that the global average residence time of water in the atmosphere is 4-5 days, is not correct. We derive spatial maps of residence time, attributed to evaporation and precipitation, and age of atmospheric water, showing that there are different ways of looking at temporal characteristics of atmospheric water. Longer evaporation residence times often indicate larger distances towards areas of high precipitation. From our analysis we find that the residence time over the ocean is about 2 days less than over land. It can be seen that in winter, the age of atmospheric moisture tends to be much lower than in summer. In the Northern Hemisphere, due to the contrast in ocean-to-land temperature and associated evaporation rates, the age of atmospheric moisture increases following atmospheric moisture flow inland in winter, and decreases in summer. Looking at the probability density functions of atmospheric residence time for precipitation and evaporation, we find long-tailed distributions with the median around 5 days. Overall, our research confirms the 8-10-day traditional estimate for the global mean residence time of atmospheric water, and our research contributes to a more complete view of the characteristics of the turnover of water in the atmosphere in time and space.

  8. Experimental determination of residence time distribution in continuous dry granulation.

    PubMed

    Mangal, Haress; Kleinebudde, Peter

    2017-03-31

    With increasing importance of continuous manufacturing, the interest in integrating dry granulation into a continuous manufacturing line is growing. Residence time distribution measurements are of importance as they provide information about duration of materials within the process. These data enable traceability and are highly beneficial for developing control strategies. A digital image analysis system was used to determine the residence time distribution of two materials with different deformation behavior (brittle, plastic) in the milling unit of dry granulation systems. A colorant was added to the material (20%w/w iron oxide), which did not affect the material properties excessively, so the milling process could be mimicked well. Experimental designs were conducted to figure out which parameters effect the mean residence time strongly. Moreover, two types of dry granulation systems were contrasted. Longer mean residence times were obtained for the oscillating mill (OM) compared to the conical mill (CM). For co-processed microcrystalline cellulose residence times of 19.8-44.4s (OM) and 11.6-29.1s (CM) were measured, mainly influenced by the specific compaction force, the mill speed and roll speed. For dibasic calcium phosphate anhydrate residence times from 17.7-46.4 (OM) and 5.4-10.2s (CM) were measured, while here the specific compaction force, the mill speed and their interactions with the roll speed had an influence on the mean residence time.

  9. A METHOD TO INCORPORATE ECOLOGY INTO RESIDENCE TIME OF CHEMICALS IN EMBAYMENTS: LOCAL EFFECT TIME

    EPA Science Inventory

    Residence times are classically defined by the physical and chemical aspects of water bodies rather than by their ecological implications. Therefore, a more clear and direct connection between the residence times and ecological effects is necessary to quantitatively relate these ...

  10. Prolonged patient emergence time among clinical anesthesia resident trainees

    PubMed Central

    House, L. McLean; Calloway, Nathan H.; Sandberg, Warren S.; Ehrenfeld, Jesse M.

    2016-01-01

    Background and Aims: Emergence time, or the duration between incision closure and extubation, is costly nonoperative time. Efforts to improve operating room efficiency and identify trainee progress make such time intervals of interest. We sought to calculate the incidence of prolonged emergence (i.e., >15 min) for patients under the care of clinical anesthesia (CA) residents. We also sought to identify factors from resident training, medical history, anesthetic use, and anesthesia staffing, which affect emergence. Material and Methods: In this single-center, historical cohort study, perioperative information management systems provided data for surgical cases under resident care at a tertiary care center in the United States from 2006 to 2008. Using multiple logistic regression, the effects of variables on emergence was analyzed. Results: Of 7687 cases under the care of 27 residents, the incidence of prolonged emergence was 13.9%. Emergence prolongation decreased by month in training for 1st-year (CA-1) residents (r2 = 0.7, P < 0.001), but not for CA-2 and CA-3 residents. Mean patient emergence time differed among 27 residents (P < 0.01 for 58.4% or 205/351 paired comparisons). In a model restricted to 1st-year residents, patient male gender, American Society of Anesthesiologists (ASA) physical status >II, emergency surgical case, operative duration ≥2 h, and paralytic agent use were associated with higher frequency of prolonged emergence, while sevoflurane or desflurane use was associated with lower frequency. Attending anesthesiologist handoff was not associated with longer emergence. Conclusion: Incidence of prolonged emergence from general anesthesia differed significantly among trainees, by resident training duration, and for patients with ASA >II. PMID:28096573

  11. Ambient aerosol analysis using aerosol-time-of-flight mass spectrometry

    SciTech Connect

    Prather, K.A.; Noble, C.A.; Liu, D.Y.; Silva, P.J.; Fergenson, D.F.

    1996-10-01

    We have recently developed a technique, Aerosol-Time-of-Flight Mass Spectrometry (ATOFMS), which is capable of real-time determination of the aerodynamic size and chemical composition of individual aerosol particles. In order to obtain such information, the techniques of aerodynamic particle sizing and time-of-flight mass spectrometry are combined in a single instrument. ATOFMS is being used for the direct analysis of ambient aerosols with the goal of establishing correlations between particle size and chemical composition. Currently, measurements are being made to establish potential links between the presence of particular types of particles with such factors as the time of day, weather conditions, and concentration levels of gaseous smog components such as NO{sub x} and ozone. This data will be used to help establish a better understanding of tropospheric gas-aerosol processes. This talk will discuss the operating principles of ATOFMS as well as present the results of ambient analysis studies performed in our laboratory.

  12. Online residence time distribution measurement of thermochemical biomass pretreatment reactors

    SciTech Connect

    Sievers, David A.; Kuhn, Erik M.; Stickel, Jonathan J.; Tucker, Melvin P.; Wolfrum, Edward J.

    2015-11-03

    Residence time is a critical parameter that strongly affects the product profile and overall yield achieved from thermochemical pretreatment of lignocellulosic biomass during production of liquid transportation fuels. The residence time distribution (RTD) is one important measure of reactor performance and provides a metric to use when evaluating changes in reactor design and operating parameters. An inexpensive and rapid RTD measurement technique was developed to measure the residence time characteristics in biomass pretreatment reactors and similar equipment processing wet-granular slurries. Sodium chloride was pulsed into the feed entering a 600 kg/d pilot-scale reactor operated at various conditions, and aqueous salt concentration was measured in the discharge using specially fabricated electrical conductivity instrumentation. This online conductivity method was superior in both measurement accuracy and resource requirements compared to offline analysis. Experimentally measured mean residence time values were longer than estimated by simple calculation and screw speed and throughput rate were investigated as contributing factors. In conclusion, a semi-empirical model was developed to predict the mean residence time as a function of operating parameters and enabled improved agreement.

  13. Online residence time distribution measurement of thermochemical biomass pretreatment reactors

    DOE PAGES

    Sievers, David A.; Kuhn, Erik M.; Stickel, Jonathan J.; ...

    2015-11-03

    Residence time is a critical parameter that strongly affects the product profile and overall yield achieved from thermochemical pretreatment of lignocellulosic biomass during production of liquid transportation fuels. The residence time distribution (RTD) is one important measure of reactor performance and provides a metric to use when evaluating changes in reactor design and operating parameters. An inexpensive and rapid RTD measurement technique was developed to measure the residence time characteristics in biomass pretreatment reactors and similar equipment processing wet-granular slurries. Sodium chloride was pulsed into the feed entering a 600 kg/d pilot-scale reactor operated at various conditions, and aqueous saltmore » concentration was measured in the discharge using specially fabricated electrical conductivity instrumentation. This online conductivity method was superior in both measurement accuracy and resource requirements compared to offline analysis. Experimentally measured mean residence time values were longer than estimated by simple calculation and screw speed and throughput rate were investigated as contributing factors. In conclusion, a semi-empirical model was developed to predict the mean residence time as a function of operating parameters and enabled improved agreement.« less

  14. Indoor Residence Times of Semivolatile Organic Compounds: Model Estimation and Field Evaluation

    EPA Science Inventory

    Indoor residence times of semivolatile organic compounds (SVOCs) are a major and mostly unavailable input for residential exposure assessment. We calculated residence times for a suite of SVOCs using a fugacity model applied to residential environments. Residence times depend on...

  15. Stable, Ultra-Low Residence Time Partial Oxidation

    DOEpatents

    Schmidt, Lanny D.; Hickman, Daniel A.

    1997-07-15

    A process for the catalytic partial oxidation of methane in gas phase at very short residence time (800,000 to 12,000,000 hr.sup.-1) by contacting a gas stream containing methane and oxygen with a metal supported catalyst, such as platinum deposited on a ceramic monolith.

  16. Comparison of residence time models for cascading rotary dryers

    SciTech Connect

    Cao, W.F.; Langrish, T.A.G.

    1999-04-01

    The predictions of the models of Matchett and Baker (1988), Saeman and Mitchell (1954) and Friedman and Marshall (1949) for the solids residence time in rotary dryers have been compared with both pilot-scale and industrial-scale data. A countercurrent pilot-scale dryer of 0.2m diameter and 2m long has been used with air velocities up to 1.5 m to measure the residence times of sorghum grain. The average discrepancy for the solids residence time between the predictions and the experiments that were carried out in the pilot-scale rotary dryer is {minus}10.4%. Compared with the models of Friedman and Marshall (1949) and Saeman and Mitchell (1954) for the pilot-scale data obtained here, the Matchett and Baker model is more satisfactory for predicting the solids residence time in this pilot-scale dryer. It has also been found that the model of Matchett and Baker describes the industrial data of Saeman and Mitchell (1954) than the correlation of Friedman and Marshall (1949).

  17. Real time in situ detection of organic nitrates in atmospheric aerosols.

    PubMed

    Rollins, Andrew W; Smith, Jared D; Wilson, Kevin R; Cohen, Ronald C

    2010-07-15

    A novel instrument is described that quantifies total particle-phase organic nitrates in real time with a detection limit of 0.11 microg m(-3) min(-1), 45 ppt min(-1) (-ONO(2)). Aerosol nitrates are separated from gas-phase nitrates with a short residence time activated carbon denuder. Detection of organic molecules containing -ONO(2) subunits is accomplished using thermal dissociation coupled to laser induced fluorescence detection of NO(2). This instrument is capable of high time resolution (seconds) measurements of particle-phase organic nitrates, without interference from inorganic nitrate. Here we use it to quantify organic nitrates in secondary organic aerosol generated from high-NO(x) photooxidation of limonene, alpha-pinene, Delta-3-carene, and tridecane. In these experiments the organic nitrate moiety is observed to be 6-15% of the total SOA mass.

  18. A revised picture of the atmospheric moisture residence time

    NASA Astrophysics Data System (ADS)

    Läderach, Alexander; Sodemann, Harald

    2016-04-01

    The atmospheric branch of the hydrological cycle is a key component of variability in the global water and energy budget. We study the transport of moisture by weather systems using a refined Lagrangian moisture source diagnostics on a global air mass transport climatology calculated with the FLEXPART model for the period 1979-2013. The diagnostics determine source-sink relationships for all precipitation events in the ERA-Interim data set, which provides a new estimate of the atmospheric moisture residence time (defined as the time moisture spends in the atmosphere between evaporation and precipitation). The global mean residence time of 4 to 5 days obtained from our diagnostics is about half the value assumed so far. This is mainly because previous estimates neglect moisture transport, and assume that depletion time constants can be considered as a proxy for the time moisture spends in the atmosphere. We show from different arguments that these assumptions are generally not fulfilled. The revised spatial and temporal picture of the atmospheric moisture residence time reveals patterns that are consistent with the footprints of precipitation producing weather systems in different regions of the earth. This will be exemplified with examples from tropical and extratropical regions.

  19. Real time curriculum map for internal medicine residency

    PubMed Central

    Wong, Roger Y; Roberts, J Mark

    2007-01-01

    Background To manage the voluminous formal curriculum content in a limited amount of structured teaching time, we describe the development and evaluation of a curriculum map for academic half days (AHD) in a core internal medicine residency program. Methods We created a 3-year cyclical curriculum map (an educational tool combining the content, methodology and timetabling of structured teaching), comprising a matrix of topics under various specialties/themes and corresponding AHD hours. All topics were cross-matched against the ACP-ASIM in-training examination, and all hours were colour coded based on the categories of core competencies. Residents regularly updated the map on a real time basis. Results There were 208 topics covered in 283 AHD hours. All topics represented core competencies with minimal duplication (78% covered once in 3 years). Only 42 hours (15%) involved non-didactic teaching, which increased after implementation of the map (18–19 hours/year versus baseline 5 hours/year). Most AHD hours (78%) focused on medical expert competencies. Resident satisfaction (90% response) was high throughout (range 3.64 ± 0.21, 3.84 ± 0.14 out of 4), which improved after 1 year but returned to baseline after 2 years. Conclusion We developed and implemented an internal medicine curriculum map based on real time resident input, with minimal topic duplication and high resident satisfaction. The map provided an opportunity to balance didactic versus non-didactic teaching, and teaching on medical versus non medical expert topics. PMID:17988402

  20. The Effect of Tidal Exchange on Residence Time

    NASA Astrophysics Data System (ADS)

    Rynne, P.; Reniers, A.; Van De Kreeke, J.; MacMahan, J. H.

    2014-12-01

    As the conduit between the ocean and an inland body of water such as a lagoon, estuary or harbor, tidal inlets serve an important role in the hydrodynamics of the nearshore environment. As the global population grows in a world where 13% of the coastline is composed of barrier islands, an understanding of the physical processes that influence the transport of inland waters offshore is increasingly paramount. Water renewal, or the replacement of old lagoon water with new seawater has been well studied and is controlled by the tides through the process of tidal exchange or 'tidal pumping'. The magnitude of tidal exchange is influenced by the inlet hydraulics and geometry of the inlet and various physical processes driven by the tide, wind, and waves. To examine the correlation between tidal exchange and the renewal of lagoon water with seawater, a new method to quantify lagoon residence time is explored. Modeling experiments in Delft3D of idealized inlet systems are used to quantify the effect that tidal exchange has on residence time. Tidal exchange is decomposed into two fractions, an ocean exchange fraction and a lagoon exchange fraction. A simple transport model that utilizes both these fractions is compared to both a tidal prism model that neglects the lagoon exchange fraction and Delft3D. The tidal prism model over predicts the seaward transport of lagoon water as compared to Delft3D for all inlet channel geometries studied. The transport model shows good agreement with Delft3D for narrower inlets that support high ocean exchange fractions, but less agreement for wider inlets that support low ocean exchange fractions. Residence time distributions for each geometry are calculated using a new virtual tracer method in Delft3D. The spatially averaged residence time in the lagoon is found to be inversely proportional to the product of the two exchange fractions of each inlet system. Funded by ONR and NDSEG

  1. Mean Residence Time and Emergency Drinking Water Supply.

    NASA Astrophysics Data System (ADS)

    Kralik, Martin; Humer, Franko

    2013-04-01

    Immediately after securing an endangered population, the first priority of aid workers following a disaster is the distribution of drinking water. Such emergency situations are reported from many parts of the world following regional chemical or nuclear pollution accidents, floods, droughts, rain-induced landslides, tsunami, and other extreme events. It is often difficult to organise a replacement water supply when regular water systems with short residence times are polluted, infiltrated or even flooded by natural or man-made disasters. They are either unusable or their restoration may take months or even years. Groundwater resources, proven safe and protected by the geological environment, with long residence times and the necessary infrastructure for their exploitation, would provide populations with timeous replacement of vulnerable water supply systems and make rescue activities more rapid and effective. Such resources have to be identified and investigated, as a substitute for affected drinking water supplies thereby eliminating or reducing the impact of their failure following catastrophic events. Even in many areas such water resources with long residence times in years or decades are difficult to find it should be known which water supply facilities in the region are matching these requirements to allow in emergency situation the transport of water in tankers to the affected regions to prevent epidemics, importing large quantities of bottled water. One should know the residence time of the water supply to have sufficient time to plan and install new safe water supply facilities. Development of such policy and strategy for human security - both long term and short term - is therefore needed to decrease the vulnerability of populations threatened by extreme events and water supplies with short residence times. Generally: The longer the residence time of groundwater in the aquifer, the lower its vulnerability. The most common and economic methods to estimate

  2. The residence time of intensively managed agricultural landscapes

    NASA Astrophysics Data System (ADS)

    Bowling, Laura; Cherkauer, Keith; Chiu, Chun-mei; Rahman, Sanoar

    2015-04-01

    Much of the agricultural landscape across the Midwestern United States is intensively managed through numerous surface and subsurface drainage improvements, and the growing extraction of groundwater resources. The relatively recent glaciation of the North Central region means that the landscape is less dissected and hydrologically connected than older till areas. Low topographic gradients and underlying dense till which restricts vertical water movement, as well as kettle depressions, have led to poorly drained soils and extensive wetlands within the landscape. Large areas of this land could only be farmed once the excess water was removed through artificial surface and subsurface drainage. Conventional wisdom in the region maintains that subsurface tile drainage reduces the occurrence of peak flow events by increasing soil water storage capacity. At the watershed scale, this view does not take into account the coincident increase in surface drainage and reduction in residence time in surface depressions. This paper explores to what degree water management and irrigation has changed surface and subsurface water storage and residence time over the last century and how this has impacted flow duration throughout the Wabash River system in Indiana, USA. The effects of subsurface tile drains, wetlands and aquifer storage are explicitly represented within the Variable Infiltration Capacity (VIC) macroscale hydrology model. We maintain a focus on the entire Wabash River, a river system of historic importance that is also representative of many similar areas in the till plain region of the agricultural Midwest, which contribute to water quality and flood dynamics of the Mississippi river system. By lowering the water table, surface and subsurface drainage improvements have increased the subsurface storage capacity at the beginning of rain events, but this is overwhelmed by the decrease in surface storage capacity for intermediate to large events, decreasing the current

  3. Short residence time coal liquefaction process including catalytic hydrogenation

    DOEpatents

    Anderson, Raymond P.; Schmalzer, David K.; Wright, Charles H.

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone (26, alone, or 26 together with 42), the hydrogen pressure in the preheating-reaction zone being at least 1500 psig (105 kg/cm.sup.2), reacting the slurry in the preheating-reaction zone (26, or 26 with 42) at a temperature in the range of between about 455.degree. and about 500.degree. C. to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid (40, 68) to substantially immediately reduce the temperature of the reaction effluent to below 425.degree. C. to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C.sub.5 -454.degree. C. is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent (83) and recycled as process solvent (16). The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance.

  4. Short residence time coal liquefaction process including catalytic hydrogenation

    DOEpatents

    Anderson, R.P.; Schmalzer, D.K.; Wright, C.H.

    1982-05-18

    Normally solid dissolved coal product and a distillate liquid product are produced by continuously passing a feed slurry comprising raw feed coal and a recycle solvent oil and/or slurry together with hydrogen to a preheating-reaction zone, the hydrogen pressure in the preheating-reaction zone being at least 1,500 psig (105 kg/cm[sup 2]), reacting the slurry in the preheating-reaction zone at a temperature in the range of between about 455 and about 500 C to dissolve the coal to form normally liquid coal and normally solid dissolved coal. A total slurry residence time is maintained in the reaction zone ranging from a finite value from about 0 to about 0.2 hour, and reaction effluent is continuously and directly contacted with a quenching fluid to substantially immediately reduce the temperature of the reaction effluent to below 425 C to substantially inhibit polymerization so that the yield of insoluble organic matter comprises less than 9 weight percent of said feed coal on a moisture-free basis. The reaction is performed under conditions of temperature, hydrogen pressure and residence time such that the quantity of distillate liquid boiling within the range C[sub 5]-454 C is an amount at least equal to that obtainable by performing the process under the same condition except for a longer total slurry residence time, e.g., 0.3 hour. Solvent boiling range liquid is separated from the reaction effluent and recycled as process solvent. The amount of solvent boiling range liquid is sufficient to provide at least 80 weight percent of that required to maintain the process in overall solvent balance. 6 figs.

  5. Time Resolved Measurements of Primary Biogenic Aerosol Particles in Amazonia

    NASA Astrophysics Data System (ADS)

    Wollny, A. G.; Garland, R.; Pöschl, U.

    2009-04-01

    Biogenic aerosols are ubiquitous in the Earth's atmosphere and they influence atmospheric chemistry and physics, the biosphere, climate, and public health. They play an important role in the spread of biological organisms and reproductive materials, and they can cause or enhance human, animal, and plant diseases. Moreover, they influence the Earth's energy budget by scattering and absorbing radiation, and they can initiate the formation of clouds and precipitation as cloud condensation and ice nuclei. The composition, abundance, and origin of biogenic aerosol particles and components are, however, still not well understood and poorly quantified. Prominent examples of primary biogenic aerosol particles, which are directly emitted from the biosphere to the atmosphere, are pollen, bacteria, fungal spores, viruses, and fragments of animals and plants. During the Amazonian Aerosol Characterization Experiment (AMAZE-08) a large number of aerosol and gas-phase measurements were taken on a remote site close to Manaus, Brazil, during a period of five weeks in February and March 2008. This presented study is focused on data from an ultraviolet aerodynamic particle sizer (UVAPS, TSI inc.) that has been deployed for the first time in Amazonia. In this instrument, particle counting and aerodynamic sizing over the range of 0.5-20 µm are complemented by the measurement of UV fluorescence at 355 nm (excitation) and 420-575 nm (emission), respectively. Fluorescence at these wavelengths is characteristic for reduced pyridine nucleotides (e.g., NAD(P)H) and for riboflavin, which are specific for living cells. Thus particles exhibiting fluorescence signals can be regarded as "viable aerosols" or "fluorescent bioparticles" (FBAP), and their concentration can be considered as lower limit for the actual abundance of primary biogenic aerosol particles. Data from the UVAPS were averaged over 5 minute time intervals. The presence of bioparticles in the observed size range has been

  6. Modelling travel and residence times in the eastern Irish Sea.

    PubMed

    Dabrowski, T; Hartnett, M

    2008-01-01

    The Irish Sea, which lies between 51 degrees N-56 degrees N and 2 degrees 50'W-7 degrees W, provides a sheltered environment to exploit valuable fisheries resource. Anthropogenic activity is a real threat to its water quality. The majority of freshwater input down rivers flows into the eastern Irish Sea. The structure of the water circulation was not well understood during the planning of Sellafield nuclear plant outfall site in the eastern Irish Sea. A three-dimensional primitive equation numerical model was applied to the Irish Sea to simulate both barotropic and baroclinic circulation within the region. High accuracy was achieved with regard to the prediction of both tidal circulation and surface and nearbed water temperatures across the region. The model properly represented the Western Irish Sea Gyre, induced by thermal stratification and not known during planning Sellafield. Passive tracer simulations based on the developed hydrodynamic model were used to deliver residence times of the eastern Irish Sea region for various times of the year as well as travel times from the Sellafield outfall site to various locations within the Irish Sea. The results indicate a strong seasonal variability of travel times from Sellafield to the examined locations. Travel time to the Clyde Sea is the shortest for the autumnal tracer release (90 days); it takes almost a year for the tracer to arrive at the same location if it is released in January. Travel times from Sellafield to Dublin Bay fall within the range of 180-360 days. The average residence time of the entire eastern Irish Sea is around 7 months. The areas surrounding the Isle of Man are initially flushed due to a predominant northward flow; a backwater is formed in Liverpool Bay. Thus, elevated tracer concentrations are predicted in Liverpool Bay in the case of accidental spills at the Sellafield outfall site.

  7. A comment on the use of flushing time, residence time, and age as transport time scales

    USGS Publications Warehouse

    Monsen, N.E.; Cloern, J.E.; Lucas, L.V.; Monismith, Stephen G.

    2002-01-01

    Applications of transport time scales are pervasive in biological, hydrologic, and geochemical studies yet these times scales are not consistently defined and applied with rigor in the literature. We compare three transport time scales (flushing time, age, and residence time) commonly used to measure the retention of water or scalar quantities transported with water. We identify the underlying assumptions associated with each time scale, describe procedures for computing these time scales in idealized cases, and identify pitfalls when real-world systems deviate from these idealizations. We then apply the time scale definitions to a shallow 378 ha tidal lake to illustrate how deviations between real water bodies and the idealized examples can result from: (1) non-steady flow; (2) spatial variability in bathymetry, circulation, and transport time scales; and (3) tides that introduce complexities not accounted for in the idealized cases. These examples illustrate that no single transport time scale is valid for all time periods, locations, and constituents, and no one time scale describes all transport processes. We encourage aquatic scientists to rigorously define the transport time scale when it is applied, identify the underlying assumptions in the application of that concept, and ask if those assumptions are valid in the application of that approach for computing transport time scales in real systems.

  8. Residence time estimates for asymmetric simple exclusion dynamics on strips

    NASA Astrophysics Data System (ADS)

    Cirillo, Emilio N. M.; Krehel, Oleh; Muntean, Adrian; van Santen, Rutger; Sengar, Aditya

    2016-01-01

    The target of our study is to approximate numerically and, in some particular physically relevant cases, also analytically, the residence time of particles undergoing an asymmetric simple exclusion dynamics on a two-dimensional vertical strip. The sources of asymmetry are twofold: (i) the choice of boundary conditions (different reservoir levels) and (ii) the strong anisotropy from a drift nonlinear in density with prescribed directionality. We focus on the effect of the choice of anisotropy on residence time. We analyze our results by means of two theoretical models, a Mean Field and a one-dimensional Birth and Death one. For positive drift we find a striking agreement between Monte Carlo and theoretical results. In the zero drift case we still find agreement as long as particles can freely escape the strip through the bottom boundary. Otherwise, the two models give different predictions and their ability to reproduce numerical results depends on the horizontal displacement probability. The topic is relevant for situations occurring in pedestrian flows or biological transport in crowded environments, where lateral displacements of the particles occur predominantly affecting therefore in an essentially way the efficiency of the overall transport mechanism.

  9. The determination of residence times in a pilot plant

    NASA Astrophysics Data System (ADS)

    Ramírez, F. Pablo; Cortés, M. Eugenia

    2004-01-01

    It is well known that residence time distributions (RTD) are very important in many chemical processes such as separation, reforming, hydrocracking, fluid catalytic cracking, hydrodesulfuration, hydrogenation among others [3 Procédés de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. In addition, tracers can be used to measure the velocity, distribution and residence time of any stream through any part of an industrial [Guidebook on Radioisotope Tracers in Industry, IAEA, Vienna, 1990] or experimental system. Perhaps the best quality of radiotracers is that they do not interfere with normal unit operations or production scheduling. In this paper are presented the RTDs obtained in a pilot plant for a hydrogenation process [IMP, Technical Report, Determinación del tiempo de residencia promedio en el reactor de la planta piloto de hidroagotamiento de crudo, 2002]. The RTDs show a random phenomenon, which is not typical of this type of chemical processes. Several RTDs were determined in order to confirm this random behavior. The data were obtained using as a tracer a radioactive form of sodium iodide containing iodine-131 [The Condensed Chemical Dictionary, 10th Ed., Van Nostrand Reinhold, USA, 1981]. The process works with two phases in a countercurrent flow, inside a packed column. The liquid phase goes down by gravity. The gas phase goes up due to pressure difference [3 Procédés de transformation, Editions Technip, Institute Francais du Petrole, Paris, France, 1998]. The tracer was selected such that it would follow the liquid phase.

  10. THE LOCAL EFFECT TIME (LET) AND HOW IT INCORPORATES ECOLOGY INTO RESIDENCE TIME

    EPA Science Inventory

    A clear and direct connection between constituent/water residence times and ecological effects is necessary to quantitatively relate these time scales to ecology. The concept of "local effect time" (LET) is proposed here as a time scale with adequate spatial resolution to relate ...

  11. Exposure times rather than residence times control redox transformation efficiencies in riparian wetlands

    NASA Astrophysics Data System (ADS)

    Frei, S.; Peiffer, S.

    2016-12-01

    The concept of Damköhler numbers have been extensively used in the discipline of chemical engineering and lately increasingly found its application into environmental science in order to describe the integrated behavior of hydrological systems with respect to their physical transport and biogeochemical transformation capabilities. Defining characteristic time scales of transport and reaction, as part of the Damköhler concept, however is not trivial especially for non-well mixed systems like catchments where physically controlled transport and biogeochemical moderated reactions can be highly variable among individual flow paths. Often, system specific residence times alone are not useful to describe the timescales of transport in the Damköhler concept, because it neglects that degradation of redox-sensitive compounds depend on dynamically changing and non-uniformly distributed hydro-biogeochemical boundary conditions that either facilitate or suppress biogeochemical reactions. In this study an approach is presented that highlights the importance to specifically distinguish between residence and exposure times if system specific transformation efficiencies are evaluated. We investigate the inter-relationship between residence and exposure time distributions for different biogeochemical processes in a virtual wetland environment that is exposed to different hydrological conditions. The relationship between exposure and residence times is mathematically described by a composition matrix that linearly relates the two identities to each other. Composition matrices for different hydrological conditions are analyzed by using the singular value decomposition technique. Results show that especially the type of couplings between the surface and subsurface flow domain control how exposure and residence times are related to each other in the wetland system and that timescales of residence and exposure typically differ by orders of magnitude. Finally, results also indicate

  12. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  13. Complete chemical analysis of aerosol particles in real-time

    SciTech Connect

    Yang, Mo; Reilly, P.T.A.; Gieray, R.A.; Whitten, W.B.; Ramsey, J.M.

    1996-12-31

    Real-time mass spectrometry of individual aerosol particles using an ion trap mass spectrometer is described. The microparticles are sampled directly from the air by a particle inlet system into the vacuum chamber. An incoming particle is detected as it passes through two CW laser beams and a pulsed laser is triggered to intercept the particle for laser ablation ionization at the center of the ion trap. The produced ions are analyzed by the ion trap mass spectrometer. Ions of interest are selected and dissociated through collision with buffer gas atoms for further fragmentation analysis. Real-time chemical analyses of inorganic, organic, and bacterial aerosol articles have been demonstrated. It has been confirmed that the velocity and the size of the incoming particles highly correlate to each other. The performance of the inlet system, particle detection, and preliminary results are discussed.

  14. Physicochemical characterization of Capstone depleted uranium aerosols I: uranium concentration in aerosols as a function of time and particle size.

    PubMed

    Parkhurst, Mary Ann; Cheng, Yung Sung; Kenoyer, Judson L; Traub, Richard J

    2009-03-01

    During the Capstone Depleted Uranium (DU) Aerosol Study, aerosols containing DU were produced inside unventilated armored vehicles (i.e., Abrams tanks and Bradley Fighting Vehicles) by perforation with large-caliber DU penetrators. These aerosols were collected and characterized, and the data were subsequently used to assess human health risks to personnel exposed to DU aerosols. The DU content of each aerosol sample was first quantified by radioanalytical methods, and selected samples, primarily those from the cyclone separator grit chambers, were analyzed radiochemically. Deposition occurred inside the vehicles as particles settled on interior surfaces. Settling rates of uranium from the aerosols were evaluated using filter cassette samples that collected aerosol as total mass over eight sequential time intervals. A moving filter was used to collect aerosol samples over time, particularly within the first minute after a shot. The results demonstrate that the peak uranium concentration in the aerosol occurred in the first 10 s after perforation, and the concentration decreased in the Abrams tank shots to about 50% within 1 min and to less than 2% after 30 min. The initial and maximum uranium concentrations were lower in the Bradley vehicle than those observed in the Abrams tank, and the concentration levels decreased more slowly. Uranium mass concentrations in the aerosols as a function of particle size were evaluated using samples collected in a cyclone sampler, which collected aerosol continuously for 2 h after perforation. The percentages of uranium mass in the cyclone separator stages ranged from 38 to 72% for the Abrams tank with conventional armor. In most cases, it varied with particle size, typically with less uranium associated with the smaller particle sizes. Neither the Abrams tank with DU armor nor the Bradley vehicle results were specifically correlated with particle size and can best be represented by their average uranium mass concentrations of 65

  15. Sediment residence time and landscape evolution in arid Australia

    NASA Astrophysics Data System (ADS)

    Handley, H. K.; Dosseto, A.; Suresh, P. O.; Cohen, T. J.; Turner, S.

    2009-12-01

    Fractionation of Uranium isotopes (234U and 238U) in fine-grained sediment (< 50 µm) can be used to quantify timescales of sediment residence i.e. storage in soils and associated transport in fluvial or aeolian systems. This information is invaluable for understanding the relationships between climate, tectonics and landscape evolution. Previous work has shown it is possible to use this technique to quantify the links between climate change and sediment transport during the last glacial cycle in Australia (Dosseto et al. 2008). In the temperate, tectonically quiescent catchment area studied, Dosseto et al. showed that changes in climatic conditions strongly influence sediment provenance. However, can the same conclusions be drawn for a semi-arid catchment area? (234U/238U) ratios are presented on the fine fraction (2-50 µm) of palaeochannel sediments from the Katipiri Formation in the Strzelecki Desert. The data are combined with sediment deposition ages inferred from optically-stimulated luminescence (OSL) dating in order to constrain the time elapsed since production by physical weathering of the source bedrock (comminution age). These results provide constraint on the evolution of what today is a semi-arid environment and, in particular, how sediment transport and the landscape have responded to climate change over the past 100,000 yrs. The results are compared and contrasted with sediment residence timescales obtained for temperate Australia. Dosseto, A., Turner, S.P., Hesse, P., Maher, K., and Fryirs, K., 2008, Vegetation over hydrologic control of sediment transport over the past 100,000 yr: Geochim. Cosmochim. Acta, v. 72, p. Suppl. 1.

  16. Computing the residence times in the Venice Lagoon

    NASA Astrophysics Data System (ADS)

    Umgiesser, G.; Cucco, A.

    2003-04-01

    The Venice Lagoon is a shallow water body with a total area of about 500 km2. Three inlets govern the water exchanges between the Adriatic Sea and the Venice Lagoon. Water, entering and exiting through these channels during an entire tidal cycle, changes its biogeochemical and physical properties. The aim of this work is to investigate the Venice Lagoon circulation and to quantify the turn over time of the lagoon which mainly influences the water quality of the basin. The study has been carried out with a numerical model. The model computes the main hydrodynamic unknowns on a spatial domain that represents the Venice Lagoon and the Adriatic Sea with a finite element grid. The model considers as open boundary the line of Otranto channel in the southern Adriatic Sea and elsewhere as closed boundary the whole perimeter of the Adriatic Sea and Venice Lagoon. The model has been calibrated using the sea level data measured by more than twelve tide gauges located along the Adriatic Sea and inside the lagoon. The results obtained by the calibrated model have been validated with experimental data such as discharge data collected by botton mounted ADCP probes located at each inlet. The simulations take into account the tidal forcing and the different wind regimes. The instantaneous circulation and the residual current fields have been analyzed and the impact of the most important wind regimes on the circulation has been studied. The turn over time of the lagoon has been computed under different forcing conditions. A passive tracer only subjected to transport mechanism, has been released inside the lagoon. Resolving the time decaying of the tracer concentration for the whole area, the model computes the spatial distribution of the residence time in the basin. The results show that the re-import of water that previously exited the lagoon through the three inlets, plays an important role on the estimation of the turn over time of the lagoon thus influencing the water quality of

  17. Water residence time in Chesapeake Bay for 1980-2012

    NASA Astrophysics Data System (ADS)

    Du, Jiabi; Shen, Jian

    2016-12-01

    Concerns have grown over the increase of nutrients and pollutants discharged into the estuaries and coastal seas. The retention and export of these materials inside a system depends on the residence time (RT). A long-term simulation of time-varying RT of the Chesapeake Bay was conducted over the period from 1980 to 2012. The 33-year simulation results show that the mean RT of the entire Chesapeake Bay system ranges from 110 to 264 days, with an average value of 180 days. The RT was larger in the bottom layers than in the surface layers due to the persistent stratification and estuarine circulation. A clear seasonal cycle of RT was found, with a much smaller RT in winter than in summer, indicating materials discharged in winter would be quickly transported out of the estuary due to the winter-spring high flow. Large interannual variability of the RT was highly correlated with the variability of river discharge (R2 = 0.92). The monthly variability of RT can be partially attributed to the variability of estuarine circulation. A strengthened estuarine circulation results in a larger bottom influx and thus reduces the RT. Wind exerts a significant impact on the RT. The upstream wind is more important in controlling the lateral pattern of RT in the mainstem.

  18. Particle tracking and mean residence time in barchan dunes

    NASA Astrophysics Data System (ADS)

    Zhang, Deguo; Narteau, Clement; Rozier, Olivier

    2013-04-01

    We analyze sediment particles motions in steady-state barchan dunes by tracking individual cells of a 3-D cellular automaton dune model. The overall sediment flux may be decomposed into advective and dispersive fluxes to estimate the relative contribution of the underlying physical processes to the barchan dune shape. The net lateral sediment transport from the center to the horns indicates that dispersion on the stoss slope is more efficient than avalanches on the lee slope. The combined effect of these two antagonistic dispersive processes restricts the lateral mixing of sediment particles in the central region of barchan dunes. Then, for different flow strength and dune size, we find that the mean residence time of sediment particles in barchan dunes is equal to the surface of the central longitudinal dune slices divided by the input sand flux. We infer that this central slice contains most of the relevant information about barchan dune morphodynamics. Finally, we initiate a discussion about sediment transport and memory in presence of bedforms using the advantages of the particle tracking technique.

  19. Assessing effects of esfenvalerate aerosol applications on resident populations of Tribolium castaneum (Herbst), the red flour beetle, through direct and indirect sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-scale field sheds were infested with resident populations of the red flour beetle, Tribolium castaneum (Herbst), and either left untreated or treated every two or four weeks with an aerosol spray of esfenvalerate (Conquer ®). The sheds were infested by placing flour food patches underneath she...

  20. Pathology residency training: time for a new paradigm.

    PubMed

    Domen, Ronald E; Baccon, Jennifer

    2014-06-01

    The exponential growth of the field of pathology over the past several decades has created challenges for residency training programs. These challenges include the ability to train competent pathologists in 4 years, an increased demand for fellowship training, and the structuring and completion of maintenance of certification. The authors feel that pathology residency training has reached a critical point and that a new paradigm for training is required.

  1. Nonparametric estimation of groundwater residence time distributions: What can environmental tracer data tell us about groundwater residence time?

    NASA Astrophysics Data System (ADS)

    McCallum, James L.; Engdahl, Nicholas B.; Ginn, Timothy R.; Cook, Peter. G.

    2014-03-01

    Residence time distributions (RTDs) have been used extensively for quantifying flow and transport in subsurface hydrology. In geochemical approaches, environmental tracer concentrations are used in conjunction with simple lumped parameter models (LPMs). Conversely, numerical simulation techniques require large amounts of parameterization and estimated RTDs are certainly limited by associated uncertainties. In this study, we apply a nonparametric deconvolution approach to estimate RTDs using environmental tracer concentrations. The model is based only on the assumption that flow is steady enough that the observed concentrations are well approximated by linear superposition of the input concentrations with the RTD; that is, the convolution integral holds. Even with large amounts of environmental tracer concentration data, the entire shape of an RTD remains highly nonunique. However, accurate estimates of mean ages and in some cases prediction of young portions of the RTD may be possible. The most useful type of data was found to be the use of a time series of tritium. This was due to the sharp variations in atmospheric concentrations and a short half-life. Conversely, the use of CFC compounds with smoothly varying atmospheric concentrations was more prone to nonuniqueness. This work highlights the benefits and limitations of using environmental tracer data to estimate whole RTDs with either LPMs or through numerical simulation. However, the ability of the nonparametric approach developed here to correct for mixing biases in mean ages appears promising.

  2. Controls on residence time and exchange in a system of shallow coastal bays

    NASA Astrophysics Data System (ADS)

    Safak, I.; Wiberg, P. L.; Richardson, D. L.; Kurum, M. O.

    2015-04-01

    Patterns of transport and residence time influence the morphology, ecology and biogeochemistry of shallow coastal bay systems in important ways. To better understand the factors controlling residence time and exchange in coastal bays, a three-dimensional finite-volume coastal ocean model was set up and validated with field observations of circulation in a system of 14 shallow coastal bays on the Atlantic coast of the USA (Virginia Coast Reserve). Residence times of neutrally buoyant particles as well as exchange among the bays in the system and between the bays and the ocean were examined with Lagrangian particle tracking. There was orders of magnitude variation in the calculated residence time within most of the bays, ranging from hours in the tidally refreshed (repletion) water near the inlets to days-weeks in the remaining (residual) water away from the inlets. Residence time in the repletion waters was most sensitive to the tidal phase (low vs. high) when particles were released whereas residence time in the residual waters was more sensitive to wind forcing. Wind forcing was found to act as a diffuser that shortens particle residence within the bays; its effect was higher away from the inlets and in relatively confined bays. Median residence time in the bays significantly decreased with an increase in the ratio between open water area and total area (open water plus marsh). Exchange among the bays and capture areas of inlets (i.e., exchange between the bays and the ocean) varied considerably but were insensitive to tidal phase of release, wind, and forcing conditions in different years, in contrast to the sensitivity of residence time to these factors. We defined a new quantity, termed shortest-path residence time, calculated as distance from the closest inlet divided by root-mean-square velocity at each point in model domain. A relationship between shortest-path residence time and particle-tracking residence time provides a means of estimating residence time

  3. Watershed mean residence times and travel time distributions: how accurately can they be characterized?

    NASA Astrophysics Data System (ADS)

    Godsey, S. E.; Kirchner, J. W.

    2006-12-01

    The average time that rainfall takes to reach the stream - the mean residence time - is a basic parameter used to characterize watersheds. Watersheds are also characterized by the distribution of travel times for individual parcels of precipitation that fall on different points across the catchment. This travel time distribution is an important control on catchment response to contamination events. Catchments with shorter residence times or narrower distributions will have a flashier response to contamination events, whereas catchments with longer residence times or longer-tailed distributions will have a more persistent response to those same contamination events. Catchments' travel time distributions are typically inferred from time series of passive tracers (such as water isotopes, chloride, or bromide) in rainfall and streamflow. Tracer fluctuations in streamflow are typically damped compared to those in preciptation, because precipitation inputs of different ages (and different tracer signatures) are mixed within the catchment. Mathematically, this mixing process is modeled by the convolution of the travel time distribution and the precipitation tracer inputs to generate the stream tracer outputs. The parameters describing the travel time distribution are typically estimated by maximizing the goodness of fit between the modeled and measured tracer outputs. This approach is potentially subject to at least two sources of uncertainty. First, both the input and output tracer concentrations are subject to measurement error. Second, although the catchment mixing process is continuous, the inputs and outputs are only sampled at discrete points in time. Here we test how these two sources of uncertainty may affect travel time distributions that are estimated from catchment monitoring data. We begin by generating synthetic tracer input time series, and convolve these with a specified travel-time distribution to generate a synthetic output time series. We then subsample

  4. My Time as a Professor in Residence: Lessons Learned

    ERIC Educational Resources Information Center

    Marsh, Josephine Peyton

    2013-01-01

    This commentary is based on two of the lessons the author learned as the professor in residence at ASU Preparatory Academy-Phoenix (ASU Prep), a Title I school operated in partnership with the Phoenix Elementary School District. Her role as a university professor on special assignment as a literacy coach, staff developer, and co-researcher. The…

  5. 26 CFR 301.7701(b)-4 - Residency time periods.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... resident test (green card test), described in paragraph (b)(1) of § 301.7701(b)-1, is the first day during... test and the green card test will be the earlier of the first day the individual is physically present... termination date for an alien who meets the green card test is the first day during the calendar year that...

  6. 26 CFR 301.7701(b)-4 - Residency time periods.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... resident test (green card test), described in paragraph (b)(1) of § 301.7701(b)-1, is the first day during... test and the green card test will be the earlier of the first day the individual is physically present... termination date for an alien who meets the green card test is the first day during the calendar year that...

  7. Effects of zebra mussels on food webs: Interactions with juvenile bluegill and water residence time

    USGS Publications Warehouse

    Richardson, W.B.; Bartsch, L.A.

    1997-01-01

    We evaluated how water residence time mediated the impact of zebra mussels Dreissena polymorpha and bluegill sunfish Lepomis macrochirus on experimental food webs established in 1100-1 outdoor mesocosms. Water residence time was manipulated as a surrogate for seston resupply - a critical variable affecting growth and survival of suspension-feeding invertebrates. We used a 2 x 2 x 2 factorial experimental design with eight treatment combinations (3 replicates/treatment) including the presence or absence of Dreissena (2000 per m2), juvenile bluegill (40 per mesocosm), and short (1100 1 per d) or long (220 1 per d) water residence time. Measures of seston concentration (chlorophyll a, turbidity and suspended solids) were greater in the short- compared to long water-residence mesocosms, but intermediate in short water-residence mesocosms containing Dreissena. Abundance of rotifers (Keratella and Polyarthra) was reduced in Dreissena mesocosms and elevated in short residence time mesocosms. Cladocera abundance, in general, was unaffected by the presence of Dreissena; densities were higher in short-residence time mesocosms, and reduced in the presence of Lepomis. The growth of juvenile Lepomis were unaffected by Dreissena because of abundant benthic food. The final total mass of Dreissena was significantly greater in short- than long-residence mesocosms. Impacts of Dreissena on planktonic food webs may not only depend on the density of zebra mussels but also on the residence time of the surrounding water and the resupply of seston. ?? 1997 Kluwer Academic Publishers.

  8. Real Time Detection of Sodium in Size-Segregated Marine Aerosols

    DTIC Science & Technology

    2002-09-30

    Real Time Measurement of Sea- Salt Aerosol during the SEAS Campaign: Comparison of Emission based Sodium Detection with an Aerosol Volatility Technique. Submitted to the Journal of Atmospheric and Oceanic Technology. ...Real Time Detection of Sodium in Size-Segregated Marine Aerosols Anthony J. Hynes Rosenstiel School of Marine and Atmospheric Science 4600...this capability for sodium and a prototype has been deployed as part of an ONR-sponsored field campaign (SEAS). The ultimate goal of the project is to

  9. Analysis of the Effects of Chemical Composition and Humidity on Visibility using Highly Time Resolved Aerosol Data

    NASA Astrophysics Data System (ADS)

    Lunden, M. M.; Brown, N. J.; Liu, D.; Tonse, S.

    2005-12-01

    relationships among extinction, aerosol loading and type, and relative humidity. References 1. Lunden, M.M., T.L. Thatcher, S.V. Hering, and N.J. Brown (2003). The Use of Time- and Chemically-Resolved Particulate Data to Characterize the Infiltration of Outdoor PM-2.5 into a Residence in the San Joaquin Valley. Environmental Science and Technology 37, pp 4724-4732. 2. Malm, W.C., 'IMPROVE, Interagency Monitoring of Protected Visual Environments,' ISSN: 0737-5352-47, Colorado State University, May 2000.

  10. An approach to the residence time distribution for stochastic multi-compartment models.

    PubMed

    Yu, Jihnhee; Wehrly, Thomas E

    2004-10-01

    Stochastic compartmental models are widely used in modeling processes such as drug kinetics in biological systems. This paper considers the distribution of the residence times for stochastic multi-compartment models, especially systems with non-exponential lifetime distributions. The paper first derives the moment generating function of the bivariate residence time distribution for the two-compartment model with general lifetimes and approximates the density of the residence time using the saddlepoint approximation. Then, it extends the distributional approach to the residence time for multi-compartment semi-Markov models combining the cofactor rule for a single destination and the analytic approach to the two-compartment model. This approach provides a complete specification of the residence time distribution based on the moment generating function and thus facilitates an easier calculation of high-order moments than the approach using the coefficient matrix. Applications to drug kinetics demonstrate the simplicity and usefulness of this approach.

  11. Residence time control on hot moments of net nitrate production and uptake in the hyporheic zone

    USGS Publications Warehouse

    Briggs, Martin A.; Lautz, Laura K.; Hare, Danielle K.

    2014-01-01

    moments of net production and uptake, enhancing NO3- production as residence times approach the anaerobic threshold, and changing zones of net NO3- production to uptake as residence times increase past the net sink threshold. The anaerobic and net sink thresholds for beaver-influenced streambed morphology occur at much shorter residence times (1.3 h and 2.3 h, respectively) compared to other documented hyporheic systems, and the net sink threshold compares favorably to the lower boundary of the anaerobic threshold determined for this system with the new oxygen Damkohler number. The consistency of the residence time threshold values of NO3- cycling in this study, despite environmental variability and disparate morphology, indicates that NO3- hot moment dynamics are primarily driven by changes in physical hydrology and associated residence times.

  12. The role of topography on catchment-scale water residence time

    USGS Publications Warehouse

    McGuire, K.J.; McDonnell, Jeffery J.; Weiler, M.; Kendall, C.; McGlynn, B.L.; Welker, J.M.; Seibert, J.

    2005-01-01

    The age, or residence time, of water is a fundamental descriptor of catchment hydrology, revealing information about the storage, flow pathways, and source of water in a single integrated measure. While there has been tremendous recent interest in residence time estimation to characterize watersheds, there are relatively few studies that have quantified residence time at the watershed scale, and fewer still that have extended those results beyond single catchments to larger landscape scales. We examined-topographic controls on residence time for seven catchments (0.085-62.4 km2) that represent diverse geologic and geomorphic conditions in the western Cascade Mountains of Oregon. Our primary objective was to determine the dominant physical controls on catchment-scale, water residence time and specifically test the hypothesis that residence time is related to the size of the basin. Residence times were estimated by simple convolution models that described the transfer of precipitation isotopic composition to the stream network. We found that base flow mean residence times for exponential distributions ranged from 0.8 to 3.3 years. Mean residence time showed no correlation to basin area (r2 < 0.01) but instead was correlated (r2 =-0:91) to catchment terrain indices representing the flow path distance and flow path gradient to the stream network. These results illustrate that landscape organization (i.e., topography) rather than basin area controls catchment-scale transport. Results from this study may provide a framework for describing scale-invariant transport across climatic and geologic conditions, whereby the internal form and structure of the basin defines the first-order control on base flow residence time. Copyright 2005 by the American Geophysical Union.

  13. Analysis of soil water residence times in a monolith lysimeter at the North Appalachian Experimental Watershed

    SciTech Connect

    Gamble, B.F.; Eckstein, Y.

    1985-01-01

    Estimates of soil water residence times can be made using water budget records. A single average value, referred to as conventional residence time, can be obtained by dividing the mean storage volume by the mean output volume. Using concepts from queuing theory, estimates of residence times can be made by assuming first-in-first-out (FIFO) or last-in-first-out (LIFO) movement of the water. Using such assumption, estimates can be made on the length of time that water remains in the soil, depending on the time of year that water enters the soil. For residence time estimations, monthly water budget data was obtained for the period from 1947 through 1982 for a weighing monolith lysimeter located at the North Appalachian Experimental Watershed near Coshocton, Ohio. The lysimeter encloses an undisturbed block of silt loam soil. The conventional residence time for the record period is 10.2 months. The mean maximum residence time, based on the assumption of all FIFO movement, is 11.1 months with a minimum value of 4 months and a maximum value of 18 months. The assumption of all LIFO movement gives a mean maximum residence time value of 3.8 months with a minimum value of less than one month and a maximum value of 102 months.

  14. Time evolution and emission factors of aerosol particles from day and night time savannah fires

    NASA Astrophysics Data System (ADS)

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri

    2013-04-01

    The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the

  15. Mixing and residence times of stormwater runoff in a detection system

    USGS Publications Warehouse

    Martin, Edward H.

    1989-01-01

    Five tracer runs were performed on a detention pond and wetlands system to determine mixing and residence times in the system. The data indicate that at low discharges and with large amounts of storage, the pond is moderately mixed with residence times not much less than the theoretical maximum possible under complete mixing. At higher discharges and with less storage in the pond, short-circuiting occurs, reducing the amount of mixing in the pond and appreciably reducing the residence times. The time between pond outlet peak concentrations and wetlands outlet peak concentrations indicate that in the wetlands, mixing increases with decreasing discharge and increasing storage.

  16. Children's Perspectives on Everyday Experiences of Shared Residence: Time, Emotions and Agency Dilemmas

    ERIC Educational Resources Information Center

    Haugen, Gry Mette D.

    2010-01-01

    Shared residence is often presented as an arrangement that is in the best interests of the child following the divorce of its parents. Based on in-depth interviews with Norwegian children who have experienced shared residence, this article seeks to explore some dilemmas concerning time, agency and the children's emotions. Three characteristics of…

  17. Measurements of Semi-volatile Aerosol and Its Effect on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2013-12-01

    Semi-volatile compounds, including particle-bound water, comprise a large part of aerosol mass and have a significant influence on aerosol lifecycle and its optical properties. Understanding the properties of semi-volatile compounds, especially those pertaining to gas/aerosol partitioning, is of critical importance for our ability to predict concentrations and properties of ambient aerosol. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of temperature and relative humidity on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). In parallel to these measurements, a long residence time temperature-stepping thermodenuder and a variable residence time constant temperature thermodenuder in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. It was found that both temperature and relative humidity have a strong effect on aerosol optical properties. The variable residence time thermodenuder data suggest that aerosol equilibrated fairly quickly, within 2 s, in contrast to other ambient observations. Preliminary analysis show that approximately 50% and 90% of total aerosol mass evaporated at temperatures of 100 C and 180C, respectively. Evaporation varied substantially with ambient aerosol loading and composition and meteorology. During course of this study, T50 (temperatures at which 50% aerosol mass evaporates) varied from 60 C to more than 120 C.

  18. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  19. Towards depth profiling of organic aerosols in real time using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Hoffmann, Thorsten

    2014-05-01

    Organic aerosol accounts for a substantial fraction of tropospheric aerosol and has implications on the earth's climate and human health. However, the characterization of its chemical composition and transformations remain a major challenge and is still connected to large uncertainties (IPCC, 2013). Recent measurements revealed that organic aerosol particles may reside in an amorphous or semi-solid phase state which impedes the diffusion within the particles (Virtanen et al., 2010; Shiraiwa et al., 2011). This means that reaction products which are formed on the surface of a particle, e.g. by OH, NO3 or ozone chemistry, cannot diffuse into the particle's core and remain at the surface. Eventually, this leads to particles with a core/shell structure. In the particles' cores the initial compounds are preserved whereas the shells contain mainly the oxidation products. By analyzing the particles' cores and shells separately, thus, it is possible to obtain valuable information on the formation and evolution of the aerosols' particle and gas phase. Here we present the development of the aerosol flowing atmospheric-pressure afterglow (AeroFAPA) technique which allows the mass spectrometric analysis of organic aerosols in real time. The AeroFAPA is an ion source based on a helium glow discharge at atmospheric pressure. The plasma produces excited helium species and primary reagent ions which are transferred into the afterglow region where the ionization of the analytes takes place. Due to temperatures of only 80 ° C to 150 ° C and ambient pressure in the afterglow region, the ionization is very soft and almost no fragmentation of organic molecules is observed. Thus, the obtained mass spectra are easy to interpret and no extensive data analysis procedure is necessary. Additionally, first results of a combination of the AeroFAPA-MS with a scanning mobility particle sizer (SMPS) suggest that it is not only possible to analyze the entire particle phase but rather that a

  20. MODELING HOW A HURRICANE BARRIER IN NEW BEDFORD HARBOR, MASSACHUSETTS, AFFECTS THE HYDRODYNAMICS AND RESIDENCE TIMES

    EPA Science Inventory

    Two-dimensional hydrodynamic and transport models were used to simulate tidal and subtidal circulation, residence times, and the longitudinal distributions of conservative constituents in New Bedford Harbor, Massachusetts, before and after a hurricane barrier was constructed. The...

  1. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor.

    PubMed

    Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode.

  2. Evaluation of Residence Time on Nitrogen Oxides Removal in Non-Thermal Plasma Reactor

    PubMed Central

    Talebizadeh, Pouyan; Rahimzadeh, Hassan; Babaie, Meisam; Javadi Anaghizi, Saeed; Ghomi, Hamidreza; Ahmadi, Goodarz; Brown, Richard

    2015-01-01

    Non-thermal plasma (NTP) has been introduced over the last few years as a promising after- treatment system for nitrogen oxides and particulate matter removal from diesel exhaust. NTP technology has not been commercialised as yet, due to its high rate of energy consumption. Therefore, it is important to seek out new methods to improve NTP performance. Residence time is a crucial parameter in engine exhaust emissions treatment. In this paper, different electrode shapes are analysed and the corresponding residence time and NOx removal efficiency are studied. An axisymmetric laminar model is used for obtaining residence time distribution numerically using FLUENT software. If the mean residence time in a NTP plasma reactor increases, there will be a corresponding increase in the reaction time and consequently the pollutant removal efficiency increases. Three different screw thread electrodes and a rod electrode are examined. The results show the advantage of screw thread electrodes in comparison with the rod electrode. Furthermore, between the screw thread electrodes, the electrode with the thread width of 1 mm has the highest NOx removal due to higher residence time and a greater number of micro-discharges. The results show that the residence time of the screw thread electrode with a thread width of 1 mm is 21% more than for the rod electrode. PMID:26496630

  3. Role of Plasma Temperature and Residence Time in Stagnation Plasma Synthesis of c-BN Nanopowders

    DTIC Science & Technology

    2013-01-01

    downstream of the bubbler; (8) Set the RF plasma power to ~500-1400W; (9) Open MFCs simultaneously; (10) Once the flow reaches steady state, spark ...ROLE OF PLASMA TEMPERATURE AND RESIDENCE TIME IN STAGNATION PLASMA SYNTHESIS OF c-BN NANOPOWDERS by JONATHAN M DOYLE A Thesis submitted to the...TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Role of Plasma Temperature And Residence Time In Stagnation Plasma Synthesis

  4. The effect of tidal exchange on residence time in a coastal embayment

    NASA Astrophysics Data System (ADS)

    Rynne, Patrick; Reniers, Ad; van de Kreeke, Jacobus; MacMahan, Jamie

    2016-04-01

    Numerical simulations of an idealized lagoon that is connected to the ocean via a tidal inlet show that the mean residence time is inversely proportional to tidal exchange. In the Delft3D model the tidal exchange is controlled by varying the inlet length, width and depth. These changes in the inlet geometry affect the tidal prism and the ebb/flood flow structure, which are shown to control the exchange of lagoon water with seawater. To map residence time within the lagoon, a new method that implements dye tracer is developed and shows that the tidally averaged residence time exhibits significant spatial variability. For inlet systems in which, as a first approximation, the lagoon can be described by a uniformly fluctuating water level, a simple transport model is developed to elucidate the specific processes that control tidal exchange and their effect on residence time. In this transport model tidal exchange is decomposed into two fractions, an ocean exchange fraction and a lagoon exchange fraction. It is shown that both fractions need to be included to better describe tidal exchange. Specifically, inclusion of a lagoon exchange fraction improves previous tidal prism models that assume complete mixing in the lagoon. The assumption of complete mixing results in an under-prediction of residence time. Relating the spatially averaged residence time results to the exchange fractions for each inlet geometry show that the residence time is inversely proportional to the product of the tidal exchange fractions. For these single inlet systems, Keulegan's 0-D hydrodynamic model shows good agreement with Delft3D in predicting the tidal prism, maximum flow velocity, and exchange fractions. With these parameters, estimates of the mean residence time can be reached through a relationship derived from the simple transport model.

  5. The imprint of climate and geology on the residence times of groundwater

    NASA Astrophysics Data System (ADS)

    Maxwell, Reed M.; Condon, Laura E.; Kollet, Stefan J.; Maher, Kate; Haggerty, Roy; Forrester, Mary Michael

    2016-01-01

    Surface and subsurface flow dynamics govern residence time or water age until discharge, which is a key metric of storage and water availability for human use and ecosystem function. Although observations in small catchments have shown a fractal distribution of ages, residence times are difficult to directly quantify or measure in large basins. Here we use a simulation of major watersheds across North America to compute distributions of residence times. This simulation results in peak ages from 1.5 to 10.5 years, in agreement with isotopic observations from bomb-derived radioisotopes, and a wide range of residence times—from 0.1 to 10,000 years. This simulation suggests that peak residence times are controlled by the mean hydraulic conductivity, a function of the prevailing geology. The shape of the residence time distribution is dependent on aridity, which in turn determines water table depth and the frequency of shorter flow paths. These model results underscore the need for additional studies to characterize water ages in larger systems.

  6. Residence time and Posidonia oceanica in Cabrera Archipelago National Park, Spain

    NASA Astrophysics Data System (ADS)

    Orfila, A.; Jordi, A.; Basterretxea, G.; Vizoso, G.; Marbà, N.; Duarte, C. M.; Werner, F. E.; Tintoré, J.

    2005-07-01

    Flushing time and residence time are studied in a small inlet in Cabrera National Park, Western Mediterranean Sea. Flushing time is studied using ADCP in situ data. Observed flushing time data are compared with the simulations from a three-dimensional coastal ocean numerical model. Residence time is assessed using virtual lagrangian particles and studying the number remaining within the analyzed domain. Results show a good agreement between observations and modeling estimations of the flushing time (i.e. 6 days from the ADCP data and 5.6 days from the numerical model). Residence time estimations yield a broad range of values, from 1 h in the Bay to over 30 days depending also on the horizontal and vertical position where particles were released. A continuous stirred tank reactor (CSTR) model for the Port yields a value of 8.7 days. Results obtained for the residence time appear to have a determinant impact over the meadows of the seagrass Posidonia oceanica, present inside the Port. Recirculation patterns and complex flows in coastal environments create a non-uniform distribution of the areas of accumulation of non-conservative properties that indicate that residence time concept is the correct approach when studying the impact of water transport over biological communities.

  7. Residence time of buoyant objects in drowning machines

    PubMed Central

    Gioia, Gustavo; Chakraborty, Pinaki; Gary, Stefan F.; Zamalloa, Carlo Zuñiga; Keane, Richard D.

    2011-01-01

    Hydraulic jumps are a common feature of rivers and waterways, where they can be found close to spillways, weirs, rocky ledges, and boulders. People adrift upstream of a hydraulic jump are liable to become trapped in the turbulent roller of the hydraulic jump. For this reason, hydraulic jumps have been termed “drowning machines” and are recognized as a public hazard. We use experiments and theory to show that on average a buoyant object spends a time τ/p trapped in a jump, where τ is the period of a harmonic process inherent in the jump, and p is the probability that the object will escape in any time interval τ. The probability p is governed by the statistical theory of extreme values and depends primarily on the ratio between the density of the object and the density of the fluid. We use our results to draw conclusions that might prove to be useful to public-safety agencies intent on carrying out tests in drowning machines. Our results can also be used to predict the amount of flotsam that accumulates at the toe of a hydraulic jump.

  8. Methane: Interhemispheric concentration gradient and atmospheric residence time

    PubMed Central

    Mayer, Edward W.; Blake, Donald R.; Tyler, Stanley C.; Makide, Yoshihiro; Montague, Derek C.; Rowland, F. Sherwood

    1982-01-01

    The ground level concentrations of methane in the atmosphere have been measured to be in the range from 1.45 to 1.62 parts per million by volume (ppmv) of dry air in remote locations between 62°N and 54°S latitudes during the time period from November 1977 to July 1979. The average (±rms) concentration for the northern hemisphere was 1.57 ± 0.02 ppmv in January 1978 and 1.59 ± 0.02 in July 1979. The average concentration in the southern hemisphere was lower—1.47 ± 0.02 in January 1978 and 1.51 ± 0.01 in July 1979. The ratio of concentrations between the two hemispheres was 1.068 ± 0.016 in January 1978 and 1.055 ± 0.013 in July 1979, for an average of 1.06 ± 0.01. The higher concentrations in the northern hemisphere require either that the sources of methane lie preferentially in the northern hemisphere or that the removal processes operate more rapidly in the southern hemisphere or both. The primary removal process for CH4 is reaction with tropospheric OH radicals and its estimated atmospheric lifetime is 10.5 ± 1.8 yr. The observed interhemispheric gradient is consistent with this lifetime and preferential release of methane in the northern hemisphere. Measurements taken in the Amazon basin region indicate the presence of a substantial source of methane in that area. PMID:16593168

  9. Simulation of Water Age and Residence Time in the New York Bight

    NASA Astrophysics Data System (ADS)

    Zhang, W. G.; Wilkin, J. L.; Schofield, O. M.

    2008-12-01

    Aiming at investigating the time scale of transporting biogeochemical tracers in the New York Bight (NYB), this work looks into the time scale associated with freshwater propagation in NYB. The Constituent-oriented Age and Residence-time Theory is applied in Regional Ocean Modeling System and then verified. Three-year mean age and two-year mean residence time simulations are carried out. Comparison between snapshots of modeled surface freshwater mean age and satellite measured channel ratio, an empirical proxy of age, shows agreement on the general patterns. Least square fit gives the first order estimation of the relationship between channel ratio and mean age. Time series show temporal and spatial variation in mean age, and seasonal averages demonstrate seasonality of surface mean age consistent with surface circulation. Correlation between surface mean age and wind shows major effects wind in different directions has on mean age. Time series of the mean residence time exhibits strong temporal fluctuation in the scale of days, and seasonal averages show seasonality in surface mean residence time, too. The surprising high value of mean residence time along the Long Island coast in spring and summer is caused by the reentry of previously exited water from the eastern boundary after wind changes direction. Correlation between mean residence time and wind shows major effects wind has on the time freshwater and tracers spend in the New York apex area. Results obtained here are very useful for coastal management and studies of local biogeochemical processes and larval dispersal given the ecological and economical importance of the New York Bay.

  10. Observations and modeling of exchange and residence time in tidal inlets

    NASA Astrophysics Data System (ADS)

    Rynne, Patrick Forde

    The exchange of water in a coastal embayment with seawater is forced by tidally driven and gravitational flows. Tidal flows oscillate temporally based on planetary motion, while gravitational flows like those found in rivers act in one direction from high to low altitude. These flows determine the residence time, or the time water will remain within an embayment. At the ocean boundary, many coasts contain barrier islands with inlets through which these flows propagate. The effect that inlets have on the exchange of inland water with the sea has been the subject of research for nearly a century. Residence time is a bulk parameter that can be used to indicate the efficiency of an inlet system to rid itself of contaminants and maintain good water quality. Because coastal embayments are often exposed to anthropogenic pollutants, understanding the processes that control residence time improves our ability to protect coastal ecosystems. Inlet systems, including lagoons and estuaries, are subject to processes of a wide range of spatial and temporal scales. As such, past efforts to identify which processes control the motion and transport of water often rely on assumptions that simplify the kinematics. Today, the rapid evolution of personal computing has enabled the creation of numerical models that resolve the Reynolds Averaged Navier Stokes Equations (RANS) for complex flows found in inlet environments. This dissertation focuses on utilizing such a model to examine the flow in tidal inlet systems and to identify the dominant processes that control exchange and residence time. First, modeling experiments of idealized lagoons are conducted with the aim of quantifying how the shape of an inlet affects residence time. Seventeen different inlet configurations are examined. Methods of quantifying residence time based on previous analytical models are applied to a numerical model for the first time. To better understand the mechanism of exchange, a simple transport model is

  11. How Do Residents Spend Their Time in the Intensive Care Unit?

    PubMed Central

    Carayon, Pascale; Weinger, Matthew B.; Brown, Roger; Cartmill, Randi; Slagle, Jason; Van Roy, Kara Schultz; Walker, James M.; Wood, Kenneth E.

    2015-01-01

    Purpose To describe the work of residents and the distribution of their time in 6 ICUs of 2 medical centers. Methods We conducted a total of 242 hours of observation to capture data on tasks performed by residents in 6 ICUs, including adult, pediatric, medical and surgical units. For each observation period, the percentages of total time spent on each task and on the aggregated task categories were calculated. Results Overall, while in the ICUs, residents spent almost half of their time in clinical review and documentation (19%), conversation with team physicians (16%), conversation attendance (6%) and order management (6%). The two medical centers differed in the time that residents spent on administrative review and documentation (4% in one medical center and 15% in the other one). The pediatric ICUs were similar in the 2 medical centers, whereas the adult ICUs exhibited differences in the time spent on order management and administrative review and documentation. Conclusions While in the ICUs, residents spent most time performing direct patient care and care coordination activities. The distribution of activities varied across 2 medical centers and across ICUs, which highlights the need to consider the local context on residents’ work in ICUs. PMID:26171828

  12. Residence time of pollutants discharged in the Gulf of Kachchh, northwestern Arabian Sea.

    PubMed

    Patgaonkar, Rupali S; Vethamony, P; Lokesh, K S; Babu, M T

    2012-08-01

    A 2D Hydrodynamic-Particle Analysis model was applied to the Gulf of Kachchh (GoK) to estimate the residence time of pollutants. The tidal currents in the Gulf have a strong E-W component, which prevents the material in the north being transported towards south. In the regions situated very close to the open boundary, where the GoK waters exchange freely with the northern Arabian Sea, dilution takes place rapidly with the incoming waters and hence, the residence time is on the order of 1 day. Influence of eddies and a dynamic barrier across the Sikka-Mundra section on the residence time is apparent. Eastern GoK shows a relatively large residence time, on the order of 2-4 days, warranting caution while releasing industrial wastes in the northeastern Gulf. The region around location-5 behaves like a bay; the dissolved matter gets trapped in this bay and the residence time increases by 3-4 days.

  13. Utilization of decadal tritium variation for assessing the residence time of base flow.

    PubMed

    Rose, S

    2007-01-01

    An iterative algorithm is presented that allows the user to model the subsurface residence time of shallow ground water comprising stream base flow based on decadal scale variation of tritium concentrations. The algorithm accounts for the effects of radioactive decay, the shallow subsurface mixing of ground water with precipitation, and ground water flux. The inverse of the best-fitting modeled flux through the saturated zone is equivalent to the residence time. The data required for this model include at least two measurements of tritium in base flow for a given stream location made at least a decade apart and the long-term tritium input in precipitation for the region of interest. The model is sensitive to relatively small changes in tritium concentrations and is limited by analytic uncertainties to an accuracy of approximately +/-5 years. The algorithm was applied to stream base flow for several basins in the Piedmont Province of Georgia in which tritium concentrations were measured during the early 1990s and again in the 2000s. The model results produced highly concordant residence times for three hydrogeologically similar basins in the Upper Ocmulgee Basin in North Central Georgia. The best estimate of the average residence time for ground water comprising base flow in this Piedmont basin using this new method is between approximately 14 and 18 years. These results are generally consistent with calculations made in previous studies, and these relatively long residence times can be attributed to the storage of water in the clay soils that dominate Piedmont Province watersheds.

  14. Residency Time as an Indicator of Reproductive Restraint in Male Burying Beetles

    PubMed Central

    Smith, Ashlee N.; Belk, Mark C.; Creighton, J. Curtis

    2014-01-01

    The cost of reproduction theory posits that there are trade-offs between current and future reproduction because resources that are allocated to current offspring cannot be used for future reproductive opportunities. Two adaptive reproductive strategies have been hypothesized to offset the costs of reproduction and maximize lifetime fitness. The terminal investment hypothesis predicts that as individuals age they will allocate more resources to current reproduction as a response to decreasing residual reproductive value. The reproductive restraint hypotheses predicts that as individuals age they will allocate fewer resources to current reproduction to increase the chance of surviving for an additional reproductive opportunity. In this study, we test for adaptive responses to advancing age in male burying beetles, Nicrophorus orbicollis. Burying beetles use facultative biparental care, but the male typically abandons the brood before the female. Previous work in male burying beetles has suggested several factors to explain variation in male residency time, but no study has observed male behavior throughout their entire reproductive lifetimes to determine whether males change residency time in an adaptive way with age. We compared residency time of males that reproduced biparentally, uniparentally, and on different-sized carcasses to determine if they used an adaptive reproductive strategy. Males did not increase residency time as they aged when reproducing biparentally, but decreased residency time with age when reproducing uniparentally. A decrease in parental care with age is consistent with a reproductive restraint strategy. When female age increased over time, males did not increase their residency time to compensate for deteriorating female condition. To our knowledge, this is the first test of adaptive reproductive allocation strategies in male burying beetles. PMID:25295755

  15. Residency time as an indicator of reproductive restraint in male burying beetles.

    PubMed

    Smith, Ashlee N; Belk, Mark C; Creighton, J Curtis

    2014-01-01

    The cost of reproduction theory posits that there are trade-offs between current and future reproduction because resources that are allocated to current offspring cannot be used for future reproductive opportunities. Two adaptive reproductive strategies have been hypothesized to offset the costs of reproduction and maximize lifetime fitness. The terminal investment hypothesis predicts that as individuals age they will allocate more resources to current reproduction as a response to decreasing residual reproductive value. The reproductive restraint hypotheses predicts that as individuals age they will allocate fewer resources to current reproduction to increase the chance of surviving for an additional reproductive opportunity. In this study, we test for adaptive responses to advancing age in male burying beetles, Nicrophorus orbicollis. Burying beetles use facultative biparental care, but the male typically abandons the brood before the female. Previous work in male burying beetles has suggested several factors to explain variation in male residency time, but no study has observed male behavior throughout their entire reproductive lifetimes to determine whether males change residency time in an adaptive way with age. We compared residency time of males that reproduced biparentally, uniparentally, and on different-sized carcasses to determine if they used an adaptive reproductive strategy. Males did not increase residency time as they aged when reproducing biparentally, but decreased residency time with age when reproducing uniparentally. A decrease in parental care with age is consistent with a reproductive restraint strategy. When female age increased over time, males did not increase their residency time to compensate for deteriorating female condition. To our knowledge, this is the first test of adaptive reproductive allocation strategies in male burying beetles.

  16. Predictive Value of Performance Criteria for First-Time Sophomore Resident Assistants

    ERIC Educational Resources Information Center

    Severance, Dana A.

    2015-01-01

    Housing professionals are increasingly compelled to consider hiring resident assistants (RAs) from a pool of applicants that includes students with less college experience than has traditionally been expected. The purpose of the study is to determine if the success of first-time sophomore RAs differs from that of first-time upper-class RAs…

  17. Does streambed heterogeneity matter for hyporheic residence time distribution in sand-bedded streams?

    NASA Astrophysics Data System (ADS)

    Tonina, Daniele; de Barros, Felipe P. J.; Marzadri, Alessandra; Bellin, Alberto

    2016-10-01

    Stream water residence times within streambed sediments are key values to quantify hyporheic processes including sediment thermal regime, solute transient storage, dilution rates and biogeochemical transformations, such as those controlling degassing nitrous oxide. Heterogeneity of the streambed sediment hydraulic properties has been shown to be potentially an important factor to characterize hyporheic processes. Here, we quantify the importance of streambed heterogeneity on residence times of dune-like bedform induced hyporheic fluxes at the bedform and reach scales. We show that heterogeneity has a net effect of compression of the hyporheic zone (HZ) toward the streambed, changing HZ volume from the homogenous case and thus inducing remarkable differences in the flow field with respect to the homogeneous case. We unravel the physical conditions for which the commonly used homogenous field assumption is applicable for quantifying hyporheic processes thus explaining why predictive measures based on a characteristic residence time, like the Damköhler number, are robust in heterogeneous sand bedded streams.

  18. Computational fluid dynamic prediction of the residence time of a vortex separator applied to disinfection.

    PubMed

    Egarr, D; Faram, M G; O'Doherty, T; Phipps, D; Syred, N

    2005-01-01

    A Hydrodynamic Vortex Separator (HDVS) has been modelled using Computational Fluid Dynamics (CFD) in order to predict the residence time of the fluid at the overflow and underflow outlets. A technique which was developed for use in Heating, Ventilation and Air Conditioning (HVAC) was used to determine the residence time and the results have been compared with those determined experimentally. It is shown that in using CFD, it is possible to predict the mean residence time of the fluid and to study the response to a pulse injection of tracer. It is also shown that it is possible to apply these techniques to predict the mean survival rate of bacteria in a combined separation and disinfection process.

  19. Strategic Application of Residence-Time Control in Continuous-Flow Reactors

    PubMed Central

    Mándity, István M; Ötvös, Sándor B; Fülöp, Ferenc

    2015-01-01

    As a sustainable alternative for conventional batch-based synthetic techniques, the concept of continuous-flow processing has emerged in the synthesis of fine chemicals. Systematic tuning of the residence time, a key parameter of continuous-reaction technology, can govern the outcome of a chemical reaction by determining the reaction rate and the conversion and by influencing the product selectivity. This review furnishes a brief insight into flow reactions in which high chemo- and/or stereoselectivity can be attained by strategic residence-time control and illustrates the importance of the residence time as a crucial parameter in sustainable method development. Such a fine reaction control cannot be performed in conventional batch reaction set-ups. PMID:26246983

  20. Near Real Time Vertical Profiles of Clouds and Aerosols from the Cloud-Aerosol Transport System (CATS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Nowottnick, E. P.

    2015-12-01

    Plumes from hazardous events, such as ash from volcanic eruptions and smoke from wildfires, can have a profound impact on the climate system, human health and the economy. Global aerosol transport models are very useful for tracking hazardous plumes and predicting the transport of these plumes. However aerosol vertical distributions and optical properties are a major weakness of global aerosol transport models, yet a key component of tracking and forecasting smoke and ash. The Cloud-Aerosol Transport System (CATS) is an elastic backscatter lidar designed to provide vertical profiles of clouds and aerosols while also demonstrating new in-space technologies for future Earth Science missions. CATS has been operating on the Japanese Experiment Module - Exposed Facility (JEM-EF) of the International Space Station (ISS) since early February 2015. The ISS orbit provides more comprehensive coverage of the tropics and mid-latitudes than sun-synchronous orbiting sensors, with nearly a three-day repeat cycle. The ISS orbit also provides CATS with excellent coverage over the primary aerosol transport tracks, mid-latitude storm tracks, and tropical convection. Data from CATS is used to derive properties of clouds and aerosols including: layer height, layer thickness, backscatter, optical depth, extinction, and depolarization-based discrimination of particle type. The measurements of atmospheric clouds and aerosols provided by the CATS payload have demonstrated several science benefits. CATS provides near-real-time observations of cloud and aerosol vertical distributions that can be used as inputs to global models. The infrastructure of the ISS allows CATS data to be captured, transmitted, and received at the CATS ground station within several minutes of data collection. The CATS backscatter and vertical feature mask are part of a customized near real time (NRT) product that the CATS processing team produces within 6 hours of collection. The continuous near real time CATS data

  1. Protected block time for teaching and learning in a postgraduate family practice residency program

    PubMed Central

    Jung, Piera; Kennedy, Maggie; Winder, Mary J.

    2012-01-01

    Abstract Objective To explore the elements necessary for a high-quality educational experience in a family practice residency program with respect to scheduling, learning environment, and approaches to teaching and learning. Design An interpretative, qualitative study using a generative-inquiry approach. Setting The Nanaimo Site of the University of British Columbia Family Practice Residency Program. Participants Fifteen physician instructors and 16 first- and second-year residents. Methods Data were gathered from 2 qualitative focus group interviews with residents; 2 qualitative focus group interviews with physician instructors; and structured and semistructured observation of 2 in-class seminars, with a focus on residents’ engagement with the class. Results were analyzed and categorized into themes independently and collectively by the researchers. Main findings Protected block time for teaching and learning at the Nanaimo Site has been effective in fostering a learning environment that supports collegial relationships and in-depth instruction. Residents and physician instructors benefit from the week-long academic schedule and the opportunity to teach and learn collaboratively. Participants specifically value the connections among learning environment, collegiality, relationships, reflective learning, and the teaching and learning process. Conclusion These findings suggest that strategic planning and scheduling of teaching and learning sessions in residency programs are important to promoting a comprehensive educational experience. PMID:22700741

  2. Catchment travel and residence time distributions: a theoretical framework for solute transport modeling

    NASA Astrophysics Data System (ADS)

    Botter, G.; Bertuzzo, E.; Rinaldo, A.

    2011-12-01

    The probability density functions (pdf's) of travel and residence times are key descriptors of the mechanisms through which catchments retain and release old and event water, transporting solutes to receiving water bodies. In this contribution we derive a general stochastic framework applicable to arbitrary catchment control volumes, where time-variable precipitation, evapotranspiration and discharge are assumed to be the major hydrological drivers for water and solutes. A master equation for the residence time pdf is derived and solved analytically, providing expressions for travel and residence time pdf's as a function of input/output fluxes and of the relevant mixing processes occurring along streamflow production and plant upatke. Our solutions suggest intrinsically time variant travel and residence time pdf's through a direct dependence on the underlying hydrological forcings and soil vegetation dynamics. The proposed framework highlights the dependence of water/solute travel times on eco-hydrological processes (especially transpiration and uptake), and integrates age-dating and tracer hydrology techniques by providing a coherent framework for catchment transport models. An application to the release of pesticides from an agricultural watershead is also discussed.

  3. Relating hyporheic fluxes, residence times, and redox-sensitive biogeochemical processes upstream of beaver dams

    USGS Publications Warehouse

    Briggs, Martin A.; Lautz, Laura; Hare, Danielle K.

    2013-01-01

    ¨hler number seemed to overestimate the actual transition as indicated by multiple secondary electron acceptors, illustrating the gradient nature of anaerobic transition. Temporal flux variability in low-flux morphologies generated a much greater range in hyporheic redox conditions compared to high-flux zones, and chemical responses to changing flux rates were consistent with those predicted from the empirical relationship between redox condition and residence time. The Raz tracer revealed that hyporheic flow paths have strong net aerobic respiration, particularly at higher residence time, but this reactive exchange did not affect the net stream signal at the reach scale.

  4. Residence time distribution and material flow studies in a rotary kiln

    NASA Astrophysics Data System (ADS)

    Sai, P. S. T.; Surender, G. D.; Damodaran, A. D.; Suresh, V.; Philip, Z. G.; Sankaran, K.

    1990-12-01

    Experiments were conducted in a rotary kiln containing ilmenite particles to study the residence time distribution (RTD) of low-density particles, holdup, and bed depth profile. The variables include feed rate of solids, slope and rotational speed of the kiln, type and size of the tracer, and dam height. Correlations are presented for mean residence time, dispersion number, holdup, and steady-state throughput of solids in terms of the process variables. A simple method is proposed to estimate the dam height that gives rise to a flat profile of solids bed along the length of the kiln.

  5. Air Parcel Residence Times within Tropical Forest Canopies and Implications for Reactive Gases

    NASA Astrophysics Data System (ADS)

    Gerken, T.; Chamecki, M.; Fuentes, J. D.

    2014-12-01

    The Amazon rainforest is the world's largest natural emitter of reactive trace gases. Due to its dense vegetation (leaf area index > 4), turbulence fluctuations are highly attenuated deep inside the canopy. However, strong coherent eddies that penetrate the upper portion of the canopy can be very effective in transporting gases. Sweeps and ejections act in the order of seconds and transport air parcels into or out of the canopy. The effects of coherent structures on the air parcel residence times and associated chemical processing of reactive gases remain largely unquantified in tropical forests. We combine canopy resolving Large-Eddy Simulation (LES) and field observations in the Brazilian Amazon to study residence times of air parcels in the rainforest as a function of canopy structure and height (h). Good agreement is obtained between simulated and observed turbulence statistics within and above the forest. Coherent structure properties obtained from quadrant analysis are also well reproduced. A Lagrangian particle tracking algorithm is used to quantify the distribution of residence times of air parcels "released" at different heights. Canopy residence times were determined from the particle trajectories. The resulting probability density function (PDF) strongly depended on the particle release height (z). For particles released in the upper canopy (at z/h=0.75) the most frequent residence times were in the order of 30s, with 50% of all particles ejected from the canopy after ~2 minutes. The mean residence time was close to 5 minutes, indicating a very skewed PDF. At z/h=0.25 the PDF was more evenly distributed with its median and mean in the order of ~10 minutes. Due to sweeps, both simulations had a non- negligible fraction of particles transported deep into the canopy, thus increasing greatly their residence times. As the reaction timescales of many biogenic volatile organic compounds (BVOC) are in the order of seconds to minutes, significant chemical

  6. Real-Time Detection Method And System For Identifying Individual Aerosol Particles

    DOEpatents

    Gard, Eric Evan; Fergenson, David Philip

    2005-10-25

    A method and system of identifying individual aerosol particles in real time. Sample aerosol particles are compared against and identified with substantially matching known particle types by producing positive and negative test spectra of an individual aerosol particle using a bipolar single particle mass spectrometer. Each test spectrum is compared to spectra of the same respective polarity in a database of predetermined positive and negative spectra for known particle types and a set of substantially matching spectra is obtained. Finally the identity of the individual aerosol particle is determined from the set of substantially matching spectra by determining a best matching one of the known particle types having both a substantially matching positive spectrum and a substantially matching negative spectrum associated with the best matching known particle type.

  7. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model

    NASA Astrophysics Data System (ADS)

    Bellouin, N.; Mann, G. W.; Woodhouse, M. T.; Johnson, C.; Carslaw, K. S.; Dalvi, M.

    2013-03-01

    The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000-2006. HadGEM simulations of the aerosol optical depth using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. Because of differences in wet deposition rates, GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and abilities to affect cloud droplet number, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a present-day direct aerosol forcing of -0.49 W m-2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This

  8. MULTI-TECHNIQUE APPROACH TO MEASURE SIZE AND TIME RESOLVED ATMOSPHERIC AND RADIONUCLIDE AEROSOLS

    SciTech Connect

    Shutthanandan, V; Xie, YuLong; Disselkamp, Robert S; Laulainen, Nels S; Smith, Edward A; Thevuthasan, Suntharampillai

    2008-12-01

    Accurate quantifications of aerosol components are crucial to predict global atmospheric transport models. Recently developed International Monitoring System (IMS) network represents an opportunity to enhance comprehensive systematic aerosol observations on a global scale because it provides a global infrastructure. As such, a local pilot study utilizing several state-of-the-art instruments has been conducted at the peak of Rattlesnake Mountain, Washington, USA, during three month periods (June-August) in 2003 to explore this opportunity. In this study, routine aerosol samples were collected using a 3-stage Cascade Impactor Beam Analyzer (0.07 to 2.5 µm) with time resolution about 6 hours on long Teflon strips while radionuclide aerosols were collected using Radionuclide aerosol sampler/analyzer (RASA) developed at Pacific Northwest National Laboratory. The elemental composition and hydrogen concentration were measured using proton induced x-ray emission (PIXE) and proton elastic scattering analysis (PESA), respectively. In addition, short and long-lived radionuclides that exist in nature were measured with same time resolution (6 hours) using RASA. In this method, high-resolution gamma-ray spectra were analyzed for radionuclide concentration. Combination of trace radioactive and non-radioactive element analysis in aerosols makes this investigation unique.

  9. Radiogenic and Radioactive Isotopic Evidence for a Dynamic Residence Time of the Athabasca Glacier Subglacial Water

    NASA Astrophysics Data System (ADS)

    Arendt, C. A.; Aciego, S.; Sims, K. W.; Aarons, S. M.

    2011-12-01

    Little is known about the time it takes precipitation, input of water from reservoirs, surface melt, and basal melt to migrate to the base of a glacier and discharge. Previous work on the residence time of subglacial water has proven to be either inconclusive or inconsistent. Our research will address the primary subglacial water questions; the flux of subglacial water correlates directly to the mass balance of a glacier but what role does subglacial water storage play in that mass balance? Can we determine residence time of subglacial water? And, how variable is residence time seasonally and on longer time scales? The regional focus of our research is the Athabasca Glacier, part of the Columbia Icefield located in Jasper National Park, Alberta, Canada. Uranium-series (U-series) dating methods based on the ingrowth of daughter isotopes from parents (234U, 230Th and 222Rn from the primary parent 238U) have been used to study the residence time of aquifer systems. Here we show the feasibility of applying these techniques to subglacial water. Samples were collected over two 25-day field periods to account for hydrological and chemical fluctuations between the onset of melt and peak melt. Daily physical observations, 222Rn concentrations (from a Durridge RAD7), conductivity, total alkalinity, pH, maximum velocity, and discharge measurements were taken. Fifty daily 10-40L subglacial water and filtered sediment samples were collected and filtered at our collection site in the main channel at the toe of the Athabasca Glacier. The 238U /234U and 87Sr/86Sr isotopic compositions and U, Th, and Sr concentrations of the filtrate and captured sediments is pending. We will extrapolate the residence time of the water based on the accumulation of 234U and 230Th in our samples from alpha decay, which can be coupled to a radiometric timescale. Given that the 238U /234U and 234U/230Th isotopic composition of subglacial water is dependent on recoil and sediment dissolution processes

  10. Estimation of groundwater residence time using the 36Cl bomb pulse.

    PubMed

    Tosaki, Yuki; Tase, Norio; Sasa, Kimikazu; Takahashi, Tsutomu; Nagashima, Yasuo

    2011-01-01

    We propose a methodology for estimating the residence time of groundwater based on bomb-produced (36)Cl. Water samples were collected from 28 springs and 2 flowing wells located around Mt. Fuji, Central Japan. (36)Cl/Cl ratios in the water samples, determined by accelerator mass spectrometry (AMS), were between 43 × 10(-15) and 412 × 10(-15). A reference time series of the above-background (i.e., bomb-derived) (36)Cl concentration was constructed by linearly scaling the background-corrected Dye-3 data according to the estimated total bomb-produced (36)Cl fallout in the Mt. Fuji area. Assuming piston flow transport, estimates of residence time were obtained by comparing the measured bomb-derived (36)Cl concentrations in spring water with the reference curve. The distribution of (36)Cl-based residence times is basically consistent with that of tritium-based estimates calculated from data presented in previous studies, although the estimated residence times differ between the two tracers. This discrepancy may reflect chlorine recycling via vegetation or the relatively small change in fallout rate, approximately since 1975, which would give rise to large uncertainties in (36)Cl-based estimates of recharge for the period, approximately since 1975. Given the estimated ages for groundwater from flowing wells, dating based on a (36)Cl bomb pulse may be more reliable and sensitive for groundwater recharged before 1975, back as far as the mid-1950s.

  11. Geospatially Analyzed Groundwater Residence Time as a Tool for Sustainable Groundwater Management

    NASA Astrophysics Data System (ADS)

    Moran, J. E.; Visser, A.; Singleton, M. J.; Hillegonds, D.; Esser, B. K.

    2015-12-01

    Managing groundwater during California's drought and satisfying the requirements of the 2014 Sustainable Groundwater Management Act will require multiple approaches to quantifying rates of change in groundwater storage in the heavily exploited basins around the state. Mean groundwater residence times are useful for developing sustainability goals in that the mean residence time is a measure of the aquifer turnover, or renewal time. The California Groundwater Ambient Monitoring and Assessment program is unique among groundwater monitoring programs in that multiple analyses allow estimation of groundwater residence time. For example, over 4,000 tritium and noble gas analyses have been carried out in wells across California, allowing calculation of tritium-helium groundwater age, spatial analysis of groundwater residence times, and identification of the depth of the transition from modern to pre-modern groundwater. Areas of rapid turnover identified by young ages can be compared with areas that have been identified as being hydrogeologically vulnerable based on physical measures such as mapped permeability, confining conditions, or recharge/discharge rates. Application of groundwater residence time as a tool for sustainable groundwater management has advantages and potential pitfalls. The uncertainty associated with calculated ages and the complexity of broad age distributions in long-screened wells are some of the associated challenges. However, geospatial analysis of isotopic age data prove useful for highlighting areas where isotopic ages are not in agreement with other measures of groundwater renewal time, and where ages may therefore be helpful in setting sustainability goals. Initial comparisons suggest that isotopic ages delineate the extent of influence of artificial recharge more precisely than numerical models and that some areas in the Sierra foothills and Coast Range, identified as active recharge areas, host pre-modern groundwater, suggesting the need for

  12. Extra-regional residence time as a correlate of plant invasiveness: European archaeophytes in North America.

    PubMed

    La Sorte, Frank A; Pysek, Petr

    2009-09-01

    Human activities have degraded biogeographical barriers to dispersal resulting in the spread and naturalization of increasing numbers of nonnative invasive species. One correlate of invasiveness within a region is residence time or time since introduction. Plant species that were introduced into Europe prior to AD 1500 (European archaeophytes) that were subsequently introduced into North America provide a unique opportunity to examine the effect of extra-regional residence time (i.e., residence time that occurred in a nonnative region before a species was introduced into a new region). Here, we examine how nonnative species with extensive extra-regional residence times have affected beta diversity among states in the contiguous United States of America based on an analysis of occupancy and distance decay of similarity. State floras contained an average of 3106 +/- 922 species (mean +/- SD) with 2318 +/- 757 species classified as native, 180 +/- 43 species as European archaeophyte, and 608 -236 species as other exotic with no European archaeophyte association. For European archaeophytes, 42% were identified as noxious weeds in the United States with 8% identified as agricultural and 14% as natural-area weeds (20%, 2%, and 13% for other exotics, respectively). In strong contrast to natives and other exotics, European archaeophytes were more widespread and presented weaker distance-decay patterns. Thus, European archaeophytes were more likely to become noxious weeds, particularly within agricultural areas, and were associated with significant losses in beta diversity. We suggest that this outcome is a consequence of extra-regional residence time, which allowed for the selection of species or the evolution of traits that favored the colonization of arable habitats associated with early agricultural activities in Europe, habitats that are widespread, resource rich, and uniformly distributed in the United States. Our findings suggest that a long-term trajectory can be

  13. Residence times in river basins as determined by analysis of long-term tritium records

    NASA Astrophysics Data System (ADS)

    Michel, Robert L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km 2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources—prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of

  14. Residence times in river basins as determined by analysis of long-term tritium records

    USGS Publications Warehouse

    Michel, R.L.

    1992-01-01

    The US Geological Survey has maintained a network of stations to collect samples for the measurement of tritium concentrations in precipitation and streamflow since the early 1960s. Tritium data from outflow waters of river basins draining 4500-75000 km2 are used to determine average residence times of water within the basins. The basins studied are the Colorado River above Cisco, Utah; the Kissimmee River above Lake Okeechobee, Florida; the Mississippi River above Anoka, Minnesota; the Neuse River above Streets Ferry Bridge near Vanceboro, North Carolina; the Potomac River above Point of Rocks, Maryland; the Sacramento River above Sacramento, California; the Susquehanna River above Harrisburg, Pennsylvania. The basins are modeled with the assumption that the outflow in the river comes from two sources-prompt (within-year) runoff from precipitation, and flow from the long-term reservoirs of the basin. Tritium concentration in the outflow water of the basin is dependent on three factors: (1) tritium concentration in runoff from the long-term reservoir, which depends on the residence time for the reservoir and historical tritium concentrations in precipitation; (2) tritium concentrations in precipitation (the within-year runoff component); (3) relative contributions of flow from the long-term and within-year components. Predicted tritium concentrations for the outflow water in the river basins were calculated for different residence times and for different relative contributions from the two reservoirs. A box model was used to calculate tritium concentrations in the long-term reservoir. Calculated values of outflow tritium concentrations for the basin were regressed against the measured data to obtain a slope as close as possible to 1. These regressions assumed an intercept of zero and were carried out for different values of residence time and reservoir contribution to maximize the fit of modeled versus actual data for all the above rivers. The final slopes of the

  15. Recruitment, growth and residence time of fishes in a tropical Australian mangrove system

    NASA Astrophysics Data System (ADS)

    Robertson, Alistar I.; Duke, Norman C.

    1990-11-01

    Twenty fish species accounted for > 96% of the catch by numbers in mangrove habitats in Alligator Creek, in tropical Queensland, Australia. The timing of recruitment, residency status, the period of residence and growth of fish during the time they spent in the mangrove habitat was assessed by examining gonad maturity and following changes in size-frequency plots for each species over 13 months. Five species were permanent residents, completing their life-cycles in mangrove swamps; eight were 'long-term' temporary residents, being present for ˜ 1 year as juveniles before moving to other near-shore habitats; and seven were 'short-term' residents or sporadic users of the mangrove habitat. Amongst the latter group, four species lived in the mangrove habitat for between 1 and 4 consecutive months, while three engraulid species appeared to move rapidly, and often, between mangrove and other near-shore habitats. One of the resident species spawned and recruited throughout the year, but recruitment for most species was highly seasonal, being concentrated in the late dry season (October) to mid wet season (February) period. Temporary resident species dominated the fish community in the wet season (December-April), but resident species comprised more than 90% of total fish numbers in the mid dry season (August) after temporary residents left the mangroves in the early dry season. Several species had more than one peak of recruitment during the wet season. The cohort of 0 + aged Leiognathus equulus which recruited in December grew more rapidly and remained in the mangroves for a shorter period than the cohort which recruited later in the wet season (February). Only nine of the 20 species examined are strictly dependent on mangrove-lined estuaries, the remaining 11 are captured in significant numbers in other near-shore habitats. Only four of the 20 species are of direct commercial importance in Australia, but most are major prey for several valuable, commercial species

  16. LABORATORY AND NUMERICAL INVESTIGATIONS OF RESIDENCE TIME DISTRIBUTION OF FLUIDS IN LAMINAR FLOW STIRRED ANNULAR PHOTOREACTOR

    EPA Science Inventory

    Laboratory and Numerical Investigations of Residence Time Distribution of Fluids in Laminar Flow Stirred Annular Photoreactor

    E. Sahle-Demessie1, Siefu Bekele2, U. R. Pillai1

    1U.S. EPA, National Risk Management Research Laboratory
    Sustainable Technology Division,...

  17. EFFECT OF RESIDENCE TIME ON ANNUAL EXPORT AND DENITRIFICATION OF NITROGEN IN ESTUARIES: A MODEL ANALYSIS

    EPA Science Inventory

    A simple model of annual average response of an estuary to mean nitrogen loading rate and freshwater residence time was developed and tested. It uses nitrogen inputs from land, deposition from the atmosphere, and first-order calculations of internal loss rate and export to perfor...

  18. Temperature, plant species and residence time effects on nitrogen removal in model treatment wetlands.

    PubMed

    Allen, C R; Stein, O R; Hook, P B; Burr, M D; Parker, A E; Hafla, E C

    2013-01-01

    Total nitrogen (TN) removal in treatment wetlands (TWs) is challenging due to nitrogen cycle complexity and the variation of influent nitrogen species. Plant species, season, temperature and hydraulic loading most likely influence root zone oxygenation and appurtenant nitrogen removal, especially for ammonium-rich wastewater. Nitrogen data were collected from two experiments utilizing batch-loaded (3-, 6-, 9- and 20-day residence times), sub-surface TWs monitored for at least one year during which temperature was varied between 4 and 24 °C. Synthetic wastewater containing 17 mg/l N as NH4 and 27 mg/l amino-N, 450 mg/l chemical oxygen demand (COD), and 13 mg/l SO4-S was applied to four replicates of Carex utriculata, Schoenoplectus acutus and Typha latifolia and unplanted controls. Plant presence and species had a greater effect on TN removal than temperature or residence time. Planted columns achieved approximately twice the nitrogen removal of unplanted controls (40-95% versus 20-50% removal) regardless of season and temperature. TWs planted with Carex outperformed both Typha and Schoenoplectus and demonstrated less temperature dependency. TN removal with Carex was excellent at all temperatures and residence times; Schoenoplectus and Typha TN removal improved at longer residence times. Reductions in TN were not accompanied by increases in NO3, which was consistently below 1 mg/l N.

  19. Bridging Home: Building Relationships between Immigrant and Long-Time Resident Youth

    ERIC Educational Resources Information Center

    Dryden-Peterson, Sarah

    2010-01-01

    Background: There is rising evidence that relationships that bridge between immigrants and long-time residents are critical to immigrant integration and to the overall heath of communities. The processes by which this bridging social capital is built are not well understood. Schools in new immigrant destinations, as spaces in which diverse youth…

  20. Residence Time Distribution Measurement and Analysis of Pilot-Scale Pretreatment Reactors for Biofuels Production: Preprint

    SciTech Connect

    Sievers, D.; Kuhn, E.; Tucker, M.; Stickel, J.; Wolfrum, E.

    2013-06-01

    Measurement and analysis of residence time distribution (RTD) data is the focus of this study where data collection methods were developed specifically for the pretreatment reactor environment. Augmented physical sampling and automated online detection methods were developed and applied. Both the measurement techniques themselves and the produced RTD data are presented and discussed.

  1. Untangling hyporheic residence time distributions and whole stream metabolisms using a hydrological process model

    NASA Astrophysics Data System (ADS)

    Altenkirch, Nora; Mutz, Michael; Molkenthin, Frank; Zlatanovic, Sanja; Trauth, Nico

    2016-04-01

    The interaction of the water residence time in hyporheic sediments with the sediment metabolic rates is believed to be a key factor controlling whole stream metabolism. However, due to the methodological difficulties, there is little data that investigates this fundamental theory of aquatic ecology. Here, we report on progress made to combine numerical modeling with a series of manipulation to laboratory flumes overcoming methodological difficulties. In these flumes, hydraulic conditions were assessed using non-reactive tracer and heat pulse sensor. Metabolic activity was measured as the consumption and production of oxygen and the turnover of reactive tracers. Residence time and metabolic processes were modeled using a multicomponent reactive transport code called Min3P and calibrated with regard to the hydraulic conditions using the results obtained from the flume experiments. The metabolic activity was implemented in the model via Monod type expressions e.g. for aerobic respiration rates. A number of sediment structures differing in residence time distributions were introduced in both, the model and the flumes, specifically to model the biogeochemical performance and to validate the model results. Furthermore, the DOC supply and surface water flow velocity were altered to test the whole stream metabolic response. Using the results of the hydrological process model, a sensitivity analysis of the impact of residence time distributions on the metabolic activity could yield supporting proof of an existing link between the two.

  2. HOW TO MODEL HYDRODYNAMICS AND RESIDENCE TIMES OF 27 ESTUARIES IN 4 MONTHS

    EPA Science Inventory

    The hydrodynamics and residence times of 27 embayments were modeled during the first year of a project whose goal is to define the relation between nitrogen loadings and ecological responses of 44 systems that range from small to the size of Narragansett Bay and Buzzards Bay. The...

  3. Water Residence Times and Runoff Sources Across an Urbanizing Gradient (Croton Water Supply Area, New York)

    NASA Astrophysics Data System (ADS)

    Vitvar, T.; Burns, D. A.; Duncan, J. M.; Hassett, J. M.; McDonnell, J. J.

    2002-12-01

    Water residence times and nutrient budgets were measured in 3 small watersheds in the Croton water supply area, NY. The watersheds (less than 1km 2) have different levels of urbanization (natural, semi-developed and fully developed), different mechanisms of runoff generation (quick flow on impervious surfaces and slow flow through the subsurface) and different watershed landscape characteristics (wet zones, hillslopes). Throughfall, stream water, soil water and groundwater in the saturated zone were sampled bi-weekly during a period of up to 2 years and analyzed for major chemical constituents, oxygen-18 content, and nitrogen species. Mean residence times of the stream water of about 30 weeks were estimated using Oxygen-18 and Helium-3/Tritium isotopes for all 3 watersheds. There was no significant difference in mean residence times among the three study watersheds, despite their different levels of urbanization. However, residence times from a few weeks up to ca 2 years vary within the watersheds, depending on the local runoff sources and their geographical conditions (riparian and hillslope topography, aquifer type). The runoff sources were quantified for selected streamwater and groundwater sampling sites using the end member mixing analysis technique (EMMA). The mixing analysis shows the impact of the runoff sources on runoff generation in the selected watersheds, i.e. it shows how big is the impact of urbanization on the runoff generation and how big is the natural control. These results may be useful in watershed management and planning of further urbanization in the Croton water supply area.

  4. Water residence times and nutrient budgets across an urbanizing gradient (Croton water supply area, NY)

    NASA Astrophysics Data System (ADS)

    Vitvar, T.; Burns, D. A.; Duncan, J. M.; Hassett, J. M.; Mitchell, M. J.

    2002-05-01

    Water residence times and nutrient budgets in 3 small watersheds in the Croton water supply area, NY, were examined. The watersheds (less than 1km 2) have different level of urbanization (natural, semi-developed and fully developed), different mechanisms of runoff generation (quick flow on roads and slow flow through subsurface) and different watershed landscape characteristics (wet zones, hillslopes) . Measurements of the comprehensive chemical suite incl. components of nitrogen budget in the throughfall, stream water, soil water and groundwater in the saturated zone were performed bi-weekly over a period up to 2 years. Mean water residence times of the stream water were estimated using Oxygen-18 and Helium-3/Tritium isotopes. There are significant differences in the chemical composition and decrease of nitrification intensity and of mean streamwater residence time along the increasing watershed development. Within each watershed, longer water residence times (up to over 2 years) were estimated in the wetland zones without direct communication with streams in comparison to hillslope areas (up to over 1 year). The results can be used in watershed management and planning of the further urbanization of this water supply area.

  5. Conceptual framework for model-based analysis of residence time distribution in twin-screw granulation.

    PubMed

    Kumar, Ashish; Vercruysse, Jurgen; Vanhoorne, Valérie; Toiviainen, Maunu; Panouillot, Pierre-Emmanuel; Juuti, Mikko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2015-04-25

    Twin-screw granulation is a promising continuous alternative for traditional batchwise wet granulation processes. The twin-screw granulator (TSG) screws consist of transport and kneading element modules. Therefore, the granulation to a large extent is governed by the residence time distribution within each module where different granulation rate processes dominate over others. Currently, experimental data is used to determine the residence time distributions. In this study, a conceptual model based on classical chemical engineering methods is proposed to better understand and simulate the residence time distribution in a TSG. The experimental data were compared with the proposed most suitable conceptual model to estimate the parameters of the model and to analyse and predict the effects of changes in number of kneading discs and their stagger angle, screw speed and powder feed rate on residence time. The study established that the kneading block in the screw configuration acts as a plug-flow zone inside the granulator. Furthermore, it was found that a balance between the throughput force and conveying rate is required to obtain a good axial mixing inside the twin-screw granulator. Although the granulation behaviour is different for other excipients, the experimental data collection and modelling methods applied in this study are generic and can be adapted to other excipients.

  6. Racing Against the Clock: Internal Medicine Residents' Time Spent On Electronic Health Records

    PubMed Central

    Chen, Lu; Guo, Uta; Illipparambil, Lijo C.; Netherton, Matt D.; Sheshadri, Bhairavi; Karu, Eric; Peterson, Stephen J.; Mehta, Parag H.

    2016-01-01

    Background Since the late 1980s, resident physicians have spent increasing amounts of time on electronic health record (EHR) data entry and retrieval. Objective longitudinal data measuring time spent on the EHR are lacking. Objective We sought to quantify the time actually spent using the EHR by all first-year internal medicine residents in a single program (N = 41). Methods Active EHR usage data were collected from the audit logs for May, July, and October 2014 and January 2015. Per recommendations from our EHR vendor (Cerner Corporation), active EHR usage time was defined as more than 15 keystrokes, or 3 mouse clicks, or 1700 “mouse miles” per minute. Active EHR usage time was tallied for each patient chart viewed each day and termed an electronic patient record encounter (EPRE). Results In 4 months, 41 interns accumulated 18 322 hours of active EHR usage in more than 33 733 EPREs. Each intern spent on average 112 hours per month on 206 EPREs. Interns spent more time in July compared to January (41 minutes versus 30 minutes per EPRE, P < .001). Time spent on the EHR in January echoed that of the previous May (30 minutes versus 29 minutes, P = .40). Conclusions First-year residents spent a significant amount of time actively using the EHR, achieving maximal proficiency on or before January of the academic year. Decreased time spent on the EHR may reflect greater familiarity with the EHR, growing EHR efficiencies, or other factors. PMID:26913101

  7. Assessing the effect of different river water level interpolation schemes on modeled groundwater residence times

    NASA Astrophysics Data System (ADS)

    Diem, Samuel; Renard, Philippe; Schirmer, Mario

    2014-03-01

    Obtaining a quantitative understanding of river-groundwater interactions is of high practical relevance, for instance within the context of riverbank filtration and river restoration. Modeling interactions between river and groundwater requires knowledge of the river's spatiotemporal water level distribution. The dynamic nature of riverbed morphology in restored river reaches might result in complex river water level distributions, including disconnected river branches, nonlinear longitudinal water level profiles and morphologically induced lateral water level gradients. Recently, two new methods were proposed to accurately and efficiently capture 2D water level distributions of dynamic rivers. In this study, we assessed the predictive capability of these methods with respect to simulated groundwater residence times. Both methods were used to generate surface water level distributions of a 1.2 km long partly restored river reach of the Thur River in northeastern Switzerland. We then assigned these water level distributions as boundary conditions to a 3D steady-state groundwater flow and transport model. When applying either of the new methods, the calibration-constrained groundwater flow field accurately predicted the spatial distribution of groundwater residence times; deviations were within a range of 30% when compared to residence times obtained using a reference method. We further tested the sensitivity of the simulated groundwater residence times to a simplified river water level distribution. The negligence of lateral river water level gradients of 20-30 cm on a length of 200 m caused errors of 40-80% in the calibration-constrained groundwater residence time distribution compared to results that included lateral water level gradients. The additional assumption of a linear water level distribution in longitudinal river direction led to deviations from the complete river water level distribution of up to 50 cm, which caused wide-spread errors in simulated

  8. Revealing the aerosol radiative impact of volcanic ash on synoptic time scales

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Rieger, Daniel; Gasch, Philipp; Förstner, Jochen; Vogel, Bernhard

    2016-04-01

    Including the interactions of aerosols with radiation in weather forecast models often leads to perturbations of the temperature field even at locations not directly influenced by the regarded aerosols. They arise out of signals propagating with the speed of sound leading to abrupt changes in cloud cover. The temperature perturbations due to these changes hamper the quantification of the aerosol radiative impact as they can appear in the same order of magnitude. In order to reveal the aerosol radiative impact on synoptic time scales we introduce a new method to separate the aerosol induced temperature effect from atmospheric perturbations. We simulated the impact of volcanic ash aerosol on radiation with the new global to regional scale modelling system ICON-ART (ICOsahedral Nonhydrostatic - Aerosols and Reactive Trace gases; Rieger et al., 2015). Within ICON-ART the radiative fluxes and cooling rates are calculated with the RRTM (Rapid Radiative Transfer Model; Mlawer et al., 1997) for 30 longwave and shortwave bands. To determine the optical properties of the prognostic ash aerosol, Mie calculations were conducted for a compilation of ash refractive indices. We obtain a significant change in 2 m temperature of up to several Kelvin for the Puyehue-Cordon Caulle eruption in 2011. In addition to the temperature effect the atmospheric stability is modified and as a consequence the ash concentrations. The temperature effect during the Eyjafjallajökull eruption in 2010 over Europe is much less pronounced. Nevertheless, we are able to show the impact of volcanic ash on the state of the atmosphere by this eruption.

  9. Compound Selectivity and Target Residence Time of Kinase Inhibitors Studied with Surface Plasmon Resonance.

    PubMed

    Willemsen-Seegers, Nicole; Uitdehaag, Joost C M; Prinsen, Martine B W; de Vetter, Judith R F; de Man, Jos; Sawa, Masaaki; Kawase, Yusuke; Buijsman, Rogier C; Zaman, Guido J R

    2017-02-17

    Target residence time (τ) has been suggested to be a better predictor of the biological activity of kinase inhibitors than inhibitory potency (IC50) in enzyme assays. Surface plasmon resonance binding assays for 46 human protein and lipid kinases were developed. The association and dissociation constants of 80 kinase inhibitor interactions were determined. τ and equilibrium affinity constants (KD) were calculated to determine kinetic selectivity. Comparison of τ and KD or IC50 values revealed a strikingly different view on the selectivity of several kinase inhibitors, including the multi-kinase inhibitor ponatinib, which was tested on 10 different kinases. In addition, known pan-Aurora inhibitors resided much longer on Aurora B than on Aurora A, despite having comparable affinity for Aurora A and B. Furthermore, the γ/δ-selective PI3K inhibitor duvelisib and the δ-selective drug idelalisib had similar 20-fold selectivity for δ- over γ-isoform but duvelisib resided much longer on both targets.

  10. Sustained increase in resident meal time hand hygiene through an interdisciplinary intervention engaging long-term care facility residents and staff.

    PubMed

    O'Donnell, Marguerite; Harris, Tony; Horn, Terancita; Midamba, Blondelle; Primes, Vickie; Sullivan, Nancy; Shuler, Rosalyn; Zabarsky, Trina F; Deshpande, Abhishek; Sunkesula, Venkata C K; Kundrapu, Sirisha; Donskey, Curtis J

    2015-02-01

    Hand hygiene by patients may prevent acquisition and dissemination of health care-associated pathogens, but limited efforts have been made to engage patients in hand hygiene interventions. In a long-term care facility, we found that residents were aware of the importance of hand hygiene, but barriers, such as inaccessible products or difficult to use products, limited compliance. A dramatic and sustained improvement in meal time hand hygiene was achieved through engagement of staff and residents.

  11. Impact of the modal aerosol scheme GLOMAP-mode on aerosol forcing in the Hadley Centre Global Environmental Model

    NASA Astrophysics Data System (ADS)

    Bellouin, N.; Mann, G. W.; Woodhouse, M. T.; Johnson, C.; Carslaw, K. S.; Dalvi, M.

    2012-08-01

    The Hadley Centre Global Environmental Model (HadGEM) includes two aerosol schemes: the Coupled Large-scale Aerosol Simulator for Studies in Climate (CLASSIC), and the new Global Model of Aerosol Processes (GLOMAP-mode). GLOMAP-mode is a modal aerosol microphysics scheme that simulates not only aerosol mass but also aerosol number, represents internally-mixed particles, and includes aerosol microphysical processes such as nucleation. In this study, both schemes provide hindcast simulations of natural and anthropogenic aerosol species for the period 2000-2006. HadGEM simulations using GLOMAP-mode compare better than CLASSIC against a data-assimilated aerosol re-analysis and aerosol ground-based observations. GLOMAP-mode sulphate aerosol residence time is two days longer than CLASSIC sulphate aerosols, whereas black carbon residence time is much shorter. As a result, CLASSIC underestimates aerosol optical depths in continental regions of the Northern Hemisphere and likely overestimates absorption in remote regions. Aerosol direct and first indirect radiative forcings are computed from simulations of aerosols with emissions for the year 1850 and 2000. In 1850, GLOMAP-mode predicts lower aerosol optical depths and higher cloud droplet number concentrations than CLASSIC. Consequently, simulated clouds are much less susceptible to natural and anthropogenic aerosol changes when the microphysical scheme is used. In particular, the response of cloud condensation nuclei to an increase in dimethyl sulphide emissions becomes a factor of four smaller. The combined effect of different 1850 baselines, residence times, and cloud susceptibilities, leads to substantial differences in the aerosol forcings simulated by the two schemes. GLOMAP-mode finds a present-day direct aerosol forcing of -0.49 W m-2 on a global average, 72% stronger than the corresponding forcing from CLASSIC. This difference is compensated by changes in first indirect aerosol forcing: the forcing of -1.17 W m-2

  12. Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms.

    PubMed

    Moiroux, Joffrey; Abram, Paul K; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy

    2016-04-01

    Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.

  13. Influence of temperature on patch residence time in parasitoids: physiological and behavioural mechanisms

    NASA Astrophysics Data System (ADS)

    Moiroux, Joffrey; Abram, Paul K.; Louâpre, Philippe; Barrette, Maryse; Brodeur, Jacques; Boivin, Guy

    2016-04-01

    Patch time allocation has received much attention in the context of optimal foraging theory, including the effect of environmental variables. We investigated the direct role of temperature on patch time allocation by parasitoids through physiological and behavioural mechanisms and its indirect role via changes in sex allocation and behavioural defences of the hosts. We compared the influence of foraging temperature on patch residence time between an egg parasitoid, Trichogramma euproctidis, and an aphid parasitoid, Aphidius ervi. The latter attacks hosts that are able to actively defend themselves, and may thus indirectly influence patch time allocation of the parasitoid. Patch residence time decreased with an increase in temperature in both species. The increased activity levels with warming, as evidenced by the increase in walking speed, partially explained these variations, but other mechanisms were involved. In T. euproctidis, the ability to externally discriminate parasitised hosts decreased at low temperature, resulting in a longer patch residence time. Changes in sex allocation with temperature did not explain changes in patch time allocation in this species. For A. ervi, we observed that aphids frequently escaped at intermediate temperature and defended themselves aggressively at high temperature, but displayed few defence mechanisms at low temperature. These defensive behaviours resulted in a decreased patch residence time for the parasitoid and partly explained the fact that A. ervi remained for a shorter time at the intermediate and high temperatures than at the lowest temperature. Our results suggest that global warming may affect host-parasitoid interactions through complex mechanisms including both direct and indirect effects on parasitoid patch time allocation.

  14. Measurement of Ligand–Target Residence Times by 1H Relaxation Dispersion NMR Spectroscopy

    PubMed Central

    2016-01-01

    A ligand-observed 1H NMR relaxation experiment is introduced for measuring the binding kinetics of low-molecular-weight compounds to their biomolecular targets. We show that this approach, which does not require any isotope labeling, is applicable to ligand–target systems involving proteins and nucleic acids of variable molecular size. The experiment is particularly useful for the systematic investigation of low affinity molecules with residence times in the micro- to millisecond time regime. PMID:27933946

  15. Real-time continuous characterization of secondary organic aerosol derived from isoprene epoxydiols in downtown Atlanta, Georgia, using the Aerodyne Aerosol Chemical Speciation Monitor.

    PubMed

    Budisulistiorini, Sri Hapsari; Canagaratna, Manjula R; Croteau, Philip L; Marth, Wendy J; Baumann, Karsten; Edgerton, Eric S; Shaw, Stephanie L; Knipping, Eladio M; Worsnop, Douglas R; Jayne, John T; Gold, Avram; Surratt, Jason D

    2013-06-04

    Real-time continuous chemical measurements of fine aerosol were made using an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) during summer and fall 2011 in downtown Atlanta, Georgia. Organic mass spectra measured by the ACSM were analyzed by positive matrix factorization (PMF), yielding three conventional factors: hydrocarbon-like organic aerosol (HOA), semivolatile oxygenated organic aerosol (SV-OOA), and low-volatility oxygenated organic aerosol (LV-OOA). An additional OOA factor that contributed to 33 ± 10% of the organic mass was resolved in summer. This factor had a mass spectrum that strongly correlated (r(2) = 0.74) to that obtained from laboratory-generated secondary organic aerosol (SOA) derived from synthetic isoprene epoxydiols (IEPOX). Time series of this additional factor is also well correlated (r(2) = 0.59) with IEPOX-derived SOA tracers from filters collected in Atlanta but less correlated (r(2) < 0.3) with a methacrylic acid epoxide (MAE)-derived SOA tracer, α-pinene SOA tracers, and a biomass burning tracer (i.e., levoglucosan), and primary emissions. Our analyses suggest IEPOX as the source of this additional factor, which has some correlation with aerosol acidity (r(2) = 0.3), measured as H(+) (nmol m(-3)), and sulfate mass loading (r(2) = 0.48), consistent with prior work showing that these two parameters promote heterogeneous chemistry of IEPOX to form SOA.

  16. Physicochemical characterization of Capstone depleted uranium aerosols II: particle size distributions as a function of time.

    PubMed

    Cheng, Yung Sung; Kenoyer, Judson L; Guilmette, Raymond A; Parkhurst, Mary Ann

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing DU from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluate particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using proportional counting, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements were quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 microm and a large size mode between 2 and 15 microm. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 microm shortly after perforation to around 1 microm at the end of the 2-h sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

  17. Physicochemical Characterization of Capstone Depleted Uranium Aerosols II: Particle Size Distributions as a Function of Time

    SciTech Connect

    Cheng, Yung-Sung; Kenoyer, Judson L.; Guilmette, Raymond A.; Parkhurst, MaryAnn

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study, which generated and characterized aerosols containing depleted uranium from perforation of armored vehicles with large-caliber DU penetrators, incorporated a sampling protocol to evaluated particle size distributions. Aerosol particle size distribution is an important parameter that influences aerosol transport and deposition processes as well as the dosimetry of the inhaled particles. These aerosols were collected on cascade impactor substrates using a pre-established time sequence following the firing event to analyze the uranium concentration and particle size of the aerosols as a function of time. The impactor substrates were analyzed using beta spectrometry, and the derived uranium content of each served as input to the evaluation of particle size distributions. Activity median aerodynamic diameters (AMADs) of the particle size distributions were evaluated using unimodal and bimodal models. The particle size data from the impactor measurements was quite variable. Most size distributions measured in the test based on activity had bimodal size distributions with a small particle size mode in the range of between 0.2 and 1.2 um and a large size mode between 2 and 15 um. In general, the evolution of particle size over time showed an overall decrease of average particle size from AMADs of 5 to 10 um shortly after perforation to around 1 um at the end of the 2-hr sampling period. The AMADs generally decreased over time because of settling. Additionally, the median diameter of the larger size mode decreased with time. These results were used to estimate the dosimetry of inhaled DU particles.

  18. The Time Series Technique for Aerosol Retrievals over Land from MODIS: Algorithm MAIAC

    NASA Technical Reports Server (NTRS)

    Lyapustin, Alexei; Wang, Yujie

    2008-01-01

    2.1 m channel (B7) for the purpose of aerosol retrieval. Obviously, the subsequent atmospheric correction will produce the same SR in the red and blue bands as predicted, i.e. an empirical function of 2.1. In other words, the spectral, spatial and temporal variability of surface reflectance in the Blue and Red bands appears borrowed from band B7. This may have certain implications for the vegetation and global carbon analysis because the chlorophyll-sensing bands B1, B3 are effectively substituted in terms of variability by band B7, which is sensitive to the plant liquid water. This chapter describes a new recently developed generic aerosol-surface retrieval algorithm for MODIS. The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm simultaneously retrieves AOT and surface bi-directional reflection factor (BRF) using the time series of MODIS measurements.

  19. Residence time distribution (RTD) of particulate foods in a continuous flow pilot-scale ohmic heater.

    PubMed

    Sarang, Sanjay; Heskitt, Brian; Tulsiyan, Priyank; Sastry, Sudhir K

    2009-08-01

    The residence time distribution (RTD) of a model particulate-fluid mixture (potato in starch solution) in the ohmic heater in a continuous sterilization process was measured using a radio frequency identification (RFID) methodology. The effect of solid concentration and the rotational speed of the agitators on the RTD were studied. The velocity of the fastest particle was 1.62 times the mean product velocity. In general, particle velocity was found to be greater than the product bulk average velocity. Mean particle residence time (MPRT) increased with an increase in the rotational speed of the agitators (P < 0.05), and no particular trend was observed between the MPRT and the solid concentration. The distribution curves E (theta) were skewed to the right suggesting slow moving zones in the system.

  20. Th-230 - U-238 series disequilibrium of the Olkaria rhyolites Gregory Rift Valley, Kenya: Residence times

    NASA Technical Reports Server (NTRS)

    Black, S.; Macdonald, R.; Kelly, M.

    1993-01-01

    U-series disequilibrium analyses have been conducted on samples from Olkaria rhyolite centers with ages being available for all but one center using both internal and whole rock isochrons. 67 percent of the rhyolites analyzed show U-Th disequilibrium, ranging from 27 percent excess thorium to 36 percent excess uranium. Internal and whole rock isochrons give crystallization/formation ages between 65 ka and 9 ka, in every case these are substantially older than the eruptive dates. The residence times of the rhyolites (U-Th age minus the eruption date) have decreased almost linearly with time, from 45 ka to 7 Ka suggesting a possible increase of activity within the system related to increased basaltic input. The long residence times are mirrored by large Rn-222 fluxes from the centers which cannot be explained by larger U contents.

  1. Estimating Regional Water Residence Time Changes in the Colonial Northeast United States

    NASA Astrophysics Data System (ADS)

    Green, M. B.; Arrigo, J.; Duncan, J.; Parolari, T.

    2008-12-01

    The Northeast United States experienced a fundamental change following colonization by Europeans. During the period from 1600 to 1800 forests were cleared, agricultural lands were expanded, beavers were hunted to near-extinction, wetlands were drained or filled, and cities were built. Such activities had important implications for the stocks of water on and the fluxes of water through that landscape. We have made an early attempt to quantify the changed water stocks and fluxes in the Northeast during this time period using historical information and simple analyses. Simple calculations and estimates of stock and flux uncertainty were used to compute the distribution of land surface water residence times at the beginning and ending of the Colonial Era. Our estimates show that humans shifted water residence towards shorter times, which would have important implications for geomorphology, biogeochemistry, and how humans responded to their alteration of the hydrologic cycle.

  2. The Pools, Fluxes and Residence Time of Water Across the Amazon Basin

    NASA Astrophysics Data System (ADS)

    Goldsmith, G. R.; Fisher, J. B.; McDonnell, J.; Malhi, Y.

    2014-12-01

    What can ecology tell us about the hydrology of the Amazon? And what can hydrology tell us about the ecology? From a hydrological perspective, plant water storage and use contributes to determining the rate and time scales at which water is recycled from soil to the atmosphere. From an ecological perspective, plant water storage and use contributes to determining the rate and time scales at which water plants can support function. Conceptualized as residence time, the relationship between plant water storage and use can provide fundamental insights into ecohydrology. We explore the spatial variation in the aboveground storage, use, and residence time of water across the Amazon. To do so, we pair estimates of aboveground woody biomass from 413 1-ha old growth forest census plots situated across the Amazon Basin with high resolution estimates of intra- and inter- annual evapotranspiration derived from remote sensing. Aboveground water storage capacity (17.4 ± 6.3 mm) and evapotranspiration (3.7 ± 0.4 mm day-1) result in a residence time of 4.7 ± 1.5 days, equivalent to the use of ca. 24% of stored water day-1. The results indicate that residence time varies due to a predictable relationship between evapotranspiration and biomass at local, regional and landscape scales. The ecohydrology of the Amazon plays a critical role in water and carbon cycling on a global scale. We discuss how our results can help inform our understanding of both the hydrology and ecology of the Amazon Basin in the context of anthropogenic change.

  3. Using continuous underway isotope measurements to map water residence time in hydrodynamically complex tidal environments

    USGS Publications Warehouse

    Downing, Bryan D.; Bergamaschi, Brian; Kendall, Carol; Kraus, Tamara; Dennis, Kate J.; Carter, Jeffery A.; von Dessonneck, Travis

    2016-01-01

    Stable isotopes present in water (δ2H, δ18O) have been used extensively to evaluate hydrological processes on the basis of parameters such as evaporation, precipitation, mixing, and residence time. In estuarine aquatic habitats, residence time (τ) is a major driver of biogeochemical processes, affecting trophic subsidies and conditions in fish-spawning habitats. But τ is highly variable in estuaries, owing to constant changes in river inflows, tides, wind, and water height, all of which combine to affect τ in unpredictable ways. It recently became feasible to measure δ2H and δ18O continuously, at a high sampling frequency (1 Hz), using diffusion sample introduction into a cavity ring-down spectrometer. To better understand the relationship of τ to biogeochemical processes in a dynamic estuarine system, we continuously measured δ2H and δ18O, nitrate and water quality parameters, on board a small, high-speed boat (5 to >10 m s–1) fitted with a hull-mounted underwater intake. We then calculated τ as is classically done using the isotopic signals of evaporation. The result was high-resolution (∼10 m) maps of residence time, nitrate, and other parameters that showed strong spatial gradients corresponding to geomorphic attributes of the different channels in the area. The mean measured value of τ was 30.5 d, with a range of 0–50 d. We used the measured spatial gradients in both τ and nitrate to calculate whole-ecosystem uptake rates, and the values ranged from 0.006 to 0.039 d–1. The capability to measure residence time over single tidal cycles in estuaries will be useful for evaluating and further understanding drivers of phytoplankton abundance, resolving differences attributable to mixing and water sources, explicitly calculating biogeochemical rates, and exploring the complex linkages among time-dependent biogeochemical processes in hydrodynamically complex environments such as estuaries.

  4. Method for Making Measurements of the Post-Combustion Residence Time in a Gas Turbine Engine

    NASA Technical Reports Server (NTRS)

    Miles, Jeffrey H (Inventor)

    2015-01-01

    A system and method of measuring a residence time in a gas-turbine engine is provided, whereby the method includes placing pressure sensors at a combustor entrance and at a turbine exit of the gas-turbine engine and measuring a combustor pressure at the combustor entrance and a turbine exit pressure at the turbine exit. The method further includes computing cross-spectrum functions between a combustor pressure sensor signal from the measured combustor pressure and a turbine exit pressure sensor signal from the measured turbine exit pressure, applying a linear curve fit to the cross-spectrum functions, and computing a post-combustion residence time from the linear curve fit.

  5. An overview of oil palm biomass torrefaction: Effects of temperature and residence time

    NASA Astrophysics Data System (ADS)

    Yaacob, N.; Rahman, N. A.; Matali, S.; Idris, S. S.; Alias, A. B.

    2016-06-01

    Biomass is characterized as high moisture content, low bulk and energy density, possesses hygroscopic behaviour and poor grindability material as compared to the superior coal. A thermal treatment called torrefaction is a heating of biomass in a temperature range between 200°C to 300°C under inert atmosphere in order to upgrade biomass properties. Torrefied biomass has many similar characteristics to coal such as low moisture content, high bulk and energy density, hydrophobic and good grindability. This paper reviews the effects of oil palm biomass torrefaction in terms of temperature and residence time. This is because comprehensive studies on torrefaction parameters need to be carried out since different parameters might affect the chemical and physical characteristic of the torrefied product. Hence, this paper aims to discuss the effects of different torrefaction temperature and residence time towards physicochemical characteristic, mass and energy yield as well as calorific value of torrefied oil palm biomass.

  6. Estimation of coastal residence time of submarine groundwater discharge using radium progenies.

    PubMed

    Eleftheriou, G; Tsabaris, C; Patiris, D L; Androulakaki, E G; Vlastou, R

    2017-03-01

    A methodology based on γ-spectrometry measurements of untreated coastal water samples is proposed for the direct estimation of coastal residence time of submarine discharged groundwater. The method was applied to a submarine spring at Stoupa Bay covering all seasons. The estimated residence time exhibited an annual mean of 4.6±1.7 d. An additional measurement using the in situ underwater γ-spectrometry technique was performed, in the same site. The in situ method yielded a value of 2.8±0.2 d that was found consistent with the corresponding value derived using the developed lab-based method (3.4±2.0 d) for the same period.

  7. New residence times of the Holocene reworked shells on the west coast of Bohai Bay, China

    NASA Astrophysics Data System (ADS)

    Shang, Zhiwen; Wang, Fu; Li, Jianfen; Marshall, William A.; Chen, Yongsheng; Jiang, Xingyu; Tian, Lizhu; Wang, Hong

    2016-01-01

    Shelly cheniers and shell-rich beds found intercalated in near-shore marine muds and sandy sediments can be used to indicate the location of ancient shorelines, and help to estimate the height of sea level. However, dating the deposition of material within cheniers and shell-rich beds is not straightforward because much of this material is transported and re-worked, creating an unknown temporal off-set, i.e., the residence time, between the death of a shell and its subsequent entombment. To quantify the residence time during the Holocene on a section of the northern Chinese coastline a total 47 shelly subsamples were taken from 17 discrete layers identified on the west coast of Bohai Bay. This material was AMS 14C dated and the calibrated ages were systematically compared. The subsamples were categorized by type as articulated and disarticulated bivalves, gastropod shells, and undifferentiated shell-hash. It was found that within most individual layers the calibrated ages of the subsamples got younger relative to the amount of apparent post-mortem re-working the material had been subject to. For examples, the 14C ages of the bivalve samples trended younger in this order: shell-hash → split shells → articulated shells. We propose that the younger subsample age determined within an individual layer will be the closest to the actual depositional age of the material dated. Using this approach at four Holocene sites we find residence times which range from 100 to 1260 cal yrs, with two average values of 600 cal yrs for the original 14C dates older than 1 ka cal BP and 100 cal yrs for the original 14C dates younger than 1 ka cal BP, respectively. Using this semi-empirical estimation of the shell residence times we have refined the existing chronology of the Holocene chenier ridges on the west coast of Bohai Bay.

  8. Optimisation of polymer foam bubble expansion in extruder by resident time distribution approach

    NASA Astrophysics Data System (ADS)

    Larochette, Mathieu; Graebling, Didier; Léonardi, Frédéric

    2007-04-01

    In this work, we used the Residence Time Distribution (RTD) to study the polystyrene foaming during an extrusion process. The extruder associated with a gear pump is simply and quantitatively described by three continuoustly stirred tank reactors with recycling loops and one plug-flow reactor. The blowing agent used is CO2 and its obtained by thermal decomposition of a chemical blowing agent (CBA). This approach allows to optimize the density of the foam in accordance with the CBA kinetic of decomposition.

  9. Simulations of Ground-Water Flow and Residence Time near Woodbury, Connecticut

    USGS Publications Warehouse

    Starn, J. Jeffrey; Brown, Craig J.

    2007-01-01

    Water withdrawn for public use from glacial stratified deposits in Woodbury, Connecticut, is a mixture of water from different source areas, each having a characteristic water-quality signature. The physical processes leading to this mixture were explored using a numerical model to simulate steady-state ground-water source areas and residence times for a public water-supply well (PSW-1) in Woodbury. Upland areas contribute water to the well that is primarily from undeveloped and agricultural land. Valley bottoms contribute water to the well that is primarily from developed land. From 1985 to 2002, 6 percent of the contributing recharge area to the well changed from agricultural and undeveloped to developed land. The pattern of recharge areas and land use causes stratification of ground water by residence time and by characteristic water quality, which is related to land use. As land use changes with time, the water-quality signature of developed land moves deeper into the aquifer. Predicted nitrate concentrations decreased from 1985 to 1995 because of the conversion from agricultural land to developed land, but then began to increase after 1995 because of the conversion of undeveloped land to developed land. Total dissolved solids concentrations, on the other hand, increased from 1985 to 2002 because agriculture is associated with lower total dissolved solids concentrations than is developed land. About 40 percent of the water withdrawn from PSW-1 originated as upland recharge before flowing through glacial deposits in the valley. About 44 percent of the water originated as recharge in either fluvial deposits (mean residence time 7 years) or deltaic deposits (mean residence time 4 years). About 16 percent of the water originated as recharge through storm drains with ground-water discharge (often known as 'dry wells'). The residence time for water that originated as recharge in dry wells is 2 to 4 years, and the mean residence time is 3 years. Dry wells are a fast

  10. Radiative Forcing of the Pinatubo Aerosol as a Function of Latitude and Time

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Kinne, S.; Russell, P. B.; Bauman, J. J.; Minnis, P.

    1996-01-01

    We present calculations of the radiative forcing of the Mt. Pinatubo aerosols as a function of latitude and time after the eruption and compare the results with GOES satellite data. The results from the model indicate that the net effect of the aerosol was to cool the earth-atmosphere system with the most significant radiative effect in the tropics (corresponding to the location of the tropical stratospheric reservoir) and at latitudes greater than 60 deg. The high-latitude maximum is a combined effect of the high-latitude peak in optical depth (Trepte et al 1994) and the large solar zenith angles. The comparison of the predicted and measured net flux shows relatively good agreement, with the model consistently under predicting the cooling effect of the aerosol.

  11. Real-time detection method and system for identifying individual aerosol particles

    DOEpatents

    Gard, Eric E.; Coffee, Keith R.; Frank, Matthias; Tobias, Herbert J.; Fergenson, David P.; Madden, Norm; Riot, Vincent J.; Steele, Paul T.; Woods, Bruce W.

    2007-08-21

    An improved method and system of identifying individual aerosol particles in real time. Sample aerosol particles are collimated, tracked, and screened to determine which ones qualify for mass spectrometric analysis based on predetermined qualification or selection criteria. Screening techniques include one or more of determining particle size, shape, symmetry, and fluorescence. Only qualifying particles passing all screening criteria are subject to desorption/ionization and single particle mass spectrometry to produce corresponding test spectra, which is used to determine the identities of each of the qualifying aerosol particles by comparing the test spectra against predetermined spectra for known particle types. In this manner, activation cycling of a particle ablation laser of a single particle mass spectrometer is reduced.

  12. Classification of Animal Movement Behavior through Residence in Space and Time

    PubMed Central

    Orben, Rachael A.; Tolkova, Irina; Thompson, David R.

    2017-01-01

    Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST’s ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST’s ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST’s response to less resolved data. Finally, we evaluate RST’s performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data

  13. Classification of Animal Movement Behavior through Residence in Space and Time.

    PubMed

    Torres, Leigh G; Orben, Rachael A; Tolkova, Irina; Thompson, David R

    2017-01-01

    Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST's ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST's ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST's response to less resolved data. Finally, we evaluate RST's performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data can

  14. Tracing time scales of fluid residence and migration in the crust (Invited)

    NASA Astrophysics Data System (ADS)

    Yokochi, R.; Sturchio, N. C.; Purtschert, R.; Jiang, W.; Lu, Z.; Müller, P.; Yang, G.; Kennedy, B. M.

    2013-12-01

    Crustal fluids (water, gas and oil) mediate chemical reactions, and they may transport, concentrate or disperse elements in the crust; the fluids are often valuable resources in their own right. In this context, determining the time scales of fluid transport and residence time is essential for understanding geochemical cycle of elements, as well as risk and resource management. Crustal fluids contain stable and radioactive noble gases indigenous to the fluid, which may be of magmatic or atmospheric origin of various ages. In addition, radiogenic and nucleogenic noble gases (both stable and radioactive) are continuously produced by the decay of U, Th and K and related nuclear reactions in the crust at known rates and in known relative proportions. They may be released from their production sites and incorporated into the fluid, acting as natural spikes to trace fluid flow. The concentrations of a noble gas isotope in a crustal fluid in a system devoid of phase separation or mixing varies as a function of decay time and supply from the production sites into the fluids. The release rate of noble gases from the production sites in minerals to the fluid phase may be determined uniquely through the studies of noble gas radionuclides (Yokochi et al., 2012), which is fundamental to the behavior of volatile elements in geochemistry. A pilot study of noble gas radionuclides in an active geothermal system was performed at Yellowstone National Park (Yokochi et al., 2013). Prior studies of the Yellowstone system using stable noble gas isotopes show that the thermal fluids contain a mixture of atmospheric, mantle, and crustal components. Noble gas radionuclide measurements provide new chronometric constraints regarding the subsurface residence times of Yellowstone thermal fluids. Upper limits on deep thermal fluid mean residence times, estimated from 39Ar/40Ar* ratios, range from 118 to 137 kyr for features in the Gibbon and Norris Geyser Basin areas, and are about 16 kyr in

  15. Reduction of mosquito biting pressure by timed-release 0.3% aerosolized geraniol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We conducted a study to determine the degree of personal protection provided by the Terminix® ALLCLEAR® Mosquito Mister – Lantern Edition. This outdoor unit was operated to disperse an aerosolized aqueous 0.3% geraniol emulsion in timed-release intervals of 5.0, 7.5, and 10.0 min. Human volunteers ...

  16. Percolation of clusters with a residence time in the bond definition: Integral equation theory.

    PubMed

    Zarragoicoechea, Guillermo J; Pugnaloni, Luis A; Lado, Fred; Lomba, Enrique; Vericat, Fernando

    2005-03-01

    We consider the clustering and percolation of continuum systems whose particles interact via the Lennard-Jones pair potential. A cluster definition is used according to which two particles are considered directly connected (bonded) at time t if they remain within a distance d, the connectivity distance, during at least a time of duration tau, the residence time. An integral equation for the corresponding pair connectedness function, recently proposed by two of the authors [Phys. Rev. E 61, R6067 (2000)], is solved using the orthogonal polynomial approach developed by another of the authors [Phys. Rev. E 55, 426 (1997)]. We compare our results with those obtained by molecular dynamics simulations.

  17. A Minimal Fragmentation Approach to Real Time Aerosol Mass Spectrometry: A New Tool for Detailed Laboratory Studies of Organic Aerosol Aging

    NASA Astrophysics Data System (ADS)

    Campuzano-Jost, P.; Hanna, S.; Simpson, E.; Robb, D.; Blades, M. W.; Hepburn, J. W.; Bertram, A. K.

    2005-12-01

    The study of the atmospheric distribution and chemical processing of both biogenic and anthropogenic organics is one of the oldest and still most enduring challenges in atmospheric chemistry. The large number and structural complexity of many of the compounds as well as the high reactivity of many intermediates makes it hard to design analytical tools that are at the same time sensitive enough as well as being reasonably broad in scope. Despite big advances in techniques to characterize the gaseous phase component, there is still a dearth of instruments capable of doing the same for the organic aerosol component. This is due in part to the type of the compounds present in the aerosol phase, which in general lend themselves less to classical analytical methods such as GC/MS, as well as the inherent problems of any aerosol analysis, namely to transfer the aerosol to a suitable phase for analysis without altering it and while keeping track, at the same time, of the physical properties of the aerosol. Although impaction methods coupled to conventional analysis techniques have some specific advantages, the most widely used approach is the aerosol mass spectrometer. Unlike their predecessors, current aerosol mass spectrometer designs do a reasonably good job of delivering a representative sample of the aerosol phase to the detector while keeping track of the physical properties of the aerosol. However, the ionization step (either multitphoton absorption or electron impact in most cases) still leads to massive fragmentation of all but the most stable organics, making it very difficult to characterize individual compounds beyond establishing their functional groups(Allan et al. 2003; Su et al. 2004). Single photon near threshold ionization has been proposed and used recently (Oktem et al. 2004; Nash et al. 2005), but the challenges of producing coherent VUV radiation has led to a high detection threshold and a still significant amount of fragmentation, since these studies

  18. Groundwater Residence Times: A Key Parameter for Investigating Effects of River Restoration on Riverbank Filtration

    NASA Astrophysics Data System (ADS)

    Vogt, Tobias; Hoehn, Eduard; Schneider, Philipp; Schirmer, Mario; Cirpka, Olaf A.

    2010-05-01

    Many Swiss municipal pumping wells, located near the banks of a losing river, are designed to capture a mixture of freshly infiltrated river water and old alluvial groundwater. Riverbank filtration is assumed to substantially reduce concentrations of pathogens, pesticides, and organic pollutants relative to the river water. Although the number of river restoration projects increases, the effects of river restoration on riverbank filtration are still not well understood. River restoration includes widening of the riverbed and removal of bank armoring in order to establish a more natural sediment transport regime and give the river more space. These measures improve ecological habitat diversity and contribute to flood protection. However, they may cause conflicts with groundwater abstraction for drinking water, because travel times from rivers to pumping stations may be significantly reduced. In Switzerland the minimum mean travel time required for the protection of a drinking-water well is 10 days. Thus, for detailed investigation on river water infiltration into the aquifer, the distribution of groundwater travel times from rivers to observation and production wells and mixing ratios of freshly infiltrated and older alluvial groundwater are key parameters. Due to the high hydraulic conductivity of most Swiss prealpine gravel aquifers, the residence time of water entering many pumping wells is the range of weeks. Therefore, special methods are needed to assess residence times of young groundwater. We analyze time series of electrical conductivity in the river and adjacent groundwater observation wells to investigate travel times of young hyporheic groundwater in adjoining channelized and restored sections of the River Thur in North-East Switzerland. The test site has been established by the RECORD Project (Assessment and Modeling of Coupled Ecological and Hydrological Dynamics in the Restored Corridor of a River (Restored Corridor Dynamics)). To quantify residence

  19. Real-time aerosol data assimilation experiments during the 2014 FRAPPE/DISCOVER-AQ field mission

    NASA Astrophysics Data System (ADS)

    Pierce, R. B.

    2014-12-01

    The Front Range Air Pollution and Photochemistry Experiment (FRAPPE) and Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field missions were conducted over the Front Range of Colorado during July and August, 2014. Prior to, and during this period, much of the continental US were impacted by smoke from Canadian and Pacific Northwest wildfires, including the Front Range. This study assesses the impact of real-time assimilation of Aerosol Optical Depth (AOD) retrievals from the MODIS instrument on NASA's Terra and Aqua satellites within the Real-time Air Quality Modeling System (RAQMS) through comparisons of aerosol predictions with observations for two parallel forecasts that were conducted during FRAPPE/DISCOVER-AQ, one with and one without MODIS AOD assimilation. Results of these real-time assimilation experiments demonstrate that assimilation of MODIS AOD improves the prediction of large-scale smoke events such as those that occurred during July and August, 2014. These assimilation experiments help to guide the development of future operational aerosol forecasting systems within the NOAA Environmental Modeling System (NEMS) Global Forecasting System (GFS) Aerosol Component (NGAC) under development at the National Centers for Environmental Prediction (NCEP).

  20. Development and characterization of an aircraft aerosol time-of-flight mass spectrometer.

    PubMed

    Pratt, Kerri A; Mayer, Joseph E; Holecek, John C; Moffet, Ryan C; Sanchez, Rene O; Rebotier, Thomas P; Furutani, Hiroshi; Gonin, Marc; Fuhrer, Katrin; Su, Yongxuan; Guazzotti, Sergio; Prather, Kimberly A

    2009-03-01

    Vertical and horizontal profiles of atmospheric aerosols are necessary for understanding the impact of air pollution on regional and global climate. To gain further insight into the size-resolved chemistry of individual atmospheric particles, a smaller aerosol time-of-flight mass spectrometer (ATOFMS) with increased data acquisition capabilities was developed for aircraft-based studies. Compared to previous ATOFMS systems, the new instrument has a faster data acquisition rate with improved ion transmission and mass resolution, as well as reduced physical size and power consumption, all required advances for use in aircraft studies. In addition, real-time source apportionment software allows the immediate identification and classification of individual particles to guide sampling decisions while in the field. The aircraft (A)-ATOFMS was field-tested on the ground during the Study of Organic Aerosols in Riverside, CA (SOAR) and aboard an aircraft during the Ice in Clouds Experiment-Layer Clouds (ICE-L). Initial results from ICE-L represent the first reported aircraft-based single-particle dual-polarity mass spectrometry measurements and provide an increased understanding of particle mixing state as a function of altitude. Improved ion transmission allows for the first single-particle detection of species out to approximately m/z 2000, an important mass range for the detection of biological aerosols and oligomeric species. In addition, high time resolution measurements of single-particle mixing state are demonstrated and shown to be important for airborne studies where particle concentrations and chemistry vary rapidly.

  1. Residence times in a hypersaline lagoon: Using salinity as a tracer

    NASA Astrophysics Data System (ADS)

    Mudge, Stephen M.; Icely, John D.; Newton, Alice

    2008-04-01

    Generally the waters of the Ria Formosa Lagoon, Portugal have a short residence time, in the order of 0.5 days (Tett, P., Gilpin, L., Svendsen, H., Erlandsson, C.P., Larsson, U., Kratzer, S., Fouilland, E., Janzen, C., Lee, J., Grenz, C., Newton, A., Ferreira, J.G., Fernandes, T., Scory, S., 2003. Eutrophication and some European waters of restricted exchange. Continental Shelf Research 23, 1635-1671). This estimation is based on the measurements of currents and the modelling of water exchange at the outlets to the ocean. However, observations of the temperature and salinity in the inner channels imply that residence time is greater in these regions of the lagoon. To resolve this apparent contradiction, spatial measurements of the temperature and salinity were made with a meter for conductivity, temperature and depth along the principal channels of the western portion of the lagoon, with a sampling frequency of two per second. Evaporation rates of 5.4 mm day -1 were measured in a salt extraction pond adjacent to the lagoon and used to determine the residence time through salinity differences with the incoming seawater. In June 2004, the water flooding in from the ocean had an average salinity of 36.07 which contrasted with a maximum of 37.82 at mid ebb on a spring tide, corresponding to a residence time of >7 days; the mean residence time was 2.4 days. As the tide flooded into the channels, the existing water was advected back into the lagoon. Although there was a small amount of mixing with water from another inlet, the water body from the inner lagoon essentially remained distinct with respect to temperature and salinity characteristics. The residence time of the water was further prolonged at the junction between the main channels, where distinct boundaries were observed between the different water masses. As the water ebbed out, the shallow Western Channel was essentially isolated from the rest of the outer lagoon, and the water from this channel was forced

  2. An influential factor for external radiation dose estimation for residents after the Fukushima Daiichi Nuclear Power Plant accident-time spent outdoors for residents in Iitate Village.

    PubMed

    Ishikawa, Tetsuo; Yasumura, Seiji; Ohtsuru, Akira; Sakai, Akira; Akahane, Keiichi; Yonai, Shunsuke; Sakata, Ritsu; Ozasa, Kotaro; Hayashi, Masayuki; Ohira, Tetsuya; Kamiya, Kenji; Abe, Masafumi

    2016-06-01

    Many studies have been conducted on radiation doses to residents after the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident. Time spent outdoors is an influential factor for external dose estimation. Since little information was available on actual time spent outdoors for residents, different values of average time spent outdoors per day have been used in dose estimation studies on the FDNPP accident. The most conservative value of 24 h was sometimes used, while 2.4 h was adopted for indoor workers in the UNSCEAR 2013 report. Fukushima Medical University has been estimating individual external doses received by residents as a part of the Fukushima Health Management Survey by collecting information on the records of moves and activities (the Basic Survey) after the accident from each resident. In the present study, these records were analyzed to estimate an average time spent outdoors per day. As an example, in Iitate Village, its arithmetic mean was 2.08 h (95% CI: 1.64-2.51) for a total of 170 persons selected from respondents to the Basic Survey. This is a much smaller value than commonly assumed. When 2.08 h is used for the external dose estimation, the dose is about 25% (23-26% when using the above 95% CI) less compared with the dose estimated for the commonly used value of 8 h.

  3. The Time Evolution of Aerosol Composition Over the Mexico City Plateau

    SciTech Connect

    Kleinman, Lawrence I.; Springston, Stephen R.; Daum, Peter H.; Lee, Y. - N.; Nunnermacker, L. J.; Senum, Gunar; Wang, J. X.; Weinstein-Lloyd, Judy; Alexander, M. L.; Hubbe, John M.; Ortega, John V.; Canagaratna, M. R.; Jayne, John

    2008-03-17

    The time evolution of aerosol concentration and chemical composition in a megacity urban plume was determined based on 8 flights of the DOE G-1 aircraft in and downwind of Mexico City during the March 2006 MILAGRO field campaign. A series of selection criteria are imposed to eliminate data points with non-urban emission influences. Biomass burning has urban and non-urban sources that are distinguished on the basis of CH3CN and CO. In order to account for dilution in the urban plume, aerosol concentrations are normalized to CO which is taken as an inert tracer of urban emission, proportional to the emissions of aerosol precursors. Time evolution is determined with respect to photochemical age defined as -Log10 (NOx/NOy). The geographic distribution of photochemical age and CO is examined, confirming the picture that Mexico City is a source region and that pollutants become more dilute and aged as they are advected towards T1 and T2, surface sites that are located at the fringe of the City and 35 km to the NE, respectively. Organic aerosol (OA) per ppm CO is found to increase 7 fold over the range of photochemical ages studied, corresponding to a change in NOx/NOy from nearly 100% to 10%.

  4. Mineralogical Controls over Carbon Storage and Residence Times in Grassland Soils

    NASA Astrophysics Data System (ADS)

    Dwivedi, D.; Riley, W. J.; Torn, M. S.; Spycher, N.

    2014-12-01

    Globally, soil organic matter (SOM) contains approximately three times more carbon than the atmosphere and terrestrial vegetation contain combined. However, it is not well understood why some SOM persists for a long time while other SOM decomposes quickly. For future climate predictions, representing soil organic matter (SOM) dynamics accurately in Earth system models is essential. Soil minerals stabilize organic carbon in soil; however, there are gaps in our understanding of how soil mineralogy controls the quantity and turnover of long-residence-time organic carbon. To investigate the impact of soil mineralogy on SOM dynamics, we used a new model (Biotic and Abiotic Model of SOM—BAMS1 [Riley et al., 2014]) integrated with a three-dimensional, multiphase reactive transport solver (TOUGHREACT). The model represents bacterial and fungal activity, archetypal polymer and monomer carbon substrate groups, aqueous chemistry, gaseous diffusion, aqueous advection and diffusion, and adsorption and desorption processes. BAMS1 can predict bulk SOM and radiocarbon signatures without resorting to an arbitrary depth-dependent decline in SOM turnover rates. Results show a reasonable match between observed and simulated depth-resolved SOM and ∆14C in grassland ecosystems (soils formed on terraces south of Eureka, California, and the Central Chernozem Region of Russia) and were consistent with expectations of depth-resolved profiles of lignin content and fungi:aerobic bacteria ratios. Results also suggest that clay-mineral surface area and soil sorption coefficients constitute dominant controls over organic carbon stocks and residence times, respectively. Bibliography: Riley, W.J., F.M. Maggi, M. Kleber, M.S. Torn, J.Y. Tang, D. Dwivedi, and N. Guerry (2014), Long residence times of rapidly decomposable soil organic matter: application of a multi-phase, multi-component, and vertically resolved model (BAMS1) to soil carbon dynamics, Geoscientific Model Development, vol. 7, 1335

  5. Formation and Processing of Organic Aerosols Measured by a Time of Flight Aerosol Mass Spectrometer during TexAQS/GoMACCS 2006

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Middlebrook, A. M.; Decarlo, P. F.; Denlea, E.; Jimenez, J. L.; Brock, C. A.; Degouw, J. A.; Flocke, F.; Gallar, C.; Holloway, J. S.; Neuman, J. A.; Ryerson, T. B.; Schwarz, J. P.; Spackman, J. R.; Trainer, M. K.; Warneke, C.; Wollny, A. G.; Zhang, W.; Fehsenfeld, F. C.

    2007-12-01

    Formation of particulate matter is common in areas with high emissions of volatile organic compounds (VOCs), NOx, and SO2. These particles have lifetimes of days to weeks, and thus can have both local and regional effects on visibility, air quality, and human health as well as direct and indirect effects on climate. During TexAQS 2006, mass concentrations of non-refractory inorganic species (sulfate, ammonium, and nitrate) and total organics in submicron aerosols were measured by a Compact Time of Flight Aerosol Mass Spectrometer (C-ToF-AMS) onboard the NOAA WP-3D aircraft. In this presentation, we analyze composition changes of organic aerosols in different air masses. We examine organic mass spectra along with simultaneous measurements of VOCs and their oxidation products in order to determine the contribution of anthropogenic and biogenic sources to the aerosol organic mass. These measurements were performed in plumes intercepted during the daytime north of Houston where large isoprene emissions were observed. Furthermore, the fresh hydrocarbon-like (HOA) and processed oxygenated-like organics (OOA) fractions of the total organic aerosol mass in several plumes transected during daytime and nighttime are presented and compared. We will also discuss differences in correlations between organic aerosol composition markers and primary or secondary gas-phase species in different plumes.

  6. Predicting mean residence time and exchange velocity in the hyporheic zone of restored streams

    NASA Astrophysics Data System (ADS)

    Morén, Ida; Wörman, Anders; Riml, Joakim

    2016-04-01

    The hyporheic zones of streams and rivers have been identified as hotspots for biogeochemical reactions in the aquatic environment, making the retention time and exchange velocity of the hyporheic zone essential parameters in the modelling of these processes. However, exact site-specific values of those parameters are often missing in stream restoration projects because there are no well-defined scaling relationships linking them to measurable reach characteristics. In this study we derive semi-analytical solutions for the retention time and exchange velocity in the hyporheic zone. In particular the effect on hyporheic exchange is expressed by the use of physically based models and by superimposing different geomorphologic features of different scales. It is suggested that all exchange phenomena can be modelled as head anomalies expressed with a harmonic distribution along the stream with specific wavelength and head amplitude. The maximum head of an exchange phenomena is either dominated by hydrodynamic or hydrostatic water pressure, depending on the size of the feature causing the exchange. The theory leads to constitutive relationships for exchange velocity and residence time expressed as functions of the distribution of wavelengths, distribution of head amplitude and hydraulic conductivity. In order to validate and evaluate certain empirical coefficients, a number of Rhodamine WT tracer tests were performed in a partly restored agricultural stream in the south of Sweden called the Tullstorps brook. To evaluate the tracer test in sections where remediation actions have been undertaken we used the method of temporal moments. In conjunction with the tracer tests a characterisation of the stream was carried out where hydraulic conductivity of the streambed and stream morphology was measured. The study verifies that the residence time in the hyporheic zone decreases with the maximum hydraulic head of the largest (dominating) geomorphic feature of the reach, and

  7. Geometrical effects on the electron residence time in semiconductor nano-particles

    SciTech Connect

    Koochi, Hakimeh; Ebrahimi, Fatemeh

    2014-09-07

    We have used random walk (RW) numerical simulations to investigate the influence of the geometry on the statistics of the electron residence time τ{sub r} in a trap-limited diffusion process through semiconductor nano-particles. This is an important parameter in coarse-grained modeling of charge carrier transport in nano-structured semiconductor films. The traps have been distributed randomly on the surface (r{sup 2} model) or through the whole particle (r{sup 3} model) with a specified density. The trap energies have been taken from an exponential distribution and the traps release time is assumed to be a stochastic variable. We have carried out (RW) simulations to study the effect of coordination number, the spatial arrangement of the neighbors and the size of nano-particles on the statistics of τ{sub r}. It has been observed that by increasing the coordination number n, the average value of electron residence time, τ{sup ¯}{sub r} rapidly decreases to an asymptotic value. For a fixed coordination number n, the electron's mean residence time does not depend on the neighbors' spatial arrangement. In other words, τ{sup ¯}{sub r} is a porosity-dependence, local parameter which generally varies remarkably from site to site, unless we are dealing with highly ordered structures. We have also examined the effect of nano-particle size d on the statistical behavior of τ{sup ¯}{sub r}. Our simulations indicate that for volume distribution of traps, τ{sup ¯}{sub r} scales as d{sup 2}. For a surface distribution of traps τ{sup ¯}{sub r} increases almost linearly with d. This leads to the prediction of a linear dependence of the diffusion coefficient D on the particle size d in ordered structures or random structures above the critical concentration which is in accordance with experimental observations.

  8. The role of buoyancy orientation on bubble residence times and the related critical heat flux

    SciTech Connect

    Brusstar, M.J.; Merte, H. Jr.; Keller, R.B.

    1995-12-31

    Measurements of the effects of buoyancy orientation on the critical heat flux (CHF) in subcooled forced convection boiling of R113 are presented, examining the motion of the vapor above the heater surface and its possible influence on the feed of liquid to the surface. At the low flow velocity of 4 cm/s used, the buoyancy force acting on the vapor dominates over the flow inertia, and the measured CHF values show a strong dependence on the orientation of the heater surface with respect to gravity. The transient and time-averaged behavior of the vapor above the surface at heat flux levels close to the CHF is characterized using hot wire anemometry. Through this, a description of the behavior of the largest vapor bubbles is obtained, which is considered to be of primary importance to the processes by which liquid is fed to the heater surface at these high heat flux levels. The mean residence time of the largest bubbles above the heater surface at a given heater orientation is also determined from the hot wire data. The reciprocal of the mean residence time is found to correlate directly with the measured CHF values for the different orientations and subcoolings, showing that the amount of energy absorbed in the vapor formation process during the bubble residence time is constant for all heater orientations at a given subcooling, and demonstrates that the motion of the largest bubbles determines the CHF. This suggests that the relative effects of buoyancy orientation on the CHF can be modeled by considering only the motion of the largest bubbles in the immediate vicinity of the heater surface.

  9. Root microbiota dynamics of perennial Arabis alpina are dependent on soil residence time but independent of flowering time

    PubMed Central

    Dombrowski, Nina; Schlaeppi, Klaus; Agler, Matthew T; Hacquard, Stéphane; Kemen, Eric; Garrido-Oter, Ruben; Wunder, Jörg; Coupland, George; Schulze-Lefert, Paul

    2017-01-01

    Recent field and laboratory experiments with perennial Boechera stricta and annual Arabidopsis thaliana suggest that the root microbiota influences flowering time. Here we examined in long-term time-course experiments the bacterial root microbiota of the arctic-alpine perennial Arabis alpina in natural and controlled environments by 16S rRNA gene profiling. We identified soil type and residence time of plants in soil as major determinants explaining up to 15% of root microbiota variation, whereas environmental conditions and host genotype explain maximally 11% of variation. When grown in the same soil, the root microbiota composition of perennial A. alpina is largely similar to those of its annual relatives A. thaliana and Cardamine hirsuta. Non-flowering wild-type A. alpina and flowering pep1 mutant plants assemble an essentially indistinguishable root microbiota, thereby uncoupling flowering time from plant residence time-dependent microbiota changes. This reveals the robustness of the root microbiota against the onset and perpetual flowering of A. alpina. Together with previous studies, this implies a model in which parts of the root microbiota modulate flowering time, whereas, after microbiota acquisition during vegetative growth, the established root-associated bacterial assemblage is structurally robust to perturbations caused by flowering and drastic changes in plant stature. PMID:27482927

  10. Residence time and movements of postbreeding shorebirds on the northern coast of Alaska

    USGS Publications Warehouse

    Taylor, Audrey R.; Lanctot, Richard B.; Powell, A.N.; Kendall, S.J.; Nigro, Debora A.

    2011-01-01

    Relatively little is known about shorebird movements across the coast of northern Alaska, yet postbreeding shorebirds use this coastline extensively prior to fall migration. We deployed 346 radio transmitters on 153 breeding and 193 postbreeding shorebirds of five species from 2005 to 2007.We examined two hypotheses regarding postbreeding shorebirds' movements: (1) whether such movements reflect ultimate routes of southbound migration and (2) whether migration strategy (length of flights) or timing of molt in relation to migration (molt occurring in breeding or winter range) are more influential in determining postbreeding shorebirds' behavior. Semipalmated Sandpipers (Calidris pusilla) moved east, consistent with the direction of their ultimate migration, but patterns of other species' movements did not reflect ultimate migration direction. Timing of postnuptial molt appeared to have more influence over residence time and movements than did migration strategy. Postcapture residence time for the Semipalmated Sandpiper was less than for the Western Sandpiper (C. mauri) and significantly less than for Dunlin (C. alpina), and the Semipalmated Sandpiper's movements between were quicker and more frequent than those of the Dunlin. We expected to see the opposite patterns if migration strategy were more influential. Our data shed light on how different shorebird species use the northern Alaska coast after breeding: most species are likely to be stopping over at postbreeding areas, whereas the Dunlin and some Western Sandpipers may be staging. We suggest the coast of northern Alaska be viewed as an interconnected network of postbreeding sites that serve multiple populations of breeding shorebirds. ?? The Cooper Ornithological Society 2011.

  11. In-vivo characterization of 2D residence time maps in the left ventricle

    NASA Astrophysics Data System (ADS)

    Rossini, Lorenzo; Martinez-Legazpi, Pablo; Bermejo, Javier; Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Perez Del Villar, Candelas; Gonzalez-Mansilla, Ana; Barrio, Alicia; Fernandez-Aviles, Francisco; Shadden, Shawn; Del Alamo, Juan Carlos

    2014-11-01

    Thrombus formation is a multifactorial process involving biology and hemodynamics. Blood stagnation and wall shear stress are linked to thrombus formation. The quantification of residence time of blood in the left ventricle (LV) is relevant for patients affected by ventricular contractility dysfunction. We use a continuum formulation to compute 2D blood residence time (TR) maps in the LV using in-vivo 2D velocity fields in the apical long axis plane obtained from Doppler-echocardiography images of healthy and dilated hearts. The TR maps are generated integrating in time an advection-diffusion equation of a passive scalar with a time-source term. This equation represents the Eulerian translation of DTR / D t = 1 and is solved numerically with a finite volume method on a Cartesian grid using an immersed boundary for the LV wall. Changing the source term and the boundary conditions allows us to track blood transport (direct and retained flow) in the LV and the topology of early (E) and atrial (A) filling waves. This method has been validated against a Lagrangian Coherent Structures analysis, is computationally inexpensive and observer independent, making it a potential diagnostic tool in clinical settings.

  12. Evaluation of a tractor cab using real-time aerosol counting instrumentation.

    PubMed

    Hall, Ronald M; Heitbrink, William A; Reed, Laurence D

    2002-01-01

    concentration / inside concentration) was used to calculate how efficient the tractor cab was at removing aerosols. The John Deere cab was more than 99 percent efficient at removing aerosols larger than 3.0 microm in diameter and had protection factors greater than 260 for particles larger than 3.0 microm (indicated by the PDM results). The Nelson cab was more than 99 percent efficient at removing aerosols larger than 3.0 microm in diameter and had protection factors greater than 200 for particles larger than 3.0 microm (indicated by the PDM results). For aerosols smaller than 1.0 microm in diameter (indicated by a PortaCount Plus instrument), the John Deere cab provided a mean protection factor of 43 and the Nelson cab provided a mean protection factor of 16. The results from this study indicate that tractor cabs can be effective at removing different size aerosols depending on the seals and filters used with the enclosure. This study has also demonstrated the practical use of real-time aerosol counting instrumentation to evaluate the effectiveness of enclosures and to help identify leak sources. The method used in this study can be applied to various cabs used in different industries including agriculture, construction, and manufacturing.

  13. Geomorphic Control on Mineral and Fluid Residence Times and Implications for the Hydrochemistry of Weathering

    NASA Astrophysics Data System (ADS)

    Torres, M. A.; West, A. J.; Clark, K. E.; Feakins, S. J.; Ponton, C.

    2014-12-01

    Understanding how hydrologic and geochemical processes are coupled, and how this coupling is linked to geomorphic boundary conditions, remains a fundamental problem in the Geosciences, with implications from hydrology and ecosystem science to the geologic carbon cycle. In this study, we present paired measurements of water chemistry and river runoff in four nested catchments spanning the transition from the Andes Mountains to the foreland floodplain in Peru. These data provide insight into the linkages between catchment hydrology and weathering across a dramatic geomorphic gradient. Along the studied gradient, bedrock-derived solute concentrations range from being nearly constant in the Andes to showing significant dilution in response to increasing runoff in the foreland floodplain. Mean catchment slope appears to be a robust predictor of the power law exponent relating solute concentrations and runoff, which implies that erosional processes are an underlying control on concentration-runoff relationships. A number of factors may explain the observed slope-dependency of concentration-runoff relationships, including both mineral and fluid residence times. Seasonal variation in the δD of the Andean rivers is significantly damped relative to variation in the δD of precipitation. Along with consideration of the annual water budget, these data suggest that water is transiently stored within fractured bedrock in the Andean catchments. Across the entire study area, the seasonal variation in the δD of tributaries (i.e. streams that drain only a narrow range of elevations) increases with decreasing mean catchment elevation, which suggests that fluid residence times are shorter in the foreland floodplain relative to the Andes. Together, we interpret these factors to suggest that erosional processes, by modulating both the residence time of water and minerals in the critical zone, control the hydrologic sensitivity of weathering processes along the Andes-to-Amazon gradient.

  14. Spatial distribution of triazine residues in a shallow alluvial aquifer linked to groundwater residence time.

    PubMed

    Sassine, Lara; Le Gal La Salle, Corinne; Khaska, Mahmoud; Verdoux, Patrick; Meffre, Patrick; Benfodda, Zohra; Roig, Benoît

    2016-07-22

    At present, some triazine herbicides occurrence in European groundwater, 13 years after their use ban in the European Union, remains of great concern and raises the question of their persistence in groundwater systems due to several factors such as storage and remobilization from soil and unsaturated zone, limited or absence of degradation, sorption in saturated zones, or to continuing illegal applications. In order to address this problem and to determine triazine distribution in the saturated zone, their occurrence is investigated in the light of the aquifer hydrodynamic on the basis of a geochemical approach using groundwater dating tracers ((3)H/(3)He). In this study, atrazine, simazine, terbuthylazine, deethylatrazine, deisopropylatrazine, and deethylterbuthylazine are measured in 66 samples collected between 2011 and 2013 from 21 sampling points, on the Vistrenque shallow alluvial aquifer (southern France), covered by a major agricultural land use. The frequencies of quantification range from 100 to 56 % for simazine and atrazine, respectively (LQ = 1 ng L(-1)). Total triazine concentrations vary between 15 and 350 ng L(-1) and show three different patterns with depth below the water table: (1) low concentrations independent of depth but related to water origin, (2) an increase in concentrations with depth in the aquifer related to groundwater residence time and triazine use prior to their ban, and (3) relatively high concentrations at low depths in the saturated zone more likely related to a slow desorption of these compounds from the soil and unsaturated zone. The triazine attenuation rate varies between 0.3 for waters influenced by surface water infiltration and 4.8 for water showing longer residence times in the aquifer, suggesting an increase in these rates with water residence time in the saturated zone. Increasing triazine concentrations with depth is consistent with a significant decrease in the use of these pesticides for the last 10

  15. The roles of mean residence time on herd behavior in a financial market

    NASA Astrophysics Data System (ADS)

    Li, Jiang-Cheng; Li, Yun-Xian; Tang, Nian-Sheng; Mei, Dong-Cheng

    2016-11-01

    We investigate the herd behavior of stock prices in a finance system with the Heston model. Based on parameter estimation of the Heston model obtained by minimizing the mean square deviation between the theoretical and empirical return distributions, we simulate mean residence time of positive return (MRTPR). Plots of MRTPR against the amplitude or mean reversion of volatility demonstrate a phenomenon of herd behavior for a positive cross correlation between noise sources of the Heston model. Also, for a negative cross correlation, a phenomenon of herd behavior is observed in plots of MRTPR against the long-run variance by increasing amplitude or mean reversion of volatility.

  16. Analysis Of Residence Time Distribution Of Fluid Flow By Axial Dispersion Model

    SciTech Connect

    Sugiharto; Su'ud, Zaki; Kurniadi, Rizal; Waris, Abdul; Abidin, Zainal

    2010-12-23

    Radioactive tracer {sup 82}Br in the form of KBr-82 with activity {+-} 1 mCi has been injected into steel pipeline to qualify the extent dispersion of water flowing inside it. Internal diameter of the pipe is 3 in. The water source was originated from water tank through which the water flow gravitically into the pipeline. Two collimated sodium iodide detectors were used in this experiment each of which was placed on the top of the pipeline at the distance of 8 and 11 m from injection point respectively. Residence time distribution (RTD) curves obtained from injection of tracer are elaborated numerically to find information of the fluid flow properties. The transit time of tracer calculated from the mean residence time (MRT) of each RTD curves is 14.9 s, therefore the flow velocity of the water is 0.2 m/s. The dispersion number, D/uL, for each RTD curve estimated by using axial dispersion model are 0.055 and 0.06 respectively. These calculations are performed after fitting the simulated axial dispersion model on the experiment curves. These results indicated that the extent of dispersion of water flowing in the pipeline is in the category of intermediate.

  17. Residence times in shallow waters help explain regional differences in Wadden Sea eutrophication

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, Fabian; Callies, Ulrich; van Beusekom, Justus E. E.

    2016-11-01

    Regional variations in eutrophication levels of tidal basins in the Wadden Sea can be caused by external factors, like organic matter import, and internal factors like the morphology and hydrodynamics of the receiving tidal basin. For instance, benthic nutrients from remineralized organic matter may be more concentrated in shallow basins or diluted in basins with high exchange rates. In addition, the location of a monitoring station may determine which basin-specific water masses are actually observed. In the present paper a hydrodynamic intertidal imprint (IMP) is estimated for ten stations in various tidal basins of the Wadden Sea. The fraction of time water masses spent in intertidal areas prior to observation is calculated by linking the Lagrangian transport module PELETS to already existing hourly reconstructions of currents between 1959 and 2003. Irrespective of water depth, additional calculations of mean residence times (MRT) in the Wadden Sea indicate whether, in the case of low IMP values, water masses originate from coastal areas or tidal channels. Results show distinct regional differences, with highest values in the eastern part of the Dutch sector of the southern Wadden Sea (IMP=77%, MRT=99%) and lowest values in the German/Danish sector of the northern Wadden Sea (IMP=1.1%, MRT=21%). The IMP correlates positively with observed nutrient levels (R2=0.83). Evidently, this residence time-based intertidal signal is pivotal in explaining regional variations in eutrophication levels revealed by long-term comparative data from different monitoring stations.

  18. Residence times in shallow waters help explain regional differences in Wadden Sea eutrophication

    NASA Astrophysics Data System (ADS)

    Schwichtenberg, Fabian; Callies, Ulrich; van Beusekom, Justus E. E.

    2017-04-01

    Regional variations in eutrophication levels of tidal basins in the Wadden Sea can be caused by external factors, like organic matter import, and internal factors like the morphology and hydrodynamics of the receiving tidal basin. For instance, benthic nutrients from remineralized organic matter may be more concentrated in shallow basins or diluted in basins with high exchange rates. In addition, the location of a monitoring station may determine which basin-specific water masses are actually observed. In the present paper a hydrodynamic intertidal imprint (IMP) is estimated for ten stations in various tidal basins of the Wadden Sea. The fraction of time water masses spent in intertidal areas prior to observation is calculated by linking the Lagrangian transport module PELETS to already existing hourly reconstructions of currents between 1959 and 2003. Irrespective of water depth, additional calculations of mean residence times (MRT) in the Wadden Sea indicate whether, in the case of low IMP values, water masses originate from coastal areas or tidal channels. Results show distinct regional differences, with highest values in the eastern part of the Dutch sector of the southern Wadden Sea (IMP=77%, MRT=99%) and lowest values in the German/Danish sector of the northern Wadden Sea (IMP=1.1%, MRT=21%). The IMP correlates positively with observed nutrient levels (R2=0.83). Evidently, this residence time-based intertidal signal is pivotal in explaining regional variations in eutrophication levels revealed by long-term comparative data from different monitoring stations.

  19. Time Resolved Chemical Analysis of Anthropogenic Aerosols in Norway, a Study of Long-Range Transport

    NASA Astrophysics Data System (ADS)

    Indresand, H.; Waddell, J. A.; Cliff, S. S.; Perry, K. D.; Yttri, K.; Dye, C.; Kelly, P. B.

    2004-12-01

    Anthropogenic fine particulate matter produced by the burning of carbonaceous fuels is a complex issue that transcends political and geographical boundaries. Anthropogenic fine aerosols are tranported to Norway from the British Isles and continental Europe. Two 3-DRUM impactor samplers were used to collect size-separated PM2.5 aerosol samples (2.5 - 1.15, 1.15-0.34, 0.34-0.1 µm Da) at two sites, Birkenes and Kjeller for a six-week period in June and July. The samples were analyzed with three-hour time resolution by Synchrotron X-ray Fluorescence and Time-of-Flight Mass Spectrometry. S-XRF determined three-hour mass averages for elements heavier than Na, while the TOFMS was used for chemical speciation as a function of time and size. Positive ion spectra showed K+, Na+ and organic molecular ions between 200 - 400 m/z. Negative ion spectra detected carbon clusters, Cl-, Br-, I-, NO2-, NO3-, CN-, CNO-, SO3-, HSO4-, methyl sulfonic acid (MSA), and various organic acid salts. The chemical signature of the sources are identified using high time resolution in combination with air mass back trajectories. Chemical modification of the aerosol during transport is examined as a function of particle size.

  20. Residence times of stream-groundwater exchanges due to transient stream stage fluctuations

    NASA Astrophysics Data System (ADS)

    McCallum, James L.; Shanafield, Margaret

    2016-03-01

    The biogeochemical functioning of stream ecosystems is heavily dependent on water and water-borne nutrient fluxes between the stream itself and the streambed and banks (i.e., the hyporheic zone). The travel time of water exchanges through the hyporheic zone has been investigated previously; however, these studies have primarily modeled exchanges under steady state conditions assuming spatial pressure variations. This assumes that the hydraulic gradients that drive the exchanges are maintained the whole time the stream water remains in the bed or banks, which is unrealistic. Therefore, in this study we use a transient approach to investigate residence time distributions (RTDs) of bank inflow and bank outflow during both regular, diurnal stream stage variations and storm flow events. We demonstrate that RTDs reflect the timing and magnitude bank inflows, rather than smooth RTDs. We also show that small percentages of water from a given bank inflow event may be present in bank outflows for long periods of time, due to dispersion and diffusion within the bank, and lower rates of bank outflow, relative to bank inflow. This is apparent in the synthetic model of a single storm flow event, where 10% remained in the bank after 50 days. Additionally, residence times for a given bank inflow event are longer when repeated events occur, because the bank outflows from one event are "interrupted" by an increase in stream stage during a successive event. For example, field data capturing events of variable timing and magnitude showed that 70 days after each of three storm flow events occurred, 40, 12 and 30% of the bank inflow event remained in the banks. These cases indicate that bank exchanges are temporally dynamic and the RTDs of return flows can have significant tailing, which will dictate rates of nutrient exchange within the near-stream environment.

  1. Macrotextured spoked surfaces reduce the residence time of a bouncing Leidenfrost drop

    NASA Astrophysics Data System (ADS)

    Patterson, Colin J.; Shiri, Samira; Bird, James C.

    2017-02-01

    Liquid drops can bounce when they impact non-wetting surfaces. Recently, studies have demonstrated that the time that the bouncing drop contacts a superhydrophobic surface can be reduced by incorporating ridged macrotextures on the surface. Yet the existing models aimed at explaining this phenomenon offer incompatible predictions of the contact time when a drop impacts multiple intersecting macrotextures, or spokes. Furthermore, it is unclear whether the effects of the macrotexture on the drop hydrodynamics extend to non-wetting surfaces in which direct contact is avoided by a thin vapor layer. Here we demonstrate that the phenomenon observed for macrotextured, superhydrophobic surfaces extends to macrotextured, wettable surfaces above the Leidenfrost temperature. We show that the number of droplets and overall residence time both depend on the number of intersecting spokes. Finally, we compare and contrast our results with mechanistic models to rationalize various elements of the phenomenon.

  2. Non-proportional bioaccumulation of trace metals and metalloids in the planktonic food web of two Singapore coastal marine inlets with contrasting water residence times.

    PubMed

    Calbet, Albert; Schmoker, Claire; Russo, Francesca; Trottet, Aurore; Mahjoub, Mohamed-Sofiane; Larsen, Ole; Tong, Hor Yee; Drillet, Guillaume

    2016-08-01

    We analyzed the concentrations of trace metals/metalloids (TMs) in the water, sediment and plankton of two semi-enclosed marine coastal inlets located north of Jurong Island and separated by a causeway (SW Singapore; May 2012-April 2013). The west side of the causeway (west station) has residence times of approximately one year, and the east side of the causeway (east station) has residence times of one month. The concentrations of most of the TMs in water and sediment were higher in the west than in the east station. In the water column, most of the TMs were homogeneously distributed or had higher concentrations at the surface. Preliminary evidence suggests that the TMs are primarily derived from aerosol depositions from oil combustion and industry. Analyses of TMs in seston (>0.7μm; mostly phytoplankton) and zooplankton (>100μm) revealed that the seston from the west station had higher concentrations of most TMs; however, the concentrations of TMs in zooplankton were similar at the two stations. Despite the high levels of TMs in water, sediment and seston, the bioaccumulation detected in zooplankton was moderate, suggesting either the presence of effective detoxification mechanisms or/and the inefficient transfer of TMs from primary producers to higher trophic levels as a result of the complexity of marine planktonic food webs. In summary, the TM concentrations in water and seston are not reliable indicators of the bioaccumulation at higher trophic levels of the food web.

  3. Real-time characterization of the size and chemical composition of individual particles in ambient aerosol systems in Riverside, California

    SciTech Connect

    Noble, C.A.; Prather, K.A.

    1995-12-31

    Atmospheric aerosols, although ubiquitous, are highly diverse and continually fluctuating systems. A typical aerosol system may consist of particles with diameters between {approximately}0.002 {mu}m and {approximately}200 {mu}m. Even in rural or pristine areas, atmospheric particle concentration is significant, with concentrations up to 10{sup 8} particles/cm{sup 3} not being uncommon. Chemical composition of atmospheric particles vary from simple water droplets or acidic ices to soot particles and cigarette smoke. Due to changes in atmospheric conditions, processes such as nucleation, coagulation or heterogeneous chemistry may effect both physical and chemical properties of individual particles over relatively short time intervals. Recently, aerosol measurement techniques are focusing on determining the size and/or chemical composition of individual aerosol particles. This research group has recently developed aerosol time-of-flight mass spectrometry (ATOFMS), a technique which allows for real-time determination of the size and chemical composition of individual aerosol particles. Single particle measurements are performed in one instrument using dual laser aerodynamic particle sizing and time-of-flight mass spectrometry. Aerosol-time-of-flight mass spectrometry is briefly described in several other abstracts in this publication.

  4. Chemotaxis Increases the Residence Time of Bacteria in Granular Media Containing Distributed Contaminant Sources.

    PubMed

    Adadevoh, Joanna S T; Triolo, Sarah; Ramsburg, C Andrew; Ford, Roseanne M

    2016-01-05

    The use of chemotactic bacteria in bioremediation has the potential to increase access to, and the biotransformation of, contaminant mass within the subsurface. This laboratory-scale study aimed to understand and quantify the influence of chemotaxis on the residence times of pollutant-degrading bacteria within homogeneous treatment zones. Focus was placed on a continuous-flow sand-packed column in which a uniform distribution of naphthalene crystals created distributed sources of dissolved-phase contaminant. A 10 mL pulse of Pseudomonas putida G7, which is chemotactic to naphthalene, and Pseudomonas putida G7 Y1, a nonchemotactic mutant strain, were simultaneously introduced into the sand-packed column at equal concentrations. Breakthrough curves obtained from experiments conducted with and without naphthalene were used to quantify the effect of chemotaxis on transport parameters. In the presence of the chemoattractant, longitudinal dispersion of PpG7 increased by a factor of 3, and percent recovery decreased by 43%. In contrast, PpG7 Y1 transport was not influenced by the presence of naphthalene. The results imply that pore-scale chemotaxis responses are evident at an interstitial velocity of 1.8 m/day, which is within the range of typical groundwater flow. Within the context of bioremediation, chemotaxis may work to enhance bacterial residence times in zones of contamination, thereby improving treatment.

  5. Residence times in subsurface hydrological systems, introduction to the Special Issue

    NASA Astrophysics Data System (ADS)

    de Dreuzy, J.-R.; Ginn, T. R.

    2016-12-01

    Interest in the residence time distribution (RTD) as a comprehensive measure of subsurface hydrologic systems is growing. This focus is resulting from recognition that diverse vadose zone, groundwater flows, and transfer between hydrological compartments, are fundamentally related to the system RTD. Furthermore, transport of chemical or biological species and the biogeochemical activities that govern their fate, is principally reflected by the system RTD. Thus the RTD is used in geochemical interpretation of environmental tracers, in direct reactive transport approaches, and ultimately for sustainability and protection assessments in the consideration of transient boundary flows due to climate change or other causes, anthropogenic and/or natural. The RTD has been handled in the past primarily as a byproduct of models. It is now increasingly viewed as an integrative characteristic for which shape-free and generic distributions are developed, that links conceptual hydrology, characterization data, and mathematical models. Intermediary between mechanistic modeling, geochemical data and predictions, the role for residence time distribution is to represent consistently the flow, transport and reactivity processes while reaching the objective of biogeochemical interpretation and sustainability assessment. After some outline of the scientific context, we introduce the contributions of this special issue and conclude with the emerging challenges.

  6. The reactive transport of trichloroethene is influenced by residence time and microbial numbers

    NASA Astrophysics Data System (ADS)

    Haest, P. J.; Philips, J.; Springael, D.; Smolders, E.

    2011-01-01

    The dechlorination rate in a flow-through porous matrix can be described by the species specific dechlorination rate observed in a liquid batch unless mass transport limitations prevail. This hypothesis was examined by comparing dechlorination rates in liquid batch with that in column experiments at various flow rates (3-9-12 cm day - 1 ). Columns were loaded with an inoculated sand and eluted with a medium containing 1 mM trichloroethene (TCE) for 247 days. Dechlorination in the column treatments increased with decreasing flow rate, illustrating the effect of the longer residence time. Zeroth order TCE or cis-DCE degradation rates were 4-7 folds larger in columns than in corresponding batch systems which could be explained by the higher measured Geobacter and Dehalococcoides numbers per unit pore volume in the columns. The microbial numbers also explained the variability in dechlorination rate among flow rate treatments marked by a large elution of the dechlorinating species' yield as flow increased. Stop flow events did not reveal mass transport limitations for dechlorination. We conclude that flow rate effects on reactive transport of TCE in this coarse sand are explained by residence time and by microbial transport and that mass transport limitations in this porous matrix are limited.

  7. Tritium activity concentrations and residence times of groundwater collected in Rokkasho, Japan.

    PubMed

    Hasegawa, Hidenao; Ueda, Shinji; Akata, Naofumi; Kakiuchi, Hideki; Hisamatsu, Shun'ichi

    2015-11-01

    Tritium ((3)H) concentrations were measured in groundwater samples from four surface wells (4-10 m deep), four shallow wells (24-26.5 m deep) and a 150-m-deep well in the Futamata River catchment area, which is adjacent to the large-scale commercial spent nuclear fuel reprocessing plant in Rokkasho, Japan. The (3)H concentrations in most of the surface- and shallow-well samples (<0.03-0.57 Bq l(-1)) were similar to those in precipitation (annual mean: 0.31-0.79 Bq l(-1)), suggesting that the residence time of the water in those wells was 0-15 y. The (3)H concentrations in the samples from a 26-m-deep well and the 150-m-deep well were lower than those in the other wells, indicating that groundwater with a long residence time exists in deep aquifers and the estuary area of the catchment. It is not clear whether (3)H released during test operation of the plant with actual spent nuclear fuel affected the (3)H concentrations observed in this study.

  8. A non-discrete method for computation of residence time in fluid mechanics simulations.

    PubMed

    Esmaily-Moghadam, Mahdi; Hsia, Tain-Yen; Marsden, Alison L

    2013-11-01

    Cardiovascular simulations provide a promising means to predict risk of thrombosis in grafts, devices, and surgical anatomies in adult and pediatric patients. Although the pathways for platelet activation and clot formation are not yet fully understood, recent findings suggest that thrombosis risk is increased in regions of flow recirculation and high residence time (RT). Current approaches for calculating RT are typically based on releasing a finite number of Lagrangian particles into the flow field and calculating RT by tracking their positions. However, special care must be taken to achieve temporal and spatial convergence, often requiring repeated simulations. In this work, we introduce a non-discrete method in which RT is calculated in an Eulerian framework using the advection-diffusion equation. We first present the formulation for calculating residence time in a given region of interest using two alternate definitions. The physical significance and sensitivity of the two measures of RT are discussed and their mathematical relation is established. An extension to a point-wise value is also presented. The methods presented here are then applied in a 2D cavity and two representative clinical scenarios, involving shunt placement for single ventricle heart defects and Kawasaki disease. In the second case study, we explored the relationship between RT and wall shear stress, a parameter of particular importance in cardiovascular disease.

  9. Residence time and conversion in the extrusion of chemically reactive materials

    SciTech Connect

    Zhu, W.; Jaluria, Y.

    1999-07-01

    Extrusion is one of the most versatile and energy-efficient processes for the manufacture of polymer products, including food, pharmaceuticals and plastics. Many functions including mixing, cooking and chemical reaction can be performed in an extruder. Here, twin-screw extruders offer improved control of the residence time distribution (RTD) and mixing in materials such as plastics, rubber and food. Based on the flow and the heat transfer characteristics obtained for a self-wiping, co-rotating twin-screw extruder, the residence time and chemical reaction are studied by tracking the particles. For normally starve-fed twin-screw extruders, the length of the completely filled section is calculated as function of the process variables using the coupling of the flow with the die. With a model of the solid conveying section, the RTD for the whole extruder is calculated for corn meal at different screw speeds and flow rates. The calculated variation of RTD with the screw speed and the flow rate yields good agreement with observations from many experiments. The variation of the fully filled section length, chemical conversion and mixing effectiveness are also obtained under different operation conditions. Most of the results are in qualitative agreement with experimental results and may be used as guidelines for extruder design and determination of optimal operating condition.

  10. Chemotaxis Increases the Residence Time Distribution of Bacteria in Granular Media Containing Distributed Contaminant Sources

    NASA Astrophysics Data System (ADS)

    Adadevoh, J.; Triolo, S.; Ramsburg, C. A.; Ford, R.

    2015-12-01

    The use of chemotactic bacteria in bioremediation has the potential to increase access to, and biotransformation of, contaminant mass within the subsurface environment. This laboratory-scale study aimed to understand and quantify the influence of chemotaxis on residence times of pollutant-degrading bacteria within homogeneous treatment zones. Focus was placed on a continuous flow sand-packed column system in which a uniform distribution of naphthalene crystals created distributed sources of dissolved phase contaminant. A 10 mL pulse of Pseudomonas putida G7, which is chemotactic to naphthalene, and Pseudomonas putida G7 Y1, a non-chemotactic mutant strain, were simultaneously introduced into the sand-packed column at equal concentrations. Breakthrough curves obtained for the bacteria from column experiments conducted with and without naphthalene were used to quantify the effect of chemotaxis on transport parameters. In the presence of the chemoattractant, longitudinal dispersivity of PpG7 increased by a factor of 3 and percent recovery decreased from 21% to 12%. The results imply that pore-scale chemotaxis responses are evident at an interstitial fluid velocity of 1.7 m/d, which is within the range of typical groundwater flow. Within the context of bioremediation, chemotaxis may work to enhance bacterial residence times in zones of contamination thereby improving treatment.

  11. A non-discrete method for computation of residence time in fluid mechanics simulations

    NASA Astrophysics Data System (ADS)

    Esmaily-Moghadam, Mahdi; Hsia, Tain-Yen; Marsden, Alison L.

    2013-11-01

    Cardiovascular simulations provide a promising means to predict risk of thrombosis in grafts, devices, and surgical anatomies in adult and pediatric patients. Although the pathways for platelet activation and clot formation are not yet fully understood, recent findings suggest that thrombosis risk is increased in regions of flow recirculation and high residence time (RT). Current approaches for calculating RT are typically based on releasing a finite number of Lagrangian particles into the flow field and calculating RT by tracking their positions. However, special care must be taken to achieve temporal and spatial convergence, often requiring repeated simulations. In this work, we introduce a non-discrete method in which RT is calculated in an Eulerian framework using the advection-diffusion equation. We first present the formulation for calculating residence time in a given region of interest using two alternate definitions. The physical significance and sensitivity of the two measures of RT are discussed and their mathematical relation is established. An extension to a point-wise value is also presented. The methods presented here are then applied in a 2D cavity and two representative clinical scenarios, involving shunt placement for single ventricle heart defects and Kawasaki disease. In the second case study, we explored the relationship between RT and wall shear stress, a parameter of particular importance in cardiovascular disease.

  12. Prevalence and Cost of Full-Time Research Fellowships During General Surgery Residency – A National Survey

    PubMed Central

    Robertson, Charles M.; Klingensmith, Mary E.; Coopersmith, Craig M.

    2009-01-01

    Structured Abstract Objective To quantify the prevalence, outcomes, and cost of surgical resident research. Summary Background Data General surgery is unique among graduate medical education programs because a large percentage of residents interrupt their clinical training to spend 1-3 years performing full-time research. No comprehensive data exists on the scope of this practice. Methods Survey sent to all 239 program directors of general surgery residencies participating in the National Resident Matching Program. Results Response rate was 200/239 (84%). A total of 381 out of 1052 trainees (36%) interrupt residency to pursue full-time research. The mean research fellowship length is 1.7 years, with 72% of trainees performing basic science research. A significant association was found between fellowship length and post-residency activity, with a 14.7% increase in clinical fellowship training and a 15.2% decrease in private practice positions for each year of full-time research (p<0.0001). Program directors at 31% of programs reported increased clinical duties for research fellows as a result of ACGME work hour regulations for clinical residents, while a further 10% of programs are currently considering such changes. It costs $41.5 million to pay the 634 trainees who perform research fellowships each year, the majority of which is paid for by departmental funds (40%) and institutional training grants (24%). Conclusions Interrupting residency to perform a research fellowship is a common and costly practice among general surgery residents. While performing a research fellowship is associated with clinical fellowship training after residency, it is unclear to what extent this practice leads to the development of surgical investigators after post-graduate training. PMID:19106692

  13. Residence Times of Juvenile Salmon and Steelhead in Off-Channel Tidal Freshwater Habitats, Columbia River, USA

    SciTech Connect

    Johnson, Gary E.; Ploskey, Gene R.; Sather, Nichole K.; Teel, D. J.

    2015-05-01

    We estimated seasonal residence times of acoustic-tagged juvenile salmonids in off-channel, tidal freshwater habitats of the Columbia River near the Sandy River delta (rkm 198; 2007, 2008, 2010, and 2011) and Cottonwood Island (rkm 112; 2012).

  14. Numerical model of circulation and residence times in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    O'Donncha, Fearghal; Ragnoli, Emanuele

    2014-05-01

    parameters. The resultant time-series comprised tidal harmonic constituents and residuals composed of primarily density-driven and wind-driven (near surface) currents. To further decompose the residual currents time series are further filtered based on the differing scaling times of both wind-driven (days) and density-driven (weeks) flows. The resulting datasets enable a comprehensive classification of the relative influence of tides, wind and density effects across the domain. As a summary measure of circulation within the region, the model was used to compute the residence time for a water parcel in the gulf. Several transport time scales were calculated, including the average residence time and variations across the region. Residence statistics provide several insights into circulation in the gulf, in particular, knowledge of circulation patterns through the Straits of Hormuz, regional variation of residence times from North-South, and the impacts of wind and density-driven circulation on particle renewal within the domain.

  15. Effective denitrification at the groundwater surface-water interface: exposure rather than residence time

    NASA Astrophysics Data System (ADS)

    Peiffer, Stefan; Frei, Sven

    2014-05-01

    Effective processing of material in aquatic systems, e. g. removal of nitrate upon denitrification, requires sufficient reaction time. This statement sounds trivial albeit its implication for biogeochemistry seems to be not fully recognized. The time teff required for effective processing of nitrate is controlled by the underlying biogeochemical rate law. In the simplest case of a 1st order reaction, teff is often calculated as the time when 63% of the initial concentration is consumed setting teff as 1/kreaction. It may, however, be more appropriate to derive teff,90%or teff,99% from the respective rate law. Hence a minimum time t > teff is required that exposes a specific biogeochemical process to conditions favourable for this process, which is anoxia in case of denitrification. This exposure time τexp is not necessarily identical to the residence time τ of water in the particular system or flow path. Rather, the exposure time can be much shorter and may even fluctuate with time. As a consequence, Damköhler numbers (Da = τexp/teff) for denitrification < 1 may be the consequence even though the age of water may be comparatively high. We therefore argue that the key for understanding denitrification efficiency at the groundwater surface-water interface (or in groundwater systems in general) is the quantification of the exposure time. This contribution therefore aims i) to estimate exposure times required for effective denitrification based on an analysis of rate constants for denitrification, ii) to relate these time scales to typical residence time distributions found at the groundwater surface-water interface and iii) to discuss implications for denitrification efficiencies. References: Oldham, C; Farrow, DE; Peiffer, S (2013): A generalized Damköhler number for classifying material processing in hydrological systems, Hydrology and Earth System Sciences, 17, 1133-1148 Frei, S; Knorr, KH; Peiffer, S; Fleckenstein, J (2012): Surface micro-topography causes

  16. The GAW Aerosol Lidar Observation Network (GALION) as a source of near-real time aerosol profile data for model evaluation and assimilation

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.; Pappalardo, G.

    2010-12-01

    In 2007, the WMO Global Atmospheric Watch’s Science Advisory Group on Aerosols described a global network of lidar networks called GAW Aerosol Lidar Observation Network (GALION). GALION has a purpose of providing expanded coverage of aerosol observations for climate and air quality use. Comprised of networks in Asia (AD-NET), Europe (EARLINET and CIS-LINET), North America (CREST and CORALNET), South America (ALINE) and with contribution from global networks such as MPLNET and NDACC, the collaboration provides a unique capability to define aerosol profiles in the vertical. GALION is designed to supplement existing ground-based and column profiling (AERONET, PHOTONS, SKYNET, GAWPFR) stations. In September 2010, GALION held its second workshop and one component of discussion focussed how the network would integrate into model needs. GALION partners have contributed to the Sand and Dust Storm Warning and Analysis System (SDS-WAS) and to assimilation in models such as DREAM. This paper will present the conclusions of those discussions and how these observations can fit into a global model analysis framework. Questions of availability, latency, and aerosol parameters that might be ingested into models will be discussed. An example of where EARLINET and GALION have contributed in near-real time observations was the suite of measurements during the Eyjafjallajokull eruption in Iceland and its impact on European air travel. Lessons learned from this experience will be discussed.

  17. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    NASA Astrophysics Data System (ADS)

    Kulkarni, A.; Ha, S.; Joshirao, P.; Manchanda, V.; Bak, M. S.; Kim, T.

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ṡ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  18. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector.

    PubMed

    Kulkarni, A; Ha, S; Joshirao, P; Manchanda, V; Bak, M S; Kim, T

    2015-06-01

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO3)4 ⋅ 5H2O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  19. Note: Real time optical sensing of alpha-radiation emitting radioactive aerosols based on solid state nuclear track detector

    SciTech Connect

    Kulkarni, A.; Bak, M. S. E-mail: moonsoo@skku.edu; Ha, S.; Joshirao, P.; Manchanda, V.; Kim, T. E-mail: moonsoo@skku.edu

    2015-06-15

    A sensitive radioactive aerosols sensor has been designed and developed. Its design guidance is based on the need for a low operational cost and reliable measurements to provide daily aerosol monitoring. The exposure of diethylene-glycol bis (allylcarbonate) to radiation causes modification of its physico-chemical properties like surface roughness and reflectance. In the present study, optical sensor based on the reflectance measurement has been developed with an aim to monitor real time presence of alpha radioactive aerosols emitted from thorium nitrate hydrate. The results shows that the fabricated sensor can detect 0.0157 kBq to 0.1572 kBq of radio activity by radioactive aerosols generated from (Th(NO{sub 3}){sub 4} ⋅ 5H{sub 2}O) at 0.1 ml/min flow rate. The proposed instrument will be helpful to monitor radioactive aerosols in/around a nuclear facility, building construction sites, mines, and granite polishing factories.

  20. Coupling groundwater residence time and 234U/238U isotopic ratios in a granitic catchment (Vosges, Eastern France)

    NASA Astrophysics Data System (ADS)

    Viville, Daniel; Aquilina, Luc; Ackerer, Julien; Chatton, Eliot; Labasque, Thierry; Pierret, Marie-Claire; Granet, Mathieu; Perrone, Thierry; Chabaux, François

    2016-04-01

    Weathering processes are active in surface waters but groundwater also represents no neglectable chemical fluxes. As residence-time in groundwater are high, silicate weathering might take place and control Si, Ca and C fluxes. Weathering processes can be deduced from U isotopic ratios but the kinetics of these processes remain relatively poorly constrained. In order to better characterize these processes, we have coupled residence-times deduced from anthropogenic gases (CFC and SF6) analysis and 234U/238U isotopic ratios determination. Samples were collected in the Strengbach catchment (Hydro-geochemical Observatory OHGE, Vosges, eastern France). Two campaigns were carried out in May and August 2015 during two highly contrasted hydro-climatic periods. Both springs and boreholes down to 80 m depth have been sampled. A very clear geochemical distinction is observed between groundwater from surface springs and deeper groundwater from boreholes. Springs show much lower residence-time (few years) and specific chemical composition. Deeper groundwater have residence-time of several decades and different geochemical composition. A clear SF6 production is observed with increasing SF6 concentrations with residence-time. The campaign of May is characterized by highly groundwater levels and spring fluxes. All groundwater show very low residence time, except in the boreholes at depth greater than 40 m. Conversely, during low groundwater-level period in August, the residence times are much higher and CFC concentrations indicate a large mixing process between surface groundwater and deeper levels. The 234U/238U isotopic ratios confirm this vertical zonation in the boreholes, with much higher activity ratios in the deep ground-waters from borehole than in the surface and spring waters; Such high U activity ratios are indicative of long water-rock interactions, which is consistent with the long residence times deducted from the CFC and SF6 data.

  1. Residence time dependent desorption of Staphylococcus epidermidis from hydrophobic and hydrophilic substrata.

    PubMed

    Boks, Niels P; Kaper, Hans J; Norde, Willem; Busscher, Henk J; van der Mei, Henny C

    2008-12-01

    Adhesion and desorption are simultaneous events during bacterial adhesion to surfaces, although desorption is far less studied than adhesion. Here, desorption of Staphylococcus epidermidis from substratum surfaces is demonstrated to be residence time dependent. Initial desorption rate coefficients were similar for hydrophilic and hydrophobic dimethyldichlorosilane (DDS)-coated glass, likely because initial desorption is controlled by attractive Lifshitz-Van der Waals interactions, which are comparable on both substratum surfaces. However, significantly slower decay times of the desorption rate coefficients are found for hydrophilic glass than for hydrophobic DDS-coated glass. This difference is suggested to be due to the acid-base interactions between staphylococci and these surfaces, which are repulsive on hydrophilic glass and attractive on hydrophobic DDS-coated glass. Final desorption rate coefficients are higher on hydrophilic glass than on hydrophobic DDS-coated glass, due to the so called hydrophobic effect, facilitating a closer contact on hydrophobic DDS-coated glass.

  2. Sources of groundwater nitrate revealed using residence time and isotope methods

    SciTech Connect

    Moore, K B; Ekwurzel, B; Esser, B K; Hudson, G B; Moran, J E

    2004-10-07

    Nitrate concentrations approaching and greater than the maximum contaminant level (MCL) are impairing the viability of many groundwater basins as drinking water sources. Nitrate isotope data are effective in determining contaminant sources, especially when combined with other isotopic tracers such as stable isotopes of water and tritium-helium ages to give insight into the routes and timing of nitrate inputs to the flow system. This combination of techniques is demonstrated in Livermore, CA, where it is determined that low nitrate reclaimed wastewater predominates in the northwest, while two flowpaths with distinct nitrate sources originate in the southeast. Along the eastern flowpath, {delta}{sup 15}N values greater than 10{per_thousand} indicate that animal waste is the primary source. Diminishing concentrations over time suggest that contamination results from historical land use practices. The other flowpath begins in an area where rapid recharge, primarily of low-nitrate imported water (identified by stable isotopes of water and a tritium-helium residence time of less than 1 year), mobilizes a significant local nitrate source, bringing groundwater concentrations up to 53 mg NO{sub 3} L{sup -1}. In this area, artificial recharge of imported water via local arroyos increases the flux of nitrate to the regional aquifer. The low {delta}{sup 15}N value (3.1{per_thousand}) in this location implicates synthetic fertilizer. In addition to these anthropogenic sources, natural nitrate background levels between 15 and 20 mg NO{sub 3} L{sup -1} are found in deep wells with residence times greater than 50 years.

  3. Estimating renewal timescales with residence time and connectivity in an urban man-made lake in China.

    PubMed

    Gao, Xueping; Xu, Liping; Zhang, Chen

    2016-07-01

    Residence times and connectivity are computed for 12 subregions in an urban man-made lake in China using a high-resolution tracer-transport model. The renewal timescales are explicitly defined and computed for two groups of four freshwater inflow scenarios related to water diversion projects. First, the timescale values are computed and compared using different computational criteria for the upper limit of integration in the residence time equation. The sensitivity analysis suggests that a calculation time of 300 days is necessary to satisfy the relative error (0.001) and 5 % cutoff value criteria. Secondly, the residence times can range from 1.5 to 102 and 1.0 to 66 days under low and high flow conditions, respectively. Water in the inner lake would reside in the lake for less than 66 days prior to exiting the region of interest. The timescale values can be applied to impact studies that investigate the extent of sudden water pollution events that initially affect a subdomain of a lake. Finally, the lacustrine residence times are decomposed into the different subregion residence times, resulting in a connectivity matrix. This matrix can illustrate preferential connections among the individual subregions and reveal hidden patterns relating to local hydrodynamics in the lake.

  4. Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model

    SciTech Connect

    Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.

    2010-01-13

    Understanding the aging process of aerosol particles is important for assessing their chemical reactivity, cloud condensation nuclei activity, radiative properties and health impacts. In this study we investigate the aging of black carbon containing particles in an idealized urban plume using a new approach, the particleresolved aerosol model PartMC-MOSAIC. We present a method to estimate aging time-scales using an aging criterion based on cloud condensation nuclei activation. The results show a separation into a daytime regime where condensation dominates and a nighttime regime where coagulation dominates. For the chosen urban plume scenario, depending on the supersaturation threshold, the values for the aging timescales vary between 0.06 hours and 10 hours during the day, and between 6 hours and 20 hours during the night.

  5. AERONET Version 3 Release: Providing Significant Improvements for Multi-Decadal Global Aerosol Database and Near Real-Time Validation

    NASA Technical Reports Server (NTRS)

    Holben, Brent; Slutsker, Ilya; Giles, David; Eck, Thomas; Smirnov, Alexander; Sinyuk, Aliaksandr; Schafer, Joel; Sorokin, Mikhail; Rodriguez, Jon; Kraft, Jason; Scully, Amy

    2016-01-01

    Aerosols are highly variable in space, time and properties. Global assessment from satellite platforms and model predictions rely on validation from AERONET, a highly accurate ground-based network. Ver. 3 represents a significant improvement in accuracy and quality.

  6. Time-slice last millennium experiments with interactive gas-phase chemistry and aerosols

    NASA Astrophysics Data System (ADS)

    Tsigaridis, K.; Legrande, A. N.; Koch, D. M.

    2010-12-01

    Preliminary results from coupled atmosphere-ocean simulations with interactive gas-phase chemistry and aerosols are presented. These experiments are decadal scale time-slices within millennial-length simulations performed with the GISS GCM (ModelE), using two different ocean models. The boundary conditions for the transient simulations follow the last millennium coordinated PMIP3 experiment protocol. This experiment directly links in with other pre-Industrial experiments being completed as part of IPCC AR5, using the same model and resolution as in GISS IPCC AR5. Preliminary time-slice results from the early medieval and Maunder Minimum periods will be presented. The impact of the presence of short-lived gases and aerosols on the simulated climate is studied. An initial attempt to identify previously omitted additional forcing mechanisms will be performed during these contrasting climate periods, in short duration experiments driven by ocean conditions from the transient experiments. The results presented are the initial runs from a larger set of experiments that will assess the climate impact of changes to dust, sea-salt, and ocean-derived sulfate, biomass burning ozone-precursors and aerosols, organic carbon, wetland methane emissions, and a final set with all components. These species are standard components in the GISS model’s 20th century simulations, so that we may compare millennial variability characteristics with those better constrained from more recent climate periods. Dust and sea-salt are wind-driven aerosols from deserts and oceans, sulfate comes from oxidation of volcanic and oceanic precursors, while organic carbon comes from biomass burning, secondary plant sources and primary oceanic emissions. Comparison of model and proxy records will test model-simulated mechanisms while the model provides insight into factors contributing to proxy variability. The addition of potentially important forcing mechanisms will enable a more comprehensive

  7. Evaluation of flowpaths and mean resident time of water in a riparian wetland.

    NASA Astrophysics Data System (ADS)

    Augeard, B.; Michelin, J.; Kao, C.

    2003-04-01

    Hydrology is an essential issue to evaluate hydrological, biochemical, or ecological functions of riparian wetlands. Our study focuses on the influence of hydrological processes on subsurface denitrification efficiency. The study site is a riparian wetland (3.2 ha) drained by a temporary stream Les Roises (catchment area 1260 ha) located in Champagne crayeuse 150 km east from Paris, France. This site is characterized by 1-2 m of peat deposits overlying a 10 m depth chalk aquifer. The main wetland inflow is controlled by the chalk aquifer water table level. Measurements of peat permeability indicate the presence of a deep, more decomposed and less permeable layer which isolates the uppermost peat from chalk. A previous study has demonstrated that denitrification occurs in peat during the wetland submersion period. Less intense denitrification has also been observed in the chalk aquifer during the lower water table period. Stream flow and groundwater level monitoring were used to estimate the water budget of peat and to determine the mean resident time of water in peat during both the submersion period and the water table recession. Chalk groundwater flow simulations for the whole catchment have been performed using MODFLOW model to reproduce the observed water table temporal variations. The model also estimates groundwater fluxes bonding the wetland. These fluxes are used as boundary conditions for a wetland profile model developed using HYDRUS 2D. Proportions of ground water flow passing through and under the peat towards the river have been evaluated from steady state simulations. Computed results indicate that 15-25% of the watershed water flows through the peat during the submersion period. The mean resident time of the water in peat soil is about one week. During water table recession only 1% of the water flows through the peatland but the resident time is much higher. Such results suggest that the efficiency of this type of riparian wetland in removing

  8. Drinking water residence time in distribution networks and emergency department visits for gastrointestinal illness in Metro Atlanta, Georgia.

    PubMed

    Tinker, Sarah C; Moe, Christine L; Klein, Mitchel; Flanders, W Dana; Uber, Jim; Amirtharajah, Appiah; Singer, Philip; Tolbert, Paige E

    2009-06-01

    We examined whether the average water residence time, the time it takes water to travel from the treatment plant to the user, for a zip code was related to the proportion of emergency department (ED) visits for gastrointestinal (GI) illness among residents of that zip code. Individual-level ED data were collected from all hospitals located in the five-county metro Atlanta area from 1993 to 2004. Two of the largest water utilities in the area, together serving 1.7 million people, were considered. People served by these utilities had almost 3 million total ED visits, 164,937 of them for GI illness. The relationship between water residence time and risk for GI illness was assessed using logistic regression, controlling for potential confounding factors, including patient age and markers of socioeconomic status (SES). We observed a modestly increased risk for GI illness for residents of zip codes with the longest water residence times compared with intermediate residence times (odds ratio (OR) for Utility 1 = 1.07, 95% confidence interval (CI) = 1.03, 1.10; OR for Utility 2 = 1.05, 95% CI = 1.02, 1.08). The results suggest that drinking water contamination in the distribution system may contribute to the burden of endemic GI illness.

  9. Residence time distribution measurements in a pilot-scale poison tank using radiotracer technique.

    PubMed

    Pant, H J; Goswami, Sunil; Samantray, J S; Sharma, V K; Maheshwari, N K

    2015-09-01

    Various types of systems are used to control the reactivity and shutting down of a nuclear reactor during emergency and routine shutdown operations. Injection of boron solution (borated water) into the core of a reactor is one of the commonly used methods during emergency operation. A pilot-scale poison tank was designed and fabricated to simulate injection of boron poison into the core of a reactor along with coolant water. In order to design a full-scale poison tank, it was desired to characterize flow of liquid from the tank. Residence time distribution (RTD) measurement and analysis was adopted to characterize the flow dynamics. Radiotracer technique was applied to measure RTD of aqueous phase in the tank using Bromine-82 as a radiotracer. RTD measurements were carried out with two different modes of operation of the tank and at different flow rates. In Mode-1, the radiotracer was instantaneously injected at the inlet and monitored at the outlet, whereas in Mode-2, the tank was filled with radiotracer and its concentration was measured at the outlet. From the measured RTD curves, mean residence times (MRTs), dead volume and fraction of liquid pumped in with time were determined. The treated RTD curves were modeled using suitable mathematical models. An axial dispersion model with high degree of backmixing was found suitable to describe flow when operated in Mode-1, whereas a tanks-in-series model with backmixing was found suitable to describe flow of the poison in the tank when operated in Mode-2. The results were utilized to scale-up and design a full-scale poison tank for a nuclear reactor.

  10. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny.

    PubMed

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-04-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species' native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the inclusion

  11. Calculation of residence times and radiation doses using the standard PC software Excel.

    PubMed

    Herzog, H; Zilken, H; Niederbremer, A; Friedrich, W; Müller-Gärtner, H W

    1997-12-01

    We developed a program which aims to facilitate the calculation of radiation doses to single organs and the whole body. IMEDOSE uses Excel to include calculations, graphical displays, and interactions with the user in a single general-purpose PC software tool. To start the procedure the input data are copied into a spreadsheet. They must represent percentage uptake values of several organs derived from measurements in animals or humans. To extrapolate these data up to seven half-lives of the radionuclide, fitting to one or two exponentional functions is included and can be checked by the user. By means of the approximate time-activity information the cumulated activity or residence times are calculated. Finally these data are combined with the absorbed fraction doses (S-values) given by MIRD pamphlet No. 11 to yield radiation doses, the effective dose equivalent and the effective dose. These results are presented in a final table. Interactions are realized with push-buttons and drop-down menus. Calculations use the Visual Basic tool of Excel. In order to test our program, biodistribution data of fluorine-18 fluorodeoxyglucose were taken from the literature (Meija et al., J Nucl Med 1991; 32:699-706). For a 70-kg adult the resulting radiation doses of all target organs listed in MIRD 11 were different from the ICRP 53 values by 1%+/-18% on the average. When the residence times were introduced into MIRDOSE3 (Stabin, J Nucl Med 1996; 37:538-546) the mean difference between our results and those of MIRDOSE3 was -3%+/-6%. Both outcomes indicate the validity of the present approach.

  12. Using microchip electrophoresis for real-time aerosol composition measurements: Field study results from San Gorgonio Wilderness, California

    NASA Astrophysics Data System (ADS)

    Evanoski-Cole, A. R.; Hecobian, A.; Lewis, G. S.; Hering, S. V.; Henry, C. S.; Collett, J. L.

    2012-12-01

    The detrimental impacts of atmospheric aerosol on human and ecosystem health, visibility and climate change have been studied extensively. However, the role of aerosol composition in these issues still needs further investigation due to the variability of aerosol particles over both time and space. The need for better temporal and spatial resolution of aerosol composition measurements is addressed in the development of a real-time instrument using microchip capillary electrophoresis. Termed Aerosol microChip Electrophoresis (ACE), this lab-on-a-chip instrument is inexpensive to manufacture, portable and provides sensitive real-time and semi-continuous aerosol composition measurements. A water condensation growth tube is used to enlarge water soluble aerosol particles with an aerodynamic diameter less than 2.5 μm. The aqueous sample is continuously collected by impaction into a sample reservoir on a custom designed microchip. A rapid separation of select aerosol components is achieved using microchip capillary electrophoresis coupled with conductivity detection. Here we present data from a recent field campaign in the San Gorgonio Wilderness in south western California. This unique high elevation wilderness site located to the east of the heavily populated cities of San Bernardino and Los Angeles provides a contrast of both clean background and aged urban aerosol as dictated by the meteorological conditions at the site. Ambient aerosol particles were continuously collected at a flow rate of 0.7 L/min into a liquid sample with a volume of 16.7 μL and then analyzed for sulfate, nitrate, chloride and oxalate every 48 seconds. When comparing the ambient concentrations with the meteorological conditions, the most notable trend was high nitrate and sulfate concentrations in ambient aerosol during upslope wind events, with values reaching as high as 34 and 5 μg/m3, respectively. Comparison aerosol composition measurements from filter samples and a particle

  13. Target engagement and drug residence time can be observed in living cells with BRET.

    PubMed

    Robers, Matthew B; Dart, Melanie L; Woodroofe, Carolyn C; Zimprich, Chad A; Kirkland, Thomas A; Machleidt, Thomas; Kupcho, Kevin R; Levin, Sergiy; Hartnett, James R; Zimmerman, Kristopher; Niles, Andrew L; Ohana, Rachel Friedman; Daniels, Danette L; Slater, Michael; Wood, Monika G; Cong, Mei; Cheng, Yi-Qiang; Wood, Keith V

    2015-12-03

    The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment.

  14. Target engagement and drug residence time can be observed in living cells with BRET

    PubMed Central

    Robers, Matthew B.; Dart, Melanie L.; Woodroofe, Carolyn C.; Zimprich, Chad A.; Kirkland, Thomas A.; Machleidt, Thomas; Kupcho, Kevin R.; Levin, Sergiy; Hartnett, James R.; Zimmerman, Kristopher; Niles, Andrew L.; Ohana, Rachel Friedman; Daniels, Danette L.; Slater, Michael; Wood, Monika G.; Cong, Mei; Cheng, Yi-Qiang; Wood, Keith V.

    2015-01-01

    The therapeutic action of drugs is predicated on their physical engagement with cellular targets. Here we describe a broadly applicable method using bioluminescence resonance energy transfer (BRET) to reveal the binding characteristics of a drug with selected targets within intact cells. Cell-permeable fluorescent tracers are used in a competitive binding format to quantify drug engagement with the target proteins fused to Nanoluc luciferase. The approach enabled us to profile isozyme-specific engagement and binding kinetics for a panel of histone deacetylase (HDAC) inhibitors. Our analysis was directed particularly to the clinically approved prodrug FK228 (Istodax/Romidepsin) because of its unique and largely unexplained mechanism of sustained intracellular action. Analysis of the binding kinetics by BRET revealed remarkably long intracellular residence times for FK228 at HDAC1, explaining the protracted intracellular behaviour of this prodrug. Our results demonstrate a novel application of BRET for assessing target engagement within the complex milieu of the intracellular environment. PMID:26631872

  15. Optimal beam pattern to maximize inclusion residence time in an electron beam melting hearth

    SciTech Connect

    Powell, A.; Pal, U.; Avyle, J. van den

    1997-02-01

    Approximate probabilities of inclusion survival through an electron beam melting hearth are computed from nitride dissolution rates, flotation velocities, and residence times. Dissolution rates were determined by measuring shrinkage rates of pure TiN and nitrided sponge in small pools of molten titanium in an electron beam melting hearth. Flotation velocities were calculated using correlations for fluid flow around spheres, and show that particles sink or float unless their densities are extremely close to that of molten titanium. Flow field characteristics which lead to effective inclusion removal are discussed in terms of heat flux pattern required to produce them, based on the electron beam`s unique ability to impart a nearly arbitrary heat flux pattern to the melt surface.

  16. Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time

    NASA Astrophysics Data System (ADS)

    Gross, Elad; Liu, Jack Hung-Chang; Toste, F. Dean; Somorjai, Gabor A.

    2012-11-01

    A combination of the advantages of homogeneous and heterogeneous catalysis could enable the development of sustainable catalysts with novel reactivity and selectivity. Although heterogeneous catalysts are often recycled more easily than their homogeneous counterparts, they can be difficult to apply in traditional organic reactions and modification of their properties towards a desired reactivity is, at best, complex. In contrast, tuning the properties of homogeneous catalysts by, for example, modifying the ligands that coordinate a metal centre is better understood. Here, using olefin cyclopropanation reactions catalysed by dendrimer-encapsulated Au nanoclusters as examples, we demonstrate that changing the dendrimer properties allows the catalytic reactivity to be tuned in a similar fashion to ligand modification in a homogeneous catalyst. Furthermore, we show that these heterogeneous catalysts employed in a fixed-bed flow reactor allow fine control over the residence time of the reactants and thus enables the control over product distribution in a way that is not easily available for homogeneous catalysts.

  17. Control of selectivity in heterogeneous catalysis by tuning nanoparticle properties and reactor residence time.

    PubMed

    Gross, Elad; Liu, Jack Hung-Chang; Toste, F Dean; Somorjai, Gabor A

    2012-11-01

    A combination of the advantages of homogeneous and heterogeneous catalysis could enable the development of sustainable catalysts with novel reactivity and selectivity. Although heterogeneous catalysts are often recycled more easily than their homogeneous counterparts, they can be difficult to apply in traditional organic reactions and modification of their properties towards a desired reactivity is, at best, complex. In contrast, tuning the properties of homogeneous catalysts by, for example, modifying the ligands that coordinate a metal centre is better understood. Here, using olefin cyclopropanation reactions catalysed by dendrimer-encapsulated Au nanoclusters as examples, we demonstrate that changing the dendrimer properties allows the catalytic reactivity to be tuned in a similar fashion to ligand modification in a homogeneous catalyst. Furthermore, we show that these heterogeneous catalysts employed in a fixed-bed flow reactor allow fine control over the residence time of the reactants and thus enables the control over product distribution in a way that is not easily available for homogeneous catalysts.

  18. Using Residence Time Distributions (RTDs) to Address the Traceability of Raw Materials in Continuous Pharmaceutical Manufacturing.

    PubMed

    Engisch, William; Muzzio, Fernando

    Continuous processing in pharmaceutical manufacturing is a relatively new approach that has generated significant attention. While it has been used for decades in other industries, showing significant advantages, the pharmaceutical industry has been slow in its adoption of continuous processing, primarily due to regulatory uncertainty. This paper aims to help address these concerns by introducing methods for batch definition, raw material traceability, and sensor frequency determination. All of the methods are based on established engineering and mathematical principles, especially the residence time distribution (RTD). This paper introduces a risk-based approach to address content uniformity challenges of continuous manufacturing. All of the detailed methods are discussed using a direct compaction manufacturing line as the main example, but the techniques can easily be applied to other continuous manufacturing methods such as wet and dry granulation, hot melt extrusion, capsule filling, etc.

  19. Residence time distributions for hydrologic systems: Mechanistic foundations and steady-state analytical solutions

    NASA Astrophysics Data System (ADS)

    Leray, Sarah; Engdahl, Nicholas B.; Massoudieh, Arash; Bresciani, Etienne; McCallum, James

    2016-12-01

    This review presents the physical mechanisms generating residence time distributions (RTDs) in hydrologic systems with a focus on steady-state analytical solutions. Steady-state approximations of the RTD in hydrologic systems have seen widespread use over the last half-century because they provide a convenient, simplified modeling framework for a wide range of problems. The concept of an RTD is useful anytime that characterization of the timescales of flow and transport in hydrologic systems is important, which includes topics like water quality, water resource management, contaminant transport, and ecosystem preservation. Analytical solutions are often adopted as a model of the RTD and a broad spectrum of models from many disciplines has been applied. Although these solutions are typically reduced in dimensionality and limited in complexity, their ease of use makes them preferred tools, specifically for the interpretation of tracer data. Our review begins with the mechanistic basis for the governing equations, highlighting the physics for generating a RTD, and a catalog of analytical solutions follows. This catalog explains the geometry, boundary conditions and physical aspects of the hydrologic systems, as well as the sampling conditions, that altogether give rise to specific RTDs. The similarities between models are noted, as are the appropriate conditions for their applicability. The presentation of simple solutions is followed by a presentation of more complicated analytical models for RTDs, including serial and parallel combinations, lagged systems, and non-Fickian models. The conditions for the appropriate use of analytical solutions are discussed, and we close with some thoughts on potential applications, alternative approaches, and future directions for modeling hydrologic residence time.

  20. Sources and Residence Times of Groundwater in Shasta County, CA Determined by Isotopic Tracers

    NASA Astrophysics Data System (ADS)

    Peters, E.; Moran, J. E.; Deinhart, A.; Roberts, S. K.; Esser, B.; Visser, A.

    2015-12-01

    Large-volume springs are a significant source of water to communities in Shasta County. Aquifers in this region are developed in young volcanic formations and the age and flow of groundwater is not well characterized, making predicting the impact of drought and climate change on spring flow difficult. To better understand the water resources and the hydrogeology of the region and to better constrain the age of water produced by springs, we have sampled water from wells, springs, and streams for a suite of geochemical and isotopic tracers. We are using isotopic tracers because of the limited number of sampling points over a large area, leaving traditional hydrogeologic methods such as water levels and pump tests inadequate for a regional study. We analyzed samples for sulfur-35 (87.4 day half-life) and found detections in two springs, confirming the presence of a fraction of recently (1-2 years) recharged groundwater. Tritium (12.3 year half-life) activities show that some wells produce water recharged more than 5 decades ago, but most produce more recently recharged water. We will also report results for sodium-22 (2.6 year half-life), krypton-85 (10.8 year half-life), carbon-14 (5,730 year half-life), dissolved noble gases, stable isotopes of water, and helium isotopic composition. These isotopes are applied to determine the age (residence time) of groundwater over a broad age distribution, from less than one year to tens of thousands of years. These tracers should also provide information on aquifer volumes, help delineate groundwater flow, and help to identify recharge areas. A collection of groundwater ages from springs at high elevations to wells in the upper Sacramento Valley will help delineate groundwater flowpaths. Finally, groundwater residence times will help determine groundwater volume and recharge rates, and resolve questions related to drought vulnerability and effective adjustments in water resource management.

  1. An Ophthalmic Formulation of Disulfiram Nanoparticles Prolongs Drug Residence Time in Lens.

    PubMed

    Nagai, Noriaki; Mano, Yu; Ito, Yoshimasa

    2016-01-01

    Disulfiram (DSF) is a dimer of diethyldithiocarbamate (DDC) that we previously added to a solution of 2-hydroxypropyl-β-cyclodextrin (DSF solution). We found that the instillation of this DSF solution delayed lens opacification in a hereditary cataractous ICR/f rat. In this study, we attempted to design an ophthalmic formulation containing DSF nanoparticles for use as a lens targeted drug delivery system (nano-DSF suspension), and investigated the changes in drug content in the lens after the instillation of DSF solution or nano-DSF suspension. The nano-DSF suspension was prepared by a bead mill method to yield a mean particle size of nano-DSF of 181 nm. Following the instillation of 1.4% DSF solution or the nano-DSF suspension, DDC was detected only in the aqueous humor and lens; in both, the area under the curve (AUC) and mean residence time (MRT) for the nano-DSF suspension were higher than for the DSF solution. In addition, we found that the DDC residence time in the cortex and nucleus of the lens was higher than in the capsule-epithelium. Although DDC was not detected in the cortex and nucleus of lenses following the instillation of the 1.4% DSF solution, the instillation of a 1.4% nano-DSF suspension led to the accumulation of DDC in both areas. In conclusion, it is possible that the instillation of a nano-DSF suspension can supply more DDC into the aqueous humor and lens than a conventional formulation, and these findings provide information significant for the prevention of cataracts and the design of a lens targeted drug delivery system.

  2. Multi-scale field investigation of water flow pathways and residence times in mountainous catchments

    NASA Astrophysics Data System (ADS)

    Lyon, S. W.; Troch, P. A.; Desilets, S. E.

    2006-12-01

    The "sky islands" of Arizona and New Mexico in the southwestern United States form a unique complex of about 27 mountain ranges whose ecosystems support many perennial and ephemeral streams in an arid climate. Among these sky islands are the Santa Catalina Mountains near Tucson, AZ, with a peak elevation of 9157 ft at Mt. Lemmon. Sabino Canyon Creek is the main stream which runs on the south face of the mountain range. It usually flows from July through April with an average daily flow of approximately 0.28 m3/s (10 cfs). However, flash floods are common both during summer as a result of intense monsoon rains and during spring because of rapid snowmelt. During these events, flow increases rapidally, reaching peak flows up to 480 m3/s (16,000 cfs, July 2006). Characterizing water flow pathways and residence times in these complex catchments is important for improving flash flood warning systems, estimating mountain front recharge, managing forest and wild fires, and understanding ecosystem functions. In the summer of 2006, we set up an extensive hydrometrical and hydro-chemical monitoring network in Sabino Canyon Creek, comprising 40 tipping bucket rain gauges (two of which were equipped to automatically collect rainwater samples), 5 automatic surface water level stations (three of which were equipped with auto samplers), and 8 manual soil lysimeters. In addition, several rain and stream water grab samples were collected manually during intensive rain events. Water samples are analyzed for major ions and liquid water isotopic concentration (2H and 18O) in rain, soil, ground and surface water. The data allows for a detailed reconstruction of water flow pathways and residence times at 3 different catchment scales (2 km2, 8 km2, and 91 km2) during the recorded flow events, including the highest monsoon rainfall-runoff event ever recorded in these mountains.

  3. Flowpaths, source water contributions and water residence times in a Mexican tropical dry forest catchment

    NASA Astrophysics Data System (ADS)

    Farrick, Kegan K.; Branfireun, Brian A.

    2015-10-01

    Runoff in forested tropical catchments has been frequently described in the literature as dominated by the rapid translation of rainfall to runoff through surface and shallow subsurface pathways. However, studies examining runoff generation in tropical catchments with highly permeable soils have received little attention, particularly in tropical dry forests. We present a study focused on identifying the dominant flowpaths, water sources and stream water residence times in a tropical dry forest catchment near the Pacific coast of central Mexico. During the wet season, pre-event water contributions to stormflow ranged from 72% to 97%, with the concentrations of calcium, magnesium, sodium and potassium closely coupling the geochemistry of baseflow and groundwater from the narrow riparian/near-stream zone. Baseflow from the intermittent stream showed a strongly damped isotopic signature and a mean baseflow residence time of 52-110 days was estimated. These findings all suggest that instead of the surface and near-surface subsurface lateral pathways observed over many tropical catchments, runoff is generated through vertical flow processes and the displacement and discharge of stored water from the saturated zone. As the wet season progressed, contributions from the saturated zone persisted; however, the stormflow and baseflow geochemistry suggests that the contributing area of the catchment increased. Our results show that during the early part of the wet season, runoff originated primarily from the headwater portion of the catchment. As the wet season progressed and catchment wetness increased, connectivity among sub-basin was improved, resulting in runoff contributions from across the entire catchment.

  4. Using high time resolution aerosol and number size distribution measurements to estimate atmospheric extinction.

    PubMed

    Malm, William C; McMeeking, Gavin R; Kreidenweis, Sonia M; Levin, Ezra; Carrico, Christian M; Day, Derek E; Collett, Jeffrey L; Lee, Taehyoung; Sullivan, Amy P; Raja, Suresh

    2009-09-01

    Rocky Mountain National Park is experiencing reduced visibility and changes in ecosystem function due to increasing levels of oxidized and reduced nitrogen. The Rocky Mountain Atmospheric Nitrogen and Sulfur (RoMANS) study was initiated to better understand the origins of sulfur and nitrogen species as well as the complex chemistry occurring during transport from source to receptor. As part of the study, a monitoring program was initiated for two 1-month time periods--one during the spring and the other during late summer/fall. The monitoring program included intensive high time resolution concentration measurements of aerosol number size distribution, inorganic anions, and cations, and 24-hr time resolution of PM2.5 and PM10 mass, sulfate, nitrate, carbon, and soil-related elements concentrations. These data are combined to estimate high time resolution concentrations of PM2.5 and PM10 aerosol mass and fine mass species estimates of ammoniated sulfate, nitrate, and organic and elemental carbon. Hour-by-hour extinction budgets are calculated by using these species concentration estimates and measurements of size distribution and assuming internal and external particle mixtures. Summer extinction was on average about 3 times higher than spring extinction. During spring months, sulfates, nitrates, carbon mass, and PM10 - PM2.5 mass contributed approximately equal amounts of extinction, whereas during the summer months, carbonaceous material extinction was 2-3 times higher than other species.

  5. Dust and Non-dust Aerosol Outflow from Asia by Size, Time, and Composition, Spring, and Summer, 2001

    NASA Astrophysics Data System (ADS)

    Cahill, T. A.; Cliff, S. S.; Jimenez-Cruz, M. P.; Perry, K. D.

    2002-12-01

    Asian aerosols were characterized by size, time, and composition at 9 surface sites in China, Taiwan, Korea, and Japan during ACE-Asia, Spring 2001, as well as during a smaller summer NSF program. In this report, we will characterize these aerosols by source region in Asia, by aerosol mass, size distribution, time profiles, and composition, along with their forward trajectories into the Pacific. The primary aerosol collection technique was the DELTA Group slotted 8-DRUM impactor, 0.09 to 12 micrometers diameter, while compositional analysis was done every 3 hours in each size mode by synchrotron-x-ray fluorescence analysis. Comparisons of aerosols have been generated in the individual source regions, with major and trace element signatures, greatly assisting identification of aerosols seen later in transport events. Paired surface sites at low and high elevations were operational in Korea and Japan, aiding in separating truly local from regional aerosols. These data are then compared to downwind pollution events, with source regions identified by HYSPLIT isentropic trajectories. In the period between March 20 and April 20, we observed 3 major dust storms, several minor dust events, and massive non-dust aerosol emissions leaving the Asian mainland. Dust from the Takla Makan desert was observed to differ from Gobi dust by both particle size (finer) and elemental ratio (especially calcium to silicon). Very fine silicon and selenium identified coal combustion regions, while arsenic tracked mainly smelting operations. Non-sea salt sulfate contributions were generated in 8 size modes from 0.09 to 12 micrometers diameter. Finally, these data will incorporated into aerosol transport models for comparison with downwind sites in the USA and beyond.

  6. Near Real-Time Dust Aerosol Detection with Support Vector Machines for Regression

    NASA Astrophysics Data System (ADS)

    Rivas-Perea, P.; Rivas-Perea, P. E.; Cota-Ruiz, J.; Aragon Franco, R. A.

    2015-12-01

    Remote sensing instruments operating in the near-infrared spectrum usually provide the necessary information for further dust aerosol spectral analysis using statistical or machine learning algorithms. Such algorithms have proven to be effective in analyzing very specific case studies or dust events. However, very few make the analysis open to the public on a regular basis, fewer are designed specifically to operate in near real-time to higher resolutions, and almost none give a global daily coverage. In this research we investigated a large-scale approach to a machine learning algorithm called "support vector regression". The algorithm uses four near-infrared spectral bands from NASA MODIS instrument: B20 (3.66-3.84μm), B29 (8.40-8.70μm), B31 (10.78-11.28μm), and B32 (11.77-12.27μm). The algorithm is presented with ground truth from more than 30 distinct reported dust events, from different geographical regions, at different seasons, both over land and sea cover, in the presence of clouds and clear sky, and in the presence of fires. The purpose of our algorithm is to learn to distinguish the dust aerosols spectral signature from other spectral signatures, providing as output an estimate of the probability of a data point being consistent with dust aerosol signatures. During modeling with ground truth, our algorithm achieved more than 90% of accuracy, and the current live performance of the algorithm is remarkable. Moreover, our algorithm is currently operating in near real-time using NASA's Land, Atmosphere Near real-time Capability for EOS (LANCE) servers, providing a high resolution global overview including 64, 32, 16, 8, 4, 2, and 1km. The near real-time analysis of our algorithm is now available to the general public at http://dust.reev.us and archives of the results starting from 2012 are available upon request.

  7. Transit and residence times in the Adriatic Sea surface as derived from drifter data and Lagrangian numerical simulations

    NASA Astrophysics Data System (ADS)

    Poulain, P.-M.; Hariri, S.

    2013-08-01

    Statistics of transit and residence times in the Adriatic Sea surface, a semi-enclosed basin of the Mediterranean, are estimated from drifter data and Lagrangian numerical simulations. The results obtained from the drifters are generally underestimated given their short operating lifetimes (half life of ∼40 days) compared to the transit and residence times. This bias can be removed by considering a large amount of numerical particles whose trajectories are integrated over a long time (750 days) with a statistical advection-dispersion model of the Adriatic surface circulation. Numerical particles indicate that the maximum transit time to exit the basin is about 216-260 days for particles released near the northern tip of the Adriatic, and that a particle entering on the eastern Otranto Channel will typically exit on the other side of the channel after 170-185 days. A duration of 150-168 days is estimated as the residence time in the Adriatic Basin.

  8. Transit and residence times in the surface Adriatic Sea as derived from drifter data and Lagrangian numerical simulations

    NASA Astrophysics Data System (ADS)

    Poulain, P.-M.; Hariri, S.

    2013-01-01

    Statistics of transit and residence times in the surface Adriatic Sea, a semi-enclosed basin of the Mediterranean, are estimated from drifter data and Lagrangian numerical simulations. The results obtained from the drifters are generally underestimated given their short operating lifetimes (half life of ~ 40 days) compared to the transit and residence times. This bias can be removed by considering a large amount of numerical particles whose trajectories are integrated over a long time (750 days) with a statistical advection-diffusion model of the Adriatic surface circulation. Numerical particles indicate that the maximum transit time to exit the basin is about 216-260 days for objects released near the northern tip of the Adriatic, and that a particle entering on the eastern Otranto Channel will typically exit on the other side of the Channel after 170-185 days. A value of 150-168 days is estimated for the residence time in the Adriatic basin.

  9. Size-Time-Composition Resolved Study of Aerosols Across El Paso, Texas in Fall 2008

    NASA Astrophysics Data System (ADS)

    Cahill, T. A.; Gill, T. E.; Pingitore, N. E.; Olvera, H. A.; Clague, J. W.; Barnes, D. E.; Perry, K. D.; Li, W.; Amaya, M. A.

    2009-12-01

    Systematic variations in the absolute amounts, size and composition of airborne particulate matter (PM) across the El Paso, Texas metropolitan area may differentially impact the respiratory status (e.g., asthma) and overall health of the local population. To understand these variations, we collected size-time resolved samples of PM with DRUM samplers during a one-month period in late autumn 2008 at three sites along a NW-SE (roughly upwind-downwind) transect across El Paso’s airshed. The DRUM sampler is a rotating-drum impactor separating and collecting aerosols on Mylar strips mounted on the drums, in 8 size stages from 10 μm to <0.1 μm. DRUM strips are analyzed with 3-hr time resolution by β-gauge for mass and by synchrotron X-ray fluorescence for elemental composition. We collected samples at Santa Teresa, New Mexico (a minimally developed area NW of El Paso, at the edge of a sparsely-inhabited expanse of the Chihuahuan Desert), at the edge of the University of Texas- El Paso (UTEP) campus (in the urban core of El Paso), and at Socorro, Texas (a suburban area in the valley of the Rio Grande, SE of the urban core). Results illustrate sharp excursions in mass and element concentrations in aerosol-laden periods lasting from several hours to several days, associated with stagnant air, inversions, smoke events, dust/high wind/frontal passage, and/or daily traffic patterns, punctuated by several periods of reduced aerosol levels after Pacific frontal passages. Mass and absorption data show an increasing influence of carbonaceous (absorbing) aerosols with decreasing particle size <~1 μm, and increasing influence of mineral (scattering) aerosols with increasing particle size >~1 μm. Calcium/silicon ratios were high (>1), especially in coarser stages and during high wind events, reflecting wind erosion of the Chihuahuan Desert’s calcareous soils. Concentrations of chlorine, silicon, calcium, coarse potassium, and lead increased during high wind events, while

  10. Biofilm growth in gravel bed streams controls solute residence time distributions

    NASA Astrophysics Data System (ADS)

    Aubeneau, A. F.; Hanrahan, Brittany; Bolster, Diogo; Tank, Jennifer

    2016-07-01

    Streambed substrates harbor a rich biome responsible for biogeochemical processing in riverine waters. Beyond their biological role, the presence of benthic and hyporheic biofilms can play an important role in influencing large-scale transport of solutes, even for conservative tracers. As biofilms grow and accumulate biomass, they actively interact with and influence surface and subsurface flow patterns. To explore this effect, we conducted experiments at the Notre Dame Linked Ecosystems Experimental Facility in four outdoor streams, each with different gravel beds. Over the course of 20 weeks we conducted transport experiments in each of these streams and observed different patterns in breakthrough curves as biofilms grew on the substrate. Biofilms played a major role in shaping the observed conservative transport patterns. Overall, while the presence of biofilms led to a decreased exchange rate between the fast (mobile) and slow (immobile) parts of the flow domain, water that was exchanged tended to be stored in the slow regions for longer times once biofilms had established. More specifically, we observed enhanced longitudinal dispersion in breakthrough curves as well as broader residence time distributions when biofilms were present. Biofilm colonization over time homogenized transport patterns across the four streams that were originally very distinct. These results indicate that stream biofilms exert a strong control on conservative solute transport in streams, a role that to date has not received enough attention.

  11. Residency times and patterns of movement of postbreeding dunlin on a subarctic staging area in Alaska

    USGS Publications Warehouse

    Warnock, Nils; Handel, Colleen M.; Gill, Robert E.; McCaffery, Brian J.

    2013-01-01

    Understanding how individuals use key resources is critical for effective conservation of a population. The Yukon-Kuskokwim Delta (YKD) in western Alaska is the most important postbreeding staging area for shorebirds in the subarctic North Pacific, yet little is known about movements of shorebirds there during the postbreeding period. To address this information gap, we studied residency times and patterns of movement of 17 adult and 17 juvenile radio-marked Dunlin (Calidris alpina) on the YKD between early August and early October 2005. Throughout this postbreeding period, during which Dunlin were molting, most birds were relocated within a 130 km radius of their capture site on the YKD, but three birds were relocated more than 600 km to the south at estuaries along the Alaska Peninsula. On average, juvenile Dunlin were relocated farther away from the banding site (median relocation distance = 36.3 km) than adult Dunlin (median relocation distance = 8.8 km). Post-capture, minimum lengths of stay by Dunlin on the YKD were not significantly different between juveniles (median = 19 days) and adults (median = 23 days), with some birds staging for more than 50 days. Body mass at time of capture was the best single variable explaining length of stay on the YKD, with average length of stay decreasing by 2.5 days per additional gram of body mass at time of capture. Conservation efforts for postbreeding shorebirds should consider patterns of resource use that may differ not only by age cohort but also by individual condition.

  12. Ross ice shelf cavity circulation, residence time, and melting: Results from a model of oceanic chlorofluorocarbons

    NASA Astrophysics Data System (ADS)

    Reddy, Tasha E.; Holland, David M.; Arrigo, Kevin R.

    2010-04-01

    Despite their harmful effects in the upper atmosphere, anthropogenic chlorofluorocarbons dissolved in seawater are extremely useful for studying ocean circulation and ventilation, particularly in remote locations. Because they behave as a passive tracer in seawater, and their atmospheric concentrations are well-mixed, well-known, and have changed over time, they are ideal for gaining insight into the oceanographic characteristics of the isolated cavities found under Antarctic ice shelves, where direct observations are difficult to obtain. Here we present results from a modeling study of air-sea chlorofluorocarbon exchange and ocean circulation in the Ross Sea, Antarctica. We compare our model estimates of oceanic CFC-12 concentrations along an ice shelf edge transect to field data collected during three cruises spanning 16 yr. Our model produces chlorofluorocarbon concentrations that are quite similar to those measured in the field, both in magnitude and distribution, showing high values near the surface, decreasing with depth, and increasing over time. After validating modeled circulation and air-sea gas exchange through comparison of modeled temperature, salinity, and chlorofluorocarbons with field data, we estimate that the residence time of water in the Ross Ice Shelf cavity is approximately 2.2 yr and that basal melt rates for the ice shelf average 10 cm yr -1. The model predicts a seasonal signature to basal melting, with highest melt rates in the spring and also the fall.

  13. Residence and transit times of MinD in E. coli bacterial cells

    NASA Astrophysics Data System (ADS)

    Giuliani, Maximiliano; Kelly, Corey; Dutcher, John

    2012-02-01

    A key step in the life of a bacterial cell is its division into two daughters cells of equal size. This process is carefully controlled and regulated so that an equal partitioning of the main cell components is obtained, which is critical for the viability of the daughter cells. In E. coli this regulation is accomplished in part by the Min protein system, that determines the localization of the division machinery. Of particular interest is the MinD protein that exhibits an oscillation between the poles in the rod shaped bacteria. The oscillation relies on a ATP mediated dimerization of the MinD protein that allows its insertion into the inner membrane at one of the poles of the cell, followed by an interaction with the MinE protein, which releases the MinD from the membrane, allowing it to travel to the other pole of the cell where the cycle is repeated. We have studied the spatio-temporal characteristics of the MinD oscillation from which we extract the average times for the two main processes that determine the oscillation period: the residence time in the membrane and the transit time to travel the length of the cell. Additionally, we explore how these two timescales are affected by stresses on the bacterial cells due to unfavorable physiological conditions.

  14. Single particle characterization using a light scattering module coupled to a time-of-flight aerosol mass spectrometer

    SciTech Connect

    Cross, E.; Onasch, Timothy B.; Canagaratna, Manjula; Jayne, J. T.; Kimmel, Joel; Yu, Xiao-Ying; Alexander, M. L.; Worsnop, Douglas R.; Davidovits, Paul

    2009-10-01

    To accurately model the radiative forcing of aerosol particles, one must measure in real-time the size, shape, density, chemical composition, and mixing state of ambient particles. This is a formidable challenge because the chemical and physical properties of the aerosol particles are highly complex, dependent on the emission sources, the geography and meteorology of the surroundings, and the gas phase composition of the regional atmosphere.

  15. Organizational and Individual Conditions Associated with Depressive Symptoms among Nursing Home Residents over Time

    ERIC Educational Resources Information Center

    Cassie, Kimberly M.; Cassie, William E.

    2012-01-01

    Purpose: To examine the effect of organizational culture and climate on depressive symptoms among nursing home residents. Design and Methods: Using a pooled cross-sectional design, this study examines a sample of 23 nursing homes, 1,114 employees, and 5,497 residents. Depressive symptoms were measured using the Minimum Data Set, Depression Rating…

  16. Time Series of Aerosol Column Optical Depth at the Barrow, Alaska, ARM Climate Research Facility for 2008 Fourth Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect

    C Flynn; AS Koontz; JH Mather

    2009-09-01

    The uncertainties in current estimates of anthropogenic radiative forcing are dominated by the effects of aerosols, both in relation to the direct absorption and scattering of radiation by aerosols and also with respect to aerosol-related changes in cloud formation, longevity, and microphysics (See Figure 1; Intergovernmental Panel on Climate Change, Assessment Report 4, 2008). Moreover, the Arctic region in particular is especially sensitive to changes in climate with the magnitude of temperature changes (both observed and predicted) being several times larger than global averages (Kaufman et al. 2009). Recent studies confirm that aerosol-cloud interactions in the arctic generate climatologically significant radiative effects equivalent in magnitude to that of green house gases (Lubin and Vogelmann 2006, 2007). The aerosol optical depth is the most immediate representation of the aerosol direct effect and is also important for consideration of aerosol-cloud interactions, and thus this quantity is essential for studies of aerosol radiative forcing.

  17. Plan for radionuclide tracer studies of the residence time distribution in the Wilsonville dissolver and preheater

    SciTech Connect

    Jolley, R.L.; Begovich, J.M.; Brashear, H.R.; Case, N.; Clark, T.G.; Emery, J.F.; Patton, B.D.; Rodgers, B.R.; Villiers-Fisher, J.F.; Watson, J.S.

    1983-12-01

    Stimulus-response measurements using radiotracers to measure residence time distribution (RTD) and hydrodynamic parameters for the preheaters and dissolvers at the Ft. Lewis Solvent Refined Coal (SRC) and the Exxon Donor Solvent (EDS) coal conversion pilot plants are reviewed. A plan is also presented for a series of radioactive tracer studies proposed for the Advanced Coal Liquefaction Facility at Wilsonville, Alabama, to measure the RTD for the preheater and dissolvers in the SRC-I mode. The tracer for the gas phase will be /sup 133/Xe, and /sup 198/Au (on carbonized resin or as an aqueous colloidal suspension) will be used as the slurry tracer. Four experimental phases are recommended for the RTD tracer studies: (1) preheater; (2) dissolver with 100% takeoff; (3) dissolver with 100% takeoff and solids withdrawal; and (4) dissolver with 50% takeoff. Eighteen gas-tracer and 22 liquid-tracer injections are projected to accomplish the four experimental phases. Two to four tracer injections are projected for preliminary tests to ensure the capability of safe injection of the radiotracers and the collection of statistically significant data. A complete projected cost and time schedule is provided, including procurement of necessary components, preparation of the radiotracers, assembly and testing of tracer injection apparatus and detection systems, onsite work and tracer injections, laboratory experimentation, data analysis, and report writing.

  18. Determining the True Residence Time Distribution Curve of Phase I System

    SciTech Connect

    Robinson, Bruce A.

    1982-08-24

    Previous engineering analysis of the Br82 tracer experiments failed to account for the fact that the fluid was being recirculated during these tests. Thus, the concentration vs. volume curves shown in the Run Segments 4 and 5 reports and elsewhere are not really the response of the system to a pulse of tracer. These data are complicated by the fact that at later times most of the tracer being measured was not the original pulse, but the tracer on its second or third pass through the reservoir. When this recirculation effect is subtracted out of the original concentration vs. volume curves, the true residence time distribution (RTD) for the Phase I system indicates that the "long tail" on these curves is not caused by dispersion but results almost entirely from recirculation. The RTD curve for this system cannot be modeled precisely using a one parameter model, but can probably be described by a combination of hydrodynamic and turbulent dispersion in a single fracture. Alternatively, flow through multiple fractures could easily result in the RTD curves determined during Run Segments 4 and 5.

  19. Real-Time Investigation of Tuberculosis Transmission: Developing the Respiratory Aerosol Sampling Chamber (RASC)

    PubMed Central

    Wood, Robin; Morrow, Carl; Barry, Clifton E.; Bryden, Wayne A.; Call, Charles J.; Hickey, Anthony J.; Rodes, Charles E.; Scriba, Thomas J.; Blackburn, Jonathan; Issarow, Chacha; Mulder, Nicola; Woodward, Jeremy; Moosa, Atica; Singh, Vinayak; Mizrahi, Valerie; Warner, Digby F.

    2016-01-01

    Knowledge of the airborne nature of respiratory disease transmission owes much to the pioneering experiments of Wells and Riley over half a century ago. However, the mechanical, physiological, and immunopathological processes which drive the production of infectious aerosols by a diseased host remain poorly understood. Similarly, very little is known about the specific physiological, metabolic and morphological adaptations which enable pathogens such as Mycobacterium tuberculosis (Mtb) to exit the infected host, survive exposure to the external environment during airborne carriage, and adopt a form that is able to enter the respiratory tract of a new host, avoiding innate immune and physical defenses to establish a nascent infection. As a first step towards addressing these fundamental knowledge gaps which are central to any efforts to interrupt disease transmission, we developed and characterized a small personal clean room comprising an array of sampling devices which enable isolation and representative sampling of airborne particles and organic matter from tuberculosis (TB) patients. The complete unit, termed the Respiratory Aerosol Sampling Chamber (RASC), is instrumented to provide real-time information about the particulate output of a single patient, and to capture samples via a suite of particulate impingers, impactors and filters. Applying the RASC in a clinical setting, we demonstrate that a combination of molecular and microbiological assays, as well as imaging by fluorescence and scanning electron microscopy, can be applied to investigate the identity, viability, and morphology of isolated aerosolized particles. Importantly, from a preliminary panel of active TB patients, we observed the real-time production of large numbers of airborne particles including Mtb, as confirmed by microbiological culture and polymerase chain reaction (PCR) genotyping. Moreover, direct imaging of captured samples revealed the presence of multiple rod-like Mtb organisms whose

  20. Seasonal variation of residence time in spring and groundwater evaluated by CFCs and numerical simulation in mountainous headwater catchment

    NASA Astrophysics Data System (ADS)

    Tsujimura, Maki; Watanabe, Yasuto; Ikeda, Koichi; Yano, Shinjiro; Abe, Yutaka

    2016-04-01

    Headwater catchments in mountainous region are the most important recharge area for surface and subsurface waters, additionally time information of the water is principal to understand hydrological processes in the catchments. However, there have been few researches to evaluate variation of residence time of subsurface water in time and space at the mountainous headwaters especially with steep slope. We investigated the temporal variation of the residence time of the spring and groundwater with tracing of hydrological flow processes in mountainous catchments underlain by granite, Yamanashi Prefecture, central Japan. We conducted intensive hydrological monitoring and water sampling of spring, stream and ground waters in high-flow and low-flow seasons from 2008 through 2013 in River Jingu Watershed underlain by granite, with an area of approximately 15 km2 and elevation ranging from 950 m to 2000 m. The CFCs, stable isotopic ratios of oxygen-18 and deuterium, inorganic solute constituent concentrations were determined on all water samples. Also, a numerical simulation was conducted to reproduce of the average residence times of the spring and groundwater. The residence time of the spring water estimated by the CFCs concentration ranged from 10 years to 60 years in space within the watershed, and it was higher (older) during the low flow season and lower (younger) during the high flow season. We tried to reproduce the seasonal change of the residence time in the spring water by numerical simulation, and the calculated residence time of the spring water and discharge of the stream agreed well with the observed values. The groundwater level was higher during the high flow season and the groundwater dominantly flowed through the weathered granite with higher permeability, whereas that was lower during the low flow season and that flowed dominantly through the fresh granite with lower permeability. This caused the seasonal variation of the residence time of the spring

  1. Residence and Migration of First-Time Freshmen Enrolled in Higher Education Institutions: Fall 1994. E.D. TABS.

    ERIC Educational Resources Information Center

    Barbett, Samuel

    This report presents 23 tables of data on residence and migration of first-time freshmen based on the 1994 "Fall Enrollment" survey, part of the Integrated Postsecondary Education Data System. The survey counted 2.14 million first-time freshmen. More than 366,000 (17 percent) migrated between states. The percent of freshmen who left…

  2. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time.

    PubMed

    Pyšek, Petr; Manceur, Ameur M; Alba, Christina; McGregor, Kirsty F; Pergl, Jan; Stajerová, Katerina; Chytrý, Milan; Danihelka, Jiří; Kartesz, John; Klimesova, Jitka; Lucanova, Magdalena; Moravcová, Lenka; Nishino, Misako; Sadlo, Jiri; Suda, Jan; Tichy, Lubomir; Kühn, Ingolf

    2015-03-01

    The factors that promote invasive behavior in introduced plant species occur across many scales of biological and ecological organization. Factors that act at relatively small scales, for example, the evolution of biological traits associated with invasiveness, scale up to shape species distributions among different climates and habitats, as well as other characteristics linked to invasion, such as attractiveness for cultivation (and by extension propagule pressure). To identify drivers of invasion it is therefore necessary to disentangle the contribution of multiple factors that are interdependent. To this end, we formulated a conceptual model describing the process of invasion of central European species into North America based on a sequence of "drivers." We then used confirmatory path analysis to test whether the conceptual model is supported by a statistical model inferred from a comprehensive database containing 466 species. The path analysis revealed that naturalization of central European plants in North America, in terms of the number of North American regions invaded, most strongly depends on residence time in the invaded range and the number of habitats occupied by species in their native range. In addition to the confirmatory path analysis, we identified the effects of various biological traits on several important drivers of the conceptualized invasion process. The data supported a model that included indirect effects of biological traits on invasion via their effect on the number of native range habitats occupied and cultivation in the native range. For example, persistent seed banks and longer flowering periods are positively correlated with number of native habitats, while a stress-tolerant life strategy is negatively correlated with native range cultivation. However, the importance of the biological traits is nearly an order of magnitude less than that of the larger scale drivers and highly dependent on the invasion stage (traits were associated

  3. Watershed Influences on Residence Time and Oxygen Reduction Rates in an Agricultural Landscape

    NASA Astrophysics Data System (ADS)

    Shope, C. L.; Tesoriero, A. J.

    2015-12-01

    Agricultural use of synthetic fertilizers and animal manure has led to increased crop production, but also elevated nitrogen concentrations in groundwater, resulting in impaired water quality. Groundwater oxygen concentrations are a key indicator of potential biogeochemical processes, which control water/aquifer interactions and contaminant transport. The U.S. Geological Survey's National Water-Quality Assessment Program has a long-history of studying nutrient transport and processing across the United States and the Glacial Aquifer system in particular. A series of groundwater well networks in Eastern Wisconsin is being used to evaluate the distribution of redox reaction rates over a range of scales with a focus on dissolved O2 reduction rates. An analysis of these multi-scale networks elucidates the influence of explanatory variables (i.e.: soil type, land use classification) on reduction rates and redox reactions throughout the Fox-Wolf-Peshtigo watersheds. Multiple tracers including dissolved gasses, tritium, helium, chlorofluorocarbons, sulfur hexafluoride, and carbon-14 were used to estimate groundwater ages (0.8 to 61.2 yr) at over 300 locations. Our results indicate O2 reduction rates along a flowpath study area (1.2 km2) of 0.15 mg O2 L-1 yr-1 (0.12 to 0.18 mg O2 L-1 yr-1) up to 0.41 mg O2 L-1 yr-1 (0.23 to 0.89 mg O2 L-1 yr-1) for a larger scale land use study area (3,300 km2). Preliminary explanatory variables that can be used to describe the variability in reduction rates include soil type (hydrologic group, bulk density) and chemical concentrations (nitrite plus nitrate, silica). The median residence time expected to reach suboxic conditions (≤ 0.4 mg O2 L-1) for the flowpath and the land use study areas was 66 and 25 yr, respectively. These results can be used to elucidate and differentiate the impact of residence time on groundwater quality vulnerability and sustainability in agricultural regions without complex flow models.

  4. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-04-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase, despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol-ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information to determine potential reaction mechanisms and sequences. As well, bond scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double bond equivalence to carbon ratio (DBE / #C). The trajectory of LG photooxidation on this plot suggests formation of poly-carbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an Aerosol Mass Spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol-ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient

  5. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    NASA Astrophysics Data System (ADS)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the

  6. Residence time, mineralization processes and groundwater origin within a carbonate coastal aquifer with a thick unsaturated zone

    NASA Astrophysics Data System (ADS)

    Santoni, S.; Huneau, F.; Garel, E.; Vergnaud-Ayraud, V.; Labasque, T.; Aquilina, L.; Jaunat, J.; Celle-Jeanton, H.

    2016-09-01

    This study aims at establishing groundwater residence times, identifying mineralization processes and determining groundwater origins within a carbonate coastal aquifer with thick unsaturated zone and lying on a granitic depression. A multi-tracer approach (major ions, SiO2, Br-, Ba+, Sr2+, 18O, 2H, 13C, 3H, Ne, Ar) combined with a groundwater residence time determination using CFCs and SF6 allows defining the global setting of the study site. A typical mineralization conditioned by the sea sprays and the carbonate matrix helped to validate the groundwater weighted residence times from using a binary mixing model. Terrigenic SF6 excesses have been detected and quantified, which permits to identify a groundwater flow from the surrounding fractured granites towards the lower aquifer principally. The use of CFCs and SF6 as a first hydrogeological investigation tool is possible and very relevant despite the thick unsaturated zone and the hydraulic connexion with a granitic environment.

  7. Variability of Residence Time tracer Concentrations at the Southern Sierra Critical Zone Observatory during the California Drought

    NASA Astrophysics Data System (ADS)

    Visser, A.; Thaw, M.; Stacy, E.; Hunsaker, C. T.; Bibby, R. K.; Deinhart, A.; Schorzman, K.; Egnatuk, C. M.; Conklin, M. H.; Esser, B.

    2015-12-01

    California water supply from high elevation snow melt is vulnerable to climate change and prolonged drought conditions. Reduced snow pack and earlier snow melt will result in a greater reliance on man-made reservoirs and subsurface catchment storage. To gain insight into the subsurface storage volume of high elevation catchments, we studied the residence time distribution of surface water leaving the Southern Sierra Critical Zone Observatory. Since October 2014, we have collected monthly samples of two residence time tracers with contrasting half-lives: sulfur-35 (87.5 days) and tritium (12.32 years). Upstream catchment area at the three nested sampling locations is 1 km2 (P301 sub-catchment), 4 km2 (Providence Creek) and ~50 km2 (Big Creek). Samples were analyzed at LLNL by low level liquid scintillation counting and noble gas mass spectrometry after helium accumulation. Variations in tracer concentrations in precipitation, both for tritium (11-24 pCi/L) and sulfur-35 (24-100 mBq/L), complicate straightforward interpretation of residence times. Sulfur-35 concentrations show that last year precipitation contributes 1% - 10% of total stream flow, even during peak snowmelt. Tritium concentrations in stream flow vary between 40% and 60% of the initial concentration in precipitation (15.5 pCi/L), indicating that water leaving the catchment has a residence time on the order of years to decades. Additional analyses of sodium-22 (2.6 year half-life) will aid in deconvoluting the residence time distribution. These low tracer concentrations can be attributed to current severe drought conditions, resulting in low discharge rates and longer residence times. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675107

  8. Development and application of new instrumental techniques for real-time characterization of aerosol volatility and morphology

    NASA Astrophysics Data System (ADS)

    Huffman, John Alexander

    Aerosols represent the area of largest uncertainty in the radiative forcing of climate and contribute significantly to negative effects on human health and visibility. To better understand the balance between natural and anthropogenic aerosol emissions, and thus the systemic perturbations caused by human activity, advanced instrumentation is needed to measure ambient aerosol properties. This thesis presents the development of novel aerosol measurement instrumentation and resulting observations of aerosol morphology and volatility. A particle beam width probe (BWP) for use within the Aerosol Mass Spectrometer (AMS) and an associated computational model were developed to aid the direct determination of ambient particle morphology and investigate AMS quantification. BWP observations and model results helped determine that particles were not lost in the instrument by morphology-related effects, but were instead collected less efficiently due to particle bounce from the vaporizer surface. This study introduces psi, the lift-shape factor, which allows for the direct determination of particle non-sphericity through use of the BWP. The development and characterization of an instrument modified to directly measure chemically-resolved aerosol volatility is described. A thermodenuder operated between 50-230°C was coupled to a High-Resolution Time-of-Flight AMS (HR-ToF-AMS) with a fast-switching valve system, thus allowing direct and chemically-resolved aerosol volatility measurements to be made for the first time. The instrument was applied in two polluted, urban field studies (Riverside, CA and Mexico City, Mexico) and to sample several biomass-burning, meat-cooking and chamber-generated secondary organic aerosol (SOA) sources. Reduced hydrocarbon-like OA (HOA), biomass-burning OA (BBOA) and oxygenated OA (OOA) were all determined to be semi-volatile, with the most aged OOA-1 consistently showing the lowest volatility. This represents a significant departure from most

  9. Feasibility of anomaly occurrence in aerosols time series obtained from MODIS satellite images during hazardous earthquakes

    NASA Astrophysics Data System (ADS)

    Akhoondzadeh, Mehdi; Jahani Chehrebargh, Fatemeh

    2016-09-01

    Earthquake is one of the most devastating natural disasters that its prediction has not materialized comprehensive. Remote sensing data can be used to access information which is closely related to an earthquake. The unusual variations of lithosphere, atmosphere and ionosphere parameters before the main earthquakes are considered as earthquake precursors. To date the different precursors have been proposed. This paper examines one of the parameters which can be derived from satellite imagery. The mentioned parameter is Aerosol Optical Depth (AOD) that this article reviews its relationship with earthquake. Aerosol parameter can be achieved through various methods such as AERONET ground stations or using satellite images via algorithms such as the DDV (Dark Dense Vegetation), Deep Blue Algorithm and SYNTAM (SYNergy of Terra and Aqua Modis). In this paper, by analyzing AOD's time series (derived from MODIS sensor on the TERRA platform) for 16 major earthquakes, seismic anomalies were observed before and after earthquakes. Before large earthquakes, rate of AOD increases due to the pre-seismic changes before the strong earthquake, which produces gaseous molecules and therefore AOD increases. Also because of aftershocks after the earthquake there is a significant change in AOD due to gaseous molecules and dust. These behaviors suggest that there is a close relationship between earthquakes and the unusual AOD variations. Therefore the unusual AOD variations around the time of earthquakes can be introduced as an earthquake precursor.

  10. Groundwater residence time : tell me who you are and I will tell which information you may provide

    NASA Astrophysics Data System (ADS)

    Aquilina, Luc; Labasque, Thierry; Kolbe, Tamara; Marçais, Jean; Leray, Sarah; Abbott, Ben; de Dreuzy, Jean-Raynald

    2016-04-01

    Groundwater residence-time or ages have been widely used in hydrogeology during the last decades. Following tritium measurements, anthropogenic gases (CFC, SF6, 35Kr) have been developed. They provide information at the aquifer scale on long residence times. They complement the more localized data obtained from sparse boreholes with hydraulic and geophysical methods. Anthropogenic tracer concentrations are most generally considered as "Groundwater ages" using a piston flow model providing an order of magnitude for the residence time. More advanced information can however be derived from the combined analysis of the tracer concentrations. For example, the residence time distribution over the last 50 years can be well approached by the concentration of two sufficient different anthropogenic tracers in the group (CFC, SF6, 35Kr), i.e. tracers whose anthropogenic chronicles are sufficiently different. And, with additional constrains on geological and hydraulic properties, groundwater ages contribute to characterize the aquifer structures and the groundwater resources. Complex geological environments also include old groundwater bodies in extremely confined aquifer sections. In such cases, various tracers are related to highly different processes. CFCs can be taken as a marker of modern contamination to track exchanges between shallower and deeper aquifers, leakage processes, and modification of circulations linked to recent anthropogenic changes. 14C or 36Cl can be used to evidence much older processes but have to be related to the history of the chemical element itself. Numerous field studies in fact demonstrate the broad-range extent of the residence time distribution spanning in some cases several orders of magnitude. Flow and transport models in heterogeneous structures confirm such wide residence times and help to characterize their distribution. Residence times also serve as a privileged interface to the fate of some contaminants in aquifers or to trace

  11. Effects of residence time on summer nitrate uptake in Mississippi River flow-regulated backwaters

    USGS Publications Warehouse

    James, W.F.; Richardson, W.B.; Soballe, D.M.

    2008-01-01

    Nitrate uptake may be improved in regulated floodplain rivers by increasing hydrological connectivity to backwaters. We examined summer nitrate uptake in a series of morphologically similar backwaters on the Upper Mississippi River receiving flow-regulated nitrate loads via gated culverts. Flows into individual backwaters were held constant over a summer period but varied in the summers of 2003 and 2004 to provide a range of hydraulic loads and residence times (??). The objectives were to determine optimum loading and ?? for maximum summer uptake. Higher flow adjustment led to increased loading but lower ?? and contact time for uptake. For highest flows, ?? was less than 1 day resulting in lower uptake rates (Unet, 4000 m). For low flows, ?? was greater than 5 days and U% approached 100%, but Unet was 200 mg m-2 day-1. Snet was < half the length of the backwaters under these conditions indicating that most of the load was assimilated in the upper reaches, leading to limited delivery to lower portions. Unet was maximal (384-629 mg m-2 day-1) for intermediate flows and ?? ranging between 1 and 1.5 days. Longer Snet (2000-4000 m) and lower U% (20-40%) reflected limitation of uptake in upper reaches by contact time, leading to transport to lower reaches for additional uptake. Uptake by ???10 000 ha of reconnected backwaters along the Upper Mississippi River (13% of the total backwater surface area) at a Unet of ???630 mg m-2 day-1 would be the equivalent of ???40% of the summer nitrate load (155 mg day-1) discharged from Lock and Dam 4. These results indicate that backwater nitrate uptake can play an important role in reducing nitrate loading to the Gulf of Mexico. Copyright ?? 2008 John Wiley & Sons, Ltd.

  12. Rn as a geochemical tool for estimating residence times in the hyporheic zone and its application to biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Gilfedder, Benjamin; Dörner, Sebastian; Ebertshäuser, Marlene Esther; Glaser, Barbara; Klug, Maria; Pittroff, Marco; Pieruschka, Ines; Waldemer, Carolin

    2014-05-01

    The hyporheic zone is at the interface between groundwater and surface water systems. It is also often a geochemical and redox boundary between typically reduced groundwater and oxic surface water. It experiences dynamic physical and chemical conditions as both groundwater fluxes and surface water levels vary in time and space. This can be particularly important for processes such as biogeochemical processing of nutrients and carbon. There has recently been an increasing focus on coupling residence times of surface water in the hyporheic zone with biogeochemical reactions. While geochemical profiles can be readily measured using established geochemical sampling techniques (e.g. peepers), quantifying surface water residence times and flow paths within the hyporheic zone is more elusive. The nobel gas radon offers a method for quantification of surface water residence times in the hyporheic zone. Radon activities are typically low in surface waters due to degassing to the atmosphere and decay. However once the surface water flows into the hyporheic zone radon accumulates along the flow path due to emanation from the sediments. Using simple analytical equations the water residence time can be calculated based on the difference between measured 222Rn activities and 222Rn activities at secular equilibrium, with a maximum limit of about 20 days (depending on measurement precision). Rn is particularly suited to residence time measurements in the hyporheic zone since it does not require addition of tracers to the stream nor does it require complex simulations and assumptions (such as 1D vertical flow) as for temperature measurements. As part of the biogeochemistry course at the University of Bayreuth, we have investigated the coupling of redox processes and water residence times in the hyporheic zone using 222Rn as a tracer for residence time. Of particular interest were nitrate and sulfate reduction and methane and CO2 production. Measurements were made in a sandy section

  13. Treating Stormwater with Green Infrastructure: Plants, Residence Time Distributions, and the Removal of Fecal Indicator Bacteria

    NASA Astrophysics Data System (ADS)

    Parker, E.; Grant, S. B.; Rippy, M.; Winfrey, B.; Mehring, A.

    2015-12-01

    In many cities, green infrastructure is increasingly used to capture and treat stormwater runoff, due to the many opportunities these systems afford for protecting receiving water quality and ecology while mitigating water scarcity. Here, we focus on how plants affect the removal of fecal indicator bacteria (FIB) in newly-constructed stormwater biofilters, a type of green infrastructure consisting of unconsolidated granular media containing one or more plant species. Input-response experiments were carried out using both non-reactive (salt) and reactive (sewage) tracers on six laboratory-scale (~1m long by 24 cm diameter) biofilters, half of which were planted with the sedge Carex appressa (treatment replicates) and half of which were unplanted (control replicates). C. appressa modifies the residence time distribution (RTD) in a biofilter by creating preferential flow paths along which water and mass can move quickly, but does not appear to alter the intrinsic rate at which FIB are removed. Thus, the "green" component of green infrastructure can alter pollutant removal by changing the RTD, with or without a concomitant change in pollutant reactivity.

  14. Mean water residence times in the pre-alpine Rietholzbach catchment

    NASA Astrophysics Data System (ADS)

    Lehner, I.; Bernasconi, S.; Seneviratne, S. I.

    2009-04-01

    The Rietholzbach catchment is a small, hilly pre-alpine basin in the north-eastern part of Switzerland. Its area is 3.31 km2 and it covers an altitude range between 682 and 950 m. The area is only sparsely populated and primarily used as pasture land (67 %), on steep slopes the land use is forest (25 %). A hydrological peculiarity is the congruence of surface and sub-surface catchment area. In 1975 measurements were initiated to determine and understand the water balance and its processes. Isotope measurements of all components of the water cycle started in 1994. The water samples of precipitation, soil water (discharge of a lysimeter), ground water, and river water are taken approximately bi-weekly. All samples are prepared by the CO2 gas equilibration technique and are analysed in terms of the oxygen isotopes by mass spectrometry. The samples are taken either at the gauge at the outflow of the catchment or next to the main measurement site in the upper third of the catchment where an other gauge, three groundwater wells, the lysimeter and the meteorological sensors are installed in close vicinity. Based on these data series this contribution will present estimates of the mean water residence times in the different components of the catchment.

  15. Quantifying the residence time distribution of surface transient storage in streams: A computational fluid dynamics approach

    NASA Astrophysics Data System (ADS)

    Jackson, T. R.; Drost, K. J.; Haggerty, R.; Apte, S. V.

    2011-12-01

    Transient storage is the sum of surface transient storage (STS) and hyporheic transient storage (HTS) and separating the two storage components is challenging. A number of studies have attempted to determine the relationship between transient storage and stream channel properties; however, difficulties ensue when attempting to calculate STS. The present study attempts to develop a predictive relationship between a stream's STS residence time distribution (RTD) to physically-based and field-measureable properties of natural streams. Our approach is to use field measurements to constrain a computational fluid dynamics (CFD) model of STS and use both to develop and test a predictive model of STS RTD. Field sites were located on Oak and Soap creeks in the Willamette Valley near Corvallis, Oregon. Data collection included: (1) obtaining detailed stream and STS zone morphologies through dense survey measurements; (2) determining turbulence parameters and CFD model boundary inputs from stream and storage zone velocity measurements with a Marsh-McBirney and acoustic Doppler velocimeter; (3) quantifying the RTD and its mean using salt tracer injections and electrical conductivity probes; and (4) estimating mixing layer parameters using velocity measurements and a visual dye. Preliminary results from the CFD model and comparison to field data will be presented, and resulting insights into the RTD.

  16. Structure-guided residence time optimization of a dabigatran reversal agent

    PubMed Central

    Schiele, Felix; van Ryn, Joanne; Litzenburger, Tobias; Ritter, Michael; Seeliger, Daniel; Nar, Herbert

    2015-01-01

    Novel oral anticoagulants are effective and safe alternatives to vitamin-K antagonists for anticoagulation therapy. However, anticoagulation therapy in general is associated with an elevated risk of bleeding. Idarucizumab is a reversal agent for the direct thrombin inhibitor, dabigatran etexilate (Pradaxa®) and is currently in Phase 3 studies. Here, we report data on the antibody fragment aDabi-Fab2, a putative backup molecule for idarucizumab. Although aDabi-Fab2 completely reversed effects of dabigatran in a rat model in vivo, we observed significantly reduced duration of action compared to idarucizumab. Rational protein engineering, based on the X-ray structure of aDabi-Fab2, led to the identification of mutant Y103W. The mutant had optimized shape complementarity to dabigatran while maintaining an energetically favored hydrogen bond. It displayed increased affinity for dabigatran, mainly driven by a slower off-rate. Interestingly, the increased residence time translated into longer duration of action in vivo. It was thus possible to further enhance the efficacy of aDabi-Fab2 based on rational design, giving it the potential to serve as a back-up candidate for idarucizumab. PMID:26047352

  17. Liquid flow residence time in a fibrous fixed bed reactor with recycle.

    PubMed

    Martinov, Martin; Hadjiev, Dimiter; Vlaev, Serafim

    2010-02-01

    Waste removal efficiency of gas-liquid biofilter reactors for waste water treatment depends on its flow regime and residence time distribution (RTD) as key parameters of bio-reactor performance. The present study reports RTD regime in a fibrous fixed bed biofilm reactor related to a fluid velocity range appropriate for biofilm operation. The data from tracer experiments are correlated in terms of the one-parameter "tanks-in-series" model. The aerated fibrous bed reactor RTD function is found to be dependent on net liquid and gas phase superficial velocity U(L) and U(G). Liquid internal recirculation exhibited small effect comparable with the effect of net liquid flow. A power law relationship relating the number of perfectly mixed cells with liquid and gas superficial velocity is elaborated. Assuming similarity of the prototype and real vessels' flow fields, the equation as well as its corresponding range of fluid velocity can be used for bio-reactor design and scale-up. Comparison over the model parameters obtained in fixed bed bubble columns at low fluid velocity shows the results of this study to be comparable with previous data of mesh wire packing.

  18. Subunit Stabilization and Polyethylene Glycolation of Cocaine Esterase Improves In Vivo Residence Time

    SciTech Connect

    Narasimhan, Diwahar; Collins, Gregory T.; Nance, Mark R.; Nichols, Joseph; Edwald, Elin; Chan, Jimmy; Ko, Mei-Chuan; Woods, James H.; Tesmer, John J.G.; Sunahara, Roger K.

    2012-03-15

    No small-molecule therapeutic is available to treat cocaine addiction, but enzyme-based therapy to accelerate cocaine hydrolysis in serum has gained momentum. Bacterial cocaine esterase (CocE) is the fastest known native enzyme that hydrolyzes cocaine. However, its lability at 37 C has limited its therapeutic potential. Cross-linking subunits through disulfide bridging is commonly used to stabilize multimeric enzymes. Herein we use structural methods to guide the introduction of two cysteine residues within dimer interface of CocE to facilitate intermolecular disulfide bond formation. The disulfide-crosslinked enzyme displays improved thermostability, particularly when combined with previously described mutations that enhance stability (T172R-G173Q). The newly modified enzyme yielded an extremely stable form of CocE (CCRQ-CocE) that retained greater than 90% of its activity after 41 days at 37 C, representing an improvement of more than 4700-fold over the wild-type enzyme. CCRQ-CocE could also be modified by polyethylene glycol (PEG) polymers, which improved its in vivo residence time from 24 to 72 h, as measured by a cocaine lethality assay, by self-administration in rodents, and by measurement of inhibition of cocaine-induced cardiovascular effects in rhesus monkeys. PEG-CCRQ elicited negligible immune response in rodents. Subunit stabilization and PEGylation has thus produced a potential protein therapeutic with markedly higher stability both in vitro and in vivo.

  19. Structure-guided residence time optimization of a dabigatran reversal agent.

    PubMed

    Schiele, Felix; van Ryn, Joanne; Litzenburger, Tobias; Ritter, Michael; Seeliger, Daniel; Nar, Herbert

    2015-01-01

    Novel oral anticoagulants are effective and safe alternatives to vitamin-K antagonists for anticoagulation therapy. However, anticoagulation therapy in general is associated with an elevated risk of bleeding. Idarucizumab is a reversal agent for the direct thrombin inhibitor, dabigatran etexilate (Pradaxa®) and is currently in Phase 3 studies. Here, we report data on the antibody fragment aDabi-Fab2, a putative backup molecule for idarucizumab. Although aDabi-Fab2 completely reversed effects of dabigatran in a rat model in vivo, we observed significantly reduced duration of action compared to idarucizumab. Rational protein engineering, based on the X-ray structure of aDabi-Fab2, led to the identification of mutant Y103W. The mutant had optimized shape complementarity to dabigatran while maintaining an energetically favored hydrogen bond. It displayed increased affinity for dabigatran, mainly driven by a slower off-rate. Interestingly, the increased residence time translated into longer duration of action in vivo. It was thus possible to further enhance the efficacy of aDabi-Fab2 based on rational design, giving it the potential to serve as a back-up candidate for idarucizumab.

  20. Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory.

    PubMed

    Swartz, M A; Berk, D A; Jain, R K

    1996-01-01

    We present a novel integrative method for characterizing transport in the lymphatic capillaries in the tail of the anesthetized mouse, which is both sensitive and reproducible for quantifying uptake and flow. Interstitially injected, fluorescently labeled macromolecules were used to visualize and quantify these processes. Residence time distribution (RTD) theory was employed to measure net flow velocity in the lymphatic network as well as to provide a relative measure of lymphatic uptake of macromolecules from the interstitium. The effects of particle size and injection pressure were determined. The uptake rate was found to be independent of particle size in the range of a 6- to 18-nm radius; beyond this size, the interstitial matrix seemed to pose a greater barrier. A comparison of 10 vs. 40 cmH2O injection pressure showed a significant influence on the relative uptake rate but not on the net velocity within the network (3.3 +/- 0.8 vs. 3.8 +/- 1.0 micron/s). This suggested the presence of a systemic driving force for baseline lymph propulsion that is independent of the local pressure gradients driving the uptake. This model can be used to examine various aspects of transport physiology of the initial lymphatics.

  1. Real-time analysis of ambient organic aerosols using aerosol flowing atmospheric-pressure afterglow mass spectrometry (AeroFAPA-MS)

    NASA Astrophysics Data System (ADS)

    Brüggemann, Martin; Karu, Einar; Stelzer, Torsten; Hoffmann, Thorsten

    2015-04-01

    Organic aerosol accounts for a major fraction of atmospheric aerosols and has implications on the earth's climate and human health. However, due to the chemical complexity its measurement remains a major challenge for analytical instrumentation.1 Here, we present the development, characterization and application of a new soft ionization technique that allows mass spectrometric real-time detection of organic compounds in ambient aerosols. The aerosol flowing atmospheric-pressure afterglow (AeroFAPA) ion source utilizes a helium glow discharge plasma to produce excited helium species and primary reagent ions. Ionization of the analytes occurs in the afterglow region after thermal desorption and results mainly in intact molecular ions, facilitating the interpretation of the acquired mass spectra. In the past, similar approaches were used to detect pesticides, explosives or illicit drugs on a variety of surfaces.2,3 In contrast, the AeroFAPA source operates 'online' and allows the detection of organic compounds in aerosols without a prior precipitation or sampling step. To our knowledge, this is the first application of an atmospheric-pressure glow discharge ionization technique to ambient aerosol samples. We illustrate that changes in aerosol composition and concentration are detected on the time scale of seconds and in the ng-m-3 range. Additionally, the successful application of AeroFAPA-MS during a field study in a mixed forest region in Central Europe is presented. Several oxidation products of monoterpenes were clearly identified using the possibility to perform tandem MS experiments. The acquired data are in agreement with previous studies and demonstrate that AeroFAPA-MS is a suitable tool for organic aerosol analysis. Furthermore, these results reveal the potential of this technique to enable new insights into aerosol formation, growth and transformation in the atmosphere. References: 1) IPCC, 2013: Summary for Policymakers. In: Climate Change 2013: The

  2. Highly time-resolved urban aerosol characteristics during springtime in Yangtze River Delta, China: insights from soot particle aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Wang, Junfeng; Ge, Xinlei; Chen, Yanfang; Shen, Yafei; Zhang, Qi; Sun, Yele; Xu, Jianzhong; Ge, Shun; Yu, Huan; Chen, Mindong

    2016-07-01

    In this work, the Aerodyne soot particle - aerosol mass spectrometer (SP-AMS) was deployed for the first time during the spring of 2015 in urban Nanjing, a megacity in the Yangtze River Delta (YRD) of China, for online characterization of the submicron aerosols (PM1). The SP-AMS enables real-time and fast quantification of refractory black carbon (rBC) simultaneously with other non-refractory species (ammonium, sulfate, nitrate, chloride, and organics). The average PM1 concentration was found to be 28.2 µg m-3, with organics (45 %) as the most abundant component, following by sulfate (19.3 %), nitrate (13.6 %), ammonium (11.1 %), rBC (9.7 %), and chloride (1.3 %). These PM1 species together can reconstruct ˜ 44 % of the light extinction during this campaign based on the IMPROVE method. Chemically resolved mass-based size distributions revealed that small particles especially ultrafine ones (< 100 nm vacuum aerodynamic diameter) were dominated by organics and rBC, while large particles had significant contributions from secondary inorganic species. Source apportionment of organic aerosols (OA) yielded four OA subcomponents, including hydrocarbon-like OA (HOA), cooking-related OA (COA), semi-volatile oxygenated OA (SV-OOA), and low-volatility oxygenated OA (LV-OOA). Overall, secondary organic aerosol (SOA, equal to the sum of SV-OOA and LV-OOA) dominated the total OA mass (55.5 %), but primary organic aerosol (POA, equal to the sum of HOA and COA) can outweigh SOA in the early morning and evening due to enhanced human activities. High OA concentrations were often associated with high mass fractions of POA and rBC, indicating the important role of anthropogenic emissions during heavy pollution events. The diurnal cycles of nitrate, chloride, and SV-OOA both showed good anti-correlations with air temperatures, suggesting their variations were likely driven by thermodynamic equilibria and gas-to-particle partitioning. On the other hand, in contrast to other species

  3. Assessment of the vaginal residence time of biomarkers of semen exposure☆,☆☆,★

    PubMed Central

    Thurman, Andrea; Jacot, Terry; Melendez, Johan; Kimble, Thomas; Snead, Margaret; Jamshidi, Roxanne; Wheeless, Angie; Archer, David F.; Doncel, Gustavo F.; Mauck, Christine

    2016-01-01

    Objective The primary objective of this pilot study is to determine and compare the residence time in the vagina of biomarkers of semen exposure for up to 15 days post exposure. The biomarkers are prostate-specific antigen (PSA), Y chromosome DNA, the sex determining region of the Y chromosome (SRY) and testis-specific protein Y-encoded 4 (TSPY4). The secondary objectives are to determine if biomarker concentrations differed between intercourse and inoculation groups, to establish whether the sampling frequency post exposure affected biomarker concentrations and decay profile and to determine if biomarker concentrations in vaginal swabs obtained by the participant at home were similar to swabs obtained by the nurse in the clinic. Study design We randomized healthy women to unprotected intercourse (n=17) versus vaginal inoculation with the male partner’s semen in the clinic (n=16). Women were then further randomized to have vaginal swabs obtained at either 7 or 4 time points after semen exposure, up to 15 days post exposure, either obtained at home by the participant or in the clinic by the research nurse. Results PSA and SRY were markers of recent semen exposure. TSPY4 was detectable in approximately 50% of participants at 15 days post exposure. Unprotected intercourse resulted in significantly higher concentrations of select biomarkers. Sampling frequency and home versus clinic sampling had no significant effect on biomarker concentrations. Conclusions Objective biomarkers of recent or distant semen exposure may have great utility for verifying protocol compliance in a variety of clinical trials. PMID:27259675

  4. Phosphorus as indicator of magmatic olivine residence time, morphology and growth rate

    NASA Astrophysics Data System (ADS)

    Sobolev, Alexander; Batanova, Valentina

    2015-04-01

    Phosphorus is among of slowest elements by diffusion rate in silicate melts and crystals (e.g. Spandler et al, 2007). In the same time it is moderately incompatible to compatible with olivine (Brunet & Chazot, 2001; Grant & Kohn, 2013). This makes phosphorus valuable tracer of olivine crystallization in natural conditions. Indeed, it is shown that natural magmatic olivine crystals commonly posses strong and complicated zoning in phosphorus (Milman-Barris et al, 2008; Welsch et al, 2014). In this paper we intend to review phosphorus behavior in olivine in published experimental and natural olivine studies and present large set of new EPMA data on phosphorus zoning in olivine phenocrysts from MORBs, OIBs, komatiites and kimberlites. We will show that sharp olivine zones enriched in phosphorus by a factor of 10-20 over prediction by equilibrium partition may be due to formation of P-rich boundary layer on the interface of fast growing olivine. This is proved by finding of small-size (normally 10 mkm or less) exceptionally P-rich melt inclusions in olivine, which are otherwise similar in composition to typical melt. These observations could provide potential olivine growth speedometer. We will also demonstrate, that sharp zoning in phosphorus may provide valuable information on the residence time of olivine crystals in different environments: magma chambers and conduits as well as mantle sources. This study has been founded by Russian Science Foundation grant 14-17-00491. References: Spandler, et al, 2007, Nature, v. 447, p. 303-306; Brunet & Chazot, 2001, Chemical Geology, v. 176, p. 51-72; Grant & Kohn, 2013, American Mineralogist, v. 98, p. 1860-1869; Milman-Barris et al, 2008, Contr. Min. Petrol. v. 155, p.739-765; Welsch et al, 2014, Geology, v. 42, p.867-870.

  5. Disentangling residence time and temperature sensitivity of microbial decomposition in a global soil carbon model

    NASA Astrophysics Data System (ADS)

    Exbrayat, J.-F.; Pitman, A. J.; Abramowitz, G.

    2014-12-01

    Recent studies have identified the first-order representation of microbial decomposition as a major source of uncertainty in simulations and projections of the terrestrial carbon balance. Here, we use a reduced complexity model representative of current state-of-the-art models of soil organic carbon decomposition. We undertake a systematic sensitivity analysis to disentangle the effect of the time-invariant baseline residence time (k) and the sensitivity of microbial decomposition to temperature (Q10) on soil carbon dynamics at regional and global scales. Our simulations produce a range in total soil carbon at equilibrium of ~ 592 to 2745 Pg C, which is similar to the ~ 561 to 2938 Pg C range in pre-industrial soil carbon in models used in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). This range depends primarily on the value of k, although the impact of Q10 is not trivial at regional scales. As climate changes through the historical period, and into the future, k is primarily responsible for the magnitude of the response in soil carbon, whereas Q10 determines whether the soil remains a sink, or becomes a source in the future mostly by its effect on mid-latitude carbon balance. If we restrict our simulations to those simulating total soil carbon stocks consistent with observations of current stocks, the projected range in total soil carbon change is reduced by 42% for the historical simulations and 45% for the future projections. However, while this observation-based selection dismisses outliers, it does not increase confidence in the future sign of the soil carbon feedback. We conclude that despite this result, future estimates of soil carbon and how soil carbon responds to climate change should be more constrained by available data sets of carbon stocks.

  6. Reflections in a time of transition: orthopaedic faculty and resident understanding of accreditation schemes and opinions on surgical skills feedback

    PubMed Central

    Gundle, Kenneth R.; Mickelson, Dayne T.; Hanel, Doug P.

    2016-01-01

    Introduction Orthopaedic surgery is one of the first seven specialties that began collecting Milestone data as part of the Accreditation Council for Graduate Medical Education's Next Accreditation System (NAS) rollout. This transition from process-based advancement to outcome-based education is an opportunity to assess resident and faculty understanding of changing paradigms, and opinions about technical skill evaluation. Methods In a large academic orthopaedic surgery residency program, residents and faculty were anonymously surveyed. A total of 31/32 (97%) residents and 29/53 (55%) faculty responded to Likert scale assessments and provided open-ended responses. An internal end-of-rotation audit was conducted to assess timeliness of evaluations. A mixed-method analysis was utilized, with nonparametric statistical testing and a constant-comparative qualitative method. Results There was greater familiarity with the six core competencies than with Milestones or the NAS (p<0.05). A majority of faculty and residents felt that end-of-rotation evaluations were not adequate for surgical skills feedback. Fifty-eight per cent of residents reported that end-of-rotation evaluations were rarely or never filled out in a timely fashion. An internal audit demonstrated that more than 30% of evaluations were completed over a month after rotation end. Qualitative analysis included themes of resident desire for more face-to-face feedback on technical skills after operative cases, and several barriers to more frequent feedback. Discussion The NAS and outcome-based education have arrived. Residents and faculty need to be educated on this changing paradigm. This transition period is also a window of opportunity to address methods of evaluation and feedback. In our orthopaedic residency, trainees were significantly less satisfied than faculty with the amount of technical and surgical skills feedback being provided to trainees. The quantitative and qualitative analyses converge on one

  7. Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Zhang, Qi; Bae, Gwi-Nam; Kim, Jin Young; Bok Lee, Seung

    2017-02-01

    Highly time-resolved chemical characterization of nonrefractory submicrometer particulate matter (NR-PM1) was conducted in Seoul, the capital and largest metropolis of Korea, using an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The measurements were performed during winter, when elevated particulate matter (PM) pollution events are often observed. This is the first time that detailed real-time aerosol measurement results have been reported from Seoul, Korea, and they reveal valuable insights into the sources and atmospheric processes that contribute to PM pollution in this region. The average concentration of submicron aerosol (PM1 = NR-PM1+ black carbon (BC)) was 27.5 µg m-3, and the total mass was dominated by organics (44 %), followed by nitrate (24 %) and sulfate (10 %). The average atomic ratios of oxygen to carbon (O / C), hydrogen to carbon (H / C), and nitrogen to carbon (N / C) of organic aerosols (OA) were 0.37, 1.79, and 0.018, respectively, which result in an average organic mass-to-carbon (OM / OC) ratio of 1.67. The concentrations (2.6-90.7 µg m-3) and composition of PM1 varied dynamically during the measurement period due to the influences of different meteorological conditions, emission sources, and air mass origins. Five distinct sources of OA were identified via positive matrix factorization (PMF) analysis of the HR-ToF-AMS data: vehicle emissions represented by a hydrocarbon-like OA factor (HOA, O / C = 0.06), cooking activities represented by a cooking OA factor (COA, O / C = 0.14), wood combustion represented by a biomass burning OA factor (BBOA, O / C = 0.34), and secondary organic aerosol (SOA) represented by a semivolatile oxygenated OA factor (SV-OOA, O / C = 0.56) and a low-volatility oxygenated OA factor (LV-OOA, O / C = 0.68). On average, primary OA (POA = HOA + COA + BBOA) accounted for 59 % the OA mass, whereas SV-OOA and LV-OOA contributed 15 and 26 %, respectively. Our results indicate that air

  8. Three Compact, Robust Chemical Characterization Systems Suited To Sensitive, High Time Resolution Measurements Of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Barrie, L. A.; Cowin, J. P.; Worsnop, D. R.

    2001-12-01

    In the past decade, the advancement of compact, robust and sensitive instrumentation to measure the chemical characteristics of atmospheric aerosols has lagged behind their physical characterization. There is a need for chemical instrumentation with these three qualities for use on airborne platforms and at infrequently attended ground level surveillance sites. Now chemical techniques are appearing that promise to fill this need. We discuss three chemical characterization systems that are emerging in atmospheric chemistry and climate research applications. These are: (i) the Aerodyne mass spectrometer for real time measurement of particle composition and two post-collection analysis techniques (ii) non-destructive, multi-elemental chemical analysis of size-resolved samples by high spatial resolution synchrotron x-ray and proton beams (S-XRF/PIXE/PESA/STIM) (iii) single particle characterization by automated scanning electron microscopy with energy-dispersed detection of X-rays (SEM/EDX). The key to post-collection analysis is automated aerosol sizing and collection systems and automated chemical analysis systems. Together these techniques provide unique, comprehensive information on the organic and inorganic composition and morphology of particles and yet are easy to deploy in the field. The sensitivity of each technique is high enough to permit the rapid sampling needed to resolve spatial gradients in composition from a moving platform like the Battelle Gulfstream-159 aircraft, traveling at 100m/s.

  9. Real-time measurement of sodium chloride in individual aerosol particles by mass spectrometry

    NASA Technical Reports Server (NTRS)

    Sinha, M. P.; Friedlander, S. K.

    1985-01-01

    The method of particle analysis by mass spectrometry has been applied to the quantitative measurement of sodium chloride in individual particles on a real-time basis. Particles of known masses are individually introduced, in the form of a beam, into a miniature Knudsen cell oven (1600 K). The oven is fabricated from rhenium metal sheet (0.018 mm thick) and is situated in the ion source of a quadrupole mass spectrometer. A particle once inside the oven is trapped and completely volatilized; this overcomes the problem of partial volatilization due to particles bouncing from the filament surface. Individual particles are thermally volatilized and ionized inside the rhenium oven, and produce discrete sodium ion pulses whose intensities are measured with the quadrupole mass spectrometer. An ion pulse width of several milliseconds (4-12 ms) is found for particles in the mass range 1.3 x 10 to the -13th to 5.4 x 10 to the -11th g. The sodium ion intensity is found to be proportional to the particle mass to the 0.86-power. The intensity distribution for monodisperse aerosol particles possesses a geometric standard deviation of 1.09, showing that the method can be used for the determination of the mass distribution function with good resolution in a polydisperse aerosol.

  10. Atmospheric residence times from transpiration and evaporation to precipitation: An age-weighted regional evaporation tagging approach

    NASA Astrophysics Data System (ADS)

    Wei, Jianhui; Knoche, Hans Richard; Kunstmann, Harald

    2016-06-01

    The atmospheric water residence time is a fundamental descriptor that provides information on the timescales of evaporation and precipitation. In this study, a regional climate model-based evaporation tagging algorithm is extended with an age tracer approach to calculate moisture residence times, defined as time between the original evaporation and the returning of water masses to the land surface as precipitation. Our case study addresses how long this time is for the transpired and for the direct evaporated moisture. Our study region is the Poyang Lake region in Southeast China, the largest freshwater lake in the country. We perform simulations covering the period from October 2004 to December 2005. In 2005, 11% of direct evaporated water (10% of transpired water) precipitates locally. Direct evaporated water accounts for 64% and transpired water for 36% of the total tagged moisture with a mean age of around 36 h for both. Considering precipitation, a large proportion (69%) originates from direct evaporated water with a mean atmospheric residence time of 6.6 h and a smaller amount from transpired water with a longer residence time of 10.7 h. Modulated by the East Asian monsoon, the variation of the meteorological conditions, the magnitude of the partitioned moisture, and the corresponding residence time patterns change seasonally and spatially and reveal the different fate of transpired and direct evaporated water in the atmospheric hydrological cycle. We conclude that our methodological approach has the potential to be used for addressing how timescales of the hydrological cycle changes regionally under global warming.

  11. Halogen-induced organic aerosol (XOA) formation and decarboxylation of carboxylic acids by reactive halogen species - a time-resolved aerosol flow-reactor study

    NASA Astrophysics Data System (ADS)

    Ofner, Johannes; Zetzsch, Cornelius

    2013-04-01

    Reactive halogen species (RHS) are released to the atmosphere from various sources like photo-activated sea-salt aerosol and salt lakes. Recent studies (Cai et al., 2006 and 2008, Ofner et al., 2012) indicate that RHS are able to interact with SOA precursors similarly to common atmospheric oxidizing gases like OH radicals and ozone. The reaction of RHS with SOA precursors like terpenes forms so-called halogen-induced organic aerosol (XOA). On the other hand, RHS are also able to change the composition of functional groups, e.g. to initiate the decarboxylation of carboxylic acids (Ofner et al., 2012). The present study uses a 50 cm aerosol flow-reactor, equipped with a solar simulator to investigate the time-resolved evolution and transformation of vibrational features in the mid-infrared region. The aerosol flow-reactor is coupled to a home-made multi-reflection cell (Ofner et al., 2010), integrated into a Bruker IFS 113v FTIR spectrometer. The reactor is operated with an inlet feed (organic compound) and a surrounding feed (reactive halogen species). The moveable inlet of the flow reactor allows us to vary reaction times between a few seconds and up to about 3 minutes. Saturated vapours of different SOA precursors and carboxylic acids were fed into the flow reactor using the moveable inlet. The surrounding feed inside the flow reactor was a mixture of zero air with molecular chlorine as the precursor for the formation of reactive halogen species. Using this setup, the formation of halogen-induced organic aerosol could be monitored with a high time resolution using FTIR spectroscopy. XOA formation is characterized by hydrogen-atom abstraction, carbon-chlorine bond formation and later, even formation of carboxylic acids. Several changes of the entire structure of the organic precursor, caused by the reaction of RHS, are visible. While XOA formation is a very fast process, the decarboxylation of carboxylic acids, induced by RHS is rather slow. However, XOA formation

  12. Highly time-resolved trace element concentrations in aerosols during the Megapoli Paris campaigns

    NASA Astrophysics Data System (ADS)

    Furger, Markus; Visser, Suzanne; Slowik, Jay G.; Crippa, Monica; Poulain, Laurent; Appel, Karen; Flechsig, Uwe; Prevot, Andre S. H.; Baltensperger, Urs

    2014-05-01

    Trace elements contribute typically only a few percent to the total mass of air pollutants, however, they can affect the environment in significant ways, especially those that are toxic. Furthermore, they are advantageous with respect to a refinement of source apportionment when measured with high time resolution and appropriate size segregation. This approach is especially advantageous in an urban environment with numerous time-variant emission sources distributed across a relatively narrow space, as is typically the setting of a megacity. Two 1-month long field campaigns took place in the framework of the Megapoli project in Paris, France, in the summer of 2009 and in the winter of 2010. Rotating drum impactors (RDI) were operated at two sites in each campaign, one urban, the other one suburban. The RDI segregated the aerosols into three size ranges (PM10-2.5, PM2.5-1 and PM1-0.1) and sampled with 2-hour time resolution. The samples were analyzed with synchrotron radiation induced X-ray fluorescence spectrometry (SR-XRF) at the synchrotron facilities of Paul Scherrer Institute (SLS) and Deutsches Elektronen-Synchrotron (HASYLAB), where a broad range of elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Sr, Zr, Cd, Sn, Sb, Ba, Pb) was analyzed for each size range. Time series of the analyzed elements for the different sites and campaigns were prepared to characterize the aerosol trace element composition and temporal behavior for the different weather situations and urban environments. They allow for the distinction of regional vs. local sources and transport, and provide a basis for source apportionment calculations. Local and regional contributions of traffic, including re-suspension, break wear and exhaust, wood burning, marine and other sources will be discussed. Indications of long-range transport from Polish coal emissions in the city center of Paris were also found.

  13. Tracer travel and residence time distributions in highly heterogeneous aquifers: Coupled effect of flow variability and mass transfer

    NASA Astrophysics Data System (ADS)

    Cvetkovic, V.; Fiori, A.; Dagan, G.

    2016-12-01

    The driving mechanism of tracer transport in aquifers is groundwater flow which is controlled by the heterogeneity of hydraulic properties. We show how hydrodynamics and mass transfer are coupled in a general analytical manner to derive a physically-based (or process-based) residence time distribution for a given integral scale of the hydraulic conductivity; the result can be applied for a broad class of linear mass transfer processes. The derived tracer residence time distribution is a transfer function with parameters to be inferred from combined field and laboratory measurements. It is scalable relative to the correlation length and applicable for an arbitrary statistical distribution of the hydraulic conductivity. Based on the derived residence time distribution, the coefficient of variation and skewness of residence time are illustrated assuming a log-normal hydraulic conductivity field and first-order mass transfer. We show that for a low Damkohler number the coefficient of variation is more strongly influenced by mass transfer than by heterogeneity, whereas skewness is more strongly influenced by heterogeneity.

  14. Implementation and evaluation of a simulation curriculum for paediatric residency programs including just-in-time in situ mock codes

    PubMed Central

    Sam, Jonathan; Pierse, Michael; Al-Qahtani, Abdullah; Cheng, Adam

    2012-01-01

    OBJECTIVE: To develop, implement and evaluate a simulation-based acute care curriculum in a paediatric residency program using an integrated and longitudinal approach. DESIGN: Curriculum framework consisting of three modular, year-specific courses and longitudinal just-in-time, in situ mock codes. SETTING: Paediatric residency program at BC Children’s Hospital, Vancouver, British Columbia. INTERVENTIONS: The three year-specific courses focused on the critical first 5 min, complex medical management and crisis resource management, respectively. The just-in-time in situ mock codes simulated the acute deterioration of an existing ward patient, prepared the actual multidisciplinary code team, and primed the surrounding crisis support systems. Each curriculum component was evaluated with surveys using a five-point Likert scale. RESULTS: A total of 40 resident surveys were completed after each of the modular courses, and an additional 28 surveys were completed for the overall simulation curriculum. The highest Likert scores were for hands-on skill stations, immersive simulation environment and crisis resource management teaching. Survey results also suggested that just-in-time mock codes were realistic, reinforced learning, and prepared ward teams for patient deterioration. CONCLUSIONS: A simulation-based acute care curriculum was successfully integrated into a paediatric residency program. It provides a model for integrating simulation-based learning into other training programs, as well as a model for any hospital that wishes to improve paediatric resuscitation outcomes using just-in-time in situ mock codes. PMID:23372405

  15. Residence Times of Molecular Complexes in Solution from NMR Data of Intermolecular Hydrogen-Bond Scalar Coupling.

    PubMed

    Zandarashvili, Levani; Esadze, Alexandre; Kemme, Catherine A; Chattopadhyay, Abhijnan; Nguyen, Dan; Iwahara, Junji

    2016-03-03

    The residence times of molecular complexes in solution are important for understanding biomolecular functions and drug actions. We show that NMR data of intermolecular hydrogen-bond scalar couplings can yield information on the residence times of molecular complexes in solution. The molecular exchange of binding partners via the breakage and reformation of a complex causes self-decoupling of intermolecular hydrogen-bond scalar couplings, and this self-decoupling effect depends on the residence time of the complex. For protein-DNA complexes, we investigated the salt concentration dependence of intermolecular hydrogen-bond scalar couplings between the protein side-chain (15)N and DNA phosphate (31)P nuclei, from which the residence times were analyzed. The results were consistent with those obtained by (15)Nz-exchange spectroscopy. This self-decoupling-based kinetic analysis is unique in that it does not require any different signatures for the states involved in the exchange, whereas such conditions are crucial for kinetic analyses by typical NMR and other methods.

  16. Water Residence Times and Their Relation to Soil and Aquifer Properties and Degree of Urbanization (Croton Water Supply Area, NY)

    NASA Astrophysics Data System (ADS)

    Vitvar, T.; Burns, D.; Kendall, C.; McDonnell, J.

    2002-05-01

    Water residence times were determined in 3 small watersheds in the Croton water supply area, NY. The watersheds (less than 1 km2 drainage area) have different amounts of urbanization (natural, semi-developed and fully developed), different mechanisms of runoff generation (quick flow on roads and slow flow through subsurface) and different watershed landscape characteristics (wetlands, hillslopes) . Measurements of the Oxygen-18 content of throughfall, stream water, soil water and groundwater in the saturated zone were performed bi-weekly over a period of 2 years. Mean water residence times of the stream water, soil water and groundwater were estimated using Oxygen-18 and Helium-3/Tritium isotopes. There are small but significant differences in the isotopic content of waters in each watershed, along with soil and aquifer properties as a function of the level of urbanization. Longer groundwater residence times (up to more than 2 years) were estimated in wetland zones without direct communication with streams in comparison to hillslope areas (up to more than 1 year). In highly urbanized areas, mixing of natural runoff generation processes with urbanization effects such as the influence of septic plumes results in a complex spectrum of residence times in soil waters and groundwaters. We illustrate the possibilities of using stable isotope measurements to describe small-scale complex runoff generation processes in watersheds.

  17. Improving residents' handovers through just-in-time training for structured communication.

    PubMed

    Rourke, Liam; Amin, Aditi; Boyington, Curtiss; Ao, Peter; Frolova, Natalia

    2016-01-01

    In a recent quality assurance project we learned that nearly half of the handovers we examined were characterized as unsatisfactory by our residents, who provided examples in which their anxiety had been piqued and patient care had been affected. These reports substantiated a growing body of literature on the relationship between the quality of handover and the quality of patient care, so we sought to improve the quality and consistency of the in-hosptial handovers undertaken by our internal medicine residents. Senior residents attended morning report for three consecutive month long blocks and evaluated the quality of the handovers using an observational protocol comprised of 16 aspects of effective handover. During the first block, the resident observed a median of eight of the 16 practices occurring across the 46 handovers, and a large amount of variability. At the beginning of the subsequent block we presented a concise introduction to a structured handover procedure (SBARR). The median quality of the subsequent 33 handovers rose to 11, and the variability decreased considerably. In the next block we refined the SBARR orientation to focus on the errors observed in the previous blocks, and the improvement in the quality and variability was sustained. The minor change, which requires few resources to sustain, had a favourable impact on the quality of our residents' in-hospital handovers.

  18. Improving residents' handovers through just-in-time training for structured communication

    PubMed Central

    Rourke, Liam; Amin, Aditi; Boyington, Curtiss; Ao, Peter; Frolova, Natalia

    2016-01-01

    In a recent quality assurance project we learned that nearly half of the handovers we examined were characterized as unsatisfactory by our residents, who provided examples in which their anxiety had been piqued and patient care had been affected. These reports substantiated a growing body of literature on the relationship between the quality of handover and the quality of patient care, so we sought to improve the quality and consistency of the in-hosptial handovers undertaken by our internal medicine residents. Senior residents attended morning report for three consecutive month long blocks and evaluated the quality of the handovers using an observational protocol comprised of 16 aspects of effective handover. During the first block, the resident observed a median of eight of the 16 practices occurring across the 46 handovers, and a large amount of variability. At the beginning of the subsequent block we presented a concise introduction to a structured handover procedure (SBARR). The median quality of the subsequent 33 handovers rose to 11, and the variability decreased considerably. In the next block we refined the SBARR orientation to focus on the errors observed in the previous blocks, and the improvement in the quality and variability was sustained. The minor change, which requires few resources to sustain, had a favourable impact on the quality of our residents' in-hospital handovers. PMID:26893890

  19. Examination of residence time and its relevance to water quality within a coastal mega-structure: The Palm Jumeirah Lagoon

    NASA Astrophysics Data System (ADS)

    Cavalcante, Geórgenes H.; Kjerfve, Björn; Feary, David A.

    2012-10-01

    SummaryA numerical modeling study was carried out to compute average residence time in the semi-enclosed lagoon formed by the man-made island Palm Jumeirah (Dubai, United Arab Emirates), termed Palm Jumeirah Lagoon (PJL). The PJL encompasses a main island axis with 17 'fronds' radiating from this axis, all encapsulated within a semi-circular breakwater system. A coupled hydrodynamic and solute transport model was developed for the waters of the PJL, based on depth-integrated conservation equations. Numerical model predictions were then verified against a set of field-measured hydrodynamic data. Model-predicted water elevations and velocities were in good agreement with field measurements. Residence times for this tidal dominated system were investigated through numerical experiments using a conservative tracer as a surrogate. The results indicated that average residence time varied spatially throughout the PJL depending on tidal flushing. Average residence time was unequally distributed throughout the PJL, with the eastern side showing higher flushing times than the western side. In addition, there were also differences between sections of the PJL in average residence time of a tracer: between frond tips and the surrounding breakwater the tracer was reduced to 30-40% of its original value after approximately 1 week, while a tracer placed between the fronds was reduced to 30-40% of its value after 20 days. The findings of this research provide vital information for understanding the water transport process in this man-made lagoon, and will be important in assessing the potential impact on coastal water quality conditions in coastal developments within the Middle East.

  20. Combining direct residence time measurements and biogeochemistry to calculate in-situ reaction rates in the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Pittroff, Marco; Gilfedder, Benjamin

    2015-04-01

    The hyporheic zone is an active interface between groundwater, riparian and surface water systems. Exchange and reaction of water, nutrients, and organic matter occur due to variations in surface and groundwater flow regimes, bed topography and active biogeochemistry fuelled by bioavailable carbon. There has been an increasing focus on coupling the residence time of surface water in the hyporheic zone with biogeochemical reactions. However, there are very few tracers that can be used to measure residence times in-situ, especially in complex groundwater-surface water settings. In this work we have used the natural radioisotope Radon (222Rn) as an in-situ tracer for river water residence time in a riffle-pool sequence (Rote Main River), and combined this information with biogeochemical parameters (DOC and C quality, O3, NO3, CO2). We can clearly observe a dependence of reaction progress on the water residence times, with oxygen and nitrate reduction following inverse logarithmic trends as a function of time. By comparing with initial concentrations (the river end member) with riverbed levels we have estimated first-order in-situ reduction rates for nitrate and oxygen. Nitrate reduction rates are at the higher end of published values, which is likely due to the continual supply of bioavailable carbon from the river system. This work helps to better understand the function and efficiency of the hyporheic zone as a natural filter for redox sensitive species such as nitrate at the groundwater - steam interface. It also provides a useful method for estimating residence times in complex, higher order river systems.

  1. 210Po and 210Pb distributions and residence times in the nearshore region of Lake Superior

    NASA Astrophysics Data System (ADS)

    Chai, Yingtao; Urban, Noel R.

    2004-10-01

    The naturally occurring radionuclide, 210Pb, and its decay daughter, 210Po, were measured in the Keweenaw Peninsula region of Lake Superior. Water, suspended particles, sediment trap material (settling particles), and sediment cores and grab samples were collected along three transects that stretched from 1 to 20 km from shore. Departures from secular equilibrium (activity ratio of 210Po:210Pb = 1) were observed for most samples. 210Po-deficiency was observed in both suspended particles (TSP) with a ratio of 0.43 ± 0.05 (±95% confidence interval (CI)) and settling particles with a ratio of 0.57 ± 0.04; higher ratios in the settling particles resulted from an admixture of resuspended sediments. Ratios in the dissolved phase were 0.45 ± 0.12. Approximately 83% and 85% of total 210Po and 210Pb in the water column was in the particulate phase. No evidence of biological uptake of Po was found. Seasonal and spatial variability in activities and ratios was small. Using steady state solutions to the mass balance equations for both isotopes, similar residence times in the water column were calculated for 210Po and 210Pb (55 ˜ 75 days in a 150-m-deep water column). It was possible to calibrate a one-box model for the paired isotopes so that the model output closely matched rates of sediment and isotope resuspension estimated from sediment traps. However, this calibration required a fractionation of the isotopes during resuspension. The particle settling velocity was estimated to be 2.3 m d-1, which also is in agreement with the estimate (2.4 ± 2.2 m d-1) from sediment traps. These results indicate rapid fluxes of radioisotopes and sediments through the water column largely driven by resuspension of sediments in nearshore areas.

  2. Residence times of groundwater and nitrate transport in coastal aquifer systems: Daweijia area, northeastern China.

    PubMed

    Han, Dongmei; Cao, Guoliang; McCallum, James; Song, Xianfang

    2015-12-15

    Groundwater within the coastal aquifer systems of the Daweijia area in northeastern China is characterized by a large of variations (33-521mg/L) in NO3(-) concentrations. Elevated nitrate concentrations, in addition to seawater intrusion in the Daweijia well field, both attributable to anthropogenic activities, may impact future water-management practices. Chemical and stable isotopic (δ(18)O, δ(2)H) analysis, (3)H and CFCs methods were applied to provide a better understanding of the relationship between the distribution of groundwater mean residence time (MRT) and nitrate transport, and to identify sources of nitrate concentrations in the complex coastal aquifer systems. There is a relatively narrow range of isotopic composition (ranging from -8.5 to -7.0‰) in most groundwater. Generally higher tritium contents observed in the wet season relative to the dry season may result from rapid groundwater circulation in response to the rainfall through the preferential flow paths. In the well field, the relatively increased nitrate concentrations of groundwater, accompanied by the higher tritium contents in the wet season, indicate the nitrate pollution can be attributed to domestic wastes. The binary exponential and piston-flow mixing model (BEP) yielded feasible age distributions based on the conceptual model. The good inverse relationship between groundwater MRTs (92-467years) and the NO3(-) concentrations in the shallow Quaternary aquifers indicates that elevated nitrate concentrations are attributable to more recent recharge for shallow groundwater. However, there is no significant relationship between the MRTs (8-411years) and the NO3(-) concentrations existing in the carbonate aquifer system, due to the complex hydrogeological conditions, groundwater age distributions and the range of contaminant source areas. Nitrate in the groundwater system without denitrification effects could accumulate and be transported for tens of years, through the complex carbonate

  3. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2.

    PubMed

    Friend, Andrew D; Lucht, Wolfgang; Rademacher, Tim T; Keribin, Rozenn; Betts, Richard; Cadule, Patricia; Ciais, Philippe; Clark, Douglas B; Dankers, Rutger; Falloon, Pete D; Ito, Akihiko; Kahana, Ron; Kleidon, Axel; Lomas, Mark R; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Peylin, Philippe; Schaphoff, Sibyll; Vuichard, Nicolas; Warszawski, Lila; Wiltshire, Andy; Woodward, F Ian

    2014-03-04

    Future climate change and increasing atmospheric CO2 are expected to cause major changes in vegetation structure and function over large fractions of the global land surface. Seven global vegetation models are used to analyze possible responses to future climate simulated by a range of general circulation models run under all four representative concentration pathway scenarios of changing concentrations of greenhouse gases. All 110 simulations predict an increase in global vegetation carbon to 2100, but with substantial variation between vegetation models. For example, at 4 °C of global land surface warming (510-758 ppm of CO2), vegetation carbon increases by 52-477 Pg C (224 Pg C mean), mainly due to CO2 fertilization of photosynthesis. Simulations agree on large regional increases across much of the boreal forest, western Amazonia, central Africa, western China, and southeast Asia, with reductions across southwestern North America, central South America, southern Mediterranean areas, southwestern Africa, and southwestern Australia. Four vegetation models display discontinuities across 4 °C of warming, indicating global thresholds in the balance of positive and negative influences on productivity and biomass. In contrast to previous global vegetation model studies, we emphasize the importance of uncertainties in projected changes in carbon residence times. We find, when all seven models are considered for one representative concentration pathway × general circulation model combination, such uncertainties explain 30% more variation in modeled vegetation carbon change than responses of net primary productivity alone, increasing to 151% for non-HYBRID4 models. A change in research priorities away from production and toward structural dynamics and demographic processes is recommended.

  4. Estimation of ground water residence times in the Critical zone: insight from U activity ratios

    NASA Astrophysics Data System (ADS)

    Chabaux, Francois; Ackerer, Julien; Lucas, Yann; viville, Daniel

    2016-04-01

    The use of radioactive disequilibria as tracers and chronometers of weathering processes and related mass transfers has been recognized since the 60'. The development, over the last two decades, of analytical methods for measuring very precisely U-series nuclides (especially, 234U, 230Th and 226Ra) in environmental samples has opened up new scientific applications in Earth Surface Sciences. Here, we propose to present the potential of U activity ratios in surface waters as chronometer of water transfers at a watershed scale. This will be illustrated from studies performed at different scales, with the analysis of U activity ratios in surface waters from small watersheds (Strengbach and Ringelbach watersheds in the Vosges Mountain, France) but also from watersheds of much more regional extension (e.g., the Upper Rhine basin or the Ganges basin). These various studies show that variations of U activity ratios in surface waters are mainly associated with 234U-238U fractionations occurring during the water transfer within the bedrock, which intensity depends on two main parameters: the petro-physical characteristics of the aquifer, principally the geometry of water-rock interfaces and the duration of the water-rock interactions. This readily explains why different U activity ratios (UAR) can be observed in the different aquifers of a continental hydrosystem and hence why UAR can be used to trace the source of river waters. For a hydrological system developed on a substratum marked by fairly homogeneous petro-physical characteristics, the main parameter controlling the UAR in waters draining such a system would be the duration of the water-rock interactions. Variations of UAR in stream or spring waters of such a system can therefore be modeled using simple reactive transport model, which allows the estimation of both the dissolution rate of the bedrock and the residence time of the waters within the aquifer.

  5. River delta network hydraulic residence time distributions and their role in coastal nutrient biogeochemistry

    NASA Astrophysics Data System (ADS)

    Hiatt, M. R.; Castaneda, E.; Twilley, R.; Hodges, B. R.; Passalacqua, P.

    2015-12-01

    River deltas have the potential to mitigate increased nutrient loading to coastal waters by acting as biofilters that reduce the impact of nutrient enrichment on downstream ecosystems. Hydraulic residence time (HRT) is known to be a major control on biogeochemical processes and deltaic floodplains are hypothesized to have relatively long HRTs. Hydrological connectivity and delta floodplain inundation induced by riverine forces, tides, and winds likely alter surface water flow patterns and HRTs. Since deltaic floodplains are important elements of delta networks and receive significant fluxes of water, sediment, and nutrients from distributary channels, biogeochemical transformations occurring within these zones could significantly reduce nutrient loading to coastal receiving waters. However, network-scale estimates of HRT in river deltas are lacking and little is known about the effects of tides, wind, and the riverine input on the HRT distribution. Subsequently, there lacks a benchmark for evaluating the impact of engineered river diversions on coastal nutrient ecology. In this study, we estimate the HRT of a coastal river delta by using hydrodynamic modeling supported by field data and relate the HRT to spatial and temporal patterns in nitrate levels measured at discrete stations inside a delta island at Wax Lake Delta. We highlight the control of the degree of hydrological connectivity between distributary channels and interdistributary islands on the network HRT distribution and address the roles of tides and wind on altering the shape of the distribution. We compare the observed nitrate concentrations to patterns of channel-floodplain hydrological connectivity and find this connectivity to play a significant role in the nutrient removal. Our results provide insight into the potential role of deltaic wetlands in reducing the nutrient loading to near-shore waters in response to large-scale river diversions.

  6. An integrated approach using high time-resolved tools to study the origin of aerosols.

    PubMed

    Di Gilio, A; de Gennaro, G; Dambruoso, P; Ventrella, G

    2015-10-15

    Long-range transport of natural and/or anthropogenic particles can contribute significantly to PM10 and PM2.5 concentrations and some European cities often fail to comply with PM daily limit values due to the additional impact of particles from remote sources. For this reason, reliable methodologies to identify long-range transport (LRT) events would be useful to better understand air pollution phenomena and support proper decision-making. This study explores the potential of an integrated and high time-resolved monitoring approach for the identification and characterization of local, regional and long-range transport events of high PM. In particular, the goal of this work was also the identification of time-limited event. For this purpose, a high time-resolved monitoring campaign was carried out at an urban background site in Bari (southern Italy) for about 20 days (1st-20th October 2011). The integration of collected data as the hourly measurements of inorganic ions in PM2.5 and their gas precursors and of the natural radioactivity, in addition to the analyses of aerosol maps and hourly back trajectories (BT), provided useful information for the identification and chemical characterization of local sources and trans-boundary intrusions. Non-sea salt (nss) sulfate levels were found to increase when air masses came from northeastern Europe and higher dispersive conditions of the atmosphere were detected. Instead, higher nitrate and lower nss-sulfate concentrations were registered in correspondence with air mass stagnation and attributed to local traffic source. In some cases, combinations of local and trans-boundary sources were observed. Finally, statistical investigations such as the principal component analysis (PCA) applied on hourly ion concentrations and the cluster analyses, the Potential Source Contribution Function (PSCF) and the Concentration Weighted Trajectory (CWT) models computed on hourly back-trajectories enabled to complete a cognitive framework

  7. Time-resolved studies of the interactions between pulsed lasers and aerosols.

    PubMed

    DeForest, Cindy L; Qian, Jun; Miller, Roger E

    2002-09-20

    Studies of the interaction between a pulsed CO2 laser and micrometer-sized aqueous and organic particles by use of light-scattering methods and step-scan Fourier-transform infrared (FTIR) spectroscopy are reported. Visible two-color extinction experiments indicate primary particle shattering, accompanied by a high fraction of vaporization, followed by secondary particle evaporation. The extent of the latter depends on the pulse intensity and particle composition. Angle-resolved light-scattering investigations provide insight into the aerosol size distribution and temperature following the pulsed heating event. The time dependence of the vapor plume, monitored with step-scan FTIR spectroscopy, confirms that a large fraction of the initial particle is quickly evaporated during the shattering event, followed by secondary fragment evaporation and thermal expansion.

  8. SHIELDS: A battlespace Fraunhofer line discriminator for real-time aerosol cloud analysis

    NASA Astrophysics Data System (ADS)

    Watchorn, S.; Noto, J.; Anderson, J.; Sioris, C. S.; Migliozzi, M. A.

    2007-09-01

    Fraunhofer Line Discrimination (FLD) is a passive optical spectroscopy technique with potential for battlefield remote sensing of aerosol targets, as well as other military and academic applications. The Spatial Heterodyne Interferometer for Emergent Line Discrimination Spectroscopy (SHIELDS) will provide real-time remote sensing using FLD. The unit will be contained in a man-portable box to provide heads-up detection of dangerous chemicals in target clouds. The spectrometer employed will be the monolithic Spatial Heterodyne Spectrometer (SHS). One SHIELDS unit will feature a monolithic SHS to look at the 589-nm Solar Fraunhofer doublet. A second monolith will be built, using novel designs, to look at several different Fraunhofer lines of interest, all in the visible (H-b, Mg, H-a). The finished monoliths will be tested on laboratory targets, and the final complete SHIELDS unit will be further tested in the field.

  9. Linking granulation performance with residence time and granulation liquid distributions in twin-screw granulation: An experimental investigation.

    PubMed

    Kumar, Ashish; Alakarjula, Maija; Vanhoorne, Valérie; Toiviainen, Maunu; De Leersnyder, Fien; Vercruysse, Jurgen; Juuti, Mikko; Ketolainen, Jarkko; Vervaet, Chris; Remon, Jean Paul; Gernaey, Krist V; De Beer, Thomas; Nopens, Ingmar

    2016-07-30

    Twin-screw granulation is a promising wet granulation technique for the continuous manufacturing of pharmaceutical solid dosage forms. A twin screw granulator displays a short residence time. Thus, the solid-liquid mixing must be achieved quickly by appropriate arrangement of transport and kneading elements in the granulator screw allowing the production of granules with a size distribution appropriate for tableting. The distribution of residence time and granulation liquid is governed by the field conditions (such as location and length of mixing zones) in the twin-screw granulator, thus contain interesting information on granulation time, mixing and resulting sub-processes such as wetting, aggregation and breakage. In this study, the impact of process (feed rate, screw speed and liquid-to-solid ratio) and equipment parameters (number of kneading discs and stagger angle) on the residence time (distribution), the granulation liquid-powder mixing and the resulting granule size distributions during twin-screw granulation were investigated. Residence time and axial mixing data was extracted from tracer maps and the solid-liquid mixing was quantified from moisture maps, obtained by monitoring the granules at the granulator outlet using near infra-red chemical imaging (NIR-CI). The granule size distribution was measured using the sieving method. An increasing screw speed dominantly reduced the mean residence time. Interaction of material throughput with the screw speed and with the number of kneading discs led to most variation in the studied responses including residence time and mixing capacity. At a high screw speed, granulation yield improved due to high axial mixing. However, increasing material throughput quickly lowers the yield due to insufficient mixing of liquid and powder. Moreover, increasing liquid-to-solid ratio resulted in more oversized granules, and the fraction of oversized granules further increased at higher throughput. Although an increasing number

  10. Sustained Residence Times for Miocene Silicic Magmas of the Yellowstone Hotspot

    NASA Astrophysics Data System (ADS)

    Cathey, H. E.; Nash, B. P.

    2001-12-01

    The length of time over which large volume silicic magmas may persist in the crust is poorly constrained, and recent estimates have ranged from a few tens of thousands of years to over 1.0 myr. Compositional relationships among the ten eruptive units of the 12.7 - 10.5 Ma Cougar Point Tuff suggest that a common, long-lived reservoir for these magmas persisted throughout the 2.2 myr explosive phase of the Bruneau-Jarbidge eruptive center along the track of the Yellowstone hotspot. Low crystal content and high temperatures (usually greater than 900 degrees C) indicate that the magmas were close to their liquidi. Evidence for the persistence of several discrete magma volumes in the reservoir is contained in multiple compositional modes of glass in basal fallout tuffs and in the recurrence of identical sets of mineral compositional modes in successive eruptions. Multiple modes of glass composition are a common feature in many explosive eruptions of the Yellowstone hotspot. In the Cougar Point Tuff, recurrence intervals of identical modes of glass and pyroxene range from 0.3 to 1.1 Ma, and suggest residence times of similar duration. Pyroxene thermometry indicates that compositionally distinct liquids erupted in the same event differed in temperature by 25-70 degrees C. Eruption ages, pyroxene and glass compositions, magma temperatures, and isotopic ratios for the Cougar Point Tuff are consistent with a long-lived, dynamically evolving magma reservoir that was chemically and thermally zoned in a step-wise fashion, and composed of multiple discrete compositional layers. A continental hotspot, where heat is supplied continually to the lower crust by advection of basalt from the mantle, is the optimum tectonic setting for sustaining silicic melts near their liquidi for extended durations. Neodymium isotopic ratios in the Cougar Point Tuff increase systematically with successive eruptions (eNd -8.5 to -6.6), and record a substantial and increasing mantle contribution to the

  11. Estimation of gastric residence time of the Heidelberg capsule in humans: effect of varying food composition

    SciTech Connect

    Mojaverian, P.; Ferguson, R.K.; Vlasses, P.H.; Rocci, M.L. Jr.; Oren, A.; Fix, J.A.; Caldwell, L.J.; Gardner, C.

    1985-08-01

    In animal and human studies, the gastric emptying of large (greater than 1 mm) indigestible solids is due to the activity of the interdigestive migrating myoelectric complex. The gastric residence time (GRT) of an orally administered, nondigestible, pH-sensitive, radiotelemetric device (Heidelberg capsule) was evaluated in three studies in healthy volunteers. In 6 subjects, the GRT of the Heidelberg capsule was compared with the half-emptying time (t1/2) of diethylenetriaminepentaacetic acid labeled with technetium 99m after a 4-ml/kg liquid fatty meal. The mean (+/-SD) GRT (4.3 +/- 1.4 h) was significantly (p less than 0.001) longer than the mean t1/2 (1.1 +/- 0.3 h); the GRT was prolonged compared with the t1/2 in each subject. In a randomized, crossover trial in 10 subjects, frequent feeding caused a dramatic prolongation in mean GRT of the capsule compared with the fasting state (greater than 14.5 vs. 0.5 h, p less than 0.005). In another crossover study in 6 subjects, the GRT of the capsule was evaluated after an overnight fast, a standard breakfast including solid food, and a liquid meal (i.e., 200 ml of diluted light cream). The mean GRT was 2.6 +/- 0.9 h after the liquid meal vs. 1.2 +/- 0.8 h after fasting (p less than 0.025). The mean GRT after the breakfast was 4.8 +/- 1.5 h, which was significantly greater than that after fasting (p less than 0.001) and after the liquid meal (p less than 0.01). These data suggest that the GRT of the Heidelberg capsule is a marker of the interdigestive migrating myoelectric complex in humans, the interdigestive migrating myoelectric complex can be markedly delayed by frequent feedings with solids, and the interdigestive migrating myoelectric complex is delayed by both liquid and solid meals.

  12. Characterization of soluble iron in urban aerosols using near-real time data

    NASA Astrophysics Data System (ADS)

    Oakes, Michelle; Rastogi, Neeraj; Majestic, Brian J.; Shafer, Martin; Schauer, James J.; Edgerton, Eric S.; Weber, Rodney J.

    2010-08-01

    We present the first near-real time (12 min) measurements of fine particle (PM2.5) water soluble ferrous iron (WS_Fe(II)) measured in two urban settings: Dearborn Michigan, and Atlanta, Georgia. A new approach was used to measure WS_Fe(II) involving a Particle-into-Liquid Sampler (PILS) coupled to a liquid waveguide capillary cell (LWCC) and UV/VIS spectrometer. We found no clear diurnal trends in WS_Fe(II) at any urban site studied. High temporal variability, however, was observed at all urban sites, where concentrations often changed from the method limit of detection (4.6 ng m-3) to approximately 300 to 400 ng m-3, lasting only a few hours. These transient events predominately occurred during times of low wind speeds and appeared to be from local sources or processes. In Atlanta, several WS_Fe(II) events were associated with sulfate plumes, and highest WS_Fe(II) concentrations were found in plumes of highest apparent aerosol acidity. At all locations studied, WS_Fe(II) was poorly correlated (R2 < 0.34) with light-absorbing aerosol, indicating no direct linkage between mobile source emissions and enhanced WS_Fe(II) concentrations. WS_Fe(II) measured within a prescribed forest-burn was strongly correlated with water soluble potassium (R2 = 0.88; WS_Fe(II)/WS_K = 15 mg/g), pointing to biomass burning as a source of WS_Fe(II); however, peak concentrations within the fire were low compared to transient events observed at the urban sites. Overall, WS_Fe(II) temporal trends for these urban sites consisted of low background concentrations with periodic short duration transient events that appear to be linked to unique industrial emissions or atmospheric processing of industrial emissions that form WS_Fe(II).

  13. Training for Efficiency: Work, Time, and Systems-Based Practice in Medical Residency

    ERIC Educational Resources Information Center

    Szymczak, Julia E.; Bosk, Charles L.

    2012-01-01

    Medical residency is a period of intense socialization with a heavy workload. Previous sociological studies have identified efficiency as a practical skill necessary for success. However, many contextual features of the training environment have undergone dramatic change since these studies were conducted. What are the consequences of these…

  14. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    implicating manmade fluorocarbons as cause of the --'ozone hole'; (5) The current soot loading is too small to be of environmental (radiative and chemical) consequence. However, the fractal nature of soot distinguishes it aerodynamically and radiatively from sulfuric acid droplets such that its stratospheric residence time is longer, mainly because of vertical transport against gravity due to gravito-photophoretic forces. Thus it may accumulate and become of environmental concern in the future.

  15. A multitracer study of radionuclides in Lake Zurich, Switzerland: 2. Residence times, removal processes, and sediment focusing

    NASA Astrophysics Data System (ADS)

    Wieland, E.; Santschi, P. H.; Beer, J.

    1991-09-01

    Residence and settling times of particles and particle-reactive nuclides evaluated from in situ tracer studies can be used as diagnostic indicators of trace element pathways in lakes. Natural (e.g., 210Pb, 7Be, and 10Be ) and artificial (i.e., Chernobyl 137Cs) radionuclide fluxes through Lake Zurich (at 50 and 130 m depth) from 1983 to 1987, atmospheric fluxes of the same nuclides and fluxes of 10Be during 1987 allowed the calculation of nuclide residence times as well as particle settling and transit velocities in Lake Zurich. The residence time of 210Pb in the lake is approximately 1 month and, hence, of the same order as the residence times of particles and stable Pb. Steady state residence times for 7Be were calculated as 150-170 days, while non steady state, instantaneous removal residence times ranged from 50 to 800 days. Polonium 210 was removed from Lake Zurich with removal times of 10-26, months indicating slow removal processes or efficient recycling in the lake water. Transit velocities of particles, calculated from the attenuation of Chernobyl 137Cs fluxes at 50 m and 130 m depth during early May 1986, were 17 m d-1, while 2-4.5 m d-1 was calculated as an effective settling velocity from the attenuation of 7Be fluxes at 130 m depth as compared to 50 m depth. Model calculations reveal that the overall removal process of atmospherically deposited 7Be from the water column to the sediments is mainly controlled by the adsorption/coagulation step and not by the rate of particle settling. Extra inputs of 10Be, 210Pb, or 137Cs into the lower trap (i.e., "rebound flux"), originating from episodic lateral inputs of fine particles with a high content of 210Pb, 10Be, and 137s, were observed during the lake stratification period (i.e., summer). This novel observation of summertime radionuclide and sediment focusing is different from previously described wind-generated resuspension and focusing effects caused by river plumes and lake sediments during the stagnation

  16. Chemical composition profiles during alkaline flooding at different temperatures and extended residence times

    SciTech Connect

    Aflaki, R.; Handy, L.L.

    1992-12-01

    The objective of this work was to investigate whether or not caustic sweeps the major portion of the reservoir efficiently during an alkaline flood process. It was also the objective of this work to study the state of final equilibrium during a caustic flood through determination of the pH and chemical composition profiles along the porous medium. For this purpose, a long porous medium which provided extended residence times was required. It was necessary to set up the porous medium such that the changes in the pH and chemical composition of the solution could be monitored. Four Berea sandstone cores (8 in. length and1 in. diameter) placed in series provided the desired length and the opportunity for sampling in-between cores. This enabled establishment of pH and chemical composition profiles. The experiments were run at, temperatures up.to 180{degrees}C, and the flow rates varied from 4.8 to 0.2 ft/day. The samples were analyzed for pH and for Si and Al concentrations.The results show that caustic consumption is insignificant for temperatures up to 100{degrees}C. Above 100{degrees}C consumption increases and is accompanied by a significant decrease in pH. The sharp decline in pH also coincides with a sharp decline in concentration of silica in solution. The results also show that alumina is removed from the solution and solubility of alumina ultimately reaches zero. Sharp silica and pH declines take place even in the absence of any alumina in solution. As a result, removal of silica from solution is attributed to the irreversible caustic/rock interaction. This interaction is in the form of chemisorption reactions in which silica is adsorbed onto the rock surface consuming hydroxyl ion. Once these reactions were satisfied, caustic breakthrough occurs at a high pH. However, significant pore volumes of caustic must be injected for completion of the chemisorption.

  17. Chemical composition profiles during alkaline flooding at different temperatures and extended residence times

    SciTech Connect

    Aflaki, R.; Handy, L.L.

    1992-12-01

    The objective of this work was to investigate whether or not caustic sweeps the major portion of the reservoir efficiently during an alkaline flood process. It was also the objective of this work to study the state of final equilibrium during a caustic flood through determination of the pH and chemical composition profiles along the porous medium. For this purpose, a long porous medium which provided extended residence times was required. It was necessary to set up the porous medium such that the changes in the pH and chemical composition of the solution could be monitored. Four Berea sandstone cores (8 in. length and1 in. diameter) placed in series provided the desired length and the opportunity for sampling in-between cores. This enabled establishment of pH and chemical composition profiles. The experiments were run at, temperatures up.to 180[degrees]C, and the flow rates varied from 4.8 to 0.2 ft/day. The samples were analyzed for pH and for Si and Al concentrations.The results show that caustic consumption is insignificant for temperatures up to 100[degrees]C. Above 100[degrees]C consumption increases and is accompanied by a significant decrease in pH. The sharp decline in pH also coincides with a sharp decline in concentration of silica in solution. The results also show that alumina is removed from the solution and solubility of alumina ultimately reaches zero. Sharp silica and pH declines take place even in the absence of any alumina in solution. As a result, removal of silica from solution is attributed to the irreversible caustic/rock interaction. This interaction is in the form of chemisorption reactions in which silica is adsorbed onto the rock surface consuming hydroxyl ion. Once these reactions were satisfied, caustic breakthrough occurs at a high pH. However, significant pore volumes of caustic must be injected for completion of the chemisorption.

  18. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny

    PubMed Central

    Gallagher, R V; Randall, R P; Leishman, M R

    2015-01-01

    The ability to predict which alien plants will transition from naturalized to invasive prior to their introduction to novel regions is a key goal for conservation and has the potential to increase the efficacy of weed risk assessment (WRA). However, multiple factors contribute to plant invasion success (e.g., functional traits, range characteristics, residence time, phylogeny), and they all must be taken into account simultaneously in order to identify meaningful correlates of invasion success. We compiled 146 pairs of phylogenetically paired (congeneric) naturalized and invasive plant species in Australia with similar minimum residence times (i.e., time since introduction in years). These pairs were used to test for differences in 5 functional traits (flowering duration, leaf size, maximum height, specific leaf area [SLA], seed mass) and 3 characteristics of species’ native ranges (biome occupancy, mean annual temperature, and rainfall breadth) between naturalized and invasive species. Invasive species, on average, had larger SLA, longer flowering periods, and were taller than their congeneric naturalized relatives. Invaders also exhibited greater tolerance for different environmental conditions in the native range, where they occupied more biomes and a wider breadth of rainfall and temperature conditions than naturalized congeners. However, neither seed mass nor leaf size differed between pairs of naturalized and invasive species. A key finding was the role of SLA in distinguishing between naturalized and invasive pairs. Species with high SLA values were typically associated with faster growth rates, more rapid turnover of leaf material, and shorter lifespans than those species with low SLA. This suite of characteristics may contribute to the ability of a species to transition from naturalized to invasive across a wide range of environmental contexts and disturbance regimes. Our findings will help in the refinement of WRA protocols, and we advocate the

  19. Determination of Maintaining Time of Temperature Traces of Aerosol Droplet Water Flows During Motion in a Flame

    NASA Astrophysics Data System (ADS)

    Antonov, D. V.; Voitkov, I. S.; Strizhak, P. A.

    2016-02-01

    To develop fire fighting technologies, the temperatures of combustible products were measured after passing an aerosol droplet flow of water through the flames (with monitored temperatures). It was applied the aerosol flows with droplets of sizes less than 100 μm, 100-200 μm, and 200-300 μm. Investigations were conducted at a temperature of combustible products from 500 K to 900 K. Temperatures of gases in droplet flow traces and maintaining times of relatively low temperatures in these areas (it can be considered as temperature trace) were defined. It was obtained the satisfactory agreement of experimental results and numerical simulation data.

  20. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    PubMed Central

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  1. Patterns and processes of fluvial discontinuity and sediment residence times on the lower Macquarie River, Murray-Darling Basin, Australia

    NASA Astrophysics Data System (ADS)

    Larkin, Zacchary; Ralph, Timothy; Hesse, Paul

    2014-05-01

    The supply, transport and deposition of fine-grained sediment are important factors determining the morphology of lowland rivers that experience channel breakdown and have wetlands on their lower reaches. Sediment supply and residence time determine whether reaches accumulate sediment (wetland areas) or erode sediment (channelised areas). This research investigated how processes of sedimentation and erosion drive channel breakdown and reformation in the Macquarie Marshes, a large anastomosing wetland system in the Murray-Darling Basin, Australia. Channel breakdown is attributed to a dominance of in-stream sedimentation that leads to a point where single-thread river channels cannot be maintained and so avulsion and floodout processes create smaller distributary channels and wetlands. Avulsions may reconnect channels, changing the sediment supply regime in those particular channels. Channel reformation occurs on the trunk stream where the floodplain gradient steepens enough to allow convergence of small tributaries, locally increasing stream power (and erosive energy in channels). As each river reach reforms following channel breakdown, the channel is smaller, shallower and straighter than the previous reach. One reach in this system recently (in the 1970s) became connected with a parallel channel through avulsion and has morphological characteristics that indicate a significant change in flow and sediment supply. In a pilot study using uranium-series disequilibrium methods and OSL dating, a sediment residence time of 58 +/- 2 ka was determined for sediment in the base of the active channel and a sediment residence time of 153 +/- 5 ka was determined for sediment buried in an adjacent meander that was cut off from the main channel 1,000 years ago. The apparent dramatic decrease in sediment residence time to this active channel poses an interesting question about the role of relatively new channels in transporting and depositing sediment more rapidly than the

  2. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    DOE PAGES

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-08-26

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amountsmore » of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. In conclusion, the reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high

  3. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor

    SciTech Connect

    Morgan, Trevor James; Turn, Scott Q.; George, Anthe

    2015-08-26

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. In conclusion, the reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high

  4. Fast Pyrolysis Behavior of Banagrass as a Function of Temperature and Volatiles Residence Time in a Fluidized Bed Reactor.

    PubMed

    Morgan, Trevor James; Turn, Scott Q; George, Anthe

    2015-01-01

    A reactor was designed and commissioned to study the fast pyrolysis behavior of banagrass as a function of temperature and volatiles residence time. Four temperatures between 400 and 600°C were examined as well as four residence times between ~1.0 and 10 seconds. Pyrolysis product distributions of bio-oil, char and permanent gases were determined at each reaction condition. The elemental composition of the bio-oils and chars was also assessed. The greatest bio-oil yield was recorded when working at 450°C with a volatiles residence time of 1.4 s, ~37 wt% relative to the dry ash free feedstock (excluding pyrolysis water). The amounts of char (organic fraction) and permanent gases under these conditions are ~4 wt% and 8 wt% respectively. The bio-oil yield stated above is for 'dry' bio-oil after rotary evaporation to remove solvent, which results in volatiles and pyrolysis water being removed from the bio-oil. The material removed during drying accounts for the remainder of the pyrolysis products. The 'dry' bio-oil produced under these conditions contains ~56 wt% carbon which is ~40 wt% of the carbon present in the feedstock. The oxygen content of the 450°C, 1.4 s 'dry' bio-oil is ~38 wt%, which accounts for ~33 wt% of the oxygen in the feedstock. At higher temperature or longer residence time less bio-oil and char is recovered and more gas and light volatiles are produced. Increasing the temperature has a more significant effect on product yields and composition than increasing the volatiles residence time. At 600°C and a volatiles residence time of 1.2 seconds the bio-oil yield is ~21 wt% of the daf feedstock, with a carbon content of 64 wt% of the bio-oil. The bio-oil yield from banagrass is significantly lower than from woody biomass or grasses such as switchgrass or miscanthus, but is similar to barley straw. The reason for the low bio-oil yield from banagrass is thought to be related to its high ash content (8.5 wt% dry basis) and high concentration of alkali

  5. Recovering FICA tax paid on resident stipends: time for a strategic review.

    PubMed

    Sykes, Thomas D

    2009-01-01

    Teaching hospitals often have tens of millions in FICA-tax refund claims pending with the IRS-claims that reach back to taxes paid in the mid-1990s. Court decisions rendered over the past few years in this area have been positive for teaching hospitals and their residents. In light of recent trends, it would be prudent for teaching hospitals to update their strategies for moving these long-pending refund claims forward to a successful resolution.

  6. Caregiver Person-Centeredness and Behavioral Symptoms in Nursing Home Residents With Dementia: A Timed-Event Sequential Analysis

    PubMed Central

    Gilmore-Bykovskyi, Andrea L.; Roberts, Tonya J.; Bowers, Barbara J.; Brown, Roger L.

    2015-01-01

    Purpose: Evidence suggests that person-centered caregiving approaches may reduce dementia-related behavioral symptoms; however, little is known about the sequential and temporal associations between specific caregiver actions and behavioral symptoms. The aim of this study was to identify sequential associations between caregiver person-centered actions, task-centered actions, and resident behavioral symptoms and the temporal variation within these associations. Design and Methods: Videorecorded observations of naturally occurring interactions (N = 33; 724min) between 12 nursing home (NH) residents with dementia and eight certified nursing assistants were coded for caregiver person-centered actions, task-centered actions, and resident behavioral symptoms and analyzed using timed-event sequential analysis. Results: Although caregiver actions were predominantly person-centered, we found that resident behavioral symptoms were significantly more likely to occur following task-centered caregiver actions than person-centered actions. Implications: Findings suggest that the person-centeredness of caregivers is sequentially and temporally related to behavioral symptoms in individuals with dementia. Additional research examining the temporal structure of these relationships may offer valuable insights into the utility of caregiver person-centeredness as a low-cost strategy for improving behavioral symptom management in the NH setting. PMID:26055782

  7. Size distribution, mixing state and source apportionments of black carbon aerosols in London during winter time

    NASA Astrophysics Data System (ADS)

    Liu, D.; Allan, J. D.; Young, D. E.; Coe, H.; Beddows, D.; Fleming, Z. L.; Flynn, M. J.; Gallagher, M. W.; Harrison, R. M.; Lee, J.; Prevot, A. S. H.; Taylor, J. W.; Yin, J.; Williams, P. I.; Zotter, P.

    2014-06-01

    Black carbon aerosols (BC) at a London urban site were characterized in both winter and summer time 2012 during the Clean Air for London (ClearfLo) project. Positive matrix factorization (PMF) factors of organic aerosol mass spectra measured by a high resolution aerosol mass spectrometer (HR-AMS) showed traffic-dominant sources in summer but in winter the influence of additional non-traffic sources became more important, mainly from solid fuel sources (SF). Measurements using a single particle soot photometer (SP2, DMT), showed the traffic-dominant BC exhibited an almost uniform BC core size (Dc) distribution with very thin coating thickness throughout the detectable range of Dc. However the size distribution of Dc (project average mass median Dc = 149 ± 22 nm in winter, and 120 ± 6 nm in summer) and BC coating thickness varied significantly in winter. A novel methodology was developed to attribute the BC number concentrations and mass abundances from traffic (BCtr) and from SF (BCsf), by using a 2-D histogram of the particle optical properties as a function of BC core size, as measured by the SP2. The BCtr and BCsf showed distinctly different Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC-AMS-PMF method), and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method). Air masses that originated from westerly (W), southeasterly (SE), or easterly (E) sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm, and 169 ± 29 nm respectively. The corresponding bulk relative coating thickness of BC (coated particle size / BC core - Dp / Dc) for these same sectors was 1.28 ± 0.07, 1.45 ± 0

  8. Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants.

    PubMed

    Hui, Cang; Richardson, David M; Pyšek, Petr; Le Roux, Johannes J; Kučera, Tomáš; Jarošík, Vojtěch

    2013-01-01

    Species gain membership of regional assemblages by passing through multiple ecological and environmental filters. To capture the potential trajectory of structural changes in regional meta-communities driven by biological invasions, one can categorize species pools into assemblages of different residence times. Older assemblages, having passed through more environmental filters, should become more functionally ordered and structured. Here we calculate the level of compartmentalization (modularity) for three different-aged assemblages (neophytes, introduced after 1500 AD; archaeophytes, introduced before 1500 AD, and natives), including 2,054 species of vascular plants in 302 reserves in central Europe. Older assemblages are more compartmentalized than younger ones, with species composition, phylogenetic structure and habitat characteristics of the modules becoming increasingly distinctive. This sheds light on two mechanisms of how alien species are functionally incorporated into regional species pools: the settling-down hypothesis of diminishing stochasticity with residence time, and the niche-mosaic hypothesis of inlaid neutral modules in regional meta-communities.

  9. Enhanced aerodynamic reach of vapor and aerosol sampling for real-time mass spectrometric detection using Venturi-assisted entrainment and ionization.

    PubMed

    Forbes, Thomas P; Staymates, Matthew

    2017-03-08

    Venturi-assisted ENTrainment and Ionization (VENTI) was developed, demonstrating efficient entrainment, collection, and transport of remotely sampled vapors, aerosols, and dust particulate for real-time mass spectrometry (MS) detection. Integrating the Venturi and Coandă effects at multiple locations generated flow and analyte transport from non-proximate locations and more importantly enhanced the aerodynamic reach at the point of collection. Transport through remote sampling probes up to 2.5 m in length was achieved with residence times on the order of 10(-2) s to 10(-1) s and Reynolds numbers on the order of 10(3) to 10(4). The Venturi-assisted entrainment successfully enhanced vapor collection and detection by greater than an order of magnitude at 20 cm stand-off (limit of simple suction). This enhancement is imperative, as simple suction restricts sampling to the immediate vicinity, requiring close proximity to the vapor source. In addition, the overall aerodynamic reach distance was increased by approximately 3-fold over simple suction under the investigated conditions. Enhanced aerodynamic reach was corroborated and observed with laser-light sheet flow visualization and schlieren imaging. Coupled with atmospheric pressure chemical ionization (APCI), the detection of a range of volatile chemical vapors; explosive vapors; explosive, narcotic, and mustard gas surrogate (methyl salicylate) aerosols; and explosive dust particulate was demonstrated. Continuous real-time Venturi-assisted monitoring of a large room (approximately 90 m(2) area, 570 m(3) volume) was demonstrated for a 60-min period without the remote sampling probe, exhibiting detection of chemical vapors and methyl salicylate at approximately 3 m stand-off distances within 2 min of exposure.

  10. Atmospheric residence time of (210)Pb determined from the activity ratios with its daughter radionuclides (210)Bi and (210)Po.

    PubMed

    Semertzidou, P; Piliposian, G T; Appleby, P G

    2016-08-01

    The residence time of (210)Pb created in the atmosphere by the decay of gaseous (222)Rn is a key parameter controlling its distribution and fallout onto the landscape. These in turn are key parameters governing the use of this natural radionuclide for dating and interpreting environmental records stored in natural archives such as lake sediments. One of the principal methods for estimating the atmospheric residence time is through measurements of the activities of the daughter radionuclides (210)Bi and (210)Po, and in particular the (210)Bi/(210)Pb and (210)Po/(210)Pb activity ratios. Calculations used in early empirical studies assumed that these were governed by a simple series of equilibrium equations. This approach does however have two failings; it takes no account of the effect of global circulation on spatial variations in the activity ratios, and no allowance is made for the impact of transport processes across the tropopause. This paper presents a simple model for calculating the distributions of (210)Pb, (210)Bi and (210)Po at northern mid-latitudes (30°-65°N), a region containing almost all the available empirical data. By comparing modelled (210)Bi/(210)Pb activity ratios with empirical data a best estimate for the tropospheric residence time of around 10 days is obtained. This is significantly longer than earlier estimates of between 4 and 7 days. The process whereby (210)Pb is transported into the stratosphere when tropospheric concentrations are high and returned from it when they are low, significantly increases the effective residence time in the atmosphere as a whole. The effect of this is to significantly enhance the long range transport of (210)Pb from its source locations. The impact is illustrated by calculations showing the distribution of (210)Pb fallout versus longitude at northern mid-latitudes.

  11. Hydrodynamics, temperature/salinity variability and residence time in the Chilika lagoon during dry and wet period: Measurement and modeling

    NASA Astrophysics Data System (ADS)

    Mahanty, M. M.; Mohanty, P. K.; Pattnaik, A. K.; Panda, U. S.; Pradhan, S.; Samal, R. N.

    2016-08-01

    This paper investigated the hydrodynamics, spatio-temporal variability of temperature/salinity and the residence time of tracer concentrations in a largest brackish water coastal lagoon in Asia, namely the Chilika lagoon, India. An integrated approach combined the measurement and 2D hydrodynamic-advection/dispersion model is used to simulate circulation and temperature/salinity, and estimated the water residence time in lagoon under different forcing mechanisms, such as tide, wind and freshwater discharge during the dry and wet periods. Water circulation inside the lagoon is simulated when wind is included with the tide only forcing during dry period, and freshwater influx is included with the tide and wind forcing during wet period. Under the realistic forcing conditions, the computed temporal variability of water temperature and salinity are well correlated with the measurements in both the periods. The spatial variations of water temperature within the lagoon is influenced by the meteorological conditions, tide and freshwater influx as well as the shallowness of the lagoon, whereas the salinity is spatially controlled by the freshwater influx from the riverine system and seawater intrusion through the tidal inlets. The numerical model results show that in the Chilika lagoon tidal and river influx affect significantly the residence time spatially, and is site specific. The residence time varies from values of 4-5 days in the outer channel (OC) and 132 days at the northern sector (NS) in the main body of lagoon. The current study represents a first attempt to use a combined model approach, which is therefore, a useful tool to support the ecological implication of the lagoon ecosystem.

  12. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    NASA Astrophysics Data System (ADS)

    Green, Christopher T.; Jurgens, Bryant C.; Zhang, Yong; Starn, J. Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-12-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3- reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He), 14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3- and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3- reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3- trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  13. Regional oxygen reduction and denitrification rates in groundwater from multi-model residence time distributions, San Joaquin Valley, USA

    USGS Publications Warehouse

    Green, Christopher T.; Jurgens, Bryant; Zhang, Yong; Starn, Jeffrey; Singleton, Michael J.; Esser, Bradley K.

    2016-01-01

    Rates of oxygen and nitrate reduction are key factors in determining the chemical evolution of groundwater. Little is known about how these rates vary and covary in regional groundwater settings, as few studies have focused on regional datasets with multiple tracers and methods of analysis that account for effects of mixed residence times on apparent reaction rates. This study provides insight into the characteristics of residence times and rates of O2 reduction and denitrification (NO3− reduction) by comparing reaction rates using multi-model analytical residence time distributions (RTDs) applied to a data set of atmospheric tracers of groundwater age and geochemical data from 141 well samples in the Central Eastern San Joaquin Valley, CA. The RTD approach accounts for mixtures of residence times in a single sample to provide estimates of in-situ rates. Tracers included SF6, CFCs, 3H, He from 3H (tritiogenic He),14C, and terrigenic He. Parameter estimation and multi-model averaging were used to establish RTDs with lower error variances than those produced by individual RTD models. The set of multi-model RTDs was used in combination with NO3− and dissolved gas data to estimate zero order and first order rates of O2 reduction and denitrification. Results indicated that O2 reduction and denitrification rates followed approximately log-normal distributions. Rates of O2 and NO3− reduction were correlated and, on an electron milliequivalent basis, denitrification rates tended to exceed O2 reduction rates. Estimated historical NO3− trends were similar to historical measurements. Results show that the multi-model approach can improve estimation of age distributions, and that relatively easily measured O2 rates can provide information about trends in denitrification rates, which are more difficult to estimate.

  14. Natural radionuclides (210)Po and (210)Pb in the Delaware and Chesapeake Estuaries: modeling scavenging rates and residence times.

    PubMed

    Marsan, D; Rigaud, S; Church, T

    2014-12-01

    During the spring and summer months of 2012, (210)Po and (210)Pb activity were measured in the dissolved and particulate phases from the Delaware and upper Chesapeake estuaries. The upper Delaware estuary, near the freshwater end member, was characterized by high-suspended matter concentrations that scavenged dissolved (210)Po and (210)Pb. Box models were applied using mass balance calculations to assess the nuclides residence times in each estuary. Only 60% of the dissolved (210)Po and 55% of the dissolved (210)Pb from the Delaware estuary were exported to coastal waters. A large fraction of soluble (210)Po and (210)Pb within the estuary was either reversibly adsorbed onto suspended particles, trapped in sediment accumulation zones (such as intertidal marshes), bioaccumulated into phytoplankton and discharged to the coastal ocean. The upper Chesapeake estuary was largely characterized by sub-oxic bottom waters that contained higher concentrations of dissolved (210)Po and (210)Pb, hypothesized to be subjected to redox cycling of manganese. The Delaware and Chesapeake estuary mean residence times for (210)Po differed significantly at 86 ± 7 and 126 ± 10 days respectively, while they were similar for (210)Pb (67 ± 6-55 ± 5 days). The difference in residence times corresponds to the greater extent of biogeochemical scavenging and regeneration processes within the upper Chesapeake.

  15. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    PubMed Central

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-01-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents. PMID:27094554

  16. Receptor residence time trumps drug-likeness and oral bioavailability in determining efficacy of complement C5a antagonists

    NASA Astrophysics Data System (ADS)

    Seow, Vernon; Lim, Junxian; Cotterell, Adam J.; Yau, Mei-Kwan; Xu, Weijun; Lohman, Rink-Jan; Kok, W. Mei; Stoermer, Martin J.; Sweet, Matthew J.; Reid, Robert C.; Suen, Jacky Y.; Fairlie, David P.

    2016-04-01

    Drug discovery and translation are normally based on optimizing efficacy by increasing receptor affinity, functional potency, drug-likeness (rule-of-five compliance) and oral bioavailability. Here we demonstrate that residence time of a compound on its receptor has an overriding influence on efficacy, exemplified for antagonists of inflammatory protein complement C5a that activates immune cells and promotes disease. Three equipotent antagonists (3D53, W54011, JJ47) of inflammatory responses to C5a (3nM) were compared for drug-likeness, receptor affinity and antagonist potency in human macrophages, and anti-inflammatory efficacy in rats. Only the least drug-like antagonist (3D53) maintained potency in cells against higher C5a concentrations and had a much longer duration of action (t1/2 ~ 20 h) than W54011 or JJ47 (t1/2 ~ 1–3 h) in inhibiting macrophage responses. The unusually long residence time of 3D53 on its receptor was mechanistically probed by molecular dynamics simulations, which revealed long-lasting interactions that trap the antagonist within the receptor. Despite negligible oral bioavailability, 3D53 was much more orally efficacious than W54011 or JJ47 in preventing repeated agonist insults to induce rat paw oedema over 24 h. Thus, residence time on a receptor can trump drug-likeness in determining efficacy, even oral efficacy, of pharmacological agents.

  17. SUBSURFACE RESIDENCE TIMES AS AN ALGORITHM FOR AQUIFER SENSITIVITY MAPPING: TESTING THE CONCEPT WITH ANALYTIC ELEMENT GROUND WATER MODELS IN THE CONTENTNEA CREEK BASIN, NORTH CAROLINA, USA

    EPA Science Inventory

    The objective of this research is to test the utility of simple functions of spatially integrated and temporally averaged ground water residence times in shallow "groundwatersheds" with field observations and more detailed computer simulations. The residence time of water in the...

  18. The response of streambed nitrogen cycling to spatial and temporal hyporheic vertical flux patterns and associated residence times

    NASA Astrophysics Data System (ADS)

    Briggs, M. A.; Lautz, L. K.; Hare, D. K.

    2011-12-01

    Small beaver dams enhance the development of patchy micro-environments along the stream corridor by trapping sediment and creating complex streambed morphologies. This generates intricate hyporheic flux patterns that govern the exchange of oxygen and redox sensitive solutes between the water column and the streambed, and exert control on the biogeochemical cycling of nitrogen. Specifically, flowpaths from the stream into the subsurface with low residence times create oxic conditions that favor nitrification, while flowpaths with longer residence times become anoxic and favor denitrification. To investigate these processes we collected vertical profiles of pore water upstream of two beaver dams in Wyoming, USA at nine locations with varied morphology. We sampled pore water to the 0.55 m depth every week for five weeks as stream discharge dropped by 45% and subsequently measured concentrations of dissolved oxygen and several redox sensitive solutes, including nitrate. Additionally, estimates of hyporheic flux along these nine vertical profiles through time were made using high-resolution heat data combined with 1-D heat transport modeling. The data show that areas of rapid, deep hyporheic flux at the glides immediately upstream of the dams were oxygen rich, and were generally sites of moderate net nitrification to at least the 0.35 m depth. These conditions were relatively steady over the study period. Hyporheic zones at sediment bars closest to the dams were hotspots of nitrate production to a depth of 0.35 m, with nitrate concentrations increasing by as much as 400% as vertical flux fell sharply and residence times increased over the study period. In contrast, shallow bars farther upstream from the dams showed increasing fluxes and decreased residence times, which caused a shift from net denitrification to net nitrification over the period at shallow depths. These results support previous work indicating threshold behavior of nitrogen cycling in response to

  19. Particulate PAH emissions from residential biomass combustion: time-resolved analysis with aerosol mass spectrometry.

    PubMed

    Eriksson, A C; Nordin, E Z; Nyström, R; Pettersson, E; Swietlicki, E; Bergvall, C; Westerholm, R; Boman, C; Pagels, J H

    2014-06-17

    Time-resolved emissions of particulate polycyclic aromatic hydrocarbons (PAHs) and total organic particulate matter (OA) from a wood log stove and an adjusted pellet stove were investigated with high-resolution time-of-flight aerosol mass spectrometry (AMS). The highest OA emissions were found during the addition of log wood on glowing embers, that is, slow burning pyrolysis conditions. These emissions contained about 1% PAHs (of OA). The highest PAH emissions were found during fast burning under hot air starved combustion conditions, in both stoves. In the latter case, PAHs contributed up to 40% of OA, likely due to thermal degradation of other condensable species. The distribution of PAHs was also shifted toward larger molecules in these emissions. AMS signals attributed to PAHs were found at molecular weights up to 600 Da. The vacuum aerodynamic size distribution was found to be bimodal with a smaller mode (Dva ∼ 200 nm) dominating under hot air starved combustion and a larger sized mode dominating under slow burning pyrolysis (Dva ∼ 600 nm). Simultaneous reduction of PAHs, OA and total particulate matter from residential biomass combustion may prove to be a challenge for environmental legislation efforts as these classes of emissions are elevated at different combustion conditions.

  20. Characterization of indoor aerosol temporal variations for the real-time management of indoor air quality

    NASA Astrophysics Data System (ADS)

    Ciuzas, Darius; Prasauskas, Tadas; Krugly, Edvinas; Sidaraviciute, Ruta; Jurelionis, Andrius; Seduikyte, Lina; Kauneliene, Violeta; Wierzbicka, Aneta; Martuzevicius, Dainius

    2015-10-01

    The study presents the characterization of dynamic patterns of indoor particulate matter (PM) during various pollution episodes for real-time IAQ management. The variation of PM concentrations was assessed for 20 indoor activities, including cooking related sources, other thermal sources, personal care and household products. The pollution episodes were modelled in full-scale test chamber representing a standard usual living room with the forced ventilation of 0.5 h-1. In most of the pollution episodes, the maximum concentration of particles in exhaust air was reached within a few minutes. The most rapid increase in particle concentration was during thermal source episodes such as candle, cigarette, incense stick burning and cooking related sources, while the slowest decay of concentrations was associated with sources, emitting ultrafine particle precursors, such as furniture polisher spraying, floor wet mopping with detergent etc. Placement of the particle sensors in the ventilation exhaust vs. in the centre of the ceiling yielded comparable results for both measured maximum concentrations and temporal variations, indicating that both locations were suitable for the placement of sensors for the management of IAQ. The obtained data provides information that may be utilized considering measurements of aerosol particles as indicators for the real-time management of IAQ.

  1. Impact of Timing of Birth and Resident Duty-Hour Restrictions on Outcome of Small Preterm Infants

    PubMed Central

    Bell, Edward F.; Hansen, Nellie I.; Morriss, Frank H.; Stoll, Barbara J.; Ambalavanan, Namasivayam; Gould, Jeffrey B.; Laptook, Abbot R.; Walsh, Michele C.; Carlo, Waldemar A.; Shankaran, Seetha; Das, Abhik; Higgins, Rosemary D.

    2010-01-01

    OBJECTIVE To examine the impact of birth at night, on the weekend, and during July or August – the first months of the academic year – and the impact of resident duty-hour restrictions on mortality and morbidity of VLBW infants. METHODS Outcomes were analyzed for 11,137 infants with birth weight 501–1250 grams enrolled in the NICHD Neonatal Research Network registry 2001–2005. Approximately half were born before the introduction of resident duty-hour restrictions in 2003. Follow-up assessment at 18–22 months was completed for 4,508 infants. Mortality (7-day and 28-day), short-term morbidities, and neurodevelopmental outcome were examined with respect to the timing of birth: night vs day, weekend vs weekday, and July or August vs other months, and after vs before implementation of resident duty-hour restrictions. RESULTS There was no effect of hour, day, or month of birth on mortality and no impact on the risks of short-term morbidities except the risk of ROP requiring operative treatment was lower for infants born during the late night hours than during the day. There was no impact of timing of birth on neurodevelopmental outcome except the risk of hearing impairment or death was slightly lower among infants born in July or August compared with other months. The introduction of resident and fellow duty-hour restrictions had no impact on mortality or neurodevelopmental outcome. The only change in short-term morbidity after duty-hour restrictions were introduced was an increase in the risk of ROP (stage 2 or higher). CONCLUSION In this network of academic centers, the timing of birth and the introduction of duty-hour restrictions had little effect on the risks of mortality and morbidity of VLBW infants, suggesting that staffing patterns were adequate to provide consistent care. PMID:20643715

  2. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    NASA Astrophysics Data System (ADS)

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; Day, D. A.; Ortega, A. M.; Hayes, P. L.; Krechmer, J. E.; Chen, Q.; Kuwata, M.; Liu, Y. J.; de Sá, S. S.; McKinney, K.; Martin, S. T.; Hu, M.; Budisulistiorini, S. H.; Riva, M.; Surratt, J. D.; St. Clair, J. M.; Isaacman-Van Wertz, G.; Yee, L. D.; Goldstein, A. H.; Carbone, S.; Brito, J.; Artaxo, P.; de Gouw, J. A.; Koss, A.; Wisthaler, A.; Mikoviny, T.; Karl, T.; Kaser, L.; Jud, W.; Hansel, A.; Docherty, K. S.; Alexander, M. L.; Robinson, N. H.; Coe, H.; Allan, J. D.; Canagaratna, M. R.; Paulot, F.; Jimenez, J. L.

    2015-10-01

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accounted by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12-40 ‰) but varies substantially between locations, which is shown to reflect

  3. Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements

    DOE PAGES

    Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.; ...

    2015-10-23

    Substantial amounts of secondary organic aerosol (SOA) can be formed from isoprene epoxydiols (IEPOX), which are oxidation products of isoprene mainly under low-NO conditions. Total IEPOX-SOA, which may include SOA formed from other parallel isoprene oxidation pathways, was quantified by applying positive matrix factorization (PMF) to aerosol mass spectrometer (AMS) measurements. The IEPOX-SOA fractions of organic aerosol (OA) in multiple field studies across several continents are summarized here and show consistent patterns with the concentration of gas-phase IEPOX simulated by the GEOS-Chem chemical transport model. During the Southern Oxidant and Aerosol Study (SOAS), 78 % of PMF-resolved IEPOX-SOA is accountedmore » by the measured IEPOX-SOA molecular tracers (2-methyltetrols, C5-Triols, and IEPOX-derived organosulfate and its dimers), making it the highest level of molecular identification of an ambient SOA component to our knowledge. An enhanced signal at C5H6O+ (m/z 82) is found in PMF-resolved IEPOX-SOA spectra. To investigate the suitability of this ion as a tracer for IEPOX-SOA, we examine fC5H6O (fC5H6O= C5H6O+/OA) across multiple field, chamber, and source data sets. A background of ~ 1.7 ± 0.1 ‰ (‰ = parts per thousand) is observed in studies strongly influenced by urban, biomass-burning, and other anthropogenic primary organic aerosol (POA). Higher background values of 3.1 ± 0.6 ‰ are found in studies strongly influenced by monoterpene emissions. The average laboratory monoterpene SOA value (5.5 ± 2.0 ‰) is 4 times lower than the average for IEPOX-SOA (22 ± 7 ‰), which leaves some room to separate both contributions to OA. Locations strongly influenced by isoprene emissions under low-NO levels had higher fC5H6O (~ 6.5 ± 2.2 ‰ on average) than other sites, consistent with the expected IEPOX-SOA formation in those studies. fC5H6O in IEPOX-SOA is always elevated (12–40 ‰) but varies substantially between locations, which is shown

  4. Residence times and nitrate transport in ground water discharging to streams in the Chesapeake Bay Watershed

    USGS Publications Warehouse

    Lindsey, Bruce D.; Phillips, Scott; Donnelly, Colleen A.; Speiran, Gary K.; Plummer, L. Niel; Bohlke, John-Karl; Focazio, Michael J.; Burton, William C.; Busenberg, Eurybiades

    2003-01-01

    One of the major water-quality problems in the Chesapeake Bay is an overabundance of nutrients from the streams and rivers that discharge to the Bay. Some of these nutrients are from nonpoint sources such as atmospheric deposition, agricultural manure and fertilizer, and septic systems. The effects of efforts to control nonpoint sources, however, can be difficult to quantify because of the lag time between changes at the land surface and the response in the base-flow (ground water) component of streams. To help resource managers understand the lag time between implementation of management practices and subsequent response in the nutrient concentrations in the base-flow component of streamflow, a study of ground-water discharge, residence time, and nitrate transport in springs throughout the Chesapeake Bay Watershed and in four smaller watersheds in selected hydrogeomorphic regions (HGMRs) was conducted. The four watersheds were in the Coastal Plain Uplands, Piedmont crystalline, Valley and Ridge carbonate, and Valley and Ridge siliciclastic HGMRs. A study of springs to estimate an apparent age of the ground water was based on analyses for concentrations of chlorofluorocarbons in water samples collected from 48 springs in the Chesapeake Bay Watershed. Results of the analysis indicate that median age for all the samples was 10 years, with the 25th percentile having an age of 7 years and the 75th percentile having an age of 13 years. Although the number of samples collected in each HGMR was limited, there did not appear to be distinct differences in the ages between the HGMRs. The ranges were similar between the major HGMRs above the Fall Line (modern to about 50 years), with only two HGMRs of small geographic extent (Piedmont carbonate and Mesozoic Lowland) having ranges of modern to about 10 years. The median values of all the HGMRs ranged from 7 to 11 years. Not enough samples were collected in the Coastal Plain for comparison. Spring samples showed slightly

  5. Multimedia level-III partitioning and residence times of xenobiotics in water-rich and water-poor environments

    SciTech Connect

    Breitkopf, C.; Kuehne, R.; Schueuermann, G.

    2000-05-01

    The environmental fate of 10 compounds covering a wide range of intrinsic persistence and volatility is studied with a multimedia level-III fugacity model at two system temperatures (293 and 282 K) using water-rich and water-poor model environments and standard emission scenarios to air and water, respectively. The resultant level-III partitionings depend significantly on the entry mode and on the relative compartment sizes, and the variation with system temperature is more pronounced for polar compounds and when air is the primary discharge compartment. For example, the steady-state portion in soil of airborne phenol varies from 21 to 89%, whereas waterborne phenol resides in water at a rate of 100% in both water-rich and water-poor environments. For some compounds, the residence time (considering both advection and degradation) is substantially affected by intermedia transport processes such as rainfall. With airborne atrazine, the regional residence time is comparable to that of DDT and significantly greater than the ones of hexachlorobenzene, polychlorinated biphenyl 28, and lindane, although the latter have much longer media-specific half-lives and much greater hydrophobicity. The discussion includes detailed analyses of the compound properties and their impact on the level-III environmental fate.

  6. Latitude of residence and position in time zone are predictors of cancer incidence, cancer mortality, and life expectancy at birth.

    PubMed

    Borisenkov, Mikhail F

    2011-03-01

    According to the hypothesis of circadian disruption, external factors that disturb the function of the circadian system can raise the risk of malignant neoplasm and reduce life span. Recent work has shown that the functionality of the circadian system is dependent not only on latitude of residence but also on the region's position in the time zone. The purpose of the present research was to examine the influence of latitude and time zone on cancer incidence, cancer mortality, and life expectancy at birth. A stepwise multiple regression analysis was carried out on residents of 59 regions of the European part of the Russian Federation (EPRF) using age-standardized parameters (per 100,000) of cancer incidence (CI), cancer mortality (CM), and life expectancy at birth (LE, yrs) as dependent variables. The geographical coordinates (latitude and position in the time zone) of the regions were used as independent variables, controlling for the level of economic development in the regions. The same analysis was carried out for LE in 31 regions in China. Latitude was the strongest predictor of LE in the EPRF population; it explained 48% and 45% of the variability in LE of women and men, respectively. Position within the time zone accounted for an additional 4% and 3% variability of LE in women and men, respectively. The highest values for LE were observed in the southeast of the EPRF. In China, latitude was not a predictor of LE, whereas position in the time zone explained 15% and 18% of the LE variability in women and men, respectively. The highest values of LE were observed in the eastern regions of China. Both latitude and position within the time zone were predictors for CI and CM of the EPRF population. Latitude was the best predictor of stomach CI and CM; this predictor explained 46% and 50% of the variability, respectively. Position within the time zone was the best predictor of female breast CM; it explained 15% of the variability. In most cases, CI and CM increased

  7. Aerosol delivery to ventilated infant and pediatric patients.

    PubMed

    Fink, James B

    2004-06-01

    Infants have low tidal volume, vital capacity, and functional residual capacity, and short respiratory cycles (low I:E ratio), which result in a low residence time for aerosol particles and, thus, low pulmonary deposition of aerosol particles (< 1% of the nominal dose), compared to adults (8-22%). Scintigraphy data suggest aerosol deposition of < 1% in both intubated and nonintubated infants. In vitro testing appears to overestimate pulmonary deposition, partly because in vitro testing does not account for exhaled aerosol. Animal models of infant ventilation tend to agree with data from human studies. However, though only a small percentage of the aerosol deposits in the lung, infants nevertheless receive considerably more aerosolized drug per kilogram of body weight than do adults. Efficient aerosol delivery to infants is challenging because of low deposition and high inter-patient and intra-patient variability, but existing systems can effectively delivery various aerosolized drugs, including bronchodilators, anti-inflammatories, and anti-infectives. Use of a nebulizer that has a low residual volume (of drug remaining in the device after nebulization) delivers up to 13%. Awareness of the variables that impact aerosol delivery efficiency can result in more effective treatment of mechanically ventilated infants.

  8. Timing, global aerosol forcing, and climate impact of volcanic eruptions during the Common Era

    NASA Astrophysics Data System (ADS)

    Sigl, Michael; McConnell, Joseph R.; Winstrup, Mai; Welten, Kees C.; Plunkett, Gill; Ludlow, Francis; Toohey, Matthew; Büntgen, Ulf; Caffee, Marc; Kipfstuhl, Sepp; Kostick, Conor; Krüger, Kirstin; Maselli, Olivia J.; Mulvaney, Robert; Woodruff, Thomas E.

    2015-04-01

    Early documentary records report of a mysterious dust cloud that was covering Europe for 12 months in 536-37 CE, which was followed by climatic downturn and societal decline globally. Tree rings and other climate proxies have corroborated the occurrence of this event as well as characterized its extent and duration, but failed to trace its origin. By using a multi-disciplinary approach that integrates novel, global-scale age markers with state-of-the-art continuous ice core aerosol measurements, automated objective ice-core layer counting, tephra analyses, and detailed examination of historical archives, we developed an accurate volcanic forcing series from bipolar ice-core arrays back into early Roman times. Our study reconciles human and natural archives - demonstrated by the synchronicity of major volcanic eruption dates to historical documentary records and the now consistent response of tree-ring-reconstructed cooling extremes occurring in the immediate aftermath of large volcanic eruptions throughout the past 2,000 years. These findings have significant implications in multiple research fields including (1) quantification and attribution of climate variations to external solar and volcanic forcing and (2) improvement of reconstructions of climate variations from multi-proxy networks comprising tree-ring and/or ice-core data (e.g., PAGES 2k).

  9. A new time-space accounting scheme to predict stream water residence time and hydrograph source components at the watershed scale

    NASA Astrophysics Data System (ADS)

    Sayama, Takahiro; McDonnell, Jeffrey J.

    2009-07-01

    Hydrograph source components and stream water residence time are fundamental behavioral descriptors of watersheds but, as yet, are poorly represented in most rainfall-runoff models. We present a new time-space accounting scheme (T-SAS) to simulate the pre-event and event water fractions, mean residence time, and spatial source of streamflow at the watershed scale. We use a physically based hydrologic model together with field data from the well-studied Maimai M8 watershed and HJ Andrews WS10 watershed to explore how catchment properties, particularly soil depth, controls the age and source of streamflow. Our model simulates unsaturated, saturated subsurface, and surface rainfall-runoff processes. We first demonstrate the ability of the model to capture hydrograph dynamics and compare the model flow component and age simulations against measured values at the two sites. We show that the T-SAS approach can capture flow and transport dynamics for the right dominant process reasons. We then conduct a series of virtual experiments by switching soil depths between the two watersheds to understand how soil depth and its distribution control water age and source. Results suggest that thicker soils increase mean residence time and damp its temporal dynamics in response to rainfall inputs. Soil depth influenced the geographic source of streamflow, whereas pre-event water sources became more concentrated to near stream zones as soil depth increased. Our T-SAS approach provides a learning tool for linking the dynamics of residence time and time-space sources of flow at the watershed scale and may be a useful framework for other distributed rainfall-runoff models.

  10. Maintaining social cohesion is a more important determinant of patch residence time than maximizing food intake rate in a group-living primate, Japanese macaque (Macaca fuscata).

    PubMed

    Kazahari, Nobuko

    2014-04-01

    Animals have been assumed to employ an optimal foraging strategy (e.g., rate-maximizing strategy). In patchy food environments, intake rate within patches is positively correlated with patch quality, and declines as patches are depleted through consumption. This causes patch-leaving and determines patch residence time. In group-foraging situations, patch residence times are also affected by patch sharing. Optimal patch models for groups predict that patch residence times decrease as the number of co-feeding animals increases because of accelerated patch depletion. However, group members often depart patches without patch depletion, and their patch residence time deviates from patch models. It has been pointed out that patch residence time is also influenced by maintaining social proximity with others among group-living animals. In this study, the effects of maintaining social cohesion and that of rate-maximizing strategy on patch residence time were examined in Japanese macaques (Macaca fuscata). I hypothesized that foragers give up patches to remain in the proximity of their troop members. On the other hand, foragers may stay for a relatively long period when they do not have to abandon patches to follow the troop. In this study, intake rate and foraging effort (i.e., movement) did not change during patch residency. Macaques maintained their intake rate with only a little foraging effort. Therefore, the patches were assumed to be undepleted during patch residency. Further, patch residence time was affected by patch-leaving to maintain social proximity, but not by the intake rate. Macaques tended to stay in patches for short periods when they needed to give up patches for social proximity, and remained for long periods when they did not need to leave to keep social proximity. Patch-leaving and patch residence time that prioritize the maintenance of social cohesion may be a behavioral pattern in group-living primates.

  11. Real-Time Secondary Aerosol Formation Measurements using a Photooxidation Reactor (PAM) and AMS in Urban Air and Biomass Smoke

    NASA Astrophysics Data System (ADS)

    Ortega, A. M.; Cubison, M.; Hayes, P. L.; Brune, W. H.; Hu, W.; Flynn, J. H.; Grossberg, N.; Lefer, B. L.; Alvarez, S. L.; Rappenglueck, B.; Bon, D.; Graus, M.; Warneke, C.; Gilman, J. B.; Kuster, W. C.; De Gouw, J. A.; Sullivan, A. P.; Jimenez, J. L.

    2011-12-01

    Recent field studies reveal large formation of secondary organic aerosol (SOA) under urban polluted ambient conditions, while SOA formation in biomass burning smoke appears to be variable but sometimes substantial. To study this formation in real-time, a Potential Aerosol Mass (PAM) photooxidation reactor was deployed with submicron aerosol size and chemical composition measurements during two studies: FLAME-3, a biomass-burning study at USDA Fire Sciences Laboratory in Missoula in 2009, MT and CalNex-LA in Pasadena, CA in 2010. A high-resolution aerosol mass spectrometer (HR-AMS) and a scanning mobility particle sizer (SMPS) alternated sampling unprocessed and PAM-processed aerosol. The PAM reactor produces OH concentrations up to 4 orders of magnitude higher than in ambient air, achieving equivalent aging of ~2 weeks in 5 minutes of processing. The OH intensity was also scanned every 20 min. in both field studies. Results show the value of PAM-AMS as a tool for in-situ evaluation of changes in OA concentration and composition due to SOA formation and POA oxidation. In FLAME-3, net SOA formation was variable among smokes from different biomasses; however, OA oxidation was always observed. The average SOA enhancement factor was 1.7 +/- 0.5 of the initial POA. Reactive VOCs such as toluene, monoterpenes, and acetaldehyde, as measured from a PIT-MS, decreased with increased PAM processing; however, formic acid, acetone, and some unidentified OVOCs increased after significant exposure to high oxidant levels suggesting multigenerational chemistry. Results from CalNex-LA show enhancement of SOA and inorganic aerosol from gas-phase precursors. This enhanced OA mass increase from PAM processing is maximum at night and correlates with trimethylbenzene concentrations, which indicates the dominance of short-lived SOA precursors in the LA Basin. A traditional SOA model with mostly aromatic precursors underpredicts the amount of SOA formed by about an order-of-magnitude, which

  12. Tropospheric concentrations of methylchloroform, CH3CCl3, in January 1978 and estimates of the atmospheric residence times for hydrohalocarbons

    PubMed Central

    Makide, Yoshihiro; Rowland, F. Sherwood

    1981-01-01

    The ground level tropospheric concentrations of CH3CCl3 were measured from 55°N to 53°S during the time period around Jan. 1, 1978. The northern temperate zone concentration of CH3CCl3 averaged 94.6 ± 4.0 × 10-12 by volume. The southern temperate zone concentration averaged 65.2 ± 1.3 × 10-12, for a worldwide average of 80 × 10-12 by volume. The ratio of concentrations between the two zones is 1.45 ± 0.07. The observed CH3CCl3 concentrations correspond to 0.52 ± 0.05 times the atmospheric release to that date, corresponding to an atmospheric residence time of 6.9 ± 1.2 yr. The atmospheric residence times for 22 other hydrohalocarbon molecules were estimated in comparison to that of CH3CCl3 through the relative rates of reaction with OH radicals. PMID:16593096

  13. Balance and residence times of 210Pb and 210Po in surface waters of the northwestern Mediterranean Sea

    NASA Astrophysics Data System (ADS)

    Masqué, P.; Sanchez-Cabeza, J. A.; Bruach, J. M.; Palacios, E.; Canals, M.

    2002-10-01

    Concentrations of the naturally occurring radionuclides 210Pb and 210Po were determined in both the dissolved (<0.2 μm) and particulate (>0.2 μm) fractions in surface waters of the northwestern Mediterranean Sea. About 4-8% of the 210Pb activity was observed to be associated to particles, which were determined as being mostly biogenic. The 210Po content in the particulate fraction was generally greater than that of 210Pb, accounting for about 20% of the total activity. Total activities of 210Pb and 210Po were found to be in equilibrium. 226Ra concentrations were also determined in an effort to investigate its occurrence in Mediterranean waters. 226Ra was in excess to both 210Pb and 210Po, with a mean concentration of 1.72±0.03 Bq m -3. Steady-state balance equations of the three radionuclides permit calculation of residence times for 210Pb and 210Po in surface waters (0.8 and 3.0 yr, respectively). 210Po residence times were almost one order of magnitude higher than mostly reported values. Polonium is known to manifest higher affinity and different binding mechanisms (by entering the organic cycle) to biogenic material than 210Pb. Several processes, such as 210Po uptake by buoyant particles and recycling of organic matter in the surface layer, could lead to such long residence times of 210Po and, therefore, of organic particles in surface waters. Larger 210Po atmospheric fluxes than those here considered and inputs from rivers and/or fine-grained sediment resuspension could also help to explain the observation, although presumably to a lesser extent.

  14. Redeposition in plasma-assisted atomic layer deposition: Silicon nitride film quality ruled by the gas residence time

    SciTech Connect

    Knoops, Harm C. M. E-mail: w.m.m.kessels@tue.nl; Peuter, K. de; Kessels, W. M. M. E-mail: w.m.m.kessels@tue.nl

    2015-07-06

    The requirements on the material properties and growth control of silicon nitride (SiN{sub x}) spacer films in transistors are becoming ever more stringent as scaling of transistor structures continues. One method to deposit high-quality films with excellent control is atomic layer deposition (ALD). However, depositing SiN{sub x} by ALD has turned out to be very challenging. In this work, it is shown that the plasma gas residence time τ is a key parameter for the deposition of SiN{sub x} by plasma-assisted ALD and that this parameter can be linked to a so-called “redeposition effect”. This previously ignored effect, which takes place during the plasma step, is the dissociation of reaction products in the plasma and the subsequent redeposition of reaction-product fragments on the surface. For SiN{sub x} ALD using SiH{sub 2}(NH{sup t}Bu){sub 2} as precursor and N{sub 2} plasma as reactant, the gas residence time τ was found to determine both SiN{sub x} film quality and the resulting growth per cycle. It is shown that redeposition can be minimized by using a short residence time resulting in high-quality films with a high wet-etch resistance (i.e., a wet-etch rate of 0.5 nm/min in buffered HF solution). Due to the fundamental nature of the redeposition effect, it is expected to play a role in many more plasma-assisted ALD processes.

  15. Multi-tracer investigation of groundwater residence time in a karstic aquifer: Bitter Lakes National Wildlife Refuge, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Land, Lewis; Huff, G. F.

    2010-03-01

    Several natural and anthropogenic tracers have been used to evaluate groundwater residence time within a karstic limestone aquifer in southeastern New Mexico, USA. Natural groundwater discharge occurs in the lower Pecos Valley from a region of karst springs, wetlands and sinkhole lakes at Bitter Lakes National Wildlife Refuge, on the northeast margin of the Roswell Artesian Basin. The springs and sinkholes are formed in gypsum bedrock that serves as a leaky confining unit for an artesian aquifer in the underlying San Andres limestone. Because wetlands on the Refuge provide habitat for threatened and endangered species, there is concern about the potential for contamination by anthropogenic activity in the aquifer recharge area. Estimates of the time required for groundwater to travel through the artesian aquifer vary widely because of uncertainties regarding karst conduit flow. A better understanding of groundwater residence time is required to make informed decisions about management of water resources and wildlife habitat at Bitter Lakes. Results indicate that the artesian aquifer contains a significant component of water recharged within the last 10-50 years, combined with pre-modern groundwater originating from deeper underlying aquifers, some of which may be indirectly sourced from the high Sacramento Mountains to the west.

  16. Multi-Tracer Investigation of Groundwater Residence Time in a Karstic Aquifer: Bitter Lakes National Wildlife Refuge, New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Land, L. A.; Huff, R.

    2009-12-01

    Several natural and anthropogenic tracers are used to evaluate groundwater residence time within the karstic limestone aquifer of the Roswell Artesian Basin, southeastern New Mexico, USA. Natural groundwater discharge occurs in the lower Pecos Valley from a region of karst springs, wetlands and sinkhole lakes at Bitter Lakes National Wildlife Refuge. The springs and sinkholes are formed in gypsum bedrock that serves as a leaky confining unit for an artesian aquifer in the underlying San Andres limestone. Because wetlands on the Refuge provide habitat for a number of threatened and endangered species, Refuge managers have expressed concern about the potential for contamination by anthropogenic activity in the aquifer recharge area. Estimates of the time required for groundwater to travel through the artesian aquifer vary widely because of uncertainties regarding the role of karst conduit flow. A better understanding of groundwater residence time is thus required to make informed decisions about management of water resources and wildlife habitat at Bitter Lakes. Results of tracer investigations indicate that the artesian aquifer contains a significant component of water recharged within the last 10 to 50 years, combined with pre-modern groundwater originating from deeper underlying aquifers, some of which may be indirectly sourced from the high Sacramento Mountains to the west.

  17. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy.

    PubMed

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-09-13

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.

  18. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-09-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air.

  19. Discriminating Bio-aerosols from Non-Bio-aerosols in Real-Time by Pump-Probe Spectroscopy

    PubMed Central

    Sousa, Gustavo; Gaulier, Geoffrey; Bonacina, Luigi; Wolf, Jean-Pierre

    2016-01-01

    The optical identification of bioaerosols in the atmosphere and its discrimination against combustion related particles is a major issue for real-time, field compatible instruments. In the present paper, we show that by embedding advanced pump-probe depletion spectroscopy schemes in a portable instrument, it is possible to discriminate amino acid containing airborne particles (bacteria, humic particles, etc.) from poly-cyclic aromatic hydrocarbon containing combustion particles (Diesel droplets, soot, vehicle exhausts) with high selectivity. Our real-time, multi-modal device provides, in addition to the pump-probe depletion information, fluorescence spectra (over 32 channels), fluorescence lifetime and Mie scattering patterns of each individually flowing particle in the probed air. PMID:27619546

  20. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy

    PubMed Central

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M. Eileen

    2015-01-01

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30–900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200–980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018–5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps—a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18–670 ng m−3 can be achieved for most of the elements studied at a flow rate of 1.5 L min−1 with sampling times of 5 min. PMID:26692632

  1. New Approach for Near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy.

    PubMed

    Diwakar, Prasoon; Kulkarni, Pramod; Birch, M Eileen

    A new approach has been developed for making near-real-time measurement of elemental composition of aerosols using plasma spectroscopy. The method allows preconcentration of miniscule particle mass (pg to ng) directly from the sampled aerosol stream through electrostatic deposition of charged particles (30-900 nm) onto a flat-tip microneedle electrode. The collected material is subsequently ablated from the electrode and monitored by laser-induced breakdown spectroscopy. Atomic emission spectra were collected using a broadband spectrometer with a wavelength range of 200-980 nm. A single-sensor delay time of 1.3 μs was used in the spectrometer for all elements to allow simultaneous measurement of multiple elements. The system was calibrated for various elements including Cd, Cr, Cu, Mn, Na, and Ti. The absolute mass detection limits for these elements were experimentally determined and found to be in the range of 0.018-5 ng. The electrostatic collection technique has many advantages over other substrate-based methods involving aerosol collection on a filter or its focused deposition using an aerodynamic lens. Because the particle mass is collected over a very small area that is smaller than the spatial extent of the laser-induced plasma, the entire mass is available for analysis. This considerably improves reliability of the calibration and enhances measurement accuracy and precision. Further, the aerosol collection technique involves very low pressure drop, thereby allowing higher sample flow rates with much smaller pumps-a desirable feature for portable instrumentation. Higher flow rates also make it feasible to measure trace element concentrations at part per trillion levels. Detection limits in the range of 18-670 ng m(-3) can be achieved for most of the elements studied at a flow rate of 1.5 L min(-1) with sampling times of 5 min.

  2. Size-resolved, real-time measurement of water-insoluble aerosols in metropolitan Atlanta during the summer of 2004

    NASA Astrophysics Data System (ADS)

    Greenwald, Roby; Bergin, Michael H.; Weber, Rodney; Sullivan, Amy

    During the month of August 2004, the size-resolved number concentration of water-insoluble aerosols (WIA) from 0.25 to 2.0 μm was measured in real-time in the urban center of Atlanta, GA. Simultaneous measurements were performed for the total aerosol size distribution from 0.1 to 2.0 μm, the elemental and organic carbon mass concentration, the aerosol absorption coefficient, and the aerosol scattering coefficient at a dry (RH=30%) humidity. The mean aerosol number concentration in the size range 0.1-2.0 μm was found to be 360±175 cm -3, but this quantity fluctuated significantly on time scales of less than one hour and ranged from 25 to 1400 cm -3 during the sample period. The mean WIA concentration (0.25-2.0 μm) was 13±7 cm -3 and ranged from 1 to 60 cm -3. The average insoluble fraction in the size range 0.25-2.0 μm was found to be 4±2.5% with a range of 0.3-38%. The WIA population was found to follow a consistent diurnal pattern throughout the month with concentration maxima concurring with peaks in vehicular traffic flow. WIA concentration also responded to changes in meteorological conditions such as boundary layer depth and precipitation events. The temporal variability of the absorption coefficient followed an identical pattern to that of WIA and ranged from below the detection limit to 55 Mm -1 with a mean of 8±6 Mm -1. The WIA concentration was highly correlated with both the absorption coefficient and the elemental carbon mass concentration, suggesting that WIA measurements are dominated by fresh emissions of elemental carbon. For both the total aerosol and the WIA size distributions, the maximum number concentration was observed at the smallest sizes; however the WIA size distribution also exhibited a peak at 0.45 μm which was not observed in the total population. Over 60% of the particles greater than 1.0 μm were observed to be insoluble in the water sampling stream used by this instrumentation. Due to the refractive properties of black

  3. Para-chlorophenol containing synthetic wastewater treatment in an activated sludge unit: effects of hydraulic residence time.

    PubMed

    Kargi, Fikret; Konya, Isil

    2007-07-01

    Due to the toxic nature of chlorophenol compounds present in some chemical industry effluents, biological treatment of such wastewaters is usually realized with low treatment efficiencies. Para-chlorophenol (4-chlorophenol, 4-CP) containing synthetic wastewater was treated in an activated sludge unit at different hydraulic residence times (HRT) varying between 5 and 30 h while the feed COD (2500 mg l(-1)), 4-CP (500 mg l(-1)) and sludge age (SRT, 10 days) were constant. Effects of HRT variations on COD, 4-CP, toxicity removals and on settling characteristics of the sludge were investigated. Percent COD removals increased and the effluent COD concentrations decreased when HRT increased from 5 to 15 h and remained almost constant for larger HRT levels. Nearly, 91% COD and 99% 4-CP removals were obtained at HRT levels above 15 h. Because of the highly concentrated microbial population at HRT levels of above 15 h, low effluent (reactor) 4-CP concentrations and almost complete toxicity removals were obtained. High biomass concentrations obtained at HRT levels above 15 h were due to low 4-CP contents in the aeration tank yielding negligible inhibition effects and low maintenance requirements. The sludge volume index (SVI) decreased with increasing HRT up to 15 h due to high biomass concentrations at high HRT levels resulting in well settling sludge with low SVI values. Hydraulic residence times above 15 h resulted in more than 90% COD and complete 4-CP and toxicity removals along with well settling sludge.

  4. A [32P]-NAD+-based method to identify and quantitate long residence time enoyl-ACP reductase inhibitors

    PubMed Central

    Yu, Weixuan; Neckles, Carla; Chang, Andrew; Bommineni, Gopal Reddy; Spagnuolo, Lauren; Zhang, Zhuo; Liu, Nina; Lai, Christina; Truglio, James; Tonge, Peter J.

    2015-01-01

    The classical methods for quantifying drug-target residence time (tR) use loss or regain of enzyme activity in progress curve kinetic assays. However, such methods become imprecise at very long residence times, mitigating the use of alternative strategies. Using the NAD(P)H-dependent FabI enoyl-ACP reductase as a model system, we developed a Penefsky column-based method for direct measurement of tR, where the off-rate of the drug was determined with radiolabeled [adenylate-32P] NAD(P+) cofactor. Twenty-three FabI inhibitors were analyzed and a mathematical model was used to estimate limits to the tR values of each inhibitor based on percent drug-target complex recovery following gel filtration. In general, this method showed good agreement with the classical steady state kinetic methods for compounds with tR values of 10-100 min. In addition, we were able to identify seven long tR inhibitors (100-1500 min) and to accurately determine their tR values. The method was then used to measure tR as a function of temperature, an analysis not previously possible using the standard kinetic approach due to decreased NAD(P)H stability at elevated temperatures. In general, a 4-fold difference in tR was observed when the temperature was increased from 25 °C to 37 °C . PMID:25684450

  5. Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing.

    PubMed

    Mayes, W M; Davis, J; Silva, V; Jarvis, A P

    2011-10-15

    Bioreactors utilising bacterially mediated sulphate reduction (BSR) have been widely tested for treating metal-rich waters, but sustained treatment of mobile metals (e.g. Zn) can be difficult to achieve in short residence time systems. Data are presented providing an assessment of alkalinity generating media (shells or limestone) and modes of metal removal in bioreactors receiving a synthetic acidic metal mine discharge (pH 2.7, Zn 15 mg/L, SO(4)(2-) 200mg/L, net acidity 103 mg/L as CaCO(3)) subject to methanol dosing. In addition to alkalinity generating media (50%, v.v.), the columns comprised an organic matrix of softwood chippings (30%), manure (10%) and anaerobic digested sludge (10%). The column tests showed sustained alkalinity generation, which was significantly better in shell treatments. The first column in each treatment was effective throughout the 422 days in removing >99% of the dissolved Pb and Cu, and effective for four months in removing 99% of the dissolved Zn (residence time: 12-14 h). Methanol was added to the feedstock after Zn breakthrough and prompted almost complete removal of dissolved Zn alongside improved alkalinity generation and sulphate attenuation. While there was geochemical evidence for BSR, sequential extraction of substrates suggests that the bulk (67-80%) of removed Zn was associated with Fe-Mn oxide fractions.

  6. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme

    PubMed Central

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-01-01

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ′E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ′E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models. PMID:26541245

  7. The role of residence time in diagnostic models of global carbon storage capacity: model decomposition based on a traceable scheme.

    PubMed

    Yizhao, Chen; Jianyang, Xia; Zhengguo, Sun; Jianlong, Li; Yiqi, Luo; Chengcheng, Gang; Zhaoqi, Wang

    2015-11-06

    As a key factor that determines carbon storage capacity, residence time (τE) is not well constrained in terrestrial biosphere models. This factor is recognized as an important source of model uncertainty. In this study, to understand how τE influences terrestrial carbon storage prediction in diagnostic models, we introduced a model decomposition scheme in the Boreal Ecosystem Productivity Simulator (BEPS) and then compared it with a prognostic model. The result showed that τE ranged from 32.7 to 158.2 years. The baseline residence time (τ'E) was stable for each biome, ranging from 12 to 53.7 years for forest biomes and 4.2 to 5.3 years for non-forest biomes. The spatiotemporal variations in τE were mainly determined by the environmental scalar (ξ). By comparing models, we found that the BEPS uses a more detailed pool construction but rougher parameterization for carbon allocation and decomposition. With respect to ξ comparison, the global difference in the temperature scalar (ξt) averaged 0.045, whereas the moisture scalar (ξw) had a much larger variation, with an average of 0.312. We propose that further evaluations and improvements in τ'E and ξw predictions are essential to reduce the uncertainties in predicting carbon storage by the BEPS and similar diagnostic models.

  8. Residence times of shallow groundwater in West Africa: implications for hydrogeology and resilience to future changes in climate

    NASA Astrophysics Data System (ADS)

    Lapworth, D. J.; MacDonald, A. M.; Tijani, M. N.; Darling, W. G.; Gooddy, D. C.; Bonsor, H. C.; Araguás-Araguás, L. J.

    2013-05-01

    Although shallow groundwater (<50 mbgl) sustains the vast majority of improved drinking-water supplies in rural Africa, there is little information on how resilient this resource may be to future changes in climate. This study presents results of a groundwater survey using stable isotopes, CFCs, SF6, and 3H across different climatic zones (annual rainfall 400-2,000 mm/year) in West Africa. The purpose was to quantify the residence times of shallow groundwaters in sedimentary and basement aquifers, and investigate the relationship between groundwater resources and climate. Stable-isotope results indicate that most shallow groundwaters are recharged rapidly following rainfall, showing little evidence of evaporation prior to recharge. Chloride mass-balance results indicate that within the arid areas (<400 mm annual rainfall) there is recharge of up to 20 mm/year. Age tracers show that most groundwaters have mean residence times (MRTs) of 32-65 years, with comparable MRTs in the different climate zones. Similar MRTs measured in both the sedimentary and basement aquifers suggest similar hydraulic diffusivity and significant groundwater storage within the shallow basement. This suggests there is considerable resilience to short-term inter-annual variation in rainfall and recharge, and rural groundwater resources are likely to sustain diffuse, low volume abstraction.

  9. A new methodology for measurement of sludge residence time distribution in a paddle dryer using X-ray fluorescence analysis.

    PubMed

    Charlou, Christophe; Milhé, Mathieu; Sauceau, Martial; Arlabosse, Patricia

    2015-02-01

    Drying is a necessary step before sewage sludge energetic valorization. Paddle dryers allow working with such a complex material. However, little is known about sludge flow in this kind of processes. This study intends to set up an original methodology for sludge residence time distribution (RTD) measurement in a continuous paddle dryer, based on the detection of mineral tracers by X-ray fluorescence. This accurate analytical technique offers a linear response to tracer concentration in dry sludge; the protocol leads to a good repeatability of RTD measurements. Its equivalence to RTD measurement by NaCl conductivity in sludge leachates is assessed. Moreover, it is shown that tracer solubility has no influence on RTD: liquid and solid phases have the same flow pattern. The application of this technique on sludge with different storage duration at 4 °C emphasizes the influence of this parameter on sludge RTD, and thus on paddle dryer performances: the mean residence time in a paddle dryer is almost doubled between 24 and 48 h of storage for identical operating conditions.

  10. Increasing functional modularity with residence time in the co-distribution of native and introduced vascular plants

    PubMed Central

    Hui, Cang; Richardson, David M.; Pyšek, Petr; Le Roux, Johannes J.; Kučera, Tomáš; Jarošík, Vojtěch

    2013-01-01

    Species gain membership of regional assemblages by passing through multiple ecological and environmental filters. To capture the potential trajectory of structural changes in regional meta-communities driven by biological invasions, one can categorize species pools into assemblages of different residence times. Older assemblages, having passed through more environmental filters, should become more functionally ordered and structured. Here we calculate the level of compartmentalization (modularity) for three different-aged assemblages (neophytes, introduced after 1500 AD; archaeophytes, introduced before 1500 AD, and natives), including 2,054 species of vascular plants in 302 reserves in central Europe. Older assemblages are more compartmentalized than younger ones, with species composition, phylogenetic structure and habitat characteristics of the modules becoming increasingly distinctive. This sheds light on two mechanisms of how alien species are functionally incorporated into regional species pools: the settling-down hypothesis of diminishing stochasticity with residence time, and the niche-mosaic hypothesis of inlaid neutral modules in regional meta-communities. PMID:24045305

  11. Functional efficacy of adenosine A2A receptor agonists is positively correlated to their receptor residence time

    PubMed Central

    Guo, Dong; Mulder-Krieger, Thea; IJzerman, Adriaan P; Heitman, Laura H

    2012-01-01

    BACKGROUND AND PURPOSE The adenosine A2A receptor belongs to the superfamily of GPCRs and is a promising therapeutic target. Traditionally, the discovery of novel agents for the A2A receptor has been guided by their affinity for the receptor. This parameter is determined under equilibrium conditions, largely ignoring the kinetic aspects of the ligand-receptor interaction. The aim of this study was to assess the binding kinetics of A2A receptor agonists and explore a possible relationship with their functional efficacy. EXPERIMENTAL APPROACH We set up, validated and optimized a kinetic radioligand binding assay (a so-called competition association assay) at the A2A receptor from which the binding kinetics of unlabelled ligands were determined. Subsequently, functional efficacies of A2A receptor agonists were determined in two different assays: a novel label-free impedance-based assay and a more traditional cAMP determination. KEY RESULTS A simplified competition association assay yielded an accurate determination of the association and dissociation rates of unlabelled A2A receptor ligands at their receptor. A correlation was observed between the receptor residence time of A2A receptor agonists and their intrinsic efficacies in both functional assays. The affinity of A2A receptor agonists was not correlated to their functional efficacy. CONCLUSIONS AND IMPLICATIONS This study indicates that the molecular basis of different agonist efficacies at the A2A receptor lies within their different residence times at this receptor. PMID:22324512

  12. Evolution of Welding-Fume Aerosols with Time and Distance from the Source

    PubMed Central

    CENA, L. G.; CHEN, B. T.; KEANE, M. J.

    2016-01-01

    Gas metal arc welding fumes were generated from mild-steel plates and measured near the arc (30 cm), representing first-hand exposure of the welder, and farther away from the source (200 cm), representing second-hand exposure of adjacent workers. Measurements were taken during 1-min welding runs and at subsequent 5-min intervals after the welding process was stopped. Number size distributions were measured in real time. Particle mass distributions were measured using a micro-orifice uniform deposition impactor, and total mass concentrations were measured with polytetrafluorothylene filters. Membrane filters were used for collecting morphology samples for electron microscopy. Average mass concentrations measured near the arc were 45 mg/m3 and 9 mg/m3 at the farther distance. The discrepancy in concentrations at the two distances was attributed to the presence of spatter particles, which were observed only in the morphology samples near the source. As fumes aged over time, mass concentrations at the farther distance decreased by 31% (6.2 mg/m3) after 5 min and an additional 13% (5.4 mg/m3) after 10 min. Particle number and mass distributions during active welding were similar at both distances, indicating similar exposure patterns for welders and adjacent workers. Exceptions were recorded for particles smaller than 50 nm and larger than 3 μm, where concentrations were higher near the arc, indicating higher exposures of welders. These results were confirmed by microscopy analysis. As residence time increased, number concentrations decreased dramatically. In terms of particle number concentrations, second-hand exposures to welding fumes during active welding may be as high as first-hand exposures. PMID:27559198

  13. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.

    PubMed

    Park, Ji-Woon; Kim, Hyeong Rae; Hwang, Jungho

    2016-10-19

    We present a methodology for continuous and real-time bioaerosol monitoring wherein an aerosol-to-hydrosol sampler is integrated with a bioluminescence detector. Laboratory test was conducted by supplying an air flow with entrained test bacteria (Staphylococcus epidermidis) to the inlet of the sampler. High voltage was applied between the discharge electrode and the ground electrode of the sampler to generate air ions by corona discharge. The bacterial aerosols were charged by the air ions and sampled in a flowing liquid containing both a cell lysis buffer and adenosine triphosphate (ATP) bioluminescence reagents. While the liquid was delivered to the bioluminescence detector, sampled bacteria were dissolved by the cell lysis buffer and ATP was extracted. The ATP was reacted with the ATP bioluminescence reagents, causing light to be emitted. When the concentration of bacteria in the aerosols was varied, the ATP bioluminescence signal in relative light units (RLUs) closely tracked the concentration in particles per unit air volume (# cm(-3)), as measured by an aerosol particle sizer. The total response time required for aerosol sampling and ATP bioluminescence detection increased from 30 s to 2 min for decreasing liquid sampling flow rate from 800 to 200 μLPM, respectively. However, lower concentration of S. epidermidis aerosols was able to be detected with lower liquid sampling flow rate (1 RLU corresponded to 6.5 # cm(-3) of S. epidermidis aerosols at 200 μLPM and 25.5 # cm(-3) at 800 μLPM). After obtaining all data sets of concentration of S. epidermidis aerosols and concentration of S. epidermidis particles collected in the flowing liquid, it was found that with our bioluminescence detector, 1 RLU corresponded to 1.8 × 10(5) (±0.2 × 10(5)) # mL(-1) of S. epidermidis in liquid. After the lab-test with S. epidermidis, our bioaerosol monitoring device was located in the lobby of a building. Air sampling was conducted continuously for 90

  14. Method for HEPA filter leak scanning with differentiating aerosol detector

    SciTech Connect

    Kovach, B.J.; Banks, E.M.; Wikoff, W.O.

    1997-08-01

    While scanning HEPA filters for leaks with {open_quotes}Off the Shelf{close_quote} aerosol detection equipment, the operator`s scanning speed is limited by the time constant and threshold sensitivity of the detector. This is based on detection of the aerosol density, where the maximum signal is achieved when the scanning probe resides over the pinhole longer than several detector time-constants. Since the differential value of the changing signal can be determined by observing only the first small fraction of the rising signal, using a differentiating amplifier will speed up the locating process. The other advantage of differentiation is that slow signal drift or zero offset will not interfere with the process of locating the leak, since they are not detected. A scanning hand-probe attachable to any NUCON{reg_sign} Aerosol Detector displaying the combination of both aerosol density and differentiated signal was designed. 3 refs., 1 fig.

  15. Mixing and Residence Time Distribution in an Inert Gas-Shrouded Tundish

    NASA Astrophysics Data System (ADS)

    Chatterjee, Saikat; Asad, Amjad; Kratzsch, Christoph; Schwarze, Rüdiger; Chattopadhyay, Kinnor

    2017-02-01

    Tracer dispersion experiments were carried out in a multi-strand tundish by injecting 1 (N) NaCl solution into water. The variation of dimensionless concentration-time curves known as C-curves and mixing times with different gas flow rates were studied. The proportions of dead, mixed, and dispersed plug volumes were calculated using the `modified mixed model.' The observations were explained by analyzing the behavior of the bubble plume, incoming jet velocity, and turbulent kinetic energy within the tundish.

  16. Nurses' personal statements about factors that influence their decisions about the time they spend with residents with long-term mental illness living in psychiatric group dwellings.

    PubMed

    Hellzén, Ove

    2004-09-01

    One seldom-discussed issue is the factors that influence nurses' decisions about the time they spend with residents in psychiatric care. This study uses a qualitative naturalistic approach and consists of an analysis of focus-group interviews with nurses, which aimed to identify factors affecting nurses' decisions about being with or being nonattendant in their relationship with their residents. Two series of focus-group interviews were conducted, interpreted and analysed through content analysis. The study included all the staff (n=32) at two municipal psychiatric group dwellings housing residents mainly with a diagnosis of long-term schizophrenia. This study revealed that the main factor that determined nurses' nurse/resident time together or nonattendance time was whether they liked or disliked the individual resident. One possible explanation is the carers' change from a perspective in which the nursing care was given on the basis of each resident's needs and rights, based on the individual nurse's professional judgement, to a consumer perspective, which leads to a change in responsibility from themselves to the individual residents.

  17. The Atmospheric Channels of GLAS: Near Real-Time Global Lidar Remote Sensing of Clouds and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Hlavka, Dennis; Hart, Bill; Welton, E. Judd; Spinhirne, James

    2000-01-01

    The Geoscience Laser Altimeter System (GLAS) will be placed into orbit in 2001 aboard the Ice, Cloud and Land Elevation Satellite (ICESat). From its nearly polar orbit (94 degree inclination), GLAS will provide continuous global measurements of the vertical distribution of clouds and aerosols while simultaneously providing high accuracy topographic profiling of surface features. During the mission, which is slated to last 3 to 5 years, the data collected by GLAS will be in near-real time to produce level 1 and 2 data products at the NASA GLAS Science Computing Facility (SCF) at Goddard Space Flight Center in Greenbelt, Maryland. The atmospheric products include cloud and aerosol layer heights, planetary boundary layer depth, polar stratospheric clouds and thin cloud and aerosol optical depth. These products will be made available to the science community within days of their creation. The processing algorithms must be robust, adaptive, efficient, and clever enough to run autonomously for the widely varying atmospheric conditions that will be encountered. This paper presents an overview of the GLAS atmospheric data products and briefly discusses the design of the processing algorithms.

  18. High-time resolved measurements of biogenic and anthropogenic secondary organic aerosol precursors and products in urban air

    NASA Astrophysics Data System (ADS)

    Flores, Rosa M.; Doskey, Paul V.

    2016-04-01

    Volatile organic compounds (VOCs), which are present in the atmosphere entirely in the gas phase are directly emitted by biogenic (~1089 Tg yr-1) and anthropogenic sources (~185 Tg yr-1). However, the sources and molecular speciation of intermediate VOCs (IVOCs), which are for the most part also present almost entirely in the gas phase, are not well characterized. The VOCs and IVOCs participate in reactions that form ozone and semivolatile OC (SVOC) that partition into the aerosol phase. Formation and evolution of secondary organic aerosol (SOA) are part of a complex dynamic process that depends on the molecular speciation and concentration of VOCs, IVOCs, primary organic aerosol (POA), and the level of oxidants (NO3, OH, O3). The current lack of understanding of OA properties and their impact on radiative forcing, ecosystems, and human health is partly due to limitations of models to predict SOA production on local, regional, and global scales. More accurate forecasting of SOA production requires high-temporal resolution measurement and molecular characterization of SOA precursors and products. For the subject study, the IVOCs and aerosol-phase organic matter were collected using the high-volume sampling technique and were analyzed by multidimensional gas chromatography with time-of-flight mass spectrometry (GCxGC-ToFMS). The IVOCs included terpenes, terpenoids, n-alkanes, branched alkanes, isoprenoids, alkylbenzenes, cycloalkylbenzenes, PAH, alkyl PAH, and an unresolved complex mixture (UCM). Diurnal variations of OA species containing multiple oxygenated functionalities and selected SOA tracers of isorprene, α-pinene, toluene, cyclohexene, and n-dodecane oxidation were also quantified. The data for SOA precursor and oxidation products presented here will be useful for evaluating the ability of molecular-specific SOA models to forecast SOA production in and downwind of urban areas.

  19. Distribution of residence times as a marker to distinguish different pathways for quantum transport.

    PubMed

    Rudge, Samuel L; Kosov, Daniel S

    2016-10-01

    Electron transport through a nanoscale system is an inherently stochastic quantum mechanical process. Electric current is a time series of electron tunneling events separated by random intervals. Thermal and quantum noise are two sources of this randomness. In this paper we use the quantum master equation to consider the following questions. (i) Given that an electron has tunneled into the electronically unoccupied system from the source electrode at some particular time, how long is it until an electron tunnels out to the drain electrode to leave the system electronically unoccupied, where there are no intermediate tunneling events (the tunneling path)? (ii) Given that an electron tunneled into the unoccupied system from the source electrode at some particular time, how long is it until an electron tunnels out to the drain electrode to leave the system electronically unoccupied, where there are no intermediate tunneling events (a tunneling path)? (iii) What are the distributions of these times? We show that electron correlations suppress the difference between the electron tunneling path and an electron tunneling path.

  20. Distribution of residence times as a marker to distinguish different pathways for quantum transport

    NASA Astrophysics Data System (ADS)

    Rudge, Samuel L.; Kosov, Daniel S.

    2016-10-01

    Electron transport through a nanoscale system is an inherently stochastic quantum mechanical process. Electric current is a time series of electron tunneling events separated by random intervals. Thermal and quantum noise are two sources of this randomness. In this paper we use the quantum master equation to consider the following questions. (i) Given that an electron has tunneled into the electronically unoccupied system from the source electrode at some particular time, how long is it until an electron tunnels out to the drain electrode to leave the system electronically unoccupied, where there are no intermediate tunneling events (the tunneling path)? (ii) Given that an electron tunneled into the unoccupied system from the source electrode at some particular time, how long is it until an electron tunnels out to the drain electrode to leave the system electronically unoccupied, where there are no intermediate tunneling events (a tunneling path)? (iii) What are the distributions of these times? We show that electron correlations suppress the difference between the electron tunneling path and an electron tunneling path.

  1. What can environmental tracer concentrations tell us about groundwater residence time?

    NASA Astrophysics Data System (ADS)

    McCallum, J. L.; Engdahl, N. B.; Cook, P. G.; Simmons, C.

    2013-12-01

    Quantification of groundwater age distributions through the use on lumped parameter models and environmental tracer concentrations is an ongoing practice. These models are based on simple geometries and sampling conditions and may not be applicable outside of ideal conditions, limiting the results that can be obtained. We have developed a method that requires no underlying assumptions about the structure of the groundwater age distribution. This method assumes that the convolution relationship describes the relationship between temporal atmospheric concentrations and measured groundwater sample concentrations. We looked at synthetically generated groundwater age distributions and a number of levels of tracer data including a long time series of tritium, the use of CFCs and SF6 sampled at various times and the use of CFCs, SF6, 3H and 14C sampled at a single time. In general, we found that environmental tracers are not very informative of groundwater age distributions resulting in estimates being highly non-unique. The exception was the use of a time series of tritium data. Tritium is more informative due to the temporal variations of atmospheric concentrations and a short half-life reducing the correlation of sequential measurements. The ability of CFC compounds to estimate entire distributions was limited due to the lack of variation in temporal atmospheric concentrations and correlation between sampled concentrations. Despite varying ability of the method to predict whole distributions, some indicators such as the mean age and some arrival time statistics were estimated well by the method. The implications of this show that care should be taken in the choice of lumped parameter model used in conjunction with environmental tracer techniques to constrain entire groundwater age distributions. Interestingly, the ability to correct for mixing bias of mean ages despite poor estimates of entire groundwater age distributions shows some promise.

  2. Groundwater residence times in Shenandoah National Park, Blue Ridge Mountains, Virginia, USA: A multi-tracer approach

    USGS Publications Warehouse

    Plummer, L.N.; Busenberg, E.; Böhlke, J.K.; Nelms, D.L.; Michel, R.L.; Schlosser, P.

    2001-01-01

    Chemical and isotopic properties of water discharging from springs and wells in Shenandoah National Park (SNP), near the crest of the Blue Ridge Mountains, VA, USA were monitored to obtain information on groundwater residence times. Investigated time scales included seasonal (wet season, April, 1996; dry season, August-September, 1997), monthly (March through September, 1999) and hourly (30-min interval recording of specific conductance and temperature, March, 1999 through February, 2000). Multiple environmental tracers, including tritium/helium-3 (3H/3He), chlorofluorocarbons (CFCs), sulfur hexafluoride (SF6), sulfur-35 (35S), and stable isotopes (??18O and ??2H) of water, were used to estimate the residence times of shallow groundwater discharging from 34 springs and 15 wells. The most reliable ages of water from springs appear to be based on SF6 and 3H/3He, with most ages in the range of 0-3 years. This range is consistent with apparent ages estimated from concentrations of CFCs; however, CFC-based ages have large uncertainties owing to the post-1995 leveling-off of the CFC atmospheric growth curves. Somewhat higher apparent ages are indicated by 35S (> 1.5 years) and seasonal variation of ??18O (mean residence time of 5 years) for spring discharge. The higher ages indicated by the 35S and ??18O data reflect travel times through the unsaturated zone and, in the case of 35S, possible sorption and exchange of S with soils or biomass. In springs sampled in April, 1996, apparent ages derived from the 3H/3He data (median age of 0.2 years) are lower than those obtained from SF6 (median age of 4.3 years), and in contrast to median ages from 3H/3He (0.3 years) and SF6 (0.7 years) obtained during the late summer dry season of 1997. Monthly samples from 1999 at four springs in SNP had SF6 apparent ages of only 1.2 to 2.5 ?? 0.8 years, and were consistent with the 1997 SF6 data. Water from springs has low excess air (0-1 cm3 kg-1) and N2-Ar temperatures that vary

  3. Structure, provenance and residence time of terrestrial organic carbon: insights from Programmed temperature Pyrolysis-Combustion of river sediments

    NASA Astrophysics Data System (ADS)

    Feng, X.; Galy, V.; Rosenheim, B. E.; Roe, K. M.; Williams, E. K.

    2010-12-01

    The terrestrial organic carbon (OC) represents one of the largest reservoirs of C on earth and thus plays a crucial role in the global C cycle, participating to the regulation of atmospheric chemistry. While degradation of sedimentary OC (petrogenic C) is a source of CO2 for the atmosphere, burial of biospheric C (e.g. plant debris and soil OC) is a long-term sequestration of atmospheric CO2. Over short timescales, the atmospheric CO2 level is also sensitive to variations of the residence time of carbon in continental reservoirs. Fluvial transport plays a crucial role in the organic carbon cycle, constituting the connection between the different reservoirs and promoting the transfer of C from one reservoir to the other. Moreover, thanks to the integrating effect of erosion, studying river sediments allows the spatial and temporal integration of organic carbon exchanges occurring in a given basin. OC transported by rivers (riverine OC) is known to be extremely heterogeneous in nature and reactivity, however; ranging from extremely refractory petrogenic C (e.g. graphite) to soil complex OC to labile vegetation debris. Here we use a recently developed method, a programmed-temperature pyrolysis-combustion system (PTP-CS) coupled to multiisotopic analysis, to determine the reactivity, age and nature of OC in river sediments. The method takes advantage of the wide range of reactivity and radiocarbon content of different components of riverine OC. We submitted to PTP-CS a set of river sediments from 1) the Ganges-Brahmputra river system and, 2) the lower Mississippi river. Preliminary results highlight the heterogeneous nature of riverine OC. Different components of the riverine OC pool decompose at different temperature and are characterized by extremely variable isotopic compositions. The decomposition of radiocarbon dead petrogenic C at very high temperature allows estimating the respective contribution of biospheric and petrogenic C. Moreover, biospheric OC appears to

  4. Aerosol-fluorescence spectrum analyzer: real-time measurement of emission spectra of airborne biological particles

    NASA Astrophysics Data System (ADS)

    Hill, Steven C.; Pinnick, Ronald G.; Nachman, Paul; Chen, Gang; Chang, Richard K.; Mayo, Michael W.; Fernandez, Gilbert L.

    1995-10-01

    We have assembled an aerosol-fluorescence spectrum analyzer (AFS), which can measure the fluorescence spectra and elastic scattering of airborne particles as they flow through a laser beam. The aerosols traverse a scattering cell where they are illuminated with intense (50 kW/cm 2) light inside the cavity of an argon-ion laser operating at 488 nm. This AFS can obtain fluorescence spectra of individual dye-doped polystyrene microspheres as small as 0.5 mu m in diameter. The spectra obtained from microspheres doped with pink and green-yellow dyes are clearly different. We have also detected the fluorescence spectra of airborne particles (although not single particles) made from various

  5. Development of an Aerosol Loading Technique for Ignition Time Measurements in Shock Tubes

    DTIC Science & Technology

    2007-08-01

    initial pressure. For the present ignition study a 21% oxygen-79% argon mixture was used. Poppet valves in the endwall are then opened as well as a...the pressure in the driven section of the tube constant. The narrow flow passage past the poppet valves serves to accelerate the flow and generate... valve near the diaphragm connected to a vacuum pump, and a steady-state flow of aerosol/carrier gas mixture is feed into the shock tube while keeping

  6. Real-Time Investigation of Chemical Compositions and Hygroscopic Properties of Aerosols Generated from NaCl and Malonic Acid Mixture Solutions Using in Situ Raman Microspectrometry.

    PubMed

    Li, Xue; Gupta, Dhrubajyoti; Lee, Jisoo; Park, Geonhee; Ro, Chul-Un

    2017-01-03

    Recently, ambient sea spray aerosols (SSAs) have been reported to undergo reactions with dicarboxylic acids (DCAs). Several studies have examined the hygroscopic behavior and chemical reactivity of aerosols generated from NaCl-DCA mixture solutions, but the results have varied, especially for the NaCl-malonic acid (NaCl-MA) mixture system. In this work, in situ Raman microspectrometry (RMS) was used to simultaneously monitor the change in chemical composition, size, and phase as a function of the relative humidity, for individual aerosols generated from NaCl-MA solutions, during two hygroscopic measurement cycles, which were performed first through the dehydration process, followed by a humidification process, in each cycle. In situ RMS analysis for the aerosols showed that the chemical reaction between NaCl and MA occurred rapidly in the time scale of 1 h and considerably in the aqueous phase, mostly during the first dehydration process, and the chemical reaction occurs more rapidly when MA is more enriched in the aerosols. For example, the reaction between NaCl and MA for aerosols generated from solutions of NaCl:MA = 2:1 and 1:2 occurred by 81% and 100% at RH = 42% and 45%, respectively, during the first dehydration process. The aerosols generated from the solution of NaCl:MA = 2:1 revealed single efflorescence and deliquescence transitions repeatedly during two hygroscopic cycles. The aerosols from NaCl:MA = 1:1 and 1:2 solutions showed just an efflorescence transition during the first dehydration process and no efflorescence and deliquescence transition during the hygroscopic cycles, respectively. The observed different hygroscopic behavior was due to the different contents of NaCl, MA, and monosodium malonate in the aerosols, which were monitored real-time by in situ RMS.

  7. Probability of real-time detection versus probability of infection for aerosolized biowarfare agents: a model study.

    PubMed

    Sabelnikov, Alexander; Zhukov, Vladimir; Kempf, Ruth

    2006-05-15

    Real-time biosensors are expected to provide significant help in emergency response management should a terrorist attack with the use of biowarfare, BW, agents occur. In spite of recent and spectacular progress in the field of biosensors, several core questions still remain unaddressed. For instance, how sensitive should be a sensor? To what levels of infection would the different sensitivity limits correspond? How the probabilities of identification correspond to the probabilities of infection by an agent? In this paper, an attempt was made to address these questions. A simple probability model was generated for the calculation of risks of infection of humans exposed to different doses of infectious agents and of the probability of their simultaneous real-time detection/identification by a model biosensor and its network. A model biosensor was defined as a single device that included an aerosol sampler and a device for identification by any known (or conceived) method. A network of biosensors was defined as a set of several single biosensors that operated in a similar way and dealt with the same amount of an agent. Neither the particular deployment of sensors within the network, nor the spacious and timely distribution of agent aerosols due to wind, ventilation, humidity, temperature, etc., was considered by the model. Three model biosensors based on PCR-, antibody/antigen-, and MS-technique were used for simulation. A wide range of their metric parameters encompassing those of commercially available and laboratory biosensors, and those of future, theoretically conceivable devices was used for several hundred simulations. Based on the analysis of the obtained results, it is concluded that small concentrations of aerosolized agents that are still able to provide significant risks of infection especially for highly infectious agents (e.g. for small pox those risk are 1, 8, and 37 infected out of 1000 exposed, depending on the viability of the virus preparation) will

  8. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    Aerosol particles undergo significant modifications during their residence time in the atmosphere. Physical processes like coagulation, coating and water uptake, and aqueous surface chemistry alter the aerosol size distribution and composition. At this, clouds play a primary role as physical and chemical processing inside cloud droplets contributes considerably to the changes in aerosol particles. A previous study estimates that on global average atmospheric particles are cycled three times through a cloud before being removed from the atmosphere [1]. An explicit and detailed treatment of cloud-borne particles has been implemented in the regional weather forecast and climate model COSMO-CLM. The employed model version includes a two-moment cloud microphysical scheme [2] that has been coupled to the aerosol microphysical scheme M7 [3] as described by Muhlbauer and Lohmann, 2008 [4]. So far, the formation, transfer and removal of cloud-borne aerosol number and mass were not considered in the model. Following the parameterization for cloud-borne particles developed by Hoose et al., 2008 [5], distinction between in-droplet and in-crystal particles is made to more physically account for processes in mixed-phase clouds, such as the Wegener-Bergeron-Findeisen process and contact and immersion freezing. In our model, this approach has been extended to allow for aerosol particles in five different hydrometeors: cloud droplets, rain drops, ice crystals, snow flakes and graupel. We account for nucleation scavenging, freezing and melting processes, autoconversion, accretion, aggregation, riming and selfcollection, collisions between interstitial aerosol particles and hydrometeors, ice multiplication, sedimentation, evaporation and sublimation. The new scheme allows an evaluation of the cloud cycling of aerosol particles by tracking the particles even when scavenged into hydrometeors. Global simulations of aerosol processing in clouds have recently been conducted by Hoose et al

  9. Use of isotopic data to estimate water residence times of the Finger Lakes, New York

    NASA Astrophysics Data System (ADS)

    Michel, Robert L.; Kraemer, Thomas F.

    1995-01-01

    Water retention times in the Finger Lakes, a group of 11 lakes in central New York with similar hydrologic and climatic characteristics, were estimated by use of a tritium-balance model. During July 1991, samples were collected from the 11 lakes and selected tributary streams and were analyzed for tritium, deuterium, and oxygen-18. Additional samples from some of the sites were collected in 1990, 1992 and 1993. Tritium concentration in lake water ranged from 24.6 Tritium Units (TU) (Otisco Lake) to 43.2 TU (Seneca Lake).The parameters in the model used to obtain water retention time (WRT) included relative humidity, evaporation rate, tritium concentrations of inflowing water and lake water, and WRT of the lake. A historical record of tritium concentrations in precipitation and runoff was obtained from rainfall data at Ottawa, Canada, analyses of local wines produced during 1977-1991, and streamflow samples collected in 1990-1991. The model was simulated in yearly steps for 1953-1991, and the WRT was varied to reproduce tritium concentrations measured in each lake in 1991. Water retention times obtained from model simulations ranged from 1 year for Otisco Lake to 12 years for Seneca Lake, and with the exception of Seneca Lake and Skaneateles Lake, were in agreement with earlier estimates obtained from runoff estimates and chloride balances. The sensitivity of the model to parameter changes was tested to determine possible reasons for the differences calculated for WRT's for Seneca Lake and Skaneateles Lake. The shorter WRT obtained from tritium data for Lake Seneca (12 years as compared to 18 years) can be explained by a yearly addition of less than 3% by lake volume of ground water to the lake, the exact percentage depending on tritium concentration in the ground water.

  10. Use of isotopic data to estimate water residence times of the Finger Lakes, New York

    USGS Publications Warehouse

    Michel, Robert L.; Kraemer, Thomas F.

    1995-01-01

    Water retention times in the Finger Lakes, a group of 11 lakes in central New York with similar hydrologic and climatic characteristics, were estimated by use of a tritium-balance model. During July 1991, samples were collected from the 11 lakes and selected tributary streams and were analyzed for tritium, deuterium, and oxygen-18. Additional samples from some of the sites were collected in 1990, 1992 and 1993. Tritium concentration in lake water ranged from 24.6 Tritium Units (TU) (Otisco Lake) to 43.2 TU (Seneca Lake).The parameters in the model used to obtain water retention time (WRT) included relative humidity, evaporation rate, tritium concentrations of inflowing water and lake water, and WRT of the lake. A historical record of tritium concentrations in precipitation and runoff was obtained from rainfall data at Ottawa, Canada, analyses of local wines produced during 1977–1991, and streamflow samples collected in 1990–1991. The model was simulated in yearly steps for 1953–1991, and the WRT was varied to reproduce tritium concentrations measured in each lake in 1991. Water retention times obtained from model simulations ranged from 1 year for Otisco Lake to 12 years for Seneca Lake, and with the exception of Seneca Lake and Skaneateles Lake, were in agreement with earlier estimates obtained from runoff estimates and chloride balances. The sensitivity of the model to parameter changes was tested to determine possible reasons for the differences calculated for WRT's for Seneca Lake and Skaneateles Lake. The shorter WRT obtained from tritium data for Lake Seneca (12 years as compared to 18 years) can be explained by a yearly addition of less than 3% by lake volume of ground water to the lake, the exact percentage depending on tritium concentration in the ground water.

  11. Short residence time hydropyrolysis of coal. Technical progress report, 1 January-31 March 1980

    SciTech Connect

    Saville, D. A.; Russel, W. B.

    1980-01-01

    This report sets forth the current status of our efforts to model the hydropyrolysis process on the scale of a single coal particle. Several oversimplifications of the original model have been identified and the more general analysis begun. As emphasized in the literature, the effect of time-temperature history, or nonisothermal reaction conditions, appears to be important and is being incorporated into the model. An increased internal pressure due to the restricted escape of volatiles can increase the rate of deposition and also cause the swelling of plastic coal particles. Our efforts reported here should lead to realistic descriptions of these processes.

  12. The Role of Noble Gases in Defining the Mean Residence Times of Fluids within Precambrian Crustal Systems

    NASA Astrophysics Data System (ADS)

    Warr, O.; Sherwood Lollar, B.; Fellowes, J.; Sutcliffe, C. N.; McDermott, J. M.; Holland, G.; Mabry, J.; Ballentine, C. J.

    2015-12-01

    Brines rich in N2, H2, CH4 and He hosted within Precambrian crustal rocks are known to sustain microbial life [1]. The geological systems containing these brines have the potential to isolate organisms over planetary timescales and so can provide unique insight into the diversity and evolution of terrestrial life [1-3]. Long considered geological outliers, the prevalence of systems containing these ancient, deep fracture waters is only now being revealed. Recent studies demonstrate the Precambrian crust which accounts for ~70% of total crustal surface area has a global hydrogen production comparable to marine systems [2]. In addition to H2-producing reactions (e.g. radiolysis and serpentinization), a diversity of CH4-producing reactions also occur in these systems through both microbial and water-rock interactions [1, 2]. However, the role these Precambrian systems have in global hydrogen and carbon cycles is poorly understood. For this we need good constraints on the origins, residence times and degree of microbial activity of the fluids within these systems as well as the degree of interaction with external systems. Fortunately, noble gases are ideal for this role [1,3]. Previous noble gas analysis of N2, H2, CH4 and He-rich fluid samples collected at 2.4 km depth from a Cu-Zn mine in Timmins, Ontario, identified isolated fracture fluids with the oldest residence times ever observed (>1.1 Ga) [3]. This study has been significantly expanded now to fluids from an even greater depth (3 km) at Timmins, and from two new mines in the Sudbury Basin. Preliminary data from the deeper Timmins level indicate a new closed system with 136Xe/130Xe ratios 93% above modern air values (20% at 2.4 km) and an early atmosphere 124Xe/130Xe signal approaching the age of the host rock (~2.7 Ga) [4]. In comparison, the Sudbury system indicates exchange with an external source, being highly enriched in helium (30% gas volume) but with a low fissiogenic 136Xe/130Xe excess (10-38% above

  13. Estimating estuarine flushing and residence times in Charlotte Harbor, Florida, via salt balance and a box model

    USGS Publications Warehouse

    Miller, R.L.; McPherson, B.F.

    1991-01-01

    The new concept is that, over many tidal cycles, the tidally averaged "flow' (Qg) of water from the Gulf of Mexico, with a salinity of 35???, can be treated as a constant at any point in the estuary. This flow is used in a simple mixing equation to predict salinity in the estuary at different river inflows, and the predicted salinities are used to compute residence times for water in the estuary. The techniques developed to achieve optimal precision in the relation between river inflow and salinity include a newly derived equation to fit Qg by a least-squares method and a procedure to determine the optimal averaging period for river inflow. Results from Charlotte Harbor indicate that, under average (70 m3s-1) river inflow, 95% of the original water present in the harbor flushes into the gulf in 130 d. -from Authors

  14. Assessing the effects of solids residence time and volatile fatty acid augmentation on biological phosphorus removal using real wastewater.

    PubMed

    Horgan, Christopher J; Coats, Erik R; Loge, Frank J

    2010-03-01

    The purpose of the research presented herein was to evaluate the effects of solids residence time (SRT) and organic acid augmentation on biological phosphorus removal (BPR), with a focus on how these operational variables affect key metabolisms and the distribution of the microbial population. Using laboratory-scale sequencing batch reactors seeded with a mixed microbial consortium and fed real wastewater, we observed that longer SRTs can improve BPR performance; organic acid augmentation can stabilize BPR, but it is not necessary for process success; and higher volatile suspended solids concentrations correlate with improved phosphorus removal. The results also suggest that organic acids may not be critical in driving anaerobic phosphorus release, but in driving aerobic growth. Finally, given an observed population similarity across all tested bioreactors, BPR variability appears to be less influenced by the presence of specific microbes and more affected by the induction of critical metabolisms.

  15. Determining possible thrombus sites in an extracorporeal device, using computational fluid dynamics-derived relative residence time.

    PubMed

    Gorring, N; Kark, L; Simmons, A; Barber, T

    2015-01-01

    The prediction of conditions that may result in thrombus formation is a useful application of computational fluid dynamics. A number of techniques exist, based on the consideration of wall shear stress and regions of low blood flow; however, no clear guideline exists for the best practice of their use. In this paper, the sensitivity of each parameter and the specific mechanical forces are explained, before the optimal indicator of thrombosis risk is outlined. An extracorporeal access device cavity provides a suitable geometry to test the methodology. The recommended method for thrombus prediction considers areas with a calculated residence time (RT) and shear strain rate (SSR) thresholds, here set to RT>1 and SSR < 10 s(- 1). Evidence of thrombosis was found for physiological waveforms with an absence of reverse flow, which is expected to 'wash out' the cavity. The predicted thrombosis sites compare well with evidence collected from explanted devices.

  16. Polymer binding to carbon nanotubes in aqueous dispersions: residence time on the nanotube surface as obtained by NMR diffusometry.

    PubMed

    Frise, Anton E; Pagès, Guilhem; Shtein, Michael; Pri Bar, Ilan; Regev, Oren; Furó, István

    2012-03-08

    The binding of block copolymer Pluronic F-127 in aqueous dispersions of single- (SWCNT) and multiwalled (MWCNT) carbon nanotubes has been studied by pulsed-field-gradient (PFG) (1)H NMR spectroscopy. We show that a major fraction of polymers exist as a free species while a minor fraction is bound to the carbon nanotubes (CNT). The polymers exchange between these two states with residence times on the nanotube surface of 24 ± 5 ms for SWCNT and of 54 ± 11 ms for MWCNT. The CNT concentration in the solution was determined by improved thermal gravimetric analysis (TGA) indicating that the concentration of SWCNT dispersed by F-127 was significantly higher than that for MWCNT. For SWCNT, the area per adsorbed Pluronic F-127 molecule is estimated to be about 40 nm(2).

  17. LUMPED: a Visual Basic code of lumped-parameter models for mean residence time analyses of groundwater systems

    NASA Astrophysics Data System (ADS)

    Ozyurt, N. N.; Bayari, C. S.

    2003-02-01

    A Microsoft ® Visual Basic 6.0 (Microsoft Corporation, 1987-1998) code of 15 lumped-parameter models is presented for the analysis of mean residence time in aquifers. Groundwater flow systems obeying plug and exponential flow models and their combinations of parallel or serial connection can be simulated by these steady-state models which may include complications such as bypass flow and dead volume. Each model accepts tritium, krypton-85, chlorofluorocarbons (CFC-11, CFC-12 and CFC-113) and sulfur hexafluoride (SF 6) as environmental tracer. Retardation of gas tracers in the unsaturated zone and their degradation in the flow system may also be accounted for. The executable code has been tested to run under Windows 95 or higher operating systems. The results of comparisons between other comparable codes are discussed and the limitations are indicated.

  18. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times.

    PubMed

    Bloom, A Anthony; Exbrayat, Jean-François; van der Velde, Ivar R; Feng, Liang; Williams, Mathew

    2016-02-02

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85-88%) in contrast to higher latitudes (73-82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42-0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64-0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types.

  19. The decadal state of the terrestrial carbon cycle: Global retrievals of terrestrial carbon allocation, pools, and residence times

    PubMed Central

    Bloom, A. Anthony; Exbrayat, Jean-François; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew

    2016-01-01

    The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85–88%) in contrast to higher latitudes (73–82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types. PMID:26787856

  20. NMR-based estimates of the molecular dimensions in wildfire charcoal: Implications for predictions of biochar residence time

    NASA Astrophysics Data System (ADS)

    Hockaday, William; Kane, Evan; Huang, Rixiang; Von Bargen, Justin; Davis, Rebecca; Ohlson, Mikael

    2014-05-01

    The thermochemical conversion of biomass to energy and fuels generates charcoal as a co-product. Charcoals derived from sustainable biomass sources—biochars—are an inherently stable form of carbon, relatively long residence times in the environment. Biochars can have potentially beneficial properties as soil fertility amendments, which has further stimulated research on the use of biochars for soil carbon sequestration as a climate change mitigation strategy. However, it is challenging to assess the long-term stability of biochar carbon using laboratory or field incubations because these are comprised of short-term observations. In this study, we make use of ancient charcoals from the boreal forests of Alaska and Scandanavia. We have deliberately selected charcoals from organic soil horizons, as to investigate the inherent biological and chemical stability of charcoal C without the protective influence of soil minerals. We use 14C radiocarbon dating to determine the age of the charcoals, differential scanning calorimetry to assess thermal stability, and solid-state 13C NMR to assess the chemical structure. Specifically, we employ C-H dipolar-dephasing NMR experiments to estimate the relative abundance and molecular dimensions of condensed aromatic domains and aliphatic structures. We test the hypothesis that the environmental stability, as determined by apparent 14C age and thermal stability, is related to the extent of ring condensation in the charcoal structure. Preliminary results suggest that the dimension of the condensed aromatic ring clusters may be an important molecular parameter to include in algorithms used to model/predict the residence time of charcoal and biochar C in soil.

  1. An experimental study of the role of particle diffusive convection on the residence time of volcanic ash clouds

    NASA Astrophysics Data System (ADS)

    Deal, E.; Carazzo, G.; Jellinek, M.

    2013-12-01

    The longevity of volcanic ash clouds generated by explosive volcanic plumes is difficult to predict. Diffusive convective instabilities leading to the production of internal layering are known to affect the stability and longevity of these clouds, but the detailed mechanisms controlling particle dynamics and sedimentation are poorly understood. We present results from a series of analog experiments reproducing diffusive convection in a 2D (Hele-Shaw) geometry, which allow us to constrain conditions for layer formation, sedimentation regime and cloud residence time as a function of only the source conditions. We inject a turbulent particle-laden jet sideways into a tank containing a basal layer of salt water and an upper layer of fresh water, which ultimately spreads as a gravity current. After the injection is stopped, particles in suspension settle through the cloud to form particle boundary layers (PBL) at the cloud base. We vary the initial particle concentration of the plume and the injection velocity over a wide range of conditions to identify and characterize distinct regimes of sedimentation. Our experiments show that convective instabilities driven as a result of differing diffusivities of salt and particles lead to periodic layering over a wide range of conditions expected in nature. The flux of particles from layered clouds and the thicknesses of the layers are understood using classical theory for double diffusive convection adjusted for the hydrodynamic diffusion of particles. Although diffusive convection increases sedimentation rates for the smallest particles (<30 μm) its overall effect is to extend the cloud residence time to several hours by maintaining larger particles in suspension within the layers, which is several orders of magnitude longer than expected when considering individual settling rates.

  2. Multi-scale field investigation of water flow pathways and residence times in mountainous catchments during monsoon rainfall

    NASA Astrophysics Data System (ADS)

    Troch, P. A.; Lyon, S. W.; Desilets, S.

    2007-05-01

    The "sky islands" of Arizona and New Mexico in the southwestern United States form a unique complex of about 27 mountain ranges whose ecosystems support many perennial and ephemeral streams in an arid climate. Among these sky islands are the Santa Catalina Mountains near Tucson, AZ, with a peak elevation of 9157 ft at Mt. Lemmon. Sabino Canyon Creek is the main stream which runs on the south face of the mountain range. It usually flows from July through April with an average daily flow of approximately 0.28 m3/s (10 cfs). However, flash floods are common both during summer as a result of intense monsoon rains and during spring because of rapid snowmelt. During these events, flow increases drastically, reaching peak flows up to 480 m3/s (15,984 cfs, July 2006). Characterizing water flow pathways and residence times in these complex catchments is important for improving flash flood warning systems, estimating mountain front recharge, managing forest and wild fires, and understanding ecosystem functions. In the summer of 2006, we set up an extensive hydrometrical and hydro- chemical monitoring network in Sabino Canyon Creek, comprising 40 tipping bucket rain gauges (two of which were equipped to automatically collect rainwater samples), 5 automatic surface water level stations (three of which were equipped with auto samplers), and 8 manual soil lysimeters. In addition, several rain and stream water grab samples were collected manually during intensive rain events. Water samples are analyzed for major ions and liquid water isotopic concentration (2H and 18O) in rain, soil, ground and surface water. The data allows for a detailed reconstruction of water flow pathways and residence times at 3 different catchment scales (2 km2, 8 km2, and 91 km2) during the recorded flow events, including the highest monsoon rainfall-runoff event ever recorded in these mountains.

  3. Real-time measurements of levoglucosan in fine aerosols (PM2.5) in the region of Paris (France)

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Bonnaire, N.; Mocnik, G.; Bressi, M.; Petit, J.; Nicolas, J.; Sarda-Estève, R.

    2011-12-01

    Levoglucosan - one of the major saccharidic compounds produced by the combustion of cellulose and hemicellulose - is emitted in large amounts by wildfires or residential wood burning (during winter months). Over the past few years, this organic tracer has received more and more attention as it can be used in a quantitative way to derive atmospheric concentrations of biomass burning aerosols [Favez et al., 2010] which aerosol source has strong implications for climate and air quality studies. A new technique has been developed and is presented here to investigate real-time concentrations of levoglucosan in fine aerosols (PM2.5). This technique is based on a Particle-into-liquid-sampler (PILS, Brechtel Manufacturing inc., model 4002) used "on-line" and coupled with an electrospray ionisation - tandem mass spectrometry (ESI-MS/MS, Applied Biosystem model QTRAP 3200). Air was drawn in the PILS at 15LPM and removed from particles larger than 2.5μm aerodynamic diameter (AD) using a very sharp cyclone. Water-soluble aerosols were collected in the PILS and sent in the 10μL loop of the ESI-MS/MS at a flowrate of 50μL/min. Flow injection analysis (FIA) was then performed every 2.5min for the quantification of levoglucosan using ion source specific fragments (ions m/z 113). An internal levoglucosan standard was injected every 10 samples (i.e. every 25min) in order to check the stability of the mass spectrometry calibration. Field blanks were performed using a total filter upstream of the PILS instrument and did not show any detectable amount of levoglucosan. A limit of quantification (LOQ) better than 1 ng/m3 was calculated here for levoglucosan in FIA mode. Based on these settings, unattended measurements of levoglucosan by PILS-ESI-MS/MS have been performed every 2.5 min in the region of Paris for a couple of weeks during the winter 2011 showing concentrations ranging from below 1ng/m3 to more than 500ng/m3. These measurements were compared to measurements of Black

  4. Changing restoration rules: exotic bivalves interact with residence time and depth to control phytoplankton productivity

    USGS Publications Warehouse

    Lucas, Lisa V.; Thompson, Janet K.

    2012-01-01

    Non-native species are a prevalent ecosystem stressor that can interact with other stressors to confound resource management and restoration. We examine how interactions between physical habitat attributes and a particular category of non-native species (invasive bivalves) influence primary production in aquatic ecosystems. Using mathematical models, we show how intuitive relationships between phytoplankton productivity and controllable physical factors (water depth, hydraulic transport time) that hold in the absence of bivalves can be complicated—and even reversed—by rapid bivalve grazing. In light-limited environments without bivalves, shallow, hydrodynamically “slow” habitats should generally have greater phytoplankton biomass and productivity than deeper, “faster” habitats. But shallower, slower environments can be less productive than deeper, faster ones if benthic grazing is strong. Moreover, shallower and slower waters exhibit a particularly broad range of possible productivity outcomes that can depend on whether bivalves are present. Since it is difficult to predict the response of non-native bivalves to habitat restoration, outcomes for new shallow, slow environments can be highly uncertain. Habitat depth and transport time should therefore not be used as indicators of phytoplankton biomass and production where bivalve colonization is possible. This study provides for ecosystem management a particular example of a broad lesson: abiotic ecosystem stressors should be managed with explicit consideration of interactions with other major (including biotic) stressors. We discuss the applicability and management implications of our models and results for a range of aquatic system types, with a case study focused on the Sacramento-San Joaquin Delta (California, USA). Simple mathematical models like those used here can illuminate interactions between ecosystem stressors and provide process-based guidance for resource managers as they develop strategies

  5. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols.

    PubMed

    Shen, Fangxia; Tan, Miaomiao; Wang, Zhenxing; Yao, Maosheng; Xu, Zhenqiang; Wu, Yan; Wang, Jindong; Guo, Xuefeng; Zhu, Tong

    2011-09-01

    Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.

  6. The dependence of estuarine turbidity on tidal intrusion length, tidal range and residence time

    USGS Publications Warehouse

    Uncles, R.J.; Stephens, J.A.; Smith, R.E.

    2002-01-01

    times for solutes than shorter systems and that larger tides tend to reduce flushing times, although the tidal influence is secondary. Short, rapidly flushed estuaries quickly lose their erodable fine sediment to the coastal zone during freshets and during the ebbing currents of spring tides. Turbidity is therefore small during low runoff, low wave activity conditions. Very long, very slowly flushed estuaries are unlikely to lose a significant fraction of their resuspended sediments during freshets or individual ebb tides and are therefore able to accumulate large and increasing amounts of fine sediment in the long-term. Turbidity within them is therefore high during the fast currents of large spring tides. ?? 2002 Elsevier Science Ltd. All rights reserved.

  7. Infectious Diseases in Immigrant Population Related to the Time of Residence in Spain.

    PubMed

    Cobo, Fernando; Salas-Coronas, Joaquín; Cabezas-Fernández, M Teresa; Vázquez-Villegas, José; Cabeza-Barrera, M Isabel; Soriano-Pérez, Manuel J

    2016-02-01

    The aim of this study was to evaluate the data on the main imported infectious diseases and public health issues arising from the risk of transmission of tropical and common diseases in the immigrant population. During the period of study, 2,426 immigrants were attended in the Tropical Medicine Unit of the Hospital of Poniente. For each patient, a complete screening for common and tropical diseases was performed. The prevalence and main features of intestinal and urinary parasites, microfilarias, Chagas disease, malaria, hepatitis B (HBV) and C (HCV) viruses, extrapulmonary tuberculosis and syphilis was investigated taking into account the length of stay in Spain. Sub-Saharan Africa patients who had lived for <3 years in Spain had a high significantly number of infections produced by hookworms, Ascaris lumbricoides, Trichuris trichiura, Schistosoma mansoni, Giardia lamblia, Entamoeba histolytica/dispar and Plasmodium spp. In patients who had lived for more than 3 years, there were significantly high rates of HBV infections, although HBV rates in sub-Saharan African patients are high even if the patients have been in Spain for <3 years. However, patients with large stays in Spain had also an important number of parasitological diseases. The main objective of the diagnosis is to avoid important public health problems and further complications in patients. It is advisable to carry out a screening of the main transmissible infections in all immigrant population regardless of the time outside their country. This screening should be individualized according to the geographical area of origin.

  8. Polar organic marker compounds in atmospheric aerosols: Determination, time series, size distributions and sources

    NASA Astrophysics Data System (ADS)

    Kourtchev, Ivan

    Terrestrial vegetation releases substantial amounts of reactive volatile organic compounds (VOCs; e.g., isoprene, monoterpenes) into the atmosphere. The VOCs can be rapidly photooxidized under conditions of high solar radiation, yielding products that can participate in new particle formation and growth processes above forests. This thesis focuses on the characterization, identification and quantification of oxidation products of biogenic VOC (BVOCs) as well as other species (tracer compounds) that provide information on aerosol sources and source processes. Atmospheric aerosols from various forested sites (i.e., Hyytiala, southern Finland; Rondonia, Brazil; K-Puszta, Hungary and Julich, Germany) were analyzed with Gas Chromotography/Mass Spectrometry (GC/MS) using analytical procedure that targets polar organic compounds. The study demonstrated that isoprene (i.e., 2-methyerythritol, 2-methylthreitol, 2-methylglyceric acid and C5-alkene triols (2-methyl-1,3,4-trihydroxy-l-butene (cis and trans) and 3 methyl-2,3,4-trihydroxy-1-butene)) and monoterpene (pinic acid, norpinic acid, 3-hydroxyglutaric acid and 3-methyl-1,2,3-butanetricarboxylic acid) oxidation products were present in substantial concentrations in atmospheric aerosols suggesting that oxidation of BVOC from the vegetation is an important process in all studied sites. On the other hand, presence of levoglucosan, biomass burning marker, especially in Amazonian rain forest site at Rondonia, Brazil, pointed that all sites were affected by anthropogenic activities, namely biomass burning. Other identified compounds included plyols, arabitol, mannitol and erythritol, which are marker compounds for fungal spores and monosacharides, glucose and fructose, markers for plant polens. Temporal variations as well as mass size distributions of the detected species confirmed the possible formation mechanisms of marker compounds.

  9. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  10. Continuous, high-resolution spatial mapping of water isotopes: improving tools for quantifying local evaporation and residence times

    NASA Astrophysics Data System (ADS)

    Dennis, Kate J.; Carter, Jeffrey A.; Winkler, Renato; Downing, Brian; Kendall, Carol; Bergamaschi, Brian

    2015-04-01

    Stable isotopes of water (d2H, d18O) are unique tracers of many hydrological processes including evaporation, precipitation, reservoir mixing and residence time. Historically, discrete water samples have been collected and analyzed via either Isotope Ratio Mass Spectrometry, or more recently laser-based spectroscopic methods, such as Cavity Ring-Down Spectroscopy (CRDS). However, the analysis of discrete samples precludes the ability to construct high resolution water isotope data sets through time and space. By coupling a recently developed front-end peripheral device (Continuous Water Sampler or CWS) to a CRDS analyzer (Picarro L2130-i), we continuously measured and spatially mapped water isotopes on a transect of the Sacramento River Delta following an extended period of drought. More than two-thousand five-second average d18O and d2H measurements were made aboard the R/V King (USGS) over a six-hour period. In addition to water isotopes, nitrate, chlorophyll, dissolved organic matter (DOM) fluorescence, and other water quality parameters were also measured continuously. As you travel northeast up the delta, surface waters become progressively more enriched in 18O and 2H, while nitrate decreased in concentration and chlorophyll and DOM increased. We utilize the spatially-mapped isotope data within a single transect to understand local evaporation and residence time by (i) utilizing the secondary parameter, d-excess, and (ii) using a simple mass balance model of water moving through the system (inflow, outflow and evaporation). Additional transects, to be conducted during the rainy season, should highlight how the Delta system evolves seasonally. In concert with other data previously collected from the Sacramento River Delta, we suggest the lower region represents a mixture of river waters derived from the Sierra Nevada Mountains and the more marine waters from the mouth of the San Francisco Bay. Moving NE up the Delta into shallow sloughs through flooded wetlands

  11. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  12. Characterization of surface and ground water δ18O seasonal variation and its use for estimating groundwater residence times

    USGS Publications Warehouse

    Reddy, Michael M.; Schuster, Paul F.; Kendall, Carol; Reddy, Micaela B.

    2006-01-01

    18O is an ideal tracer for characterizing hydrological processes because it can be reliably measured in several watershed hydrological compartments. Here, we present multiyear isotopic data, i.e. 18O variations (δ18O), for precipitation inputs, surface water and groundwater in the Shingobee River Headwaters Area (SRHA), a well-instrumented research catchment in north-central Minnesota. SRHA surface waters exhibit δ18O seasonal variations similar to those of groundwaters, and seasonal δ18O variations plotted versus time fit seasonal sine functions. These seasonal δ18O variations were interpreted to estimate surface water and groundwater mean residence times (MRTs) at sampling locations near topographically closed-basin lakes. MRT variations of about 1 to 16 years have been estimated over an area covering about 9 km2 from the basin boundary to the most downgradient well. Estimated MRT error (±0·3 to ±0·7 years) is small for short MRTs and is much larger (±10 years) for a well with an MRT (16 years) near the limit of the method. Groundwater transit time estimates based on Darcy's law, tritium content, and the seasonal δ18O amplitude approach appear to be consistent within the limits of each method. The results from this study suggest that use of the δ18O seasonal variation method to determine MRTs can help assess groundwater recharge areas in small headwaters catchments.

  13. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-02-01

    Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability

  14. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modeling of complete high time-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-08-01

    Receptor modeling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada's Canadian Regional and Urban Investigation System for Environmental Research (CRUISER) mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach compared to the more common method of analyzing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulfate- and oxygenated organic aerosol-containing factor (Sulfate-OA); an ammonium nitrate- and oxygenated organic aerosol-containing factor (Nitrate-OA); an ammonium chloride-containing factor (Chloride); a hydrocarbon-like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analyzing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case the Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this

  15. Quantifying the residence time and flushing characteristics of a shallow, back-barrier estuary: Application of hydrodynamic and particle tracking models

    USGS Publications Warehouse

    Defne, Zafer; Ganju, Neil K.

    2015-01-01

    Estuarine residence time is a major driver of eutrophication and water quality. Barnegat Bay-Little Egg Harbor (BB-LEH), New Jersey, is a lagoonal back-barrier estuary that is subject to anthropogenic pressures including nutrient loading, eutrophication, and subsequent declines in water quality. A combination of hydrodynamic and particle tracking modeling was used to identify the mechanisms controlling flushing, residence time, and spatial variability of particle retention. The models demonstrated a pronounced northward subtidal flow from Little Egg Inlet in the south to Pt. Pleasant Canal in the north due to frictional effects in the inlets, leading to better flushing of the southern half of the estuary and particle retention in the northern estuary. Mean residence time for BB-LEH was 13 days but spatial variability was between ∼0 and 30 days depending on the initial particle location. Mean residence time with tidal forcing alone was 24 days (spatial variability between ∼0 and 50 days); the tides were relatively inefficient in flushing the northern end of the Bay. Scenarios with successive exclusion of physical processes from the models revealed that meteorological and remote offshore forcing were stronger drivers of exchange than riverine inflow. Investigations of water quality and eutrophication should take into account spatial variability in hydrodynamics and residence time in order to better quantify the roles of nutrient loading, production, and flushing.

  16. On the use of late-time peaks of residence time distributions for the characterization of hierarchically nested groundwater flow systems

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Zhi; Wörman, Anders; Bresciani, Etienne; Wan, Li; Wang, Xu-Sheng; Jiang, Xiao-Wei

    2016-12-01

    Previous studies on the characterization of hierarchically nested groundwater flow systems have mainly been based on the spatial distribution analyses of groundwater pathways. In this paper, by considering the discrete nature of the temporal behavior induced by different hierarchical flow systems, a new approach is proposed. The core of this approach is to use the critical residence times defined by the late-time peaks of residence time distributions (RTDs) to divide the groundwater flow field into local, intermediate and regional systems as described by Tóth (1963). We first introduce Tóthian basins of a 2D cross section and a 3D domain as synthetic test cases. The feasibility of the approach is demonstrated by comparing the partitioning results given by the dividing streamlines associated with internal stagnation points in the 2D Tóthian basin and by the hydraulic connections between recharge and discharge zones in the 3D Tóthian basin. Then, the Dosit River Watershed in Northwestern China is introduced as a field case study. Using the calibrated 3D groundwater flow model, one distinct late-time peak is identified from the RTD and indicates that the Dosit River Watershed can generally be regarded as a two-order nested flow structure with local and regional flow systems. This approach can be used to identify the volumes occupied by different orders of flow systems in 3D, and therefore opens up a new perspective in the study of the 3D nature of basin-scale groundwater flow.

  17. The Evolution and Increasing Complexity of the Resident Assistant Role in the United States from Colonial to Modern Times

    ERIC Educational Resources Information Center

    Boone, Katherine B.; Davidson, Denise L.; Bauman, Mark

    2016-01-01

    The evolution of the resident assistant position and its history are important to understanding its increasing complexities. In this article we examine how court cases and federal legislation, along with changes in popular culture, have altered and shaped the role of the resident assistant. Our premise is that this role, originally relatively…

  18. Real-time measurements of levoglucosan in fine aerosols (PM2.5) in the region of Paris (France)

    NASA Astrophysics Data System (ADS)

    Sciare, J.; Bonnaire, N.; Mocnik, G.; Nicolas, J.; Petit, J. E.; Bressi, M.; Sarda-Estève, R.; Drinovic, L.

    2012-04-01

    Levoglucosan - one the major monosaccharide anhydride compounds produced by the combustion of cellulose and hemicellulose - is emitted in large amounts by wildfires or residential wood burning (during winter months). Over the past few years, this specific tracer has received more and more attention at it can be used in a quantitative way to derive atmospheric concentrations of biomass burning aerosols [Favez et al., 2010] which aerosol source has strong implications for climate and air quality studies. A new technique has been developed and is presented here to investigate real-time concentrations of levoglucosan in fine aerosols (PM2.5). This technique is based on a Particle-into-liquid-sampler (PILS, Brechtel Manufacturing inc., model 4002) used "on-line" and coupled with an electrospray ionisation source - tandem mass spectrometry (ESI-MS/MS, AB SCIEX model 3200 QTRAP). Air was drawn in the PILS at 15LPM and removed from particles larger than 2.5μm aerodynamic diameter (AD) using a very sharp cyclone. Water-soluble aerosols were collected in the PILS and sent in the 10μl loop of the ESI-MS/MS at a flowrate of 50μl/min. Flow injection analysis (FIA) was then performed every 2.5min for the quantification of levoglucosan using a specific transition 161-113 m/z (negative mode), by Multiple Reaction Monitoring (MRM) mode. An internal levoglucosan standard was injected every 10 samples (i.e. every 25min) in order to check the stability of the mass spectrometry calibration. Field blanks were performed using a total filter upstream of the PILS instrument and did not show any detectable amount of levoglucosan. A limit of quantification (LOQ) better than 1 ng/m3 was calculated here for levoglucosan in FIA mode. Based on these settings, unattended measurements of levoglucosan by PILS-ESI-MS/MS have been performed every 2.5 min in the region of Paris for a couple of weeks during the winter 2011 showing concentrations ranging from below 1ng/m3 to more than 500ng/m3. These

  19. Detection and Quantification of Wallemia sebi in Aerosols by Real-Time PCR, Conventional PCR, and Cultivation

    PubMed Central

    Zeng, Qing-Yin; Westermark, Sven-Olof; Rasmuson-Lestander, Åsa; Wang, Xiao-Ru

    2004-01-01

    Wallemia sebi is a deuteromycete fungus commonly found in agricultural environments in many parts of the world and is suspected to be a causative agent of farmer's lung disease. The fungus grows slowly on commonly used culture media and is often obscured by the fast-growing fungi. Thus, its occurrence in different environments has often been underestimated. In this study, we developed two sets of PCR primers specific to W. sebi that can be applied in either conventional PCR or real-time PCR for rapid detection and quantification of the fungus in environmental samples. Both PCR systems proved to be highly specific and sensitive for W. sebi detection even in a high background of other fungal DNAs. These methods were employed to investigate the presence of W. sebi in the aerosols of a farm. The results revealed a high concentration of W. sebi spores, 107 m−3 by real-time PCR and 106 m−3 by cultivation, which indicates the prevalence of W. sebi in farms handling hay and grain and in cow barns. The methods developed in this study could serve as rapid, specific, and sensitive means of detecting W. sebi in aerosol and surface samples and could thus facilitate investigations of its distribution, ecology, clinical diagnosis, and exposure risk assessment. PMID:15574929

  20. Development and Characterization of a Thermodenuder for Aerosol Volatility Measurements

    SciTech Connect

    Dr. Timothy Onasch

    2009-09-09

    due to coatings on soot particles). The successfully completed Phase I project included construction of a prototype design for the TD with detailed physical modeling, testing with laboratory and ambient aerosol particles, and the initiation of a detailed microphysical model of the aerosol particles passing through the TD to extract vapor pressure distributions. The objective of the microphysical model is to derive vapor pressure distributions (i.e. vapor pressure ranges, including single chemical compounds, mixtures of known compounds, and complex ‘real-world’ aerosols, such as SOA, and soot particles with absorbing and nonabsorbing coatings) from TD measurements of changes in particle size, mass, and chemical composition for known TD temperatures and flow rates (i.e. residence times). The proposed Phase II project was designed to optimize several TD systems for different instrument applications and to combine the hardware and modeling into a robust package for commercial sales.

  1. Model describing the dependence of aerosol microstructure on different sea bottom types

    SciTech Connect

    Zielinski, T.; Zielinski, A.

    1996-12-31

    This model describes variations of aerosol size distribution function, aerosol fluxes and their residence times as a function of two different formula for roughness length coefficient including developing roughness and fully developed roughness, diverse sea bottom types with various slopes and different weather conditions with changing wind velocity, direction and duration. This model has been verified experimentally on two types of Baltic Sea bottoms and it allows for the good estimation of aerosol dynamics in the coastal zone provided that wind conditions and the sea bottom type are known.

  2. Development of a Metastable Atom Bombardment (MAB) Source for Penning Ionization Time-of-flight Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Robinson, C. B.; Kimmel, J. R.; David, D.; Jayne, J. T.; Trimborn, A.; Worsnop, D. R.; Jimenez, J. L.

    2009-12-01

    The Aerodyne time-of-flight aerosol mass spectrometer (ToF-AMS) utilizes thermal vaporization followed by electron ionization (EI) to convert aerosol components to gas-phase ions. The method enables quantification of chemical classes, but the extensive fragmentation caused by EI limits the specificity of both chemical analysis and source identification by factor analysis. To better identify the molecular components of aerosols, we have constructed a metastable atom bombardment (MAB) ionization source that can be interfaced to standard ToF-AMS hardware. A beam of metastable rare gas atoms is produced by a low-voltage DC discharge and focused toward the vaporization plume, yielding Penning Ionization of the analyte molecules. By changing gases, the excited energies of the metastables can be adjusted between 20.61 eV (He) and 9.92 eV (Kr). Source parameters, including pressures, current, geometry, and materials, were optimized for He, Ar, and Kr. Instrument sensitivity and induced fragmentation was characterized for each using lab-generated oleic acid particles. The demonstrated sensitivities are 0.1% of EI (3% of the SNR of EI in the V-mode, comparable to the Q-AMS SNR), which is sufficient for ambient monitoring. A metastable flux of 2.6e14 sr-1sec-1 has been achieved. The MAB-AMS has been deployed to the FLAME-3 campaign at the USDA Fire Sciences Laboratory in Missoula, MT, and used to sample smoke from open burning of different biomass samples. Preliminary results from FLAME-3 will be presented.

  3. Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station

    NASA Astrophysics Data System (ADS)

    Salma, Imre; Weidinger, Tamás; Maenhaut, Willy

    Aerosol samples were collected using a stacked filter unit (SFU) for PM10-2.0 and PM2.0 size fractions on the platform of a metropolitan underground railway station in downtown Budapest. Temporal variations in the PM10 mass concentration and wind speed and direction were determined with time resolutions of 30 and 4 s using a tapered-element oscillating microbalance (TEOM) and a wind monitor, respectively. Sample analysis involved gravimetry for particulate mass, and particle-induced X-ray emission spectrometry (PIXE) for elemental composition. Diurnal variation of the PM10 mass concentration exhibited two peaks, one at approximately 07:00 h and the other at approximately 17:00 h. The mean±SD PM10 mass concentration for working hours was 155±55 μg m -3. Iron, Mn, Ni, Cu, and Cr concentrations were higher than in outdoor air by factors between 5 and 20, showing substantial enrichment compared to both the average crustal rock composition and the average outdoor aerosol composition. Iron accounted for 40% and 46% of the PM10-2.0 and PM2.0 masses, respectively, and 72% of the PM10 mass was associated with the PM10-2.0 size fraction. The aerosol composition in the metro station (in particular the abundance of the metals mentioned above) is quite different from the average outdoor downtown composition. Mechanical wear and friction of electric conducting rails and bow sliding collectors, ordinary rails and wheels, as well as resuspension, were identified as the primary sources. Possible health implications based on comparison to various limit values and to data available for other underground railways are discussed.

  4. Seasonal recharge and mean residence times of soil and epikarst water in a small karst catchment of southwest China

    PubMed Central

    Hu, Ke; Chen, Hongsong; Nie, Yunpeng; Wang, Kelin

    2015-01-01

    Soil and epikarst play an important role in the hydrological cycle in karst regions. This paper focuses on investigating the seasonal recharge and mean residence time (MRT) of soil water and epikarst water in a small karst catchment of southwest China. The deuterium contents in precipitation, creek, soil baseflow (direct recharge of the saturated soil water to the stream), epikarst spring, and soil waters were monitored weekly for two years, and MRT was calculated by an exponential model (EM) and a dispersion model (DM). The obvious seasonal variation of deuterium in rainfall was buffered in epikarst water, indicating sufficient water mixing. Soil baseflow contained less rainy-season rainwater than epikarst spring discharge, reflecting the retarded effect of soil thickness on rainwater recharge. MRTs of all water bodies were 41-71 weeks, and soils in the depression extended those of shallow groundwater. This demonstrated that the deep soil layer played an important role in karst hydrological processes in the study catchment. The creek was recharged mostly by rainfall through epikarst, indicating its crucial role in water circulation. These results showed epikarst had a strong water-holding capacity and also delayed water contact time with dolomite. PMID:25959092

  5. Seasonal recharge and mean residence times of soil and epikarst water in a small karst catchment of southwest China.

    PubMed

    Hu, Ke; Chen, Hongsong; Nie, Yunpeng; Wang, Kelin

    2015-05-11

    Soil and epikarst play an important role in the hydrological cycle in karst regions. This paper focuses on investigating the seasonal recharge and mean residence time (MRT) of soil water and epikarst water in a small karst catchment of southwest China. The deuterium contents in precipitation, creek, soil baseflow (direct recharge of the saturated soil water to the stream), epikarst spring, and soil waters were monitored weekly for two years, and MRT was calculated by an exponential model (EM) and a dispersion model (DM). The obvious seasonal variation of deuterium in rainfall was buffered in epikarst water, indicating sufficient water mixing. Soil baseflow contained less rainy-season rainwater than epikarst spring discharge, reflecting the retarded effect of soil thickness on rainwater recharge. MRTs of all water bodies were 41-71 weeks, and soils in the depression extended those of shallow groundwater. This demonstrated that the deep soil layer played an important role in karst hydrological processes in the study catchment. The creek was recharged mostly by rainfall through epikarst, indicating its crucial role in water circulation. These results showed epikarst had a strong water-holding capacity and also delayed water contact time with dolomite.

  6. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    DOE PAGES

    Lambe, A. T.; Chhabra, P. S.; Onasch, T. B.; ...

    2015-03-18

    We performed a systematic intercomparison study of the chemistry and yields of secondary organic aerosol (SOA) generated from OH oxidation of a common set of gas-phase precursors in a Potential Aerosol Mass (PAM) continuous flow reactor and several environmental chambers. In the flow reactor, SOA precursors were oxidized using OH concentrations ranging from 2.0 × 108 to 2.2 × 1010 molec cm-3 over exposure times of 100 s. In the environmental chambers, precursors were oxidized using OH concentrations ranging from 2 × 106 to 2 × 107 molec cm-3 over exposure times of several hours. The OH concentration in themore » chamber experiments is close to that found in the atmosphere, but the integrated OH exposure in the flow reactor can simulate atmospheric exposure times of multiple days compared to chamber exposure times of only a day or so. In most cases, for a specific SOA type the most-oxidized chamber SOA and the least-oxidized flow reactor SOA have similar mass spectra, oxygen-to-carbon and hydrogen-to-carbon ratios, and carbon oxidation states at integrated OH exposures between approximately 1 × 1011 and 2 × 1011 molec cm-3 s, or about 1–2 days of equivalent atmospheric oxidation. This observation suggests that in the range of available OH exposure overlap for the flow reactor and chambers, SOA elemental composition as measured by an aerosol mass spectrometer is similar whether the precursor is exposed to low OH concentrations over long exposure times or high OH concentrations over short exposure times. This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of

  7. Rapid and Sensitive Detection of Pseudomonas aeruginosa in Chlorinated Water and Aerosols targeting gyrB gene using Real-time PCR

    PubMed Central

    Lee, Chang Soo; Wetzel, Kaedra; Buckley, Timothy; Wozniak, Daniel; Lee, Jiyoung

    2011-01-01

    Aims For the rapid detection of P. aeruginosa from chlorinated water and aerosols, gyrB gene-based real-time PCR assay was developed and investigated. Methods and Results Two novel primer sets (pa722F/746MGB/899R and pa722F/746MGB/788R) were designed using the most updated 611 Pseudomonas and 748 other bacterial gyrB genes for achieving high specificity. Their specificity showed 100% accuracy when tested with various strains including clinical isolates from cystic fibrosis patients. The assay was tested with P. aeruginosa-containing chlorinated water and aerosols to simulate the waterborne and airborne transmission routes (detection limit 3.3 × 102 CFU·PCR−1 − 2.3 × 103 CFU·PCR−1). No chlorine interference in real-time PCR was observed at drinking water level (~ 1 mg·L−1), but high level of chorine (12 mg·L−1) interfered the assay, thus neutralization was needed. P. aeruginosa in aerosol was successfully detected after capturing with gelatin filters with minimum 2 min of sampling time when the initial concentration of 104 CFU·mL−1 bacteria existed in the nebulizer. Conclusions A highly specific and rapid assay (2–3 hrs) was developed by targeting gyrB gene for the detection of P. aeruginosa in chlorinated water and aerosols, combined with optimized sample collection methods and sample processing, so the direct DNA extraction from either water or aerosol was possible while achieving the desired sensitivity of the method. Significance and Impact The new assay can provide timely and accurate risk assessment to prevent P. aeruginosa exposure from water and aerosol, resulting in reduced disease burden, especially among immune-compromised and susceptible individuals. This approach can be easily utilized as a platform technology for the detection of other types of microorganisms, especially for those that are transmitted via water and aerosol routes, such as Legionella pneumophila. PMID:21794031

  8. Water availability limits tree productivity, carbon stocks, and carbon residence time in mature forests across the western US

    NASA Astrophysics Data System (ADS)

    Berner, Logan T.; Law, Beverly E.; Hudiburg, Tara W.

    2017-01-01

    Water availability constrains the structure and function of terrestrial ecosystems and is projected to change in many parts of the world over the coming century. We quantified the response of tree net primary productivity (NPP), live biomass (BIO), and mean carbon residence time (CRT = BIO / NPP) to spatial variation in water availability in the western US. We used forest inventory measurements from 1953 mature stands (> 100 years) in Washington, Oregon, and California (WAORCA) along with satellite and climate data sets covering the western US. We summarized forest structure and function in both domains along a 400 cm yr-1 hydrologic gradient, quantified with a climate moisture index (CMI) based on the difference between precipitation and reference evapotranspiration summed over the water year (October-September) and then averaged annually from 1985 to 2014 (CMIwy). Median NPP, BIO, and CRT computed at 10 cm yr-1 intervals along the CMIwy gradient increased monotonically with increasing CMIwy across both WAORCA (rs = 0.93-0.96, p < 0.001) and the western US (rs = 0.93-0.99, p < 0.001). Field measurements from WAORCA showed that median NPP increased from 2.2 to 5.6 Mg C ha-1 yr-1 between the driest and wettest 5 % of sites, while BIO increased from 26 to 281 Mg C ha-1 and CRT increased from 11 to 49 years. The satellite data sets revealed similar changes over the western US, though these data sets tended to plateau in the wettest areas, suggesting that additional efforts are needed to better quantify NPP and BIO from satellites in high-productivity, high-biomass forests. Our results illustrate that long-term average water availability is a key environmental constraint on tree productivity, carbon storage, and carbon residence time in mature forests across the western US, underscoring the need to assess potential ecosystem response to projected

  9. Investigation of aerosol distribution patterns and its optical properties at different time scale by using LIDAR system and AERONET

    NASA Astrophysics Data System (ADS)

    Tan, Fuyi; Khor, Wei Ying; Hee, Wan Shen; Choon, Yeap Eng; San, Lim Hwee; Abdullah, Khiruddin

    2015-04-01

    Atmospheric aerosol is a major health-impairment issue in Malaysia especially during southeast monsoon period (June-September) due to the active open burning activities. However, hazy days were an issue in Penang, Malaysia during March, 2014. Haze intruded Penang during March and lasted for a month except for the few days after rain. Rain water had washed out the aerosols from the atmosphere. Therefore, this study intends to analyse the aerosol profile and the optical properties of aerosol during this haze event and after rain. Meanwhile, several days after the haze event (during April, 2014) were also analyzed for comparison purposes. Additionally, the dominant aerosol type (i.e., dust, biomass burning, industrial and urban, marine, and mixed aerosol) during the study period was identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent.

  10. Worldwide impact of aerosol's time scale on the predicted long-term concentrating solar power potential.

    PubMed

    Ruiz-Arias, Jose A; Gueymard, Christian A; Santos-Alamillos, Francisco J; Pozo-Vázquez, David

    2016-08-10

    Concentrating solar technologies, which are fuelled by the direct normal component of solar irradiance (DNI), are among the most promising solar technologies. Currently, the state-of the-art methods for DNI evaluation use datasets of aerosol optical depth (AOD) with only coarse (typically monthly) temporal resolution. Using daily AOD data from both site-specific observations at ground stations as well as gridded model estimates, a methodology is developed to evaluate how the calculated long-term DNI resource is affected by using AOD data averaged over periods from 1 to 30 days. It is demonstrated here that the use of monthly representations of AOD leads to systematic underestimations of the predicted long-term DNI up to 10% in some areas with high solar resource, which may result in detrimental consequences for the bankability of concentrating solar power projects. Recommendations for the use of either daily or monthly AOD data are provided on a geographical basis.

  11. Time-Resolved Molecular Characterization of Limonene/Ozone Aerosol using High-Resolution Electrospray Ionization Mass Spectrometry

    SciTech Connect

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2009-09-09

    Molecular composition of limonene/O3 secondary organic aerosol (SOA) was investigated using high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) as a function of reaction time. SOA was generated by ozonation of D-limonene in a reaction chamber and sampled at different time intervals using a cascade impactor. The SOA samples were extracted into acetonitrile and analyzed using a HR-ESI-MS instrument with a resolving power of 100,000 (m/Δm). The resulting mass spectra provided detailed information about the extent of oxidation inferred from the O:C ratios, double bond equivalency (DBE) factors, and aromaticity indexes (AI) in hundreds of identified individual SOA species.

  12. Ice-condenser aerosol tests

    SciTech Connect

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. )

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  13. Temperature and residence time controls on an estuarine harmful algal bloom: Modeling hydrodynamics and Alexandrium fundyense in Nauset estuary.

    PubMed

    Ralston, David K; Brosnahan, Michael L; Fox, Sophia E; Lee, Krista; Anderson, Donald M

    2015-11-01

    A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated

  14. Temperature and residence time controls on an estuarine harmful algal bloom: Modeling hydrodynamics and Alexandrium fundyense in Nauset estuary

    PubMed Central

    Ralston, David K.; Brosnahan, Michael L.; Fox, Sophia E.; Lee, Krista; Anderson, Donald M.

    2015-01-01

    A highly resolved, 3-d model of hydrodynamics and Alexandrium fundyense in an estuarine embayment has been developed to investigate the physical and biological controls on a recurrent harmful algal bloom. Nauset estuary on Cape Cod (MA, USA) consists of three salt ponds connected to the ocean through a shallow marsh and network of tidal channels. The model is evaluated using quantitative skill metrics against observations of physical and biological conditions during three spring blooms. The A. fundyense model is based on prior model applications for the nearby Gulf of Maine, but notable modifications were made to be consistent with the Nauset observations. The dominant factors controlling the A. fundyense bloom in Nauset were the water temperature, which regulates organism growth rates, and the efficient retention of cells due to bathymetric constraints, stratification, and cell behavior (diel vertical migration). Spring-neap variability in exchange altered residence times, but for cell retention to be substantially longer than the cell doubling time required both active vertical migration and stratification that inhibits mixing of cells into the surface layer by wind and tidal currents. Unlike in the Gulf of Maine, the model results were relatively insensitive to cyst distributions or germination rates. Instead, in Nauset, high apparent rates of vegetative cell division by retained populations dictated bloom development. Cyst germination occurred earlier in the year than in the Gulf of Maine, suggesting that Nauset cysts have different controls on germination timing. The model results were relatively insensitive to nutrient concentrations, due to eutrophic conditions in the highly impacted estuary or due to limitations in the spatial and temporal resolution of nutrient sampling. Cell loss rates were inferred to be extremely low during the growth phase of the bloom, but increased rapidly during the final phase due to processes that remain uncertain. The validated

  15. Xenobiotic removal efficiencies in wastewater treatment plants: residence time distributions as a guiding principle for sampling strategies.

    PubMed

    Majewsky, Marius; Gallé, Tom; Bayerle, Michael; Goel, Rajeev; Fischer, Klaus; Vanrolleghem, Peter A

    2011-11-15

    The effect of mixing regimes and residence time distribution (RTD) on solute transport in wastewater treatment plants (WWTPs) is well understood in environmental engineering. Nevertheless, it is frequently neglected in sampling design and data analysis for the investigation of polar xenobiotic removal efficiencies in WWTPs. Most studies on the latter use 24-h composite samples in influent and effluent. The effluent sampling period is often shifted by the mean hydraulic retention time assuming that this allows a total coverage of the influent load. However, this assumption disregards mixing regime characteristics as well as flow and concentration variability in evaluating xenobiotic removal performances and may consequently lead to biased estimates or even negative elimination efficiencies. The present study aims at developing a modeling approach to estimate xenobiotic removal efficiencies from monitoring data taking the hydraulic RTD in WWTPs into consideration. For this purpose, completely mixed tanks-in-series were applied to address hydraulic mixing regimes in a Luxembourg WWTP. Hydraulic calibration for this WWTP was performed using wastewater conductivity as a tracer. The RTD mixing approach was coupled with first-order biodegradation kinetics for xenobiotics covering three classes of biodegradability during aerobic treatment. Model simulations showed that a daily influent load is distributed over more than one day in the effluent. A 24-h sampling period with an optimal time offset between influent and effluent covers less than the half of the influent load in a dry weather scenario. According to RTD calculations, an optimized sampling strategy covering four consecutive measuring days in the influent would be necessary to estimate the full-scale elimination efficiencies with sufficient accuracy. Daily variations of influent flow and concentrations can substantially affect the reliability of these sampling results. Commonly reported negative removal

  16. Tracer test modeling for characterizing heterogeneity and local-scale residence time distribution in an artificial recharge site

    NASA Astrophysics Data System (ADS)

    Valhondo, Cristina; Martínez-Landa, Lurdes; Carrera, Jesús; Hidalgo, Juan J.; Tubau, Isabel; De Pourcq, Katrien; Grau-Martínez, Alba; Ayora, Carlos

    2016-10-01

    Artificial recharge of aquifers is a technique for improving water quality and increasing groundwater resources. Understanding the fate of a potential contaminant requires knowledge of the residence time distribution (RTD) of the recharged water in the aquifer beneath. A simple way to obtain the RTDs is to perform a tracer test. We performed a pulse injection tracer test in an artificial recharge system through an infiltration basin to obtain the breakthrough curves, which directly yield the RTDs. The RTDs turned out to be very broad and we used a numerical model to interpret them, to characterize heterogeneity, and to extend the model to other flow conditions. The model comprised nine layers at the site scaled to emulate the layering of aquifer deposits. Two types of hypotheses were considered: homogeneous (all flow and transport parameters identical for every layer) and heterogeneous (diverse parameters for each layer). The parameters were calibrated against the head and concentration data in both model types, which were validated quite satisfactorily against 1,1,2-Trichloroethane and electrical conductivity data collected over a long period of time with highly varying flow conditions. We found that the broad RTDs can be attributed to the complex flow structure generated under the basin due to three-dimensionality and time fluctuations (the homogeneous model produced broad RTDs) and the heterogeneity of the media (the heterogeneous model yielded much better fits). We conclude that heterogeneity must be acknowledged to properly assess mixing and broad RTDs, which are required to explain the water quality improvement of artificial recharge basins.

  17. Denitrification in a low-temperature bioreactor system at two different hydraulic residence times: laboratory column studies.

    PubMed

    Nordström, Albin; Herbert, Roger B

    2016-09-15

    Nitrate removal rates in a mixture of pine woodchips and sewage sludge were determined in laboratory column studies at 5°C, 12°C, and 22°C, and at two different hydraulic residence times (HRTs; 58.2-64.0 hours and 18.7-20.6 hours). Baffles installed in the flow path were tested as a measure to reduce preferential flow behavior, and to increase the nitrate removal in the columns. The nitrate removal in the columns was simulated at 5°C and 12°C using a combined Arrhenius-Monod equation controlling the removal rate, and a first-order exchange model for incorporation of stagnant zones. Denitrification in the mixture of pine woodchips and sewage sludge reduced nitrate concentrations of 30 mg N L(-1) at 5°C to below detection limits at a HRT of 58.2-64.0 hours. At a HRT of 18.7-20.6 hours, nitrate removal was incomplete. The Arrhenius frequency factor and activation energy retrieved from the low HRT data supported a biochemically controlled reaction rate; the same parameters, however, could not be used to simulate the nitrate removal at high HRT. The results show an inversely proportional relationship between the advection velocity and the nitrate removal rate, suggesting that bioreactor performance could be enhanced by promoting low advection velocities.

  18. Refined assessment of associations between drinking water residence time and emergency department visits for gastrointestinal illness in Metro Atlanta, Georgia.

    PubMed

    Levy, Karen; Klein, Mitchel; Sarnat, Stefanie Ebelt; Panwhar, Samina; Huttinger, Alexandra; Tolbert, Paige; Moe, Christine

    2016-08-01

    Recent outbreak investigations suggest that a substantial proportion of waterborne disease outbreaks are attributable to water distribution system issues. In this analysis, we examine the relationship between modeled water residence time (WRT), a proxy for probability of microorganism intrusion into the distribution system, and emergency department visits for gastrointestinal (GI) illness for two water utilities in Metro Atlanta, USA during 1993-2004. We also examine the association between proximity to the nearest distribution system node, based on patients' residential address, and GI illness using logistic regression models. Comparing long (≥90th percentile) with intermediate WRTs (11th to 89th percentile), we observed a modestly increased risk for GI illness for Utility 1 (OR = 1.07, 95% CI: 1.02-1.13), which had substantially higher average WRT than Utility 2, for which we found no increased risk (OR = 0.98, 95% CI: 0.94-1.02). Examining finer, 12-hour increments of WRT, we found that exposures >48 h were associated with increased risk of GI illness, and exposures of >96 h had the strongest associations, although none of these associations was statistically significant. Our results suggest that utilities might consider reducing WRTs to <2-3 days or adding booster disinfection in areas with longer WRT, to minimize risk of GI illness from water consumption.

  19. Slow-Onset Inhibition of the FabI Enoyl Reductase from Francisella tularensis: Residence Time and in Vivo Activity

    SciTech Connect

    Lu, H.; England, K; Ende, C; Truglio, J; Luckner, S; Reddy, B; Marlenee, N; Knudson, S; Knudson, D; et. al.

    2009-01-01

    Francisella tularensis is a highly virulent and contagious Gram-negative intracellular bacterium that causes the disease tularemia in mammals. The high infectivity and the ability of the bacterium to survive for weeks in a cool, moist environment have raised the possibility that this organism could be exploited deliberately as a potential biological weapon. Fatty acid biosynthesis (FAS-II) is essential for bacterial viability and has been validated as a target for the discovery of novel antibacterials. The FAS-II enoyl reductase ftuFabI has been cloned and expressed, and a series of diphenyl ethers have been identified that are subnanomolar inhibitors of the enzyme with MIC90 values as low as 0.00018 ?g mL-1. The existence of a linear correlation between the Ki and MIC values strongly suggests that the antibacterial activity of the diphenyl ethers results from direct inhibition of ftuFabI within the cell. The compounds are slow-onset inhibitors of ftuFabI, and the residence time of the inhibitors on the enzyme correlates with their in vivo activity in a mouse model of tularemia infection. Significantly, the rate of breakdown of the enzyme-inhibitor complex is a better predictor of in vivo activity than the overall thermodynamic stability of the complex, a concept that has important implications for the discovery of novel chemotherapeutics that normally rely on equilibrium measurements of potency.

  20. Size of spawning population, residence time, and territory shifts of individuals in the spawning aggregation of a riverine catostomid

    USGS Publications Warehouse

    Grabowski, T.B.; Isely, J.J.

    2008-01-01

    Little is known about the behavior of individual fish in a spawning aggregation, specifically how long an individual remains in an aggregation. We monitored Moxostoma robustum (Cope) (Robust Redhorse) in a Savannah River spawning aggregation during spring 2004 and 2005 to provide an estimate of the total number of adults and the number of males comprising the aggregation and to determine male residence time and movements within a spawning aggregation. Robust Redhorse were captured using prepostioned grid electrofishers, identified to sex, weighed, measured, and implanted with a passive integrated transponder. Spawning aggregation size was estimated using a multiple census mark-and-recapture procedure. The spawning aggregation seemed to consist of approximately the same number of individuals (82-85) and males (50-56) during both years of this study. Individual males were present for a mean of 3.6 ?? 0.24 days (?? SE) during the 12-day spawning period. The mean distance between successive recaptures of individual males was 15.9 ?? 1.29 m (?? SE). We conclude that males establish spawning territories on a daily basis and are present within the spawning aggregation for at least 3-4 days. The relatively short duration of the aggregation may be the result of an extremely small population of adults. However, the behavior of individuals has the potential to influence population estimates made while fish are aggregated for spawning.

  1. Microbial community changes during different empty bed residence times and operational fluctuations in an air diffusion reactor for odor abatement.

    PubMed

    Rodríguez, Elisa; García-Encina, Pedro A; Muñoz, Raúl; Lebrero, Raquel

    2017-03-08

    The succession of bacterial and fungal populations was assessed in an activated sludge (AS) diffusion bioreactor treating a synthetic malodorous emission containing H2S, toluene, butanone and alpha-pinene. Microbial community characteristics (bacterial and fungal diversity, richness, evenness and composition) and bioreactor function relationships were evaluated at different empty bed residence times (EBRTs) and after process fluctuations and operational failures (robustness test). For H2S, butanone and toluene, the bioreactor showed a stable and efficient abatement performance regardless of the EBRT and fluctuations applied, while low alpha-pinene removals were observed. While no clear positive or negative relationship between community characteristics and bioreactor functions was observed, ecological parameters such as evenness and community dynamics seemed to be of importance for maintaining reactor stability. The optimal degree of evenness of the inoculum likely contributed to the high robustness of the system towards the fluctuations imposed. Actinobacteria, Proteobacteria and Fungi (Hypocreales, Chaeatothyriales) were the most abundant groups retrieved from the AS system with a putative key role in the degradation of butanone and toluene. Typical H2S and alpha-pinene degraders were not retrieved from the system. The inoculation of P. fluorescens, a known alpha-pinene degrader, to the system did not result in the enhancement of the degradation of this compound. This strain was likely outcompeted by the microorganisms already adapted to the AS environment.

  2. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA

    USGS Publications Warehouse

    Böhlke, J.K.; Michel, R.L.

    2009-01-01

    Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO4= differ by a factor of 2, and seasonal variations in SO4= concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing 3H, 35S, ??34S, ??2H, ??18O, ??3He, CFC-12, SF6, and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO4= and radioactive 35S were about twice as high in throughfall as in open deposition, but the weighted composite values of 35S/S (11.1 and 12.1 ?? 10- 15) and ??34S (+ 3.8 and + 4.1???) were similar. In both streams (Shelter Run, Mill Run), 3H concentrations and ??34S values during high flow were similar to those of modern deposition, ??2H and ??18O values exhibited damped seasonal variations, and 35S/S ratios (0-3 ?? 10- 15) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO4= in both watersheds. In the Mill Run watershed, 3H concentrations in stream base flow (10-13??TU) were consistent with relatively young groundwater discharge, most ??34S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO4= was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, 3H concentrations in stream base flow (1-3??TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow ??34S values (+ 1.6???) were significantly lower than the modern deposition values, and the annual export rate of SO4= was less than the modern deposition rate. Concentrations of 3H and 35S in Shelter Run base flow, and of 3H, 3He, CFC-12, SF6, and 35S in a spring

  3. Contrasting residence times and fluxes of water and sulfate in two small forested watersheds in Virginia, USA.

    PubMed

    Böhlke, John Karl; Michel, Robert L

    2009-07-01

    Watershed mass balances for solutes of atmospheric origin may be complicated by the residence times of water and solutes at various time scales. In two small forested headwater catchments in the Appalachian Mountains of Virginia, USA, mean annual export rates of SO(4)(=) differ by a factor of 2, and seasonal variations in SO(4)(=) concentrations in atmospheric deposition and stream water are out of phase. These features were investigated by comparing (3)H, (35)S, delta(34)S, delta(2)H, delta(18)O, delta(3)He, CFC-12, SF(6), and chemical analyses of open deposition, throughfall, stream water, and spring water. The concentrations of SO(4)(=) and radioactive (35)S were about twice as high in throughfall as in open deposition, but the weighted composite values of (35)S/S (11.1 and 12.1x10(-15)) and delta(34)S (+3.8 and +4.1 per thousand) were similar. In both streams (Shelter Run, Mill Run), (3)H concentrations and delta(34)S values during high flow were similar to those of modern deposition, delta(2)H and delta(18)O values exhibited damped seasonal variations, and (35)S/S ratios (0-3x10(-15)) were low throughout the year, indicating inter-seasonal to inter-annual storage and release of atmospheric SO(4)(=) in both watersheds. In the Mill Run watershed, (3)H concentrations in stream base flow (10-13 TU) were consistent with relatively young groundwater discharge, most delta(34)S values were approximately the same as the modern atmospheric deposition values, and the annual export rate of SO(4)(=) was equal to or slightly greater than the modern deposition rate. In the Shelter Run watershed, (3)H concentrations in stream base flow (1-3 TU) indicate that much of the discharging ground water had been deposited prior to the onset of atmospheric nuclear bomb testing in the 1950s, base flow delta(34)S values (+1.6 per thousand) were significantly lower than the modern deposition values, and the annual export rate of SO(4)(=) was less than the modern deposition rate

  4. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    materials determine the range of applicability of each method. A useful microencapsulation method, based on coagulation by inertial force was developed...The generation apparatus, consisting of two aerosol generators in series, was utilized to produce many kinds of microcapsules . A fluid energy mill...was found useful for the production of some microcapsules . The permeability of microcapsule films and the effect of exposure time and humidity were

  5. Effects of Spatial Resolution on the Simulated Dust Aerosol Lifecycle: Implications for Dust Event Magnitude and Timing in the NASA GEOS-5 AGCM

    NASA Technical Reports Server (NTRS)

    Nowottnick, E.; Colarco, Peter R.; daSilva, A.

    2011-01-01

    The NASA GEOS-5 atmospheric transport model simulates global aerosol distributions with an online aerosol module. GEOS-5 may be run at various horizontal spatial resolutions depending on the research application. For example, long integration climate simulations are typically run at 2 deg or 1 deg grid spacing, whereas aerosol reanalysis and forecasting applications may be performed at O.5 deg or 0.25 deg resolutions. In this study, we assess the implications of varying spatial resolution on the simulated aerosol fields, with a particular focus on dust. Dust emissions in GEOS-5 are calculated with one of two parameterizations, one based on the Goddard Chemistry, Aerosol, Radiation, and Transport (GO CART) model and another based on the Dust Entrainment and Deposition (DEAD) model. Emission fluxes are parameterized in terms of the surface wind speed, either the 10-m (GO CART) or friction (DEAD) wind speed. We consider how surface wind speeds and thus the dust emission rates are a function of the model spatial resolution. We find that spatial resolution has a significant effect on the magnitude of dust emissions, as higher resolution versions of the model have typically higher surface wind speeds. Utilizing space-borne observations from MISR, MODIS, and CALIOP, we find that simulated Aerosol Optical Thickness (AOT) distributions respond differently to spatial resolution over the African and Asian source regions, highlighting the need to regional dust emission tuning. When compared to ground-based observations from AERONET, we found improved timing of dust events with as spatial resolution was increased. In an attempt to improve the representation of the dust aerosol lifecycle at coarse resolutions, we found that incorporating the effects of sub-grid wind variability in a course resolution simulation led to improved agreement with observed AOT magnitudes, but did not impact the timing of simulated dust events.

  6. Studies of Diffusion, Atomic Hopping Frequency and Site Residence Times in Molten SiO2 by Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Gemmell, A. L.; Fraser, D. G.; Refson, K.

    2004-12-01

    , as well as radial distribution function (rdf) and density data provides a picture of the structure and dynamics of SiO2 over a range of conditions. We have developed a method for analysing residence times and 'hop' distances under varying conditions. The plots found at the URL accompanying this abstract compare diffusion of an oxygen atom at 3000K and 4000K over a 106 step (1ns) run. Peaks represent 'hopping', troughs residence in 'sites'. At temperatures of 4000K and above the concept of a discreet 'rattle and hop' diffusion mechanism breaks down to be replaced with a plasma-style situation of more continuous random movement. (1) Fraser DG, Cagin T, Demiralp E, Goddard WA, III, "New transferable interatomic potentials for simulating melting of Mg silicates near the base of mantle," A.G.U. 1998. (2) Van Beest BWH, Kramer GJ, Van Santen RA (1990) Force fields for silicas and aluminophosphates based on ab-initio calculations. Phys Rev Lett 64: 1995. (3) Gemmell AL, Refson K, Fraser DG. Molecular Dynamics Simulations of Diffusion in a Silica Melt. EOS Trans AGU 84(46), Fall Meet. Suppl., Abstract V11D-0528, 2003.

  7. Use of multiple age tracers to estimate groundwater residence times and long-term recharge rates in arid southern Oman

    USGS Publications Warehouse

    Müller, Th.; Osenbrück, K.; Strauch, G.; Pavetich, S.; Al-Mashaikhi, K.-S.; Herb, C.; Merchel, S.; Rugel, G.; Aeschbach, W.; Sanford, Ward E.

    2016-01-01

    Multiple age tracers were measured to estimate groundwater residence times in the regional aquifer system underlying southwestern Oman. This area, known as the Najd, is one of the most arid areas in the world and is planned to be the main agricultural center of the Sultanate of Oman in the near future. The three isotopic age tracers 4He, 14C and 36Cl were measured in waters collected from wells along a line that extended roughly from the Dhofar Mountains near the Arabian Sea northward 400 km into the Empty Quarter of the Arabian Peninsula. The wells sampled were mostly open to the Umm Er Radhuma confined aquifer, although, some were completed in the mostly unconfined Rus aquifer. The combined results from the three tracers indicate the age of the confined groundwater is < 40 ka in the recharge area in the Dhofar Mountains, > 100 ka in the central section north of the mountains, and up to and > one Ma in the Empty Quarter. The 14C data were used to help calibrate the 4He and 36Cl data. Mixing models suggest that long open boreholes north of the mountains compromise 14C-only interpretations there, in contrast to 4He and 36Cl calculations that are less sensitive to borehole mixing. Thus, only the latter two tracers from these more distant wells were considered reliable. In addition to the age tracers, δ2H and δ18O data suggest that seasonal monsoon and infrequent tropical cyclones are both substantial contributors to the recharge. The study highlights the advantages of using multiple chemical and isotopic data when estimating groundwater travel times and recharge rates, and differentiating recharge mechanisms.

  8. Estimation of groundwater residence time using environmental radioisotopes (14C,T) in carbonate aquifers, southern Poland.

    PubMed

    Samborska, Katarzyna; Różkowski, Andrzej; Małoszewski, Piotr

    2013-01-01

    Triassic carbonate aquifers in the Upper Silesia region, affected by intense withdrawal, have been investigated by means of isotopic analyses of (14)C, δ(13)C, δ(2)H, δ(18)O and (3)H. The isotopic examinations were carried out in the 1970s and in the early 1980s, and it was the first application of tracers to estimate age and vulnerability for the contamination of groundwater in this region. Similar isotopic analyses were conducted in 2007 and 2008 with the same Triassic carbonate formation. The isotopic examinations were performed within the confined part of the carbonate formation, wherein aquifers are covered by semi-permeable deposits. The direct recharge of the aquifer occurs in the outcrop areas, but it mainly takes place due to percolation of the water through aquitards and erosional windows. The Triassic aquifer has been intensively drained by wells and by lead-zinc mines. Nowadays, the declining water demand and closure of some mines have induced a significant increase in the water table level. The detailed analysis of the results, including the radiocarbon age corrections and the comparison of radioisotope activities, has made it possible to estimate the range of residence time within the carbonate Triassic aquifer. This range from several tens to several tens of thousands indicates that the recharge of aquifers might have occurred between modern times and the Pleistocene. The apparent age of the water estimated on the basis of (14)C activity was corrected considering the carbon isotope exchange and the diffusion between mobile water in fractures and stagnant water in micropores. The obtained corrected period of recharge corresponds to the result of investigations of noble gases, which were carried out in the 1990s. In almost half of the cases, groundwater is a mixture of young and old water. The mixing processes occur mainly in areas of heavy exploitation of the aquifer.

  9. Whale shark (Rhincodon typus) seasonal presence, residence time and habitat use at darwin island, galapagos marine reserve.

    PubMed

    Acuña-Marrero, David; Jiménez, Jesús; Smith, Franz; Doherty, Paul F; Hearn, Alex; Green, Jonathan R; Paredes-Jarrín, Jules; Salinas-de-León, Pelayo

    2014-01-01

    The life history of the whale shark (Rhincodon typus), including its reproductive ecology, still remains largely unknown. Here, we present results from the first whale shark population study around Darwin Island, Galapagos Marine Reserve. Following a diversified approach we characterized seasonal occurrence, population structure and size, and described habitat use of whale sharks based on fine scale movements around the island. Whale shark presence at Darwin Island was negatively correlated with Sea Surface Temperature (SST), with highest abundance corresponding to a cool season between July and December over six years of monitoring. From 2011 to 2013 we photo-identified 82 whale sharks ranging f