Science.gov

Sample records for aerosol sampling program

  1. Aerosol Sampling and Analysis for the GEOTRACES Program

    NASA Astrophysics Data System (ADS)

    Landing, W. M.

    2008-12-01

    The GEOTRACES Science Plan emphasizes the importance of atmospheric deposition on the budgets and biogeochemistry of trace elements and isotopes in the world's oceans. With funding from the National Science Foundation, an aerosol and rainfall sampling program is being developed for use on future GEOTRACES cruises. This includes preparation and testing of dual high-volume TISCH 5170-VBL aerosol samplers for inorganic trace elements and isotopes, major ions, organic material, and isotopes of nitrogen and oxygen. A third 5170-VBL aerosol sampler is equipped with a 5-stage Sierra-style slotted impactor to collect size-fractionated aerosols for chemical measurements. The aerosol samplers will be operated using wind speed and wind sector control to avoid contamination from ship's exhaust. Duplicate automated rain samplers have also been developed to collect unfiltered and filtered rain samples. Rainfall will be filtered immediately (during collection) to avoid re-adsorption artifacts. Two intercalibration experiments are planned where aerosol and rainfall subsamples will be distributed to the community for testing and validation of analytical methods. The first experiment is being conducted in early September 2008 on the roof at RSMAS/University of Miami. Results from the GEOTRACES aerosol samplers will be compared to a multi-channel aerosol sampling system (using 47mm PCTE filters), and with ongoing aerosol collections at RSMAS. The second experiment is planned for the atmospheric sampling tower at Bellows AFB (Oahu, HI) in summer 2009. Details of the sampling equipment and sample collection methods will be discussed, along with preliminary results from the first intercalibration experiment. Community input will be solicited for planning the second intercalibration experiment.

  2. Sampling stratospheric aerosols with impactors

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.

    1989-01-01

    Derivation of statistically significant size distributions from impactor samples of rarefield stratospheric aerosols imposes difficult sampling constraints on collector design. It is shown that it is necessary to design impactors of different size for each range of aerosol size collected so as to obtain acceptable levels of uncertainty with a reasonable amount of data reduction.

  3. Aerosol sampling system

    DOEpatents

    Masquelier, Donald A.

    2004-02-10

    A system for sampling air and collecting particulate of a predetermined particle size range. A low pass section has an opening of a preselected size for gathering the air but excluding particles larger than the sample particles. An impactor section is connected to the low pass section and separates the air flow into a bypass air flow that does not contain the sample particles and a product air flow that does contain the sample particles. A wetted-wall cyclone collector, connected to the impactor section, receives the product air flow and traps the sample particles in a liquid.

  4. NASA's Aerosol Sampling Experiment Summary

    NASA Technical Reports Server (NTRS)

    Meyer, Marit E.

    2016-01-01

    In a spacecraft cabin environment, the size range of indoor aerosols is much larger and they persist longer than on Earth because they are not removed by gravitational settling. A previous aerosol experiment in 1991 documented that over 90 of the mass concentration of particles in the NASA Space Shuttle air were between 10 m and 100 m based on measurements with a multi-stage virtual impactor and a nephelometer (Liu et al. 1991). While the now-retired Space Shuttle had short duration missions (less than two weeks), the International Space Station (ISS) has been continually inhabited by astronauts for over a decade. High concentrations of inhalable particles on ISS are potentially responsible for crew complaints of respiratory and eye irritation and comments about 'dusty' air. Air filtration is the current control strategy for airborne particles on the ISS, and filtration modeling, performed for engineering and design validation of the air revitalization system in ISS, predicted that PM requirements would be met. However, aerosol monitoring has never been performed on the ISS to verify PM levels. A flight experiment is in preparation which will provide data on particulate matter in ISS ambient air. Particles will be collected with a thermophoretic sampler as well as with passive samplers which will extend the particle size range of sampling. Samples will be returned to Earth for chemical and microscopic analyses, providing the first aerosol data for ISS ambient air.

  5. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    SciTech Connect

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  6. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  7. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments.

    PubMed

    Gopalakrishnan, V; Subramanian, V; Baskaran, R; Venkatraman, B

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  8. Multi-Sensor Aerosol Products Sampling System

    NASA Technical Reports Server (NTRS)

    Petrenko, M.; Ichoku, C.; Leptoukh, G.

    2011-01-01

    Global and local properties of atmospheric aerosols have been extensively observed and measured using both spaceborne and ground-based instruments, especially during the last decade. Unique properties retrieved by the different instruments contribute to an unprecedented availability of the most complete set of complimentary aerosol measurements ever acquired. However, some of these measurements remain underutilized, largely due to the complexities involved in analyzing them synergistically. To characterize the inconsistencies and bridge the gap that exists between the sensors, we have established a Multi-sensor Aerosol Products Sampling System (MAPSS), which consistently samples and generates the spatial statistics (mean, standard deviation, direction and rate of spatial variation, and spatial correlation coefficient) of aerosol products from multiple spacebome sensors, including MODIS (on Terra and Aqua), MISR, OMI, POLDER, CALIOP, and SeaWiFS. Samples of satellite aerosol products are extracted over Aerosol Robotic Network (AERONET) locations as well as over other locations of interest such as those with available ground-based aerosol observations. In this way, MAPSS enables a direct cross-characterization and data integration between Level-2 aerosol observations from multiple sensors. In addition, the available well-characterized co-located ground-based data provides the basis for the integrated validation of these products. This paper explains the sampling methodology and concepts used in MAPSS, and demonstrates specific examples of using MAPSS for an integrated analysis of multiple aerosol products.

  9. Direct impact aerosol sampling by electrostatic precipitation

    SciTech Connect

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  10. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, P.F.; Herceg, J.E.; Klocksieben, R.H.

    1984-04-11

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage t

  11. Apparatus for sampling and characterizing aerosols

    DOEpatents

    Dunn, Patrick F.; Herceg, Joseph E.; Klocksieben, Robert H.

    1986-01-01

    Apparatus for sampling and characterizing aerosols having a wide particle size range at relatively low velocities may comprise a chamber having an inlet and an outlet, the chamber including: a plurality of vertically stacked, successive particle collection stages; each collection stage includes a separator plate and a channel guide mounted transverse to the separator plate, defining a labyrinthine flow path across the collection stage. An opening in each separator plate provides a path for the aerosols from one collection stage to the next. Mounted within each collection stage are one or more particle collection frames.

  12. TROPOSPHERIC AEROSOL PROGRAM, PROGRAM PLAN, MARCH 2001

    SciTech Connect

    SCHWARTZ,S.E.; LUNN,P.

    2001-03-01

    The goal of Tropospheric Aerosol Program (TAP) will be to develop the fundamental scientific understanding required to construct tools for simulating the life cycle of tropospheric aerosols--the processes controlling their mass loading, composition, and microphysical properties, all as a function of time, location, and altitude. The TAP approach to achieving this goal will be by conducting closely linked field, modeling, laboratory, and theoretical studies focused on the processes controlling formation, growth, transport, and deposition of tropospheric aerosols. This understanding will be represented in models suitable for describing these processes on a variety of geographical scales; evaluation of these models will be a key component of TAP field activities. In carrying out these tasks TAP will work closely with other programs in DOE and in other Federal and state agencies, and with the private sector. A forum to directly work with our counterparts in industry to ensure that the results of this research are translated into products that are useful to that community will be provided by NARSTO (formerly the North American Research Strategy on Tropospheric Ozone), a public/private partnership, whose membership spans government, the utilities, industry, and university researchers in Mexico, the US, and Canada.

  13. Aerosol Sampling with Low Wind Sensitivity.

    NASA Astrophysics Data System (ADS)

    Kalatoor, Suresh

    Occupational exposure to airborne particles is generally evaluated by wearing a personal sampler that collects aerosol particles from the worker's breathing zone during the work cycle. The overall sampling efficiency of most currently available samplers is sensitive to wind velocity and direction. In addition, most samplers have internal losses due to gravitational settling, electrostatic interactions, and internal turbulence. A new sampling technique has been developed, theoretically and experimentally evaluated, and compared to existing techniques. The overall sampling efficiency of the protoype sampler was compared to that of a commonly used sampler, 25 mm closed-face cassette. Uranine was used as the challange aerosol with particle physical diameters 13.5, 20 and 30 mum. The wind velocity ranged from 100 to 300 cm s^ {-1}. It was found to have less internal losses and less dependence on wind velocity and direction. It also yielded better uniformity in the distribution of large particles on the filter surface, an advantage for several types of analysis. A new general equation for sharp-edged inlets was developed that predicts the sampling efficiency of sharp-edged (or thin-walled) inlets in most occupational environments that are weakly disturbed with air motions that cannot be strictly classified as calm-air or fast -moving air. Computational analysis was carried out using the new general equation and was applied to situations when the wind velocity vector is not steady, but fluctuates around predominant average values of its magnitude and orientation. Two sampling environments, horizontal aerosol flow (ambient atmosphere) and vertical aerosol flow (industrial stacks) have been considered. It was found, that even for small fluctuations in wind direction the sampling efficiency may be significantly less than that obtained for the mean wind direction. Time variations in wind magnitude at a fixed wind direction were found to affect the sampling efficiency to a

  14. Aerosol measurement program strategy for global aerosol backscatter model development

    NASA Technical Reports Server (NTRS)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  15. Historical Data from the NOAA WP-3D Arctic Gas and Aerosol Sampling Program (AGASP) Flights: 1983, 1986, 1989 and 1992

    NASA Astrophysics Data System (ADS)

    Schnell, R. C.; Sheridan, P. J.

    2009-12-01

    A NOAA WP-3D instrumented for gas, aerosol and radiation measurements was flown 400 research hours over four periods (March-April: 1983, 1986, 1989 and 1992) covering large areas of the Arctic Basin from Alaska to Norway studying Arctic Haze and air chemistry. In 1986 the program included aircraft from the University of Washington; AES, Canada; and NILU, Norway. Profiles were conducted above the Barrow, Alert and Ny Alesund atmospheric baseline stations, and numerous profiles across the low level inversion layer over the ice cap to put surface, boundary layer and free troposphere measurements into perspective. Highlights from AGASP include observations of up to 6 stacked layers of air pollution >5,000 km from the nearest possible source regions; layers of air pollution containing high concentrations of black carbon and anthropogenic gases; photochemical ozone depletion in the Arctic boundary layer; intrusions of stratospheric air injecting stratospheric gases and aerosols deep into the Arctic troposphere; haze optical depths of up to 0.5; and data showing that heat and moisture from open leads in the Arctic ice pack can breach the boundary layer inversion and rise to near the tropopause. In most profiles,aerosol light scattering, and ozone, black carbon and condensation nucleus concentrations were much reduced beneath boundary layer temperature inversion (~1 km above the ice). Since most of the AGASP and related publications pre-date current easy electronic access, a file listing the titles and sources of 185 papers published in journals, books, and NOAA Technical Memos is available at http://www.esrl.noaa.gov/gmd/obop/schnell/.

  16. Advanced Aerosol Sampling Technologies For Point Biodetection

    DTIC Science & Technology

    2004-11-17

    Impaction Aerosol Particle Behavior TAKE-HOME MESSAGE: Aerosols are NOT gases. Their inertia gives us a handle on them. Their inertia can confound...tubing to collector without wall losses0 25 50 75 100 0 2 4 6 8 10 Particle Size (m) S a m p l i n g E f f i c i e n c y , % Typical sampler ...efficiency data 10 Aerosol Sampler Technology Challenges Description Goals • High efficiency inlets for 1-10 micron particles and wind speeds

  17. Administration of aerosol pentamidine: a program design.

    PubMed

    O'Hara, C M; Anton, W R; Gormley, F X; Brazell, C

    1994-01-01

    Aerosol pentamidine (AP) is an FDA-approved prophylaxis against pneumocystis carinii pneumonia (PCP) in HIV-infected individuals who have a CD4+ lymphocyte count less than 200/mm3, constitutional symptoms, or a previous history of the pneumonia. The University of Washington Medical Center, a 450-bed tertiary care center, established a successful aerosol pentamidine treatment program, providing treatment in its special procedure nit. The authors present an overview of AP and discuss the role of interdisciplinary teamwork, staff training, patient teaching, and the provision of safety measures for patients and healthcare providers.

  18. Characteristics and Sampling Efficiencies of OMNI 3000 Aerosol Samplers

    DTIC Science & Technology

    2006-10-01

    they impact on walls and on the slit and not reaching the inside of the contactor, compared to PSL particles that bounce off surfaces. The Omni...SAMPLING EFFICIENCIES OF OMNI 3000 AEROSOL SAMPLERS Jana S. Kesavan RESEARCH AND TECHNOLOGY DIRECTORATE Deborah R. Schepers MITRETEK SYSTEMS, INC. Falls...2006 Final Feb 2006 - Mar 2006 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Characteristics and Sampling Efficiencies of Omni 3000 Aerosol Samplers 5b

  19. Volcanic Aerosol Evolution: Model vs. In Situ Sampling

    NASA Astrophysics Data System (ADS)

    Pfeffer, M. A.; Rietmeijer, F. J.; Brearley, A. J.; Fischer, T. P.

    2002-12-01

    Volcanoes are the most significant non-anthropogenic source of tropospheric aerosols. Aerosol samples were collected at different distances from 92°C fumarolic source at Poás Volcano. Aerosols were captured on TEM grids coated by a thin C-film using a specially designed collector. In the sampling, grids were exposed to the plume for 30-second intervals then sealed and frozen to prevent reaction before ATEM analysis to determine aerosol size and chemistry. Gas composition was established using gas chromatography, wet chemistry techniques, AAS and Ion Chromatography on samples collected directly from a fumarolic vent. SO2 flux was measured remotely by COSPEC. A Gaussian plume dispersion model was used to model concentrations of the gases at different distances down-wind. Calculated mixing ratios of air and the initial gas species were used as input to the thermo-chemical model GASWORKS (Symonds and Reed, Am. Jour. Sci., 1993). Modeled products were compared with measured aerosol compositions. Aerosols predicted to precipitate out of the plume one meter above the fumarole are [CaSO4, Fe2.3SO4, H2SO4, MgF2. Na2SO4, silica, water]. Where the plume leaves the confines of the crater, 380 meters distant, the predicted aerosols are the same, excepting FeF3 replacing Fe2.3SO4. Collected aerosols show considerable compositional differences between the sampling locations and are more complex than those predicted. Aerosols from the fumarole consist of [Fe +/- Si,S,Cl], [S +/- O] and [Si +/- O]. Aerosols collected on the crater rim consist of the same plus [O,Na,Mg,Ca], [O,Si,Cl +/- Fe], [Fe,O,F] and [S,O +/- Mg,Ca]. The comparison between results obtained by the equilibrium gas model and the actual aerosol compositions shows that an assumption of chemical and thermal equilibrium evolution is invalid. The complex aerosols collected contrast the simple formulae predicted. These findings show that complex, non-equilibrium chemical reactions take place immediately upon volcanic

  20. A direct method for e-cigarette aerosol sample collection.

    PubMed

    Olmedo, Pablo; Navas-Acien, Ana; Hess, Catherine; Jarmul, Stephanie; Rule, Ana

    2016-08-01

    E-cigarette use is increasing in populations around the world. Recent evidence has shown that the aerosol produced by e-cigarettes can contain a variety of toxicants. Published studies characterizing toxicants in e-cigarette aerosol have relied on filters, impingers or sorbent tubes, which are methods that require diluting or extracting the sample in a solution during collection. We have developed a collection system that directly condenses e-cigarette aerosol samples for chemical and toxicological analyses. The collection system consists of several cut pipette tips connected with short pieces of tubing. The pipette tip-based collection system can be connected to a peristaltic pump, a vacuum pump, or directly to an e-cigarette user for the e-cigarette aerosol to flow through the system. The pipette tip-based system condenses the aerosol produced by the e-cigarette and collects a liquid sample that is ready for analysis without the need of intermediate extraction solutions. We tested a total of 20 e-cigarettes from 5 different brands commercially available in Maryland. The pipette tip-based collection system condensed between 0.23 and 0.53mL of post-vaped e-liquid after 150 puffs. The proposed method is highly adaptable, can be used during field work and in experimental settings, and allows collecting aerosol samples from a wide variety of e-cigarette devices, yielding a condensate of the likely exact substance that is being delivered to the lungs.

  1. Aircraft studies of size-dependent aerosol sampling through inlets

    NASA Technical Reports Server (NTRS)

    Porter, J. N.; Clarke, A. D.; Ferry, G.; Pueschel, R. F.

    1992-01-01

    Representative measurement of aerosol from aircraft-aspirated systems requires special efforts in order to maintain near isokinetic sampling conditions, estimate aerosol losses in the sample system, and obtain a measurement of sufficient duration to be statistically significant for all sizes of interest. This last point is especially critical for aircraft measurements which typically require fast response times while sampling in clean remote regions. This paper presents size-resolved tests, intercomparisons, and analysis of aerosol inlet performance as determined by a custom laser optical particle counter. Measurements discussed here took place during the Global Backscatter Experiment (1988-1989) and the Central Pacific Atmospheric Chemistry Experiment (1988). System configurations are discussed including (1) nozzle design and performance, (2) system transmission efficiency, (3) nonadiabatic effects in the sample line and its effect on the sample-line relative humidity, and (4) the use and calibration of a virtual impactor.

  2. Aerosol Sampling System for Collection of Capstone Depleted Uranium Particles in a High-Energy Environment

    SciTech Connect

    Holmes, Thomas D.; Guilmette, Raymond A.; Cheng, Yung-Sung; Parkhurst, MaryAnn; Hoover, Mark D.

    2009-03-01

    The Capstone Depleted Uranium Aerosol Study was undertaken to obtain aerosol samples resulting from a kinetic-energy cartridge with a large-caliber depleted uranium (DU) penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post-impact, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the vehicle commander, loader, gunner, and driver. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for depleted uranium concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol.

  3. Aerosol sampling system for collection of Capstone depleted uranium particles in a high-energy environment.

    PubMed

    Holmes, Thomas D; Guilmette, Raymond A; Cheng, Yung Sung; Parkhurst, Mary Ann; Hoover, Mark D

    2009-03-01

    The Capstone Depleted Uranium (DU) Aerosol Study was undertaken to obtain aerosol samples resulting from a large-caliber DU penetrator striking an Abrams or Bradley test vehicle. The sampling strategy was designed to (1) optimize the performance of the samplers and maintain their integrity in the extreme environment created during perforation of an armored vehicle by a DU penetrator, (2) collect aerosols as a function of time post perforation, and (3) obtain size-classified samples for analysis of chemical composition, particle morphology, and solubility in lung fluid. This paper describes the experimental setup and sampling methodologies used to achieve these objectives. Custom-designed arrays of sampling heads were secured to the inside of the target in locations approximating the breathing zones of the crew locations in the test vehicles. Each array was designed to support nine filter cassettes and nine cascade impactors mounted with quick-disconnect fittings. Shielding and sampler placement strategies were used to minimize sampler loss caused by the penetrator impact and the resulting fragments of eroded penetrator and perforated armor. A cyclone train was used to collect larger quantities of DU aerosol for measurement of chemical composition and solubility. A moving filter sample was used to obtain semicontinuous samples for DU concentration determination. Control for the air samplers was provided by five remotely located valve control and pressure monitoring units located inside and around the test vehicle. These units were connected to a computer interface chassis and controlled using a customized LabVIEW engineering computer control program. The aerosol sampling arrays and control systems for the Capstone study provided the needed aerosol samples for physicochemical analysis, and the resultant data were used for risk assessment of exposure to DU aerosol.

  4. Diesel Aerosol Sampling in the Atmosphere

    SciTech Connect

    David Kittelson; Jason Johnson; Winthrop Watts; Qiang Wei; Marcus Drayton; Dwane Paulsen; Nicolas Bukowiecki

    2000-06-19

    The University of Minnesota Center for Diesel Research along with a research team including Caterpillar, Cummins, Carnegie Mellon University, West Virginia University (WVU), Paul Scherrer Institute in Switzerland, and Tampere University in Finland have performed measurements of Diesel exhaust particle size distributions under real-world dilution conditions. A mobile aerosol emission laboratory (MEL) equipped to measure particle size distributions, number concentrations, surface area concentrations, particle bound PAHs, as well as CO 2 and NO x concentrations in real time was built and will be described. The MEL was used to follow two different Cummins powered tractors, one with an older engine (L10) and one with a state-of-the-art engine (ISM), on rural highways and measure particles in their exhaust plumes. This paper will describe the goals and objectives of the study and will describe representative particle size distributions observed in roadway experiments with the truck powered by the ISM engine.

  5. Aerosol measurements over the Pacific Ocean in support of the IR aerosol backscatter program

    NASA Technical Reports Server (NTRS)

    Prospero, Joseph M.; Savoie, Dennis L.

    1995-01-01

    The major efforts under NASA contract NAG8-841 included: (1) final analyses of the samples collected during the first GLOBE survey flight that occurred in November 1989 and collections and analysis of aerosol samples during the second GLOBE survey flight in May and June 1990. During the first GLOBE survey flight, daily samples were collected at four stations (Midway, Rarotonga, American Samoa, and Norfolk Island) throughout the month of November 1989. Weekly samples were collected at Shemya, Alaska, and at Karamea, New Zealand. During the second GLOBE survey flight, daily samples were collected at Midway, Oahu, American Samoa, Rarotonga, and Norfolk Island; weekly samples were collected at Shemya. These samples were all analyzed for sodium (sea-salt), chloride, nitrate, sulfate, and methanesulfonate at the University of Miami and for aluminum at the University of Rhode Island (under a subcontract). (2) Samples continued to be collected on a weekly basis at all stations during the periods between and after the survey flights. These weekly samples were also analyzed at the University of Miami for the suite of water-soluble species. (3) In August 1990, the results obtained from the above studies were submitted to the appropriate personnel at NASA Marshall Space Flight Center to become part of the GLOBE data base for comparison with data from instruments used aboard the aircraft. In addition, the data will be compared with data previously obtained at these stations as part of the Sea-Air Exchange (SEAREX) Program. This comparison will provide valuable information on the representativeness of the periods in terms of the longer term aerosol climatology over the Pacific Ocean. (4) Several publications have been written using data from this grant. The data will continue to be used in the future as part of a continuing investigation of the long-term trends and interannual variations in aerosol species concentrations over the Pacific Ocean.

  6. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, A.K.

    1984-09-07

    This disclosure relates to separation of aerosol particles from gas samples withdrawn from within a contained atmosphere, such as containment vessels for nuclear reactors or other process equipment where remote gaseous sampling is required. It is specifically directed to separation of dense aerosols including particles of any size and at high mass loadings and high corrosivity. The United States Government has rights in this invention pursuant to Contract DE-AC06-76FF02170 between the US Department of Energy and Westinghouse Electric Corporation.

  7. Study on dicarboxylic acids in aerosol samples with capillary electrophoresis.

    PubMed

    Adler, Heidi; Sirén, Heli

    2014-01-01

    The research was performed to study the simultaneous detection of a homologous series of α , ω -dicarboxylic acids (C2-C10), oxalic, malonic, succinic, glutaric, adipic, pimelic, suberic, azelaic, and sebacic acids, with capillary electrophoresis using indirect UV detection. Good separation efficiency in 2,6-pyridinedicarboxylic acid as background electrolyte modified with myristyl trimethyl ammonium bromide was obtained. The dicarboxylic acids were ionised and separated within five minutes. For the study, authentic samples were collected onto dry cellulose membrane filters of a cascade impactor (12 stages) from outdoor spring aerosols in an urban area. Hot water and ultrasonication extraction methods were used to isolate the acids from membrane filters. Due to the low concentrations of acids in the aerosols, the extracts were concentrated with solid-phase extraction (SPE) before determination. The enrichment of the carboxylic acids was between 86 and 134% with sample pretreatment followed by 100-time increase by preparation of the sample to 50  μ L. Inaccuracy was optimised for all the sample processing steps. The aerosols contained dicarboxylic acids C2-C10. Then, mostly they contained C2, C5, and C10. Only one sample contained succinic acid. In the study, the concentrations of the acids in aerosols were lower than 10 ng/m(3).

  8. Thermophoretic separation of aerosol particles from a sampled gas stream

    DOEpatents

    Postma, Arlin K.

    1986-01-01

    A method for separating gaseous samples from a contained atmosphere that includes aerosol particles uses the step of repelling particles from a gas permeable surface or membrane by heating the surface to a temperature greater than that of the surrounding atmosphere. The resulting thermophoretic forces maintain the gas permeable surface clear of aerosol particles. The disclosed apparatus utilizes a downwardly facing heated plate of gas permeable material to combine thermophoretic repulsion and gravity forces to prevent particles of any size from contacting the separating plate surfaces.

  9. Program Models A Laser Beam Focused In An Aerosol Spray

    NASA Technical Reports Server (NTRS)

    Barton, J. P.

    1996-01-01

    Monte Carlo analysis performed on packets of light. Program for Analysis of Laser Beam Focused Within Aerosol Spray (FLSPRY) developed for theoretical analysis of propagation of laser pulse optically focused within aerosol spray. Applied for example, to analyze laser ignition arrangement in which focused laser pulse used to ignite liquid aerosol fuel spray. Scattering and absorption of laser light by individual aerosol droplets evaluated by use of electromagnetic Lorenz-Mie theory. Written in FORTRAN 77 for both UNIX-based computers and DEC VAX-series computers. VAX version of program (LEW-16051). UNIX version (LEW-16065).

  10. Automated aerosol Raman spectrometer for semi-continuous sampling of atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Doughty, David C.; Hill, Steven C.

    2017-02-01

    Raman spectroscopy (RS) is useful in characterizing atmospheric aerosol. It is not commonly used in studying ambient particles partly because automated instrumentation for aerosol RS has not been available. Battelle (Columbus, Ohio, USA) has developed the Resource Effective Bioidentification System (REBS) for automated detection of airborne bioagents based on RS. We use a version of the REBS that measures Raman spectra of one set of particles while the next set of particles is collected from air, then moves the newly collected particles to the analysis region and repeats. Here we investigate the use of the REBS as the core of a general-purpose automated Aerosol Raman Spectrometer (ARS) for atmospheric applications. This REBS-based ARS can be operated as a line-scanning Raman imaging spectrometer. Spectra measured by this ARS for single particles made of polystyrene, black carbon, and several other materials are clearly distinguishable. Raman spectra from a 15 min ambient sample (approximately 35-50 particles, 158 spectra) were analyzed using a hierarchical clustering method to find that the cluster spectra are consistent with soot, inorganic aerosol, and other organic compounds. The ARS ran unattended, collecting atmospheric aerosol and measuring spectra for a 7 hr period at 15-min intervals. A total of 32,718 spectra were measured; 5892 exceeded a threshold and were clustered during this time. The number of particles exhibiting the D-G bands of amorphous carbon plotted vs time (at 15-min intervals) increases during the morning commute, then decreases. This data illustrates the potential of the ARS to measure thousands of time resolved aerosol Raman spectra in the ambient atmosphere over the course of several hours. The capability of this ARS for automated measurements of Raman spectra should lead to more extensive RS-based studies of atmospheric aerosols.

  11. Multi-walled carbon nanotubes: sampling criteria and aerosol characterization

    PubMed Central

    Chen, Bean T.; Schwegler-Berry, Diane; McKinney, Walter; Stone, Samuel; Cumpston, Jared L.; Friend, Sherri; Porter, Dale W.; Castranova, Vincent; Frazer, David G.

    2015-01-01

    This study intends to develop protocols for sampling and characterizing multi-walled carbon nanotube (MWCNT) aerosols in workplaces or during inhalation studies. Manufactured dry powder containing MWCNT’s, combined with soot and metal catalysts, form complex morphologies and diverse shapes. The aerosols, examined in this study, were produced using an acoustical generator. Representative samples were collected from an exposure chamber using filters and a cascade impactor for microscopic and gravimetric analyses. Results from filters showed that a density of 0.008–0.10 particles per µm2 filter surface provided adequate samples for particle counting and sizing. Microscopic counting indicated that MWCNT’s, resuspended at a concentration of 10 mg/m3, contained 2.7 × 104 particles/cm3. Each particle structure contained an average of 18 nanotubes, resulting in a total of 4.9 × 105 nanotubes/cm3. In addition, fibrous particles within the aerosol had a count median length of 3.04 µm and a width of 100.3 nm, while the isometric particles had a count median diameter of 0.90 µm. A combination of impactor and microscopic measurements established that the mass median aerodynamic diameter of the mixture was 1.5 µm. It was also determined that the mean effective density of well-defined isometric particles was between 0.71 and 0.88 g/cm3, and the mean shape factor of individual nanotubes was between 1.94 and 2.71. The information obtained from this study can be used for designing animal inhalation exposure studies and adopted as guidance for sampling and characterizing MWCNT aerosols in workplaces. The measurement scheme should be relevant for any carbon nanotube aerosol. PMID:23033994

  12. Sampling, characterization, and remote sensing of aerosols formed in the atmospheric hydrolysis of uranium hexafluoride

    SciTech Connect

    Bostick, W.D.; McCulla, W.H.; Pickrell, P.W.

    1984-05-01

    When gaseous uranium hexafluoride (UF/sub 6/) is released into the atmosphere, it rapidly reacts with ambient moisture to form an aerosol of uranyl fluoride (UO/sub 2/F/sub 2/) and hydrogen fluoride (HF). As part of our Safety Analysis program, we have performed several experimental releases of HF/sub 6/ in contained volumes in order to investigate techniques for sampling and characterizing the aerosol materials. The aggregate particle morphology and size distribution have been found to be dependent upon several conditions, including the temperature of the UF/sub 6/ at the time of its release, the relative humidity of the air into which it is released, and the elapsed time after the release. Aerosol composition and settling rate have been investigated using stationary samplers for the separate collection of UO/sub 2/F/sub 2/ and HF and via laser spectroscopic remote sensing (Mie scatter and infrared spectroscopy). 25 refs., 16 figs., 5 tabs.

  13. Rapid cleanup of bacterial DNA from samples containing aerosol contaminants

    NASA Astrophysics Data System (ADS)

    Menking, Darrell E.; Kracke, Suzanne K.; Emanuel, Peter A.; Valdes, James J.

    1999-01-01

    Polymerase Chain Reaction (PCR) is an in vitro enzymatic, synthetic method used to amplify specific DNA sequences from organisms. Detection of DNA using gene probes allows for absolute identification not only of specific organisms, but also of genetic material in recombinant organisms. PCR is an exquisite biological method for detecting bacteria in aerosol samples. A major challenge facing detection of DNA from field samples is that they are almost sure to contain impurities, especially impurities that inhibit amplification through PCR. DNA is being extracted from air, sewage/stool samples, food, sputum, a water and sediment; however, multi- step, time consuming methods are required to isolate the DNA from the surrounding contamination. This research focuses on developing a method for rapid cleanup of DNA which combines extraction and purification of DNA while, at the same time, removing inhibitors from 'dirty samples' to produce purified, PCR-ready DNA. GeneReleaser produces PCR-ready DNA in a rapid five-minute protocol. GeneReleaser resin was able to clean up sample contain micrograms of typical aerosol and water contaminants. The advantages of using GR are that it is rapid, inexpensive, requires one-step, uses no hazardous material and produces PCR-ready DNA.

  14. Physical and Chemical Characterization of Particles in the Upper Troposphere and Lower Stratosphere: Microanalysis of Aerosol Impactor Samples

    NASA Technical Reports Server (NTRS)

    Sheridan, Patrick J.

    1999-01-01

    Herein is reported activities to support the characterization of the aerosol in the upper troposphere (UT) and lower stratosphere (LS) collected during the Airborne Southern Hemisphere Ozone Experiment/Measurements for Assessing the Effects of Stratospheric Aircraft (ASHOE/MAESA) missions in 1994. Through a companion proposal, another group was to measure the size distribution of aerosols in the 0.008 to 2 micrometer diameter range and to collect for us impactor samples of particles larger than about 0.02 gm. In the first year, we conducted laboratory studies related to particulate deposition patterns on our collection substrates, and have performed the analysis of many ASHOE/MAESA aerosol samples from 1994 using analytical electron microscopy (AEM). We have been building an "aerosol climatology" with these data that documents the types and relative abundances of particles observed at different latitudes and altitudes. The second year (and non-funded extension periods) saw continued analyses of impactor aerosol samples, including more ASHOE/MAESA samples, some northern hemisphere samples from the NASA Stratospheric Photochemistry Aerosols and Dynamics Expedition (SPADE) program for comparison, and a few aerosol samples from the NASA Stratospheric TRacers of Atmospheric Transport (STRAT) program. A high-resolution field emission microscope was used for the analysis and re-analysis of a number of samples to determine if this instrument was superior in performance to our conventional electron microscope. In addition, some basic laboratory studies were conducted to determine the minimum detectable and analyzable particle size for different types of aerosols. In all, 61 aerosol samples were analyzed, with a total of over 30,000 individual particle analyses. In all analyzed samples, sulfate particles comprised the major aerosol number fraction. It must be stressed that particles composed of more than one species, for example sulfate and organic carbon, were classified

  15. The Multi-Sensor Aerosol Products Sampling System (MAPSS) for Integrated Analysis of Satellite Retrieval Uncertainties

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym; Leptoukh, Gregory

    2010-01-01

    Among the known atmospheric constituents, aerosols represent the greatest uncertainty in climate research. Although satellite-based aerosol retrieval has practically become routine, especially during the last decade, there is often disagreement between similar aerosol parameters retrieved from different sensors, leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus and the inconsistencies are not well characterized and understood ', there will be no way of developing reliable climate data records from satellite aerosol measurements. Fortunately, the most globally representative well-calibrated ground-based aerosol measurements corresponding to the satellite-retrieved products are available from the Aerosol Robotic Network (AERONET). To adequately utilize the advantages offered by this vital resource,., an online Multi-sensor Aerosol Products Sampling System (MAPSS) was recently developed. The aim of MAPSS is to facilitate detailed comparative analysis of satellite aerosol measurements from different sensors (Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP) based on the collocation of these data products over AERONET stations. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainty analysis of aerosol products from multiple satellite sensors.

  16. Aerosol Sample Inhomogeneity with Debris from the Fukushima Daiichi Nuclear Accident

    SciTech Connect

    Gomez, Reynaido; Biegalski, Steven R.; Woods, Vincent T.

    2014-09-01

    Radionuclide aerosol sampling is a vital component in the detection of nuclear explosions, nuclear accidents, and other radiation releases. This was proven by the detection and tracking of emissions from the Fukushima Daiichi incident across the globe by IMS stations. Two separate aerosol samplers were operated in Richland, WA following the event and debris from the accident were measured at levels well above detection limits. While the atmospheric activity concentration of radionuclides generally compared well between the two stations, they did not agree within uncertainties. This paper includes a detailed study of the aerosol sample homogeneity of 134Cs and 137Cs, then relates it to the overall uncertainty of the original measurement. Our results show that sample inhomogeneity adds an additional 5–10% uncertainty to each aerosol measurement and that this uncertainty is in the same range as the discrepancies between the two aerosol sample measurements from Richland, WA.

  17. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  18. An aerosol and gas sampling apparatus for remote observatory use

    NASA Astrophysics Data System (ADS)

    Komhyr, W. D.

    1983-04-01

    An air sampling apparatus is described which standardizes sampling height at a field station at 10 m or more above ground level and which minimizes loss of particles and destruction and contamination of sampled trace atmospheric gases as air is conducted through the apparatus to various monitoring instruments. Basic design features render the apparatus useful for air sampling under widely varying climate conditions, and at station altitudes ranging from sea level to more than 4 km. Four systems have been built, and have been used sucessfully since 1977 at the NOAA Geophysical Monitoring for Climatic Change program baseline stations at Point Barrow, Alaska; Mauna Loa, Hawaii; American Samoa, South Pacific; and South Pole, Antarctica.

  19. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.

    SciTech Connect

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T.; Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2006-10-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence

  20. DEVELOPMENT OF AN RH -DENUDED MIE ACTIVE SAMPLING SYSTEM AND TARGETED AEROSOL CALIBRATION

    EPA Science Inventory

    The MIE pDR 1200 nephelometer provides time resolved aerosol concentrations during personal and fixed-site sampling. Active (pumped) operation allows defining an upper PM2.5 particle size, however, this dramatically increases the aerosol mass passing through the phot...

  1. TRU waste-sampling program

    SciTech Connect

    Warren, J.L.; Zerwekh, A.

    1985-08-01

    As part of a TRU waste-sampling program, Los Alamos National Laboratory retrieved and examined 44 drums of /sup 238/Pu- and /sup 239/Pu-contaminated waste. The drums ranged in age from 8 months to 9 years. The majority of drums were tested for pressure, and gas samples withdrawn from the drums were analyzed by a mass spectrometer. Real-time radiography and visual examination were used to determine both void volumes and waste content. Drum walls were measured for deterioration, and selected drum contents were reassayed for comparison with original assays and WIPP criteria. Each drum tested at atmospheric pressure. Mass spectrometry revealed no problem with /sup 239/Pu-contaminated waste, but three 8-month-old drums of /sup 238/Pu-contaminated waste contained a potentially hazardous gas mixture. Void volumes fell within the 81 to 97% range. Measurements of drum walls showed no significant corrosion or deterioration. All reassayed contents were within WIPP waste acceptance criteria. Five of the drums opened and examined (15%) could not be certified as packaged. Three contained free liquids, one had corrosive materials, and one had too much unstabilized particulate. Eleven drums had the wrong (or not the most appropriate) waste code. In many cases, disposal volumes had been inefficiently used. 2 refs., 23 figs., 7 tabs.

  2. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  3. High Resolution Mass Spectrometry of Seasonal Aerosol Samples From an Urban Location in the Italian Po Valley

    NASA Astrophysics Data System (ADS)

    Mahon, Brendan; Giorio, Chiara; Gallimore, Peter J.; Zielinski, Arthur T.; Tapparo, Andrea; Kalberer, Markus

    2016-04-01

    The Po Valley in Northern Italy represents one of the most polluted environments in Europe, with PM2.5 and ozone concentrations regularly exceeding 100μg/m3 and 50ppb respectively. Particularly during winter, prolonged inversion conditions together with biomass burning and anthropogenic emissions regularly lead to severe air pollution events. Over the course of several months in 2013-14, we carried out a sampling program at a city-centre site in Padova, Italy, collecting 24-hour high-volume aerosol filter samples, 18 in winter (mid December - mid March) and 20 in summer (late May - late July). Utilising high-resolution Orbitrap mass spectrometry techniques, we have characterised these sample sets to examine the long-term variation in aerosol composition over the sampling campaign and to determine the effect of anthropogenic gaseous pollutants such as NOx and SO2 on the composition of organic particle components. The results showed that between ca. 450-700 ions were measured in each sample in both the summer and winter sample sets, however the majority (90%) of ions in the winter samples were below 300m/z and below 380m/z in the summer samples. A much higher percentage of CHO-only ions were found in winter (ca. 27%) compared to the summer samples (ca. 6%), indicating a higher degree of photochemical reactions taking place involving pollutants such as NOx and SO2 in summer. Our results represent the first long term data set of high-resolution measurements of aerosol composition and demonstrate that this technique is an important tool in evaluating the composition of aerosol particles in complex polluted urban areas.

  4. Towards understanding of shatter artifacts in airborne sampling inlets: Analysis of aerosol-cloud measurements

    NASA Astrophysics Data System (ADS)

    Craig, Lucas

    Atmospheric aerosols have a critical role in Earth's radiative balance through both direct and indirect effects. The direct effect of aerosols is to scatter or absorb shortwave and longwave radiation, while the indirect effect results from the role of aerosols in cloud formation. Accurate modeling of long-term global climate change requires complete knowledge of both the direct and indirect effects of atmospheric aerosol. For measurement of atmospheric aerosol and aerosol-cloud systems, aircraft sampling has been found to be the most suitable. Aircraft measurements of aerosol particles inside cloud systems are often observed to be unrealistically high. This is because, the breakup of cloud droplets creates shatter artifact particles of sizes in the same range as that of interstitial particles being sampled, resulting in the enhancement of aerosol number concentration measurements in clouds. Cloud droplet breakup results from two primary mechanisms: wall impaction and aerodynamic forces. The first mechanism is produced when a cloud droplet collides with the inlet surface and the later occurs from significant acceleration or deceleration of cloud droplets relative to the local airstream. Because of cloud droplet breakup and the resultant produce of shattered particles, atmospheric scientists discard in-cloud data, and this has limited our ability to fully characterize different kinds of aerosol-cloud systems. As part of this thesis, the extent of the shatter artifact problem in existing aerosol-cloud inlets is examined and a methodology using computational fluid dynamics (CFD) for finding their operating limits is established. Measurements from several different inlet systems, including: NCAR's Sub-micron Aerosol Inlet (SMAI) and HIAPER modular inlet (HIMIL), Clarkson's High Cross-flow Aerosol Sampler (Hi-CAS), and the Clarke Solid Diffuser inlet (Clarke SD), are analyzed to determine measurement artifacts associated with sampling in clouds. The results indicate that

  5. PIXE-PIGE analysis of size-segregated aerosol samples from remote areas

    NASA Astrophysics Data System (ADS)

    Calzolai, G.; Chiari, M.; Lucarelli, F.; Nava, S.; Taccetti, F.; Becagli, S.; Frosini, D.; Traversi, R.; Udisti, R.

    2014-01-01

    The chemical characterization of size-segregated samples is helpful to study the aerosol effects on both human health and environment. The sampling with multi-stage cascade impactors (e.g., Small Deposit area Impactor, SDI) produces inhomogeneous samples, with a multi-spot geometry and a non-negligible particle stratification.

  6. Direct contact test for estimating the ecotoxicity of aerosol samples.

    PubMed

    Kováts, Nora; Acs, András; Kovács, Anikó; Ferincz, Arpád; Turóczi, Beatrix; Gelencsér, András

    2012-03-01

    Atmospheric particulate matter with aerodynamic diameter less than 10 μm (PM10) and 2.5 μm (PM2.5) is now identified as one of the most dangerous pollutants on human health by the EU new directive on air quality (2008/50/CE). Although these primary pollutants are monitored in cities, little information is available on their ecotoxicity. In this paper a 'whole-aerosol' testing protocol is suggested based on the kinetic version of the Vibrio fischeri bioluminescence inhibition test.

  7. Development of unmanned aerial vehicle (UAV) based high altitude balloon (HAB) platform for active aerosol sampling

    NASA Astrophysics Data System (ADS)

    Lateran, S.; Sedan, M. F.; Harithuddin, A. S. M.; Azrad, S.

    2016-10-01

    The knowledge on the abundance and diversity of the minute particles or aerosols in the earth's stratosphere is still in its infancy as aerosol sampling at high-altitude still possess a lot of challenges. Thus far, high-altitude aerosol sampling has been conducted mostly using manned flights, which requires enormous financial and logistical resources. There had been researches for the utilisation of high altitude balloon (HAB) for active and passive aerosol samplings within the stratosphere. However, the gathered samples in the payload were either brought down by controlling the balloon air pressure or were just dropped with a parachute to slow the descend speed in order to reduce the impact upon landing. In most cases, the drop location of the sample are unfavorable such as in the middle of the sea, dense foliage, etc. Hence a system that can actively sample aerosols at high-altitude and improve the delivery method in terms of quality and reliability using unmanned aerial vehicle (UAV) is designed and tested in this study.

  8. Sampling and characterization of aerosols produced under simulated nuclear reactor accident conditions

    SciTech Connect

    Schlenger, B.J.; Horton, E.L.; Herceg, J.E.; Dunn, P.F.

    1986-12-01

    An aerosol sampling system was designed and used in a series of nuclear reactor safety experiments. The system was designed to sample radioactive and chemically reactive aerosols of unknown size distributions and concentrations in high temperature, high pressure steam/hydrogen environments. The aerosol samples are being analyzed posttest to determine their composition and morphology by microanalytical techniques. Main steam particle size distributions and loadings are being computed from particle data generated from SEM micrograph images and collection efficiencies calculated with measured thermal-hydraulic data. The system would be applicable to other types of experiments in which the sampling environment is severe and/or a priori knowledge of the general particle size range and loading are limited.

  9. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    NASA Astrophysics Data System (ADS)

    Abdelhamid, M.; Fortes, F. J.; Fernández-Bravo, A.; Harith, M. A.; Laserna, J. J.

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2-8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.

  10. Climatology of aerosol optical properties near the New England coast: preparation for the Two Column Aerosol Program (TCAP) field campaign

    NASA Astrophysics Data System (ADS)

    Berkowitz, C. M.; Chand, D.; Berg, L.; Kassianov, E.; Chapman, E.

    2011-12-01

    A key objective of the U.S. Department of Energy's Two Column Aerosol Project (TCAP) is to provide observations with which to evaluate the uncertainty in model simulations of aerosol optical depth (AOD) and their relation to estimates of aerosol radiative forcing and hence, to climate. To meet this objective, detailed ground-based aerosol measurements will be made via deployment of the ARM Mobile Facility (AMF) and the Mobile Aerosol Observing System (MAOS) at Cape Cod, Massachusetts for a 12-month period starting in the summer of 2012. These measurements will be supported by two scheduled aircraft campaigns using the ARM Aerial Facility's (AAF) G-1 aircraft and the NASA B-200 aircraft in July 2012 and again in February 2013. Each campaign will include sampling within two atmospheric columns using the aircrafts; one column will be located directly over, or very close to, Cape Cod, while the second will be over a relatively remote maritime location. This preliminary study presented here is designed to select the optimum location of the second, remote maritime atmospheric column using the mean and standard deviation of previously observed AODs from surface and space. An area with the large variability in AOD will be considered as a potential location for evaluation of the outputs from atmospheric models. In this study, we present regional climatological values of (1) AOD from the Moderate Resolution Imaging Spectrometer (MODIS) on Terra and Aqua satellite platforms; (2) single scattering albedo from the Multi-angle Imaging SpectroRadiometer (MISR) satellite; (3) the vertical distribution of aerosol layers from the Cloud Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite; and (4) the long term aerosol optical properties from the Aerosol Robotic Network (AERONET) surface sunphotometer at Martha's Vineyard, MA. Seasonal and geographical variations in these quantities will be analyzed and possible explanations will be presented based on

  11. Quality assurance and quality control for thermal/optical analysis of aerosol samples for organic and elemental carbon.

    PubMed

    Chow, Judith C; Watson, John G; Robles, Jerome; Wang, Xiaoliang; Chen, L-W Antony; Trimble, Dana L; Kohl, Steven D; Tropp, Richard J; Fung, Kochy K

    2011-12-01

    Accurate, precise, and valid organic and elemental carbon (OC and EC, respectively) measurements require more effort than the routine analysis of ambient aerosol and source samples. This paper documents the quality assurance (QA) and quality control (QC) procedures that should be implemented to ensure consistency of OC and EC measurements. Prior to field sampling, the appropriate filter substrate must be selected and tested for sampling effectiveness. Unexposed filters are pre-fired to remove contaminants and acceptance tested. After sampling, filters must be stored in the laboratory in clean, labeled containers under refrigeration (<4 °C) to minimize loss of semi-volatile OC. QA activities include participation in laboratory accreditation programs, external system audits, and interlaboratory comparisons. For thermal/optical carbon analyses, periodic QC tests include calibration of the flame ionization detector with different types of carbon standards, thermogram inspection, replicate analyses, quantification of trace oxygen concentrations (<100 ppmv) in the helium atmosphere, and calibration of the sample temperature sensor. These established QA/QC procedures are applicable to aerosol sampling and analysis for carbon and other chemical components.

  12. Total reflection X-ray fluorescence (TXRF) for direct analysis of aerosol particle samples.

    PubMed

    Bontempi, E; Zacco, A; Benedetti, D; Borgese, L; Colombi, P; Stosnach, H; Finzi, G; Apostoli, P; Buttini, P; Depero, L E

    2010-04-14

    Atmospheric aerosol particles have a great impact on the environment and on human health. Routine analysis of the particles usually involves only the mass determination. However, chemical composition and phases provide fundamental information about the particles' origins and can help to prevent health risks. For example, these particles may contain heavy metals such as Pb, Ni and Cd, which can adversely affect human health. In this work, filter samples were collected in Brescia, an industrial town located in Northern Italy. In order to identify the chemical composition and the phases of the atmospheric aerosols, the samples were analysed by means of total reflection X-ray fluorescence (TXRF) spectrometry with a laboratory instrument and X-ray microdiffraction at Synchrotron Daresbury Laboratories, Warrington (Cheshire, UK). The results are discussed and correlated to identify possible pollution sources. The novelty of this analytical approach is that filter samples for TXRF were analysed directly and did not require chemical pretreatment to leach elements from the aerosol particulates. The results of this study clearly show that TXRF is a powerful technique for the analysis of atmospheric aerosols on 'as-received' filters, thereby leaving samples intact and unaltered for possible subsequent analyses by other methods. In addition, the low detection limits for many elements (low ng/cm2) indicate that this method may hold promise in various application fields, such as nanotechnology.

  13. Recent activities in the Aerosol Generation and Transport Program

    SciTech Connect

    Adams, R.E.

    1984-01-01

    General statements may be made on the behavior of single-component and multi-component aerosols in the Nuclear Safety Pilot Plant vessel. The removal processes for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols are enhanced in a steam-air atmosphere. Steam-air seems to have little effect on removal of concrete aerosol from the vessel atmosphere. A steam-air environment causes a change in aerosol shape from chain-agglomerate to basically spherical for U/sub 3/O/sub 8/, Fe/sub 2/O/sub 3/, and U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosol; for concrete the change in aerosol shape is from chain-agglomerate to partially spherical. The mass ratio of the individual components of a multi-component aerosol seems to have an observable influence on the resultant behavior of these aerosols in steam. The enhanced rate of removal of the U/sub 3/O/sub 8/, the Fe/sub 2/O/sub 3/, and the mixed U/sub 3/O/sub 8/ + Fe/sub 2/O/sub 3/ aerosols from the atmosphere of the NSPP vessel by steam-air is probably caused by the change in aerosol shape and the condensation of steam on the aerosol surfaces combining to increase the effect of gravitational settling. The apparent lack of an effect by steam-air on the removal rate of concrete aerosol could result from a differing physical/chemical response of the surfaces of this aerosol to condensing steam.

  14. Aerosol Interdisciplinary Research Program Workshop October 30 - November 1, 1995 Columbia, MD

    NASA Technical Reports Server (NTRS)

    Curran, R. J.; Chou, M. D.

    1996-01-01

    The Aerosol Interdisciplinary Program (AIP) was established by NASA in 1992 to address the suggestion that the direct and indirect radiative effects of sulfate and other aerosols in the troposphere, including those from biomass burning, may be sufficient, on a global basis to offset the radiative effects of increases in greenhouse gases.

  15. Low-level atmospheric radioactivity measurement using a NaI(Tl) spectrometer during aerosol sampling.

    PubMed

    Hýža, Miroslav; Rulík, Petr

    2016-12-22

    In order to increase the early warning ability of the radiation monitoring network of the Czech republic, a high-volume aerosol sampler was upgraded with a NaI(Tl) probe placed directly above the aerosol filter. The paper demonstrates the possibility of using a method based on principal component regression to accurately subtract the complicated natural background caused by radon decay products. This approach yielded minimum detectable activities of 8mBq/m(3), 3mBq/m(3) and 7mBq/m(3) for (131)I, (134)Cs and (137)Cs, respectively, after 24h of sampling.

  16. Assessment of increased sampling pump flow rates in a disposable, inhalable aerosol sampler.

    PubMed

    Stewart, Justin; Sleeth, Darrah K; Handy, Rod G; Pahler, Leon F; Anthony, T Renee; Volckens, John

    2017-03-01

    A newly designed, low-cost, disposable inhalable aerosol sampler was developed to assess workers personal exposure to inhalable particles. This sampler was originally designed to operate at 10 L/min to increase sample mass and, therefore, improve analytical detection limits for filter-based methods. Computational fluid dynamics modeling revealed that sampler performance (relative to aerosol inhalability criteria) would not differ substantially at sampler flows of 2 and 10 L/min. With this in mind, the newly designed inhalable aerosol sampler was tested in a wind tunnel, simultaneously, at flows of 2 and 10 L/min flow. A mannequin was equipped with 6 sampler/pump assemblies (three pumps operated at 2 L/min and three pumps at 10 L/min) inside a wind tunnel, operated at 0.2 m/s, which has been shown to be a typical indoor workplace wind speed. In separate tests, four different particle sizes were injected to determine if the sampler's performance with the new 10 L/min flow rate significantly differed to that at 2 L/min. A comparison between inhalable mass concentrations using a Wilcoxon signed rank test found no significant difference in the concentration of particles sampled at 10 and 2 L/min for all particle sizes tested. Our results suggest that this new aerosol sampler is a versatile tool that can improve exposure assessment capabilities for the practicing industrial hygienist by improving the limit of detection and allowing for shorting sampling times.

  17. Aerosol sampling and characterization in the developing US oil-shale industry

    SciTech Connect

    Hargis, K.M.; Tillery, M.I.; Gonzales, M.; Garcia, L.L.

    1981-01-01

    Aerosol sampling and characterization studies of workplace air were conducted at four demonstration-scale oil shale facilities located in northwestern Colorado and northeastern Utah. These facilities consisted of an underground mining/aboveground retorting facility, two modified in situ retorting facilities with associated underground mining, and a true in situ retorting facility. Emphasis was placed on study of the retorting phase of operation at these facilities. Aerosol samples were collected on filter media by high volume air samplers, low volume portable sampling pumps with or without cyclone pre-separators, and cascade impactors. Samples were analyzed to determine total and respirable dust concentrations, particle size distributions, free silica content, total benzene or cyclohexane extractables, and selected polynuclear aromatic hydrocarbons. Total and respirable dust were observed to range from very low to very high concentrations, with significant free silica content. Measurable levels of polynuclear aromatic hydrocarbons were also observed at each of the facilities.

  18. High Volume Air Sampling for Viral Aerosols: A Comparative Approach

    DTIC Science & Technology

    2010-03-01

    low, with the cotton swabbing only recovering 27.7 percent of the BA on the surface (Rose, Jensen, Peterson, Banerjee, & Arduino , 2004). A follow-on...BA were present on the surface (Hodges, Rose, Peterson, Noble-Wang, & Arduino , 2006). These lower sensitivities at low concentrations could be a...monitored during each sample collection period. Ambient pressure data was obtained hourly for Edmonton, AB from the Canadian Weather Service

  19. Program Evaluation: Two Management-Oriented Samples

    ERIC Educational Resources Information Center

    Alford, Kenneth Ray

    2010-01-01

    Two Management-Oriented Samples details two examples of the management-oriented approach to program evaluation. Kenneth Alford, a doctorate candidate at the University of the Cumberlands, details two separate program evaluations conducted in his school district and seeks to compare and contrast the two evaluations based upon the characteristics of…

  20. Single point aerosol sampling: Evaluation of mixing and probe performance in a nuclear stack

    SciTech Connect

    Rodgers, J.C.; Fairchild, C.I.; Wood, G.O.

    1995-02-01

    Alternative Reference Methodologies (ARMs) have been developed for sampling of radionuclides from stacks and ducts that differ from the methods required by the U.S. EPA. The EPA methods are prescriptive in selection of sampling locations and in design of sampling probes whereas the alternative methods are performance driven. Tests were conducted in a stack at Los Alamos National Laboratory to demonstrate the efficacy of the ARMs. Coefficients of variation of the velocity tracer gas, and aerosol particle profiles were determined at three sampling locations. Results showed numerical criteria placed upon the coefficients of variation by the ARMs were met at sampling stations located 9 and 14 stack diameters from flow entrance, but not at a location that is 1.5 diameters downstream from the inlet. Experiments were conducted to characterize the transmission of 10 {mu}m aerodynamic equivalent diameter liquid aerosol particles through three types of sampling probes. The transmission ratio (ratio of aerosol concentration at the probe exit plane to the concentration in the free stream) was 107% for a 113 L/min (4-cfm) anisokinetic shrouded probe, but only 20% for an isokinetic probe that follows the EPA requirements. A specially designed isokinetic probe showed a transmission ratio of 63%. The shrouded probe performance would conform to the ARM criteria; however, the isokinetic probes would not.

  1. PIXE Analysis of Aerosol and Soil Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Joshua; Ali, Salina; Nadareski, Benjamin; Labrake, Scott; Vineyard, Michael

    2014-09-01

    We have performed an elemental analysis of aerosol and soil samples collected at Piseco Lake in Upstate New York using proton induced X-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the aerosol samples near Piseco Lake and distribute the particulate matter onto Kapton foils by particle size. The soil samples were also collected at Piseco Lake and pressed into cylindrical pellets for experimentation. PIXE analysis of the aerosol and soil samples were performed with 2.2-MeV proton beams from the 1.1-MV Pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. There are higher concentrations of sulfur at smaller particle sizes (0.25-1 μm), suggesting that it could be suspended in the air for days and originate from sources very far away. Other elements with significant concentrations peak at larger particle sizes (1-4 μm) and are found in the soil samples, suggesting that these elements could originate in the soil. The PIXE analysis will be described and the resulting data will be presented.

  2. Surrogate/spent fuel sabotage : aerosol ratio test program and Phase 2 test results.

    SciTech Connect

    Borek, Theodore Thaddeus III; Thompson, N. Slater; Sorenson, Ken Bryce; Hibbs, R.S.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno; Young, F. I.; Koch, Wolfgang; Brochard, Didier; Pretzsch, Gunter Guido; Lange, Florentin

    2004-05-01

    A multinational test program is in progress to quantify the aerosol particulates produced when a high energy density device, HEDD, impacts surrogate material and actual spent fuel test rodlets. This program provides needed data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments; the program also provides significant political benefits in international cooperation. We are quantifying the spent fuel ratio, SFR, the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are crucial for predicting radiological impacts. This document includes a thorough description of the test program, including the current, detailed test plan, concept and design, plus a description of all test components, and requirements for future components and related nuclear facility needs. It also serves as a program status report as of the end of FY 2003. All available test results, observations, and analyses - primarily for surrogate material Phase 2 tests using cerium oxide sintered ceramic pellets are included. This spent fuel sabotage - aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC, and supported by both the U.S. Department of Energy and Nuclear Regulatory Commission.

  3. Physicochemical Characterization of Lake Spray Aerosol Generated from Great Lakes Water Samples

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.

    2014-12-01

    Wave breaking across bodies of water releases particles into the air which can impact climate and human health. Similar to sea spray aerosols formed through marine wave breaking, freshwater lakes generate lake spray aerosol (LSA). LSA can impact climate directly through scattering/absorption and indirectly through cloud nucleation. In addition, these LSA are suggested to impact human health through inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Few studies have been conducted to assess the physical and chemical properties of freshwater LSA. Herein, we discuss constructing a LSA generation system and preliminary physical and chemical characterization of aerosol generated from water samples collected at various sites across Lake Erie, Lake Huron, Lake Superior, and Lake Michigan. Information on aerosol size distributions, number concentrations, and chemical composition will be discussed as a function of lake water blue-green algae concentration, dissolved organic carbon concentration, temperature, conductivity, and dissolved oxygen concentration. These studies represent a first step towards evaluating the potential for LSA to impact climate and health in the Great Lakes region.

  4. Measurement of Sulfur Isotope Ratios in Micrometer-Sized Aerosol Samples by NanoSIMS

    NASA Astrophysics Data System (ADS)

    Winterholler, B.; Hoppe, P.; Foley, S.; Andreae, M. O.

    2005-12-01

    The isotopic composition of sulfur in the atmosphere is highly variable and source dependent. Sulfur isotopic ratios are a well established tool for identifying sources of sulfur in the environment, estimating emission factors, and tracing the spread of sulfur from anthropogenic point sources in terrestrial ecosystems. Conventional mass spectrometry needs a minimum of 1 micromol of sulfur to perform one analysis. In the case of atmospheric aerosol particles the results of such an analysis averages the isotopic compositions of millions of aerosol particles, and thus normally includes several different types of sulfur aerosol. The new Cameca NanoSIMS 50 ion microprobe technique permits analysis of individual aerosol particles with volumes down to 0.3 cubic micron and a precision for delta34S of 3-10 (2 sigma). As a result, this technique is able to introduce a new scale into the study of the atmospheric sulfur cycle. Linking the chemical, mineralogical, morphological and isotopic information of individual particles will allow a better understanding of external and internal mixing states by analyzing more than one spot on coarse mode particles. Moreover it will improve source identification by complementing the chemical and isotopic information. First samples have been collected from the Sahara desert, an urban site in central Europe, and a costal site in Western Ireland and show the potentials of this new technique.

  5. Continuous standalone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2012-08-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry highly charged cloud droplets (maximum diameter approximately 25 μm) with minimum losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was > 94% during these five months.

  6. Continuous stand-alone controllable aerosol/cloud droplet dryer for atmospheric sampling

    NASA Astrophysics Data System (ADS)

    Sjogren, S.; Frank, G. P.; Berghof, M. I. A.; Martinsson, B. G.

    2013-02-01

    We describe a general-purpose dryer designed for continuous sampling of atmospheric aerosol, where a specified relative humidity (RH) of the sample flow (lower than the atmospheric humidity) is required. It is often prescribed to measure the properties of dried aerosol, for instance for monitoring networks. The specific purpose of our dryer is to dry cloud droplets (maximum diameter approximately 25 μm, highly charged, up to 5 × 102 charges). One criterion is to minimise losses from the droplet size distribution entering the dryer as well as on the residual dry particle size distribution exiting the dryer. This is achieved by using a straight vertical downwards path from the aerosol inlet mounted above the dryer, and removing humidity to a dry, closed loop airflow on the other side of a semi-permeable GORE-TEX membrane (total area 0.134 m2). The water vapour transfer coefficient, k, was measured to be 4.6 × 10-7 kg m-2 s-1% RH-1 in the laboratory (temperature 294 K) and is used for design purposes. A net water vapour transfer rate of up to 1.2 × 10-6 kg s-1 was achieved in the field. This corresponds to drying a 5.7 L min-1 (0.35 m3 h-1) aerosol sample flow from 100% RH to 27% RH at 293 K (with a drying air total flow of 8.7 L min-1). The system was used outdoors from 9 May until 20 October 2010, on the mountain Brocken (51.80° N, 10.67° E, 1142 m a.s.l.) in the Harz region in central Germany. Sample air relative humidity of less than 30% was obtained 72% of the time period. The total availability of the measurement system was >94% during these five months.

  7. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreiss, J.; Maenhaut, W.; Alves, C.; Bossi, R.; Bjerke, A.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Gülcin, A.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2014-07-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wild fire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for biomass burning particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied High-Performance Anion-Exchange Chromatography (HPAEC), four used High-Performance Liquid Chromatography (HPLC) or Ultra-Performance Liquid Chromatography (UPLC), and six resorted to Gas Chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 23%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e., for 33% of

  8. An intercomparison study of analytical methods used for quantification of levoglucosan in ambient aerosol filter samples

    NASA Astrophysics Data System (ADS)

    Yttri, K. E.; Schnelle-Kreis, J.; Maenhaut, W.; Abbaszade, G.; Alves, C.; Bjerke, A.; Bonnier, N.; Bossi, R.; Claeys, M.; Dye, C.; Evtyugina, M.; García-Gacio, D.; Hillamo, R.; Hoffer, A.; Hyder, M.; Iinuma, Y.; Jaffrezo, J.-L.; Kasper-Giebl, A.; Kiss, G.; López-Mahia, P. L.; Pio, C.; Piot, C.; Ramirez-Santa-Cruz, C.; Sciare, J.; Teinilä, K.; Vermeylen, R.; Vicente, A.; Zimmermann, R.

    2015-01-01

    The monosaccharide anhydrides (MAs) levoglucosan, galactosan and mannosan are products of incomplete combustion and pyrolysis of cellulose and hemicelluloses, and are found to be major constituents of biomass burning (BB) aerosol particles. Hence, ambient aerosol particle concentrations of levoglucosan are commonly used to study the influence of residential wood burning, agricultural waste burning and wildfire emissions on ambient air quality. A European-wide intercomparison on the analysis of the three monosaccharide anhydrides was conducted based on ambient aerosol quartz fiber filter samples collected at a Norwegian urban background site during winter. Thus, the samples' content of MAs is representative for BB particles originating from residential wood burning. The purpose of the intercomparison was to examine the comparability of the great diversity of analytical methods used for analysis of levoglucosan, mannosan and galactosan in ambient aerosol filter samples. Thirteen laboratories participated, of which three applied high-performance anion-exchange chromatography (HPAEC), four used high-performance liquid chromatography (HPLC) or ultra-performance liquid chromatography (UPLC) and six resorted to gas chromatography (GC). The analytical methods used were of such diversity that they should be considered as thirteen different analytical methods. All of the thirteen laboratories reported levels of levoglucosan, whereas nine reported data for mannosan and/or galactosan. Eight of the thirteen laboratories reported levels for all three isomers. The accuracy for levoglucosan, presented as the mean percentage error (PE) for each participating laboratory, varied from -63 to 20%; however, for 62% of the laboratories the mean PE was within ±10%, and for 85% the mean PE was within ±20%. For mannosan, the corresponding range was -60 to 69%, but as for levoglucosan, the range was substantially smaller for a subselection of the laboratories; i.e. for 33% of the

  9. Health-related aerosol measurement: a review of existing sampling criteria and proposals for new ones.

    PubMed

    Vincent, James H

    2005-11-01

    Interest in particle size-selective sampling for aerosols in working and ambient living environments began in the early 1900s when it became apparent that the penetration into-and deposition in-the respiratory tract of aerosol-exposed humans of inhaled particles was dependent on particle size. Coarse particles tended to be filtered out during inhalation and in the upper parts of the respiratory tract, so only progressively smaller particles penetrated down to the deep regions of the lung. Over time, following experimental studies with 'breathing' mannequins in wind tunnels and with human volunteer subjects in the laboratory, a clear picture has emerged of the physical, physiological and anatomical factors that control the extent to which particles may or may not reach certain parts of the respiratory tract. Such understanding has increasingly been the subject of discussions about aerosol standards, in particular the criteria by which exposure might be defined in relation to given classes of aerosol-related health effect-and in to turn aerosol monitoring. The ultimate goal has been to develop a set of criteria by which exposure standards are scientifically relevant to the health effects in question. This paper reviews the scientific basis for such criteria. It discusses the criteria that have already been widely discussed and so are either being applied or are on the threshold of practical application in standards. It also discusses how new advanced knowledge may allow us to extend the list of particle size-selective criteria to fractions that have not yet been widely discussed but which may be of importance in the future.

  10. PIXE Analysis of Atmospheric Aerosol Samples in an Urban Area in Upstate NY

    NASA Astrophysics Data System (ADS)

    Nadareski, Benjamin; Ali, Salina; Yoskowitz, Josh; Vineyard, Michael; Labrake, Scott

    2014-09-01

    Extremely fine particles (PM2.5) are found to penetrate deep into the lungs and hence, are found to have harmful health effects on humans. Atmospheric aerosol samples collected in Schenectady, NY were analyzed for evidence for air pollution; specifically lead pollution over the past 12 months. Air samples were collected on 7 μm Kapton foils using a nine-stage cascade impactor that separates the particulate matter by aerodynamic size. A 2.2 MeV proton beam impacts the target samples. X-ray intensity versus energy spectra was produced using an Amptek silicon drift detector. Proton-induced x-ray emission (PIXE) techniques were used to analyze the energy spectra and we determined a range of 16 elements present in the aerosol samples including, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Br, and Pb. The elemental composition and concentrations of these elements were determined using GUPIX. Many of the elements suggest airborne soils, however we see trace amounts of lead concentrations only at the minimal level of detection around 1 ng / m3. Preliminary results suggest that lead pollution is not significant however; we believe that the trace amounts of lead detected are due to fuel emissions from small aircraft due to the sampling site near an airport. Extremely fine particles (PM2.5) are found to penetrate deep into the lungs and hence, are found to have harmful health effects on humans. Atmospheric aerosol samples collected in Schenectady, NY were analyzed for evidence for air pollution; specifically lead pollution over the past 12 months. Air samples were collected on 7 μm Kapton foils using a nine-stage cascade impactor that separates the particulate matter by aerodynamic size. A 2.2 MeV proton beam impacts the target samples. X-ray intensity versus energy spectra was produced using an Amptek silicon drift detector. Proton-induced x-ray emission (PIXE) techniques were used to analyze the energy spectra and we determined a range of 16 elements present in

  11. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.

    SciTech Connect

    Brucher, Wenzel; Koch, Wolfgang; Pretzsch, Gunter Guido; Loiseau, Olivier; Mo, Tin; Billone, Michael C.; Autrusson, Bruno A.; Young, F. I.; Coats, Richard Lee; Burtseva, Tatiana; Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver; Thompson, Nancy Slater; Hibbs, Russell S.; Gregson, Michael Warren; Lange, Florentin; Molecke, Martin Alan; Tsai, Han-Chung

    2005-07-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of

  12. Wilsonville wastewater sampling program. Final report

    SciTech Connect

    1983-10-01

    As part of its contrast to design, build and operate the SRC-1 Demonstration Plant in cooperation with the US Department of Energy (DOE), International Coal Refining Company (ICRC) was required to collect and evaluate data related to wastewater streams and wastewater treatment procedures at the SRC-1 Pilot Plant facility. The pilot plant is located at Wilsonville, Alabama and is operated by Catalytic, Inc. under the direction of Southern Company Services. The plant is funded in part by the Electric Power Research Institute and the DOE. ICRC contracted with Catalytic, Inc. to conduct wastewater sampling. Tasks 1 through 5 included sampling and analysis of various wastewater sources and points of different steps in the biological treatment facility at the plant. The sampling program ran from May 1 to July 31, 1982. Also included in the sampling program was the generation and analysis of leachate from SRC product using standard laboratory leaching procedures. For Task 6, available plant wastewater data covering the period from February 1978 to December 1981 was analyzed to gain information that might be useful for a demonstration plant design basis. This report contains a tabulation of the analytical data, a summary tabulation of the historical operating data that was evaluated and comments concerning the data. The procedures used during the sampling program are also documented.

  13. Transmission Electron Microscopy Analysis of Submicronic Aerosol Particles Sampled at Jungfraujoch, Switzerland (CLACE-4)

    NASA Astrophysics Data System (ADS)

    Grobéty, B.; Lorenzo, R.

    2007-05-01

    Submicronic aerosol particles were collected in two sampling campaigns during CLACE-4 and -5 ("the Cloud and Aerosol Characterisation Experiment in the Free Troposphere") at the high alpine research station on top of Jungfraujoch (altitude: 3580 m.a.s.l.). The particles were deposited directly on transmission electron microscopy (TEM) grids placed in a home-made, calibrated thermophoretic sampling device. The samples were taken during periods of clear skies and temperatures below 0°C. Average sampling time was two days. The primary state of the particles was either solid, mixed solid-liquid or completely liquid. EDS spectra of solid particles without visible traces of a liquid coating contain only carbon and oxygen peaks. Mixed solid-fluid particles, however, have either carbon (C), mixed carbon-silicate (CS) or silicate (S) (probably SiO2) nuclei. The condensates remaining after evaporation of the liquid components contain sulfate (sulfur and oxygen peaks in EDS spectra), but no nitrate was found. The fraction > 500 nm is dominated by C and CS particles, the silicate particles have a narrow size distribution around 100 nm and contain, if at all, only faint sulfur peaks in their EDS spectra. The results are qualitatively consistent with analyses of samples collected during the same campaign (Weinbruch et al., 2005), but during mixed cloud events. There seem to be, however a differrence in the amount of particles with sulfate coatings, which is higher for samples taken under clear sky conditions. Weinbruch, S., Ebert, S., Worringen, A., and Brenker (2005), Identification of the ice forming fraction of the atmospheric aerosol in mixed-phase clouds by environmental scanning electron microscopy. Activity report 2005, International Foundation HFSJG.

  14. Application of Aerosol Hygroscopicity Measured at the Atmospheric Radiation Measurement Program's Southern Great Plains Site to Examine Composition and Evolution

    NASA Technical Reports Server (NTRS)

    Gasparini, Roberto; Runjun, Li; Collins, Don R.; Ferrare, Richard A.; Brackett, Vincent G.

    2006-01-01

    A Differential Mobility Analyzer/Tandem Differential Mobility Analyzer (DMA/TDMA) was used to measure submicron aerosol size distributions, hygroscopicity, and occasionally volatility during the May 2003 Aerosol Intensive Operational Period (IOP) at the Central Facility of the Atmospheric Radiation Measurement Program's Southern Great Plains (ARM SGP) site. Hygroscopic growth factor distributions for particles at eight dry diameters ranging from 0.012 micrometers to 0.600 micrometers were measured throughout the study. For a subset of particle sizes, more detailed measurements were occasionally made in which the relative humidity or temperature to which the aerosol was exposed was varied over a wide range. These measurements, in conjunction with backtrajectory clustering, were used to infer aerosol composition and to gain insight into the processes responsible for evolution. The hygroscopic growth of both the smallest and largest particles analyzed was typically less than that of particles with dry diameters of about 0.100 micrometers. It is speculated that condensation of secondary organic aerosol on nucleation mode particles is largely responsible for the minimal hygroscopic growth observed at the smallest sizes considered. Growth factor distributions of the largest particles characterized typically contained a nonhygroscopic mode believed to be composed primarily of dust. A model was developed to characterize the hygroscopic properties of particles within a size distribution mode through analysis of the fixed size hygroscopic growth measurements. The performance of this model was quantified through comparison of the measured fixed size hygroscopic growth factor distributions with those simulated through convolution of the size-resolved concentration contributed by each of the size modes and the mode-resolved hygroscopicity. This transformation from sizeresolved hygroscopicity to mode-resolved hygroscopicity facilitated examination of changes in the hygroscopic

  15. Real-Time Investigation of Tuberculosis Transmission: Developing the Respiratory Aerosol Sampling Chamber (RASC)

    PubMed Central

    Wood, Robin; Morrow, Carl; Barry, Clifton E.; Bryden, Wayne A.; Call, Charles J.; Hickey, Anthony J.; Rodes, Charles E.; Scriba, Thomas J.; Blackburn, Jonathan; Issarow, Chacha; Mulder, Nicola; Woodward, Jeremy; Moosa, Atica; Singh, Vinayak; Mizrahi, Valerie; Warner, Digby F.

    2016-01-01

    Knowledge of the airborne nature of respiratory disease transmission owes much to the pioneering experiments of Wells and Riley over half a century ago. However, the mechanical, physiological, and immunopathological processes which drive the production of infectious aerosols by a diseased host remain poorly understood. Similarly, very little is known about the specific physiological, metabolic and morphological adaptations which enable pathogens such as Mycobacterium tuberculosis (Mtb) to exit the infected host, survive exposure to the external environment during airborne carriage, and adopt a form that is able to enter the respiratory tract of a new host, avoiding innate immune and physical defenses to establish a nascent infection. As a first step towards addressing these fundamental knowledge gaps which are central to any efforts to interrupt disease transmission, we developed and characterized a small personal clean room comprising an array of sampling devices which enable isolation and representative sampling of airborne particles and organic matter from tuberculosis (TB) patients. The complete unit, termed the Respiratory Aerosol Sampling Chamber (RASC), is instrumented to provide real-time information about the particulate output of a single patient, and to capture samples via a suite of particulate impingers, impactors and filters. Applying the RASC in a clinical setting, we demonstrate that a combination of molecular and microbiological assays, as well as imaging by fluorescence and scanning electron microscopy, can be applied to investigate the identity, viability, and morphology of isolated aerosolized particles. Importantly, from a preliminary panel of active TB patients, we observed the real-time production of large numbers of airborne particles including Mtb, as confirmed by microbiological culture and polymerase chain reaction (PCR) genotyping. Moreover, direct imaging of captured samples revealed the presence of multiple rod-like Mtb organisms whose

  16. Solid versus liquid particle sampling efficiency of three personal aerosol samplers when facing the wind.

    PubMed

    Koehler, Kirsten A; Anthony, T Renee; Van Dyke, Michael; Volckens, John

    2012-03-01

    The objective of this study was to examine the facing-the-wind sampling efficiency of three personal aerosol samplers as a function of particle phase (solid versus liquid). Samplers examined were the IOM, Button, and a prototype personal high-flow inhalable sampler head (PHISH). The prototype PHISH was designed to interface with the 37-mm closed-face cassette and provide an inhalable sample at 10 l min(-1) of flow. Increased flow rate increases the amount of mass collected during a typical work shift and helps to ensure that limits of detection are met, particularly for well-controlled but highly toxic species. Two PHISH prototypes were tested: one with a screened inlet and one with a single-pore open-face inlet. Personal aerosol samplers were tested on a bluff-body disc that was rotated along the facing-the-wind axis to reduce spatiotemporal variability associated with sampling supermicron aerosol in low-velocity wind tunnels. When compared to published data for facing-wind aspiration efficiency for a mouth-breathing mannequin, the IOM oversampled relative to mannequin facing-the-wind aspiration efficiency for all sizes and particle types (solid and liquid). The sampling efficiency of the Button sampler was closer to the mannequin facing-the-wind aspiration efficiency than the IOM for solid particles, but the screened inlet removed most liquid particles, resulting in a large underestimation compared to the mannequin facing-the-wind aspiration efficiency. The open-face PHISH results showed overestimation for solid particles and underestimation for liquid particles when compared to the mannequin facing-the-wind aspiration efficiency. Substantial (and statistically significant) differences in sampling efficiency were observed between liquid and solid particles, particularly for the Button and screened-PHISH, with a majority of aerosol mass depositing on the screened inlets of these samplers. Our results suggest that large droplets have low penetration efficiencies

  17. Comparison of aerosol backscatter and wind field estimates from the REAL and the SAMPLE

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.; Dérian, Pierre; Mauzey, Christopher F.; Spuler, Scott M.; Ponsardin, Patrick; Pruitt, Jeff; Ramsey, Darrell; Higdon, Noah S.

    2015-09-01

    Although operating at the same near-infrared 1.5- m wavelength, the Raman-shifted Eye-safe Aerosol Lidar (REAL) and the Scanning Aerosol Micro-Pulse Lidar-Eye-safe (SAMPLE) are very different in how they generate and detect laser radiation. We present results from an experiment where the REAL and the SAMPLE were operated side-by-side in Chico, California, in March of 2015. During the non-continuous, eleven day test period, the SAMPLE instrument was operated at maximum pulse repetition frequency (15 kHz) and integrated over the interpulse period of the REAL (0.1 s). Operation at the high pulse repetition frequency resulted in second trip echoes which contaminated portions of the data. The performance of the SAMPLE instrument varied with background brightness--as expected with a photon counting receiver|--yet showed equal or larger backscatter intensity signal to noise ratio throughout the intercomparison experiment. We show that a modest low-pass filter or smooth applied to the REAL raw waveforms (that have 5x higher range resolution) results in significant increases in raw signal-to-noise ratio and image signal-to-noise ratio--a measure of coherent aerosol feature content in the images resulting from the scans. Examples of wind fields and time series of wind estimates from both systems are presented. We conclude by reviewing the advantages and disadvantages of each system and sketch a plan for future research and development activities to optimize the design of future systems.

  18. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  19. X-ray analysis of aerosol samples from a therapeutic cave

    NASA Astrophysics Data System (ADS)

    Alföldy, B.; Török, Sz.; Kocsonya, A.; Szőkefalvi-Nagy, Z.; Balla, Md. I.

    2001-04-01

    Cave therapy is an efficient therapeutic method to cure asthma, the exact healing effect, however, is not clarified, yet. This study is motivated by the basic assumption that aerosols do play the key role in the cave therapy. This study is based on measurements of single aerosol particles originating from a therapeutic cave of Budapest, Hungary (Szemlőhegyi cave). Aerosol particles have been collected in the regions arranged for the therapeutic treatment. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition. Three particle classes have been detected based on major element concentration: alumino-silicate, quartz and calcium carbonate. Calcium ions have well-known physiological influence: anti-spastic, anti-inflammation and excretion reducing effects. Inflammation, accompanying spasm and extreme excretion production cause the smothering stigma, the so-called asthma. Therefore it could be assumed that calcium ions present in high concentration in the cave's atmosphere is the major cause of the healing effect.

  20. Technical note: An improved approach to determining background aerosol concentrations with PILS sampling on aircraft

    NASA Astrophysics Data System (ADS)

    Fukami, Christine S.; Sullivan, Amy P.; Ryan Fulgham, S.; Murschell, Trey; Borch, Thomas; Smith, James N.; Farmer, Delphine K.

    2016-07-01

    Particle-into-Liquid Samplers (PILS) have become a standard aerosol collection technique, and are widely used in both ground and aircraft measurements in conjunction with off-line ion chromatography (IC) measurements. Accurate and precise background samples are essential to account for gas-phase components not efficiently removed and any interference in the instrument lines, collection vials or off-line analysis procedures. For aircraft sampling with PILS, backgrounds are typically taken with in-line filters to remove particles prior to sample collection once or twice per flight with more numerous backgrounds taken on the ground. Here, we use data collected during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) to demonstrate that not only are multiple background filter samples are essential to attain a representative background, but that the chemical background signals do not follow the Gaussian statistics typically assumed. Instead, the background signals for all chemical components analyzed from 137 background samples (taken from ∼78 total sampling hours over 18 flights) follow a log-normal distribution, meaning that the typical approaches of averaging background samples and/or assuming a Gaussian distribution cause an over-estimation of background samples - and thus an underestimation of sample concentrations. Our approach of deriving backgrounds from the peak of the log-normal distribution results in detection limits of 0.25, 0.32, 3.9, 0.17, 0.75 and 0.57 μg m-3 for sub-micron aerosol nitrate (NO3-), nitrite (NO2-), ammonium (NH4+), sulfate (SO42-), potassium (K+) and calcium (Ca2+), respectively. The difference in backgrounds calculated from assuming a Gaussian distribution versus a log-normal distribution were most extreme for NH4+, resulting in a background that was 1.58× that determined from fitting a log-normal distribution.

  1. Charge integration in external PIXE-PIGE for the analysis of aerosol samples

    NASA Astrophysics Data System (ADS)

    Li, X. F.; Wang, G. F.; Chu, J. H.; Yu, L. D.

    2012-10-01

    The beam current in an external-beam PIXE-PIGE is difficult to accurately measure due to ionization along the beam path in the atmosphere. Charge integration was measured using a homemade Faraday cup, and assessed by the peak area of Ar Kα X-rays, which were induced by protons near the sample. The X-ray peak integral from a thin Fe reference sample, which was positioned between the exit window and the Faraday cup, was determined to evaluate the performance of the homemade Faraday cup. Moreover, the effects of different membrane filters and samples with different elements on the beam current measurement of the aforementioned methods were studied by placing different blank films or reference standards behind a reference Mn target. The results indicated that the charge measurement of the homemade Faraday cup was reliable for external PIXE-PIGE analysis of aerosol samples.

  2. Atmospheric Sampling of Aerosols to Stratospheric Altitudes using High Altitude Balloons

    NASA Astrophysics Data System (ADS)

    Jerde, E. A.; Thomas, E.

    2010-12-01

    Although carbon dioxide represents a long-lived atmospheric component relevant to global climate change, it is also understood that many additional contributors influence the overall climate of Earth. Among these, short-lived components are more difficult to incorporate into models due to uncertainties in the abundances of these both spatially and temporally. Possibly the most significant of these short-lived components falls under the heading of “black carbon” (BC). There are numerous overlapping definitions of BC, but it is basically carbonaceous in nature and light absorbing. Due to its potential as a climate forcer, an understanding of the BC population in the atmosphere is critical for modeling of radiative forcing. Prior measurements of atmospheric BC generally consist of airplane- and ground-based sampling, typically below 5000 m and restricted in time and space. Given that BC has a residence time on the order of days, short-term variability is easily missed. Further, since the radiative forcing is a result of BC distributed through the entire atmospheric column, aircraft sampling is by definition incomplete. We are in the process of planning a more comprehensive sampling of the atmosphere for BC using high-altitude balloons. Balloon-borne sampling is a highly reliable means to sample air through the entire troposphere and into the lower stratosphere. Our system will incorporate a balloon and a flight train of two modules. One module will house an atmospheric sampler. This sampler will be single-stage (samples all particle sizes together), and will place particles directly on an SEM sample stub for analysis. The nozzle depositing the sample will be offset from the center of the stub, placing the aerosol particles toward the edge. At various altitudes, the stub will be rotated 45 degrees, providing 6-8 sample “cuts” of particle populations through the atmospheric column. The flights will reach approximately 27 km altitude, above which the balloons

  3. The measurement of 129I in ferromanganese crusts and aerosol samples with AMS at CIAE

    NASA Astrophysics Data System (ADS)

    Dong, Kejun; Jiang, Shan; He, Ming; Lin, Min; Ouyang, Yinggen; Wu, Shaoyong; Xie, Linbo; Liu, Guangshan; Ji, Lihong; Li, Qi; Wang, Shilian

    2015-06-01

    The determination of long-lived nuclide 129I in terrestrial formations has many important applications. The AMS measurement method of 129I has been set up for many years at China Institute of Atomic Energy (CIAE). For further exploring the potential applications of 129I, samples of Deep Sea Ferromanganese Crusts (DSFC) and aerosol were analyzed by Accelerator Mass Spectrometry (AMS). The results show that 129I is not only a good tool for dating, but also an ideal nuclide for nuclear safety monitoring. The newest experimental progress and the main results are detailed in this presentation.

  4. A new cascade impactor for aerosol sampling with subsequent PIXE analysis

    NASA Astrophysics Data System (ADS)

    Maenhaut, W.; Hillamo, R.; Mäkelä, T.; Jaffrezo, J.-L.; Bergin, M. H.; Davidson, C. I.

    1996-04-01

    A small deposit area low pressure impactor (abbreviated to SDI) has been developed and tested. The device has been designed specifically to collect size-fractionated aerosol samples in remote locations for subsequent chemical analysis by PIXE. The SDI is a 12-stage, multinozzle device, but the deposit for each stage remains confined to an area with diameter less than 8 mm. It operates at a flow rate of 11 L/min and accepts the same, 25 mm diameter substrate rings as the PIXE International cascade impactor. The experimental cut-points for stages 12 through 1 are 8.50, 4.08, 2.68, 1.66, 1.06, 0.796, 0.591, 0.343, 0.231, 0.153, 0.086 and 0.045 μm equivalent aerodynamic diameter. The SDI has been tested in (and employed for) size-fractionated aerosol sampling in the Finnish Arctic and at Summit in Greenland. The data show that the SDI gives results very similar to those obtained with the PIXE International impactor, but with detection limits that are much lower. This suggests that the SDI can be used with shorter sampling times or in areas where concentrations are smaller to obtain reliable size distribution data. The results also suggest that data for a greater number of elements can be obtained with the SDI.

  5. GUIDE TO CALCULATING TRANSPORT EFFICIENCY OF AEROSOLS IN OCCUPATIONAL AIR SAMPLING SYSTEMS

    SciTech Connect

    Hogue, M.; Hadlock, D.; Thompson, M.; Farfan, E.

    2013-11-12

    This report will present hand calculations for transport efficiency based on aspiration efficiency and particle deposition losses. Because the hand calculations become long and tedious, especially for lognormal distributions of aerosols, an R script (R 2011) will be provided for each element examined. Calculations are provided for the most common elements in a remote air sampling system, including a thin-walled probe in ambient air, straight tubing, bends and a sample housing. One popular alternative approach would be to put such calculations in a spreadsheet, a thorough version of which is shared by Paul Baron via the Aerocalc spreadsheet (Baron 2012). To provide greater transparency and to avoid common spreadsheet vulnerabilities to errors (Burns 2012), this report uses R. The particle size is based on the concept of activity median aerodynamic diameter (AMAD). The AMAD is a particle size in an aerosol where fifty percent of the activity in the aerosol is associated with particles of aerodynamic diameter greater than the AMAD. This concept allows for the simplification of transport efficiency calculations where all particles are treated as spheres with the density of water (1g cm-3). In reality, particle densities depend on the actual material involved. Particle geometries can be very complicated. Dynamic shape factors are provided by Hinds (Hinds 1999). Some example factors are: 1.00 for a sphere, 1.08 for a cube, 1.68 for a long cylinder (10 times as long as it is wide), 1.05 to 1.11 for bituminous coal, 1.57 for sand and 1.88 for talc. Revision 1 is made to correct an error in the original version of this report. The particle distributions are based on activity weighting of particles rather than based on the number of particles of each size. Therefore, the mass correction made in the original version is removed from the text and the calculations. Results affected by the change are updated.

  6. PIXE Analysis of Atmospheric Aerosol Samples Collected in the Adirondack Mountains

    NASA Astrophysics Data System (ADS)

    Yoskowitz, Josh; Ali, Salina; Nadareski, Benjamin; Safiq, Alexandrea; Smith, Jeremy; Labrake, Scott; Vineyard, Michael

    2013-10-01

    We have performed an elemental analysis of atmospheric aerosol samples collected at Piseco Lake in Upstate New York using proton induced x-ray emission spectroscopy (PIXE). This work is part of a systematic study of airborne pollution in the Adirondack Mountains. Of particular interest is the sulfur content that can contribute to acid rain, a well-documented problem in the Adirondacks. We used a nine-stage cascade impactor to collect the samples and distribute the particulate matter onto Kapton foils by particle size. The PIXE experiments were performed with 2.2-MeV proton beams from the 1.1-MV pelletron accelerator in the Union College Ion-Beam Analysis Laboratory. X-Ray energy spectra were measured with a silicon drift detector and analyzed with GUPIX software to determine the elemental concentrations of the aerosols. A broad range of elements from silicon to zinc were detected with significant sulfur concentrations measured for particulate matter between 0.25 and 0.5 μm in size. The PIXE analysis will be described and preliminary results will be presented.

  7. Brine Sampling and Evaluation Program, 1991 report

    SciTech Connect

    Deal, D.E.; Abitz, R.J.; Myers, J.; Martin, M.L.; Milligan, D.J.; Sobocinski, R.W.; Lipponer, P.P.J.; Belski, D.S.

    1993-09-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plan (WIPP) during 1991. These BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. When excavations began at the WIPP in 1982, small brine seepages (weeps) were observed on the walls. Brine studies began as part of the Site Validation Program and were formalized as a program in its own right in 1985. During nine years of observations (1982--1991), evidence has mounted that the amount of brine seeping into the WIPP excavations is limited, local, and only a small fraction of that required to produce hydrogen gas by corroding the metal in the waste drums and waste inventory. The data through 1990 is discussed in detail and summarized by Deal and others (1991). The data presented in this report describes progress made during the calendar year 1991 and focuses on four major areas: (1) quantification of the amount of brine seeping across vertical surfaces in the WIPP excavations (brine ``weeps); (2) monitoring of brine inflow, e.g., measuring brines recovered from holes drilled downward from the underground drifts (downholes), upward from the underground drifts (upholes), and from subhorizontal holes; (3) further characterization of brine geochemistry; and (4) preliminary quantification of the amount of brine that might be released by squeezing the underconsolidated clays present in the Salado Formation.

  8. Aerosol Monitoring during Carbon Nanofiber Production: Mobile Direct-Reading Sampling

    PubMed Central

    Evans, Douglas E.; Ku, Bon Ki; Birch, M. Eileen; Dunn, Kevin H.

    2010-01-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO2 were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 × 106 cm−3, were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m−3, were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control recommendations

  9. Fungal Spore Concentrations and Ergosterol Content in Aerosol Samples in the Caribbean During African Dust Events

    NASA Astrophysics Data System (ADS)

    Santos-Figueroa, G.; Bolaños-Rosero, B.; Mayol-Bracero, O. L.

    2015-12-01

    Fungal spores are a major component of primary biogenic aerosol particles that are emitted to the atmosphere, are ubiquitous, and play an important role in the chemistry and physics of the atmosphere, climate, and public health. Every year, during summer months, African dust (AD) particles are transported to the Caribbean region causing an increase in the concentrations of particulate matter in the atmosphere. AD is one of the most important natural sources of mineral particulate matter at the global scale, and many investigations suggest that it has the ability to transport dust-associated biological particles through long distances. The relationship between AD incursions and the concentration of fungal spores in the Caribbean region is poorly understood. In order to investigate the effects of AD incursions on fungal spore's emissions, fungal spore concentrations were monitored using a Burkard spore trap at the tropical montane cloud forest of Pico del Este at El Yunque National Forest, Puerto Rico. The presence of AD was supported with satellite images of aerosol optical thickness, and with the results from the air masses backward trajectories calculated with the NOAA HYSPLIT model. Basidiospores and Ascospores comprised the major components of the total spore's concentrations, up to a maximum of 98%, during both AD incursions and background days. A considerably decrease in the concentration of fungal spores during AD events was observed. Ergosterol, biomarker for measuring fungal biomass, concentrations were determined in aerosols that were sampled at a marine site, Cabezas de San Juan Nature Reserve, in Fajardo Puerto Rico, and at an urban site, Facundo Bueso building at the University of Puerto Rico. Additional efforts to understand the relationship between the arrival of AD to the Caribbean and a decrease in spore's concentrations are needed in order to investigate changes in local spore's vs the contribution of long-range spores transported within the AD.

  10. Aerosol monitoring during carbon nanofiber production: mobile direct-reading sampling.

    PubMed

    Evans, Douglas E; Ku, Bon Ki; Birch, M Eileen; Dunn, Kevin H

    2010-07-01

    Detailed investigations were conducted at a facility that manufactures and processes carbon nanofibers (CNFs). Presented research summarizes the direct-reading monitoring aspects of the study. A mobile aerosol sampling platform, equipped with an aerosol instrument array, was used to characterize emissions at different locations within the facility. Particle number, respirable mass, active surface area, and photoelectric response were monitored with a condensation particle counter (CPC), a photometer, a diffusion charger, and a photoelectric aerosol sensor, respectively. CO and CO(2) were additionally monitored. Combined simultaneous monitoring of these metrics can be utilized to determine source and relative contribution of airborne particles (CNFs and others) within a workplace. Elevated particle number concentrations, up to 1.15 x 10(6) cm(-3), were found within the facility but were not due to CNFs. Ultrafine particle emissions, released during thermal treatment of CNFs, were primarily responsible. In contrast, transient increases in respirable particle mass concentration, with a maximum of 1.1 mg m(-3), were due to CNF release through uncontrolled transfer and bagging. Of the applied metrics, our findings suggest that particle mass was probably the most useful and practical metric for monitoring CNF emissions in this facility. Through chemical means, CNFs may be selectively distinguished from other workplace contaminants (Birch et al., in preparation), and for direct-reading monitoring applications, the photometer was found to provide a reasonable estimate of respirable CNF mass concentration. Particle size distribution measurements were conducted with an electrical low-pressure impactor and a fast particle size spectrometer. Results suggest that the dominant CNF mode by particle number lies between 200 and 250 nm for both aerodynamic and mobility equivalent diameters. Significant emissions of CO were also evident in this facility. Exposure control

  11. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    SciTech Connect

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier; Klennert, Lindsay A.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno A.; Koch, Wolfgang; Pretzsch, Gunter Guido; Brucher, Wenzel; Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively

  12. A Decade of Field Changing Atmospheric Aerosol Research: Outcomes of EPA’s STAR Program

    EPA Science Inventory

    Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri ...

  13. Brine Sampling and Evaluation Program, 1990 report

    SciTech Connect

    Deal, D.E.; Abitz, R.J.; Myers, J.; Case, J.B.; Martin, M.L.; Roggenthen, W.M.; Belski, D.S.

    1991-08-01

    The data presented in this report are the result of Brine Sampling and Evaluation Program (BSEP) activities at the Waste Isolation Pilot Plant (WIPP) during 1990. When excavations began in 1982, small brine seepages (weeps) were observed on the walls. These brine occurrences were initially described as part of the Site Validation Program. Brine studies were formalized in 1985. The BSEP activities document and investigate the origins, hydraulic characteristics, extent, and composition of brine occurrences in the Permian Salado Formation and seepage of that brine into the excavations at the WIPP. The brine chemistry is important because it assists in understanding the origin of the brine and because it may affect possible chemical reactions in the buried waste after sealing the repository. The volume of brine and the hydrologic system that drives the brine seepage also need to be understood to assess the long-term performance of the repository. After more than eight years of observations (1982--1990), no credible evidence exists to indicate that enough naturally occurring brine will seep into the WIPP excavations to be of practical concern. The detailed observations and analyses summarized herein and in previous BSEP reports confirm the evidence apparent during casual visits to the underground workings -- that the excavations are remarkably dry.

  14. Stratospheric CCN sampling program. [volcanology, Mount Saint Helens

    NASA Technical Reports Server (NTRS)

    Rogers, C. F.; Hudson, J. G.

    1982-01-01

    Two one liter grab samples of stratospheric aerosol were returned from each of six U-2 sampling missions. Cloud condensation nuclei (CCN) spectra from each sample were obtained. Interest was centered on the effects of volcanic activity. Spurious particle generation was found to be a serious problem in container 9 LFT and a much smaller problem in container 9 RT. Initial studies of an option for improved sample containers and values were completed. A CCN spectrometer, able to operate at an internal pressure of 300 mb, was designed.

  15. Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples.

    PubMed

    Estill, Cheryl Fairfield; Baron, Paul A; Beard, Jeremy K; Hein, Misty J; Larsen, Lloyd D; Rose, Laura; Schaefer, Frank W; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H D Alan; Deye, Gregory J; Arduino, Matthew J

    2009-07-01

    After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm(2)). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm(2)) or wipe or vacuum (929 cm(2)) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm(2)) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm(2) for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm(2) for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans.

  16. Impact of culture media and sampling methods on Staphylococcus aureus aerosols.

    PubMed

    Chang, C-W; Wang, L-J

    2015-10-01

    Staphylococcus aureus has been detected indoors and is associated with human infection. Reliable quantification of S. aureus using a sampling technique followed by culture assay helps in assessing the risks of human exposure. The efficiency of five culture media and eight sampling methods in recovering S. aureus aerosols were evaluated. Methods to extract cells from filters were also studied. Tryptic soy agar (TSA) presented greater bacterial recovery than mannitol salt agar (MSA), CHROMagar staph aureus, Chapman stone medium, and Baird-Park agarose (P < 0.05). Moreover, 93 ± 2%-95 ± 2% and 42 ± 1%-49 ± 2% of S. aureus were, respectively, recovered by a 15-min heating of gelatin filters and 2-min vortex of polycarbonate (PC) filters. Evaluation of two filtration (IOM with gelatin filter and cassette with PC filter), two impaction (Andersen 1-STG loaded with TSA and MSA) and four impingement methods [AGI-30 and BioSampler filled with Tween mixture (TM) and phosphate-buffered saline (PBS)] revealed the BioSampler/TM performed best over 30 and 60 min of sampling (P < 0.05), while low recovery efficiencies were associated with the IOM/gelatin, cassette/PC, and AGI-30/PBS combinations (P < 0.05). In addition to BioSampler/TM, collecting S. aureus onto TSA from the Andersen 1-STG is also recommended, as it is the second best method at the 60-min sampling (P < 0.05).

  17. Chemical Aerosol Characterization Sampling in Santa Ana during the MCMA-2003 Field Campaign

    NASA Astrophysics Data System (ADS)

    Bernabe, R.; Castro, T.; Marquez, C.; Cardenas, B.; Salcedo, D.

    2004-12-01

    Aerosol samples were collected during the intensive MCMA-2003 campaign in Santa Ana (19.1772° N, 98.99° W), Mexico City. This small rural town lies near the southeastern border of Mexico City and on the western rim of a mountain pass that channels the southern outflow of air from the city. Particles smaller than 10 μ m in aerodynamic diameter were collected on aluminum foils using three 8-stage micro orifice uniform deposit impactor (MOUDI), while fine particles (PM2.5) were collected in quartz fiber filters using manual samplers (MiniVol air samplers, Airmetrics). Samples were taken every 3 days starting at 2am in 6 hr intervals (total time 18 hrs for MOUDI and 24 hrs for MiniVol) from April 10-22, 2003. The MOUDI was operated at a flow rate of 30 l/min with calibrated impaction cut-points in the range of 10 - 0.18 μ m; while the MiniVol operation flow rate was 5 l/min. Prior to sampling, the aluminum foils were pre-conditioned (at 450° C) in a furnace for 8 hrs to eliminate impurities. Both types of filters were weighted using an Ultra Microbalance (Cahn, with a sensitivity of 0.1 μ g) for particulate matter under controlled conditions (20° C and 50% relative humidity). The aluminum foils were cut in halves, one half for Total Carbon (TC) determination with a thermal method, Evolved Gas Analysis (EGA), and the other half for analysis of inorganic ions (Cl-, NO3, SO42-, NA+, NH4+, K+, Ca2+ and Mg+) by liquid chromatography and mass spectrometer analytic method. Organic and elemental carbon was done according to the IMPROVE Thermal Protocol. Aerosol measurements made with MOUDI showed that the particle size distribution was bimodal in the three sampling periods. During daylight periods, 75% of the collected samples consisted of particles with aerodynamic diameter < 1 μ m whereas the major mass concentration was dominated by particles > 1 μ m during night. PM2.5 results reveal that the highest and lowest levels were obtained during the afternoon (60.6 μ g

  18. Determination of the organic aerosol mass to organic carbon ratio in IMPROVE samples.

    PubMed

    El-Zanan, Hazem S; Lowenthal, Douglas H; Zielinska, Barbara; Chow, Judith C; Kumar, Naresh

    2005-07-01

    The ratio of organic mass (OM) to organic carbon (OC) in PM(2.5) aerosols at US national parks in the IMPROVE network was estimated experimentally from solvent extraction of sample filters and from the difference between PM(2.5) mass and chemical constituents other than OC (mass balance) in IMPROVE samples from 1988 to 2003. Archived IMPROVE filters from five IMPROVE sites were extracted with dichloromethane (DCM), acetone and water. The extract residues were weighed to determine OM and analyzed for OC by thermal optical reflectance (TOR). On average, successive extracts of DCM, acetone, and water contained 64%, 21%, and 15%, respectively, of the extractable OC, respectively. On average, the non-blank-corrected recovery of the OC initially measured in these samples by TOR was 115+/-42%. OM/OC ratios from the combined DCM and acetone extracts averaged 1.92 and ranged from 1.58 at Indian Gardens, AZ in the Grand Canyon to 2.58 at Mount Rainier, WA. The average OM/OC ratio determined by mass balance was 2.07 across the IMPROVE network. The sensitivity of this ratio to assumptions concerning sulfate neutralization, water uptake by hygroscopic species, soil mass, and nitrate volatilization were evaluated. These results suggest that the value of 1.4 for the OM/OC ratio commonly used for mass and light extinction reconstruction in IMPROVE is too low.

  19. First Transmitted Hyperspectral Light Measurements and Cloud Properties from Recent Field Campaign Sampling Clouds Under Biomass Burning Aerosol

    NASA Technical Reports Server (NTRS)

    Leblanc, S.; Redemann, Jens; Shinozuka, Yohei; Flynn, Connor J.; Segal Rozenhaimer, Michal; Kacenelenbogen, Meloe Shenandoah; Pistone, Kristina Marie Myers; Schmidt, Sebastian; Cochrane, Sabrina

    2016-01-01

    We present a first view of data collected during a recent field campaign aimed at measuring biomass burning aerosol above clouds from airborne platforms. The NASA ObseRvations of CLouds above Aerosols and their intEractionS (ORACLES) field campaign recently concluded its first deployment sampling clouds and overlying aerosol layer from the airborne platform NASA P3. We present results from the Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), in conjunction with the Solar Spectral Flux Radiometers (SSFR). During this deployment, 4STAR sampled transmitted solar light either via direct solar beam measurements and scattered light measurements, enabling the measurement of aerosol optical thickness and the retrieval of information on aerosol particles in addition to overlying cloud properties. We focus on the zenith-viewing scattered light measurements, which are used to retrieve cloud optical thickness, effective radius, and thermodynamic phase of clouds under a biomass burning layer. The biomass burning aerosol layer present above the clouds is the cause of potential bias in retrieved cloud optical depth and effective radius from satellites. We contrast the typical reflection based approach used by satellites to the transmission based approach used by 4STAR during ORACLES for retrieving cloud properties. It is suspected that these differing approaches will yield a change in retrieved properties since light transmitted through clouds is sensitive to a different cloud volume than reflected light at cloud top. We offer a preliminary view of the implications of these differences in sampling volumes to the calculation of cloud radiative effects (CRE).

  20. Thermodesorption of aerosol matter on multiple filters of different materials for a more detailed evaluation of sampling artifacts

    NASA Astrophysics Data System (ADS)

    Wittmaack, Klaus; Keck, Lothar

    2004-10-01

    Multiple, essentially identical samples of PM2.5, PM10 and TSP aerosol matter were collected on filters of cellulose acetate-nitrate membrane (CA), quartz fiber (QF) and glass fiber (GF) material. The samples were analyzed in terms of the gravimetric mass and the mass of nine inorganic ions. These parameters were also measured after step-wise thermodesorption of aerosol matter by 1-h heating in ambient air up to 350 °C. The observed thermograms of the analyzed ions were compared with results obtained using pure and mixed salts on filter. In summer the apparent mass concentration of aerosol matter collected on CA was always larger than on QF and GF filter. The excess mass on CA was found to be highly volatile, i.e. completely removable at 120 °C, and composed of both ionic and non-ionic matter. The apparent nitrate concentration sampled on QF and GF was almost an order of magnitude lower than on CA. The very pronounced nitrate losses from the fiber filters are attributed to volatilization of ammonium nitrate. In contrast, nitrate losses from CA were small or even negligible for two reasons, pile-up of aerosol matter predominantly on (rather than in) the filter ("cake" formation) and, more importantly, re-adsorption of volatilized ammonia and nitric acid in the filter. Sampling on GF filters was found to suffer from severe problems due to chemical reactions between Na+ of the glass and SO42- of the aerosol matter. A novel type of artifact was observed in sampling campaigns during fall. Presumably as a results of a high water content, the collected aerosol matter became liquefied and a large fraction of the water soluble components was driven through the filter into the support pad underneath. The negative "wetting artifact" was much more pronounced for the thin CA than for the relatively thick QF filters. The total amount of aerosol matter in the CA/pad and QF/pad combinations was the same, indicating that this kind of artifact can be corrected for. Ammonium

  1. Testing of an automated online EA-IRMS method for fast and simultaneous carbon content and stable isotope measurement of aerosol samples

    NASA Astrophysics Data System (ADS)

    Major, István; Gyökös, Brigitta; Túri, Marianna; Futó, István; Filep, Ágnes; Hoffer, András; Molnár, Mihály

    2016-04-01

    Comprehensive atmospheric studies have demonstrated that carbonaceous aerosol is one of the main components of atmospheric particulate matter over Europe. Various methods, considering optical or thermal properties, have been developed for quantification of the accurate amount of both organic and elemental carbon constituents of atmospheric aerosol. The aim of our work was to develop an alternative fast and easy method for determination of the total carbon content of individual aerosol samples collected on prebaked quartz filters whereby the mass and surface concentration becomes simply computable. We applied the conventional "elemental analyzer (EA) coupled online with an isotope ratio mass spectrometer (IRMS)" technique which is ubiquitously used in mass spectrometry. Using this technique we are able to measure simultaneously the carbon stable isotope ratio of the samples, as well. During the developing process, we compared the EA-IRMS technique with an off-line catalytic combustion method worked out previously at Hertelendi Laboratory of Environmental Studies (HEKAL). We tested the combined online total carbon content and stable isotope ratio measurement both on standard materials and real aerosol samples. Regarding the test results the novel method assures, on the one hand, at least 95% of carbon recovery yield in a broad total carbon mass range (between 100 and 3000 ug) and, on the other hand, a good reproducibility of stable isotope measurements with an uncertainty of ± 0.2 per mill. Comparing the total carbon results obtained by the EA-IRMS and the off-line catalytic combustion method we found a very good correlation (R2=0.94) that proves the applicability of both preparation method. Advantages of the novel method are the fast and simplified sample preparation steps and the fully automated, simultaneous carbon stable isotope ratio measurement processes. Furthermore stable isotope ratio results can effectively be applied in the source apportionment

  2. Evaluation of proposed sampling and analytical methods for carbonaceous hazardous air pollutants for the Clean Coal Technology Program

    SciTech Connect

    Mazurek, M.A.; Hildemann, L.M.

    1993-03-01

    At present, no single stack sampling protocol (EPA5, MEPA5, REPA5, and dilution sampling methods) is adequate for evaluating completely stack gas emissions that will be tested as part of the CCTP. REPA5 yields emissions data for organic compounds that are not representative of the physical or chemical composition of the aerosol. As an alternative method, dilution sampling of stack gases produces more accurate particle phase organic emissions data, but does not furnish information on volatile organics. A synthesis of the dilution sampling method and REPA5 sampling and analytical technologies will produce the high quality stack emissions data needed for future CCTP programs.

  3. Organic Composition of Size-Segregated Aerosols Sampled During the 2002 Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA

    NASA Astrophysics Data System (ADS)

    Tremblay, R. T.; Zika, R. G.

    2003-04-01

    Aerosol samples were collected for the analysis of organic source markers using non-rotating Micro Orifice Uniform Deposit Impactors (MOUDI) as part of the Bay Regional Atmospheric Chemistry Experiment (BRACE) in Tampa, FL, USA. Daily samples were collected 12 m above ground at a flow rate of 30 lpm throughout the month of May 2002. Aluminum foil discs were used to sample aerosol size fractions with aerodynamic cut diameter of 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.17 and 0.093 um. Samples were solvent extracted using a mixture of dichloromethane/acetone/hexane, concentrated and then analyzed using gas chromatography-mass spectrometry (GC/MS). Low detection limits were achieved using a HP Programmable Temperature Vaporizing inlet (PTV) and large volume injections (80ul). Excellent chromatographic resolution was obtained using a 60 m long RTX-5MS, 0.25 mm I.D. column. A quantification method was built for over 90 organic compounds chosen as source markers including straight/iso/anteiso alkanes and polycyclic aromatic hydrocarbons (PAH). The investigation of potential aerosol sources for different particle sizes using known organic markers and source profiles will be presented. Size distributions of carbon preference indices (CPI), percent wax n-alkanes (%WNA) and concentration of selected compounds will be discussed. Also, results will be compared with samples acquired in different environments including the 1999 Atlanta SuperSite Experiment, GA, USA.

  4. Model-Based Estimation of Sampling-Caused Uncertainty in Aerosol Remote Sensing for Climate Research Applications

    NASA Technical Reports Server (NTRS)

    Geogdzhayev, Igor V.; Cairns, Brian; Mishchenko, Michael I.; Tsigaridis, Kostas; van Noije, Twan

    2014-01-01

    To evaluate the effect of sampling frequency on the global monthly mean aerosol optical thickness (AOT), we use 6 years of geographical coordinates of Moderate Resolution Imaging Spectroradiometer (MODIS) L2 aerosol data, daily global aerosol fields generated by the Goddard Institute for Space Studies General Circulation Model and the chemical transport models Global Ozone Chemistry Aerosol Radiation and Transport, Spectral Radiationtransport Model for Aerosol Species and Transport Model 5, at a spatial resolution between 1.125 deg × 1.125 deg and 2 deg × 3?: the analysis is restricted to 60 deg S-60 deg N geographical latitude. We found that, in general, the MODIS coverage causes an underestimate of the global mean AOT over the ocean. The long-term mean absolute monthly difference between all and dark target (DT) pixels was 0.01-0.02 over the ocean and 0.03-0.09 over the land, depending on the model dataset. Negative DT biases peak during boreal summers, reaching 0.07-0.12 (30-45% of the global long-term mean AOT). Addition of the Deep Blue pixels tempers the seasonal dependence of the DT biases and reduces the mean AOT difference over land by 0.01-0.02. These results provide a quantitative measure of the effect the pixel exclusion due to cloud contamination, ocean sun-glint and land type has on the MODIS estimates of the global monthly mean AOT. We also simulate global monthly mean AOT estimates from measurements provided by pixel-wide along-track instruments such as the Aerosol Polarimetry Sensor and the Cloud-Aerosol LiDAR with Orthogonal Polarization. We estimate the probable range of the global AOT standard error for an along-track sensor to be 0.0005-0.0015 (ocean) and 0.0029-0.01 (land) or 0.5-1.2% and 1.1-4% of the corresponding global means. These estimates represent errors due to sampling only and do not include potential retrieval errors. They are smaller than or comparable to the published estimate of 0.01 as being a climatologically significant

  5. EVALUATION OF COMPUTER-CONTROLLED SCANNING ELECTRON MICROSCOPY APPLIED TO AN AMBIENT URBAN AEROSOL SAMPLE

    EPA Science Inventory

    Concerns about the environmental and public health effects of particulate matter (PM) have stimulated interest in analytical techniques capable of measuring the size and chemical composition of individual aerosol particles. Computer-controlled scanning electron microscopy (CCSE...

  6. Air sampling and determination of vapours and aerosols of bitumen and polycyclic aromatic hydrocarbons in the Human Bitumen Study.

    PubMed

    Breuer, Dietmar; Hahn, Jens-Uwe; Höber, Dieter; Emmel, Christoph; Musanke, Uwe; Rühl, Reinhold; Spickenheuer, Anne; Raulf-Heimsoth, Monika; Bramer, Rainer; Seidel, Albrecht; Schilling, Bernd; Heinze, Evelyn; Kendzia, Benjamin; Marczynski, Boleslaw; Welge, Peter; Angerer, Jürgen; Brüning, Thomas; Pesch, Beate

    2011-06-01

    The chemical complexity of emissions from bitumen applications is a challenge in the assessment of exposure. Personal sampling of vapours and aerosols of bitumen was organized in 320 bitumen-exposed workers and 69 non-exposed construction workers during 2001-2008. Area sampling was conducted at 44 construction sites. Area and personal sampling of vapours and aerosols of bitumen showed similar concentrations between 5 and 10 mg/m(3), while area sampling yielded higher concentrations above the former occupational exposure limit (OEL) of 10 mg/m(3). The median concentration of personal bitumen exposure was 3.46 mg/m(3) (inter-quartile range 1.80-5.90 mg/m(3)). Only few workers were exposed above the former OEL. The specificity of the method measuring C-H stretch vibration is limited. This accounts for a median background level of 0.20 mg/m³ in non-exposed workers which is likely due to ubiquitous aliphatic hydrocarbons. Further, area measurements of polycyclic aromatic hydrocarbons (PAHs) were taken at 25 construction sites. U.S. EPA PAHs were determined with GC/MS, with the result of a median concentration of 2.47 μg/m(3) at 15 mastic asphalt worksites associated with vapours and aerosols of bitumen, with a Spearman correlation coefficient of 0.45 (95% CI -0.13 to 0.78). PAH exposure at mastic-asphalt works was higher than at reference worksites (median 0.21 μg/m(3)), but about one order of magnitude lower compared to coke-oven works. For a comparison of concentrations of vapours and aerosols of bitumen and PAHs in asphalt works, differences in sampling and analytical methods must to be taken into account.

  7. Comparison of laser ablation and dried solution aerosol as sampling systems in inductively coupled plasma mass spectrometry.

    PubMed

    Coedo, A G; Padilla, I; Dorado, M T

    2004-12-01

    This paper describes a study designed to determine the possibility of using a dried aerosol solution for calibration in laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The relative sensitivities of tested materials mobilized by laser ablation and by aqueous nebulization were established, and the experimentally determined relative sensitivity factors (RSFs) were used in conjunction with aqueous calibration for the analysis of solid steel samples. To such a purpose a set of CRM carbon steel samples (SS-451/1 to SS-460/1) were sampled into an ICP-MS instrument by solution nebulization using a microconcentric nebulizer with membrane desolvating (D-MCN) and by laser ablation (LA). Both systems were applied with the same ICP-MS operating parameters and the analyte signals were compared. The RSF (desolvated aerosol response/ablated solid response) values were close to 1 for the analytes Cr, Ni, Co, V, and W, about 1.3 for Mo, and 1.7 for As, P, and Mn. Complementary tests were carried out using CRM SS-455/1 as a solid standard for one-point calibration, applying LAMTRACE software for data reduction and quantification. The analytical results are in good agreement with the certified values in all cases, showing that the applicability of dried aerosol solutions is a good alternative calibration system for laser ablation sampling.

  8. Bacterial diversity of autotrophic enriched cultures from remote, glacial Antarctic, Alpine and Andean aerosol, snow and soil samples

    NASA Astrophysics Data System (ADS)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2009-01-01

    Four different communities and one culture of autotrophic microbial assemblages were obtained by incubation of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas), in a minimal mineral (oligotrophic) media. Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. Phylogenetic comparison with the currently available rDNA database allowed sequences belonging to Proteobacteria Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla to be identified. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the marine Antarctic soil the poorest (only one). Snow samples from Col du Midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteriaclone). The only microorganism identified in the Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. Most of the identified microorganisms had been detected previously in cold environments, marine sediments soils and rocks. Air current dispersal is the best model to explain the presence of very specific microorganisms, like those identified in this work, in environments very distant and very different from each other.

  9. THE NIST-EPA INTERAGENCY AGREEMENT ON MEASUREMENTS AND STANDARDS IN AEROSOL CARBON: SAMPLING REGIONAL PM 2.5 FOR THE CHEMOMETRIC OPTIMIZATION OF THERMAL-OPTICAL ANALYSIS

    EPA Science Inventory

    Results from the NIST-EPA Interagency Agreement on Measurements and Standards in Aerosol Carbon: Sampling Regional PM2.5 for the Chemometric Optimization of Thermal-Optical Analysis Study will be presented at the American Association for Aerosol Research (AAAR) 24th Annual Confer...

  10. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.

    PubMed

    Park, Ji-Woon; Kim, Hyeong Rae; Hwang, Jungho

    2016-10-19

    We present a methodology for continuous and real-time bioaerosol monitoring wherein an aerosol-to-hydrosol sampler is integrated with a bioluminescence detector. Laboratory test was conducted by supplying an air flow with entrained test bacteria (Staphylococcus epidermidis) to the inlet of the sampler. High voltage was applied between the discharge electrode and the ground electrode of the sampler to generate air ions by corona discharge. The bacterial aerosols were charged by the air ions and sampled in a flowing liquid containing both a cell lysis buffer and adenosine triphosphate (ATP) bioluminescence reagents. While the liquid was delivered to the bioluminescence detector, sampled bacteria were dissolved by the cell lysis buffer and ATP was extracted. The ATP was reacted with the ATP bioluminescence reagents, causing light to be emitted. When the concentration of bacteria in the aerosols was varied, the ATP bioluminescence signal in relative light units (RLUs) closely tracked the concentration in particles per unit air volume (# cm(-3)), as measured by an aerosol particle sizer. The total response time required for aerosol sampling and ATP bioluminescence detection increased from 30 s to 2 min for decreasing liquid sampling flow rate from 800 to 200 μLPM, respectively. However, lower concentration of S. epidermidis aerosols was able to be detected with lower liquid sampling flow rate (1 RLU corresponded to 6.5 # cm(-3) of S. epidermidis aerosols at 200 μLPM and 25.5 # cm(-3) at 800 μLPM). After obtaining all data sets of concentration of S. epidermidis aerosols and concentration of S. epidermidis particles collected in the flowing liquid, it was found that with our bioluminescence detector, 1 RLU corresponded to 1.8 × 10(5) (±0.2 × 10(5)) # mL(-1) of S. epidermidis in liquid. After the lab-test with S. epidermidis, our bioaerosol monitoring device was located in the lobby of a building. Air sampling was conducted continuously for 90

  11. Sample results from the interim salt disposition program macrobatch 9 tank 21H qualification samples

    SciTech Connect

    Peters, T. B.

    2015-11-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 9 for the Interim Salt Disposition Program (ISDP). This document reports characterization data on the samples of Tank 21H.

  12. Beryllium 7 and lead 210 in the Western Hemisphere Arctic atmosphere - Observations from three recent aircraft-based sampling programs

    NASA Technical Reports Server (NTRS)

    Dibb, Jack E.; Talbot, Robert W.; Gregory, Gerald L.

    1992-01-01

    Concentrations of the natural radionuclides Be-7 and Pb-210 in the Western Hemisphere Arctic atmosphere were determined during the recent NOAA Arctic Gas and Aerosol Sampling Program (AGASP 3) and NASA Global Tropospheric Experiment/Arctic Boundary Layer Expeditions (GTE/ABLE 3A and ABLE 3B) missions. Be-7 concentrations measured during the AGASP 3 mission north and west of Norway are in accord with previous results for high northern latitudes, but suggest that the 'stratospheric' air masses sampled at the highest elevations reached were significantly diluted with tropospheric air. Higher resolution sampling in the free troposphere of the North American Arctic during ABLE 3B revealed a layer of elevated Be-7 concentrations near 5 km. The distribution of Pb-210 in the high-altitude troposphere of North America during the summer was quite similar to distributions of more frequently measured aerosol species.

  13. DEVELOPMENT OF A TAMPER RESISTANT/INDICATING AEROSOL COLLECTION SYSTEM FOR ENVIRONMENTAL SAMPLING AT BULK HANDLING FACILITIES

    SciTech Connect

    Sexton, L.

    2012-06-06

    Environmental sampling has become a key component of International Atomic Energy Agency (IAEA) safeguards approaches since its approval for use in 1996. Environmental sampling supports the IAEA's mission of drawing conclusions concerning the absence of undeclared nuclear material or nuclear activities in a Nation State. Swipe sampling is the most commonly used method for the collection of environmental samples from bulk handling facilities. However, augmenting swipe samples with an air monitoring system, which could continuously draw samples from the environment of bulk handling facilities, could improve the possibility of the detection of undeclared activities. Continuous sampling offers the opportunity to collect airborne materials before they settle onto surfaces which can be decontaminated, taken into existing duct work, filtered by plant ventilation, or escape via alternate pathways (i.e. drains, doors). Researchers at the Savannah River National Laboratory and Oak Ridge National Laboratory have been working to further develop an aerosol collection technology that could be installed at IAEA safeguarded bulk handling facilities. The addition of this technology may reduce the number of IAEA inspector visits required to effectively collect samples. The principal sample collection device is a patented Aerosol Contaminant Extractor (ACE) which utilizes electrostatic precipitation principles to deposit particulates onto selected substrates. Recent work has focused on comparing traditional swipe sampling to samples collected via an ACE system, and incorporating tamper resistant and tamper indicating (TRI) technologies into the ACE system. Development of a TRI-ACE system would allow collection of samples at uranium/plutonium bulk handling facilities in a manner that ensures sample integrity and could be an important addition to the international nuclear safeguards inspector's toolkit. This work was supported by the Next Generation Safeguards Initiative (NGSI), Office

  14. Programmed sample delivery on a pressurized paper

    PubMed Central

    Shin, Joong Ho; Park, Juhwan; Kim, Seung Hoon; Park, Je-Kyun

    2014-01-01

    This paper reports a method to control the fluid flow in paper-based microfluidic devices simply by pressing over the channel surface of paper, thereby decreasing the pore size and permeability of a non-woven polypropylene sheet. As a result, fluid resistance is increased in the pressed region and causes flow rate to decrease. We characterize the decrease of flow rate with respect to different amounts of pressure applied, and up to 740% decrease in flow velocity was achieved. In addition, we demonstrate flow rate control in a Y-shaped merging paper and sequential delivery of multiple color dyes in a three-branched paper. Furthermore, sequential delivery of multiple fluid samples is performed to demonstrate its application in multi-step colorimetric immunoassay, which shows a 4.3-fold signal increase via enhancement step. PMID:25584116

  15. Salton Sea sampling program: baseline studies

    SciTech Connect

    Tullis, R.E.; Carter, J.L.; Langlois, G.W.

    1981-04-13

    Baseline data are provided on three species of fish from the Salton Sea, California. The fishes considered were the orange mouth corvina (Cynoscion xanthulus), gulf croaker (Bairdiella icistius) and sargo (Anisotremus davidsonii). Morphometric and meristic data are presented as a baseline to aid in the evaluation of any physiological stress the fish may experience as a result of geothermal development. Analyses were made on muscle, liver, and bone of the fishes sampled to provide baseline data on elemental tissue burdens. The elements measured were: As, Br, Ca, Cu, Fe, Ga, K, Mn, Mi, Pb, Rb, Se, Sr, Zn, and Zr. These data are important if an environmentally sound progression of geothermal power production is to occur at the Salton Sea.

  16. Concentrations of iodine isotopes ((129)I and (127)I) and their isotopic ratios in aerosol samples from Northern Germany.

    PubMed

    Daraoui, A; Riebe, B; Walther, C; Wershofen, H; Schlosser, C; Vockenhuber, C; Synal, H-A

    2016-04-01

    New data about (129)I, (127)I concentrations and their isotopic ratios in aerosol samples from the trace survey station of the Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Northern Germany, are presented and discussed in this paper. The investigated samples were collected on a weekly basis during the years 2011 to 2013. Iodine was extracted from aerosol filters using a strong basic solution and was separated from the matrix elements with chloroform and was analysed by accelerator mass spectrometry (AMS) for (129)I and by inductively coupled plasma mass spectrometry (ICP-MS) for (127)I. The concentrations of (127)I and (129)I in aerosol filters ranged from 0.31 to 3.71 ng m(-3) and from 0.06 to 0.75 fg m(-3), respectively. The results of (129)I/(127)I isotopic ratios were in the order 10(-8) to 10(-7). The (129)I originated directly from gaseous emissions and indirectly from liquid emissions (via sea spray) from the reprocessing plants in Sellafield and La Hague. In comparison with the results of (131)I after the Fukushima accident, no contribution of (129)I from this accident was detectable in Central Europe due to the high background originating from the (129)I releases of the European reprocessing plants. (129)I atmospheric activity concentrations were compared with those of an anthropogenic radionuclide ((85)Kr). We did not find any correlation between (129)I and (85)Kr, both having nuclear reprocessing plant as the main source.

  17. Aerosol sampling: Comparison of two rotating impactors for field droplet sizing and volumetric measurements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper compares the collection characteristics of a new rotating impactor for ultra fine aerosols (FLB) with the industry standard (Hock). The volume and droplet size distribution collected by the rotating impactors were measured via spectroscopy and microscopy. The rotary impactors were co-lo...

  18. Diversity of bacteria producing pigmented colonies in aerosol, snow and soil samples from remote glacial areas (Antarctica, Alps and Andes)

    NASA Astrophysics Data System (ADS)

    González-Toril, E.; Amils, R.; Delmas, R. J.; Petit, J.-R.; Komárek, J.; Elster, J.

    2008-04-01

    Four different communities and one culture of pigmented microbial assemblages were obtained by incubation in mineral medium of samples collected from high elevation snow in the Alps (Mt. Blanc area) and the Andes (Nevado Illimani summit, Bolivia), from Antarctic aerosol (French station Dumont d'Urville) and a maritime Antarctic soil (King George Island, South Shetlands, Uruguay Station Artigas). Molecular analysis of more than 200 16S rRNA gene sequences showed that all cultured cells belong to the Bacteria domain. The phylogenetic comparison with the currently available rDNA database allowed the identification of sequences belonging to Proteobacteria (Alpha-, Beta- and Gamma-proteobacteria), Actinobacteria and Bacteroidetes phyla. The Andes snow culture was the richest in bacterial diversity (eight microorganisms identified) and the maritime Antarctic soil the poorest (only one). Snow samples from Col du midi (Alps) and the Andes shared the highest number of identified microorganisms (Agrobacterium, Limnobacter, Aquiflexus and two uncultured Alphaproteobacteria clones). These two sampling sites also shared four sequences with the Antarctic aerosol sample (Limnobacter, Pseudonocardia and an uncultured Alphaproteobacteria clone). The only microorganism identified in the maritime Antarctica soil (Brevundimonas sp.) was also detected in the Antarctic aerosol. The two snow samples from the Alps only shared one common microorganism. Most of the identified microorganisms have been detected previously in cold environments (Dietzia kujamenisi, Pseudonocardia Antarctica, Hydrogenophaga palleronii and Brebundimonas sp.), marine sediments (Aquiflexus balticus, Pseudomonas pseudoalkaligenes, Pseudomonas sp. and one uncultured Alphaproteobacteria), and soils and rocks (Pseudonocardia sp., Agrobactrium sp., Limnobacter sp. and two uncultured Alphaproteobacetria clones). Air current dispersal is the best model to explain the presence of very specific microorganisms, like those

  19. Regional PIXE facility at Chandigarh (India) and Trace Element Analysis of Aerosol and Bio-medical Samples

    NASA Astrophysics Data System (ADS)

    Govil, I. M.

    2009-03-01

    A regional Proton induced X-ray Emission (PIXE) facility is newly developed using 3 Mev Proton beam from Variable Energy Cyclotron, Panjab University, Chandigarh (India). A new target chamber has been designed to cater for Proton Induced Gamma Emission (PIGE) and Rutherford Back Scattering (RBS) along with PIXE measurements. The HPGe x-ray detector, the Ge (Li) gamma-ray detector and a silicon surface barrier (SSB) detector can be mounted simultaneously in the chamber for this purpose. A remotely controlled stepper motor is provided to move the target wheel holding 12/24 samples at a time. This facility is now routinely used for the detection of trace elements in the aerosol, medical and forensic science samples. The paper presents the analysis of Aerosol samples collected from highly polluted steel city of Mandi Govindgarh in Punjab state and relatively clean city of Jammu in Jammu & Kashmir region. The results from the analysis of these samples show some basic differences in the trace element profile of the two cities. The paper also describes the trace element analysis of fly ash in the vicinity of Ropar Thermal Power plant in Punjab. The scope of this study was to determine the concentration and composition of atmospheric particulate matter (PM) in the vicinity of coal-fired thermal power plants in India. The data taken for the Bio-medical samples are also discussed.

  20. Size-separated sampling and analysis of isocyanates in workplace aerosols. Part I. Denuder--cascade impactor sampler.

    PubMed

    Dahlin, Jakob; Spanne, Mårten; Karlsson, Daniel; Dalene, Marianne; Skarping, Gunnar

    2008-07-01

    Isocyanates in the workplace atmosphere are typically present both in gas and particle phase. The health effects of exposure to isocyanates in gas phase and different particle size fractions are likely to be different due to their ability to reach different parts in the respiratory system. To reveal more details regarding the exposure to isocyanate aerosols, a denuder-impactor (DI) sampler for airborne isocyanates was designed. The sampler consists of a channel-plate denuder for collection of gaseous isocyanates, in series with three-cascade impactor stages with cut-off diameters (d(50)) of 2.5, 1.0 and 0.5 mum. An end filter was connected in series after the impactor for collection of particles smaller than 0.5 mum. The denuder, impactor plates and the end filter were impregnated with a mixture of di-n-butylamine (DBA) and acetic acid for derivatization of the isocyanates. During sampling, the reagent on the impactor plates and the end filter is continuously refreshed, due to the DBA release from the impregnated denuder plates. This secures efficient derivatization of all isocyanate particles. The airflow through the sampler was 5 l min(-1). After sampling, the samples containing the different size fractions were analyzed using liquid chromatography-mass spectrometry (LC-MS)/MS. The DBA impregnation was stable in the sampler for at least 1 week. After sampling, the DBA derivatives were stable for at least 3 weeks. Air sampling was performed in a test chamber (300 l). Isocyanate aerosols studied were thermal degradation products of different polyurethane polymers, spraying of isocyanate coating compounds and pure gas-phase isocyanates. Sampling with impinger flasks, containing DBA in toluene, with a glass fiber filter in series was used as a reference method. The DI sampler showed good compliance with the reference method, regarding total air levels. For the different aerosols studied, vast differences were revealed in the distribution of isocyanate in gas and

  1. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols.

    PubMed

    Shen, Fangxia; Tan, Miaomiao; Wang, Zhenxing; Yao, Maosheng; Xu, Zhenqiang; Wu, Yan; Wang, Jindong; Guo, Xuefeng; Zhu, Tong

    2011-09-01

    Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.

  2. Assessment of air sampling methods and size distribution of virus-laden aerosols in outbreaks in swine and poultry farms.

    PubMed

    Alonso, Carmen; Raynor, Peter C; Goyal, Sagar; Olson, Bernard A; Alba, Anna; Davies, Peter R; Torremorell, Montserrat

    2017-03-01

    Swine and poultry viruses, such as porcine reproductive and respiratory syndrome virus (PRRSV), porcine epidemic diarrhea virus (PEDV), and highly pathogenic avian influenza virus (HPAIV), are economically important pathogens that can spread via aerosols. The reliability of methods for quantifying particle-associated viruses as well as the size distribution of aerosolized particles bearing these viruses under field conditions are not well documented. We compared the performance of 2 size-differentiating air samplers in disease outbreaks that occurred in swine and poultry facilities. Both air samplers allowed quantification of particles by size, and measured concentrations of PRRSV, PEDV, and HPAIV stratified by particle size both within and outside swine and poultry facilities. All 3 viruses were detectable in association with aerosolized particles. Proportions of positive sampling events were 69% for PEDV, 61% for HPAIV, and 8% for PRRSV. The highest virus concentrations were found with PEDV, followed by HPAIV and PRRSV. Both air collectors performed equally for the detection of total virus concentration. For all 3 viruses, higher numbers of RNA copies were associated with larger particles; however, a bimodal distribution of particles was observed in the case of PEDV and HPAIV.

  3. ACE-Asia: Size Resolved Sampling of Aerosols on the Ronald H Brown and US Western Receptor Sites

    NASA Astrophysics Data System (ADS)

    Jimenez-Cruz, M. P.; Cliff, S. S.; Perry, K. D.; Cahill, T. A.; Bates, T. S.

    2001-12-01

    The ACE (Aerosol Characterization Experiment)-Asia project was pre-dominantly performed during the spring of 2001. In addition to the core Asian sampling sites, we sampled at 4 Western US receptor sites. The receptor sites include, Mauna Loa Observatory, Hawaii, Crater Lake Oregon, Adak Island, Alaska and Rattlesnake Mountain, Washington. A small subset of sites (Rattlesnake Mtn., MLO, and Asian sites) continued during a 6-week intensive summer study. For the spring study, an 8-stage DRUM impactor also sampled aboard the NOAA ship RV Ronald H Brown, and mix of 8- and 3-DRUM impactors were used at the western US receptor sites. The impactors are capable of size-segregated, time-resolved aerosol collection. The size categories for the 8-DRUM are inlet-5.00, 5.00-2.50, 2.50-1.15, 1.15-0.75, 0.75-0.56, 0.56-0.34, 0.34-.026, 0.26-.09 microns and 3-DRUM: 2.50-1.10, 1.10-0.34, 0.34-0.12 microns. These samples were analyzed in 6 hour time bites using synchrotron-XRF for quantitative composition for elements sodium through uranium, when present. A major dust event occurring around April 13 was detected at all receptor sites. Comparisons of key elemental ratios and conservative tracers will be presented.

  4. Composition of microbial communities in aerosol, snow and ice samples from remote glaciated areas (Antarctica, Alps, Andes)

    NASA Astrophysics Data System (ADS)

    Elster, J.; Delmas, R. J.; Petit, J.-R.; Řeháková, K.

    2007-06-01

    Taxonomical and ecological analyses were performed on micro-autotrophs (cyanobacteria and algae together with remnants of diatom valves), micro-fungi (hyphae and spores), bacteria (rod, cocci and red clusters), yeast, and plant pollen extracted from various samples: Alps snow (Mt. Blank area), Andean snow (Illimani, Bolivia), Antarctic aerosol filters (Dumont d'Urville, Terre Adélie), and Antarctic inland ice (Terre Adélie). Three methods for ice and snow sample's pre-concentration were tested (filtration, centrifugation and lyophilisation). Afterwards, cultivation methods for terrestrial, freshwater and marine microorganisms (micro-autotrophs and micro-fungi) were used in combination with liquid and solid media. The main goal of the study was to find out if micro-autotrophs are commonly transported by air masses, and later stored in snow and icecaps around the world. The most striking result of this study was the absence of culturable micro-autotrophs in all studied samples. However, an unusual culturable pigmented prokaryote was found in both alpine snow and aerosol samples. Analyses of many samples and proper statistical analyses (PCA, RDA- Monte Carlo permutation tests) showed that studied treatments highly significantly differ in both microbial community and biotic remnants composition F=9.33, p=0.001. In addition, GLM showed that studied treatments highly significantly differ in numbers of categories of microorganisms and remnants of biological material F=11.45, p=0.00005. The Antarctic aerosol samples were characterised by having red clusters of bacteria, the unusual prokaryote and yeasts. The high mountain snow from the Alps and Andes contained much more culturable heterotrophs. The unusual prokaryote was very abundant, as were coccoid bacteria, red clusters of bacteria, as well as yeasts. The Antarctic ice samples were quite different. These samples had higher numbers of rod bacteria and fungal hyphae. The microbial communities and biological remnants of

  5. An Evaluation of Sharp Cut Cyclones for Sampling Diesel Particulate Matter Aerosol in the Presence of Respirable Dust

    PubMed Central

    Cauda, Emanuele; Sheehan, Maura; Gussman, Robert; Kenny, Lee; Volkwein, Jon

    2015-01-01

    Two prototype cyclones were the subjects of a comparative research campaign with a diesel particulate matter sampler (DPMS) that consists of a respirable cyclone combined with a downstream impactor. The DPMS is currently used in mining environments to separate dust from the diesel particulate matter and to avoid interferences in the analysis of integrated samples and direct-reading monitoring in occupational environments. The sampling characteristics of all three devices were compared using ammonium fluorescein, diesel, and coal dust aerosols. With solid spherical test aerosols at low particle loadings, the aerodynamic size-selection characteristics of all three devices were found to be similar, with 50% penetration efficiencies (d50) close to the design value of 0.8 µm, as required by the US Mine Safety and Health Administration for monitoring occupational exposure to diesel particulate matter in US mining operations. The prototype cyclones were shown to have ‘sharp cut’ size-selection characteristics that equaled or exceeded the sharpness of the DPMS. The penetration of diesel aerosols was optimal for all three samplers, while the results of the tests with coal dust induced the exclusion of one of the prototypes from subsequent testing. The sampling characteristics of the remaining prototype sharp cut cyclone (SCC) and the DPMS were tested with different loading of coal dust. While the characteristics of the SCC remained constant, the deposited respirable coal dust particles altered the size-selection performance of the currently used sampler. This study demonstrates that the SCC performed better overall than the DPMS. PMID:25060240

  6. Composition and major sources of organic compounds of aerosol particulate matter sampled during the ACE-Asia campaign

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Kobayashi, Minoru; Mochida, Michihiro; Kawamura, Kimitaka; Lee, Meehye; Lim, Ho-Jin; Turpin, Barbara J.; Komazaki, Yuichi

    2004-10-01

    The organic compound tracers of atmospheric particulate matter, as well as organic carbon (OC) and elemental carbon (EC), have been characterized for samples acquired during the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia) from Gosan, Jeju Island, Korea, from Sapporo, Japan, and from Chichi-jima Island in the western North Pacific, as well as on the National Oceanic and Atmospheric Administration R/V Ronald H. Brown. Total extracts were analyzed by gas chromatography-mass spectrometry to determine both polar and aliphatic compounds. Total particles, organic matter, and lipid and saccharide compounds were high during the Asian dust episode (early April 2001) compared to levels at other times. The organic matter can be apportioned to seven emission sources and to significant oxidation-producing secondary products during long-range transport. Terrestrial natural background compounds are vascular plant wax lipids derived from direct emission and as part of desert sand dust. Fossil fuel utilization is obvious and derives from petroleum product and coal combustion emissions. Saccharides are a major polar (water-soluble) carbonaceous fraction derived from soil resuspension (agricultural activities). Biomass-burning smoke is evident in all samples and seasons. It contributes up to 13% of the total compound mass as water-soluble constituents. Burning of refuse is another source of organic particles. Varying levels of marine-derived lipids are superimposed during aerosol transport over the ocean. Secondary oxidation products increase with increasing transport distance and time. The ACE-Asia aerosols are composed not only of desert dust but also of soil dust, smoke from biomass and refuse burning, and emissions from fossil fuel use in urban areas.

  7. Water Soluble Organic Nitrogen in atmospheric aerosol samples from urban, sub-urban and pristine areas of Venezuela

    NASA Astrophysics Data System (ADS)

    Canelon, R.; Giuliante, A.; Aguiar, G.; Ghneim, T.; Perez, T.

    2007-12-01

    Concentrations of water soluble organic nitrogen (WSON) were determined in atmospheric total suspended particles (TSP) collected between September of 2005 and May of 2006, in an urban continental (Caracas, 10° 29' 09'' N, 66° 53' 48'' W), an urban coastal (Catia la mar, 10° 35' 47'' N, 67° 01' 45'' W), a sub-urban coastal (Osma, 10° 32' N, 67° 28' W), a suburban continental (Altos de Pipe, 10° 23' 41'' N, 63° 59' 10'' W), a pristine coastal (Isla de Aves, 15° 40' N, 63° 36' W) and a pristine continental (La Gran Sabana National Park, 5° 41' 30'' N, 61° 34' 20'' W) areas of Venezuela. TSP samples were collected using a Hi-Vol airborne particle sampler. TSP were impacted on a fiberglass filter pretreated under 400° C for 4 hours to minimize organic nitrogen contamination. Ultra sound water extractions of the sample filters were performed and their NH4+, NO2- and NO3- concentrations were determined by ion exchange liquid chromatography. The water extracts were UV digested and the nitrogen inorganic ions were analyzed after the UV exposure. WSON concentrations were calculated by the difference between the inorganic nitrogen concentrations before and after UV digestion. Ninety five percent of the aerosol samples collected in the suburban and pristine areas showed a WSON concentration range from 0.03 to 0.6 μg/m3 whereas in urban areas the range was 0.21 to 1.09 μg/m3. These concentration values are on the same order of magnitude than the previously found in other tropical and subtropical areas. The contribution of aerosol WSON to the total soluble nitrogen in the coastal urban, sub-urban and pristine areas ranged from 23 to 67%, while in Caracas was smaller (38±8%, n=5). Therefore, aerosol WSON provides an important source of nitrogen to these pristine and suburban ecosystems, which could potentially have implications on the nutrient cycling. There was a statistically significant linear correlation between the aerosol WSON and the water soluble inorganic

  8. The upgraded external-beam PIXE/PIGE set-up at LABEC for very fast measurements on aerosol samples

    NASA Astrophysics Data System (ADS)

    Lucarelli, F.; Calzolai, G.; Chiari, M.; Giannoni, M.; Mochi, D.; Nava, S.; Carraresi, L.

    2014-01-01

    At the 3 MV Tandetron accelerator of the LABEC laboratory of INFN in Florence, an external beam facility is fully dedicated to measurements of elemental composition of atmospheric aerosol. The experimental set-up hitherto used for this kind of applications has been upgraded with the replacement of a traditional Si(Li) detector for the detection of medium-high Z elements with a silicon drift detector (SDD) with a big active area (80 mm2) and 450 μm thickness, with the aim of obtaining better minimum detection limits (MDL) and reduce measuring times. The Upilex extraction window has been replaced by a more resistant one (Si3N4). A comparison between the old Si(Li) and the new SDD for aerosol samples collected on different substrata like Teflon, Kapton and Nuclepore evidenced the better performances of the SDD. It allows obtaining better results (higher counting statistics, lower MDLs) even in shorter measuring times, thus allowing very fast analysis of both daily and hourly samples.

  9. Hanford high level waste: Sample Exchange/Evaluation (SEE) Program

    SciTech Connect

    King, A.G.

    1994-08-01

    The Pacific Northwest Laboratory (PNL)/Analytical Chemistry Laboratory (ACL) and the Westinghouse Hanford Company (WHC)/Process Analytical Laboratory (PAL) provide analytical support services to various environmental restoration and waste management projects/programs at Hanford. In response to a US Department of Energy -- Richland Field Office (DOE-RL) audit, which questioned the comparability of analytical methods employed at each laboratory, the Sample Exchange/Exchange (SEE) program was initiated. The SEE Program is a selfassessment program designed to compare analytical methods of the PAL and ACL laboratories using sitespecific waste material. The SEE program is managed by a collaborative, the Quality Assurance Triad (Triad). Triad membership is made up of representatives from the WHC/PAL, PNL/ACL, and WHC Hanford Analytical Services Management (HASM) organizations. The Triad works together to design/evaluate/implement each phase of the SEE Program.

  10. Characterizing mineral dusts and other aerosols from the Middle East--Part 1: ambient sampling.

    PubMed

    Engelbrecht, Johann P; McDonald, Eric V; Gillies, John A; Jayanty, R K M; Casuccio, Gary; Gertler, Alan W

    2009-02-01

    The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected over a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). Three collocated low-volume particulate samplers, one each for the total suspended particulate matter, < 10 micro m in aerodynamic diameter (PM(10)) particulate matter, and < 2.5 micro m in aerodynamic diameter (PM(2.5)) particulate matter, were deployed at each of the 15 sites, operating on a '1 in 6' day sampling schedule. Trace-element analysis was performed to measure levels of potentially harmful metals, while major-element and ion-chemistry analyses provided an estimate of mineral components. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze the chemical composition of small individual particles. Secondary electron images provided information on particle size and shape. This study shows the three main air pollutant types to be geological dust, smoke from burn pits, and heavy metal condensates (possibly from metals smelting and battery manufacturing facilities). Non-dust storm events resulted in elevated trace metal concentrations in Baghdad, Balad, and Taji in Iraq. Scanning-electron-microscopy secondary electron images of individual particles revealed no evidence of freshly fractured quartz grains. In all instances, quartz grains had rounded edges and mineral grains were generally coated by clay minerals and iron oxides.

  11. WIPP waste characterization program sampling and analysis guidance manual

    SciTech Connect

    Not Available

    1991-01-01

    The Waste Isolation Pilot Plant (WIPP) Waste Characterization Program Sampling and Analysis Guidance Manual (Guidance Manual) provides a unified source of information on the sampling and analytical techniques that enable Department of Energy (DOE) facilities to comply with the requirements established in the current revision of the Quality Assurance Program Plan (QAPP) for the WIPP Experimental-Waste Characterization Program (the Program). This Guidance Manual includes all of the sampling and testing methodologies accepted by the WIPP Project Office (DOE/WPO) for use in implementing the Program requirements specified in the QAPP. This includes methods for characterizing representative samples of transuranic (TRU) wastes at DOE generator sites with respect to the gas generation controlling variables defined in the WIPP bin-scale and alcove test plans, as well as waste container headspace gas sampling and analytical procedures to support waste characterization requirements under the WIPP test program and the Resource Conservation and Recovery Act (RCRA). The procedures in this Guidance Manual are comprehensive and detailed and are designed to provide the necessary guidance for the preparation of site specific procedures. The use of these procedures is intended to provide the necessary sensitivity, specificity, precision, and comparability of analyses and test results. The solutions to achieving specific program objectives will depend upon facility constraints, compliance with DOE Orders and DOE facilities' operating contractor requirements, and the knowledge and experience of the TRU waste handlers and analysts. With some analytical methods, such as gas chromatography/mass spectrometry, the Guidance Manual procedures may be used directly. With other methods, such as nondestructive/destructive characterization, the Guidance Manual provides guidance rather than a step-by-step procedure.

  12. ORGANIC MOLECULAR MARKER ANALYSIS OF LOW VOLUME RESIDENTIAL SAMPLES FOR SOURCE APPORTIONMENT IN THE DETROIT EXPOSURE AND AEROSOL RESEARCH STUDY

    EPA Science Inventory

    This abstract describes a poster on results for organic speciation analysis for Detroit Exposure and Aerosol Research Study (DEARS) to be presented at the 2006 International Aerosol Conference sponsored by the American Association for Aerosol Research in St. Paul, Minnesota on Se...

  13. 50 CFR 222.404 - Observer program sampling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 10 2013-10-01 2013-10-01 false Observer program sampling. 222.404 Section 222.404 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS GENERAL ENDANGERED AND THREATENED MARINE SPECIES...

  14. 50 CFR 222.404 - Observer program sampling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Observer program sampling. 222.404 Section 222.404 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS GENERAL ENDANGERED AND THREATENED MARINE SPECIES...

  15. 50 CFR 222.404 - Observer program sampling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 10 2014-10-01 2014-10-01 false Observer program sampling. 222.404 Section 222.404 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS GENERAL ENDANGERED AND THREATENED MARINE SPECIES...

  16. 50 CFR 222.404 - Observer program sampling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 50 Wildlife and Fisheries 10 2012-10-01 2012-10-01 false Observer program sampling. 222.404 Section 222.404 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS GENERAL ENDANGERED AND THREATENED MARINE SPECIES...

  17. 50 CFR 222.404 - Observer program sampling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Observer program sampling. 222.404 Section 222.404 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE MARINE MAMMALS GENERAL ENDANGERED AND THREATENED MARINE SPECIES...

  18. TRU Waste Sampling Program: Volume I. Waste characterization

    SciTech Connect

    Clements, T.L. Jr.; Kudera, D.E.

    1985-09-01

    Volume I of the TRU Waste Sampling Program report presents the waste characterization information obtained from sampling and characterizing various aged transuranic waste retrieved from storage at the Idaho National Engineering Laboratory and the Los Alamos National Laboratory. The data contained in this report include the results of gas sampling and gas generation, radiographic examinations, waste visual examination results, and waste compliance with the Waste Isolation Pilot Plant-Waste Acceptance Criteria (WIPP-WAC). A separate report, Volume II, contains data from the gas generation studies.

  19. Extending cluster lot quality assurance sampling designs for surveillance programs.

    PubMed

    Hund, Lauren; Pagano, Marcello

    2014-07-20

    Lot quality assurance sampling (LQAS) has a long history of applications in industrial quality control. LQAS is frequently used for rapid surveillance in global health settings, with areas classified as poor or acceptable performance on the basis of the binary classification of an indicator. Historically, LQAS surveys have relied on simple random samples from the population; however, implementing two-stage cluster designs for surveillance sampling is often more cost-effective than simple random sampling. By applying survey sampling results to the binary classification procedure, we develop a simple and flexible nonparametric procedure to incorporate clustering effects into the LQAS sample design to appropriately inflate the sample size, accommodating finite numbers of clusters in the population when relevant. We use this framework to then discuss principled selection of survey design parameters in longitudinal surveillance programs. We apply this framework to design surveys to detect rises in malnutrition prevalence in nutrition surveillance programs in Kenya and South Sudan, accounting for clustering within villages. By combining historical information with data from previous surveys, we design surveys to detect spikes in the childhood malnutrition rate.

  20. Guidelines for the aerosol climatic effects special study: An element of the NASA climate research program

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Research to help develop better understanding of the role of aerosols in the Earth's radiative balance is summarized. Natural volcanic injections of aerosols into the stratosphere to understand and model any resultant evidence of climate change are considered. The approach involves: (1) measurements from aircraft, balloon and ground based platforms which complement and enhance the aerosol information derived from satellite data; (2) development of instruments required for some of these measurements; (3) theoretical and laboratory work to aid in interpreting and utilizing space based and in situ data; and (4) preparation for and execution of concentrated observations of stratospheric aerosols following a future large volcanic eruption.

  1. The french involvement in Mars sample return program

    NASA Astrophysics Data System (ADS)

    Counil, J.; Bonneville, R.; Rocard, F.

    The French scientific community is involved in planetary exploration for more than thirty years, at the beginning mainly in cooperation with the former USSR (e.g. missions Phobos 1 and 2 in the 80's), then through ESA (Mars - Express). In 97, following the success of the US Pathfinder mission, NASA proposed to CNES to participate to the first Mars Sample Return (MSR) mission. This idea created a tremendous excitation in the French scientific community and CNES took the decision to contribute to the MSR program. Conscious that only the very best laboratories will be selected to analyse Mars samples, the French ministry of Research has created in May 99, the CSEEM (Comité Scientifique pour l'Etude des Echantillons Martiens). This Committee mandated to coordinate the national endeavour, has released late 99 an AO aimed at implementing a national preparatory program to Mars samples analysis. More than 40 proposals have been submitted involving more than 450 scientists from around 60 French labs. Most of these proposals are interdisciplinarity jointly submitted by planetologists, mineralogists, geochemists, astrobiologists and biologists. The first stage of this preparatory program is on going and will last until mid-2003. Amongst the priorities of the preparatory program are development of dedicated instrumentation, capability of analysing as small as possible samples, measurements integration; rock-macromolecule interaction; bacteria behaviour under Martian conditions; sample transportation under quarantine conditions, etc In the late 90's, the French participation to the NASA led 2003-2005 MSR mission was mainly consisting in a sample return orbiter to be launched by an Ariane V rocket. This contribution to MSR was one of the two priorities of the CNES Mars Exploration Program named PREMIER together with the NetLander network. Unfortunately late 99, due the failure of the two NASA missions MPL and MCO, a rearchitecture of the program has been decided and the first

  2. Observations Of Cosmogenic 7Be and 22Na In Aerosol Samples in Northern Finland

    NASA Astrophysics Data System (ADS)

    Leppänen, Ari-Pekka; Grinsted, Aslak

    2008-08-01

    Radiation and Nuclear Safety Authority-STUK monitors the amount of airborne radioactivity with three aerosol samplers in Northern Finland. Naturally occurring radioactive nuclei 7Be and 22Na can be seen. A time series was constructed for both nuclei observed at Rovaniemi (lat 66,3° N long 25,4° E). The most consistent time series was found to be from Ivalo (lat 68,64° N long 27,57° E). The time series of 7Be and 22Na were compared and the ratio was plotted. A time series analysis was performed for Ivalo time series to find periodicities. Two periodicities longer than one year was found 4,3 years and 11 years, also 3 periodicities shorter than one years was found 1,7 months, 4 months and 6 months. The annual average 7Be activities at Rovaniemi and Ivalo were also compared with the annual galactic cosmic ray intensity observed with neutron monitor at Oulu (65.05°N, 25.47°E) by Sodankylä Geophysical Observatory.

  3. Sampling strategies and post-processing methods for increasing the time resolution of organic aerosol measurements requiring long sample-collection times

    NASA Astrophysics Data System (ADS)

    Modini, Rob L.; Takahama, Satoshi

    2016-07-01

    The composition and properties of atmospheric organic aerosols (OAs) change on timescales of minutes to hours. However, some important OA characterization techniques typically require greater than a few hours of sample-collection time (e.g., Fourier transform infrared (FTIR) spectroscopy). In this study we have performed numerical modeling to investigate and compare sample-collection strategies and post-processing methods for increasing the time resolution of OA measurements requiring long sample-collection times. Specifically, we modeled the measurement of hydrocarbon-like OA (HOA) and oxygenated OA (OOA) concentrations at a polluted urban site in Mexico City, and investigated how to construct hourly resolved time series from samples collected for 4, 6, and 8 h. We modeled two sampling strategies - sequential and staggered sampling - and a range of post-processing methods including interpolation and deconvolution. The results indicated that relative to the more sophisticated and costly staggered sampling methods, linear interpolation between sequential measurements is a surprisingly effective method for increasing time resolution. Additional error can be added to a time series constructed in this manner if a suboptimal sequential sampling schedule is chosen. Staggering measurements is one way to avoid this effect. There is little to be gained from deconvolving staggered measurements, except at very low values of random measurement error (< 5 %). Assuming 20 % random measurement error, one can expect average recovery errors of 1.33-2.81 µg m-3 when using 4-8 h-long sequential and staggered samples to measure time series of concentration values ranging from 0.13-29.16 µg m-3. For 4 h samples, 19-47 % of this total error can be attributed to the process of increasing time resolution alone, depending on the method used, meaning that measurement precision would only be improved by 0.30-0.75 µg m-3 if samples could be collected over 1 h instead of 4 h. Devising a

  4. Comparison of Computer Programs Which Compute Sampling Errors for Complex Samples. Technical Report 26.

    ERIC Educational Resources Information Center

    Brandt, David A.

    This report describes and evaluates the major computer software packages capable of computing standard errors for statistics estimated from complex samples. It first describes the problem and the proposed solutions. The two major programs presently available, SUPER CARP and OSIRIS, are described in general terms. The kinds of statistics available…

  5. How We Can Constrain Aerosol Type Globally

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2016-01-01

    In addition to aerosol number concentration, aerosol size and composition are essential attributes needed to adequately represent aerosol-cloud interactions (ACI) in models. As the nature of ACI varies enormously with environmental conditions, global-scale constraints on particle properties are indicated. And although advanced satellite remote-sensing instruments can provide categorical aerosol-type classification globally, detailed particle microphysical properties are unobtainable from space with currently available or planned technologies. For the foreseeable future, only in situ measurements can constrain particle properties at the level-of-detail required for ACI, as well as to reduce uncertainties in regional-to-global-scale direct aerosol radiative forcing (DARF). The limitation of in situ measurements for this application is sampling. However, there is a simplifying factor: for a given aerosol source, in a given season, particle microphysical properties tend to be repeatable, even if the amount varies from day-to-day and year-to-year, because the physical nature of the particles is determined primarily by the regional environment. So, if the PDFs of particle properties from major aerosol sources can be adequately characterized, they can be used to add the missing microphysical detail the better sampled satellite aerosol-type maps. This calls for Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM). We are defining a relatively modest and readily deployable, operational aircraft payload capable of measuring key aerosol absorption, scattering, and chemical properties in situ, and a program for characterizing statistically these properties for the major aerosol air mass types, at a level-of-detail unobtainable from space. It is aimed at: (1) enhancing satellite aerosol-type retrieval products with better aerosol climatology assumptions, and (2) improving the translation between satellite-retrieved aerosol optical properties and

  6. Use of single particle aerosol mass spectrometry for the automated nondestructive identification of drugs in multicomponent samples.

    PubMed

    Martin, Audrey N; Farquar, George R; Steele, Paul T; Jones, A Daniel; Frank, Matthias

    2009-11-15

    In this work, single particle aerosol mass spectrometry (SPAMS) was used to identify the active drug ingredients in samples of multicomponent over-the-counter (OTC) drug tablets with minimal damage to the tablets. OTC drug tablets in various formulations were analyzed including single active ingredient tablets and multi-ingredient tablets. Using a sampling apparatus developed in-house, micrometer-sized particles were simultaneously dislodged from tablets and introduced to the SPAMS, where dual-polarity mass spectra were obtained from individual particles. Active ingredients were identified from the parent ions and fragment ions formed from each sample, and alarm files were developed for each active ingredient, allowing successful automated identification of each compound in a mixture. The alarm algorithm developed for SPAMS correctly identified all drug compounds in all single-ingredient and multi-ingredient tablets studied. A further study demonstrated the ability of this technique to identify the active ingredient in a single tablet analyzed in the presence of several other nonidentical tablets. In situ measurements were also made by sampling directly from a drug sample in its original bottle. A single tablet embedded in 11 identical tablets of different composition was detected in this manner. Overall, this work demonstrates the ability of the SPAMS technique to detect a target drug compound both in complex tablets, i.e., multidrug ingredient tablets, and complex sampling environments, i.e., multitablet sampling sources. The technique is practically nondestructive, leaving the characteristic shape, color, and imprint of a tablet intact for further analysis. Applications of this technique may include forensic and pharmaceutical analysis.

  7. Improved measurement of carbonaceous aerosol in Beijing, China: intercomparison of sampling and thermal-optical analysis methods

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; He, K. B.; Duan, F. K.; Zheng, M.; Ma, Y. L.; Tan, J. H.; Du, Z. Y.

    2010-06-01

    The sampling artifacts (both positive and negative) and the influence of thermal-optical methods (both charring correction method and the peak inert mode temperature) on the split of organic carbon (OC) and elemental carbon (EC) were evaluated in Beijing. The positive sampling artifact constituted 10% and 23% of OC concentration determined by the bare quartz filter during winter and summer, respectively. For summer samples, the adsorbed gaseous organics were found to continuously evolve off the filter during the whole inert mode when analyzed by the IMPROVE-A temperature protocol. This may be due to the oxidation of the adsorbed organics during sampling (reaction artifact) which would increase their thermal stability. The backup quartz approach was evaluated by a denuder-based method for assessing the positive artifact. The quartz-quartz (QBQ) in series method was demonstrated to be reliable, since all of the OC collected by QBQ was from originally gaseous organics. Negative artifact that could be adsorbed by quartz filter was negligible. When the activated carbon impregnated glass fiber (CIG) filter was used as the denuded backup filter, the denuder efficiency for removing gaseous organics that could be adsorbed by the CIG filter was only about 30%. EC values were found to differ by a factor of about two depending on the charring correction method. Influence of the peak inert mode temperature was evaluated based on the summer samples. The EC value was found to continuously decrease with the peak inert mode temperature. Premature evolution of light absorbing carbon began when the peak inert mode temperature was increased from 580 to 650 °C; when further increased to 800 °C, the OC and EC split frequently occurred in the He mode, and the last OC peak was characterized by the overlapping of two separate peaks. The discrepancy between EC values defined by different temperature protocols was larger for Beijing carbonaceous aerosol compared with North America and

  8. Development of a sampling method for carbonyl compounds released due to the use of electronic cigarettes and quantitation of their conversion from liquid to aerosol.

    PubMed

    Jo, Sang-Hee; Kim, Ki-Hyun

    2016-01-15

    In this study, an experimental method for the collection and analysis of carbonyl compounds (CCs) released due to the use of electronic cigarettes (e-cigarettes or ECs) was developed and validated through a series of laboratory experiments. As part of this work, the conversion of CCs from a refill solution (e-solution) to aerosol also was investigated based on mass change tracking (MCT) approach. Aerosol samples generated from an e-cigarette were collected manually using 2,4-dinitrophenylhydrazine (DNPH) cartridges at a constant sampling (puffing) velocity of 1 L min(-1) with the following puff conditions: puff duration (2s), interpuff interval (10s), and puff number (5, 10, and 15 times). The MCT approach allowed us to improve the sampling of CCs through critical evaluation of the puff conditions in relation to the consumed quantities of refill solution. The emission concentrations of CCs remained constant when e-cigarettes were sampled at or above 10 puff. Upon aerosolization, the concentrations of formaldehyde and acetaldehyde increased 6.23- and 58.4-fold, respectively, relative to their concentrations in e-solution. Furthermore, a number of CCs were found to be present in the aerosol samples which were not detected in the initial e-solution (e.g., acetone, butyraldehyde, and o-tolualdehyde).

  9. An evaluation of the "GGP" personal samplers under semi-volatile aerosols: sampling losses and their implication on occupational risk assessment.

    PubMed

    Dragan, George C; Breuer, Dietmar; Blaskowitz, Morten; Karg, Erwin; Schnelle-Kreis, Jürgen; Arteaga-Salas, Jose M; Nordsieck, Hermann; Zimmermann, Ralf

    2015-02-01

    Semi-volatile (SV) aerosols still represent an important challenge to occupational hygienists due to toxicological and sampling issues. Particularly problematic is the sampling of hazardous SV that are present in both particulate and vapour phases at a workplace. In this study we investigate the potential evaporation losses of SV aerosols when using off-line filter-adsorber personal samplers. Furthermore, we provide experimental data showing the extent of the evaporation loss that can bias the workplace risk assessment. An experimental apparatus consisting of an aerosol generator, a flow tube and an aerosol monitoring and sampling system was set up inside a temperature controlled chamber. Aerosols from three n-alkanes were generated, diluted with nitrogen and sampled using on-line and off-line filter-adsorber methods. Parallel measurements using the on-line and off-line methods were conducted to quantify the bias induced by filter sampling. Additionally, two mineral oils of different volatility were spiked on filters and monitored for evaporation depending on the samplers flow rate. No significant differences between the on-line and off-line methods were detected for the sum of particles and vapour. The filter-adsorber method however tended to underestimate up to 100% of the particle mass, especially for the more volatile compounds and lower concentrations. The off-line sampling method systematically returned lower particle and higher vapour values, an indication for particle evaporation losses. We conclude that using only filter sampling for the assessment of semi-volatiles may considerably underestimate the presence of the particulate phase due to evaporation. Thus, this underestimation can have a negative impact on the occupational risk assessment if the evaporated particle mass is no longer quantified.

  10. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  11. Skylab program payload integration. TO27 sample array

    NASA Technical Reports Server (NTRS)

    Muscari, J. A.; Westcott, P. A.

    1974-01-01

    The objective of the TO27 sample array was to determine the change in optical properties of various transmissive windows, mirrors, and diffraction gratings caused by the deposition of contaminants found about the orbital assembly. The expected information to be obtained from the total TO27 sample array program is as follows: (1) effect of space contaminants on transmittance, reflectance, grating efficiency, and polarization; (2) variations in deposition of contaminants due to substrate, solar radiation, period of exposure, direction of exposure, and geometry effects; (3) identification of contaminants and source of evolution; (4) time of contaminant evolution and lingering time; and (5) guidelines for a model of spacecraft contamination.

  12. Ozone measurement system for NASA global air sampling program

    NASA Technical Reports Server (NTRS)

    Tiefermann, M. W.

    1979-01-01

    The ozone measurement system used in the NASA Global Air Sampling Program is described. The system uses a commercially available ozone concentration monitor that was modified and repackaged so as to operate unattended in an aircraft environment. The modifications required for aircraft use are described along with the calibration techniques, the measurement of ozone loss in the sample lines, and the operating procedures that were developed for use in the program. Based on calibrations with JPL's 5-meter ultraviolet photometer, all previously published GASP ozone data are biased high by 9 percent. A system error analysis showed that the total system measurement random error is from 3 to 8 percent of reading (depending on the pump diaphragm material) or 3 ppbv, whichever are greater.

  13. Calibration of laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for the quantitative analysis of solid samples

    SciTech Connect

    Leach, James

    1999-02-12

    Inductively coupled plasma mass spectrometry (ICP-MS) has become the method of choice for elemental and isotopic analysis. Several factors contribute to its success. Modern instruments are capable of routine analysis at part per trillion levels with relative detection limits in part per quadrillion levels. Sensitivities in these instruments can be as high as 200 million counts per second per part per million with linear dynamic ranges up to eight orders of magnitude. With standards for only a few elements, rapid semiquantitative analysis of over 70 elements in an individual sample can be performed. Less than 20 years after its inception ICP-MS has shown to be applicable to several areas of science. These include geochemistry, the nuclear industry, environmental chemistry, clinical chemistry, the semiconductor industry, and forensic chemistry. In this introduction, the general attributes of ICP-MS will be discussed in terms of instrumentation and sample introduction. The advantages and disadvantages of current systems are presented. A detailed description of one method of sample introduction, laser ablation, is given. The paper also gives conclusions and suggestions for future work. Chapter 2, Quantitative analysis of solids by laser ablation inductively coupled plasma mass spectrometry using dried solution aerosols for calibration, has been removed for separate processing.

  14. Formaldehyde monitoring program: development of sampling and analysis procedures

    SciTech Connect

    Matthews, T. G.; Hawthorne, A. R.

    1980-01-01

    This report outlines the scope and goals of the formaldehyde analysis program being carried out in Health and Safety Research Division of the Oak Ridge National Laboratory under contract of the US Consumer Product Safety Commission. The outline of the sampling and analysis techniques under consideration, with reference to a time frame for developmental work and field application, is discussed. The complexity of the different techniques is addressed in instances where technical staff would be requird for accurate operation of the instrumentation.

  15. Characterization of radicals and high-molecular weight species from alpha-pinene/ozone reaction and ambient aerosol samples

    NASA Astrophysics Data System (ADS)

    Pavlovic, Jelica

    Secondary organic aerosol formed during oxidation of different volatile organic compounds is composed from a number of final and intermediate reaction products. The final products include compounds in both low and high molecular weight range called also oligomer species. These compounds can be highly volatile, as well as being semi- or low-volatility compounds. This study characterized intermediate reactive radical products formed from previously often studied alpha-pinene/ozone reaction. In order to passivate those radical species nitrone spin traps were used. 5,5-dimethyl-4,5-dihydro-3H-pyrrole-N-oxide (DMPO), and 5-dietoxyphosphoryl-5-methyl-1-pyrroline-N-oxide (DEPMPO) traps were able to successfully trap oxygen- and carbon-centered radicals produced from alpha-pinene/ozone reaction. Electrospray ionization (ESI) in negative ion mode with mass spectrometry (MS) detection was used to scan spectra of formed spin trap adducts and the tandem mass spectrometry (MSn) to elucidate its structures as well as structures of captured radicals. The same method was applied to analyze radical species present in ambient PM2.5 samples. Few carbon- (alkyl) and oxygen- (alkoxyl) centered radicals were captured with DMPO and DEPMPO traps. The second part of this study was focused on high molecular weight (high-MW) species formed from the same reaction (alpha-pinene/ozone), but found also in fine particulate matter fractions of ambient samples. LC/MS/MS analysis of dimer species from chamber study revealed fragments that can originate from peroxide structures. Proposed reaction for these peroxide dimer formation is self reaction of two peroxyl radicals, followed by the loss of oxygen molecule. These findings emphasize the role of peroxyl (ROO) radicals in formation of high-MW products and are in line with the high O:C ratio results reported in other studies. Water soluble organic carbon (WSOC) extracts of three size fractions of the ambient aerosol, PM1--2.5, PM0.1--1, and PM<0

  16. FIELD EVALUATION OF A SAMPLING APPROACH FOR PM-COARSE AEROSOLS

    EPA Science Inventory

    Subsequent to a 1997 revision of the national ambient air quality standards (NAAQS) for particulate matter (PM), the US Environmental Protection Agency is investigating the development of sampling methodology for a possible new coarse particle standard. When developed, this me...

  17. Modeling of Aerosols in Post-Combustor Flow Path and Sampling System

    NASA Technical Reports Server (NTRS)

    Wey, Thomas; Liu, Nan-Suey

    2006-01-01

    The development and application of a multi-dimensional capability for modeling and simulation of aviation-sourced particle emissions and their precursors are elucidated. Current focus is on the role of the flow and thermal environments. The cases investigated include a film cooled turbine blade, the first-stage of a high-pressure turbine, the sampling probes, the sampling lines, and a pressure reduction chamber.

  18. EML Surface Air Sampling Program, 1990--1993 data

    SciTech Connect

    Larsen, R.J.; Sanderson, C.G.; Kada, J.

    1995-11-01

    Measurements of the concentrations of specific atmospheric radionuclides in air filter samples collected for the Environmental Measurements Laboratory`s Surface Air Sampling Program (SASP) during 1990--1993, with the exception of April 1993, indicate that anthropogenic radionuclides, in both hemispheres, were at or below the lower limits of detection for the sampling and analytical techniques that were used to collect and measure them. The occasional detection of {sup 137}Cs in some air filter samples may have resulted from resuspension of previously deposited debris. Following the April 6, 1993 accident and release of radionuclides into the atmosphere at a reprocessing plant in the Tomsk-7 military nuclear complex located 16 km north of the Siberian city of Tomsk, Russia, weekly air filter samples from Barrow, Alaska; Thule, Greenland and Moosonee, Canada were selected for special analyses. The naturally occurring radioisotopes that the authors measure, {sup 7}Be and {sup 210}Pb, continue to be detected in most air filter samples. Variations in the annual mean concentrations of {sup 7}Be at many of the sites appear to result primarily from changes in the atmospheric production rate of this cosmogenic radionuclide. Short-term variations in the concentrations of {sup 7}Be and {sup 210}Pb continued to be observed at many sites at which weekly air filter samples were analyzed. The monthly gross gamma-ray activity and the monthly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb measured at sampling sites in SASP during 1990--1993 are presented. The weekly mean surface air concentrations of {sup 7}Be, {sup 95}Zr, {sup 137}Cs, {sup 144}Ce, and {sup 210}Pb for samples collected during 1990--1993 are given for 17 sites.

  19. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  20. Dry sampling of gas-phase isocyanates and isocyanate aerosols from thermal degradation of polyurethane.

    PubMed

    Gylestam, Daniel; Riddar, Jakob B; Karlsson, Daniel; Dahlin, Jakob; Dalene, Marianne; Skarping, Gunnar

    2014-01-01

    The performance of a dry sampler, with an impregnated denuder in series with a glass fibre filter, using di-n-butylamine (DBA) for airborne isocyanates (200ml min(-1)) is investigated and compared with an impinger flask with a glass fibre filter in series (1 l min(-1)). An exposure chamber containing 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), and 2,4- and 2,6-toluene diisocyanate (TDI) in the concentration range of 5-205 μg m(-3) [0.7-33 p.p.b.; relative humidity (RH) 50%], generated by gas- and liquid-phase permeation, was used for the investigation. The precision for the dry sampling for five series with eight samplers were in the range of 2.0-6.1% with an average of 3.8%. During 120-min sampling (n = 4), no breakthrough was observed when analysing samplers in series. Sixty-four exposed samplers were analysed after storage for 0, 7, 14, and 21 days. No breakdown of isocyanate derivatives was observed. Twenty-eight samplers in groups of eight were collecting isocyanates during 0.5-32h. Virtually linear relationships were obtained with regard to sampling time and collected isocyanates with correlation coefficients in the range of 0.998-0.999 with the intercept close to the origin. Pre- or post-exposure to ambient air did not affect the result. Dry sampling (n = 48) with impinger-filter sampling (n = 48) of thermal decomposition product of polyurethane polymers, at RH 20, 40, 60, and 90%, was compared for 11 isocyanate compounds. The ratio between the different isocyanates collected with dry samplers and impinger-filter samplers was in the range of 0.80-1.14 for RH = 20%, 0.8-1.25 for RH = 40%, 0.76-1.4 for RH = 60%, and 0.72-3.7 for RH = 90%. Taking into account experimental errors, it seems clear that isocyanic acid DBA derivatives are found at higher levels in the dry samples compared with impinger-filter samplers at elevated humidity. The dry sampling using DBA as the reagent enables easy and robust sampling without the need of field

  1. Aerosols and Particulates Workshop Sampling Procedures and Venues Working Group Summary

    NASA Technical Reports Server (NTRS)

    Pachlhofer, Peter; Howard, Robert

    1999-01-01

    The Sampling Procedures and Venues Workgroup discussed the potential venues available and issues associated with obtaining measurements. Some of the issues included Incoming Air Quality, Sampling Locations, Probes and Sample Systems. The following is a summary of the discussion of the issues and venues. The influence of inlet air to the measurement of exhaust species, especially trace chemical species, must be considered. Analysis procedures for current engine exhaust emissions regulatory measurements require adjustments for air inlet humidity. As a matter of course in scientific investigations, it is recommended that "background" measurements for any species, particulate or chemical, be performed during inlet air flow before initiation of combustion, if possible, and during the engine test period as feasible and practical. For current regulatory measurements, this would be equivalent to setting the "zero" level for conventional gas analyzers. As a minimum, it is recommended that measurements of the humidity and particulates in the incoming air be taken at the start and end of each test run. Additional measurement points taken during the run are desirable if they can be practically obtained. It was felt that the presence of trace gases in the incoming air is not a significant problem. However, investigators should consider the ambient levels and influences of local air pollution for species of interest. Desired measurement locations depend upon the investigation requirements. A complete investigation of phenomenology of particulate formation and growth requires measurements at a number of locations both within the engine and in the exhaust field downstream of the nozzle exit plane. Desirable locations for both extractive and in situ measurements include: (1) Combustion Zone (Multiple axial locations); (2) Combustor Exit (Multiple radial locations for annular combustors); (3) Turbine Stage (Inlet and exit of the stage); (4) Exit Nozzle (Multiple axial locations

  2. Factors to Consider in Designing Aerosol Inlet Systems for Engine Exhaust Plume Sampling

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce

    2004-01-01

    This document consists of viewgraphs of charts and diagrams of considerations to take when sampling the engine exhaust plume. It includes a chart that compares the emissions from various fuels, a diagram and charts of the various processes and conditions that influence the particulate size and concentration,

  3. Aerosolization as a Means of Sample Preparation of Geological Materials for XRF Analysis and its Validity Compared to EPA Method 3050A Digestion.

    PubMed

    Sarver, Richard H

    1996-03-01

    A sample preparation method has been developed in which a powder may be aerosolized and collected onto filter media in the form of a uniform layer of participate matter similar to the EPA Total Suspended Particulate (TSP) aerodynamic diameter. Samples of dusts and powders as small as 100 mg may be prepared for metals analysis by XRF with this method. The method is also applicable to the preparation of samples such as ores, soils, sediments, etc., which may be ground to pass through a #400 Tyler equivalent sieve (37 um geometric diameter) prior to aerosolization. Samples prepared in this manner present a representative aliquot with minimal matrix interferences to the XRF instrument for elements with atomic number as low as 13 (aluminum). This method is equivalent to EPA's Method 3050A digestion and subsequent analysis by either ICP or GFAA for many analytes, while other species (notably Cr) are not as favorable in comparison.

  4. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 4 TANK 21H QUALIFICATION SAMPLES

    SciTech Connect

    Peters, T.; Fink, S.

    2011-06-22

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H to qualify them for use in the Integrated Salt Disposition Program (ISDP) Batch 4 processing. All sample results agree with expectations based on prior analyses where available. No issues with the projected Salt Batch 4 strategy are identified. This revision includes additional data points that were not available in the original issue of the document, such as additional plutonium results, the results of the monosodium titanate (MST) sorption test and the extraction, scrub strip (ESS) test. This report covers the revision to the Tank 21H qualification sample results for Macrobatch (Salt Batch) 4 of the Integrated Salt Disposition Program (ISDP). A previous document covers initial characterization which includes results for a number of non-radiological analytes. These results were used to perform aluminum solubility modeling to determine the hydroxide needs for Salt Batch 4 to prevent the precipitation of solids. Sodium hydroxide was then added to Tank 21 and additional samples were pulled for the analyses discussed in this report. This work was specified by Task Technical Request and by Task Technical and Quality Assurance Plan (TTQAP).

  5. Comparison of Aerosol Properties Within and Above the ABL at the ARM Program's SGP Site

    SciTech Connect

    Monache, Luca Delle

    2002-05-01

    The goal of this thesis is to determine under what conditions, if any, measurements of aerosol properties made at the Earth's surface are representative of aerosol properties within the column of air above the surface. This thesis will use data from the Atmospheric Radiation Measurement (ARM) site at the Southern Great Plains (SGP) which is the only location in the world where ground-based and in situ airborne measurements are made on a routine basis. All flight legs in the one-year period from March 2000-March 2001 were categorized as either within or above the atmospheric boundary layer using an objective mixing height determination technique. The correlations between the aerosol properties measured at the surface and the measured within and above the ABL were then computed. The conclusion of this comparison is that the aerosol extensive and intensive properties measured at the surface are representative of values within the ABL, but not within the free atmosphere.

  6. Influence of sample composition on aerosol organic and black carbon determinations

    SciTech Connect

    Novakov, T.; Corrigan, C.E.

    1995-07-01

    In this paper we present results on characterization of filter-collected redwood (Sequoia sempevirens)-needle and eucalyptus smoke particles by thermal, optical, and solvent extraction methods. Our results demonstrate that organic and black carbon concentrations determined by thermal and optical methods are not only method dependent, but also critically influenced by the overall chemical composition of the samples. These conclusions are supported by the following: (1) the organic fraction of biomass smoke particles analyzed includes a component, ranging in concentration from about 6-20% of total carbon or from 16-30% of organic carbon, that is relatively non-volatile and has a combustion temperature close to that of black carbon; (2) presence of K or Na in biomass smoke samples lowers the combustion temperatures of this organic component and of black carbon, making their combustion properties indistinguishable; (3) about 20% of total organic material is nonvolatile when heated to 550{degrees}C in an inert atmosphere. Consequently, thermal methods that rely on a specific temperature to separate organic from black carbon may either underestimate or overestimate the black and organic carbon concentrations, depending on the amounts of Na and K and on the composition and concentration of organic material present in a sample. These analytical uncertainties and, under some conditions, absorption by organic material may contribute to the variability of empirically derived proportionality between light transmission through filter deposits and black carbon concentrations.

  7. Measurement of the Vertical Distribution of Aerosol by Globally Distributed MP Lidar Network Sites

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Starr, David OC. (Technical Monitor)

    2001-01-01

    The global distribution of aerosol has an important influence on climate through the scattering and absorption of shortwave radiation and through modification of cloud optical properties. Current satellite and other data already provide a great amount of information on aerosol distribution. However there are critical parameters that can only be obtained by active optical profiling. For aerosol, no passive technique can adequately resolve the height profile of aerosol. The aerosol height distribution is required for any model for aerosol transport and the height resolved radiative heating/cooling effect of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched by 2002. GLAS will provide global measurements of the height distribution of aerosol. The sampling will be limited by nadir only coverage. There is a need for local sites to address sampling, and accuracy factors. Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently six sites in operation and over a dozen planned. At all sites there are a complement of passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The aerosol measurements, retrievals and data products from the network sites will be discussed. The current and planned application of data to supplement satellite aerosol measurements is covered.

  8. The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles

    NASA Astrophysics Data System (ADS)

    Drinovec, Luka; Gregorič, Asta; Zotter, Peter; Wolf, Robert; Bruns, Emily Anne; Prévôt, André S. H.; Petit, Jean-Eudes; Favez, Olivier; Sciare, Jean; Arnold, Ian J.; Chakrabarty, Rajan K.; Moosmüller, Hans; Filep, Agnes; Močnik, Griša

    2017-03-01

    Black carbon is a primary aerosol tracer for high-temperature combustion emissions and can be used to characterize the time evolution of its sources. It is correlated with a decrease in public health and contributes to atmospheric warming. Black carbon measurements are usually conducted with absorption filter photometers, which are prone to several artifacts, including the filter-loading effect - a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the black carbon particle coating. We conducted field campaigns in contrasting environments to determine the influence of source characteristics, particle age and coating on the magnitude of the filter-loading effect. High-time-resolution measurements of the filter-loading parameter in filter absorption photometers show daily and seasonal variations of the effect. The variation is most pronounced in the near-infrared region, where the black carbon mass concentration is determined. During winter, the filter-loading parameter value increases with the absorption Ångström exponent. It is suggested that this effect is related to the size of the black carbon particle core as the wood burning (with higher values of the absorption Ångström exponent) produces soot particles with larger diameters. A reduction of the filter-loading effect is correlated with the availability of the coating material. As the coating of ambient aerosols is reduced or removed, the filter-loading parameter increases. Coatings composed of ammonium sulfate and secondary organics seem to be responsible for the variation of the loading effect. The potential source contribution function analysis shows that high values of the filter-loading parameter in the infrared are indicative of local pollution, whereas low values of the filter

  9. Aerosol distributions and an Arctic aerosol front during AGASP: Norwegian Arctic

    SciTech Connect

    Raatz, W.E.; Schnell, R.C.

    1984-05-01

    Vertical profiles of aerosol characteristics obtained near Svalbard, Norway, during the Arctic Gas and Aerosol Sampling Program (AGASP) indicate that high aerosol concentrations and strong visible haze were distributed throughout the troposphere. Layers of Arctic haze were observed in both dry air and moist air. A research flight on March 31, 1983, crossed a previously undocumented Arctic aerosol front structure. Condensation nucleus concentrations of 450 cm/sup -3/ within the polluted continental air mass south of the front decreased to 80 cm/sup -3/ within the clean Arctic air north of the front. Aerosols above the Aitken size range decreased one order of magnitude in both number and mass across this same air mass boundary.

  10. Determination of malic acid and other C4 dicarboxylic acids in atmospheric aerosol samples.

    PubMed

    Röhrl, Andreas; Lammel, Gerhard

    2002-03-01

    An ion chromatographic method was developed which is able to separate five unsubstituted and hydroxy C4 dicarboxylic acids, succinic, malic, tartaric, maleic and fumaric acid, besides the other unsubstituted C2-C5 dicarboxylic acids, oxalic, malonic and glutaric acids, as well as inorganic ions in samples extracted from atmospheric particulate matter. By the application of this method it was found for both rural and urban sites and for various types of air masses that in the summer-time malic acid is the most prominent C4 diacid (64 ng m(-3) by average), exceeding succinic acid concentration (28 ng m(-3) by average) considerably. In winter-time considerably less, a factor of 4-15, C4 acids occurred and succinic acid was more concentrated than malic acid. Tartaric, fumaric and maleic acids were less concentrated (5.1, 5.0 and 4.5 ng m(-3) by average, respectively). Tartaric acid was observed for the first time in ambient air. The results indicate that in particular anthropogenic sources are important for the precursors of succinic, maleic and fumaric acids. Biogenic sources seem to influence the occurrence of malic acid significantly.

  11. F -Discrepancy for Efficient Sampling in Approximate Dynamic Programming.

    PubMed

    Cervellera, Cristiano; Maccio, Danilo

    2016-07-01

    In this paper, we address the problem of generating efficient state sample points for the solution of continuous-state finite-horizon Markovian decision problems through approximate dynamic programming. It is known that the selection of sampling points at which the value function is observed is a key factor when such function is approximated by a model based on a finite number of evaluations. A standard approach consists in generating these points through a random or deterministic procedure, aiming at a balanced covering of the state space. Yet, this solution may not be efficient if the state trajectories are not uniformly distributed. Here, we propose to exploit F -discrepancy, a quantity that measures how closely a set of random points represents a probability distribution, and introduce an example of an algorithm based on such concept to automatically select point sets that are efficient with respect to the underlying Markovian process. An error analysis of the approximate solution is provided, showing how the proposed algorithm enables convergence under suitable regularity hypotheses. Then, simulation results are provided concerning an inventory forecasting test problem. The tests confirm in general the important role of F -discrepancy, and show how the proposed algorithm is able to yield better results than uniform sampling, using sets even 50 times smaller.

  12. Hourly elemental concentrations in PM2.5 aerosols sampled simultaneously at urban background and road site during SAPUSS - diurnal variations and PMF receptor modelling

    NASA Astrophysics Data System (ADS)

    Dall'Osto, M.; Querol, X.; Amato, F.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.

    2013-04-01

    Hourly-resolved aerosol chemical speciation data can be a highly powerful tool to determine the source origin of atmospheric pollutants in urban environments. Aerosol mass concentrations of seventeen elements (Na, Mg, Al, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Sr and Pb) were obtained by time (1 h) and size (PM2.5 particulate matter < 2.5 μm) resolved aerosol samples analysed by Particle Induced X-ray Emission (PIXE) measurements. In the Marie Curie European Union framework of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies), the approach used is the simultaneous sampling at two monitoring sites in Barcelona (Spain) during September-October 2010: an urban background site (UB) and a street canyon traffic road site (RS). Elements related to primary non-exhaust traffic emission (Fe, Cu), dust resuspension (Ca) and anthropogenic Cl were found enhanced at the RS, whereas industrial related trace metals (Zn, Pb, Mn) were found at higher concentrations at the more ventilated UB site. When receptor modelling was performed with positive matrix factorization (PMF), nine different aerosol sources were identified at both sites: three types of regional aerosols (regional sulphate (S) - 27%, biomass burning (K) - 5%, sea salt (Na-Mg) - 17%), three types of dust aerosols (soil dust (Al-Ti) - 17%, urban crustal dust (Ca) - 6%, and primary traffic non-exhaust brake dust (Fe-Cu) - 7%), and three types of industrial aerosol plumes-like events (shipping oil combustion (V-Ni) - 17%, industrial smelters (Zn-Mn) - 3%, and industrial combustion (Pb-Cl) - 5%, percentages presented are average source contributions to the total elemental mass measured). The validity of the PMF solution of the PIXE data is supported by very good correlations with external single particle mass spectrometry measurements. Some important conclusions can be drawn about the PM2.5 mass fraction simultaneously measured at the UB and RS sites: (1) the regional aerosol sources impact both

  13. Aerosol Property Comparison Within and Above the ABL at the ARM Program SGP Site

    SciTech Connect

    Monache, Luca Delle

    2002-05-01

    This thesis determines what, if any, measurements of aerosol properties made at the Earth surface are representative of those within the entire air column. Data from the Atmospheric Radiation Measurement site at the Southern Great Plains, the only location in the world where ground-based and in situ airborne measurements are routinely made. Flight legs during the one-year period from March 2000 were categorized as either within or above the atmospheric boundary layer (ABL) by use of an objective mixing height determination technique. Correlations between aerosol properties measured at the surface and those within and above the ABL were computed. Aerosol extensive and intensive properties measured at the surface were found representative of values within the ABL, but not of within the free atmosphere.

  14. Carbon monoxide measurement in the global atmospheric sampling program

    NASA Technical Reports Server (NTRS)

    Dudzinski, T. J.

    1979-01-01

    The carbon monoxide measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available infrared absorption analyzer. The modifications increased the sensitivity of the analyzer to 1 ppmv full scale, with a limit of detectability of 0.02 ppmv. Packaging was modified for automatic, unattended operation in an aircraft environment. The GASP system is described along with analyzer operation, calibration procedures, and measurement errors. Uncertainty of the CO measurement over a 2-year period ranged from + or - 3 to + or - 13 percent of reading, plus an error due to random fluctuation of the output signal + or - 3 to + or - 15 ppbv.

  15. Spent fuel sabotage test program, characterization of aerosol dispersal : technical review and analysis supplement.

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric Richard

    2009-07-01

    This project seeks to provide vital data required to assess the consequences of a terrorist attack on a spent fuel transportation cask. One such attack scenario involves the use of conical shaped charges (CSC), which are capable of damaging a spent fuel transportation cask. In the event of such an attack, the amount of radioactivity that may be released as respirable aerosols is not known with great certainty. Research to date has focused on measuring the aerosol release from single short surrogate fuel rodlets subjected to attack by a small CSC device in various aerosol chamber designs. The last series of three experiments tested surrogate fuel rodlets made with depleted uranium oxide ceramic pellets in a specially designed double chamber aerosol containment apparatus. This robust testing apparatus was designed to prevent any radioactive release and allow high level radioactive waste disposal of the entire apparatus following testing of actual spent fuel rodlets as proposed. DOE and Sandia reviews of the project to date identified a number of issues. The purpose of this supplemental report is to address and document the DOE review comments and to resolve the issues identified in the Sandia technical review.

  16. Annual cycle and temperature dependence of pinene oxidation products and other water-soluble organic compounds in coarse and fine aerosol samples

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Müller, L.; Winterhalter, R.; Moortgat, G. K.; Hoffmann, T.; Pöschl, U.

    2010-05-01

    Filter samples of fine and coarse particulate matter were collected over a period of one year and analyzed for water-soluble organic compounds, including the pinene oxidation products pinic acid, pinonic acid, 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA) and a variety of dicarboxylic acids (C5-C16) and nitrophenols. Seasonal variations and other characteristic features are discussed with regard to aerosol sources and sinks and data from other studies and regions. The ratios of adipic acid (C6) and phthalic acid (Ph) to azelaic acid (C9) indicate that the investigated aerosols samples were mainly influenced by biogenic sources. An Arrhenius-type correlation was found between the 3-MBTCA concentration and inverse temperature. Model calculations suggest that the temperature dependence is largely due to enhanced emissions and OH radical concentrations at elevated temperatures, whereas the influence of gas-particle partitioning appears to play a minor role. Enhanced ratios of pinic acid to 3-MBTCA indicate strong chemical aging of the investigated aerosols in summer and spring. Acknowledgment: The authors would like to thank M. Claeys for providing synthetic 3-methyl-1,2,3-butanetricarboxylic acid standards for LC-MS analysis and J. Fröhlich for providing filter samples and related information.

  17. Aerosol Transport Over Equatorial Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  18. Isotopic ratios of nitrate in aerosol samples from Mt. Lulin, a high-altitude station in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Guha, Tania; Lin, C. T.; Bhattacharya, S. K.; Mahajan, A. S.; Ou-Yang, Chang-Feng; Lan, Yi-Ping; Hsu, S. C.; Liang, Mao-Chang

    2017-04-01

    The importance of Asian countries towards increase of atmospheric pollutants is being examined critically in recent times. In this context, we carried out analysis of nitrates separated from aerosol samples collected during 2010 from Mt. Lulin (NOAA code: LLN), Taiwan, located at an altitude of 2 862 m above sea level. Large temporal variations are seen in δ15N, δ18O and Δ17O values of the nitrate, with day-to-day variations comparable to the seasonal amplitude. The δ15N values of nitrate are found to be higher in spring months (March-April; -1±3‰) and lower in summer (June-September; -5±3‰). Similarly, the δ18O (69 ± 15‰ versus 32 ± 13‰) and Δ17O (23 ± 5‰ versus 12 ± 4‰) values are higher in spring and lower in summer. The lowest δ18O value observed was 10.8‰. The higher values of δ15N in spring could be attributed to enhanced contribution from fossil fuel combustions, especially burning of coal in nearby Asian countries like China, with the resultant pollutants being brought to the Lulin station by long-range transport. An alternative explanation is the isotopic exchange reaction between N2O5 and HNO3 that elevates the δ15N value in nitrate. The oxygen isotope variability is explained by changes in contribution from two major pathways of nitrate formation from its precursor NOx molecules. During spring time, nitrate formation via the N2O5 pathway is dominant, resulting in higher values of both δ18O and Δ17O. In contrast, during summer, formation involving HO2/RO2 radicals becomes important, producing lower values of δ18O and Δ17O. A chemistry box model was used to study the nitrate formation pathways through oxidation of NO and NO2 via formation of NO2 and NO3-/HNO3. Both the model results and observations suggest that for the formation of NO2 from NO, the pathway via O3 is more active in spring, whereas in summer the pathway via HO2/RO2 radicals predominates. For the subsequent formation of NO3- and HNO3, the OH pathway is more

  19. Sample results from the Interim Salt Disposition Program Macrobatch 8 Tank 21H qualification samples

    SciTech Connect

    Peters, T. B.; Washington, II, A. L.

    2015-01-13

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 8 for the Interim Salt Disposition Program (ISDP). An Actinide Removal Process (ARP) and several Extraction-Scrub-Strip (ESS) tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). No issues with the projected Salt Batch 8 strategy are identified. A demonstration of the monosodium titanate (MST) (0.2 g/L) removal of strontium and actinides provided acceptable average decontamination factors for plutonium of 2.62 (4 hour) and 2.90 (8 hour); and average strontium decontamination factors of 21.7 (4 hour) and 21.3 (8 hour). These values are consistent with results from previous salt batch ARP tests. The two ESS tests also showed acceptable performance with extraction distribution ratios (D(Cs)) values of 52.5 and 50.4 for the Next Generation Solvent (NGS) blend (from MCU) and NGS (lab prepared), respectively. These values are consistent with results from previous salt batch ESS tests. Even though the performance is acceptable, SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed in order to improve our predictive capabilities for the ESS tests.

  20. Sample Results from the Interim Salt Disposition Program Macrobatch 8 Tank 21H Qualification Samples

    SciTech Connect

    Peters, T. B.; Washington, A. L.

    2015-01-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 8 for the Interim Salt Disposition Program (ISDP). An Actinide Removal Process (ARP) and several Extraction-Scrub- Strip (ESS) tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP and the Modular Caustic Side Solvent Extraction (CSSX) Unit (MCU). No issues with the projected Salt Batch 8 strategy are identified. A demonstration of the monosodium titanate (MST) (0.2 g/L) removal of strontium and actinides provided acceptable average decontamination factors for plutonium of 2.62 (4 hour) and 2.90 (8 hour); and average strontium decontamination factors of 21.7 (4 hour) and 21.3 (8 hour). These values are consistent with results from previous salt batch ARP tests. The two ESS tests also showed acceptable performance with extraction distribution ratios (D(Cs)) values of 52.5 and 50.4 for the Next Generation Solvent (NGS) blend (from MCU) and NGS (lab prepared), respectively. These values are consistent with results from previous salt batch ESS tests. Even though the performance is acceptable, SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed in order to improve our predictive capabilities for the ESS tests.

  1. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification Samples

    SciTech Connect

    Peters, T. B.; Washington, A. L. II

    2013-08-08

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 7 for the Interim Salt Disposition Program (ISDP). An ARP and several ESS tests were also performed. This document reports characterization data on the samples of Tank 21H as well as simulated performance of ARP/MCU. No issues with the projected Salt Batch 7 strategy are identified, other than the presence of visible quantities of dark colored solids. A demonstration of the monosodium titanate (0.2 g/L) removal of strontium and actinides provided acceptable 4 hour average decontamination factors for Pu and Sr of 3.22 and 18.4, respectively. The Four ESS tests also showed acceptable behavior with distribution ratios (D(Cs)) values of 15.96, 57.1, 58.6, and 65.6 for the MCU, cold blend, hot blend, and Next Generation Solvent (NGS), respectively. The predicted value for the MCU solvent was 13.2. Currently, there are no models that would allow a prediction of extraction behavior for the other three solvents. SRNL recommends that a model for predicting extraction behavior for cesium removal for the blended solvent and NGS be developed. While no outstanding issues were noted, the presence of solids in the samples should be investigated in future work. It is possible that the solids may represent a potential reservoir of material (such as potassium) that could have an impact on MCU performance if they were to dissolve back into the feed solution. This salt batch is intended to be the first batch to be processed through MCU entirely using the new NGS-MCU solvent.

  2. Comparative measurements of stratospheric particulate content by aircraft and ground-based lidar. [aerosol sampling and scattering data analysis

    NASA Technical Reports Server (NTRS)

    Viezee, W.; Russell, P. B.; Hake, R. D., Jr.

    1974-01-01

    The matching method of lidar data analysis is explained, and the results from two flights studying the stratospheric aerosol using lidar techniques are summarized and interpreted. Support is lent to the matching method of lidar data analysis by the results, but it is not yet apparent that the analysis technique leads to acceptable results on all nights in all seasons.

  3. Recent Rainfall and Aerosol Chemistry From Bermuda

    NASA Astrophysics Data System (ADS)

    Landing, W. M.; Shelley, R.; Kadko, D. C.

    2014-12-01

    This project was devoted to testing the use of Be-7 as a tracer for quantifying trace element fluxes from the atmosphere to the oceans. Rainfall and aerosol samples were collected between June 15, 2011 and July 27, 2013 at the Bermuda Institute of Ocean Sciences (BIOS) located near the eastern end of the island of Bermuda. Collectors were situated near ground level, clear of surrounding vegetation, at a meteorological monitoring station in front of the BIOS laboratory, about 10 m above sea level. This is a Bermuda Air Quality Program site used for ambient air quality monitoring. To quantify the atmospheric deposition of Be-7, plastic buckets were deployed for collection of fallout over ~3 week periods. Wet deposition was collected for trace element analysis using a specially modified "GEOTRACES" N-CON automated wet deposition collector. Aerosol samples were collected with a Tisch TE-5170V-BL high volume aerosol sampler, modified to collect 12 replicate samples on acid-washed 47mm diameter Whatman-41 filters, using procedures identical to those used for the US GEOTRACES aerosol program (Morton et al., 2013). Aerosol and rainfall samples were analyzed for total Na, Mg, Al, P, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Rb, Sr, Zr, Cd, Sb, Ba, La, Ce, Nd, Pb, Th, and U using ICPMS. Confirming earlier data from Bermuda, strong seasonality in rainfall and aerosol loading and chemistry was observed, particularly for aerosol and rainfall Fe concentrations when Saharan dust arrives in July/August with SE trajectories.

  4. Measurement assurance program for FTIR analyses of deuterium oxide samples

    SciTech Connect

    Johnson, S.R.; Clark, J.P.

    1997-01-01

    Analytical chemistry measurements require an installed criterion based assessment program to identify and control sources of error. This program should also gauge the uncertainty about the data. A self- assessment was performed of long established quality control practices against the characteristics of a comprehensive measurement assurance program. Opportunities for improvement were identified. This paper discusses the efforts to transform quality control practices into a complete measurement assurance program. The resulting program heightened the laboratory`s confidence in the data it generated, by providing real-time statistical information to control and determine measurement quality.

  5. PREFACE OF SPECIAL ISSUE OF AEROSOL SCIENCE AND TECHNOLOGY FOR PARTICULATE MATTER SUPERSITES PROGRAM AND RELATED STUDIES

    EPA Science Inventory

    This article is the preface or editors note to a dedicated issue of Aerosol Science and Technology, journal of the American Association for Aerosol Research. It includes a selection of scientific papers from the specialty conference entitled, "Particulate Matter Supersites ...

  6. Diurnal Variation and Spatial Distribution Effects on Sulfur Speciation in Aerosol Samples as Assessed by X-Ray Absorption Near-Edge Structure (XANES)

    PubMed Central

    Pongpiachan, Siwatt; Thumanu, Kanjana; Na Pattalung, Warangkana; Hirunyatrakul, Phoosak; Kittikoon, Itthipon; Ho, Kin Fai; Cao, Junji

    2012-01-01

    This paper focuses on providing new results relating to the impacts of Diurnal variation, Vertical distribution, and Emission source on sulfur K-edge XANES spectrum of aerosol samples. All aerosol samples used in the diurnal variation experiment were preserved using anoxic preservation stainless cylinders (APSCs) and pressure-controlled glove boxes (PCGBs), which were specially designed to prevent oxidation of the sulfur states in PM10. Further investigation of sulfur K-edge XANES spectra revealed that PM10 samples were dominated by S(VI), even when preserved in anoxic conditions. The “Emission source effect” on the sulfur oxidation state of PM10 was examined by comparing sulfur K-edge XANES spectra collected from various emission sources in southern Thailand, while “Vertical distribution effects” on the sulfur oxidation state of PM10 were made with samples collected from three different altitudes from rooftops of the highest buildings in three major cities in Thailand. The analytical results have demonstrated that neither “Emission source” nor “Vertical distribution” appreciably contribute to the characteristic fingerprint of sulfur K-edge XANES spectrum in PM10. PMID:22988545

  7. Development, evaluation and comparison of two independent sampling and analytical methods for ortho-phthalaldehyde vapors and condensation aerosols in air† ‡

    PubMed Central

    2015-01-01

    Two independent sampling and analytical methods for ortho-phthalaldehyde (OPA) in air have been developed, evaluated and compared (1) a reagent-coated solid sorbent HPLC-UV method and (2) an impinger-fluorescence method. In the first method, air sampling is conducted at 1.0 L min−1 with a sampler containing 350 mg of silica gel coated with 1 mg of acidified 2,4-dinitrophenylhydrazine (DNPH). After sampling, excess DNPH in ethyl acetate is added to the sampler prior to storage for 68 hours. The OPA-DNPH derivative is eluted with 4.0 mL of dimethyl sulfoxide (DMSO) for measurement by HPLC with a UV detector set at 3S5 nm. The estimated detection limit is 0.016 µg per sample or 0.067 µg m−3 (0.012 ppb) for a 240 L air sample. Recoveries of vapor spikes at levels of 1.2 to 6.2 µg were 96 to 101%. Recoveries of spikes as mixtures of vapor and condensation aerosols were 97 to 100%. In the second method, air sampling is conducted at 1.0 L mm−1 with a midget impinger containing 10 mL of DMSO solution containing N-acetyl-l-cysteine and ethylenediamine. The fluorescence reading is taken 80 min after the completion of air sampling. Since the time of taking the fluorescence reading is critical, the reading is taken with a portable fluorometer. The estimated detection limit is 0.024 µg per sample or 0.1 µg m−3 (0.018 ppb) for a 240 L air sample. Recoveries of OPA vapor spikes at levels of 1.4 to 5.0 µg per sample were 97 to 105%. Recoveries of spikes as mixtures of vapors and condensation aerosols were 95 to 99%. The collection efficiency for a mixture of vapor and condensation aerosol was 99.4%. The two methods were compared side-by-side in a generation system constructed for producing controlled atmospheres of OPA vapor in air. Average air concentrations of OPA vapor found by both methods agreed within ±10%. PMID:26346658

  8. Light Absorbing Aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  9. Aerosol measurements at the south pole during 1987. Data report

    SciTech Connect

    Bodhaine, B.A.; Harris, J.M.

    1992-11-01

    The Climate Monitoring and Diagnostics Laboratory (CMDL) of the National Oceanic and Atmospheric Administration (NOAA) operates an atmospheric monitoring observatory at Amundsen-Scott Station, South Pole. The aerosol measurement program consists of the continuous measurement of condensation nuclei (CN) concentration and aerosol scattering extinction coefficient. During 1987, a special aerosol experiment was conducted that included filter samples for subsequent analysis by the proton induced x-ray emission technique, diffusion battery measurements for size information in the sub-0.1 micrometer size range, and aerosol absorption measurements using an aethalometer. Surface and upper air meteorological data were also available. The purpose of the report is to present all of the aerosol data obtained during 1987.

  10. Environmental sampling and mud sampling program of CSDP (Continental Scientific Drilling Program) core hole VC-2B, Valles Caldera, New Mexico

    SciTech Connect

    Meeker, K.; Goff, F.; Gardner, J.N.; Trujillo, P.E.; Counce, D.

    1990-03-01

    An environmental sampling and drilling mud sampling program was conducted during the drilling operations of Continental Scientific Drilling Program (CSDP) core hole VC-2B, Valles caldera, New Mexico. A suite of four springs and creeks in the Sulphur Springs area were monitored on a regular basis to ensure that the VC-2B drilling program was having no environmental impact on water quality. In addition, a regional survey of springs in and around the Jemez Mountains was conducted to provide background data for the environmental monitoring. A drilling mud monitoring program was conducted during the operations to help identify major fluid entries in the core hole. 32 refs., 14 figs., 7 tabs.

  11. Proton induced γ-ray emission yields for the analysis of light elements in aerosol samples in an external beam set-up

    NASA Astrophysics Data System (ADS)

    Calzolai, G.; Chiari, M.; Lucarelli, F.; Nava, S.; Portarena, S.

    2010-05-01

    The PIXE technique is a reliable tool for the characterisation of thin aerosol samples, but it can underestimate the lightest measurable elements, like Na, Mg, Al, Si and P, owing to the absorption of their X-rays inside the sample. The PIGE technique is a valid help to determine corrections for such effect: in order to perform PIGE measurements relative to thin reference standards in an external beam set-up, we measured, at the external beam facility of the Tandetron accelerator of the LABEC laboratory in Florence, the γ-ray yields as a function of the proton beam energy for the reactions 19F(p,p'γ) 19F ( Eγ = 110 and 197 keV), 23Na(p,p'γ) 23Na ( Eγ = 440 keV) and 27Al(p,p'γ) 27Al ( Eγ = 843 and 1013 keV), in the proton energy range from 3 to 5 MeV. The measured yields are shown, and the determined most suitable energies for performing PIGE quantification of Na and Al are reported, together with the corresponding minimum detection limits (MDLs). The results of some test on PIGE accuracy and an evaluation of self-absorption effects in PIXE measurements on thin aerosol samples are also presented.

  12. NASA GES DISC Level 2 Aerosol Analysis and Visualization Services

    NASA Technical Reports Server (NTRS)

    Wei, Jennifer; Petrenko, Maksym; Ichoku, Charles; Yang, Wenli; Johnson, James; Zhao, Peisheng; Kempler, Steve

    2015-01-01

    Overview of NASA GES DISC Level 2 aerosol analysis and visualization services: DQViz (Data Quality Visualization)MAPSS (Multi-sensor Aerosol Products Sampling System), and MAPSS_Explorer (Multi-sensor Aerosol Products Sampling System Explorer).

  13. Corn blight review: Sampling model and ground data measurements program

    NASA Technical Reports Server (NTRS)

    Allen, R. D.

    1972-01-01

    The sampling plan involved the selection of the study area, determination of the flightline and segment sample design within the study area, and determination of a field sample design. Initial interview survey data consisting of crop species acreage and land use were collected. On all corn fields, additional information such as seed type, row direction, population, planting date, ect. were also collected. From this information, sample corn fields were selected to be observed through the growing season on a biweekly basis by county extension personnel.

  14. Investigation of dry powder inhaler (DPI) resistance and aerosol dispersion timing on emitted aerosol aerodynamic particle sizing by multistage cascade impactor when sampled volume is reduced from compendial value of 4 L.

    PubMed

    Mohammed, Hlack; Arp, Jan; Chambers, Frank; Copley, Mark; Glaab, Volker; Hammond, Mark; Solomon, Derek; Bradford, Kerry; Russell, Theresa; Sizer, Yvonne; Nichols, Steven C; Roberts, Daryl L; Shelton, Christopher; Greguletz, Roland; Mitchell, Jolyon P

    2014-10-01

    Compendial methods determining dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distribution (APSD) collect a 4-L air sample containing the aerosol bolus, where the flow, which propagates through the cascade impactor (CI) measurement system from the vacuum source, is used to actuate the inhaler. A previous article described outcomes with two CIs (Andersen eight-stage cascade impactor (ACI) and Next-Generation Pharmaceutical Impactor (NGI)) when the air sample volume was ≤4 L with moderate-resistance DPIs. This article extends that work, examining the hypothesis that DPI flow resistance may be a factor in determining outcomes. APSD measurements were made using the same CI systems with inhalers representing low and high flow resistance extremes (Cyclohaler® and HandiHaler® DPIs, respectively). The ratio of sample volume to internal dead space (normalized volume (V*)) was varied from 0.25 to 1.98 (NGI) and from 0.43 to 3.46 (ACI). Inhaler resistance was a contributing factor to the rate of bolus transfer; the higher resistance DPI completing bolus relocation to the NGI pre-separator via the inlet when V* was as small as 0.25, whereas only ca. 50% of the bolus mass was collected at this condition with the Cyclohaler® DPI. Size fractionation of the bolus from either DPI was completed within the ACI at smaller values of V* than within the NGI. Bolus transfer from the Cyclohaler® capsule and from the HandiHaler® to the ACI system were unaffected by the different flow rise time observed in the two different flow controller systems, and the effects the ACI-based on APSD measurements were marginal.

  15. Guidance for establishment and implementation of a national sample management program in support of EM environmental sampling and analysis activities

    SciTech Connect

    Not Available

    1994-02-18

    The role of the National Sample Management Program (NSMP) proposed by the Department of Energy`s Office of Environmental Management (EM) is to be a resource for EM programs and for local Field Sample Management Programs (FSMPs). It will be a source of information on sample analysis and data collection within the DOE complex. Therefore the NSMP`s primary role is to coordinate and function as a central repository for information collected from the FSMPs. An additional role of the NSMP is to monitor trends in data collected from the FSMPs over time and across sites and laboratories. Tracking these trends will allow identification of potential problems in the sampling and analysis process.

  16. On-Line Measurements of Beryllium, Chromium, and Mercury by Using Aerosol Beam Focused Laser-Induced Plasma Spectrometer and Time-Integrated Filter Sampling Reference Method

    SciTech Connect

    Cheng, M.D.

    2003-05-15

    A novel real-time monitor for aerosol particles has been developed by the Oak Ridge National Laboratory (ORNL). The instrument is designed to perform in-situ measurement for the elemental composition of aerosol particles in flue gas. We had tested this monitor at the Eastman Chemical Company in July 2001 taking advantage of the emissions from a waste incinerator operated by the company as the background. To investigate the behavior and response of the monitor under simulated/known conditions, stock solutions of prepared metal concentration(s) were nebulized to provide spikes for the instrument testing. Strengths of the solutions were designed such that a reference method (RM) was able to collect sufficient material on filter samples that were subsequently analyzed in a laboratory to produce 30-minute average data points. Parallel aerosol measurements were performed by using the ORNL instrument. Recorded signal of an individual element was processed and the concentration calculated from a calibration curve established prior to the campaign. RM data were able to reflect the loads simulated in the spiked waste stream. However, it missed one beryllium sample. The possibility of bias exists in the RM determination of chromium that could lead to erroneous comparison between the RM and the real-time monitoring data. With the real-time detection capability, the ORNL instrument was able to reveal the emission variation by making seven measurements within a 30-minute cycle. The ability of the instrument also enables the reconstruction of the baseline chromium emission concentration. The measurements for mercury by both methods are in good agreement.

  17. Provision of Hepatitis C Education in a Nationwide Sample of Drug Treatment Programs.

    ERIC Educational Resources Information Center

    Astone, Janetta; Strauss, Shiela M.; Vassilev, Zdravko P.; Des Jarlais, Don C.

    2003-01-01

    Using a nationwide sample of drug treatment programs, reports the results of an analysis that differentiates programs providing Hepatitis C virus (HCV) education to all of their patients versus programs that do not. Fifty-four percent of the programs provide HCV education to all of their patients. Findings indicate a need to increase HCV…

  18. Overview of aerosol properties associated with air masses sampled by the ATR-42 during the EUCAARI campaign (2008)

    NASA Astrophysics Data System (ADS)

    Crumeyrolle, S.; Schwarzenboeck, A.; Sellegri, K.; Burkhart, J. F.; Stohl, A.; Gomes, L.; Quennehen, B.; Roberts, G.; Weigel, R.; Roger, J. C.; Villani, P.; Pichon, J. M.; Bourrianne, T.; Laj, P.

    2012-04-01

    Within the frame of the European Aerosol Cloud Climate and Air Quality Interactions (EUCAARI) project the Météo-France aircraft ATR-42 performed 22 research flights, over central Europe and the North Sea during the intensive observation period in May 2008. For the campaign, the ATR-42 was equipped in order to study aerosol physical, chemical and optical properties, as well as cloud microphysics. During the campaign, continental air masses from Eastern and Western Europe were encountered, along with polar and Scandinavian air masses. For the 22 research flights, retroplume analyses along the flight tracks were performed with FLEXPART in order to classify air masses into five sectors of origin which allows for a qualitative evaluation of emission influence on the respective air parcel. In the polluted boundary layer (BL), typical concentrations of particles with diameters larger than 10 nm (N10) are of the order of 5000-6000 cm-3, whereas N10 concentrations of clean air masses were lower than 1300 cm-3. The detection of the largest particle number concentrations occurred in air masses coming from Polar and Scandinavian regions for which an elevated number of nucleation mode (25-28 nm) particles was observed and attributed to new particle formation over open sea. In the free troposphere (FT), typical observed N10 are of the order of 900 cm-3 in polluted air masses and 400-600 cm-3 in clean air masses, respectively. In both layers, the chemical composition of submicron aerosol particles is dominated by organic matter and nitrate in polluted air masses, while, sulphate and ammonium followed by organics dominate the submicron aerosols in clean air masses. The highest CCN/CN ratios were observed within the polar air masses while the CCN concentration values are the highest within the polluted air masses. Within the five air mass sectors defined and the two layers (BL and FT), observations have been distinguished into anticyclonic (first half of May 2008) and cyclonic

  19. SAMPLE RESULTS FROM THE INTEGRATED SALT DISPOSITION PROGRAM MACROBATCH 5 TANK 21H QUALIFICATION MST, ESS AND PODD SAMPLES

    SciTech Connect

    Peters, T.; Fink, S.

    2012-04-24

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 5 processing. This qualification material was a composite created from recent samples from Tank 21H and archived samples from Tank 49H to match the projected blend from these two tanks. Additionally, samples of the composite were used in the Actinide Removal Process (ARP) and extraction-scrub-strip (ESS) tests. ARP and ESS test results met expectations. A sample from Tank 21H was also analyzed for the Performance Objectives Demonstration Document (PODD) requirements. SRNL was able to meet all of the requirements, including the desired detection limits for all the PODD analytes. This report details the results of the Actinide Removal Process (ARP), Extraction-Scrub-Strip (ESS) and Performance Objectives Demonstration Document (PODD) samples of Macrobatch (Salt Batch) 5 of the Integrated Salt Disposition Program (ISDP).

  20. Atmospheric aerosol and Doppler lidar studies

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeff; Bowdle, D. A.; Srivastava, V.; Jarzembski, M.; Cutten, D.; Mccaul, E. W., Jr.

    1991-01-01

    Experimental and theoretical studies were performed of atmospheric aerosol backscatter and atmospheric dynamics with Doppler lidar as a primary tool. Activities include field and laboratory measurement and analysis efforts. The primary focus of activities related to understanding aerosol backscatter is the GLObal Backscatter Experiment (GLOBE) program. GLOBE is a multi-element effort designed toward developing a global aerosol model to describe tropospheric clean background backscatter conditions that Laser Atmospheric Wind Sounder (LAWS) is likely to encounter. Two survey missions were designed and flown in the NASA DC-8 in November 1989 and May to June 1990 over the remote Pacific Ocean, a region where backscatter values are low and where LAWS wind measurements could make a major contribution. The instrument complement consisted of pulsed and continuous-wave (CW) CO2 gas and solid state lidars measuring aerosol backscatter, optical particle counters measuring aerosol concentration, size distribution, and chemical composition, a filter/impactor system collecting aerosol samples for subsequent analysis, and integrating nephelometers measuring visible scattering coefficients. The GLOBE instrument package and survey missions were carefully planned to achieve complementary measurements under clean background backscatter conditions.

  1. Retained Gas Sampling Results for the Flammable Gas Program

    SciTech Connect

    J.M. Bates; L.A. Mahoney; M.E. Dahl; Z.I. Antoniak

    1999-11-18

    The key phenomena of the Flammable Gas Safety Issue are generation of the gas mixture, the modes of gas retention, and the mechanisms causing release of the gas. An understanding of the mechanisms of these processes is required for final resolution of the safety issue. Central to understanding is gathering information from such sources as historical records, tank sampling data, tank process data (temperatures, ventilation rates, etc.), and laboratory evaluations conducted on tank waste samples.

  2. Sample Program Structure for Medium-Size Cities.

    ERIC Educational Resources Information Center

    Pennsylvania State Univ., University Park. Inst. of Public Administration.

    Program structure is the means employed to organize information concerning the work performed in government, the resources consumed to carry out that work, the effect upon individuals and the environment, and the relationship of this information to goals and objectives. The structure described in this document is intended as an aid for medium size…

  3. A ``Limited First Sample'' Approach to Mars Sample Return — Lessons from the Apollo Program

    NASA Astrophysics Data System (ADS)

    Eppler, D. B.; Draper, D.; Gruener, J.

    2012-06-01

    Complex, multi-opportunity Mars sample return approaches have failed to be selected as a new start twice since 1985. We advocate adopting a simpler strategy of "grab-and-go" for the initial sample return, similar to the approach taken on Apollo 11.

  4. Sample Results From The Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect

    Peters, T. B.; Fink, S. D.

    2012-12-20

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  5. Sample Results from the Interim Salt Disposition Program Macrobatch 6 Tank 21H Qualification Samples

    SciTech Connect

    Peters, T. B.; Fink, S. D.

    2012-12-11

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 6 for the Interim Salt Disposition Project (ISDP). This document reports partial results of the analyses of samples of Tank 21H. No issues with the projected Salt Batch 6 strategy are identified.

  6. Determination of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by gas chromatography-mass spectrometry. Development of methodology for combined aerosol and vapor sampling.

    PubMed

    Solbu, K; Thorud, S; Hersson, M; Ovrebø, S; Ellingsen, D G; Lundanes, E; Molander, P

    2007-08-17

    Methodology for personal occupational exposure assessment of airborne trialkyl and triaryl organophosphates originating from hydraulic fluids by active combined aerosol and vapor sampling at 1.5L/min is presented. Determination of the organophosphates was performed by gas chromatography-mass spectrometry. Combinations of adsorbents (Anasorb 747, Anasorb CSC, Chromosorb 106, XAD-2 and silica gel) with an upstream cassette with glass fiber or PTFE filters and different desorption/extraction solvents (CS(2), CS(2)-dimethylformamide (50:1, v/v), toluene, dichloromethane, methyl-t-butyl ether and methanol) have been evaluated for optimized combined vapor and aerosol air sampling of the organophosphates tri-isobutyl, tri-n-butyl, triphenyl, tri-o-cresyl, tri-m-cresyl and tri-p-cresyl phosphates. The combination of Chromosorb 106 and 37 mm filter cassette with glass fiber filter and dichloromethane as desorption/extraction solvent was the best combination for mixed phase air sampling of the organophosphates originating from hydraulic fluids. The triaryl phosphates were recovered solely from the filter, while the trialkyl phosphates were recovered from both the filter and the adsorbent. The total sampling efficiency on the combined sampler was in the range 92-101% for the studied organophosphates based on spiking experiments followed by pulling air through the sampler. Recoveries after 28 days storage were 98-102% and 99-101% when stored at 5 and -20 degrees C, respectively. The methodology was further evaluated in an exposure chamber with generated oil aerosol atmospheres with both synthetic and mineral base oils with added organophosphates in various concentrations, yielding total sampling efficiencies in close comparison to the spiking experiments. The applicability of the method was demonstrated by exposure measurements in a mechanical workshop where system suitability tests are performed on different aircraft components in a test bench, displaying tricresyl phosphate

  7. Users Handbook for the Argonne Premium Coal Sample Program

    SciTech Connect

    Vorres, K.S.

    1993-10-01

    This Users Handbook for the Argonne Premium Coal Samples provides the recipients of those samples with information that will enhance the value of the samples, to permit greater opportunities to compare their work with that of others, and aid in correlations that can improve the value to all users. It is hoped that this document will foster a spirit of cooperation and collaboration such that the field of basic coal chemistry may be a more efficient and rewarding endeavor for all who participate. The different sections are intended to stand alone. For this reason some of the information may be found in several places. The handbook is also intended to be a dynamic document, constantly subject to change through additions and improvements. Please feel free to write to the editor with your comments and suggestions.

  8. Comparison between the ASSET EZ4 NCO and Impinger Sampling Devices for Aerosol Sampling of 4,4'-Methylene Diphenyl Diisocyanate in Spray Foam Application.

    PubMed

    Puscasu, Silvia; Aubin, Simon; Cloutier, Yves; Sarazin, Philippe; Van Tra, Huu; Gagné, Sébastien

    2015-08-01

    4,4'-methylene diphenyl diisocyanate (MDI) aerosol exposure evaluation in spray foam insulation application is known to be a challenge. Current available techniques are either not user-friendly or are inaccurate or are not validated for this application. A new sampler has recently been developed to address the user-friendliness issues with other samplers: the ASSET EZ4-NCO, but the use of this sampler in spray foam insulation applications has not been demonstrated or validated. Because of this, the current work was undertaken to provide a comparison of the ASSET sampler with an impinger method, considered to be the best available method in the context of spray foam insulation, and hence the pertinence of comparing this sampler to an impinger method, considered to be the best available method for measuring MDI monomer and oligomers for this particular application. Liquid chromatography coupled with tandem mass spectrometry method for MDI monomer and oligomer analysis was implemented based on the Supelco literature. It allows the analysis of MDI-dibutylamine (DBA) and MDI 3-ring-DBA with a minimum reported value of 5ng ml(-1), a dynamic range of 5-140ng ml(-1), precision <15% and accuracy >80%. This method was used to quantify MDI aerosols collected with the ASSET sampler in an MDI spray foam environment in parallel with the toluene/MOPIP impinger reference method. The ASSET sampler significantly underestimated the levels of MDI monomer and oligomers when compared to the reference method. The estimated bias was 72% (95% confidence interval [CI] 54-89%) for the monomer and 96% (95% CI 76-115%) for the oligomers. These results demonstrate the importance of evaluating each new sampler for each isocyanate application prior to a formal worker exposure evaluation.

  9. Characteristics of Stafford Loan Program Defaulters: A National Sample.

    ERIC Educational Resources Information Center

    Beanblossom, Gary F.; Rodriguez, Blanca Rosa

    This study examined characteristics differentiating defaulters on Stafford student loans (formerly Guaranteed Student Loans) from non-defaulters. Data were drawn from a sample of 100,000 records randomly selected from the fiscal year 1987 guarantee agency cumulative borrower file. A cohort of 7,382 borrowers taking out their last loan in FY 1983…

  10. Treaty verification sample analysis program analytical results: UNSCOM 65 samples. Final report, December 1993-January 1994

    SciTech Connect

    Szafraniec, L.L.; Beaudry, W.T.; Bossle, P.C.; Durst, H.D.; Ellzy, M.W.

    1994-07-01

    Nineteen samples from the United Nations Special Commission 65 on Iraq (UNSCOM 65) were analyzed for chemical warfare (CW) related compounds using a variety of highly sophisticated spectroscopic and chromatographic techniques. The samples consisted of six water, six soil, two vegetation, one cloth, one wood, and two mortar shell crosscut sections. No sulfur or nitrogen mustards, Lewsite, or any of their degradation products were detected. No nerve agents were observed, and no tin was detected precluding the presence of stannic chloride, a component of NC, a World War I choking agent. Diethyl phosphoric acid was unambiguously identified in three water samples, and ethyl phosphoric acid was tentatively identified, at very low levels, in one water sample. These phosphoric acids are degradation products of Amiton, many commercially available pesticides, as well as Tabun, and impurities in munitions-grade Tabun. No definitive conclusions concerning the source of these two chemicals could be drawn from the analytical results.

  11. Enhanced aerodynamic reach of vapor and aerosol sampling for real-time mass spectrometric detection using Venturi-assisted entrainment and ionization.

    PubMed

    Forbes, Thomas P; Staymates, Matthew

    2017-03-08

    Venturi-assisted ENTrainment and Ionization (VENTI) was developed, demonstrating efficient entrainment, collection, and transport of remotely sampled vapors, aerosols, and dust particulate for real-time mass spectrometry (MS) detection. Integrating the Venturi and Coandă effects at multiple locations generated flow and analyte transport from non-proximate locations and more importantly enhanced the aerodynamic reach at the point of collection. Transport through remote sampling probes up to 2.5 m in length was achieved with residence times on the order of 10(-2) s to 10(-1) s and Reynolds numbers on the order of 10(3) to 10(4). The Venturi-assisted entrainment successfully enhanced vapor collection and detection by greater than an order of magnitude at 20 cm stand-off (limit of simple suction). This enhancement is imperative, as simple suction restricts sampling to the immediate vicinity, requiring close proximity to the vapor source. In addition, the overall aerodynamic reach distance was increased by approximately 3-fold over simple suction under the investigated conditions. Enhanced aerodynamic reach was corroborated and observed with laser-light sheet flow visualization and schlieren imaging. Coupled with atmospheric pressure chemical ionization (APCI), the detection of a range of volatile chemical vapors; explosive vapors; explosive, narcotic, and mustard gas surrogate (methyl salicylate) aerosols; and explosive dust particulate was demonstrated. Continuous real-time Venturi-assisted monitoring of a large room (approximately 90 m(2) area, 570 m(3) volume) was demonstrated for a 60-min period without the remote sampling probe, exhibiting detection of chemical vapors and methyl salicylate at approximately 3 m stand-off distances within 2 min of exposure.

  12. Release Storage and Disposal Program Product Sampling Support

    SciTech Connect

    CALMUS, R.B.

    2000-07-19

    This document includes recommended capabilities and/or services to support transport, analysis, and disposition of Immobilized High-Level and Low-Activity Waste samples as requested by the US DOE-Office of River Protection (DOE-ORP) as specified in the Privatization Contract between DOE-ORP and BNFL Inc. In addition, an approved implementation path forward is presented which includes use of existing Hanford Site services to provide the required support capabilities.

  13. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy.

    PubMed

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-15

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  14. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    PubMed Central

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-01-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident. PMID:27301319

  15. Dynamic terahertz spectroscopy of gas molecules mixed with unwanted aerosol under atmospheric pressure using fibre-based asynchronous-optical-sampling terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Hsieh, Yi-Da; Nakamura, Shota; Abdelsalam, Dahi Ghareab; Minamikawa, Takeo; Mizutani, Yasuhiro; Yamamoto, Hirotsugu; Iwata, Tetsuo; Hindle, Francis; Yasui, Takeshi

    2016-06-01

    Terahertz (THz) spectroscopy is a promising method for analysing polar gas molecules mixed with unwanted aerosols due to its ability to obtain spectral fingerprints of rotational transition and immunity to aerosol scattering. In this article, dynamic THz spectroscopy of acetonitrile (CH3CN) gas was performed in the presence of smoke under the atmospheric pressure using a fibre-based, asynchronous-optical-sampling THz time-domain spectrometer. To match THz spectral signatures of gas molecules at atmospheric pressure, the spectral resolution was optimized to 1 GHz with a measurement rate of 1 Hz. The spectral overlapping of closely packed absorption lines significantly boosted the detection limit to 200 ppm when considering all the spectral contributions of the numerous absorption lines from 0.2 THz to 1 THz. Temporal changes of the CH3CN gas concentration were monitored under the smoky condition at the atmospheric pressure during volatilization of CH3CN droplets and the following diffusion of the volatilized CH3CN gas without the influence of scattering or absorption by the smoke. This system will be a powerful tool for real-time monitoring of target gases in practical applications of gas analysis in the atmospheric pressure, such as combustion processes or fire accident.

  16. Computer program for sample sizes required to determine disease incidence in fish populations

    USGS Publications Warehouse

    Ossiander, Frank J.; Wedemeyer, Gary

    1973-01-01

    A computer program is described for generating the sample size tables required in fish hatchery disease inspection and certification. The program was designed to aid in detection of infectious pancreatic necrosis (IPN) in salmonids, but it is applicable to any fish disease inspection when the sampling plan follows the hypergeometric distribution.

  17. Urine fingerprinting: detection of sample tampering in an opiate dependency program.

    PubMed

    Kapur, B; Hershkop, S; Koren, G; Gaughan, V

    1999-04-01

    Methadone treatment programs commonly monitor patient compliance by screening urine samples for drugs of abuse. Our experience suggests that re-submission of urine samples (for example, providing a urine sample that is either not that of the patient or was previously submitted) is often used as a method of sample tampering. We have developed an algorithm that combines urine sodium, chloride, creatinine and pH values with urine drug screening results to effectively detect resubmitted samples. Given the widespread use of urine drug screening in drug and alcohol rehabilitation programs, we believe this technique has significant practical benefits. This technique may also have an application in forensic identification of duplicate samples.

  18. Hanford Environmental Monitoring Program schedule for samples, analyses, and measurements for calendar year 1985

    SciTech Connect

    Blumer, P.J.; Price, K.R.; Eddy, P.A.; Carlile, J.M.V.

    1984-12-01

    This report provides the CY 1985 schedule of data collection for the routine Hanford Surface Environmental Monitoring and Ground-Water Monitoring Programs at the Hanford Site. The purpose is to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs, as required in DOE Order 5484.1. The routine sampling schedule provided herein does not include samples scheduled to be collected during FY 1985 in support of special studies, special contractor support programs, or for quality control purposes. In addition, the routine program outlined in this schedule is subject to modification during the year in response to changes in site operations, program requirements, or unusual sample results.

  19. Comparison of dicarboxylic acids and related compounds in aerosol samples collected in Xi'an, China during haze and clean periods

    NASA Astrophysics Data System (ADS)

    Cheng, Chunlei; Wang, Gehui; Zhou, Bianhong; Meng, Jingjing; Li, Jianjun; Cao, Junji; Xiao, Shun

    2013-12-01

    PM10 aerosols from Xi'an, a mega city of China in winter and summer, 2009 were measured for secondary organic aerosols (SOA) (i.e., dicarboxylic acids (DCA), keto-carboxylic acids, and α-dicarbonyls), water-soluble organic (WSOC) and inorganic carbon (WSIC), elemental carbon (EC) and organic carbon (OC). Molecular compositions of SOA on haze and clean days in both seasons were compared to investigate their sources and formation mechanisms. DCA in the samples were 1843 ± 810 ng m-3 in winter and 1259 ± 781 ng m-3 in summer, respectively, which is similar and even higher than those measured in 2003. Oxalic acid (C2, 1162 ± 570 ng m-3 in winter and 1907 ± 707 ng m-3 in summer) is the predominant species of DCA, followed by t-phthalic (tPh) in winter and phthalic (Ph) in summer. Such a molecular composition is different from those in other Asian cities where succinic acid (C4) or malonic acid (C3) is the second highest species, which is mostly due to significant emissions from household combustion of coal and open burning of waste material in Xi'an. Mass ratios of C2/diacids, diacids/WSOC, WSOC/OC and individual diacid-C/WSOC are higher on the haze days than on the clean days in both seasons, suggesting an enhanced SOA production under the haze condition. We also found that the haze samples are acidic while the clean samples are almost neutral. Such a difference in particle acidity is consistent with the enhanced SOA production, because acid-catalysis is an important aqueous-phase formation pathway of SOA. Gly/mGly mass ratio showed higher values on haze days than on clean day in both seasons. We comprehensively investigated the ratio in literature and found a consistent pattern. Based on our observation results and those documented data we proposed for the first time that concentration ratio of Gly/mGly can be taken as an indicator of aerosol ageing.

  20. A model for estimating the value of sampling programs and the optimal number of samples for contaminated soil

    NASA Astrophysics Data System (ADS)

    Back, Pär-Erik

    2007-04-01

    A model is presented for estimating the value of information of sampling programs for contaminated soil. The purpose is to calculate the optimal number of samples when the objective is to estimate the mean concentration. A Bayesian risk-cost-benefit decision analysis framework is applied and the approach is design-based. The model explicitly includes sample uncertainty at a complexity level that can be applied to practical contaminated land problems with limited amount of data. Prior information about the contamination level is modelled by probability density functions. The value of information is expressed in monetary terms. The most cost-effective sampling program is the one with the highest expected net value. The model was applied to a contaminated scrap yard in Göteborg, Sweden, contaminated by metals. The optimal number of samples was determined to be in the range of 16-18 for a remediation unit of 100 m2. Sensitivity analysis indicates that the perspective of the decision-maker is important, and that the cost of failure and the future land use are the most important factors to consider. The model can also be applied for other sampling problems, for example, sampling and testing of wastes to meet landfill waste acceptance procedures.

  1. XAFSmass: a program for calculating the optimal mass of XAFS samples

    NASA Astrophysics Data System (ADS)

    Klementiev, K.; Chernikov, R.

    2016-05-01

    We present a new implementation of the XAFSmass program that calculates the optimal mass of XAFS samples. It has several improvements as compared to the old Windows based program XAFSmass: 1) it is truly platform independent, as provided by Python language, 2) it has an improved parser of chemical formulas that enables parentheses and nested inclusion-to-matrix weight percentages. The program calculates the absorption edge height given the total optical thickness, operates with differently determined sample amounts (mass, pressure, density or sample area) depending on the aggregate state of the sample and solves the inverse problem of finding the elemental composition given the experimental absorption edge jump and the chemical formula.

  2. Application of CE with novel dynamic coatings and field-amplified sample injection to the sensitive determination of isomeric benzoic acids in atmospheric aerosols and vehicular emission.

    PubMed

    Dabek-Zlotorzynska, Ewa; Piechowski, Maria

    2007-10-01

    A simple and reliable CE method with direct UV detection has been developed to separate eight isomeric benzoic acids in atmospheric aerosols and vehicular emission without complex sample pretreatment. Optimal electrophoretic conditions, with migration times under 5 min, were obtained by using a 50 mM acetate buffer (pH 4.7) containing a dynamic surface coating EOTrol LN (0.005% w/v). The separations were carried out in a cathode to anode direction (-30 kV) allowing the low cathodal EOF ( approximately 1 x 10(-9) m(2)V(-1)s(-1)) to extend the effective separation by slowing the movement of the studied aromatic acids. Moreover, the sensitivity of the method at 200 nm was enhanced by using a field-amplified sample injection (FASI) with electrokinetic (EK) sample injection (-2 kV, 60 s). Prior to sample injection, a short water plug (3 s at 0.5 psi) was introduced. Under these conditions, the method was capable of detecting the analytes in deionized water with LODs (S/N = 3) as low as 0.1 microg/L for most of the studied acids. In the presence of 10 mg/L of sulphate (added to simulate a sample matrix), LODs ranged from 0.26 to 0.62 microg/L. The validation of the method has proven an excellent separation performance and accuracy for the determination of isomeric benzoic acids in the studied matrices.

  3. The Savannah River Site`s groundwater monitoring program: 1990 sampling schedule

    SciTech Connect

    Rogers, C.D.

    1991-02-07

    This schedule provides a final record of the 1990 sampling schedule for the SRS groundwater monitoring program conducted by the Environmental Protection Department/Environmental Section (EPD/EMS). It includes all the wells monitored by EPD/EMS at SRS during 1990 and identifies the constituents sampled, the sampling frequency, and the reasons for sampling. Sampling requests are incorporated into the schedule throughout the year. Drafts of the schedule are produced and revised quarterly.

  4. Spruce budworm sampling program for Husky Hunter Field data recorders. Forest Service research note

    SciTech Connect

    Schmidt, F.H.

    1993-07-01

    A program for receiving sampling data for all immature stages of the western spruce budworm (Choristoneua occidentalis Freeman) is described. Versions were designed to be used on field data recorders with either CP/M or DOS operating systems, such as the HUSKY HUNTER (Models 1, 2, and 16), but they also may be used on personal computers with compatible operating systems. The program allows the user to review the current plot statistics, including sampling precision, at any time while still sampling the plot. It also allows the user to determine how many more trees need to be sampled to arrive at a sampling precision specified by the user.

  5. Wide Area Recovery and Resilency Program (WARRP). Video - Aggressive Air Sampling for B. anthracis Spores

    DTIC Science & Technology

    2012-09-14

    34Systematic Evaluation of Aggressive Air Sampling for Bacillus anthracis Spores", in which aggressive air sampling, used for asbestos fiber detection, was...Sep 2012 Final 01 Feb 2011 - 01 Sep 2012 Wide Area Recovery and Resiliency Program (WARRP) Video - Aggressive Air Sampling for B. anthracis Spores

  6. Improved measurement of carbonaceous aerosol: evaluation of the sampling artifacts and inter-comparison of the thermal-optical analysis methods

    NASA Astrophysics Data System (ADS)

    Cheng, Y.; He, K. B.; Duan, F. K.; Zheng, M.; Ma, Y. L.; Tan, J. H.; Du, Z. Y.

    2010-09-01

    The sampling artifacts (both positive and negative) and the influence of thermal-optical methods (both charring correction method and the peak inert mode temperature) on the split of organic carbon (OC) and elemental carbon (EC) were evaluated in Beijing. The positive sampling artifact constituted 10% and 23% of OC concentration determined by the bare quartz filter during winter and summer, respectively. For summer samples, the adsorbed gaseous organics were found to continuously evolve off the filter during the whole inert mode when analyzed by the IMPROVE-A temperature protocol. This may be due to the oxidation of the adsorbed organics during sampling (reaction artifact) which would increase their thermal stability. The backup quartz approach was evaluated by a denuder-based method for assessing the positive artifact. The quartz-quartz (QBQ) in series method was demonstrated to be reliable, since all of the OC collected by QBQ was from originally gaseous organics. Negative artifact that could be adsorbed by quartz filter was negligible. When the activated carbon impregnated glass fiber (CIG) filter was used as the denuded backup filter, the denuder efficiency for removing gaseous organics that could be adsorbed by the CIG filter was only about 30%. EC values were found to differ by a factor of about two depending on the charring correction method. Influence of the peak inert mode temperature was evaluated based on the summer samples. The EC value was found to continuously decrease with the peak inert mode temperature. Premature evolution of light absorbing carbon began when the peak inert mode temperature was increased from 580 to 650 °C; when further increased to 800 °C, the OC and EC split frequently occurred in the He mode, and the last OC peak was characterized by the overlapping of two separate peaks. The discrepancy between EC values defined by different temperature protocols was larger for Beijing carbonaceous aerosol compared with North America and

  7. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  8. Sample results from the interim salt disposition program macrobatch 8 tank 21H qualification MST solids sample

    SciTech Connect

    Peters, T. B.; Washington, A. L.

    2015-02-01

    Savannah River National Laboratory (SRNL) analyzed samples from Tank 21H in support of qualification of Macrobatch (Salt Batch) 8 for Interim Salt Disposition Program (ISDP) processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) and several Extraction, Scrub, Strip (ESS) tests. This document reports characterization of the monosodium titanate (MST) solids from the ARP test. The results of these analyses are reported and are within historical precedent.

  9. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  10. Physical and chemical properties of aerosols at a coastal site Paposo (Chile) during VOCALS campaign

    NASA Astrophysics Data System (ADS)

    Cordova, A. M.; Chand, D.; Wood, R.; Wallace, D.; Hegg, D. A.; Shaw, G. E.; Krejci, R.; Fochesatto, G. J.; Gallardo, L.

    2009-12-01

    One of the primary goals of the VOCALS (VAMOS* Ocean-Cloud-Atmosphere-Land Study) Regional Experiment (REx) and associated modeling program is an improved understanding of aerosol indirect effects over the southeast Pacific (SEP). Details on the program are available online at www.eol.ucar.edu/projects/vocals/. To this end, detailed aerosol physical and chemical measurements were made during REx at a coastal land site at Paposo (25o 0.4' S, 70o 27.011' W, 690 masl) in northern Chile, a site ideally positioned for studying continental aerosol sources advecting over the SEP. We present initial analysis of data from Paposo. Detailed measurements of aerosol properties were made from mid October to mid November 2008. Observations from optical particle counters (OPC), nephelometers, aethalometer, scanning mobility particle sizer (SMPS) and the chemical analysis of the submicron aerosols samples collected on teflon filters are being used in this study. Large variations in aerosols parameters were observed which corresponded with changes in meteorology, as determined using trajectory analysis. Ion Chromatograph (IC) analysis of submicron aerosol samples shows that about 41% of submicron mass is sulfate. The light scattering coefficient shows a strong non-linear correlation with aerosol size observed using an OPC. Detailed results will be presented in the AGU meeting.

  11. MELCOR 1.8.2 assessment: Aerosol experiments ABCOVE AB5, AB6, AB7, and LACE LA2

    SciTech Connect

    Souto, F.J.; Haskin, F.E.; Kmetyk, L.N.

    1994-10-01

    The MELCOR computer code has been used to model four of the large-scale aerosol behavior experiments conducted in the Containment System Test Facility (CSTF) vessel. Tests AB5, AB6 and AB7 of the ABCOVE program simulate the dry aerosol conditions during a hypothetical severe accident in an LMFBR. Test LA2 of the LACE program simulates aerosol behavior in a condensing steam environment during a postulated severe accident in an LWR with failure to isolate the containment. The comparison of code results to experimental data show that MELCOR is able to correctly predict most of the thermal-hydraulic results in the four tests. MELCOR predicts reasonably well the dry aerosol behavior of the ABCOVE tests, but significant disagreements are found in the aerosol behavior modelling for the LA2 experiment. These results tend to support some of the concerns about the MELCOR modelling of steam condensation onto aerosols expressed in previous works. During these analyses, a limitation in the MELCOR input was detected for the specification of the aerosol parameters for more than one component. A Latin Hypercube Sampling (LHS) sensitivity study of the aerosol dynamic constants is presented for test AB6. The study shows the importance of the aerosol shape factors in the aerosol deposition behavior, and reveals that MELCOR input/output processing is highly labor intensive for uncertainty and sensitivity analyses based on LHS.

  12. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  13. Mount Saint Helens aerosol evolution

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.; Farlow, N. H.; Snetsinger, K. G.; Ferry, G. V.; Fong, W.; Hayes, D. M.

    1982-01-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  14. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.

    1982-08-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mount St. Helens. Analysis of samples shows that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  15. Mount St. Helens aerosol evolution

    SciTech Connect

    Oberbeck, V.R.; Farlow, N.H.; Fong, W.; Snetsinger, K.G.; Ferry, G.V.; Hayes, D.M.

    1982-09-01

    Stratospheric aerosol samples were collected using a wire impactor during the year following the eruption of Mt. St. Helens. Analysis of samples show that aerosol volume increased for 6 months due to gas-to-particle conversion and then decreased to background levels in the following 6 months.

  16. Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model.

    PubMed

    Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max

    2013-01-15

    Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.

  17. Master schedule for CY-1984 Hanford environmental surveillance routine sampling program

    SciTech Connect

    Blumer, P.J.; Price, K.R.; Eddy, P.A.; Carlile, J.M.V.

    1983-12-01

    This report provides the current schedule of data collection for the routine Hanford environmental surveillance and ground-water Monitoring Programs at the Hanford Site. The purpose is to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs. The routine sampling schedule provided herein does not include samples that are planned to be collected during FY-1984 in support of special studies, special contractor support programs, or for quality control purposes.

  18. Carbon Isotopic Measurements and Aerosol Optical Determinations during CARES: Indications of the Importance of Background Biogenic Aerosols

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Begum, M.; Sturchio, N. C.; Guilderson, T. P.

    2011-12-01

    High volume size-fractionated aerosol samples were obtained in Cool, CA during the Carbonaceous Aerosol and Radiative Effects Study (CARES) in June of 2010. This site was chosen to study the regional impacts of carbonaceous aerosols originating from the Sacramento area. Samples were collected for 6 to 24 hour time periods on quartz fiber filters by using slotted impactors to allow for collection of sample size cuts above and below one micron. Both total carbon content and carbon isotopic composition, including 13C/12C and 14C, were determined on the samples. In addition, Ångstrom absorption exponents (AAEs) were determined for the region of 300-900 nm on the sub-micron size cut by using state of the art diffuse reflectance UV-visible spectroscopy with integrating sphere technology. The overall carbonaceous aerosol loadings were found to be quite low and relatively constant during the study, suggesting that most of the aerosols at the site were locally formed background aerosols. The 14C data is consistent with a substantial fraction (~80 %) being from modern carbon sources and 13C/12C results indicate that the carbon source was from C-3 plants. This is consistent with a significant fraction of the aerosols in the area arising from secondary formation from biogenic precursor emissions from trees, most likely mono- and sesquiterpenes. These results are compared to past results obtained in Mexico City and discussed in terms of the potential importance of biogenic emissions to UV absorbing aerosols as these are anticipated to increase with climate change. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 and Grant No. DE-FG02-07-ER64329 as part of the Atmospheric Systems Research program.

  19. Cross-institute evaluations of inhibitor-resistant PCR reagents for direct testing of aerosol and blood samples containing biological warfare agent DNA.

    PubMed

    Minogue, Timothy D; Rachwal, Phillip A; Trombley Hall, Adrienne; Koehler, Jeffery W; Weller, Simon A

    2014-02-01

    Rapid pathogen detection is crucial for the timely introduction of therapeutics. Two groups (one in the United Kingdom and one in the United States) independently evaluated inhibitor-resistant PCR reagents for the direct testing of substrates. In the United Kingdom, a multiplexed Bacillus anthracis (target) and Bacillus subtilis (internal-control) PCR was used to evaluate 4 reagents against 5 PCR inhibitors and down-selected the TaqMan Fast Virus 1-Step master mix (Life Technologies Inc.). In the United States, four real-time PCR assays (targeting B. anthracis, Brucella melitensis, Venezuelan equine encephalitis virus [VEEV], and Orthopoxvirus spp.) were used to evaluate 5 reagents (plus the Fast Virus master mix) against buffer, blood, and soil samples and down-selected the KAPA Blood Direct master mix (KAPA Biosystems Inc.) with added Platinum Taq (Life Technologies). The down-selected reagents underwent further testing. In the United Kingdom experiments, both reagents were tested against seven contrived aerosol collector samples containing B. anthracis Ames DNA and B. subtilis spores from a commercial formulation (BioBall). In PCR assays with reaction mixtures containing 40% crude sample, an airfield-collected sample induced inhibition of the B. subtilis PCR with the KAPA reagent and complete failure of both PCRs with the Fast Virus reagent. However, both reagents allowed successful PCR for all other samples-which inhibited PCRs with a non-inhibitor-resistant reagent. In the United States, a cross-assay limit-of-detection (LoD) study in blood was conducted. The KAPA Blood Direct reagent allowed the detection of agent DNA (by four PCRs) at higher concentrations of blood in the reaction mixture (2.5%) than the Fast Virus reagent (0.5%), although LoDs differed between assays and reagent combinations. Across both groups, the KAPA Blood Direct reagent was determined to be the optimal reagent for inhibition relief in PCR.

  20. Produce and fish sampling program of Los Alamos National Laboratory's Environmental Surveillance Group

    SciTech Connect

    Salazar, J.G.

    1984-09-01

    This report describes produce and fish sampling procedures of the Environmental Surveillance Group at the Los Alamos National Laboratory. The program monitors foodstuffs and fish for possible radioactive contamination from Laboratory operations. Data gathered in this program on radionuclide concentrations help to estimate radiation doses to Laboratory personnel and the public. 3 references, 7 figures, 2 tables.

  1. The Army Family Research Program: Sampling Plan for the CORE Research Program

    DTIC Science & Technology

    1990-07-01

    Because FSUs and SSUs will vary considerably with respect to numbers of personnel, the sample will be chosen with minimum replacement ( Chromy 1979...comunity: The plan for research. Research Triangle Park, NC: Research Triangle Institute. Chromy , J. (1979). Sequential sampling selection methods. In...Effects (1.25) Power Sample Size and Participation Failure Rate (.05) .10 48 62 .30 129 170 .50 218 287 .60 271 357 .70 324 440 .80 418 551 .90 552 726

  2. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    to carbonyl- and nitro- functional groups on conjugated and aromatic organic structures (e.g. PAH, and terpene derived products). Using 12-hour fine (0.1-1.0 micron) aerosol samples collected in the field on quartz filters, uv/vis and infrared spectra were obtained in the laboratory using integrating spheres and diffuse reflectance spectroscopy, respectively. An inter-comparison of the "real-time" measurements made by the photo-acoustic, aethalometer and MAAP techniques have been described. In addition, the in situ aethalometer (seven-channel) results are compared with continuous integrating sphere uv-visible spectra to examine the angstrom absorption coefficient variance. These results will be briefly overviewed and the specific posters detailing these results will be highlighted highlighted. This work was performed as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City under the support of the Atmospheric Science Program. "This researchwas supported by the Office of Science (BER), U. S. Department of Energy, Grant No. DE-FG02-07ER64329.

  3. Coupled rotor/airframe vibration analysis program manual. Volume 2: Sample input and output listings

    NASA Technical Reports Server (NTRS)

    Cassarino, S.; Sopher, R.

    1982-01-01

    Sample input and output listings obtained with the base program (SIMVIB) of the coupled rotor/airframe vibration analysis and the external programs, G400/F389 and E927 are presented. Results for five of the base program test cases are shown. They represent different applications of the SIMVIB program to study the vibration characteristics of various dynamic configurations. Input and output listings obtained for one cycle of the G400/F389 coupled program are presented. Results from the rotor aeroelastic analysis E927 also appear. A brief description of the check cases is provided. A summary of the check cases for all the external programs interacting with the SIMVIB program is illustrated.

  4. CERCLA Site discharges to POTWs CERCLA site sampling program: Detailed data report

    SciTech Connect

    Not Available

    1990-08-01

    The document contains wastewater data obtained from sampling at seventeen CERCLA sites during a study of wastewater discharges from CERCLA sites to publicly owned treatment works (POTWs). The document serves as an appendix to the report summarizing the findings of the CERCLA site sampling program in Section 3 (CERCLA Site Data Report) in the USEPA CERCLA Site Discharges to POTWs Treatability Manual.

  5. Innovative coke oven gas cleaning system for retrofit applications. Environmental Monitoring program. Volume 1 - sampling progrom report. Baseline Sampling Program report

    SciTech Connect

    Stuart, L.M.

    1994-05-27

    Bethlehem Steel Corporation (BSC), in conjunction with the Department of Energy (DOE) is conducting a Clean Coal Technology (CCT) project at its Sparrows Point, Maryland Coke Oven Plant. This innovative coke oven gas cleaning system combines several existing technologies into an integrated system for removing impurities from Coke Oven Gas (COG) to make it an acceptable fuel. DOE provided cost-sharing under a Cooperative Agreement with BSC. This Cooperative Agreement requires BSC to develop and conduct and Environmental Monitoring Plan for the Clean Coal Technology project and to report the status of the EMP on a quarterly basis. It also requires the preparation of a final report on the results of the Baseline Compliance and Supplemental Sampling Programs that are part of the EMP and which were conducted prior to the startup of the innovative coke oven gas cleaning system. This report is the Baseline Sampling Program report.

  6. Polycyclic aromatic hydrocarbons in bulk PM2.5 and size-segregated aerosol particle samples measured in an urban environment.

    PubMed

    Park, Seung Shik; Kim, Young J; Kang, Chang Hee

    2007-05-01

    To analyze polycyclic aromatic hydrocarbons (PAHs) at an urban site in Seoul, South Korea, 24-hr ambient air PM2.5 samples were collected during five intensive sampling periods between November 1998 and December 1999. To determine the PAH size distribution, 3-day size-segregated aerosol samples were also collected in December 1999. Concentrations of the 16 PAHs in the PM2.5 particles ranged from 3.9 to 119.9 ng m(-3) with a mean of 24.3 ng m(-3). An exceptionally high concentration of PAHs( approximately 120 ng m(-3)) observed during a haze event in December 1999 was likely influenced more by diesel vehicle exhaust than by gasoline exhaust, as well as air stagnation, as evidenced by the low carbon monoxide/elemental carbon (CO/EC) ratio of 205 found in this study and results reported by previous studies. The total PAHs associated with the size-segregated particles showed unimodal distributions. Compared to the unimodal size distributions of PAHs with modal peaks at < 0.12 microm measured in highway tunnels in Los Angeles (Venkataraman and Friedlander, 1994), four- to six-ring PAHs in our study had unimodal size distributions, peaking at the larger size range of 0.28-0.53 microm, suggesting the coagulation of freshly emitted ultrafine particles during transport to the sampling site. Further, the fraction of PAHs associated with coarse particles(> 1.8 microm) increased as the molecular weight of the PAHs decreased due to volatilization of fine particles followed by condensation onto coarse particles.

  7. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2010

    SciTech Connect

    2011-01-10

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 10 and 11, 2010. The U.S. Environmental Protection Agency (EPA) Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, analyzed the samples. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and for tritium using the conventional and enriched methods.

  8. Rio Blanco, Colorado, Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2009

    SciTech Connect

    2009-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site, for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 13 and 14, 2009. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectroscopy and tritium using the conventional and enriched methods.

  9. Aerosol contributions to speleothem geochemistry

    NASA Astrophysics Data System (ADS)

    Dredge, J. A.; Fairchild, I. J.; Harrison, R.; Woodhead, J. D.; Hellstrom, J.

    2011-12-01

    The term "aerosols" encompasses the suspension of both fine solid or liquid particles within a gaseous medium. Aerosols become suspended into the earth's atmosphere through a multitude of processes both natural and anthropogenic. Atmospheric aerosols enter cave networks as a result of cave ventilation processes and are either deposited, or cycled and removed from the system. Speleothem offer a multiproxy palaeoclimate resource; many of the available proxies have been extensively investigated and utilised for palaeoclimatic reconstructions in a range of studies. The potential contribution of aerosols to speleothem chemistry and their applicability for palaeoenvironmental reconstructions remains untested and the extent of their value as an addition to palaeoclimate sciences unknown. Aerosols through incorporation into speleothem may provide a novel palaeoenvironmental resource. The aerosol component of interest is that which is transported into the cave atmosphere and deposited and are available for incorporation into precipitated calcite. Aerosol deposition and therefore distribution in the cave has shown to be a complex function of ventilation and changing environmental factors. Through detailed monitoring aerosols have been detected, identified, characterised and quantified to determine their prominence in the cave system. Investigations are on a case study basis, searching for suitable aerosol proxies of environmentally significant emission processes. Case studies include: Palaeofires at Yarrangobilly Caves, Australia; anthropogenic emissions at St Michaels Cave, Gibraltar and Cheddar gorge, UK; and drip water aerosol production and geochemical addition in Obir cave, Austria. Monitoring has allowed for the temporal and spatial determination of aerosols in karst networks. Speleothem samples will be analysed in combination with in-situ monitoring to determine incorporation factors and record preservation. By understanding how aerosols are transmitted within the

  10. Full-Time, Eye-Safe Cloud and Aerosol Lidar Observation at Atmospheric Radiation Measurement Program Sites: Instruments and Data Analysis

    NASA Technical Reports Server (NTRS)

    Campbell, James R.; Hlavka, Dennis L.; Welton, Ellsworth J.; Flynn, Connor J.; Turner, David D.; Spinhirne, James D.; Scott, V. Stanley, III; Hwang, I. H.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Atmospheric radiative forcing, surface radiation budget, and top of the atmosphere radiance interpretation involves a knowledge of the vertical height structure of overlying cloud and aerosol layers. During the last decade, the U.S. Department of Energy through I the Atmospheric Radiation Measurement (ARM) program has constructed four long- term atmospheric observing sites in strategic climate regimes (north central Oklahoma, In Barrow. Alaska, and Nauru and Manus Islands in the tropical western Pacific). Micro Pulse Lidar (MPL) systems provide continuous, autonomous observation of all significant atmospheric cloud and aerosol at each of the central ARM facilities. Systems are compact and transmitted pulses are eye-safe. Eye-safety is achieved by expanding relatively low-powered outgoing Pulse energy through a shared, coaxial transmit/receive telescope. ARM NIPL system specifications, and specific unit optical designs are discussed. Data normalization and calibration techniques are presented. A multiple cloud boundary detection algorithm is also described. These techniques in tandem represent an operational value added processing package used to produce normalized data products for Cloud and aerosol research and the historical ARM data archive.

  11. NASA Lunar Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers and Libraries

    NASA Astrophysics Data System (ADS)

    Allen, J. S.

    2009-12-01

    NASA is eager for students and the public to experience lunar Apollo rocks and regolith soils first hand. Lunar samples embedded in plastic are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks has revealed the early history of our Earth-Moon system. The rocks help educators make the connections to this ancient history of our planet as well as connections to the basic lunar surface processes - impact and volcanism. With these samples educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by missions to Moon. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections of the rocks to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the violent impact history of the Moon. The disks also include two regolith soils and

  12. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    NASA Astrophysics Data System (ADS)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-12-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  13. Gas phase acid, ammonia and aerosol ionic and trace element concentrations at Cape Verde during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) 2007 intensive sampling period

    NASA Astrophysics Data System (ADS)

    Sander, R.; Pszenny, A. A. P.; Keene, W. C.; Crete, E.; Deegan, B.; Long, M. S.; Maben, J. R.; Young, A. H.

    2013-07-01

    We report mixing ratios of soluble reactive trace gases sampled with mist chambers and the chemical composition of bulk aerosol and volatile inorganic bromine (Brg) sampled with filter packs during the Reactive Halogens in the Marine Boundary Layer (RHaMBLe) field campaign at the Cape Verde Atmospheric Observatory (CVAO) on São Vicente island in the tropical North Atlantic in May and June 2007. The gas-phase data include HCl, HNO3, HONO, HCOOH, CH3COOH, NH3, and volatile reactive chlorine other than HCl (Cl*). Aerosol samples were analyzed by neutron activation (Na, Al, Cl, V, Mn, and Br) and ion chromatography (SO42-, Cl-, Br-, NH4+, Na+, K+, Mg2+, and Ca2+). Content and quality of the data, which are available under doi:10.5281/zenodo.6956, are presented and discussed.

  14. Propulsion Technology Development for Sample Return Missions Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Pencil, Eric J.; Vento, Daniel; Dankanich, John W.; Munk, Michelle M.; Hahne, David

    2011-01-01

    The In-Space Propulsion Technology (ISPT) Program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. Sample return missions could be quite varied, from collecting and bringing back samples of comets or asteroids, to soil, rocks, or atmosphere from planets or moons. The paper will describe the ISPT Program s propulsion technology development activities relevant to future sample return missions. The sample return propulsion technology development areas for ISPT are: 1) Sample Return Propulsion (SRP), 2) Planetary Ascent Vehicles (PAV), 3) Entry Vehicle Technologies (EVT), and 4) Systems/mission analysis and tools that focuses on sample return propulsion. The Sample Return Propulsion area is subdivided into: a) Electric propulsion for sample return and low cost Discovery-class missions, b) Propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and c) Low TRL advanced propulsion technologies. The SRP effort will continue work on HIVHAC thruster development in FY2011 and then transitions into developing a HIVHAC system under future Electric Propulsion for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks will continue under advanced propulsion technologies for sample return with direct applicability to a Mars Sample Return (MSR) mission and with general applicability to all future planetary spacecraft. A major effort under the EVT area is multi-mission technologies for Earth Entry Vehicles (MMEEV), which will leverage and build upon previous work related to Earth Entry Vehicles (EEV). The major effort under the PAV area is the Mars Ascent Vehicle (MAV). The MAV is a new development area to ISPT, and builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies.

  15. QUALITY ASSURANCE PROGRAM FOR WET DEPOSITION SAMPLING AND CHEMICAL ANALYSES FOR THE NATIONAL TRENDS NETWORK.

    USGS Publications Warehouse

    Schroder, LeRoy J.; Malo, Bernard A.; ,

    1985-01-01

    The purpose of the National Trends Network is to delineate the major inorganic constituents in the wet deposition in the United States. The approach chosen to monitor the Nation's wet deposition is to install approximately 150 automatic sampling devices with at least one collector in each state. Samples are collected at one week intervals, removed from collectors, and transported to an analytical laboratory for chemical analysis. The quality assurance program has divided wet deposition monitoring into 5 parts: (1) Sampling site selection, (2) sampling device, (3) sample container, (4) sample handling, and (5) laboratory analysis. Each of these five components is being examined using existing designs or new designs. Each existing or proposed sampling site is visited and a criteria audit is performed.

  16. Demonstration of multi- and single-reader sample size program for diagnostic studies software

    NASA Astrophysics Data System (ADS)

    Hillis, Stephen L.; Schartz, Kevin M.

    2015-03-01

    The recently released software Multi- and Single-Reader Sample Size Sample Size Program for Diagnostic Studies, written by Kevin Schartz and Stephen Hillis, performs sample size computations for diagnostic reader-performance studies. The program computes the sample size needed to detect a specified difference in a reader performance measure between two modalities, when using the analysis methods initially proposed by Dorfman, Berbaum, and Metz (DBM) and Obuchowski and Rockette (OR), and later unified and improved by Hillis and colleagues. A commonly used reader performance measure is the area under the receiver-operating-characteristic curve. The program can be used with typical common reader-performance measures which can be estimated parametrically or nonparametrically. The program has an easy-to-use step-by-step intuitive interface that walks the user through the entry of the needed information. Features of the software include the following: (1) choice of several study designs; (2) choice of inputs obtained from either OR or DBM analyses; (3) choice of three different inference situations: both readers and cases random, readers fixed and cases random, and readers random and cases fixed; (4) choice of two types of hypotheses: equivalence or noninferiority; (6) choice of two output formats: power for specified case and reader sample sizes, or a listing of case-reader combinations that provide a specified power; (7) choice of single or multi-reader analyses; and (8) functionality in Windows, Mac OS, and Linux.

  17. Georges Bank benthic infauna monitoring program. Final report for third year of sampling. Volume 2

    SciTech Connect

    Maciolek-Blake, N.; Grassle, J.F.; Neff, J.M.

    1985-04-15

    Concerns about the potential effects of oil- and gas-exploration activities on Georges Bank led to the initiation of a monitoring program in July 1981. The program included sampling of the benthic communities near, upcurrent, and downcurrent of the drilling rigs, analysis of bottom photographs for epifauna and microtopography, trawl collections, total organic carbon and sediment grain size analysis. Additional aspects of the program included a detailed life history analysis of 23 dominant species, and a study which linked fish feeding with benthic production. No biological impacts that could be attributed to drilling activities were detected at any station.

  18. Georges Bank benthic infauna monitoring program. Final report for third year of sampling. Volume 3. Appendices

    SciTech Connect

    Maciolek-Blake, N.; Grassle, J.F.; Neff, J.M.

    1985-04-15

    Concerns about the potential effects of oil- and gas-exploration activities on Georges Bank led to the initiation of a monitoring program in July 1981. The program included sampling of the benthic communities near, upcurrent, and downcurrent of the drilling rigs, analysis of bottom photographs for epifauna and microtopography, trawl collections, total organic carbon and sediment grain size analysis. Additional aspects of the program included a detailed life history analysis of 23 dominant species, and a study which linked fish feeding with benthic production. No biological impacts that could be attributed to drilling activities were detected at any station.

  19. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  20. Interactive programs with preschool children bring smiles and conversation to older adults: time-sampling study

    PubMed Central

    2013-01-01

    Background Keeping older adults healthy and active is an emerging challenge of an aging society. Despite the importance of personal relationships to their health and well-being, changes in family structure have resulted in a lower frequency of intergenerational interactions. Limited studies have been conducted to compare different interaction style of intergenerational interaction. The present study aimed to compare the changes in visual attention, facial expression, engagement/behaviour, and intergenerational conversation in older adults brought about by a performance-based intergenerational (IG) program and a social-oriented IG program to determine a desirable interaction style for older adults. Methods The subjects of this study were 25 older adults who participated in intergenerational programs with preschool children aged 5 to 6 years at an adult day care centre in Tokyo. We used time sampling to perform a structured observation study. The 25 older participants of intergenerational programs were divided into two groups based on their interaction style: performance-based IG program (children sing songs and dance) and social-oriented IG program (older adults and children play games together). Based on the 5-minute video observation, we compared changes in visual attention, facial expression, engagement/behaviour, and intergenerational conversation between the performance-based and social-oriented IG programs. Results Constructive behaviour and intergenerational conversation were significantly higher in the social-oriented IG programming group than the performance-based IG programming group (p<0.001). No significant differences were observed in frequency of smiles, however, when weighted smiling rate was used, smiles were significantly more frequently observed in the social-oriented IG programming group than the performance-based IG programming (p<0.05). The visual attention occurred between the generations was significantly higher in the performance-based IG

  1. Selective determination of methyl mercury in biological samples by means of programmed temperature gas chromatography.

    PubMed

    Lorenzo, R A; Carro, A; Rubí, E; Casais, C; Cela, R

    1993-01-01

    A programmed temperature gas chromatographic method is presented by which it is possible to carry out routine analysis of methyl mercury in biological samples prepared according to the AOAC official first action recommendations without the need for preliminary treatment of the columns. This method greatly extends the life of the columns as well as the useful time for analysis; it has good linearity and repeatability. With the proposed method a total of 36 samples can be analyzed daily.

  2. Sample Results From The Interim Salt Disposition Program Macrobatch 7 Tank 21H Qualification MST Solids Sample

    SciTech Connect

    Washington, A. L. II; Peters, T. B.

    2013-09-19

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Interim Salt Disposition Program (ISDP) Batch 7 processing. The Marcrobatch 7 material was received with visible fine particulate solids, atypical for these samples. The as received material was allowed to settle for a period greater than 24 hours. The supernatant was then decanted and utilized as our clarified feed material. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test using the clarified feed material. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake after filtration from H-Tank Farm (HTF) feed salt solution. The results of these analyses are reported and are within historical precedent.

  3. Asian aerosols in North America: Extracting the chemical composition and mass concentration of the Asian continental aerosol plume from long-term aerosol records in the western United States

    NASA Astrophysics Data System (ADS)

    Vancuren, Richard A.

    2003-10-01

    Empirical assessment of the frequency and intensity of dust transport from Asia to North America has found that the dust regularly impacts elevated sites in the western United States, revealing a pattern of consistent, frequent transport above the marine boundary layer. Using the dust as a marker for Asian transport, a subset of Asian-influenced samples was identified within a decade of routine aerosol samples from two sites in the western cordillera of North America: Crater Lake, Oregon, and Mount Lassen, California. This subset was used to guide a statistical analysis to isolate Asian aerosol against the "background" of local contaminants. The analysis was then generalized to all samples during the transport season (March-October) for 1989-1999. A mixture of dust and combustion products dominates the Asian aerosol with typical concentration around 5 μg/m3 and mass median diameter between 2 and 3 μm. Major fine particle (<2.5 μm diameter) constituent fractions are ˜30% mineral, 28% organic compounds, 4% elemental carbon, 10% sulfate, <5% nitrate, and <1% sea salt. A second, possibly Asian, component of aged biomass smoke and sea salt is also present, with typical concentration (when present) around 1.5 μg/m3. Averaged over the transport season the dusty Asian aerosol and the smoky aerosol comprise 60 and 6%, respectively, of total particle mass (<10 μm diameter) and 72 and 13% of fine particle mass at these sites. These data indicate that the Asian continental plume is a significant contributor to aerosol loading at remote high-altitude sites across western North America. This implies a significant influence for Asian emissions on free troposphere aerosols over North America and suggests that they need to be explicitly accounted for in aerosol analyses ranging from climate studies to aerosol regulatory programs.

  4. Using Set Covering with Item Sampling to Analyze the Infeasibility of Linear Programming Test Assembly Models

    ERIC Educational Resources Information Center

    Huitzing, Hiddo A.

    2004-01-01

    This article shows how set covering with item sampling (SCIS) methods can be used in the analysis and preanalysis of linear programming models for test assembly (LPTA). LPTA models can construct tests, fulfilling a set of constraints set by the test assembler. Sometimes, no solution to the LPTA model exists. The model is then said to be…

  5. MULTICORR: A Computer Program for Fast, Accurate, Small-Sample Testing of Correlational Pattern Hypotheses.

    ERIC Educational Resources Information Center

    Steiger, James H.

    1979-01-01

    The program presented computes a chi-square statistic for testing pattern hypotheses on correlation matrices. The statistic is based on a multivariate generalization of the Fisher r-to-z transformation. This statistic has small sample performance which is superior to an analogous likelihood ratio statistic obtained via the analysis of covariance…

  6. Development of sample handling procedures for foods under USDA's National Food and Nutrient Analysis Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The National Food and Nutrient Analysis Program (NFNAP) was implemented in 1997 to update and improve the quality of food composition data maintained in the United States Department of Agriculture (USDA) National Nutrient Database for Standard Reference. NFNAP was designed to sample and analyze fre...

  7. A program to calculate sample size, power, and least detectable relative risk using a programmable calculator.

    PubMed

    Muhm, J M; Olshan, A F

    1989-01-01

    A program for the Hewlett Packard 41 series programmable calculator that determines sample size, power, and least detectable relative risk for comparative studies with independent groups is described. The user may specify any ratio of cases to controls (or exposed to unexposed subjects) and, if calculating least detectable relative risks, may specify whether the study is a case-control or cohort study.

  8. Scientific Infrastructure to Support Atmospheric Science and Aerosol Science for the Department of Energy's Atmospheric Radiation Measurement Programs at Barrow, Alaska.

    NASA Astrophysics Data System (ADS)

    Lucero, D. A.; Ivey, M.; Helsel, F.; Hardesty, J.; Dexheimer, D.

    2015-12-01

    Scientific infrastructure to support atmospheric science and aerosol science for the Department of Energy's Atmospheric Radiation Measurement programs at Barrow, Alaska.The Atmospheric Radiation Measurement (ARM) Program's located at Barrow, Alaska is a U.S. Department of Energy (DOE) site. The site provides a scientific infrastructure and data archives for the international Arctic research community. The infrastructure at Barrow has been in place since 1998, with many improvements since then. Barrow instruments include: scanning precipitation Radar-cloud radar, Doppler Lidar, Eddy correlation flux systems, Ceilometer, Manual and state-of-art automatic Balloon sounding systems, Atmospheric Emitted Radiance Interferometer (AERI), Micro-pulse Lidar (MPL), Millimeter cloud radar, High Spectral Resolution Lidar (HSRL) along with all the standard metrological measurements. Data from these instruments is placed in the ARM data archives and are available to the international research community. This poster will discuss what instruments are at Barrow and the challenges of maintaining these instruments in an Arctic site.

  9. A novel ultrasonic aerosol generator.

    PubMed

    Davies, A; Hudson, N; Pirie, L

    1995-07-01

    An ultrasonic aerosol generator constructed from a domestic humidifier is described which has been used to produce liquid aerosols for physiological investigations. The instrument was constructed from a Pifco domestic humidifier modified to include an energy guide to direct the oscillations of the transducer through the coupling water, which would normally be aerosolized, onto a small membrane based sample chamber containing the liquid to be aerosolized. The size distribution of the aerosol produced was found to be between 2 and 6 mm, optimum for diffuse intrapulmonary deposition. Up to 4 ml/min of aqueous liquid was used; however the sample chamber could be made small enough to contain economic amounts of expensive material to administer by inhalation. The instrument has proved to be reliable over a period of three years.

  10. The Atmospheric Radiation Measurement Program May 2003 Intensive Operations Period Examining Aerosol Properties and Radiative Influences: Preface to Special Section

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Feingold, Graham; Ghan, Steven; Ogren, John; Schmid, Beat; Schwartz, Stephen E.; Sheridan, Pat

    2006-01-01

    Atmospheric aerosols influence climate by scattering and absorbing radiation in clear air (direct effects) and by serving as cloud condensation nuclei, modifying the microphysical properties of clouds, influencing radiation and precipitation development (indirect effects). Much of present uncertainty in forcing of climate change is due to uncertainty in the relations between aerosol microphysical and optical properties and their radiative influences (direct effects) and between microphysical properties and their ability to serve as cloud condensation nuclei at given supersaturations (indirect effects). This paper introduces a special section that reports on a field campaign conducted at the Department of Energy Atmospheric Radiation Measurement site in North Central Oklahoma in May, 2003, examining these relations using in situ airborne measurements and surface-, airborne-, and space-based remote sensing.

  11. Status of Sample Return Propulsion Technology Development Under NASA's ISPT Program

    NASA Technical Reports Server (NTRS)

    Anderson, David J.; Glaab, Louis J.; Munk, Michelle M.; Pencil, Eric; Dankanich, John; Peterson, Todd T.

    2012-01-01

    The In-Space Propulsion Technology (ISPT) program was tasked in 2009 to start development of propulsion technologies that would enable future sample return missions. ISPT s sample return technology development areas are diverse. Sample Return Propulsion (SRP) addresses electric propulsion for sample return and low cost Discovery-class missions, propulsion systems for Earth Return Vehicles (ERV) including transfer stages to the destination, and low technology readiness level (TRL) advanced propulsion technologies. The SRP effort continues work on HIVHAC thruster development to transition into developing a Hall-effect propulsion system for sample return (ERV and transfer stages) and low-cost missions. Previous work on the lightweight propellant-tanks continues for sample return with direct applicability to a Mars Sample Return (MSR) mission with general applicability to all future planetary spacecraft. The Earth Entry Vehicle (EEV) work focuses on building a fundamental base of multi-mission technologies for Earth Entry Vehicles (MMEEV). The main focus of the Planetary Ascent Vehicles (PAV) area is technology development for the Mars Ascent Vehicle (MAV), which builds upon and leverages the past MAV analysis and technology developments from the Mars Technology Program (MTP) and previous MSR studies

  12. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  13. Sampling bias in an international internet survey of diversion programs in the criminal justice system.

    PubMed

    Hartford, Kathleen; Carey, Robert; Mendonca, James

    2007-03-01

    Despite advances in the storage and retrieval of information within health care systems, health researchers conducting surveys for evaluations still face technical barriers that may lead to sampling bias. The authors describe their experience in administering a Web-based, international survey to English-speaking countries. Identifying the sample was a multistage effort involving (a) searching for published e-mail addresses, (b) conducting Web searches for publicly funded agencies, and (c) performing literature searches, personal contacts, and extensive Internet searches for individuals. After pretesting, the survey was converted into an electronic format accessible by multiple Web browsers. Sampling bias arose from (a) system incompatibility, which did not allow potential respondents to open the survey, (b) varying institutional gate-keeping policies that "recognized" the unsolicited survey as spam, (c) culturally unique program terminology, which confused some respondents, and (d) incomplete sampling frames. Solutions are offered to the first three problems, and the authors note that sampling bias remains a crucial problem.

  14. Electrodynamic Aerosol Concentrating and Sampling

    DTIC Science & Technology

    2006-06-16

    effects on focusing Material Density (kg/m3) Time to 1 % (s) Rfinal/ Rinitial Near neutral density bubbles1 70 41.4 0.33 Oleic acid 895 6.54 8.7 x...focusing Multiplier Charge (electrons) Time to 1 % (s) Rfinal/ Rinitial 0.5 4880 22.6 0.13 0.7 6830 11.5 1.8 x 10-2 0.9 8780 6.97 1.3 x 10-3 1.0...focusing as shown in Table 7. Table 7. Peak voltage effects on focusing Multiplier Peak voltage (V) Time to 1 % (s) Rfinal/ Rinitial 0.60 6447 15.7

  15. Physical properties of repressurized samples recovered during the 2006 National Gas Hydrate Program expedition offshore India

    USGS Publications Warehouse

    Winters, William J.; Waite, William F.; Mason, David H.; Kumar, P.

    2008-01-01

    As part of an international cooperative research program, the U.S. Geological Survey (USGS) and researchers from the National Gas Hydrate Program (NGHP) of India are studying the physical properties of sediment recovered during the NGHP-01 cruise conducted offshore India during 2006. Here we report on index property, acoustic velocity, and triaxial shear test results for samples recovered from the Krishna-Godavari Basin. In addition, we discuss the effects of sample storage temperature, handling, and change in structure of fine-grained sediment. Although complex, sub-vertical planar gas-hydrate structures were observed in the silty clay to clayey silt samples prior to entering the Gas Hydrate And Sediment Test Laboratory Instrument (GHASTLI), the samples yielded little gas post test. This suggests most, if not all, gas hydrate dissociated during sample transfer. Mechanical properties of hydrate-bearing marine sediment are best measured by avoiding sample depressurization. By contrast, mechanical properties of hydrate-free sediments, that are shipped and stored at atmospheric pressure can be approximated by consolidating core material to the original in situ effective stress.

  16. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H.; Henry, Mike; Baden, Daniel G.

    2009-01-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1 h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5–10 μg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m3. The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction. PMID:19879288

  17. Characterization of Florida red tide aerosol and the temporal profile of aerosol concentration.

    PubMed

    Cheng, Yung Sung; Zhou, Yue; Pierce, Richard H; Henry, Mike; Baden, Daniel G

    2010-05-01

    Red tide aerosols containing aerosolized brevetoxins are produced during the red tide bloom and transported by wind to coastal areas of Florida. This study reports the characterization of Florida red tide aerosols in human volunteer studies, in which an asthma cohort spent 1h on Siesta Beach (Sarasota, Florida) during aerosolized red tide events and non-exposure periods. Aerosol concentrations, brevetoxin levels, and particle size distribution were measured. Hourly filter samples were taken and analyzed for brevetoxin and NaCl concentrations. In addition, the aerosol mass concentration was monitored in real time. The results indicated that during a non-exposure period in October 2004, no brevetoxin was detected in the water, resulting in non-detectable levels of brevetoxin in the aerosol. In March 2005, the time-averaged concentrations of brevetoxins in water samples were moderate, in the range of 5-10 microg/L, and the corresponding brevetoxin level of Florida red tide aerosol ranged between 21 and 39 ng/m(3). The temporal profiles of red tide aerosol concentration in terms of mass, NaCl, and brevetoxin were in good agreement, indicating that NaCl and brevetoxins are components of the red tide aerosol. By continuously monitoring the marine aerosol and wind direction at Siesta Beach, we observed that the marine aerosol concentration varied as the wind direction changed. The temporal profile of the Florida red tide aerosol during a sampling period could be explained generally with the variation of wind direction.

  18. Efficacy of the Social Cognition Training Program in a sample of schizophrenic outpatients.

    PubMed

    Gil-Sanz, David; Fernández-Modamio, Mar; Bengochea-Seco, Rosario; Arrieta-Rodríguez, Marta; Pérez-Fuentes, Gabriela

    2014-02-04

    Objective: Social cognition is recognized to be a deficit in individuals suffering from schizophrenia. Numerous studies have explored the relationship between social cognition and social functioning in outpatients with schizophrenia through the use of different social cognition training programs. This study examines the efficacy of the Social Cognition Training Program (PECS in Spanish) in adults with a diagnosis of schizophrenia. Methods: Data were derived from a sample of 44 non-hospitalized adult patients, who presented with a DSM-IV-R Axis I diagnosis of schizophrenia, and 39 healthy controls. Patients were divided into an experimental group and a control task group, that received cognitive training. Healthy controls did not receive any treatment. Sociodemographic and clinic variables correlates were computed. 2-way ANOVA was conducted to examine differences between groups in pre and post-treatment measures. Intragroup differences were explores using the paired-samples t-test. Results: At the end of the training, patients in the experimental group showed a higher performance compared to patients in the control task group, in the Hinting Task Test and in the emotion recognition of sadness, anger, fear, and disgust. Conclusions: The PECS proved to be effective in the improvement of some areas of theory of mind and emotion recognition, in outpatients with schizophrenia. The PECS is one of the first programs developed in Spanish to train social cognition, and the data obtained support the importance of expand the social cognition programs to non-English language samples.

  19. Stratospheric Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  20. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2012 at Rulison, Colorado

    SciTech Connect

    2012-12-06

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 8, 2012. The samples were shipped to GEL Laboratories in Charleston, South Carolina, for analysis. All requested analyses were successfully completed. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry; tritium was analyzed using two methods. The conventional tritium method has a detection limit on the order of 400 pCi/L, and a select set of samples was analyzed for tritium using the enriched method, which has a detection limit on the order of 3 pCi/L.

  1. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0006

    NASA Technical Reports Server (NTRS)

    Gauntner, D. J.; Holdeman, J. D.; Humenik, F. M.

    1977-01-01

    The NASA Global Atmospheric Sampling Program (GASP) is obtaining measurements of atmospheric trace constituents in the upper troposphere and lower stratosphere using fully automated air sampling systems on board several commercial B-747 aircraft in routine airline service. Atmospheric ozone, and related flight and meteorological data were obtained during 245 flights of a Qantas Airways of Australia B-747 and two Pan American World Airways B-747s from July 1976 through September 1976. In addition, whole air samples, obtained during three flights, were analyzed for trichlorofluoromethane, and filter samples, obtained during four flights, were analyzed for sulfates, nitrates, fluorides, and chlorides. Flight routes and dates, instrumentation, data processing procedures, data tape specifications, and selected analyses are discussed.

  2. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0004

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Humenik, F. M.; Lezberg, E. A.

    1976-01-01

    The NASA Global Atmospheric Sampling Program (GASP) is obtaining measurements of atmospheric trace constituents in the upper troposphere and lower stratosphere using fully automated air sampling systems on board several commercial B-747 aircraft in routine airline service. Atmospheric ozone, water vapor, and related flight and meteorological data were obtained during 139 flights of a United Airlines B-747 and a Pan American World Airways B-747 from December 1975 through March 1976. In addition, sample bottles were exposed during three flights and analyzed for trichlorofluoromethane, and filter samples were exposed during five flights and analyzed for sulfates, nitrates, and chlorides. Flight routes and dates, instrumentation, data processing procedures, data tape specifications, and selected analyses are discussed.

  3. Time Series of Aerosol Column Optical Depth at the Barrow, Alaska, ARM Climate Research Facility for 2008 Fourth Quarter 2009 ARM and Climate Change Prediction Program Metric Report

    SciTech Connect

    C Flynn; AS Koontz; JH Mather

    2009-09-01

    The uncertainties in current estimates of anthropogenic radiative forcing are dominated by the effects of aerosols, both in relation to the direct absorption and scattering of radiation by aerosols and also with respect to aerosol-related changes in cloud formation, longevity, and microphysics (See Figure 1; Intergovernmental Panel on Climate Change, Assessment Report 4, 2008). Moreover, the Arctic region in particular is especially sensitive to changes in climate with the magnitude of temperature changes (both observed and predicted) being several times larger than global averages (Kaufman et al. 2009). Recent studies confirm that aerosol-cloud interactions in the arctic generate climatologically significant radiative effects equivalent in magnitude to that of green house gases (Lubin and Vogelmann 2006, 2007). The aerosol optical depth is the most immediate representation of the aerosol direct effect and is also important for consideration of aerosol-cloud interactions, and thus this quantity is essential for studies of aerosol radiative forcing.

  4. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    acetate, polymerized rapidly and produced some polymer film encapsulation of the aerosol droplets. A two-stage microcapsule generator was designed...encapsulating material, the generator also produced microcapsules of dibutyl phosphite in polyethylene, nitrocellulose, and natural rubber.

  5. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  6. Lunar and Meteorite Sample Education Disk Program - Space Rocks for Classrooms, Museums, Science Centers, and Libraries

    NASA Technical Reports Server (NTRS)

    Allen, Jaclyn; Luckey, M.; McInturff, B.; Huynh, P.; Tobola, K.; Loftin, L.

    2010-01-01

    NASA is eager for students and the public to experience lunar Apollo samples and meteorites first hand. Lunar rocks and soil, embedded in Lucite disks, are available for educators to use in their classrooms, museums, science centers, and public libraries for education activities and display. The sample education disks are valuable tools for engaging students in the exploration of the Solar System. Scientific research conducted on the Apollo rocks reveals the early history of our Earth-Moon system and meteorites reveal much of the history of the early solar system. The rocks help educators make the connections to this ancient history of our planet and solar system and the basic processes accretion, differentiation, impact and volcanism. With these samples, educators in museums, science centers, libraries, and classrooms can help students and the public understand the key questions pursued by many NASA planetary missions. The Office of the Curator at Johnson Space Center is in the process of reorganizing and renewing the Lunar and Meteorite Sample Education Disk Program to increase reach, security and accountability. The new program expands the reach of these exciting extraterrestrial rocks through increased access to training and educator borrowing. One of the expanded opportunities is that trained certified educators from science centers, museums, and libraries may now borrow the extraterrestrial rock samples. Previously the loan program was only open to classroom educators so the expansion will increase the public access to the samples and allow educators to make the critical connections to the exciting exploration missions taking place in our solar system. Each Lunar Disk contains three lunar rocks and three regolith soils embedded in Lucite. The anorthosite sample is a part of the magma ocean formed on the surface of Moon in the early melting period, the basalt is part of the extensive lunar mare lava flows, and the breccias sample is an important example of the

  7. Asbestos-containing materials in school buildings: Bulk-sample analysis quality-assurance program. Bulk sample rounds 16, 17 and 18

    SciTech Connect

    Starner, K.K.; Perkins, R.L.; Harvey, B.W.; Westbrook, S.H.

    1990-02-01

    The report presents the performance results of laboratories participating in the sixteenth, seventeenth and eighteenth rounds of the Bulk Sample Analysis Quality Assurance Program sponsored by the United States Environmental Protection Agency, (EPA). Round 16 of the program operated along the guidelines established in previous rounds and was a voluntary quality assurance program. The Asbestos Hazard Emergency Response Act of 1986 (AHERA), directed the National Institute of Standards and Technology (NIST) to establish and maintain a laboratory accreditation program for bulk sample analysis of asbestos. The program began in October 1988 by evaluating enrolled polariscope laboratories in the interim prior to the initiation of the National Voluntary Laboratory Accreditation Program (NVLAP) for bulk asbestos laboratories, sponsored by NIST.

  8. A user-friendly robotic sample preparation program for fully automated biological sample pipetting and dilution to benefit the regulated bioanalysis.

    PubMed

    Jiang, Hao; Ouyang, Zheng; Zeng, Jianing; Yuan, Long; Zheng, Naiyu; Jemal, Mohammed; Arnold, Mark E

    2012-06-01

    Biological sample dilution is a rate-limiting step in bioanalytical sample preparation when the concentrations of samples are beyond standard curve ranges, especially when multiple dilution factors are needed in an analytical run. We have developed and validated a Microsoft Excel-based robotic sample preparation program (RSPP) that automatically transforms Watson worklist sample information (identification, sequence and dilution factor) to comma-separated value (CSV) files. The Freedom EVO liquid handler software imports and transforms the CSV files to executable worklists (.gwl files), allowing the robot to perform sample dilutions at variable dilution factors. The dynamic dilution range is 1- to 1000-fold and divided into three dilution steps: 1- to 10-, 11- to 100-, and 101- to 1000-fold. The whole process, including pipetting samples, diluting samples, and adding internal standard(s), is accomplished within 1 h for two racks of samples (96 samples/rack). This platform also supports online sample extraction (liquid-liquid extraction, solid-phase extraction, protein precipitation, etc.) using 96 multichannel arms. This fully automated and validated sample dilution and preparation process has been applied to several drug development programs. The results demonstrate that application of the RSPP for fully automated sample processing is efficient and rugged. The RSPP not only saved more than 50% of the time in sample pipetting and dilution but also reduced human errors. The generated bioanalytical data are accurate and precise; therefore, this application can be used in regulated bioanalysis.

  9. Assessing effects of esfenvalerate aerosol applications on resident populations of Tribolium castaneum (Herbst), the red flour beetle, through direct and indirect sampling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Small-scale field sheds were infested with resident populations of the red flour beetle, Tribolium castaneum (Herbst), and either left untreated or treated every two or four weeks with an aerosol spray of esfenvalerate (Conquer ®). The sheds were infested by placing flour food patches underneath she...

  10. Linear Regression Modeling of Selected Analytes from the Balad Air Sampling Program

    DTIC Science & Technology

    2012-04-05

    Spearman correlation coefficient – Option is used in the IBM SPSS® Statistics V20 program when comparing two variables (weather – analyte...The positive Spearman correlation coefficient value (0.598) indicates analyte concentration for benzo[a]pyrene increased during the four sampling...Cadmium The negative Spearman correlation coefficient value (-0.318) indicates that the analyte concentration of cadmium decreased over the four

  11. AERONET: The Aerosol Robotic Network

    DOE Data Explorer

    The AERONET (AErosol RObotic NETwork) program is a federation of ground-based remote sensing aerosol networks established by NASA and LOA-PHOTONS (CNRS) and is greatly expanded by collaborators from national agencies, institutes, universities, individual scientists, and partners. The program provides a long-term, continuous and readily accessible public domain database of aerosol optical, mircrophysical and radiative properties for aerosol research and characterization, validation of satellite retrievals, and synergism with other databases. The network imposes standardization of instruments, calibration, processing and distribution. AERONET collaboration provides globally distributed observations of spectral aerosol optical Depth (AOD), inversion products, and precipitable water in diverse aerosol regimes. Aerosol optical depth data are computed for three data quality levels: Level 1.0 (unscreened), Level 1.5 (cloud-screened), and Level 2.0 (cloud screened and quality-assured). Inversions, precipitable water, and other AOD-dependent products are derived from these levels and may implement additional quality checks.[Copied from http://aeronet.gsfc.nasa.gov/new_web/system_descriptions.html

  12. Review of geochemical reference sample programs since G-1 and W-1: progress to date and remaining challenges

    USGS Publications Warehouse

    Kane, J.S.

    1991-01-01

    A brief history of programs to develop geochemical reference samples and certified reference samples for use in geochemical analysis is presented. While progress has been made since G-1 and W-1 were issued, many challenges remain. ?? 1991.

  13. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    NASA Astrophysics Data System (ADS)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  14. a Study of the Origin of Atmospheric Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Hildemann, Lynn Mary

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied. Emissions from vehicles and fireplaces are identified as significant sources of solvent-extractable organic aerosol. Differences between the model

  15. Ferrocyanide Safety Program: Analysis of postulated energetic reactions and resultant aerosol generation in Hanford Site Waste Tanks

    SciTech Connect

    Postma, A.K.; Dickinson, D.R.

    1995-09-01

    This report reviews work done to estimate the possible consequences of postulated energetic reactions in ferrocyanide waste stored in underground tanks at the Hanford Site. The issue of explosive reactions was raised in the 1987 Environmental Impact Statement (EIS), where a detonation-like explosion was postulated for the purpose of defining an upper bound on dose consequences for various disposal options. A review of the explosion scenario by the General Accounting Office (GAO) indicated that the aerosol generation and consequent radioactive doses projected for the explosion postulated in the EIS were understated by one to two orders of magnitude. The US DOE has sponsored an extensive study of the hazard posed by uncontrolled exothermic reactions in ferrocyanide waste, and results obtained during the past three years have allowed this hazard to be more realistically assessed. The objective of this report is to summarize the improved knowledge base that now indicates that explosive or vigorous chemical reactions are not credible in the ferrocyanide waste stored in underground tanks. This improved understanding supports the decision not to proceed with further analyses or predictions of the consequences of such an event or with aerosol tests in support of such predictions. 53 refs., 2 tabs.

  16. Deriving simple empirical relationships between aerodynamic and optical aerosol measurements and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Different measurement techniques for aerosol characterization and quantification either directly or indirectly measure different aerosol properties (i.e. count, mass, speciation, etc.). Comparisons and combinations of multiple measurement techniques sampling the same aerosol can provide insight into...

  17. Aerosol Behavior Log-Normal Distribution Model.

    SciTech Connect

    GIESEKE, J. A.

    2001-10-22

    HAARM3, an acronym for Heterogeneous Aerosol Agglomeration Revised Model 3, is the third program in the HAARM series developed to predict the time-dependent behavior of radioactive aerosols under postulated LMFBR accident conditions. HAARM3 was developed to include mechanisms of aerosol growth and removal which had not been accounted for in the earlier models. In addition, experimental measurements obtained on sodium oxide aerosols have been incorporated in the code. As in HAARM2, containment gas temperature, pressure, and temperature gradients normal to interior surfaces are permitted to vary with time. The effects of reduced density on sodium oxide agglomerate behavior and of nonspherical shape of particles on aerosol behavior mechanisms are taken into account, and aerosol agglomeration due to turbulent air motion is considered. Also included is a capability to calculate aerosol concentration attenuation factors and to restart problems requiring long computing times.

  18. Active tracking of rejected dried blood samples in a large program in Nigeria

    PubMed Central

    Inalegwu, Auchi; Phillips, Sunny; Datir, Rawlings; Chime, Christopher; Ozumba, Petronilla; Peters, Samuel; Ogbanufe, Obinna; Mensah, Charles; Abimiku, Alash’Le; Dakum, Patrick; Ndembi, Nicaise

    2016-01-01

    AIM: To study the impact of rejection at different levels of health care by retrospectively reviewing records of dried blood spot samples received at the molecular laboratory for human immunodeficiency virus (HIV) early infant diagnosis (EID) between January 2008 and December 2012. METHODS: The specimen rejection rate, reasons for rejection and the impact of rejection at different levels of health care was examined. The extracted data were cleaned and checked for consistency and then de-duplicated using the unique patient and clinic identifiers. The cleaned data were ciphered and exported to SPSS version 19 (SPSS 2010 IBM Corp, New York, United States) for statistical analyses. RESULTS: Sample rejection rate of 2.4% (n = 786/32552) and repeat rate of 8.8% (n = 69/786) were established. The mean age of infants presenting for first HIV molecular test among accepted valid samples was 17.83 wk (95%CI: 17.65-18.01) vs 20.30 wk (95%CI: 16.53-24.06) for repeated samples. HIV infection rate was 9.8% vs 15.9% for accepted and repeated samples. Compared to tertiary healthcare clinics, secondary and primary clinics had two-fold and three-fold higher likelihood of sample rejection, respectively (P < 0.05). We observed a significant increase in sample rejection rate with increasing number of EID clinics (r = 0.893, P = 0.041). The major reasons for rejection were improper sample collection (26.3%), improper labeling (16.4%) and insufficient blood (14.8%). CONCLUSION: Programs should monitor pre-analytical variables and incorporate continuous quality improvement interventions to reduce errors associated with sample rejection and improve patient retention. PMID:27175352

  19. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2011 at Rulison, Colorado

    SciTech Connect

    2012-05-10

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 18, 2011. The samples were shipped to the U.S. Environmental Protection Agency (EPA) Radiation and Indoor Environments National Laboratory in Las Vegas, Nevada, for analysis. All requested analyses were successfully completed, with the exception of the determination of tritium concentration by the enrichment method. The laboratory no longer provides that service. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional method. Starting in 2012, DOE will retain a different laboratory that provides the enriched tritium analysis service.

  20. Decomposition and (importance) sampling techniques for multi-stage stochastic linear programs

    SciTech Connect

    Infanger, G.

    1993-11-01

    The difficulty of solving large-scale multi-stage stochastic linear programs arises from the sheer number of scenarios associated with numerous stochastic parameters. The number of scenarios grows exponentially with the number of stages and problems get easily out of hand even for very moderate numbers of stochastic parameters per stage. Our method combines dual (Benders) decomposition with Monte Carlo sampling techniques. We employ importance sampling to efficiently obtain accurate estimates of both expected future costs and gradients and right-hand sides of cuts. The method enables us to solve practical large-scale problems with many stages and numerous stochastic parameters per stage. We discuss the theory of sharing and adjusting cuts between different scenarios in a stage. We derive probabilistic lower and upper bounds, where we use importance path sampling for the upper bound estimation. Initial numerical results turned out to be promising.

  1. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2016-06-07

    for dust storm forecasting and analysis, AGU Fall Meeting, San Francisco, CA. Dec. 11-15, 2002 [Published]. Reid, J.S., J.R. Cook, D.L. Westphal...Persian Gulf/Arabian Sea, East Asia, and some parts of the Mediterranean Sea. Along coastal regions, dust , pollution and smoke can be present and...transitioned from the combined Marine Aerosol and Dust Aerosol programs from SPAWAR Systems Center San Diego (SSC-SD) to the Naval Research Laboratory

  2. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results at Rio Blanco, Colorado

    SciTech Connect

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–21, 2015. This report documents the analytical results of the Rio Blanco annual monitoring event, the trip report, and the data validation package. The groundwater and surface water monitoring samples were shipped to the GEL Group Inc. laboratories for conventional analysis of tritium and analysis of gamma-emitting radionuclides by high-resolution gamma spectrometry. A subset of water samples collected from wells near the Rio Blanco site was also sent to GEL Group Inc. for enriched tritium analysis. All requested analyses were successfully completed. Samples were collected from a total of four onsite wells, including two that are privately owned. Samples were also collected from two additional private wells at nearby locations and from nine surface water locations. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and they were analyzed for tritium using the conventional method with a detection limit on the order of 400 picocuries per liter (pCi/L). Four locations (one well and three surface locations) were analyzed using the enriched tritium method, which has a detection limit on the order of 3 pCi/L. The enriched locations included the well at the Brennan Windmill and surface locations at CER-1, CER-4, and Fawn Creek 500 feet upstream.

  3. Description of a computer program to calculate reacting supersonic internal flow fields with shock waves using viscous characteristics: Program manual and sample calculations

    NASA Technical Reports Server (NTRS)

    Cavalleri, R. J.; Agnone, A. M.

    1972-01-01

    A computer program for calculating internal supersonic flow fields with chemical reactions and shock waves typical of supersonic combustion chambers with either wall or mid-stream injectors is described. The usefulness and limitations of the program are indicated. The program manual and listing are presented along with a sample calculation.

  4. PREFACE: SPECIAL ISSUE OF AEROSOL SCIENCE AND TECHNOLOGY ON FINDINGS FROM THE FINE PARTICULATE MATTER SUPERSITES PROGRAM

    EPA Science Inventory

    This collection of papers, which is the first coordinated publication of results from the Phase II Supersites Program, reflects the objectives of the program - to characterize particulate matter, to provide information, such as source-receptor relationships, that support health...

  5. Optical properties of urban aerosol from airborne and ground-based in situ measurements performed during the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program

    NASA Astrophysics Data System (ADS)

    Chazette, Patrick; Randriamiarisoa, Hariliva; Sanak, Joseph; Couvert, Pierre; Flamant, Cyrille

    2005-01-01

    Urban aerosol microphysical and optical properties were investigated over the Paris area coupling, for the first time, with dedicated airborne in situ instruments (nephelometer and particle sizers) and active remote sensor (lidar) as well as ground-based in situ instrumentation. The experiment, covering two representative pollution events, was conducted in the framework of the Etude et Simulation de la Qualité de l'air en Ile de France (ESQUIF) program. Pollution plumes were observed under local northerly and southerly synoptic wind conditions on 19 and 31 July 2000, respectively. The 19 July (31 July) event was characterized by north-northwesterly (westerly) advection of polluted (clean) air masses originating from Great Britain (the Atlantic Ocean). The aerosol number size distribution appeared to be composed mainly of two modes in the planetary boundary layer (accumulation and nucleation) and three modes in the surface layer (accumulation, nucleation, and coarse). The characteristics of the size distribution (modal radii and geometric dispersion) were remarkably similar on both days and very coherent with the aerosol optical parameters retrieved from lidar and nephelometer measurements. The city of Paris mainly produces aerosols in the nucleation mode (modal radius of ˜0.03 μm) that have little influence on the aerosol optical properties in the visible spectral range. The latter are largely dominated by the scattering properties of aerosols in the accumulation mode (modal radius of ˜0.12 μm). When the incoming air mass is already polluted (clear), the aerosol in the accumulation mode is shown to be essentially hydrophobic (hydrophilic) in the outgoing air mass.

  6. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, Vincent J.; Johnson, Stanley A.

    1999-01-01

    A vapor sample detection method where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample.

  7. Near real time vapor detection and enhancement using aerosol adsorption

    DOEpatents

    Novick, V.J.; Johnson, S.A.

    1999-08-03

    A vapor sample detection method is described where the vapor sample contains vapor and ambient air and surrounding natural background particles. The vapor sample detection method includes the steps of generating a supply of aerosol that have a particular effective median particle size, mixing the aerosol with the vapor sample forming aerosol and adsorbed vapor suspended in an air stream, impacting the suspended aerosol and adsorbed vapor upon a reflecting element, alternatively directing infrared light to the impacted aerosol and adsorbed vapor, detecting and analyzing the alternatively directed infrared light in essentially real time using a spectrometer and a microcomputer and identifying the vapor sample. 13 figs.

  8. In Situ Aerosol Optical Thickness Collected by the SIMBIOS Program (1997-2000): Protocols, and and Data QC and Analysis

    NASA Technical Reports Server (NTRS)

    Fargion, Giulietta S.; Barnes, Robert; McClain, Charles

    2001-01-01

    The purpose of this technical report is to provide current documentation of the Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies (SIMBIOS) Project Office activities on in situ aerosol optical thickness (i.e., protocols, and data QC and analysis). This documentation is necessary to ensure that critical information is related to the scientific community and NASA management. This critical information includes the technical difficulties and challenges of validating and combining ocean color data from an array of independent satellite systems to form consistent and accurate global bio-optical time series products. This technical report is not meant as a substitute for scientific literature. Instead, it will provide a ready and responsive vehicle for the multitude of technical reports issued by an operational project.

  9. UPDATED USER-FRIENDLY COMPUTER PROGRAMS FOR SOLVING SAMPLING AND STATISTICAL PROBLEMS (FOR MICROCOMPUTERS) (DATE OF COVERAGE: 1993). - SOFTWARE.

    EPA Science Inventory

    The product contains user-friendly computer programs for solving sampling and related statistical problems. All have been updated as well and more programs have been added. Specific, detailed written instructions and examples built into the programs are provided so that the user ...

  10. Evolution of Biomass Burning Aerosols in the Near Field

    NASA Astrophysics Data System (ADS)

    Sedlacek, Arthur; Kleinman, Lawrence; Arnott, W. Patrick; Adachi, Kouji; Buseck, Peter; Lewis, Ernest; Onasch, Timothy; pikridas, Michail; Shilling, John; Springston, Stephen; Wang, Jian; Yokelson, Robert

    2014-05-01

    Biomass burning is a significant source of aerosols that can perturb Earth's climate through the direct (both scattering and absorption), indirect (cloud formation and precipitation), and semi-direct (cloud dissipation) radiative effects. Despite much effort, quantities important to determining radiative forcing for these events still remain highly uncertain due to the inherent difficultly of conducting the required measurements and instrumentation limitations. Further adding to this uncertainty is that few field campaigns have been conducted in the northern temperate latitudes in spite of biomass burning producing about one-third of the PM2.5 in the US. During the summer and early fall of 2013, the Atmospheric Radiation Measurement (ARM) program of the U. S. Department of Energy (DOE) sponsored an aircraft-based field campaign to study the near-field evolution of particulate emissions from biomass burning. Key scientific objectives for the Biomass Burning Observation Project (BBOP) are to 1) quantify the downwind time evolution of microphysical, morphological, chemical, hygroscopic, and optical properties of aerosols generated by biomass burning, 2) use the time sequences of observations to constrain processes and parameterizations in a Lagrangian model of aerosol evolution, and 3) incorporate time evolution information into a single-column radiative transfer model for determining forcing per unit carbon burned. Discussion will be on the near-field evolution of particle mixing state and morphology, chemical composition, and microphysical processes that determine aerosol size distribution and single scattering albedo (SSA) of light absorbing aerosols. In cases studied, increases in the coating thickness of refractive black carbon (rBC) particles, organic aerosol/rBC ratio, scattering/CO ratio, and aerosol size distributions have been observed. Results are based on wildfires sampled in the US northwest and on controlled agricultural burns in the south

  11. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  12. Design of a program in Matlab environment for gamma spectrum analysis of geological samples

    NASA Astrophysics Data System (ADS)

    Rojas, M.; Correa, R.

    2016-05-01

    In this work we present the analysis of gamma ray spectra Ammonites found in different places. One of the fossils was found near the city of Cusco (Perú) and the other in “Cajón del Maipo” in Santiago (Chile). Spectra were taken with a hyperpure germanium detector (HPGe) in an environment cooled with liquid nitrogen, with the technique of high-resolution gamma spectroscopy. A program for automatic detection and classifying of the samples was developed in Matlab. It program has the advantage of being able to make direct interventions or generalize it even more, or make it automate for specific spectra and make comparison between them. For example it can calibrate the spectrum automatically, only by giving the calibration spectrum, without the necessity of putting them. Finally, it also erases the external noise.

  13. Asymmetrical booster ascent guidance and control system design study. Volume 4: Sampled data stability analysis program (SADSAP) user's guide. [space shuttle development

    NASA Technical Reports Server (NTRS)

    Wilson, J. L.

    1974-01-01

    A users guide to the Sampled Data Stability Analysis Program (SADSAP) is provided. This program is a general purpose sampled data Stability Analysis Program capable of providing frequency response on root locus data.

  14. A FORTRAN program for the analysis of linear continuous and sample-data systems

    NASA Technical Reports Server (NTRS)

    Edwards, J. W.

    1976-01-01

    A FORTRAN digital computer program which performs the general analysis of linearized control systems is described. State variable techniques are used to analyze continuous, discrete, and sampled data systems. Analysis options include the calculation of system eigenvalues, transfer functions, root loci, root contours, frequency responses, power spectra, and transient responses for open- and closed-loop systems. A flexible data input format allows the user to define systems in a variety of representations. Data may be entered by inputing explicit data matrices or matrices constructed in user written subroutines, by specifying transfer function block diagrams, or by using a combination of these methods.

  15. Biology of the Coarse Aerosol Mode: Insights Into Urban Aerosol Ecology

    NASA Astrophysics Data System (ADS)

    Dueker, E.; O'Mullan, G. D.; Montero, A.

    2015-12-01

    Microbial aerosols have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial aerosols are often associated with coarse aerosol particles, our limited understanding of the coarse aerosol mode further impedes our ability to develop models of viable bacterial aerosol production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied aerosol particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse aerosols from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse aerosols and viable bacterial aerosols increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse aerosols and bacterial aerosols above that waterway. Our current research indicates that bacterial communities in aerosols at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial aerosols along the urban waterfront has also revealed significant shifts in bacterial aerosols, and specifically bacteria associated with coarse aerosols, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial aerosol viability and the coarse aerosol fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.

  16. Methods for collecting benthic invertebrate samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic invertebrate communities are evaluated as part of the ecological survey component of the U.S. Geological Survey's National Water-Quality Assessment Program. These biological data are collected along with physical and chemical data to assess water-quality conditions and to develop an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. The objectives of benthic invertebrate community characterizations are to (1) develop for each site a list of tax a within the associated stream reach and (2) determine the structure of benthic invertebrate communities within selected habitats of that reach. A nationally consistent approach is used to achieve these objectives. This approach provides guidance on site, reach, and habitat selection and methods and equipment for qualitative multihabitat sampling and semi-quantitative single habitat sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data within and among study units.

  17. The Application of Adaptive Sampling and Analysis Program (ASAP) Techniques to NORM Sites

    SciTech Connect

    Johnson, Robert; Smith, Karen P.; Quinn, John

    1999-10-29

    The results from the Michigan demonstration establish that this type of approach can be very effective for NORM sites. The advantages include (1) greatly reduced per sample analytical costs; (2) a reduced reliance on soil sampling and ex situ gamma spectroscopy analyses; (3) the ability to combine characterization with remediation activities in one fieldwork cycle; (4) improved documentation; and (5) ultimately better remediation, as measured by greater precision in delineating soils that are not in compliance with requirements from soils that are in compliance. In addition, the demonstration showed that the use of real-time technologies, such as the RadInSoil, can facilitate the implementation of a Multi-Agency Radiation Survey and Site Investigation Manual (MARSSIM)-based final status survey program

  18. Sample Collection for Investigation of Mars (SCIM): An Early Mars Sample Return Mission Through the Mars Scout Program

    NASA Technical Reports Server (NTRS)

    Leshin, L. A.; Yen, A.; Bomba, J.; Clark, B.; Epp, C.; Forney, L.; Gamber, T.; Graves, C.; Hupp, J.; Jones, S.

    2002-01-01

    The Sample Collection for Investigation of Mars (SCIM) mission is designed to: (1) make a 40 km pass through the Martian atmosphere; (2) collect dust and atmospheric gas; and (3) return the samples to Earth for analysis. Additional information is contained in the original extended abstract.

  19. Sampling design optimization of a mussel watch-type monitoring program, the French Monitoring Network

    SciTech Connect

    Beliaeff, B.; Claisse, D.; Smith, P.J.

    1995-12-31

    In the French Monitoring Network, trace element and organic concentration in biota has been measured for 15 years on a quarterly basis at over 80 sites scattered along the French coastline. A reduction in the sampling effort may be needed as a result of budget restrictions. A constant budget, however, would allow the advancement of certain research and development projects, such as the feasibility of new chemical analysis. The basic problem confronting the program sampling design optimization is finding optimal numbers of sites in a given non-heterogeneous area and of sampling events within a year at each site. First, they determine a site specific cost function integrating analysis, personnel, and computer costs. Then, within-year and between-site variance components are estimated from the results of a linear model which includes a seasonal component. These two steps provide a cost-precision optimum for each contaminant. An example is given using the data from the 4 sites of the Loire estuary. Over all sites, significant `U`-shaped trends are estimated for Pb, PCBs, {Sigma}DDT and {alpha}-HCH, while PAHs show a significant inverted `U`-shaped curve. For most chemicals the within-year variance appears to be much higher than the between sites variance. This leads to the conclusion that, for this case, reducing the number of sites by two is preferable economically and in terms of monitoring efficiency to reducing the sampling frequency by the same factor. Further implications for the French Monitoring Network are discussed.

  20. 2015 Long-Term Hydrologic Monitoring Program Sampling and Analysis Results Report for Project Rulison, Co

    SciTech Connect

    Findlay, Rick; Kautsky, Mark

    2015-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rulison, Colorado, Site for the Long-Term Hydrologic Monitoring Program (LTHMP) on May 20–22 and 27, 2015. Several of the land owners were not available to allow access to their respective properties, which created the need for several sample collection trips. This report documents the analytical results of the Rulison monitoring event and includes the trip report and the data validation package (Appendix A). The groundwater and surface water monitoring were shipped to the GEL Group Inc. laboratories for analysis. All requested analyses were successfully completed. Samples were analyzed for gamma-emitting radionuclides by high- resolution gamma spectrometry. Tritium was analyzed using two methods, the conventional tritium method, which has a detection limit on the order of 400 picocuries per liter (pCi/L), and the enriched method (for selected samples), which has a detection limit on the order of 3 pCi/L.

  1. Astrobiology Sample Analysis Program (ASAP) for Advanced Life Detection Instrumentation Development and Calibration

    NASA Technical Reports Server (NTRS)

    Glavin, Daniel; Brinkerhoff, Will; Dworkin, Jason; Eigenbrode, Jennifer; Franz, Heather; Mahaffy, Paul; Stern, Jen; Blake, Daid; Sandford, Scott; Fries, marc; Steele, Andrew; Amashukeli, Xenia; Fisher, Anita; Grunthaner, Frank; Aubrey, Andrew; Bada, Jeff; Chiesl, Tom; Stockton, Amanda; Mathies, Rich

    2008-01-01

    Scientific ground-truth measurements for near-term Mars missions, such as the 2009 Mars Science Laboratory (MSL) mission, are essential for validating current in situ flight instrumentation and for the development of advanced instrumentation technologies for life-detection missions over the next decade. The NASA Astrobiology Institute (NAI) has recently funded a consortium of researchers called the Astrobiology Sample Analysis Program (ASAP) to analyze an identical set of homogenized martian analog materials in a "round-robin" style using both state-of-the-art laboratory techniques as well as in-situ flight instrumentation including the SAM gas chromatograph mass spectrometer and CHEMIN X-ray diffraction/fluorescence instruments on MSL and the Urey and MOMA organic analyzer instruments under development for the 2013 ExoMars missions. The analog samples studied included an Atacama Desert soil from Chile, the Murchison meteorite, a gypsum sample from the 2007 AMASE Mars analog site, jarosite from Panoche Valley, CA, a hydrothermal sample from Rio Tinto, Spain, and a "blind" sample collected during the 2007 MSL slow-motion field test in New Mexico. Each sample was distributed to the team for analysis to: (1) determine the nature and inventory of organic compounds, (2) measure the bulk carbon and nitrogen isotopic composition, (3) investigate elemental abundances, mineralogy and matrix, and (4) search for biological activity. The experimental results obtained from the ASAP Mars analog research consortium will be used to build a framework for understanding the biogeochemistry of martian analogs, help calibrate current spaceflight instrumentation, and enhance the scientific return from upcoming missions.

  2. Hospital washbasin water: risk of Legionella-contaminated aerosol inhalation.

    PubMed

    Cassier, P; Landelle, C; Reyrolle, M; Nicolle, M C; Slimani, S; Etienne, J; Vanhems, P; Jarraud, S

    2013-12-01

    The contamination of aerosols by washbasin water colonized by Legionella in a hospital was evaluated. Aerosol samples were collected by two impingement technologies. Legionella was never detected by culture in all the (aerosol) samples. However, 45% (18/40) of aerosol samples were positive for Legionella spp. by polymerase chain reaction, with measurable concentrations in 10% of samples (4/40). Moreover, immunoassay detected Legionella pneumophila serogroup 1 and L. anisa, and potentially viable bacteria were seen on viability testing. These data suggest that colonized hospital washbasins could represent risks of exposure to Legionella aerosol inhalation, especially by immunocompromised patients.

  3. Detection and Elimination of Corynebacterium bovis from Barrier Rooms by Using an Environmental Sampling Surveillance Program.

    PubMed

    Manuel, Christopher; Pugazhenthi, Umarani; Spiegel, Shannon; Leszczynski, Jori

    2017-02-16

    Rodent health-monitoring programs based on sampling an IVC system's exhaust air dust (EAD) has enhanced and evenreplaced traditional sentinels for some rodent pathogens. EAD testing by qPCR assay is an optimal surveillance methodfor the rapid detection of Corynebacterium bovis-infected immunodeficient mice. Here we demonstrate that an active EADsurveillance program for C. bovis can be used to maintain nude mice C. bovis-free after the transition from historically enzootically infected colonies. During 3 events over 3 y, rapid detection of infection, elimination of infected mice, aggressivequarantine measures, and local decontamination prevented the spread of C. bovis within 2 barrier rooms. In total, 4 cages ofinfected nude mice were identified and removed, preventing the spread of infection to 469 other cages of immunodeficientmice. In addition, we present data regarding a refinement to EAD testing which enables row-specific surveillance of an IVCrack. This technique systemically decreases the amount of testing required to locate an individually infected cage. Due to ourability to rapidly detect and localize an infected cage, we were able to investigate the route of C. bovis introduction into ourbarrier rooms. Our epidemiologic investigation suggested that the transmission of C. bovis occurred through contaminated,cryopreserved, patient-derived xenograft tumor tissue. This previously unknown source of C. bovis can infect mice used topropagate these tumors. Together, these data demonstrate that a remediation program that combines rapid detection, testand-cull, and local decontamination under quarantine conditions can eliminate C. bovis from a mouse colony.

  4. Report on the audit of the Savannah River Site`s quality control program for groundwater sampling

    SciTech Connect

    1997-05-20

    The Savannah River Site`s groundwater remediation program was managed by the Department of Energy`s (Department) management and operating contractor for the site, Westinghouse Savannah River Company (Westinghouse). One component of the remediation program was the quality control program. The goal of the groundwater quality control program was to ensure that the results of laboratory analyses of groundwater samples were accurate and precise so that they could be relied upon for making remediation decisions. The objective of this audit was to determine whether Westinghouse acquired the minimal number of laboratory analyses required to ensure that groundwater sampling results met this criteria.

  5. Sample results from the integrated salt disposition program macrobatch 6 tank 21H qualifications MST solids sample

    SciTech Connect

    Peters, T. B.

    2013-02-26

    Savannah River National Laboratory (SRNL) performed experiments on qualification material for use in the Integrated Salt Disposition Program (ISDP) Batch 6 processing. As part of this qualification work, SRNL performed an Actinide Removal Process (ARP) test. From this test, the residual monosodium titanate (MST) was analyzed for radionuclide uptake. The results of these analyses are reported and are within historical precedent.

  6. Microanalysis of the aerosol collected over south-central New Mexico during the alive field experiment, May-December 1989

    NASA Astrophysics Data System (ADS)

    Sheridan, Patrick J.; Schnell, Russel C.; Kahl, Jonathan D.; Boatman, Joe F.; Garvey, Dennis M.

    Thirty-eight size-segregated aerosol samples were collected in the lower troposphere over the high desert of south-central New Mexico, using cascade impactors mounted onboard two research aircraft. Four of these samples were collected in early May, sixteen in mid-July, and the remaining ones in December 1989, during three segments of the ALIVE field initiative. Analytical electron microscope analyses of aerosol deposits and individual particles from these samples were performed to physically and chemically characterize the major particulate species present in the aerosol. Air-mass trajectories arriving at the sampling area in the May program were quite different from those calculated for the July period. In general, the May trajectories showed strong westerly winds, while the July winds were weaker and southerly, consistently passing over or very near the border cities of El Paso, Texas, and Ciudad Juarez, Mexico. Aerosol samples collected during the May period were predominantly fine (0.1-0.5 μm dia.), liquid H 2SO 4 droplets. Samples from the July experiment were comprised mostly of fine, solid (NH 4) 2SO 4 or mostly neutralized sulfate particles. In both sampling periods, numerous other particle classes were observed, including many types with probable terrestrial or anthropogenic sources. The numbers of these particles, however, were small when compared with the sulfates. Composite particle types, including sulfate/crustal and sulfate/carbonaceous, were also found to be present. The major differences in aerosol composition between the May and July samples (i.e. the extensive neutralization of sulfates in the July samples) can be explained by considering the different aerosol transport pathways and the proximity of the July aerosol to the El Paso/Juarez urban plume. Winds during the December experiment were quite variable, and may have contributed to the widely varying aerosol compositions observed in these samples. When the aircraft sampled the El Paso

  7. Aerosol Dynamics Laboratory

    SciTech Connect

    Rader, D.J.; Mondy, L.A.

    1990-04-01

    In past five years, Department 1510 has developed a state-of-the-art Aerosol Dynamics Laboratory (ADL). This report documents the current instrumentation and capabilities that exist in this laboratory. The ADL was developed from a variety of sources, with a primary contribution from Department 1510's Independent Research and Development program in aerosol dynamics. Current capabilities of the ADL include: (1) generation of calibration-quality monodisperse particles with diameters between 0.005 to 100 {mu}m, (2) real-time measurement of particle size distributions for particle diameters between 0.01 and 100 {mu}m, (3) in situ, real-time measurement of particle size distributions for particle diameters between 0.3 and 100 {mu}m, and (4) real-time measurement of particle charge distributions for particle diameters between 0.01 and 1.0 {mu}m. 14 refs., 5 figs.

  8. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Technical Reports Server (NTRS)

    Zaveri, R. A.; Shaw, W. J.; Cahill, J. F.; Cairns, Brian; Cappa, C. D.; Ottaviani, Matteo; Cziczo, D. J.; Ferrare, Richard A.; Alexander, M. L.; Alexandrov, Mikhail Dmitrievic; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Schmid, B.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Flowers, B. A.; Fortner, E.; Baidar, S.; Hair, J.; Hostetler, C.; Obland, M. D.; Rogers, R. R.; Floerchinger, C.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climaterelated properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  9. Temporal Variability of Aerosol Properties during TCAP: Impact on Radiative Forcing

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Pekour, Mikhail S.; Berg, Larry K.; Fast, Jerome D.; Michalsky, Joseph J.; Lantz, K.; Hodges, G. B.

    2013-11-01

    Ground-based remote sensing and in situ observations of aerosol microphysical and optical properties have been collected during summertime (June-August, 2012) as part of the Two-Column Aerosol Project (TCAP; http://campaign.arm.gov/tcap/), which was supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program (http://www.arm.gov/). The overall goal of the TCAP field campaign is to study the evolution of optical and microphysical properties of atmospheric aerosol transported from North America to the Atlantic and their impact on the radiation energy budget. During TCAP, the ground-based ARM Mobile Facility (AMF) was deployed on Cape Cod, an arm-shaped peninsula situated on the easternmost portion of Massachusetts (along the east coast of the United States) and that is generally downwind of large metropolitan areas. The AMF site was equipped with numerous instruments for sampling aerosol, cloud and radiative properties, including a Multi-Filter Rotating Shadowband Radiometer (MFRSR), a Scanning Mobility Particle Sizer (SMPS), an Aerodynamic Particle Sizer (APS), and a three-wavelength nephelometer. In this study we present an analysis of diurnal and day-to-day variability of the column and near-surface aerosol properties obtained from remote sensing (MFRSR data) and ground-based in situ measurements (SMPS, APS, and nephelometer data). In particular, we show that the observed diurnal variability of the MFRSR aerosol optical depth is strong and comparable with that obtained previously from the AERONET climatology in Mexico City, which has a larger aerosol loading. Moreover, we illustrate how the variability of aerosol properties impacts the direct aerosol radiative forcing at different time scales.

  10. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Ferrare, R. A.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Erickson, M. H.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kassianov, E. I.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Kubátová, A.; Langford, A. O.; Laskin, A.; Laulainen, N.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Suski, K.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Worsnop, D. R.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.

    2012-08-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial findings from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  11. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    NASA Astrophysics Data System (ADS)

    Zaveri, R. A.; Shaw, W. J.; Cziczo, D. J.; Schmid, B.; Alexander, M. L.; Alexandrov, M.; Alvarez, R. J.; Arnott, W. P.; Atkinson, D. B.; Baidar, S.; Banta, R. M.; Barnard, J. C.; Beranek, J.; Berg, L. K.; Brechtel, F.; Brewer, W. A.; Cahill, J. F.; Cairns, B.; Cappa, C. D.; Chand, D.; China, S.; Comstock, J. M.; Dubey, M. K.; Easter, R. C.; Fast, J. D.; Floerchinger, C.; Flowers, B. A.; Fortner, E.; Gaffney, J. S.; Gilles, M. K.; Gorkowski, K.; Gustafson, W. I.; Gyawali, M.; Hair, J.; Hardesty, R. M.; Harworth, J. W.; Herndon, S.; Hiranuma, N.; Hostetler, C.; Hubbe, J. M.; Jayne, J. T.; Jeong, H.; Jobson, B. T.; Kleinman, L. I.; Kluzek, C.; Knighton, B.; Kolesar, K. R.; Kuang, C.; Langford, A. O.; Laskin, A.; Marchbanks, R. D.; Mazzoleni, C.; Mei, F.; Moffet, R. C.; Nelson, D.; Obland, M. D.; Oetjen, H.; Onasch, T. B.; Ortega, I.; Ottaviani, M.; Pekour, M.; Prather, K. A.; Radney, J. G.; Rogers, R. R.; Sandberg, S. P.; Sedlacek, A.; Senff, C. J.; Senum, G.; Setyan, A.; Shilling, J. E.; Shrivastava, M.; Song, C.; Springston, S. R.; Subramanian, R.; Tomlinson, J.; Volkamer, R.; Wallace, H. W.; Wang, J.; Weickmann, A. M.; Yu, X.-Y.; Zelenyuk, A.; Zhang, Q.

    2012-01-01

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The US Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and "aged" urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: (a) the scientific background and motivation for the study, (b) the operational and logistical information pertinent to the execution of the study, (c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and (d) a roadmap of planned data

  12. Overview of the 2010 Carbonaceous Aerosols and Radiative Effects Study (CARES)

    SciTech Connect

    Zaveri, Rahul A.; Shaw, William J.; Cziczo, D. J.; Schmid, Beat; Ferrare, R.; Alexander, M. L.; Alexandrov, Mikhail; Alvarez, R. J.; Arnott, W. P.; Atkinson, D.; Baidar, Sunil; Banta, Robert M.; Barnard, James C.; Beranek, Josef; Berg, Larry K.; Brechtel, Fred J.; Brewer, W. A.; Cahill, John F.; Cairns, Brian; Cappa, Christopher D.; Chand, Duli; China, Swarup; Comstock, Jennifer M.; Dubey, Manvendra K.; Easter, Richard C.; Erickson, Matthew H.; Fast, Jerome D.; Floerchinger, Cody; Flowers, B. A.; Fortner, Edward; Gaffney, Jeffrey S.; Gilles, Mary K.; Gorkowski, K.; Gustafson, William I.; Gyawali, Madhu S.; Hair, John; Hardesty, Michael; Harworth, J. W.; Herndon, Scott C.; Hiranuma, Naruki; Hostetler, Chris A.; Hubbe, John M.; Jayne, J. T.; Jeong, H.; Jobson, Bertram T.; Kassianov, Evgueni I.; Kleinman, L. I.; Kluzek, Celine D.; Knighton, B.; Kolesar, K. R.; Kuang, Chongai; Kubatova, A.; Langford, A. O.; Laskin, Alexander; Laulainen, Nels S.; Marchbanks, R. D.; Mazzoleni, Claudio; Mei, F.; Moffet, Ryan C.; Nelson, Danny A.; Obland, Michael; Oetjen, Hilke; Onasch, Timothy B.; Ortega, Ivan; Ottaviani, M.; Pekour, Mikhail S.; Prather, Kimberly A.; Radney, J. G.; Rogers, Ray; Sandberg, S. P.; Sedlacek, Art; Senff, Christoph; Senum, Gunar; Setyan, Ari; Shilling, John E.; Shrivastava, ManishKumar B.; Song, Chen; Springston, S. R.; Subramanian, R.; Suski, Kaitlyn; Tomlinson, Jason M.; Volkamer, Rainer M.; Wallace, Hoyt A.; Wang, J.; Weickmann, A. M.; Worsnop, Douglas R.; Yu, Xiao-Ying; Zelenyuk, Alla; Zhang, Qi

    2012-08-22

    Substantial uncertainties still exist in the scientific understanding of the possible interactions between urban and natural (biogenic) emissions in the production and transformation of atmospheric aerosol and the resulting impact on climate change. The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program's Carbonaceous Aerosol and Radiative Effects Study (CARES) carried out in June 2010 in Central Valley, California, was a comprehensive effort designed to improve this understanding. The primary objective of the field study was to investigate the evolution of secondary organic and black carbon aerosols and their climate-related properties in the Sacramento urban plume as it was routinely transported into the forested Sierra Nevada foothills area. Urban aerosols and trace gases experienced significant physical and chemical transformations as they mixed with the reactive biogenic hydrocarbons emitted from the forest. Two heavily-instrumented ground sites - one within the Sacramento urban area and another about 40 km to the northeast in the foothills area - were set up to characterize the evolution of meteorological variables, trace gases, aerosol precursors, aerosol size, composition, and climate-related properties in freshly polluted and 'aged' urban air. On selected days, the DOE G-1 aircraft was deployed to make similar measurements upwind and across the evolving Sacramento plume in the morning and again in the afternoon. The NASA B-200 aircraft, carrying remote sensing instruments, was also deployed to characterize the vertical and horizontal distribution of aerosols and aerosol optical properties within and around the plume. This overview provides: a) the scientific background and motivation for the study, b) the operational and logistical information pertinent to the execution of the study, c) an overview of key observations and initial results from the aircraft and ground-based sampling platforms, and d) a roadmap of planned data

  13. A Study of Program Management Procedures in the Campus-Based and Basic Grant Programs. Technical Report No. 1: Sample Design, Student Survey Yield and Bias.

    ERIC Educational Resources Information Center

    Puma, Michael J.; Ellis, Richard

    Part of a study of program management procedures in the campus-based and Basic Educational Opportunity Grant programs reports on the design of the site visit component of the study and the results of the student survey, both in terms of the yield obtained and the quality of the data. Chapter 2 describes the design of sampling methodology employed…

  14. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  15. Studies of the Los Angeles aerosol:

    NASA Astrophysics Data System (ADS)

    Xiong, Cheng

    This work addresses two important but little studied aspects of the behavior of the atmospheric aerosol: (1)the contributions of the atmospheric aerosol to the surface microlayer (SMIC) of natural waters (a biochemically sensitive site) and (2)the morphological properties of atmospheric aerosols. The first part of the study involved a cooperative program for concurrent measurements of atmospheric aerosol, SMIC, and water column samples. Our group measured aerosol chemical characteristics (in terms of total concentrations and size distributions of various elements) at several locations on the west side of Los Angeles including above Santa Monica Bay. Scatter diagrams were made of SMIC concentrations for various elements vs. atmospheric aerosol concentrations of the same elements for similar time periods. The scatter diagrams identified a subset of elements in the SMIC that tended to increase with the atmospheric concentrations of the same elements. For these elements atmospheric deposition is probably a major source in the SMIC. Our scatter diagrams offer a novel approach to source resolution for the SMIC and potentially, a new method of determining dry deposition rates to natural waters. The second part of the research describes the first systematic study of the morphological properties of atmospheric aggregates in the ultrafine particle size range (dp <= 0.1 μm). These aggregates are emitted from diesel engines and other high temperature sources and have been linked to adverse effects on public health. Particles were collected from the atmospheric air on transmission electron microscope (TEM) grids fitted on the last two stages of a single- jet, eight-stage, low pressure impactor (LPI). Photomicrographs of the TEM grids were analyzed to obtain the fractal dimension (D f) and prefactor (A) for aggregates. Values of Df increased from near 1 to above 2 as the number of primary particles making up the aggregates increased from 10 to 180 for the measurements made in

  16. Evaluating Ethanol-based Sample Preservation to Facilitate Use of DNA Barcoding in Routine Freshwater Biomonitoring Programs Using Benthic Macroinvertebrates

    EPA Science Inventory

    Molecular methods, such as DNA barcoding, have the potential in enhance biomonitoring programs worldwide. Altering routinely used sample preservation methods to protect DNA from degradation may pose a potential impediment to application of DNA barcoding and metagenomics for biom...

  17. Huygens Probe Aerosol Collector Pyrolyser Experiment

    NASA Astrophysics Data System (ADS)

    Israel, M.; Cabane, J.-F.; Brun, G.; Niemann, S.; Way, H.; Riedler, W.; Steller, M.; Raulin, F.; Coscia, D.

    2002-07-01

    ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135-32 km and 22-17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250°C or 600°C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen. Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms. In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the

  18. Huygens Probe Aerosol Collector Pyrolyser Experiment

    NASA Astrophysics Data System (ADS)

    Israel, G.; Cabane, M.; Brun, J.-F.; Niemann, H.; Way, S.; Riedler, W.; Steller, M.; Raulin, F.; Coscia, D.

    2002-07-01

    ACP's main objective is the chemical analysis of the aerosols in Titan's atmosphere. For this purpose, it will sample the aerosols during descent and prepare the collected matter (by evaporation, pyrolysis and gas products transfer) for analysis by the Huygens Gas Chromatograph Mass Spectrometer (GCMS). A sampling system is required for sampling the aerosols in the 135'32 km and 22'17 km altitude regions of Titan's atmosphere. A pump unit is used to force the gas flow through a filter. In its sampling position, the filter front face extends a few mm beyond the inlet tube. The oven is a pyrolysis furnace where a heating element can heat the filter and hence the sampled aerosols to 250 °C or 600 °C. The oven contains the filter, which has a thimble-like shape (height 28 mm). For transferring effluent gas and pyrolysis products to GCMS, the carrier gas is a labeled nitrogen 15N2, to avoid unwanted secondary reactions with Titan's atmospheric nitrogen. Aeraulic tests under cold temperature conditions were conducted by using a cold gas test system developed by ONERA. The objective of the test was to demonstrate the functional ability of the instrument during the descent of the probe and to understand its thermal behavior, that is to test the performance of all its components, pump unit and mechanisms. In order to validate ACP's scientific performance, pyrolysis tests were conducted at LISA on solid phase material synthesized from experimental simulation. The chromatogram obtained by GCMS analysis shows many organic compounds. Some GC peaks appear clearly from the total mass spectra, with specific ions well identified thanks to the very high sensitivity of the mass spectrometer. The program selected for calibrating the flight model is directly linked to the GCMS calibration plan. In order not to pollute the two flight models with products of solid samples such as tholins, we excluded any direct pyrolysis tests through the ACP oven during the first phase of the

  19. Flight summaries and temperature climatology at airliner cruise altitudes from GASP (Global Atmospheric Sampling Program) data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Jasperson, W. H.

    1983-01-01

    Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.

  20. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  1. Pre-Cloud Aerosol, Cloud Droplet Concentration, and Cloud Condensation Nuclei from the VAMOS Ocean-Cloud-Atmosphere Land Study (VOCALS) Field Campaign First Quarter 2010 ASR Program Metric Report

    SciTech Connect

    Kleinman, LI; Springston, SR; Daum, PH; Lee, Y-N; Sedlacek, AJ; Senum, G; Wang, J

    2011-08-31

    In this, the first of a series of Program Metric Reports, we (1) describe archived data from the DOE G-1 aircraft, (2) illustrate several relations between sub-cloud aerosol, CCN, and cloud droplets pertinent to determining the effects of pollutant sources on cloud properties, and (3) post to the data archive an Excel spreadsheet that contains cloud and corresponding sub-cloud data.

  2. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    materials determine the range of applicability of each method. A useful microencapsulation method, based on coagulation by inertial force was developed...The generation apparatus, consisting of two aerosol generators in series, was utilized to produce many kinds of microcapsules . A fluid energy mill...was found useful for the production of some microcapsules . The permeability of microcapsule films and the effect of exposure time and humidity were

  3. Results of an indoor size fractionated PM school sampling program in Libby, Montana.

    PubMed

    Ward, Tony J; Noonan, Curtis W; Hooper, Kathi

    2007-07-01

    Libby, Montana is the only PM(2.5) non-attainment area in the western United States with the exceptions of parts of southern California. During January through March 2005, a particulate matter (PM) sampling program was conducted within Libby's elementary and middle schools to establish baseline indoor PM concentrations before a wood stove change-out program is implemented over the next several years. As part of this program, indoor concentrations of PM mass, organic carbon (OC), and elemental carbon (EC) in five different size fractions (>2.5, 1.0-2.5, 0.5-1.0, 0.25-0.5, and <0.25 microm) were measured. Total measured PM mass concentrations were much higher inside the elementary school, with particle size fraction (>2.5, 0.5-1.0, 0.25-0.5, and <0.25 microm) concentrations between 2 and 5 times higher when compared to the middle school. The 1.0-2.5 microm fraction had the largest difference between the two sites, with elementary school concentrations nearly 10 times higher than the middle school values. The carbon component for the schools' indoor PM was found to be predominantly composed of OC. Measured total OC and EC concentrations, as well as concentrations within individual size fractions, were an average of two to five times higher at the elementary school when compared to the middle school. For the ultrafine fraction (<0.25), EC concentrations were similar between each of the schools. Despite the differences in concentrations between the schools at the various fraction levels, the OC/EC ratio was determined to be similar.

  4. Detection and Elimination of Corynebacterium bovis from Barrier Rooms by Using an Environmental Sampling Surveillance Program.

    PubMed

    Manuel, Christopher A; Pugazhenthi, Umarani; Spiegel, Shannon P; Leszczynski, Jori K

    2017-03-01

    Rodent health-monitoring programs based on sampling an IVC system's exhaust air dust (EAD) has enhanced and even replaced traditional sentinels for some rodent pathogens. EAD testing by qPCR assay is an optimal surveillance method for the rapid detection of Corynebacterium bovis-infected immunodeficient mice. Here we demonstrate that an active EAD surveillance program for C. bovis can be used to maintain nude mice C. bovis-free after the transition from historically enzootically infected colonies. During 3 events over 3 y, rapid detection of infection, elimination of infected mice, aggressive quarantine measures, and local decontamination prevented the spread of C. bovis within 2 barrier rooms. In total, 4 cages of infected nude mice were identified and removed, preventing the spread of infection to 469 other cages of immunodeficient mice. In addition, we present data regarding a refinement to EAD testing which enables row-specific surveillance of an IVC rack. This technique systemically decreases the amount of testing required to locate an individually infected cage. Due to our ability to rapidly detect and localize an infected cage, we were able to investigate the route of C. bovis introduction into our barrier rooms. Our epidemiologic investigation suggested that the transmission of C. bovis occurred through contaminated, cryopreserved, patient-derived xenograft tumor tissue. This previously unknown source of C. bovis can infect mice used to propagate these tumors. Together, these data demonstrate that a remediation program that combines rapid detection, test-and-cull, and local decontamination under quarantine conditions can eliminate C. bovis from a mouse colony.

  5. Causes and consequences of continental breakup in the South Atlantic: lessons learned from the SAMPLE program

    NASA Astrophysics Data System (ADS)

    Trumbull, Robert B.

    2014-05-01

    Since 2009 the SAMPLE program (www.spp-sample.de) provides a platform for research into the causes and effects of continental breakup and the evolution of passive margins. SAMPLE encompasses 28 projects from 13 German institutions and many international partnerships. The 6-year program will run through 2015. At the core of the program are observational studies that are interlinked by modelling projects examining the interplay of deep mantle dynamics, lithospheric stress fields, pre-rift fabric and melt-weaking on localizing rifting. Geophysics teams collect and integrate existing data from wide-angle seismic profiles, reprocessed multichannel seismics, as well as gravity, magnetics and heat-flow studies to construct self-consistent lithospheric-scale 3-D models along the conjugate margins. Key interests are variations in margin architecture, distribution of magmatic features and the evolution of sedimentary basins (subsidence and thermal histories). An exciting new contribution of SAMPLE geophysics is a linked set of seismic, seismologic and magnetotelluric experiments along the Walvis Ridge, including onshore NW Namibia and the Tristan da Cunha hotspot. In the deep mantle, we examine evidence from global seismic tomography for dramatic low seismic-velocity regions near the core-mantle boundary beneath southern Africa and their implications for dynamics in the deep Earth and the thermo-chemical nature of plumes. Petrologic studies focus on near-primary mantle melts represented by Mg-rich mafic dikes. Projects address the origin of magmas and crust-mantle interaction, and the environmental impact of mega-scale volcanism during breakup. Thermobarometry results from the African margin reveal a N-to-S decrease in mantle potential temperatures from 1520°C (N) to 1380° (S), which supports a thermal plume origin for excessive melt production in the north. Thermochronology data from both conjugate margins reveal complex and puzzling patterns in the denudation history

  6. Effect of sampling volume on dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distributions (APSDs) measured by the Next-Generation Pharmaceutical Impactor (NGI) and the Andersen eight-stage cascade impactor (ACI).

    PubMed

    Mohammed, Hlack; Roberts, Daryl L; Copley, Mark; Hammond, Mark; Nichols, Steven C; Mitchell, Jolyon P

    2012-09-01

    Current pharmacopeial methods for testing dry powder inhalers (DPIs) require that 4.0 L be drawn through the inhaler to quantify aerodynamic particle size distribution of "inhaled" particles. This volume comfortably exceeds the internal dead volume of the Andersen eight-stage cascade impactor (ACI) and Next Generation pharmaceutical Impactor (NGI) as designated multistage cascade impactors. Two DPIs, the second (DPI-B) having similar resistance than the first (DPI-A) were used to evaluate ACI and NGI performance at 60 L/min following the methodology described in the European and United States Pharmacopeias. At sampling times ≥2 s (equivalent to volumes ≥2.0 L), both impactors provided consistent measures of therapeutically important fine particle mass (FPM) from both DPIs, independent of sample duration. At shorter sample times, FPM decreased substantially with the NGI, indicative of incomplete aerosol bolus transfer through the system whose dead space was 2.025 L. However, the ACI provided consistent measures of both variables across the range of sampled volumes evaluated, even when this volume was less than 50% of its internal dead space of 1.155 L. Such behavior may be indicative of maldistribution of the flow profile from the relatively narrow exit of the induction port to the uppermost stage of the impactor at start-up. An explanation of the ACI anomalous behavior from first principles requires resolution of the rapidly changing unsteady flow and pressure conditions at start up, and is the subject of ongoing research by the European Pharmaceutical Aerosol Group. Meanwhile, these experimental findings are provided to advocate a prudent approach by retaining the current pharmacopeial methodology.

  7. RESIN, a FORTRAN IV program for determining the area of influence of samples or drill holes in resource target search

    USGS Publications Warehouse

    Singer, D.A.

    1976-01-01

    A FORTRAN IV program that calculates the area of influence of drill holes or samples with respect to the size and shape of elliptical or circular resource targets is presented. Program options include determination of the degree to which areas within a region have been explored and estimation of probabilities that points are centers of undiscovered deposits. Errors of recognition can be utilized in the program input. ?? 1976.

  8. Toxicity of atmospheric aerosols on marine phytoplankton

    PubMed Central

    Paytan, Adina; Mackey, Katherine R. M.; Chen, Ying; Lima, Ivan D.; Doney, Scott C.; Mahowald, Natalie; Labiosa, Rochelle; Post, Anton F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus. We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere–ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia. PMID:19273845

  9. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  10. Absorption of Visible and Long-wave Radiation by Primary and Secondary Biogenic Aerosols.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.

    2008-12-01

    Field results for the 14C content of carbonaceous aerosols are presented that indicate significant biogenic sources of both primary and secondary aerosols in urban and regional environments. Samples collected in Mexico City and downwind of the urban area during the MILAGRO field study are compared with results reported previously in the literature indicating a significant amount of biogenic aerosols from both biomass burning and secondary photochemical production (e.g. terpene oxidations) are contributing to the overall carbonaceous aerosols in the optically active region of 0.1 to 1.0 micron. Samples in this size range collected on quartz fiber filters were also examined using an integrating sphere and FTIR diffuse reflectance techniques to obtain absorption spectra from 280 to the mid-IR. These data clearly indicate that the biogenic derived primary aerosols from agricultural and trash-burning, as well as secondary organic aerosols from isoprene and terpene oxidations will produce both UV-Visible (short-wave) absorbing substances as well as IR (long-wave) absorbing compounds including humic-like-substances (HULIS). With the anticipated increases in growing seasons (i.e. earlier springs and longer summers) the likely hood of increased fires (forest and grassland) as well as the continuing growth in agricultural burning activities, these primary sources are expected to increase and may play a role in heating of the atmosphere. The compound effects of these primary and secondary biogenic sources of absorbing aerosols to the total aerosol loading and regional climate will be discussed. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 as part of the Atmospheric Science Program.

  11. Ross Sea Mollusca from the Latitudinal Gradient Program: R/V Italica 2004 Rauschert dredge samples.

    PubMed

    Ghiglione, Claudio; Alvaro, Maria Chiara; Griffiths, Huw J; Linse, Katrin; Schiaparelli, Stefano

    2013-01-01

    Information regarding the molluscs in this dataset is based on the Rauschert dredge samples collected during the Latitudinal Gradient Program (LGP) on board the R/V "Italica" in the Ross Sea (Antarctica) in the austral summer 2004. A total of 18 epibenthic dredge deployments/samplings have been performed at four different locations at depths ranging from 84 to 515m by using a Rauschert dredge with a mesh size of 500μm. In total 8,359 specimens have been collected belonging to a total of 161 species. Considering this dataset in terms of occurrences, it corresponds to 505 discrete distributional records (incidence data). Of these, in order of abundance, 5,965 specimens were Gastropoda (accounting for 113 species), 1,323 were Bivalvia (accounting for 36 species), 949 were Aplacophora (accounting for 7 species), 74 specimens were Scaphopoda (3 species), 38 were Monoplacophora (1 species) and, finally, 10 specimens were Polyplacophora (1 species). This data set represents the first large-scale survey of benthic micro-molluscs for the area and provides important information about the distribution of several species, which have been seldom or never recorded before in the Ross Sea. All vouchers are permanently stored at the Italian National Antarctic Museum (MNA), Section of Genoa, enabling future comparison and crosschecking. This material is also currently under study, from a molecular point of view, by the barcoding project "BAMBi" (PNRA 2010/A1.10).

  12. Incorporating precision, accuracy and alternative sampling designs into a continental monitoring program for colonial waterbirds

    USGS Publications Warehouse

    Steinkamp, Melanie J.; Peterjohn, B.G.; Keisman, J.L.

    2003-01-01

    A comprehensive monitoring program for colonial waterbirds in North America has never existed. At smaller geographic scales, many states and provinces conduct surveys of colonial waterbird populations. Periodic regional surveys are conducted at varying times during the breeding season using a variety of survey methods, which complicates attempts to estimate population trends for most species. The US Geological Survey Patuxent Wildlife Research Center has recently started to coordinate colonial waterbird monitoring efforts throughout North America. A centralized database has been developed with an Internet-based data entry and retrieval page. The extent of existing colonial waterbird surveys has been defined, allowing gaps in coverage to be identified and basic inventories completed where desirable. To enable analyses of comparable data at regional or larger geographic scales, sampling populations through statistically sound sampling designs should supersede obtaining counts at every colony. Standardized breeding season survey techniques have been agreed upon and documented in a monitoring manual. Each survey in the manual has associated with it recommendations for bias estimation, and includes specific instructions on measuring detectability. The methods proposed in the manual are for developing reliable, comparable indices of population size to establish trend information at multiple spatial and temporal scales, but they will not result in robust estimates of total population numbers.

  13. Ross Sea Mollusca from the Latitudinal Gradient Program: R/V Italica 2004 Rauschert dredge samples

    PubMed Central

    Ghiglione, Claudio; Alvaro, Maria Chiara; Griffiths, Huw J.; Linse, Katrin; Schiaparelli, Stefano

    2013-01-01

    Abstract Information regarding the molluscs in this dataset is based on the Rauschert dredge samples collected during the Latitudinal Gradient Program (LGP) on board the R/V “Italica” in the Ross Sea (Antarctica) in the austral summer 2004. A total of 18 epibenthic dredge deployments/samplings have been performed at four different locations at depths ranging from 84 to 515m by using a Rauschert dredge with a mesh size of 500μm. In total 8,359 specimens have been collected belonging to a total of 161 species. Considering this dataset in terms of occurrences, it corresponds to 505 discrete distributional records (incidence data). Of these, in order of abundance, 5,965 specimens were Gastropoda (accounting for 113 species), 1,323 were Bivalvia (accounting for 36 species), 949 were Aplacophora (accounting for 7 species), 74 specimens were Scaphopoda (3 species), 38 were Monoplacophora (1 species) and, finally, 10 specimens were Polyplacophora (1 species). This data set represents the first large-scale survey of benthic micro-molluscs for the area and provides important information about the distribution of several species, which have been seldom or never recorded before in the Ross Sea. All vouchers are permanently stored at the Italian National Antarctic Museum (MNA), Section of Genoa, enabling future comparison and crosschecking. This material is also currently under study, from a molecular point of view, by the barcoding project “BAMBi” (PNRA 2010/A1.10). PMID:24146597

  14. A study of the origin of atmospheric organic aerosols

    SciTech Connect

    Hildemann, L.M.

    1990-01-01

    The sources of ambient organic particulate matter in urban areas are investigated through a program of emission source measurements, atmospheric measurements, and mathematical modeling of source/receptor relationships. A dilution sampler intended to collect fine organic aerosol from combustion sources is designed to simulate atmospheric cooling and dilution processes, so that organic vapors which condense under ambient conditions will be collected as particulate matter. This system is used to measure the emissions from a boiler burning distillate oil, a home fireplace, catalyst and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat-cooking operations. Alternate techniques are used to sample the particulate matter emitted from cigarette smoking, a roofing tar pot, paved road dust, brake lining wear, tire wear, and vegetative detritus. The bulk chemical characteristics of the fine aerosol fraction are presented for each source. Over half of the fine aerosol mass emitted from automobiles, wood burning, meat cooking, home appliances, cigarettes, and tar pots is shown to consist of organic compounds. The organic material collected from these sources is analyzed using high-resolution gas chromatography. Using a simple analytical protocol, a quantitative, 50-parameter characterization of the elutable fine organic aerosol emitted from each source type is obtained, which proves to be a unique fingerprint that can be used to distinguish most sources from each other. A mathematical model is used to predict the characteristics of fine ambient organic aerosol in the Los Angeles area that would prevail if the primary organic emissions are transported without chemical reaction. The model is found to track the seasonal variations observed in the ambient aerosol at the three sites studied.

  15. Electronic cigarette solutions and resultant aerosol profiles.

    PubMed

    Herrington, Jason S; Myers, Colton

    2015-10-30

    Electronic cigarettes (e-cigarettes) are growing in popularity exponentially. Despite their ever-growing acceptance, their aerosol has not been fully characterized. The current study focused on evaluating e-cigarette solutions and their resultant aerosol for potential differences. A simple sampling device was developed to draw e-cigarette aerosol into a multi-sorbent thermal desorption (TD) tube, which was then thermally extracted and analyzed via a gas chromatography (GC) mass spectrometry (GC-MS) method. This novel application provided detectable levels of over one hundred fifteen volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) from a single 40mL puff. The aerosol profiles from four commercially available e-cigarettes were compared to their respective solution profiles with the same GC-MS method. Solution profiles produced upwards of sixty four unidentified and identified (some only tentatively) constituents and aerosol profiles produced upwards of eighty two compounds. Results demonstrated distinct analyte profiles between liquid and aerosol samples. Most notably, formaldehyde, acetaldehyde, acrolein, and siloxanes were found in the aerosol profiles; however, these compounds were never present in the solutions. These results implicate the aerosolization process in the formation of compounds not found in solutions; have potential implications for human health; and stress the need for an emphasis on electronic cigarette aerosol testing.

  16. 78 FR 53017 - Changes to the Salmonella Verification Sampling Program: Analysis of Raw Beef for Shiga Toxin...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-28

    ... Beef for Shiga Toxin-Producin Escherichia coli and Salmonella AGENCY: Food Safety and Inspection...-producing Escherichia coli (STEC) analysis. Therefore, FSIS will begin analyzing for Salmonella all samples... sampling program and under project code ``MT43'' as part of the E. coli O157:H7 verification...

  17. Analytical Results for Agricultural Soils Samples from a Monitoring Program Near Deer Trail, Colorado (USA)

    USGS Publications Warehouse

    Crock, J.G.; Smith, D.B.; Yager, T.J.B.

    2009-01-01

    Since late 1993, Metro Wastewater Reclamation District of Denver (Metro District, MWRD), a large wastewater treatment plant in Denver, Colorado, has applied Grade I, Class B biosolids to about 52,000 acres of nonirrigated farmland and rangeland near Deer Trail, Colorado, USA. In cooperation with the Metro District in 1993, the U.S. Geological Survey (USGS) began monitoring groundwater at part of this site. In 1999, the USGS began a more comprehensive monitoring study of the entire site to address stakeholder concerns about the potential chemical effects of biosolids applications to water, soil, and vegetation. This more comprehensive monitoring program has recently been extended through 2010. Monitoring components of the more comprehensive study include biosolids collected at the wastewater treatment plant, soil, crops, dust, alluvial and bedrock groundwater, and stream bed sediment. Soils for this study were defined as the plow zone of the dry land agricultural fields - the top twelve inches of the soil column. This report presents analytical results for the soil samples collected at the Metro District farm land near Deer Trail, Colorado, during three separate sampling events during 1999, 2000, and 2002. Soil samples taken in 1999 were to be a representation of the original baseline of the agricultural soils prior to any biosolids application. The soil samples taken in 2000 represent the soils after one application of biosolids to the middle field at each site and those taken in 2002 represent the soils after two applications. There have been no biosolids applied to any of the four control fields. The next soil sampling is scheduled for the spring of 2010. Priority parameters for biosolids identified by the stakeholders and also regulated by Colorado when used as an agricultural soil amendment include the total concentrations of nine trace elements (arsenic, cadmium, copper, lead, mercury, molybdenum, nickel, selenium, and zinc), plutonium isotopes, and gross

  18. Real time infrared aerosol analyzer

    DOEpatents

    Johnson, Stanley A.; Reedy, Gerald T.; Kumar, Romesh

    1990-01-01

    Apparatus for analyzing aerosols in essentially real time includes a virtual impactor which separates coarse particles from fine and ultrafine particles in an aerosol sample. The coarse and ultrafine particles are captured in PTFE filters, and the fine particles impact onto an internal light reflection element. The composition and quantity of the particles on the PTFE filter and on the internal reflection element are measured by alternately passing infrared light through the filter and the internal light reflection element, and analyzing the light through infrared spectrophotometry to identify the particles in the sample.

  19. Aerosols and past environments: A global investigation into cave aerosol identification, distribution, and contribution to speleothem geochemistry

    NASA Astrophysics Data System (ADS)

    Dredge, J. A.; Fairchild, I. J.; Harrison, R. M.; Woodhead, J. D.; Hellstrom, J.; Mattey, D.

    2013-12-01

    A new sector of interest is developing within cave science regarding the influence of aerosols on the cave environment and the potential speleothem palaeoenvironmental aerosol record which may be preserved. This paper presents the results from a global collaboration project which explored all aspects of aerosols in the cave environment. Cave aerosol identification, introduction and distribution Cave aerosol multivariable environmental monitoring projects were carried out in the UK, Spain, Austria and Australia. Results demonstrate that cave ventilation is the predominant control on the introduction and distribution of aerosols throughout the cave environment (Dredge et al., 2013). Consequently, aerosol transportation processes vary as a result of seasonal ventilation changes and cave morphological features. Cave aerosol contribution to speleothem geochemistry Aerosol contributions to speleothem geochemistry were determined by comparing monitored aerosol deposition to speleothem trace element data. Significant aerosol contribution scenarios were identified as: hiatus events, high aerosol flux situations and secondary microbial concentration processes. Modelling indicates that a >99.9% reduction in drip water flow rates is required to reduce trace element supply quantities to equal that of aerosol supply (Dredge et al., 2013). Aerosol palaeoclimate and palaeoenvironmental records Aerosol contributions and the ability to utilise aerosol records in speleothem are investigated in samples from Gibraltar and Australia. Long range dust sources and past atmospheric circulation over several glacial cycles is studied through Sr isotope analysis of a Flowstone core from Gibraltar. Results of organic fire proxy analysis from Australian speleothem samples indicate an aerosol deposition forest fire record. In addition to primary fire deposition, secondary biological feedbacks and subsequent bioaccumulation processes in the cave environment are explored by microbial analysis

  20. Addition of an Aerosol Transmission Model to the Aeronautical Systems Division Infra-Red Emission Prediction Program (ASDIR).

    DTIC Science & Technology

    1979-03-01

    Surface Emissions. ASDIR uses a subroutine, SIGNIR, to predict IR emissions from axisymmetric turbojet , turbofan, and turboshaft engine exhaust system...PREDICTION PROGRAM (ASDIR) THESIS Presented to the Faculty of the School of Engineering of the Air Force Institute of Technology Air Training Command in...Partial Fulfillment of the Requirements for the Degree of Master of Science by Allen C. McLellan, B.S.A.E. Captain USAF Graduate Aerospace Engineering March

  1. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    NASA Astrophysics Data System (ADS)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    aerosols while the natural ones are of lower severity due to low temperatures endemic for the Arctic Ocean areas. For doing the assessment of the air mass components chemical formulation samples of water soluble fraction of the atmospheric aerosol underwent chemical analysis. Sum of main ions within the aerosol composition varied from 0.23 to 16.2 mkg/m3. Minimum ion concentrations are defined in the aerosol sampled over the Chukotka sea surface at still. Chemical composition of the Beringov and Chukotka sea aerosol was dominated by impurities of sea origin coming from the ocean with air mass. Ion sum increased concentrations were observed in the Pevek area (Eastern Siberia Sea). Aerosol chemical composition building was impacted by air mass coming from the shore. Maximum concentrations of the bespoken components are seen in the aerosol sampled during stormy weather. Increase of wind made it for raising into the air of the sea origin particles. Ingestion of sprays onto the filter was eliminated by covering the sample catcher with a special protective hood. This completed survey is indicative of favourable state of atmosphere in the arctic resource of the Russian Arctic Eastern Section during Summer-Autumn season of 2013. The job is done under financial support of project. 23 Programs of fundamental research of the RAS Presidium, Partnership Integration Project, SB RAS. 25.

  2. Revised Protocols for Sampling Algal, Invertebrate, and Fish Communities as Part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Moulton, Stephen R.; Kennen, Jonathan G.; Goldstein, Robert M.; Hambrook, Julie A.

    2002-01-01

    Algal, invertebrate, and fish communities are characterized as part of ecological studies in the U.S. Geological Survey.s National Water-Quality Assessment Program. Information from these ecological studies, together with chemical and physical data, provide an integrated assessment of water quality at local, regional, and national scales. Analysis and interpretation of water-quality data at these various geographic scales require accurate and consistent application of sampling protocols and sample-processing procedures. This report revises and unifies into a single document the algal, invertebrate, and fish community sampling protocols used in the National Water-Quality Assessment Program.

  3. Quantitative x-ray diffraction phase analysis of coarse airborne particulate collected by cascade impactor sampling

    NASA Astrophysics Data System (ADS)

    Esteve, V.; Rius, J.; Ochando, L. E.; Amigó, J. M.

    Mineralogical composition of Castellon (Spanish Mediterranean coast) atmospheric aerosol was studied by X-ray diffraction by sampling with a cascade impactor without filters. Quantitative phase analysis of natural phases present in the atmospheric coarse aerosol was performed using a modified version of the computer program MENGE, that uses the standardless X-ray method developed by Rius for the quantitative analysis of multiphase mixtures, adapted for PC running. Presence of quartz, calcite and gypsum was identified in the atmospheric aerosol and we have quantified their amounts using the standardless method.

  4. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  5. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  6. Subarctic atmospheric aerosol composition: 1. Ambient aerosol characterization

    SciTech Connect

    Friedman, Beth; Herich, Hanna; Kammermann, Lukas; Gross, Deborah S.; Ameth, Almut; Holst, Thomas; Lohmann, U.; Cziczo, Daniel J.

    2009-07-10

    Sub-Arctic aerosol was sampled during July 2007 at the Abisko Research Station Stordalen field site operated by the Royal Swedish Academy of Sciences. Located in northern Sweden at 68º latitude and 385 meters above sea level (msl), this site is classified as a semi-continuous permafrost mire. Number density, size distribution, cloud condensation nucleus properties, and chemical composition of the ambient aerosol were determined. Backtrajectories showed that three distinct airmasses were present over Stordalen during the sampling period. Aerosol properties changed and correlated with airmass origin to the south, northeast, or west. We observe that Arctic aerosol is not compositionally unlike that found in the free troposphere at mid-latitudes. Internal mixtures of sulfates and organics, many on insoluble biomass burning and/or elemental carbon cores, dominate the number density of particles from ~200 to 2000 nm aerodynamic diameter. Mineral dust which had taken up gas phase species was observed in all airmasses. Sea salt, and the extent to which it had lost volatile components, was the aerosol type that most varied with airmass.

  7. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Past research in our group using cylindrical internal reflectance spectroscopy has indicated that aqueous aerosols could contribute to the radiative warming as greenhouse species (1,2). Although aerosol radiative effects have been known for sometime and are considered one of the major uncertainties in climate change modeling, most of the studies have focused on the forcing due to scattering and absorption of radiation in the uv- visible region (3). Infrared spectral information also allows the confirmation of key functional groups that are responsible for enhanced absorption observations from secondary organics in the uv-visible region. This work extends our efforts to evaluate the infrared absorption by aerosols, particularly organics, that are now found to be a major fraction of urban and regional aerosols in the 0.1 to 1.0 micron size range and to help identify key types of organics that can contribute to aerosol absorption. During the MILAGRO campaign, quartz filter samples were taken at 12-hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The samples have been characterized for total carbon content (stable isotope mass spectroscopy) and natural radionuclide tracers, as well as for their UV-visible spectroscopic properties by using integrating sphere diffuse reflectance spectroscopy (Beckman DU with a Labsphere accessory). These same samples have been characterized in the mid and near infrared spectral ranges using diffuse reflection spectroscopy (Nicolet 6700 FTIR with a Smart Collector accessory). Aerosol samples were removed from the surfaces of the aerosol filters by using Si-Carb sampler. The samples clearly indicate the presence of carbonyl organic constituents and the spectra are quite similar to those observed for humic and fulvic acids

  8. Characterization of Cooking-Related Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  9. Measurements of Natural Radioactivity in Submicron Aerosols in Mexico City.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Sterling, K.; Sturchio, N. C.

    2003-12-01

    Natural radionuclides can be useful in evaluating the transport of ozone and aerosols in the troposphere. Beryllium-7, which is produced by cosmic ray interactions in the upper troposphere and lower stratosphere and becomes adsorbed on fine aerosols, can be a useful indicator of upper air transport into a region. Lead-210 is produced by the decay of radon-222 out-gassed into the lower atmosphere from ground-based uranium deposits. Potassium-40, found in soils, can act as a measure of wind-blown dust and also comes from burning of wood and other biomass that is enriched in this natural radioisotope. Thus, both lead-210 and potassium-40 can aid in identification of aerosols sourced in the lower atmosphere. As part of our continuing interest in the lifetimes and sources of aerosols and their radiative effects, we report here measurements of fine aerosol radioactivity in Mexico City, one of the largest megacities in the world. Samples were collected on quartz fiber filters by using cascade impactors (Sierra type, Anderson Instruments) and high-volume air samplers from the rooftop of the main laboratory of El Centro Nacional de Investigacion y Capacitacion Ambiental (CENICA). By using stage 4 of the impactor and timers, we were able to collect integrated samples of sizes > 1 micrometer and < 1 micrometer over 12-hr time periods daily for approximately one month in April 2003. Samples were counted at the University of Illinois at Chicago by using state-of-the-art gamma counting (beryllium-7, 477.6 keV; potassium-40, 1460.8 keV; lead-210, 46.5 keV). The beryllium-7 data indicate one possible upper-air transport event during April 2003. As expected, the lead-210 data indicate very little soil contribution to the fine aerosol. The potassium-40 data showed an increase in fine aerosol potassium during Holy Week that might be attributed to local combustion of biomass fuels. The data will be presented and discussed in light of future data analysis and comparison with other

  10. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  11. Footwall rotation in an oceanic core complex quantified using reoriented Integrated Ocean Drilling Program core samples

    NASA Astrophysics Data System (ADS)

    Morris, A.; Gee, J. S.; Pressling, N.; John, B. E.; MacLeod, C. J.; Grimes, C. B.; Searle, R. C.

    2009-09-01

    Oceanic core complexes expose lower crustal and upper mantle rocks on the seafloor by tectonic unroofing in the footwalls of large-slip detachment faults. The common occurrence of these structures in slow and ultra-slow spread oceanic crust suggests that they accommodate a significant component of plate divergence. However, the subsurface geometry of detachment faults in oceanic core complexes remains unclear. Competing models involve either: (a) displacement on planar, low-angle faults with little tectonic rotation; or (b) progressive shallowing by rotation of initially steeply dipping faults as a result of flexural unloading (the "rolling-hinge" model). We address this debate using palaeomagnetic remanences as markers for tectonic rotation within a unique 1.4 km long footwall section of gabbroic rocks recovered by Integrated Ocean Drilling Program (IODP) sampling at Atlantis Massif oceanic core complex on the Mid-Atlantic Ridge (MAR). These rocks contain a complex record of multipolarity magnetizations that are unrelated to alteration and igneous stratigraphy in the sampled section and are inferred to result from progressive cooling of the footwall section over geomagnetic polarity chrons C1r.2r, C1r.1n (Jaramillo) and C1r.1r. For the first time we have independently reoriented drill-core samples of lower crustal gabbros, that were initially azimuthally unconstrained, to a true geographic reference frame by correlating structures in individual core pieces with those identified from oriented imagery of the borehole wall. This allows reorientation of the palaeomagnetic data, placing far more rigorous constraints on the tectonic history than those possible using only palaeomagnetic inclination data. Analysis of the reoriented high temperature reversed component of magnetization indicates a 46° ± 6° anticlockwise rotation of the footwall around a MAR-parallel horizontal axis trending 011° ± 6°. Reoriented lower temperature components of normal and reversed

  12. Analytical techniques for ambient sulfate aerosols

    SciTech Connect

    Johnson, S.A.; Graczyk, D.G.; Kumar, R.; Cunningham, P.T.

    1981-06-01

    Work done to further develop the infrared spectroscopic analytical method for the analysis of atmospheric aerosol particles, as well as some exploratory work on a new procedure for determining proton acidity in aerosol samples is described. Earlier work had led to the successful use of infrared (ir) spectrophotometry for the analysis of nitrate, ammonium, and neutral and acidic sulfates in aerosol samples collected by an impactor on a Mylar-film substrate. In this work, a filter-extraction method was developed to prepare filter-collected aerosol samples for ir analysis. A study was made comparing the ir analytical results on filter-collected samples with impactor-collected samples. Also, the infrared analytical technique was compared in field studies with light-scattering techniques for aerosol analysis. A highly sensitive instrument for aerosol analysis using attenuated total internal reflection (ATR) infrared spectroscopy was designed, built, and tested. This instrument provides a measurement sensitivity much greater (by a factor of 6 for SO/sub 4//sup 2 -/) than that obtainable using the KBr-pellet method. This instrument collect size- and time-resolved samples and is potentially capable of providing automated, near real-time aerosol analysis. Exploratory work on a novel approach to the determination of proton acidity in filter- or impactor-collected aerosol samples is also described. In this technique, the acidic sample is reacted with an access of a tagged, vapor-phase base. The unreacted base is flushed off and the amount of the tag retained by the sample is a direct measure of the proton acidity of the sample. The base was tagged with Ge, which can be conveniently determined by the x-ray fluorescence technique.

  13. Well installation and documentation, and ground-water sampling protocols for the pilot National Water-Quality Assessment Program

    USGS Publications Warehouse

    Hardy, M.A.; Leahy, P.P.; Alley, W.M.

    1989-01-01

    Several pilot projects are being conducted as part of the National Water Quality Assessment (NAWQA) Program. The purpose of the pilot program is to test and refine concepts for a proposed full-scale program. Three of the pilot projects are specifically designed to assess groundwater. The purpose of this report is to describe the criteria that are being used in the NAWQA pilot projects for selecting and documenting wells, installing new wells, and sampling wells for different water quality constituents. Guidelines are presented for the selection of wells for sampling. Information needed to accurately document each well includes site characteristics related to the location of the well, land use near the well, and important well construction features. These guidelines ensure the consistency of the information collected and will provide comparable data for interpretive purposes. Guidelines for the installation of wells are presented and include procedures that need to be followed for preparations prior to drilling, the selection of the drilling technique and casing type, the grouting procedure, and the well-development technique. A major component of the protocols is related to water quality sampling. Tasks are identified that need to be completed prior to visiting the site for sampling. Guidelines are presented for purging the well prior t sampling, both in terms of the volume of water pumped and the chemical stability of field parameters. Guidelines are presented concerning sampler selection as related to both inorganic and organic constituents. Documentation needed to describe the measurements and observations related to sampling each well and treating and preserving the samples are also presented. Procedures are presented for the storage and shipping of water samples, equipment cleaning, and quality assurance. Quality assurance guidelines include the description of the general distribution of the various quality assurance samples (blanks, spikes, duplicates, and

  14. Aerosols of Mongolian arid area

    NASA Astrophysics Data System (ADS)

    Golobokova, L.; Marinayte, I.; Zhamsueva, G.

    2012-04-01

    Sampling was performed in July-August 2005-2010 at Station Sain Shand (44°54'N, 110°07'E) in the Gobi desert (1000 m a.s.l.), West Mongolia. Aerosol samples were collected with a high volume sampler PM 10 (Andersen Instruments Inc., USA) onto Whatman-41 filters. The substance was extracted from the filters by de-ionized water. The solution was screened through an acetate-cellulose filter with 0.2 micron pore size. Ions of ammonium, sodium, potassium, magnesium, and calcium, as well as sulphate ions, nitrate ions, hydrocarbonate, chloride ions were determined in the filtrate by means of an atomic adsorption spectrometer Carl Zeiss Jena (Germany), a high performance liquid chromatographer «Milichrome A-02» (Russia), and an ionic chromatographer ICS-3000 (Dionex, USA). The PAH fraction was separated from aerosol samples using hexane extraction at room temperature under UV environment. The extract was concentrated to 0.1-0.2 ml and analysed by a mass-spectrometer "Agilent, GC 6890, MSD 5973 Network". Analysis of concentrations of aerosols components, their correlation ratios, and meteorological modeling show that the main factor affecting chemical composition of aerosols is a flow of contaminants transferred by air masses to the sampling area mainly from the south and south-east, as well as wind conditions of the area, dust storms in particular. Sulphate, nitrate, and ammonium are major ions in aerosol particles at Station Sain Shand. Dust-borne aerosol is known to be a sorbent for both mineral and organic admixtures. Polycyclic aromatic hydrocarbons (PAH) being among superecotoxicants play an important role among resistant organic substances. PAH concentrations were determined in the samples collected in 2010. All aerosol samples contained dominant PAHs with 5-6 benzene rings ( (benze(k)fluoranthen, benze(b)flouranthen, benze(a)pyren, benze(?)pyren, perylene, benze(g,h,i)perylene, and indene(1,2,3-c,d)pyrene). Their total quantity varied between 42 and 90

  15. Cloud Droplet Size and Liquid Water Path Retrievals From Zenith Radiance Measurements: Examples From the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    NASA Technical Reports Server (NTRS)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.

    2012-01-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  16. Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    NASA Astrophysics Data System (ADS)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Várnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; O'Connor, E. J.; Knyazikhin, Y.; Wiscombe, W. J.

    2012-11-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a liquid-water-absorbing wavelength (i.e., 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m-2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8 μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m-2 at the ARM Oklahoma site during 2007-2008, our 1.5-min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5-min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  17. Cloud droplet size and liquid water path retrievals from zenith radiance measurements: examples from the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    NASA Astrophysics Data System (ADS)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Várnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; O'Connor, E. J.; Knyazikhin, Y.; Wiscombe, W. J.

    2012-08-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a non-water-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g m-2 and horizontal resolution of 201 m, the retrieval method underestimates the mean effective radius by 0.8 μm, with a root-mean-squared error of 1.7 μm and a relative deviation of 13%. For actual observations with a liquid water path less than 450 g m-2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 μm than those from combined ground-based cloud radar and microwave radiometer at a 5 min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 μm and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 μm. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  18. Aerosol optical properties measurement by recently developed cavity-enhanced aerosol single scattering albedometer

    NASA Astrophysics Data System (ADS)

    Zhao, Weixiong; Xu, Xuezhe; Zhang, Qilei; Fang, Bo; Qian, Xiaodong; Chen, Weidong; Gao, Xiaoming; Zhang, Weijun

    2015-04-01

    Development of appropriate and well-adapted measurement technologies for real-time in-situ measurement of aerosol optical properties is an important step towards a more accurate and quantitative understanding of aerosol impacts on climate and the environment. Aerosol single scattering albedo (SSA, ω), the ratio between the scattering (αscat) and extinction (αext) coefficients, is an important optical parameter that governs the relative strength of the aerosol scattering and absorption capacity. Since the aerosol extinction coefficient is the sum of the absorption and scattering coefficients, a commonly used method for the determination of SSA is to separately measure two of the three optical parameters - absorption, scattering and extinction coefficients - with different instruments. However, as this method involves still different instruments for separate measurements of extinction and absorption coefficients under different sampling conditions, it might cause potential errors in the determination of SSA value, because aerosol optical properties are very sensitive to the sampling conditions such as temperature and relative humidity (RH). In this paper, we report on the development of a cavity-enhanced aerosol single scattering albedometer incorporating incoherent broad-band cavity-enhanced spectroscopy (IBBCEAS) and an integrating sphere (IS) for direct in-situ measurement of aerosol scattering and extinction coefficients on the exact same sample volume. The cavity-enhanced albedometer holds great promise for high-sensitivity and high-precision measurement of ambient aerosol scattering and extinction coefficients (hence absorption coefficient and SSA determination) and for absorbing trace gas concentration. In addition, simultaneous measurements of aerosol scattering and extinction coefficients enable a potential application for the retrieval of particle number size distribution and for faster retrieval of aerosols' complex RI. The albedometer was deployed to

  19. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.

    2003-01-01

    An apparatus and method for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution are provided. The apparatus includes a modified particle size magnifier for producing activated aerosol particles and a collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical methods. The method provided for on-line measurement of chemical composition of aerosol particles includes exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  20. Apparatus for rapid measurement of aerosol bulk chemical composition

    DOEpatents

    Lee, Yin-Nan E.; Weber, Rodney J.; Orsini, Douglas

    2006-04-18

    An apparatus for continuous on-line measurement of chemical composition of aerosol particles with a fast time resolution is provided. The apparatus includes an enhanced particle size magnifier for producing activated aerosol particles and an enhanced collection device which collects the activated aerosol particles into a liquid stream for quantitative analysis by analytical means. Methods for on-line measurement of chemical composition of aerosol particles are also provided, the method including exposing aerosol carrying sample air to hot saturated steam thereby forming activated aerosol particles; collecting the activated aerosol particles by a collection device for delivery as a jet stream onto an impaction surface; and flushing off the activated aerosol particles from the impaction surface into a liquid stream for delivery of the collected liquid stream to an analytical instrument for quantitative measurement.

  1. A review of atmospheric aerosol measurements

    NASA Astrophysics Data System (ADS)

    McMurry, Peter H.

    Recent developments in atmospheric aerosol measurements are reviewed. The topics included complement those covered in the recent review by Chow (JAWMA 45: 320-382, 1995) which focuses on regulatory compliance measurements and filter measurements of particulate composition. This review focuses on measurements of aerosol integral properties (total number concentration, CCN concentration, optical coefficients, etc.), aerosol physical chemical properties (density, refractive index, equilibrium water content, etc.), measurements of aerosol size distributions, and measurements of size-resolved aerosol composition. Such measurements play an essential role in studies of secondary aerosol formation by atmospheric chemical transformations and enable one to quantify the contributions of various species to effects including light scattering/absorption, health effects, dry deposition, etc. Aerosol measurement evolved from an art to a science in the 1970s following the development of instrumentation to generate monodisperse calibration aerosols of known size, composition, and concentration. While such calibration tools permit precise assessments of instrument responses to known laboratory-generated aerosols, unquantifiable uncertainties remain even when carefully calibrated instruments are used for atmospheric measurements. This is because instrument responses typically depend on aerosol properties including composition, shape, density, etc., which, for atmospheric aerosols, may vary from particle-to-particle and are often unknown. More effort needs to be made to quantify measurement accuracies that can be achieved for realistic atmospheric sampling scenarios. The measurement of organic species in atmospheric particles requires substantial development. Atmospheric aerosols typically include hundreds of organic compounds, and only a small fraction (˜10%) of these can be identified by state-of-the-art analytical methodologies. Even the measurement of the total particulate organic

  2. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  3. Aerosol volatility in a boreal forest environment

    NASA Astrophysics Data System (ADS)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  4. Characterization of Aerosols Containing Microcystin

    PubMed Central

    Cheng, Yung Sung; Zhou, Yue; Irvin, C. Mitch; Kirkpatrick, Barbara; Backer, Lorraine C.

    2007-01-01

    Toxic blooms of cyanobacteria are ubiquitous in both freshwater and brackish water sources throughout the world. One class of cyanobacterial toxins, called microcystins, is cyclic peptides. In addition to ingestion and dermal, inhalation is a likely route of human exposure. A significant increase in reporting of minor symptoms, particularly respiratory symptoms was associated with exposure to higher levels of cyanobacteria during recreational activities. Algae cells, bacteria, and waterborne toxins can be aerosolized by a bubble-bursting process with a wind-driven white-capped wave mechanism. The purposes of this study were to: evaluate sampling and analysis techniques for microcystin aerosol, produce aerosol droplets containing microcystin in the laboratory, and deploy the sampling instruments in field studies. A high-volume impactor and an IOM filter sampler were tried first in the laboratory to collect droplets containing microcystins. Samples were extracted and analyzed for microcystin using an ELISA method. The laboratory study showed that cyanotoxins in water could be transferred to air via a bubble-bursting process. The droplets containing microcystins showed a bimodal size distribution with the mass median aerodynamic diameter (MMAD) of 1.4 and 27.8 μm. The sampling and analysis methods were successfully used in a pilot field study to measure microcystin aerosol in situ. PMID:18463733

  5. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  6. A Large Sample Evaluation of a Court-Mandated Batterer Intervention Program: Investigating Differential Program Effect for African American and Caucasian Men

    ERIC Educational Resources Information Center

    Buttell, Frederick P.; Carney, Michelle Mohr

    2006-01-01

    Objective: The purpose of the present study was to (a) evaluate a 26-week batterer intervention program by investigating changes in psychological variables related to abuse (i.e., truthfulness, violence, lethality, control, alcohol use, drug use, and stress coping abilities) between pretreatment and posttreatment assessments in a large sample of…

  7. Aerosol formation and distribution in the Arctic during AGASP-II, March-April 1986

    NASA Technical Reports Server (NTRS)

    Schnell, Russell C.; Kahl, Jonathan D.; Herbert, Gary A.; Bodhaine, B. A.; Bridgman, Howard A.

    1988-01-01

    The Arctic Gas and Aerosol Sampling Program has undertaken the determination of the distribution, transport, chemistry, aerosol physics, and radiative effects of the 'Arctic haze' air-pollution phenomenon. Attention has been given the April 2-3, 1986 haze zone, with large condensation nuclei, SO2, and soot-carbon concentrations, which appeared near the Barrow Baseline Station. The composite trajectory of the haze zone has been determined, as has its probable source region. After travelling 10,000 km, the haze still had SO2, aerosol black carbon, and condensation nuclei concentrations in excess of those measured off the East Coast of the U.S. in January of the same year.

  8. Implementation of the Missing Aerosol Physics into LLNL IMPACT

    SciTech Connect

    Chuang, C

    2005-02-09

    In recent assessments of climate forcing, the Intergovernmental Panel on Climate Change lists aerosol as one o f the most important anthropogenic agents that influence climate. Atmospheric aerosols directly affect the radiative fluxes at the surface and top of the Earth's atmosphere by scattering and/or absorbing radiation. Further, aerosols indirectly change cloud microphysical properties (such as cloud drop effective radius) that also affect the radiative fluxes. However, the estimate of the magnitude of aerosol climatic effect varies widely, and aerosol/cloud interactions remain one of the most uncertain aspects of climate models today. The Atmospheric Sciences Division has formulated a plan to enhance and expand our modeling expertise in aerosol/cloud/climate interactions. Under previous LDRD support, we successfully developed a computationally efficient version of IMPACT to simulate aerosol climatology. This new version contains a compact chemical mechanism for the prediction of sulfate and also predicts the distributions of organic carbon (OC), black carbon (BC), dust, and sea salt. Furthermore, we implemented a radiation package into IMPACT to calculate the radiative forcing and heating/cooling rates by aerosols. This accomplishment built the foundation of our currently funded projects under the NASA Global Modeling and Analysis Program as well as the DOE Atmospheric Radiation Program. Despite the fact that our research is being recognized as an important effort to quantify the effects of anthropogenic aerosols on climate, the major shortcoming of our previous simulations on aerosol climatic effects is the over simplification of spatial and temporal variations of aerosol size distributions that are shaped by complicated nucleation, growth, transport and removal processes. Virtually all properties of atmospheric aerosols and clouds depend strongly on aerosol size distribution. Moreover, molecular processing on aerosol surfaces alters the hygroscopic

  9. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  10. Linking Program Implementation and Effectiveness: Lessons from a Pooled Sample of Welfare-to-Work Experiments

    ERIC Educational Resources Information Center

    Bloom, Howard S.; Hill, Carolyn J.; Riccio, James A.

    2003-01-01

    This paper addresses the question: How does implementation influence the effectiveness of mandatory welfare-to-work programs? Data from three large-scale, multi-site random assignment experiments were pooled; quantitative measures of program implementation were constructed; and multilevel statistical modeling was used to examine the relationship…

  11. Re-evaluation of a Programmed Method To Teach Generalized Identity Matching to Sample.

    ERIC Educational Resources Information Center

    Dube, William V.; Serna, Richard W.

    1998-01-01

    Programmed identity-matching training was given to five participants with severe mental retardation and histories of failures in assessments and training attempts. When an intermediate goal of establishing one-trial discrimination learning was eliminated, four participants completed the program and passed tests for generalized identity matching…

  12. Characterization of aerosols produced by surgical procedures

    SciTech Connect

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K.; Turner, R.S.

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  13. Hourglass Sampling of Participants in the Human Reliability Program (HRP) for Drug and Alcohol (D&A) Testing

    SciTech Connect

    Ivan R. Thomas

    2009-07-01

    Hourglass Sampling of Participants in the Human Reliability Program (HRP) for Alcohol and Drug Testing Ivan R. Thomas Idaho National Laboratory The random sampling with replacement of Human Reliability Program (HRP) participants for alcohol and drug testing can have the disadvantage that some participants are selected multiple times while others might not be chosen during an annual testing period. To alleviate this inefficiency, an “hourglass” sampling scheme has been developed at the Idaho National Laboratory for the random selection of HRP participants. With this scheme, all HRP participants are placed in a primary population at the beginning of the calendar year, and throughout the year, sequential random samples (generally of a fixed sample size) are drawn without replacement until the population is emptied. Thus, each participant is guaranteed to be tested at least once annually; but due to the random selection, the time of the initial test is unknown. After initial testing, the participants drawn from the primary population are transferred to a secondary population for potential retesting. Each time that the primary population is sampled, the secondary population is likewise sampled, but the sampling is with replacement. Thus, while the primary population decreases at a constant rate, the secondary population increases at the same rate through the accrual and retention of previously-tested participants, hence the hourglass concept. The replacement sampling of participants from the secondary population is through an increasing sample size (a fixed percentage of those currently in the population). Thus, once in the secondary population, each participant has a constant probability of being reselected, but the number of annual reselections is less than would be realized through traditional replacement sampling from a single population. Furthermore, the objective of maintaining suspense on the part of the HRP participant is retained, that is, all participants

  14. Micro-Raman Spectroscopy to Complement Proton-Induced X-Ray Emission in the Analysis of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Safiq, Alexandrea; Ali, Salina; Nadarski, Benjamin; Smith, Jeremy; Yoskowitz, Josh; Labrake, Scott; Vineyard, Michael; Union College Team

    2013-10-01

    There is an active research program in the Union College Ion-Beam Analysis Laboratory on proton-induced X-ray emission (PIXE) analysis of atmospheric aerosols. PIXE is a powerful tool for the study of airborne pollution because it provides information on a broad range of elements simultaneously, has low detection limits, is nondestructive, does not require large samples, and the analysis can be performed in a short amount of time. However, PIXE provides only elemental information. We are investigating the use of Micro-Raman spectroscopy (MRS) to complement PIXE analysis of aerosol samples by providing chemical information. In MRS, laser light is inelastically scattered from a sample and the vibrational spectrum of the scattered light is used to identify molecules and their functional groups. We are focusing on aerosol samples collected in the Adirondack Mountains that have considerable concentrations of sulfur that may contribute to acid rain. The MRS spectra collected on aerosol samples are being compared with a library of standards to try to determine the molecular structures in which the sulfur is bound. We will describe the analysis and present preliminary results. Union College Undergraduate Research Program.

  15. Aerosol isotopic ammonium signatures over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Lin, C. T.; Jickells, T. D.; Baker, A. R.; Marca, A.; Johnson, M. T.

    2016-05-01

    We report aerosol ammonium 15N signatures for samples collected from research cruises on the South Atlantic and Caribbean using a new high sensitivity method. We confirm a pattern of isotopic signals from generally light (δ15N -5 to -10‰), for aerosols with very low (<2 nmol m-3) ammonium concentrations from the remote high latitude ocean, to generally heavier values (δ15N +5 to +10‰), for aerosols collected in temperate and tropical latitudes and with higher ammonium concentrations (>2 nmol m-3). We discuss whether this reflects a mixing of aerosols from two end-members (polluted continental and remote marine emissions), or isotopic fractionation during aerosol transport.

  16. The mobile Water vapor Aerosol Raman LIdar and its implication in the framework of the HyMeX and ChArMEx programs: application to a dust transport process

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Marnas, F.; Totems, J.

    2014-06-01

    The increasing importance of the coupling of water and aerosol cycles in environmental applications requires observation tools that allow simultaneous measurements of these two fundamental processes for climatological and meteorological studies. For this purpose, a new mobile Raman lidar, WALI (Water vapor and Aerosol LIdar), has been developed and implemented within the framework of the international HyMeX and ChArMEx programs. This paper presents the key properties of this new device and its first applications to scientific studies. The lidar uses an eye-safe emission in the ultraviolet range at 354.7 nm and a set of compact refractive receiving telescopes. Cross-comparisons between rawinsoundings performed from balloon or aircraft and lidar measurements have shown a good agreement in the derived water vapor mixing ratio (WVMR). The discrepancies are generally less than 0.5 g kg-1 and therefore within the error bars of the respective instruments. A detailed study of the uncertainty of the WVMR retrieval was conducted and shows values between 7 and 11%, which is largely constrained by the quality of the lidar calibration. It also proves that the lidar is able to measure the WVMR during daytime over a range of about 1 km. In addition the WALI system provides measurements of aerosol optical properties such as the lidar ratio (LR) or the particulate depolarization ratio (PDR). An important example of scientific application addressing the main objectives of the HyMeX and ChArMEx programs is then presented, following an event of desert dust aerosols over the Balearic Islands in October 2012. This dust intrusion may have had a significant impact on the intense precipitations that occurred over southwestern France and the Spanish Mediterranean coasts. During this event, the LR and PDR values obtained are in the ranges of ~45-63 ± 6 and 0.10-0.19 ± 0.01 sr, respectively, which is representative of dust aerosols. The dust layers are also shown to be associated with

  17. The mobile Water vapor Aerosol Raman LIdar and its implication in the frame of the HyMeX and ChArMEx programs: application to a dust transport process

    NASA Astrophysics Data System (ADS)

    Chazette, P.; Marnas, F.; Totems, J.

    2013-12-01

    The increasing importance of the coupling of water and aerosol cycles in environmental applications requires observation tools which allow simultaneous measurements of these two fundamental processes for climatological and meteorological studies. In this purpose, a new mobile Raman lidar, WALI (Water vapor and Aerosol LIDAR), has been developed and implemented within the framework of the international HyMeX/IODA-MED and ChArMEx programs. This paper presents the key properties of this new device and its first applications to scientific studies. The lidar uses an eye-safe emission in the ultra-violet range at 354.7 nm and a set of compact refractive receptors. Cross-comparisons between rawindsoundings performed from balloon or aircraft and lidar measurements have shown a good agreement in the derived water vapor mixing ratio (WVMR). The discrepancies are generally less than 0.5 g kg-1 and therefore within the error bars of the instruments. A detailed study of the uncertainties was conducted and shows a 7 to 11% accuracy of the WVMR retrieval, which is largely constrained by the quality of the calibration. It also proves that the lidar is able to measure the WVMR during the day over a range of about 1 km. The WALI system otherwise provides measurements of aerosol optical properties such as the lidar ratio (LR) or the particulate depolarization ratio (PDR). An important example of scientific application addressing the main objectives of the HyMeX and ChArMEx programs is then presented, following an event of desert dust aerosols over the Balearic Islands. This dust intrusion may have had a significant impact on the intense precipitations that occurred over southwestern France and the Spanish Mediterranean coasts. During this event, the LR and PDR values obtained are in the ranges of ~ 45-63 ± 6 sr and 0.1-0.19 ± 0.01, respectively, which is representative of dust aerosols. The dust layers are also shown to be associated with significant WVMR, i.e. between 4 and 6.7 g

  18. Development of sample handling procedures for foods under USDA’s National Food and Nutrient Analysis Program

    PubMed Central

    Trainer, D.; Pehrsson, P.R.; Haytowitz, D.B.; Holden, J.M.; Phillips, K.M.; Rasor, A.S.; Conley, N.A.

    2010-01-01

    The National Food and Nutrient Analysis Program (NFNAP) was implemented in 1997 to update and improve the quality of food composition data maintained by the United States Department of Agriculture (USDA). NFNAP was designed to sample and analyze frequently consumed foods in the U.S. food supply using statistically rigorous sampling plans, established sample handling procedures, and qualified analytical laboratories. Methods for careful handling of food samples from acquisition to analysis were developed to ensure the integrity of the samples and subsequent generation of accurate nutrient values. The infrastructure of NFNAP, under which over 1500 foods have been sampled, mandates tested sample handling protocols for a wide variety of foods. The majority of these foods were categorized into several major areas: 1) frozen foods; 2) fresh produce and/or highly perishable foods requiring refrigeration; 3) fast foods and prepared foods; 4) shelf-stable foods; 5) specialized study and non-retail (point of production) foods; and 6) foods from remote areas (e.g. American Indian reservations). This paper describes the sample handling approaches, from the collection and receipt of the food items to the preparation of the analytical samples, with emphasis on the strategies developed for those foods. It provides a foundation for developing sample handling protocols of foods to be analyzed under NFNAP and for other researchers working on similar projects. PMID:21516233

  19. Apportionment of Primary and Secondary Organic Aerosols in Southern California During the 2005 Study of Organic Aerosols in Riverside (SOAR-1)

    EPA Science Inventory

    Ambient sampling was conducted in Riverside, California during the 2005 Study of Organic Aerosols in Riverside to characterize the composition and sources of organic aerosol using a variety of state-of-the-art instrumentation and source apportionment techniques.

  20. Atmospheric Aerosol Properties and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Kahn, Ralph A.; Remer, Lorraine A.; Yu, Hongbin; Rind, David; Feingold, Graham; Quinn, Patricia K.; Schwartz, Stephen E.; Streets, David G.; DeCola, Phillip; Halthore, Rangasayi

    2009-01-01

    This report critically reviews current knowledge about global distributions and properties of atmospheric aerosols, as they relate to aerosol impacts on climate. It assesses possible next steps aimed at substantially reducing uncertainties in aerosol radiative forcing estimates. Current measurement techniques and modeling approaches are summarized, providing context. As a part of the Synthesis and Assessment Product in the Climate Change Science Program, this assessment builds upon recent related assessments, including the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC AR4, 2007) and other Climate Change Science Program reports. The objectives of this report are (1) to promote a consensus about the knowledge base for climate change decision support, and (2) to provide a synthesis and integration of the current knowledge of the climate-relevant impacts of anthropogenic aerosols for policy makers, policy analysts, and general public, both within and outside the U.S government and worldwide.

  1. Sediment and radionuclide transport in rivers. Phase 3. Field sampling program for Cattaraugus and Buttermilk Creeks, New York

    SciTech Connect

    Ecker, R.M.; Walters, W.H.; Onishi, Y.

    1982-08-01

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during April 1979 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Bed sediment, suspended sediment and water samples were collected during unsteady flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included gamma ray spectrometry analysis, and radiochemical separation and analysis of Sr-90, Pu-238, Pu-239, 240, Am-241 and Cm-244. Tritium analysis was also performed on water samples. Based on the evaluation of radionuclide levels in Cattaraugus and Buttermilk Creeks, the Nuclear Fuel Services facility at West Valley, New York, may be the source of Cs-137, Sr-90, Cs-134, Co-60, Pu-238, Pu-239, 240, Am-241, Cm-244 and tritium found in the bed sediment, suspended sediment and water of Buttermilk and Cattaraugus Creeks. This field sampling effort was the last of a three phase program to collect hydrologic and radiologic data at different flow conditions.

  2. Master schedule for CY-1983 Hanford environmental surveillance routine sampling program

    SciTech Connect

    Blumer, P.J.; Sula, M.J.; Eddy, P.A.; Dirkes, R.L.

    1982-12-01

    The current schedule of data collection for the routine Hanford environmental surveillance and ground-water monitoring programs at the Hanford Site is presented. The purpose of the programs is to evaluate and report the levels of radioactive and nonradioactive pollutants in the Hanford environs. Radiological monitoring data are reported for air (particulate filter and gases/vapor), Columbia River water, sanitary water, onsite pond water, foodstuffs (whole milk, leafy vegetables, fruit, wheat/alfalfa, beef, poultry/eggs), wildlife, soil and vegetation, and direct radiation. Information is also given for on site radiation control audit surveys (roadway, railway, aerial, and waste disposal sites, and the Hanford ground-water monitoring program.

  3. Revisiting Aerosol Effects in Global Climate Models Using an Aerosol Lidar Simulator

    NASA Astrophysics Data System (ADS)

    Ma, P. L.; Chepfer, H.; Winker, D. M.; Ghan, S.; Rasch, P. J.

    2015-12-01

    Aerosol effects are considered a major source of uncertainty in global climate models and the direct and indirect radiative forcings have strong model dependency. These forcings are routinely evaluated (and calibrated) against observations, among them satellite retrievals are greatly used for their near-global coverage. However, the forcings calculated from model output are not directly comparable with those computed from satellite retrievals since sampling and algorithmic differences (such as cloud screening, noise reduction, and retrieval) between models and observations are not accounted for. It is our hypothesis that the conventional model validation procedures for comparing satellite observations and model simulations can mislead model development and introduce biases. Hence, we have developed an aerosol lidar simulator for global climate models that simulates the CALIOP lidar signal at 532nm. The simulator uses the same algorithms as those used to produce the "GCM-oriented CALIPSO Aerosol Product" to (1) objectively sample lidar signal profiles; and (2) derive aerosol fields (e.g., extinction profile, aerosol type, etc) from lidar signals. This allows us to sample and derive aerosol fields in the model and real atmosphere in identical ways. Using the Department of Energy's ACME model simulations, we found that the simulator-retrieved aerosol distribution and aerosol-cloud interactions are significantly different from those computed from conventional approaches, and that the model is much closer to satellite estimates than previously believed.

  4. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  5. Waste drum gas generation sampling program at Rocky Flats during FY 1989

    SciTech Connect

    Roggenthen, D.K.; Nieweg, R.G.

    1990-10-01

    Rocky Flats Plant transuranic waste drums were sampled for gas composition. Glass, metal, graphite, and solidified inorganic sludge transuranic waste forms were sampled. A vacuum system was used to sample each layer of containment inside a waste drum, including individual waste bags. G values were calculated for the waste drums. G(H{sub 2}) was below 0.6 and G(Total) was below 1.3 for all waste forms discussed in this report. 5 refs., 3 figs., 3 tabs.

  6. Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1994-01-01

    The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.

  7. EXONSAMPLER: a computer program for genome-wide and candidate gene exon sampling for targeted next-generation sequencing.

    PubMed

    Cosart, Ted; Beja-Pereira, Albano; Luikart, Gordon

    2014-11-01

    The computer program EXONSAMPLER automates the sampling of thousands of exon sequences from publicly available reference genome sequences and gene annotation databases. It was designed to provide exon sequences for the efficient, next-generation gene sequencing method called exon capture. The exon sequences can be sampled by a list of gene name abbreviations (e.g. IFNG, TLR1), or by sampling exons from genes spaced evenly across chromosomes. It provides a list of genomic coordinates (a bed file), as well as a set of sequences in fasta format. User-adjustable parameters for collecting exon sequences include a minimum and maximum acceptable exon length, maximum number of exonic base pairs (bp) to sample per gene, and maximum total bp for the entire collection. It allows for partial sampling of very large exons. It can preferentially sample upstream (5 prime) exons, downstream (3 prime) exons, both external exons, or all internal exons. It is written in the Python programming language using its free libraries. We describe the use of EXONSAMPLER to collect exon sequences from the domestic cow (Bos taurus) genome for the design of an exon-capture microarray to sequence exons from related species, including the zebu cow and wild bison. We collected ~10% of the exome (~3 million bp), including 155 candidate genes, and ~16,000 exons evenly spaced genomewide. We prioritized the collection of 5 prime exons to facilitate discovery and genotyping of SNPs near upstream gene regulatory DNA sequences, which control gene expression and are often under natural selection.

  8. Tri-State Synfuels Project Coal Sampling and Testing Program: Volume 1. Sampling and results. [Proposed Henderson, Kentucky coal to gasoline plant; sampling and testing other potential coal reserves for Lurgi gasification

    SciTech Connect

    Not Available

    1982-06-01

    This report focuses on the sampling and testing program of run-of-mine Illinois Basin coals which was conducted for the supply and design program of the Tri-State Synfuels Project. The basic objective was to identify coals suitable for Lurgi gasification which would supplement the Camp 1 coal used as the design coal for the Tri-State Synfuels Project. The Camp 1 coal had been selected for the commercial scale gasification test at Sasolburg on the basis of its proximity to the Towhead Island Reserves, plant site and similarity of coal quality. The information developed was used as technical guidance for: assessing reserves potentially available for the project during supply negotiations; establishing a sensitivity range for the Lurgi design which used the Camp 1 coal for heat and material balances (the maximum heat rates and flow rates were used to specify requirements for major equipment); and establishing environmental design criteria in the areas of wastewater treatment and solids disposal. These results are covered in the project review reports for development, engineering and environmental aspects. The sampling and testing program consisted of selecting, collecting, preparing and analyzing samples from ten mines in Kentucky, Indiana and Illinois. The mines were operated by Peabody, Island Creek, Amax and Old Ben coal companies and represented a mix of underground - both continuous and conventional mining - and strip mining. The two predominant seams in each of the three states were sampled. The resulting technical data were judged to be representative of the coal available from reserves of the various operators. Paul Weir Company was responsible for conducting the program.

  9. Using the Multiple-Matched-Sample and Statistical Controls to Examine the Effects of Magnet School Programs on the Reading and Mathematics Performance of Students

    ERIC Educational Resources Information Center

    Yang, Yu N.; Li, Yuan H.; Tompkins, Leroy J.; Modarresi, Shahpar

    2005-01-01

    This summative evaluation of magnet programs employed a quasi-experimental design to investigate whether or not students enrolled in magnet programs gained any achievement advantage over students who were not enrolled in a magnet program. Researchers used Zero-One Linear Programming to draw multiple sets of matched samples from the non-magnet…

  10. Airborne Atmospheric Aerosol Measurement System

    NASA Astrophysics Data System (ADS)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  11. Influence of semi-volatile aerosol on physical and optical properties of aerosol in Kathmandu valley

    NASA Astrophysics Data System (ADS)

    Shrestha, Sujan; Praveen, Ps; Adhikary, Bhupesh; Shrestha, Kundan; Panday, Arnico

    2016-04-01

    A field study was conducted in the urban atmosphere of Kathmandu valley to study the influence of the semi-volatile aerosol fraction on physical and optical properties of aerosols. The study was carried out during the 2015 pre-monsoon period. Experimental setup consisted of air from an ambient air inlet being split to two sets of identical sampling instruments. The first instrument received the ambient sample directly, while the second instrument received the air sample through a thermodenuder (TDD). Four sets of experiments were conducted to understand aerosol number, size distribution, scattering and absorption properties using Condensation Particle Counter (CPC), Scanning Mobility Particle Sizer (SMPS), Aethalometer (AE33) and Nephelometer. The influence of semi-volatile aerosols was calculated from the fraction of particles evaporated in the TDD at set temparetures: room temperature, 50°C, 100°C, 150°C, 200°C, 250°C and 300°C. Results show that, with increasing temperature, the evaporated fraction of semi-volatile aerosol also increased. At room temperature the fraction of semi-volatile aerosols was 12% while at 300°C it was as high as to 49%. Aerosol size distribution analysis shows that with an increase in TDD temperature from 50°C to 300°C, peak mobility diameter of particles shifted from around 60nm to 40nm. However we found little change in effective diameter of aerosol size distribution with increase in set TDD temperature. The change in size of aerosols due to loss of semi-volatile component has a stronger influence (~70%) in higher size bins when compared to at lower size bins (~20%). Studies using the AE33 showed that absorption by black carbon (BC) is amplified due to influence of semi-volatile aerosols by upto 37% at 880nm wavelength. Similarly nephelometer measurements showed that upto 71% of total scattering was found to be contributed by semi-volatile aerosol fraction. The scattering Angstrom Exponent (SAE) of semi-volatile aerosol

  12. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  13. Analysis of Ambient Aerosol Measurements During PROPHET 2001

    NASA Astrophysics Data System (ADS)

    Delia, A. E.; Garland, R.; Toohey, D. W.; Worsnop, D. R.; Allen, J. O.; Carroll, M. A.; Fortner, E.; Hengel, S.; Lilly, M.; Moody, J.; Huey, G.; Tanner, D.

    2002-12-01

    Aerosol size and composition were measured using an aerosol mass spectrometer, developed by Aerodyne Research, Inc., during PROPHET 2001 (Program for Research on Oxidants: PHotochemistry, Emissions and Transport). Our purpose in this study was to characterize chemical composition and size of ambient aerosols, investigate the effects of transport, and study aerosol microphysics. The site is located in a remote forested area of northern Michigan at the University of Michigan Biological Station, far from any large urban areas and surrounded primarily by deciduous forests. The aerosols at this site can be cataloged into four classes. The two principal classes are distinguished by meteorological conditions. Clean, northerly airflow produced low aerosol mass loadings dominated by organic species. More polluted southerly airflow brought higher aerosol mass loadings dominated by sulfate with an organic contribution. Under both of these conditions, aerosol existed almost entirely in the accumulation size mode of 300-600 nm. In addition to these principal aerosol types, small particle growth was observed on several occasions. It appears that these events occurred primarily during periods of low aerosol mass loading (i.e., northerly airflow) when the low aerosol number provided an opportunity for new particle formation and rapid growth. On at least one occasion, it appears that a large plume of sulfur dioxide that was converted to sulfuric acid near the site may be responsible for new particle formation. The fourth type of aerosol consisted of short events dominated by organic species, apparently diesel exhaust caused by local truck traffic. In addition to the overall aerosol characterization, comparisons with other measurements that affected the aerosol composition or characterized the air masses will be presented and the implications of these results for regional transport of aerosols will be discussed.

  14. Carbonaceous aerosols in the Western Mediterranean during summertime and their contribution to the aerosol optical properties at ground level: First results of the ChArMEx-ADRIMED 2013 intensive campaign in Corsica

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Dulac, Francois; Feron, Anais; Crenn, Vincent; Sarda Esteve, Roland; Baisnee, Dominique; Bonnaire, Nicolas; Hamonou, Eric; Mallet, Marc; Lambert, Dominique; Nicolas, Jose B.; Bourrianne, Thierry; Petit, Jean-Eudes; Favez, Olivier; Canonaco, Francesco; Prevot, Andre; Mocnik, Grisa; Drinovec, Luka; Marpillat, Alexandre; Serrie, Wilfrid

    2014-05-01

    As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/), the CORSiCA (http://www.obs-mip.fr/corsica) and the ANR-ADRIMED programs, a large set of real-time measurements of carbonaceous aerosols was deployed in June 2013 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042). Submicron organic aerosols (OA) were monitored every 30 min using an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Res. Inc. MA, USA); Fine (PM2.5) Organic Carbon (OC) and Elemental Carbon (EC) were measured every 2h using an OCEC Sunset Field Instrument (Sunset Lab, OR, USA) and every 12h using a low-vol (Leckel) filter sampler running at 2.3m3/h. Equivalent Black Carbon (BC) was monitored using two Aethalometers (models AE31 and AE33, Magee Scientific, US & Aerosol d.o.o., Slovenia) and a MAAP instrument (Thermo). Quality control of this large dataset was performed through chemical mass closure studies (using co-located SMPS and TEOM-FDMS) and direct comparisons with other real-time instruments running in parallel (Particle-Into-Liquid-Sampler-Ion-Chromatograph for ions, filter sampling, ...). Source apportionment of OA was then performed using the SourceFinder software (SoFi v4.5, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively) and highlighting the major contribution of secondary OA in the Western Mediterranean during summer. Using this time-resolved chemical information, reconstruction of the optical aerosol properties were performed and compared with integrating nephelometer (Model 3563, TSI, US) and photoacoustic extinctiometer (PAX, DMT, US) measurements performed in parallel. Results of these different closure studies (chemical/physical/optical) are presented and discussed here in details. They highlight the central role of carbonaceous aerosols on the optical properties of aerosols at ground level

  15. Capstone Depleted Uranium Aerosols: Generation and Characterization

    SciTech Connect

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  16. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    SciTech Connect

    Wood, Robert; Luke, Ed; Wyant, Matthew; Bretherton, Christopher S.; Remillard, Jasmine; Kollias, Pavlos; Fletcher, Jennifer; Stemmler, Jayson; deSzoeke, S.; Yuter, Sandra; Miller, Matthew; Mechem, David; Tselioudis, George; Chiu, Christine; Mann, Julia; O Connor, Ewan; Hogan, Robin; Dong, Xiquan; Miller, Mark; Ghate, Virendra; Jefferson, Anne; Min, Qilong; Minnis, Patrick; Palinkonda, Rabindra; Albrecht, Bruce; Hannay, Cecile; Lin, Yanluan

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulus and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.

  17. Clouds, aerosol, and precipitation in the Marine Boundary Layer: An ARM mobile facility deployment

    DOE PAGES

    Wood, Robert; Luke, Ed; Wyant, Matthew; ...

    2014-04-27

    The Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) deployment at Graciosa Island in the Azores generated a 21-month (April 2009-December 2010) comprehensive dataset documenting clouds, aerosols, and precipitation using the Atmospheric Radiation Measurement Program (ARM) Mobile Facility (AMF). The scientific aim of the deployment is to gain improved understanding of the interactions of clouds, aerosols, and precipitation in the marine boundary layer. Graciosa Island straddles the boundary between the subtropics and midlatitudes in the Northeast Atlantic Ocean and consequently experiences a great diversity of meteorological and cloudiness conditions. Low clouds are the dominant cloud type, with stratocumulusmore » and cumulus occurring regularly. Approximately half of all clouds contained precipitation detectable as radar echoes below the cloud base. Radar and satellite observations show that clouds with tops from 1-11 km contribute more or less equally to surface-measured precipitation at Graciosa. A wide range of aerosol conditions was sampled during the deployment consistent with the diversity of sources as indicated by back-trajectory analysis. Preliminary findings suggest important two-way interactions between aerosols and clouds at Graciosa, with aerosols affecting light precipitation and cloud radiative properties while being controlled in part by precipitation scavenging.The data from Graciosa are being compared with short-range forecasts made with a variety of models. A pilot analysis with two climate and two weather forecast models shows that they reproduce the observed time-varying vertical structure of lower-tropospheric cloud fairly well but the cloud-nucleating aerosol concentrations less well. The Graciosa site has been chosen to be a permanent fixed ARM site that became operational in October 2013.« less

  18. 50th Anniversary of the World's First Extraterrestrial Sample Receiving Laboratory: The Apollo Program's Lunar Receiving Laboratory

    NASA Technical Reports Server (NTRS)

    Calaway, M. J.; Allton, J. H.; Zeigler, R. A.; McCubbin, F. M.

    2017-01-01

    The Apollo program's Lunar Receiving Laboratory (LRL), building 37 at NASA's Manned Spaceflight Center (MSC), now Johnson Space Center (JSC), in Houston, TX, was the world's first astronaut and extraterrestrial sample quarantine facility (Fig. 1). It was constructed by Warrior Construction Co. and Warrior-Natkin-National at a cost of $8.1M be-tween August 10, 1966 and June 26, 1967. In 1969, the LRL received and curated the first collection of extra-terrestrial samples returned to Earth; the rock and soil samples of the Apollo 11 mission. This year, the JSC Astromaterials Acquisition and Curation Office (here-after JSC curation) celebrates 50 years since the opening of the LRL and its legacy of laying the foundation for modern curation of extraterrestrial samples.

  19. Sample size in disease management program evaluation: the challenge of demonstrating a statistically significant reduction in admissions.

    PubMed

    Linden, Ariel

    2008-04-01

    Prior to implementing a disease management (DM) strategy, a needs assessment should be conducted to determine whether sufficient opportunity exists for an intervention to be successful in the given population. A central component of this assessment is a sample size analysis to determine whether the population is of sufficient size to allow the expected program effect to achieve statistical significance. This paper discusses the parameters that comprise the generic sample size formula for independent samples and their interrelationships, followed by modifications for the DM setting. In addition, a table is provided with sample size estimates for various effect sizes. Examples are described in detail along with strategies for overcoming common barriers. Ultimately, conducting these calculations up front will help set appropriate expectations about the ability to demonstrate the success of the intervention.

  20. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  1. Nondestructive Evaluation (NDE) Results on Sikorsky Aircraft Survivable Affordable Reparable Airframe Program (SARAP) Samples

    NASA Technical Reports Server (NTRS)

    Zalameda, Joseph N.; Anastasi, Robert F.; Madaras, Eric I.

    2004-01-01

    The Survivable, Affordable, Reparable Airframe Program (SARAP) will develop/produce new structural design concepts with lower structural weight, reduced manufacturing complexity and development time, increased readiness, and improved threat protection. These new structural concepts will require advanced field capable inspection technologies to help meet the SARAP structural objectives. In the area of repair, damage assessment using nondestructive inspection (NDI) is critical to identify repair location and size. The purpose of this work is to conduct an assessment of new and emerging NDI methods that can potentially satisfy the SARAP program goals.

  2. Aerosol Measurements by the Globally Distributed Micro Pulse Lidar Network

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Welton, Judd; Campbell, James; Berkoff, Tim; Starr, David (Technical Monitor)

    2001-01-01

    Full time measurements of the vertical distribution of aerosol are now being acquired at a number of globally distributed MP (micro pulse) lidar sites. The MP lidar systems provide full time profiling of all significant cloud and aerosol to the limit of signal attenuation from compact, eye safe instruments. There are currently eight sites in operation and over a dozen planned. At all sited there are also passive aerosol and radiation measurements supporting the lidar data. Four of the installations are at Atmospheric Radiation Measurement program sites. The network operation includes instrument operation and calibration and the processing of aerosol measurements with standard retrievals and data products from the network sites. Data products include optical thickness and extinction cross section profiles. Application of data is to supplement satellite aerosol measurements and to provide a climatology of the height distribution of aerosol. The height distribution of aerosol is important for aerosol transport and the direct scattering and absorption of shortwave radiation in the atmosphere. Current satellite and other data already provide a great amount of information on aerosol distribution, but no passive technique can adequately resolve the height profile of aerosol. The Geoscience Laser Altimeter System (GLAS) is an orbital lidar to be launched in early 2002. GLAS will provide global measurements of the height distribution of aerosol. The MP lidar network will provide ground truth and analysis support for GLAS and other NASA Earth Observing System data. The instruments, sites, calibration procedures and standard data product algorithms for the MPL network will be described.

  3. Statistical characteristics of atmospheric aerosol as determined from AERONET measurements

    NASA Astrophysics Data System (ADS)

    Yoon, Jongmin; Kokhanovsky, Alexander

    2015-04-01

    Seasonal means and standard deviations of column-integrated aerosol optical properties (e.g. spectral aerosol optical thickness (AOT), single scattering albedo, phase function, Ångström exponent, volume particle size distribution, complex refractive index, absorbing aerosol optical thickness) from several Aerosol Robotic Network (AERONET) sites located in typical aerosol source and background regions are investigated (Holben et al., 1998). The AERONET program is an inclusive network of ground-based sun-photometers that measure atmospheric aerosol optical properties (http://aeronet.gsfc.nasa.gov/). The results can be used for improving the accuracy of satellite-retrieved AOT, assessments of the global aerosol models, studies of atmospheric pollution and aerosol radiative forcing on climate. We have paid a special attention to several AERONET sites that are Mexico_City (Mexico), Alta_Floresta (Brazil), Avignon (France), Solar_Village (Saudi Arabia), and Midway_Island (Pacific) representative for industrial/urban, biomass burning, rural, desert dust and oceanic aerosols, respectively. We have found that the optical and microphysical aerosol properties are highly dependent on the local aerosol emission sources and seasonal meteorological conditions.

  4. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  5. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  6. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  7. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  8. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  9. Multiple sample characterization of coals and other substances by controlled-atmosphere programmed temperature oxidation

    DOEpatents

    LaCount, Robert B.

    1993-01-01

    A furnace with two hot zones holds multiple analysis tubes. Each tube has a separable sample-packing section positioned in the first hot zone and a catalyst-packing section positioned in the second hot zone. A mass flow controller is connected to an inlet of each sample tube, and gas is supplied to the mass flow controller. Oxygen is supplied through a mass flow controller to each tube to either or both of an inlet of the first tube and an intermediate portion between the tube sections to intermingle with and oxidize the entrained gases evolved from the sample. Oxidation of those gases is completed in the catalyst in each second tube section. A thermocouple within a sample reduces furnace temperature when an exothermic condition is sensed within the sample. Oxidized gases flow from outlets of the tubes to individual gas cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes.

  10. Comparing Propensity Score Methods in Balancing Covariates and Recovering Impact in Small Sample Educational Program Evaluations

    ERIC Educational Resources Information Center

    Stone, Clement A.; Tang, Yun

    2013-01-01

    Propensity score applications are often used to evaluate educational program impact. However, various options are available to estimate both propensity scores and construct comparison groups. This study used a student achievement dataset with commonly available covariates to compare different propensity scoring estimation methods (logistic…

  11. Aerosol backscatter studies supporting LAWS

    NASA Technical Reports Server (NTRS)

    Rothermel, Jeffry

    1989-01-01

    Optimized Royal Signals and Radar Establishment (RSRE), Laser True Airspeed System (LATAS) algorithm for low backscatter conditions was developed. The algorithm converts backscatter intensity measurements from focused continuous-wave (CW) airborne Doppler lidar into backscatter coefficients. The performance of optimized algorithm under marginal backscatter signal conditions was evaluated. The 10.6 micron CO2 aerosol backscatter climatologies were statistically analyzed. Climatologies reveal clean background aerosol mode near 10(exp -10)/kg/sq m/sr (mixing ratio units) through middle and upper troposhere, convective mode associated with planetary boundary layer convective activity, and stratospheric mode associated with volcanically-generated aerosols. Properties of clean background mode are critical to design and simulation studies of Laser Atmospheric Wind Sounder (LAWS), a MSFC facility Instrument on the Earth Observing System (Eos). Previous intercomparisons suggested correlation between aerosol backscatter at CO2 wavelength and water vapor. Field measurements of backscatter profiles with MSFC ground-based Doppler lidar system (GBDLS) were initiated in late FY-88 to coincide with independent program of local rawinsonde releases and overflights by Multi-spectral Atmospheric Mapping Sensor (MAMS), a multi-channel infrared radiometer capable of measuring horizontal and vertical moisture distributions. Design and performance simulation studies for LAWS would benefit from the existence of a relationship between backscatter and water vapor.

  12. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  13. Plume Mechanics and Aerosol Growth Processes.

    DTIC Science & Technology

    1987-07-01

    UNIT ELEMENT NO. NO NO ACCESSION NO %. Aberdeen Proving Ground, MD 21010-5423 II 11 TITLE (include Security Classification) Plume Mechanics and...formulation and a finite element sc hem e ......... ..................... 192 c. Diffusion of aerosols in laminar flow in a cylindrical tube...The principal elements are the liquid oil and carrier gas metering systems, the oil vaporizer, coaxial jet system, and the sampling and aerosol

  14. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  15. The High Altitude Sampling Program: Radioactivity in the stratosphere: Final report

    SciTech Connect

    Leifer, R; Juzdan, Z R

    1986-12-01

    Radioactivity data are presented from Project Airstream (aircraft) for the year 1983 and for Project Ashcan (balloon) for the years 1982 and 1984. Due to budgetary constraints both Projects Airstream and Ashcan have been terminated. This will be the final report containing radioactivity data collected during projects airstream and ashcan. Included are gross gamma, gamma spectral and radiochemical analyses of filter samples. Quality control samples submitted along with the air filter samples were analyzed and the results are presented. Low activity on many of the filters precludes the estimation of the stratospheric inventories of /sup 239,240/Pu and /sup 90/Sr. Based on data with count errors <20%, the mean Northern Hemisphere stratospheric /sup 90/Sr and /sup 239,240/Pu concentration for November 1983 was 0.2 +- 0.1 and 0.009 +- 0.006 Bq/1000 scm, respectively.

  16. Long-Term Hydrologic Monitoring Program Sampling and Analysis Results for 2011

    SciTech Connect

    2011-12-21

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual sampling at the Rio Blanco site for the LTHMP on May 16 and 17, 2011. The samples were shipped to the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada, for analysis. All requested analyses were successfully completed, with the exception of the determination of tritium concentration by the enrichment method, because the laboratory no longer provides that service. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and tritium using the conventional method. Starting in 2012, DOE will retain a different laboratory that provides the enriched tritium analysis service.

  17. Idaho's surface-water-quality monitoring program: results from five sites sampled during water years 1990-93

    USGS Publications Warehouse

    ,

    1994-01-01

    In 1990, the U.S. Geological Survey (USGS), in cooperation with the Idaho Department of Health and Welfare, Division of Environmental Quality, implemented a statewide water-quality monitoring program in response to Idaho's antidegradation policy as required by the Clean Water Act. The program objective is to provide water-quality managers with a coordinated statewide network to detect trends in surface-water quality. The monitoring program includes the collection and analysis of samples from 56 sites on the Bear, Clearwater, Kootenai, Pend Oreille, Salmon, Snake, and Spokane Rivers and their tributaries (fig. 1). Samples are collected every year at 5 sites (annual sites) in drainage basins where long-term water-quality management is practiced, every other year at 19 sites (biennial sites) in basins where land and water uses change slowly, and every third year at 32 sites (triennial sites) where future development may affect water quality. Each year, 25 of the 56 sites are sampled. This report discusses results of sampling at five annual sites. During water years 1990-93 (October 1, 1989, through September 30, 1993), samples were collected six times per year at the five annual sites (fig. 1). Onsite analyses were made for discharge, specific conductance, pH, temperature, dissolved oxygen, bacteria (fecal coliform and fecal streptococci), and alkalinity. Laboratory analyses were made for major ions, nutrients, trace elements, and suspended sediment. Suspended sediment, nitrate, fecal coliform, trace elements, and specific conductance were used to characterize surface-water quality. Because concentrations of all trace elements except zinc were near detection limits, only zinc is discussed.

  18. VizieR Online Data Catalog: VLT/NaCo Large program I. Sample (Desidera+, 2015)

    NASA Astrophysics Data System (ADS)

    Desidera, S.; Covino, E.; Messina, S.; Carson, J.; Hagelberg, J.; Schlieder, J. E.; Biazzo, K.; Alcala, J.; Chauvin, G.; Vigan, A.; Beuzit, J. L.; Bonavita, M.; Bonnefoy, M.; Delorme, P.; D'Orazi, V.; Esposito, M.; Feldt, M.; Girardi, L.; Gratton, R.; Henning, T.; Lagrange, A. M.; Lanzafame, A. C.; Launhardt, R.; Marmier, M.; Melo, C.; Meyer, M.; Mouillet, D.; Moutou, C.; Segransan, D.; Udry, S.; Zaidi, C. M.

    2014-10-01

    Stellar parameters for 86 stars observed in NaCo Large Program and their wide companions are presented. These include coordinates, magnitudes, spectral types, metallicity, mass, distance, radial velocities, proper motions, space velocities Xray luminosity, chromospheric emission, rotation period, projected rotational velocity, lithium equivalent width, effective temperature, age (Tables 9-12). Table D1 summarizes the details of the rotation period search (results for individual segments and for the whole timeseries). (13 data files).

  19. The parsec program: a large sample of brown dwarf trigonometric parallaxes

    NASA Astrophysics Data System (ADS)

    Andrei, Alexandre H.; Smart, Richard L.; Bucciarelli, Beatrice; Penna, Jucira L.; Marocco, Federico; Lattanzi, Mario G.; Crosta, Mariateresa; Teixeira, Ramakrishna

    2013-02-01

    We report on the parsec program, which observed 140 L and T dwarfs on a regular basis from 2007 to 2011, using the WIFI camera on the ESO/2.2 m telescope. Trigonometric parallaxes at 5 mas precision are derived for 49 objects, and mas yr-1-level proper motions are derived for approximately 200,000 objects in the same fields. We discuss image cleaning, object centroiding, and astrometric methods, in particular three different approaches for trigonometric parallax determination.

  20. Comparison of radioactivity data measured in PM10 aerosol samples at two elevated stations in northern Italy during the Fukushima event.

    PubMed

    Tositti, Laura; Brattich, Erika; Cinelli, Giorgia; Previti, Alberto; Mostacci, Domiziano

    2012-12-01

    The follow-up of Fukushima radioactive plume resulting from the 11th March 2011 devastating tsunami is discussed for two Italian stations in the northern Apennines: Mt. Cimone (Modena) and Montecuccolino (Bologna). Radioactivity data collected at both stations are described, including comparison between local natural background of airborne particulate and artificial radioactivity referable to the arrival of the radioactive plume and its persistence and evolution. Analysis of back-trajectories was used to confirm the arrival of artificial radionuclides following atmospheric transport and processing. The Fukushima plume was first detected on 3rd April 2011 when high volume sampling revealed the presence of the artificial radionuclides (131)I, (137)Cs and (134)Cs. The highest activity concentrations of these nuclides were detected on 5th April 2011 at the Montecuccolino site. Fukushima radioactivity data at the two stations were usually comparable, suggesting a good vertical mixing of the plume; discrepancies were occasional and attributed to different occurrence of wet removal, typically characterized by a scattered spatial pattern. To understand the relevance to the local population of the extra dose due to the Fukushima plume, atmospheric activities of the related artificial nuclides were compared to those of the main natural radionuclides in ambient particulate, and found to be lower by over one order of magnitude. Radiation doses referable to Fukushima, maximized for a whole year occurrence at the highest activity level observed at our stations in the weeks affected by the Japanese plume, were estimated at 1.1 μSv/year.

  1. Aerosol Composition and Morphology during the 2005 Marine Stratus Radiation Aerosol and Drizzle Study

    SciTech Connect

    Berkowitz, Carl M.; Jobson, B Tom T.; Alexander, M. Lizabeth; Laskin, Alexander; Laulainen, Nels S.

    2005-12-01

    The composition and morphology of aerosols activated within cloud droplets relative to the properties of aerosols not activated is of central importance to studies directed at improved parameterization of the treatment of aerosols in large-scale models. These models have many applications, including evaluations of the impact of anthropogenic aerosols on climate. To further our understanding of these aerosol characteristics, scientists from the U.S. Department of Energy Atmospheric Science Program (ASP), joined forces with other participants of the Atmospheric Radiation Measurement (ARM) "Marine Stratus Radiation Aerosol and Drizzle Study" between July 4 and July 29, 2005, at Pt. Reyes, California. Observations from in situ aerosol instruments and from the ARM Mobile Facility will be combined in a first look at observations from this period. The in situ aerosol measurements included high time resolution data of size-resolved bulk composition (sulfate, nitrate, NH4, organics, etc.) and single particle analysis to determine elemental composition and morphology. A CCN counter was also deployed to measure the fraction of cloud droplet kernels that are CCN active over a range of super-saturations. Our presentation will partition measurements into periods of cloudy and cloud-free periods, and will also be partitioned between periods associated with northerly back trajectories that arrived at Pt. Reyes after passing along the Washington-Oregon coast, westerly oceanic trajectories and a very limited number of periods when the air flow appeared to be associated with urban areas to the south and southeast.

  2. Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2011-01-01

    Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  3. Apparatus and method for the characterization of respirable aerosols

    DOEpatents

    Clark, Douglas K.; Hodges, Bradley W.; Bush, Jesse D.; Mishima, Jofu

    2016-05-31

    An apparatus for the characterization of respirable aerosols, including: a burn chamber configured to selectively contain a sample that is selectively heated to generate an aerosol; a heating assembly disposed within the burn chamber adjacent to the sample; and a sampling segment coupled to the burn chamber and configured to collect the aerosol such that it may be analyzed. The apparatus also includes an optional sight window disposed in a wall of the burn chamber such that the sample may be viewed during heating. Optionally, the sample includes one of a Lanthanide, an Actinide, and a Transition metal.

  4. FEL (Free Electron Laser) Optics Coating Test Program (Design Phase of Sample Introduction Chamber)

    DTIC Science & Technology

    1986-02-01

    steel and coating the holder bases with MOS2 . The pointed tip of the pick-up head guides it into the threaded socket in the sample holder despite...pressure in section (b) is given predominantly by the outgassing rate and the pumping rate. Using the post bakeout rate of stainless steel at 2x10 - 12

  5. 76 FR 21318 - Notice of Funds Availability; Inviting Applications for the Quality Samples Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-15

    ... are funded under this announcement may seek reimbursement from QSP for the sample purchase price, the... project shall not be directly used as part of a retail promotion or supplied directly to consumers... its membership; A description of the organization's prior export promotion experience; and...

  6. Offer of rapid testing and alternative biological samples as practical tools to implement HIV screening programs.

    PubMed

    Parisi, Maria Rita; Soldini, Laura; Di Perri, Giovanni; Tiberi, Simon; Lazzarin, Adriano; Lillo, Flavia B

    2009-10-01

    Implementation of HIV testing has the objective to increase screening, identify and counsel persons with infection, link them to clinical services and reduce transmission. Rapid tests and/or alternative biological samples (like oral fluid) give the option for a better general consent in approaching screening, immediate referral of HIV positives to medical treatment and partner notification. We tested the performance characteristics of an oral fluid-based rapid HIV test (Rapidtest HIV lateral flow-Healthchem diag. LLC) in comparison with routinely utilized methods in a selected population of known positive (N = 121) or negative (N = 754) subjects. The sensitivity of the rapid test was 99.1% (one false negative sample) and the specificity 98.8%. Five negatives showed a faint reactivity, 3 of these were reactive also in the reference test, one with a p24 only reaction in Western blot. If these 3 samples were excluded from the analysis the specificity increases to 99.2%. Results from our study confirm that, although a continuous improvement of the test performance is still needed to minimize false negative and positive results, rapid test and alternative biological samples may contribute to HIV prevention strategies by reaching a larger population particularly when and where regular screening procedures are difficult to obtain.

  7. SRB-3D Solid Rocket Booster performance prediction program. Volume 2: Sample case

    NASA Technical Reports Server (NTRS)

    Winkler, J. C.

    1976-01-01

    The sample case presented in this volume is an asymmetrical eight sector thermal gradient performance prediction for the solid rocket motor. This motor is the TC-227A-75 grain design and the initial grain geometry is assumed to be symmetrical about the motors longitudinal axis.

  8. Source terms for plutonium aerosolization from nuclear weapon accidents

    SciTech Connect

    Stephens, D.R.

    1995-07-01

    The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

  9. Climatology of Aerosol Optical Properties in Southern Africa

    NASA Technical Reports Server (NTRS)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  10. Analysis of tank 7 surface supernatant sample (FTF-7-15-26) in support of corrosion control program

    SciTech Connect

    Oji, L. N

    2015-10-01

    This report provides the results of analyses on Savannah River Site Tank 7 surface supernatant liquid sample in support of the Corrosion Control Program (CCP). The measured nitrate, nitrite and free-hydroxide concentrations for the Tank 7 surface sample averaged, 3.74E-01 ± 1.88E-03, 4.17E-01 ± 9.01E-03 and 0.602 ± 0.005 M, respectively. The Tank 7 surface cesium-137, sodium and silicon concentrations were, respectively, 3.99E+08, ± 3.25E+06 dpm/mL, 2.78 M and <3.10 mg/L. The measured aluminum concentration in the Tank 7 surface sample averaged 0.11 M.

  11. Overview of the Cumulus Humilis Aerosol Processing Study

    SciTech Connect

    Berg, Larry K.; Berkowitz, Carl M.; Ogren, John A.; Hostetler, Chris A.; Ferrare, Richard; Dubey, Manvendra K.; Andrews, Elizabeth; Coulter, Richard L.; Hair, John; Hubbe, John M.; Lee, Yin-Nan; Mazzoleni, Claudio; Olfert, Jason N.; Springston, Stephen R.

    2009-11-30

    The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, above, and within fields of cumuli, and to study changes to the cloud microphysical structure within these same cloud fields. The CHAPS is one of very few studies that have had an Aerosol Mass Spectrometer (AMS) sampling downstream of a counter-flow virtual impactor (CVI) inlet on an aircraft, allowing the examination of the chemical composition of the nucleated aerosols within the cumuli. The results from the CHAPS will provide insights into changes in the aerosol chemical and optical properties as aerosols move through shallow cumuli downwind of a moderately sized city. Three instrument platforms were employed during the CHAPS, including the U.S. Department of Energy Gulfstream-1 aircraft, which was equipped for in situ sampling of aerosol optical and chemical properties; the NASA-Langley King Air B200, which carried the downward looking NASA Langley High Spectral Resolution Lidar (HSRL) to measure profiles of aerosol backscatter, extinction, and depolarization between the King Air and the surface; and a surface site equipped for continuous in situ measurements of aerosol properties, profiles of aerosol backscatter, and meteorological conditions including total sky cover and thermodynamic profiles of the atmosphere. In spite of record precipitation over central Oklahoma, a total of eight research flights were made by the G-1, and eighteen by the B200, including special satellite verification flights timed to coincide with NASA satellite A-Train overpasses.

  12. Application of proteomics in the discovery of candidate protein biomarkers in a Diabetes Autoantibody Standardization Program (DASP) sample subset

    PubMed Central

    Metz, Thomas O.; Qian, Wei-Jun; Jacobs, Jon M.; Gritsenko, Marina A.; Moore, Ronald J.; Polpitiya, Ashoka D.; Monroe, Matthew E.; Camp, David G.; Mueller, Patricia W.; Smith, Richard D.

    2009-01-01

    Novel biomarkers of type 1 diabetes must be identified and validated in initial, exploratory studies before they can be assessed in proficiency evaluations. Currently, untargeted “-omics” approaches are under-utilized in profiling studies of clinical samples. This report describes the evaluation of capillary liquid chromatography (LC) coupled with mass spectrometry (MS) in a pilot proteomic analysis of human plasma and serum from a subset of control and type 1 diabetic individuals enrolled in the Diabetes Autoantibody Standardization Program with the goal of identifying candidate biomarkers of type 1 diabetes. Initial high-resolution capillary LC-MS/MS experiments were performed to augment an existing plasma peptide database, while subsequent LC-FTICR studies identified quantitative differences in the abundance of plasma proteins. Analysis of LC-FTICR proteomic data identified five candidate protein biomarkers of type 1 diabetes. Alpha-2-glycoprotein 1 (zinc), corticosteroid-binding globulin, and lumican were 2-fold up-regulated in type 1 diabetic samples relative to control samples, whereas clusterin and serotransferrin were 2-fold up-regulated in control samples relative to type 1 diabetic samples. Observed perturbations in the levels of all five proteins are consistent with the metabolic aberrations found in type 1 diabetes. While the discovery of these candidate protein biomarkers of type 1 diabetes is encouraging, follow up studies are required for validation in a larger population of individuals and for determination of laboratory-defined sensitivity and specificity values using blinded samples. PMID:18092746

  13. Aerosol Microphysics and Radiation Integration

    DTIC Science & Technology

    2005-09-30

    from the massive dust storm that occurred at the start of Operation Iraqi Freedom in late March 2003, may have been sampled during ADAM. COAMPS ...Along coastal and even some deep ocean regions, dust , pollution and smoke are often present and can dominate Electro-Optical (EO) effects over... COAMPS ®1) and the NRL Aerosol Analysis and Prediction System (NAAPS) require precise source and sink functions, as well as parameterizations for particle

  14. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0005

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.; Humenik, F. M.

    1977-01-01

    Atmospheric ozone, water vapor, and related flight and meteorological data were obtained during 214 flights of a United Airlines B-747 and two Pan American World Airways B-747's from March through June 1976. In addition, trichlorofluoromethane data obtained from laboratory analysis of two whole air samples collected in flight are reported. These data are available on GASP tape VL0005 from the National Climatic Center, Asheville, North Carolina. In addition to the GASP data, tropopause pressure fields obtained from NMC archives for the dates of the GASP flights are included on the data tape. Flight routes and dates, instrumentation, data processing procedures, and data tape specifications are described in this report. Selected analyses including ozone and sample bottle data are also presented.

  15. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    NASA Astrophysics Data System (ADS)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  16. Measurements of Natural Radioactivity in Submicron Aerosols in the Pittsburgh Area.

    NASA Astrophysics Data System (ADS)

    Marley, N.; Gaffney, J. S.

    2002-12-01

    Natural radionuclides can be useful in evaluating the transport of ozone and aerosols in the troposphere. We have used natural radioactivity to estimate apparent residence times for submicron aerosols in the troposphere by looking at the disequilibrium of lead-210 with its daughters bismuth-210 (5-day half-life) and polonium-210 (138-day half-life). We have also measured the activity of beryllium-7 on fine aerosols to examine potential upper-air transport into the tropospheric boundary layer. Two sites in the Pittsburgh area during the summer of 2001 were sampled for beryllium-7, lead-210, bismuth-210, and polonium-210 on fine aerosols by using a Sierra Impactor (Stage 4) that allowed a nominal 1-micrometer cutoff diameter. One site was located approximately 5 km east of downtown Pittsburgh, on a rooftop next to Schenley Park (40.4395o N latitude and 79.9405o W longitude, elevation 310 m). A second site was located at the U.S. Department of Energy National Energy Technology Laboratory (NETL) Ambient Air Monitoring Station, approximately 15 km south of downtown Pittsburgh (40.30655 deg N latitude and 79.9794 deg W longitude, elevation 325 m). At both sites, 24-hour samples were collected from July 22 to July 30, 2001. Nine samples were taken at the NETL site, and six were taken at the Schenley Park site. The method for determining the lead-210 and its daughters will be described briefly. Apparent residence times ranged from 10-46 days, with an average of 23 days. Data indicate that little wind-blown soil or dust affected the area during the study. The importance of fine aerosol transport will be emphasized. The authors wish to thank Donald Martello of the NETL and Natalie J. Anderson of Carnegie Mellon University for sample collection. This work was supported by the United States Department of Energy, Atmospheric Chemistry Program.

  17. Technical management plan for sample generation, analysis, and data review for Phase 2 of the Clinch River Environmental Restoration Program

    SciTech Connect

    Brandt, C.C.; Benson, S.B.; Beeler, D.A.

    1994-03-01

    The Clinch River Remedial Investigation (CRRI) is designed to address the transport, fate, and distribution of waterborne contaminants (radionuclides, metals, and organic compounds) released from the US Department of Energy`s (DOE`s) Oak Ridge Reservation (ORR) and to assess potential risks to human health and the environment associated with these contaminants. The remedial investigation is entering Phase 2, which has the following items as its objectives: define the nature and extent of the contamination in areas downstream from the DOE ORR, evaluate the human health and ecological risks posed by these contaminants, and perform preliminary identification and evaluation of potential remediation alternatives. This plan describes the requirements, responsibilities, and roles of personnel during sampling, analysis, and data review for the Clinch River Environmental Restoration Program (CR-ERP). The purpose of the plan is to formalize the process for obtaining analytical services, tracking sampling and analysis documentation, and assessing the overall quality of the CR-ERP data collection program to ensure that it will provide the necessary building blocks for the program decision-making process.

  18. The Two-Column Aerosol Project: Phase I—Overview and impact of elevated aerosol layers on aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-01

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. In addition, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  19. The Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol layers on aerosol optical depth

    DOE PAGES

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; ...

    2016-01-08

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facilitymore » (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). In addition, these layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Lastly, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.« less

  20. The Two-Column Aerosol Project: Phase I-Overview and impact of elevated aerosol layers on aerosol optical depth

    SciTech Connect

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon P.; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, Johnathan W.; Hostetler, Chris A.; Hubbe, John; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, Kathleen; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail; Rogers, Ray R.; Russell, Philip B.; Redemann, Jens; Sedlacek III, Arthur J.; Segal-Rosenheimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline M.; Volkamer, Rainer; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), conducted from June 2012 through June 2013, was a unique study designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere between and within two atmospheric columns; one fixed near the coast of North America (over Cape Cod, MA) and a second moveable column over the Atlantic Ocean several hundred kilometers from the coast. The U.S. Department of Energy's (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) was deployed at the base of the Cape Cod column, and the ARM Aerial Facility was utilized for the summer and winter intensive observation periods. One important finding from TCAP is that four of six nearly cloud-free flight days had aerosol layers aloft in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). In addition, these layers contributed up to 60% of the total observed aerosol optical depth (AOD). Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning material and nitrate compared to aerosol found near the surface. Lastly, while there was a great deal of spatial and day-to-day variability in the aerosol chemical composition and optical properties, no systematic differences between the two columns were observed.

  1. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    SciTech Connect

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, John; Hostetler, Chris A.; Hubbe, John M.; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, K.; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail S.; Rogers, Ray; Russell, P.; Redemann, Jens; Sedlacek, Art; Segal Rozenhaimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline; Volkamer, Rainer M.; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.

  2. Interplanetary program to optimize simulated trajectories (IPOST). Volume 4: Sample cases

    NASA Technical Reports Server (NTRS)

    Hong, P. E.; Kent, P. D; Olson, D. W.; Vallado, C. A.

    1992-01-01

    The Interplanetary Program to Optimize Simulated Trajectories (IPOST) is intended to support many analysis phases, from early interplanetary feasibility studies through spacecraft development and operations. The IPOST output provides information for sizing and understanding mission impacts related to propulsion, guidance, communications, sensor/actuators, payload, and other dynamic and geometric environments. IPOST models three degree of freedom trajectory events, such as launch/ascent, orbital coast, propulsive maneuvering (impulsive and finite burn), gravity assist, and atmospheric entry. Trajectory propagation is performed using a choice of Cowell, Encke, Multiconic, Onestep, or Conic methods. The user identifies a desired sequence of trajectory events, and selects which parameters are independent (controls) and dependent (targets), as well as other constraints and the cost function. Targeting and optimization are performed using the Standard NPSOL algorithm. The IPOST structure allows sub-problems within a master optimization problem to aid in the general constrained parameter optimization solution. An alternate optimization method uses implicit simulation and collocation techniques.

  3. NASA Global Atmospheric Sampling Program (GASP) data report for tape VL0014

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Dudzinski, T. J.; Liu, D. C.

    1980-01-01

    The data currently available from GASP, including flight routes and dates, instrumentation, data processing procedures, and data tape specifications are described. Measurements of atmospheric ozone, cabin ozine, carbon monoxide, water vapor, particles, clouds, condensation nuclei, filter samples and related meteorological and flight information obtained during 562 flights of aircraft N533PA, N4711U, N655PA, and VH-EBE from October 3, 1977 through January 5, 1978 are reported. Data representing tropopause pressures obtained from time and space interpolation of National Meteorological Center archived data for the dates of the flights are included.

  4. Humidity Dependent Extinction of Clay Aerosols

    NASA Astrophysics Data System (ADS)

    Greenslade, M. E.; Attwood, A. R.

    2010-12-01

    Aerosols play an important role in the Earth’s radiative balance by directly scattering and absorbing radiation. The magnitude of aerosol forcing can be altered by changes in relative humidity which cause aerosol size, shape and refractive index to vary. To quantify these effects, a custom cavity ring down instrument operated at 532 nm with two sample channels measures aerosols extinction under dry conditions and at elevated humidity. The optical growth, fRH(ext), is determined as a ratio of the extinction cross section at high relative humidity to that under dry conditions. Three key clay components of mineral dust and mixtures of clay components with ammonium sulfate are investigated using this method. Experimentally obtained optical growth is compared with physical growth factors from the literature and our work determined using several different techniques. Further, Mie theory calculations based on published optical constants are compared with experimental results. Differences between theory and experiment will be discussed.

  5. Designing a monitoring program to estimate estuarine survival of anadromous salmon smolts: simulating the effect of sample design on inference

    USGS Publications Warehouse

    Romer, Jeremy D.; Gitelman, Alix I.; Clements, Shaun; Schreck, Carl B.

    2015-01-01

    A number of researchers have attempted to estimate salmonid smolt survival during outmigration through an estuary. However, it is currently unclear how the design of such studies influences the accuracy and precision of survival estimates. In this simulation study we consider four patterns of smolt survival probability in the estuary, and test the performance of several different sampling strategies for estimating estuarine survival assuming perfect detection. The four survival probability patterns each incorporate a systematic component (constant, linearly increasing, increasing and then decreasing, and two pulses) and a random component to reflect daily fluctuations in survival probability. Generally, spreading sampling effort (tagging) across the season resulted in more accurate estimates of survival. All sampling designs in this simulation tended to under-estimate the variation in the survival estimates because seasonal and daily variation in survival probability are not incorporated in the estimation procedure. This under-estimation results in poorer performance of estimates from larger samples. Thus, tagging more fish may not result in better estimates of survival if important components of variation are not accounted for. The results of our simulation incorporate survival probabilities and run distribution data from previous studies to help illustrate the tradeoffs among sampling strategies in terms of the number of tags needed and distribution of tagging effort. This information will assist researchers in developing improved monitoring programs and encourage discussion regarding issues that should be addressed prior to implementation of any telemetry-based monitoring plan. We believe implementation of an effective estuary survival monitoring program will strengthen the robustness of life cycle models used in recovery plans by providing missing data on where and how much mortality occurs in the riverine and estuarine portions of smolt migration. These data

  6. Designing a Monitoring Program to Estimate Estuarine Survival of Anadromous Salmon Smolts: Simulating the Effect of Sample Design on Inference.

    PubMed

    Romer, Jeremy D; Gitelman, Alix I; Clements, Shaun; Schreck, Carl B

    2015-01-01

    A number of researchers have attempted to estimate salmonid smolt survival during outmigration through an estuary. However, it is currently unclear how the design of such studies influences the accuracy and precision of survival estimates. In this simulation study we consider four patterns of smolt survival probability in the estuary, and test the performance of several different sampling strategies for estimating estuarine survival assuming perfect detection. The four survival probability patterns each incorporate a systematic component (constant, linearly increasing, increasing and then decreasing, and two pulses) and a random component to reflect daily fluctuations in survival probability. Generally, spreading sampling effort (tagging) across the season resulted in more accurate estimates of survival. All sampling designs in this simulation tended to under-estimate the variation in the survival estimates because seasonal and daily variation in survival probability are not incorporated in the estimation procedure. This under-estimation results in poorer performance of estimates from larger samples. Thus, tagging more fish may not result in better estimates of survival if important components of variation are not accounted for. The results of our simulation incorporate survival probabilities and run distribution data from previous studies to help illustrate the tradeoffs among sampling strategies in terms of the number of tags needed and distribution of tagging effort. This information will assist researchers in developing improved monitoring programs and encourage discussion regarding issues that should be addressed prior to implementation of any telemetry-based monitoring plan. We believe implementation of an effective estuary survival monitoring program will strengthen the robustness of life cycle models used in recovery plans by providing missing data on where and how much mortality occurs in the riverine and estuarine portions of smolt migration. These data

  7. Ground-Water Data-Collection Protocols and Procedures for the National Water-Quality Assessment Program: Collection and Documentation of Water-Quality Samples and Related Data

    USGS Publications Warehouse

    Koterba, Michael T.; Wilde, Franceska D.; Lapham, Wayne W.

    1995-01-01

    Protocols for ground-water sampling are described in a report written in 1989 as part of the pilot program for the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). These protocols have been reviewed and revised to address the needs of the full-scale implementation of the NAWQA Program that began in 1991. This report, which is a collaborative effort between the NAWQA Program and the USGS Office of Water Quality, is the result of that review and revision. This report describes protocols and recommended procedures for the collection of water-quality samples and related data from wells for the NAWQA Program. Protocols and recommended procedures discussed include (1) equipment setup and other preparations for data collection; (2) well purging and field measurements; (3) collecting and processing ground-water-quality samples; (4) equipment decontamination; (5) quality-control sampling; and (6) sample handling and shipping.

  8. Preparation and validation of gross alpha/beta samples used in EML`s quality assessment program

    SciTech Connect

    Scarpitta, S.C.

    1997-10-01

    A set of water and filter samples have been incorporated into the existing Environmental Measurements Laboratory`s (EML) Quality Assessment Program (QAP) for gross alpha/beta determinations by participating DOE laboratories. The participating laboratories are evaluated by comparing their results with the EML value. The preferred EML method for measuring water and filter samples, described in this report, uses gas flow proportional counters with 2 in. detectors. Procedures for sample preparation, quality control and instrument calibration are presented. Liquid scintillation (LS) counting is an alternative technique that is suitable for quantifying both the alpha ({sup 241}Am, {sup 230}Th and {sup 238}Pu) and beta ({sup 90}Sr/{sup 90}Y) activity concentrations in the solutions used to prepare the QAP water and air filter samples. Three LS counting techniques (Cerenkov, dual dpm and full spectrum analysis) are compared. These techniques may be used to validate the activity concentrations of each component in the alpha/beta solution before the QAP samples are actually prepared.

  9. [Characteristics of Family Health Program users sample in Campo Bom (RS), Brazil during the year of 2006].

    PubMed

    de Goulart, Bárbara Niegia Garcia; Algayer, Andressa Regina

    2009-10-01

    This study aims to describe the characteristics of Family Health Program (FHP) users sample in a Basic Health Unit (BHU) in Campo Bom, southern of Brazil. Based on data collected from the handbook of the first 200 patients attended in a specific BHU in January 2006, we analyzed sex, age, average number of medical and nursing consultations in the last twelve months and the reasons for requiring a BHU attendance. In this sample, 68% were female. Children represented 30.5% of the sample and 35.5% of the patients self-declared as married. In addition to that, 59% had not finished basic school. Almost half (42%) of the citizens presented some chronic disease as a complaint to go to a BUH and 17% were looking for preventive health care. In 2005, 17% of the sample had, at least, one nursing consulting and 46.5% of these had from one to four medical consultations. Chronicle diseases and its symptoms or complications represented a significant percentage of the sample and might be associated to the demands for BHU health assistance. Data collected shows the necessity of more investments to prevent complications and/or incapability. Based on a deep understanding of BHU patients' profile, family health teams can improve effectiveness of their health promotion actions focusing on community demands.

  10. Analysis of tank 4 (FTF-4-15-22, 23) surface and subsurface supernatant samples in support of enrichment control, corrosion control and evaporator feed qualification programs

    SciTech Connect

    Oji, L. N.

    2015-09-09

    This report provides the results of analyses on Savannah River Site Tank 4 surface and subsurface supernatant liquid samples in support of the Enrichment Control Program (ECP), the Corrosion Control Program (CCP) and the Evaporator Feed Qualification (EFQ) Program. The purpose of the ECP sample taken from Tank 4 in August 2015 was to determine if the supernatant liquid would be “acceptable feed” to the 2H and 3H evaporator systems.

  11. Evaluation of the imputation performance of the program IMPUTE in an admixed sample from Mexico City using several model designs

    PubMed Central

    2012-01-01

    Background We explored the imputation performance of the program IMPUTE in an admixed sample from Mexico City. The following issues were evaluated: (a) the impact of different reference panels (HapMap vs. 1000 Genomes) on imputation; (b) potential differences in imputation performance between single-step vs. two-step (phasing and imputation) approaches; (c) the effect of different INFO score thresholds on imputation performance and (d) imputation performance in common vs. rare markers. Methods The sample from Mexico City comprised 1,310 individuals genotyped with the Affymetrix 5.0 array. We randomly masked 5% of the markers directly genotyped on chromosome 12 (n = 1,046) and compared the imputed genotypes with the microarray genotype calls. Imputation was carried out with the program IMPUTE. The concordance rates between the imputed and observed genotypes were used as a measure of imputation accuracy and the proportion of non-missing genotypes as a measure of imputation efficacy. Results The single-step imputation approach produced slightly higher concordance rates than the two-step strategy (99.1% vs. 98.4% when using the HapMap phase II combined panel), but at the expense of a lower proportion of non-missing genotypes (85.5% vs. 90.1%). The 1,000 Genomes reference sample produced similar concordance rates to the HapMap phase II panel (98.4% for both datasets, using the two-step strategy). However, the 1000 Genomes reference sample increased substantially the proportion of non-missing genotypes (94.7% vs. 90.1%). Rare variants (<1%) had lower imputation accuracy and efficacy than common markers. Conclusions The program IMPUTE had an excellent imputation performance for common alleles in an admixed sample from Mexico City, which has primarily Native American (62%) and European (33%) contributions. Genotype concordances were higher than 98.4% using all the imputation strategies, in spite of the fact that no Native American samples are present in the HapMap and

  12. The memory screening outreach program: findings from a large community-based sample of middle-aged and older adults.

    PubMed

    Crews, W David; Harrison, David W; Keiser, Alison M; Kunze, Culvette M

    2009-09-01

    Few papers have been published concerning the efficacy of community-based memory and dementia screening programs. This article examines the descriptive, clinical, and outcome characteristics of participants attending the Memory Screening Outreach Program (MSOP). The program provided free screenings of participants' short-term memory processes, neurocognitive complaints, and depressive and psychiatric symptomatology. Screening results were subsequently forwarded to participants and their designated healthcare providers (HCPs), and approximately 8 weeks later, participants who received follow-up recommendations were mailed a survey assessing screening-related outcomes. One thousand community-based persons aged 44 to 91 participated in the program at 16 screening sites. Results indicated that 44.3% of the MSOP participants received follow-up recommendations secondary to age-inappropriate memory impairments, depressive or psychiatric symptomatology, significant neurocognitive complaints, need for respite, or a combination thereof. Memory impairments and depressive or psychiatric symptomato