Science.gov

Sample records for aerosol scale height

  1. [Multi-wavelength spectral aerosol scale height in inshore in contrast with that in inland].

    PubMed

    Han, Yong; Rao, Rui-Zhong; Wang, Ying-Jian

    2009-01-01

    In the present paper, based on the exponential attenuation of atmospheric aerosol concentration with height, so using continuous spectrum sun-photometer, forward scatter visibility sensor and hygrothermograph, the authors measured the atmosphere column optical characteristic and plane spectral extinction coefficient on earth on the base of two experiments at some edge of ocean at the same time, respectively, set up the calculative method of multi-wavelength spectral aerosol scale height. Firstly, the authors obtained atmospheric horizontal extinction coefficient with forward scattering visibility sensor, which subtracted molecular extinction coefficient, and could get aerosol extinction coefficient near ground; Then, selecting sea salt model, using OPAC software, the authors also could calculate the aerosol extinction coefficient under different humidity (0%, 50%, 70%, 80%, 90%, 95%, 98% and 99%) and different wavelength (400, 450, 500, 550, 600, 650, 700 and 750 nm), the aerosol extinction coefficient was detected by visibility sensor, using interpolation method, respectively; Finally, using the data of atmospheric columniation optical thickness detected by continuous spectral sun-photometer and subtracted molecular optical thickness corresponding wavelengths were accounted out by Modtran 4. 0. The authors obtained the characteristic of spectral aerosol scale height of visible light (wavelength is 400, 440, 532, 550 and 690 nm): with wavelength increments, and spectral aerosol scale height was found to decline neither in inland nor in inshore in China; Spectral aerosol scale height in winter is higher than in summer in southeast inshore; but spectral aerosol scale height in winter is smaller in summer than in inland. PMID:19385200

  2. Retrieval of Aerosol Height with TROPOMI

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.; Veefkind, J. P.

    2012-04-01

    The Tropospheric Monitoring Instrument (TROPOMI), to be launched in 2015, will feature a new aerosol product providing the height of aerosol layers. Aerosol Layer Height will be one of two aerosol products, the other one being the Absorbing Aerosol Index. TROPOMI is a UV-VIS-NIR imaging spectrometer with daily global coverage. It will be part of ESA's Sentinel-5 Precursor mission. Algorithm development for the aerosol height product is currently underway at KNMI. In this presentation we will introduce the algorithm, highlight some of the development issues and discuss possible applications and example aerosol cases. Aerosol height observations from the near-infrared wavelength range will improve retrieval of other aerosol properties, particularly retrieval of absorption optical thickness. An increase in absorption in the ultraviolet wavelength range can be due to a higher imaginary part of the refractive index or to the aerosol layer being at a higher altitude. Independent height observations will therefore further constrain retrieval of the single scattering albedo. Furthermore, aerosol profile information is an important parameter when estimating radiative forcings and climate impacts of aerosol, it is a significant source of uncertainty in trace gas retrieval and it helps in understanding atmospheric transport mechanisms. Finally, timely available, global observations of aerosol height will be of interest to aviation safety agencies. The retrieval algorithm for aerosol height will be based on absorption by oxygen in the A-band (759-770 nm). Aerosols are assumed to be contained in a single layer. A spectral fit of reflectance (resolution 0.5 nm) across the absorption band provides layer height. The retrieval method will be optimal estimation to ensure a proper error analysis. Sensitivity studies have indicated that accuracy and precision of retrieved height for cloud-free scenes will be well below the TROPOMI science requirements (1 km). They have also shown that

  3. Mixing-Height Time Series from Operational Ceilometer Aerosol-Layer Heights

    NASA Astrophysics Data System (ADS)

    Lotteraner, Christoph; Piringer, Martin

    2016-07-01

    A new method is described to derive mixing-height time series directly from aerosol-layer height data available from a Vaisala CL51 ceilometer. As complete as possible mixing-height time series are calculated by avoiding outliers, filling data gaps by linear interpolation, and smoothing. In addition, large aerosol-layer heights at night that can be interpreted as residual layers are not assigned as mixing heights. The resulting mixing-height time series, converted to an appropriate data format, can be used as input for dispersion calculations. Two case examples demonstrate in detail how the method works. The mixing heights calculated using ceilometer data are compared with values determined from radiosounding data at Vienna by applying the parcel, Heffter, and Richardson methods. The results of the parcel method, obtained from radiosonde profiles at noon, show the best fit to the ceilometer-derived mixing heights. For midnight radiosoundings, larger deviations between mixing heights from the ceilometer and those deduced from the potential temperature profiles of the soundings are found. We use data from two Vaisala CL51 ceilometers, operating in the Vienna area at an urban and rural site, respectively, during an overlapping period of about 1 year. In addition to the case studies, the calculated mixing-height time series are also statistically evaluated and compared, demonstrating that the ceilometer-based mixing height follows an expected daily and seasonal course.

  4. Urban atmospheric boundary layer height by aerosol lidar and ceilometer

    NASA Astrophysics Data System (ADS)

    Choi, M. H.; Park, M. S.; Park, S. H.

    2014-12-01

    The characteristics of urban atmospheric boundary layer (ABL) height on January, April, July and October 2014 using the gradient method by a ceilometer with a wavelength of 910 nm and an aerosol lidar with a wavelength of 532 and 1064 nm installed at two urban sites (Gwanghwamun and Jungnang) in Korea are analyzed. The Gwanghwamun site located at urban commercial area is 10 km apart from the Jungnang site located at urban residential area. The ABL height is determined by a height with a strong gradient of vertical backscatter intensity. It is found that the ABL height at both sites show a similar pattern and has a strong diurnal variation with a steep increase at 09-12 KST with a maximum in the late afternoon. And it is not determined clearly and the correlation between the ABL height by a ceilometer and that by an aerosol lidar is relatively low in case of high PM10 concentration such as Asian dust, haze and smog. Uncertainty of ABL height is also found to be strongly affected by the weather phenomena such as rain, haze or fog.

  5. A GEOMETRICAL HEIGHT SCALE FOR SUNSPOT PENUMBRAE

    SciTech Connect

    Puschmann, K. G.; Ruiz Cobo, B.; MartInez Pillet, V. E-mail: brc@iac.e

    2010-09-10

    Inversions of spectropolarimetric observations of penumbral filaments deliver the stratification of different physical quantities in an optical depth scale. However, without establishing a geometrical height scale, their three-dimensional geometrical structure cannot be derived. This is crucial in understanding the correct spatial variation of physical properties in the penumbral atmosphere and to provide insights into the mechanism capable of explaining the observed penumbral brightness. The aim of this work is to determine a global geometrical height scale in the penumbra by minimizing the divergence of the magnetic field vector and the deviations from static equilibrium as imposed by a force balance equation that includes pressure gradients, gravity, and the Lorentz force. Optical depth models are derived from the inversion of spectropolarimetric data of an active region observed with the Solar Optical Telescope on board the Hinode satellite. We use a genetic algorithm to determine the boundary condition for the inference of geometrical heights. The retrieved geometrical height scale permits the evaluation of the Wilson depression at each pixel and the correlation of physical quantities at each height. Our results fit into the uncombed penumbral scenario, i.e., a penumbra composed of flux tubes with channeled mass flow and with a weaker and more horizontal magnetic field as compared with the background field. The ascending material is hotter and denser than their surroundings. We do not find evidence of overturning convection or field-free regions in the inner penumbral area analyzed. The penumbral brightness can be explained by the energy transfer of the ascending mass carried by the Evershed flow, if the physical quantities below z = -75 km are extrapolated from the results of the inversion.

  6. Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2016-01-01

    The Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height and single scattering albedo (SSA) for biomass burning smoke aerosols. By using multiple satellite sensors synergistically, ASHE can provide the height information over much broader areas than lidar observations alone. The complete ASHE algorithm uses aerosol data from MODIS or VIIRS, OMI or OMPS, and CALIOP. A simplified algorithm also exists that does not require CALIOP data as long as the SSA of the aerosol layer is provided by another source. Several updates have recently been made: inclusion of dust layers in the retrieval process, better determination of the input aerosol layer height from CALIOP, improvement in aerosol optical depth (AOD) for nonspherical dust, development of quality assurance (QA) procedure, etc.

  7. Global aerosol modeling with the online NMMB/BSC Chemical Transport Model: sensitivity to fire injection height prescription and secondary organic aerosol schemes

    NASA Astrophysics Data System (ADS)

    Spada, Michele; Jorba, Oriol; Pérez García-Pando, Carlos; Tsigaridis, Kostas; Soares, Joana; Obiso, Vincenzo; Janjic, Zavisa; Baldasano, Jose M.

    2015-04-01

    We develop and evaluate a fully online-coupled model simulating the life-cycle of the most relevant global aerosols (i.e. mineral dust, sea-salt, black carbon, primary and secondary organic aerosols, and sulfate) and their feedbacks upon atmospheric chemistry and radiative balance. Following the capabilities of its meteorological core, the model has been designed to simulate both global and regional scales with unvaried parameterizations: this allows detailed investigation on the aerosol processes bridging the gap between global and regional models. Since the strong uncertainties affecting aerosol models are often unresponsive to model complexity, we choose to introduce complexity only when it clearly improves results and leads to a better understanding of the simulated aerosol processes. We test two important sources of uncertainty - the fires injection height and secondary organic aerosol (SOA) production - by comparing a baseline simulation with experiments using more advanced approaches. First, injection heights prescribed by Dentener et al. (2006, ACP) are compared with climatological injection heights derived from satellite measurements and produced through the Integrated Monitoring and Modeling System For Wildland Fires (IS4FIRES). Also global patterns of SOA produced by the yield conversion of terpenes as prescribed by Dentener et al. (2006, ACP) are compared with those simulated by the two-product approach of Tsigaridis et al. (2003, ACP). We evaluate our simulations using a variety of observations and measurement techniques. Additionally, we discuss our results in comparison to other global models within AEROCOM and ACCMIP.

  8. Determining Aerosol Plume Height from Two GEO Imagers: Lessons from MISR and GOES

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.

    2012-01-01

    Aerosol plume height is a key parameter to determine impacts of particulate matters generated from biomass burning, wind-blowing dust, and volcano eruption. Retrieving cloud top height from stereo imageries from two GOES (Geostationary Operational Environmental Satellites) have been demonstrated since 1970's and the principle should work for aerosol plumes if they are optically thick. The stereo technique has also been used by MISR (Multiangle Imaging SpectroRadiometer) since 2000 that has nine look angles along track to provide aerosol height measurements. Knowing the height of volcano aerosol layers is as important as tracking the ash plume flow for aviation safety. Lack of knowledge about ash plume height during the 2010 Eyja'rjallajokull eruption resulted in the largest air-traffic shutdown in Europe since World War II. We will discuss potential applications of Asian GEO satellites to make stereo measurements for dust and volcano plumes.

  9. Duck!: Scaling the height of a horizontal barrier to body height

    PubMed Central

    Stefanucci, Jeanine K.; Geuss, Michael N.

    2012-01-01

    Recent research shows that the body is used to scale environmental extents. We question whether the body is used to scale heights as measured by real actions (Experiments 1 and 2), or judgments about action and extent made from a single viewpoint (Experiments 3 and 4). First, participants walked under barriers either naturally or when wearing shoes or a helmet. Participants required a larger margin of safety (ducked at shorter heights) when they were made taller. In follow-up experiments, participants visually matched barrier heights and judged whether they could walk under them when wearing shoes or a helmet. Only the helmet decreased visually matched estimates; action judgments were no different when taller. The final experiment suggested that the change in matched estimates may have been due to lack of experience wearing the helmet. Overall, the results suggest that perceived height is scaled to the body and that when body height is altered, experience may moderate the rescaling of height. PMID:20601715

  10. Vertical aerosol structure and aerosol mixed layer heights determined with scanning shipborne lidars during the TexAQS II study

    NASA Astrophysics Data System (ADS)

    McCarty, B. J.; Senff, C. J.; Tucker, S. C.; Eberhard, W. L.; Marchbanks, R. D.; Machol, J.; Brewer, W. A.

    2007-12-01

    The NOAA Earth Systems Research Laboratory (ESRL) deployed the Ozone Profiling Atmospheric LIDAR (OPAL) on the R/V Ronald H. Brown during the summer of 2006 for the Texas Air Quality Study (TEXAQS II). Calibrated aerosol backscatter profiles were determined from data collected at the 355 nm wavelength using a modified Klett retrieval method. OPAL employs a unique scan sequence that consists of staring at multiple elevation angles between 2 and 90 degrees, which is repeated approx. every 90 sec. Blending the data from the various elevation angles allows to extend the aerosol backscatter profiles down to near the surface (approximately 10 meters ASL), while maintaining a high spatial resolution (5 meters). Successful application of this technique requires the aerosol distribution to be sufficiently horizontally homogeneous over several kilometers. Estimates of aerosol mixed layer height were determined by applying a Haar wavelet transform method to detect the gradient that is often present at the top of the boundary layer. Co-located on the R/V Ronald H. Brown, was NOAA/ESRL's High Resolution Doppler LIDAR (HRDL). Aerosol mixed layer heights were also estimated using the data from the 2 micron Doppler LIDAR. A comparison of the mixed layer heights as determined from each LIDAR's observations was used to choose the height of the layer likely connected with the surface. The vertical structure of aerosols in the lower troposphere, in particular the presence of aerosol layers above the boundary layer, is important in understanding radiative effects of aerosols. We will present aerosol backscatter structure in the lower troposphere encountered during the TexAQS II study as well as a comparison of relative aerosol content in the free troposphere compared to that within the boundary layer.

  11. Mesoscale and synoptic scale transport of aerosols

    SciTech Connect

    Wolff, G.T.

    1980-01-01

    An overview is presented of mesoscale and synoptic-scale (macroscale) aerosol transport as observed in recent air pollution field studies. Examples of mesoscale transport systems are discussed, including urban plumes, sea breezes, the mountain-valley wind cycle, and the urban-heat-island circulation. The synoptic-scale systems considered are migrating high- and low-pressure systems. Documented cases are reviewed of aerosol transport in the various mesoscale systems, aerosol accumulation and transport in high-pressure systems, and acid precipitation in low-pressure systems. The characteristics of the transported aerosols are identified, along with the chemical species that occur primarily in aerosols in the accumulation mode (particle diameters of 0.1-3 microns). It is shown that aerosol particles in the accumulation mode are the most important in terms of synoptic-scale and mesoscale transport and that such particles are primarily responsible for visible haze.

  12. Ionospheric scale height from the refraction of satellite signals.

    NASA Technical Reports Server (NTRS)

    Heron, M. L.; Titheridge, J. E.

    1972-01-01

    Accurate observations of the elevation angle of arrival of 20 MHz signals from the polar orbiting satellite Beacon-B for a 20 month period have provided transmission ionograms which may be reduced to give Hp the scale height at the peak of the ionosphere. Noon seasonal averages of Hp are 1.35 (in winter) to 1.55 (in summer) times greater than the scale height obtained from bottom-side ionograms. A comparison of scale height at the peak with routine measurements of total content and peak electron density indicates that the O+/H+ transition level is above 1000 km during the day but comes down to about 630 km on winter nights. A predawn peak in the overall scale height is caused by a lowering of the layer to a region of increased recombination and is magnified in winter by low O+/H+ transition levels.

  13. Effects of explosively venting aerosol-sized particles through earth-containment systems on the cloud-stabilization height

    SciTech Connect

    Dyckes, G.W.

    1980-07-01

    A method of approximating the cloud stabilization height for aerosol-sized particles vented explosively through earth containment systems is presented. The calculated values for stabilization heights are in fair agreement with those obtained experimentally.

  14. Are Satellite-Retrieved Correlations Between Cloud-Top-Height and Aerosol Optical Depth Evidence of Aerosol Invigoration of Convection?

    NASA Astrophysics Data System (ADS)

    Stier, P.; Gryspeerdt, E.; Grandey, B. S.; Wagner, T. M.; Kipling, Z.

    2013-12-01

    A robust negative correlation between cloud top pressure (CTP) and aerosol optical depth (AOD) has been documented in a number of studies and triggered hypotheses on aerosol invigoration of convective clouds. However, correlation based analysis is limited in its explanatory power as it does not directly establish physical causality between the correlated properties which may be cross-correlated with other meteorological factors. In this study we combine the global aerosol-climate model ECHAM-HAM with mechanistic coupling of the aerosol microphysics (HAM) to the two-moment cloud microphysics in the Convective Cloud Field Model (CCFM) and satellite data from SEVIRI, MODIS, ISCCP, CALIOP and CloudSat. CCFM explicitly simulates a spectrum of convective cloud top heights within each grid box, providing enhanced realism over traditional mass flux schemes. Consistency is established through sampling of the models at satellite overpass times and the use of ISCCP and COSP satellite simulators in the model. We employ this setup to investigate the contributions of aerosol-cloud interactions and meteorological cross-correlations to AOD--CTP correlations. Our analysis shows that a significant fraction of the observed AOD-CTP relationship is driven by the meteorological link between CTP and cloud fraction (CF), which itself is strongly linked to AOD via the humidification of aerosol in humid (hence preferentially cloudy) environments. Our results shed light on this controversial issue with potentially significant climate implications and emphasise the difficulty to constrain for meteorological variability in observational studies of aerosol-cloud interactions.

  15. European Space Science Scales New Heights

    NASA Astrophysics Data System (ADS)

    1995-06-01

    been approved by all ESA's Member States. Outside Europe, the stability and solidity of Horizon 2000 have made ESA an extremely credible and reliable partner, arousing ever greater interest in international - including transatlantic - co-operation. Given that the first results look positive, it makes sense to think about continuing the work done to date. Which is why this year, half-way through Horizon 2000, it is time to look ahead to the next twenty-year period and embark on the follow-up programme which will lead to further missions being carried out between 2006 and 2016. At ESA Council meeting to be held in October in Toulouse, European ministers responsible for space will therefore have to take a decision on a "Horizon 2000 PLUS " programme designed to ensure successful European space science over a further ten-year period. The proposal being put forward by ESA's directorate of scientific programmes involves setting up three large-scale missions: * a mission to explore Mercury, the least known of the inner solar planets, 60iln of whose surface has yet to be mapped * an interferometry observatory designed to map the sky a hundred times more accurately than the Hipparcos satellite * a gravitational observatory able to pick up the space time waves emitted by the universe at the precise moment of the Big Bang. In parallel four medium-size missions - their content still to be defined - would be carried out. As with its forerunner, Horizon 2000 PLUS has been defined on the basis of proposals submitted by the scientific community following open competition. In all, I10 mission concepts were proposed by a total of 2500 scientists. These were then examined by peer-review groups, involving 75 scientists in all who announced their final choice on I October 1994. The agency is proposing to start preparing for Horizon 2000 PLUS on the basis of level funding up to the year 2000. This means that ESA would undertake to conduct preliminary Horizon 2000 PLUS technological studies

  16. Pulse height response of an optical particle counter to monodisperse aerosols

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.; Grice, S. S.; Cuda, V.

    1976-01-01

    The pulse height response of a right angle scattering optical particle counter has been investigated using monodisperse aerosols of polystyrene latex spheres, di-octyl phthalate and methylene blue. The results confirm previous measurements for the variation of mean pulse height as a function of particle diameter and show good agreement with the relative response predicted by Mie scattering theory. Measured cumulative pulse height distributions were found to fit reasonably well to a log normal distribution with a minimum geometric standard deviation of about 1.4 for particle diameters greater than about 2 micrometers. The geometric standard deviation was found to increase significantly with decreasing particle diameter.

  17. Retrieving the Height of Smoke and Dust Aerosols by Synergistic Use of VIIRS, OMPS, and CALIOP Observations

    NASA Technical Reports Server (NTRS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-01-01

    Aerosol Single scattering albedo and Height Estimation (ASHE) algorithm was first introduced in Jeong and Hsu (2008) to provide aerosol layer height as well as single scattering albedo (SSA) for biomass burning smoke aerosols. One of the advantages of this algorithm was that the aerosol layer height can be retrieved over broad areas, which had not been available from lidar observations only. The algorithm utilized aerosol properties from three different satellite sensors, i.e., aerosol optical depth (AOD) and Ångström exponent (AE) from Moderate Resolution Imaging Spectroradiometer (MODIS), UV aerosol index (UVAI) from Ozone Monitoring Instrument (OMI), and aerosol layer height from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Here, we extend the application of the algorithm to Visible Infrared Imaging Radiometer Suite (VIIRS) and Ozone Mapping and Profiler Suite (OMPS) data. We also now include dust layers as well as smoke. Other updates include improvements in retrieving the AOD of nonspherical dust from VIIRS, better determination of the aerosol layer height from CALIOP, and more realistic input aerosol profiles in the forward model for better accuracy.

  18. Aerosol - cloud - water vapor relations for cloud systems of different heights

    NASA Astrophysics Data System (ADS)

    Stathopoulos, Stavros; Kourtidis, Konstantinos; Georgoulias, Aristeidis

    2016-04-01

    Here we examine the annual and seasonal aerosol - cloud relations over three major urban clusters of China, for different cloud heights and atmospheric water vapor amounts, using a decade of Aerosol Optical Depth at 550nm (AOD), Cloud Cover (CC), Cloud Optical Depth (COD), Water Vapor (WV) and Cloud Top Pressure (CTP) data from the MODIS instrument. Over all regions (spanning from temperate to tropical monsoon climates) and for all seasons, CC is found to increase with AOD, WV and cloud height. Aerosols, at low WV environments and under constant cloud height, have less impact on CC than at high WV environments. In addition, AOD has a varying influence on COD depending on CTP. Finally, COD is found to increase with height for low and middle height clouds, and with increasing AOD, especially at low AOD, the latter being in line with the expected first indirect effect. This research has been financed under the FP7 Programme MarcoPolo (Grand Number 606953, Theme SPA.2013.3.2-01).

  19. Vegetation fires in the himalayan region - Aerosol load, black carbon emissions and smoke plume heights

    NASA Astrophysics Data System (ADS)

    Vadrevu, Krishna Prasad; Ellicott, Evan; Giglio, Louis; Badarinath, K. V. S.; Vermote, Eric; Justice, Chris; Lau, William K. M.

    2012-02-01

    In this study, we investigate the potential of multi-satellite datasets for quantifying the biomass burning emissions from the Himalayan region. A variety of satellite products were used for characterizing fire events including active fire counts, burnt areas, aerosol optical depth (AOD) variations, aerosol index and smoke plume heights. Results from the MODerate-resolution Imaging Spectroradiometer (MODIS) fire product suggest March-June as the major fire season with the peak during the April. An average of 3908 fire counts per year were recorded with sixty four percent of the fires occurring in the low elevation areas in the Himalayan Region. We estimate average burnt areas of 1129 sq. km, with the black carbon emissions of 431 Mg, per year. The mean AOD (2005-2010) was 0.287 ± 0.105 (one sigma) with peak values in May. Correlation analysis between the fire counts and AOD resulted in a Pearson correlation coefficient of 0.553; the correlation between the FRP and AOD is relatively weaker ( r = 0.499). Planetary boundary layer height retrieved from the Modern Era Retrospective-Analysis For Research And Applications (MERRA) product suggests typical PBL height of 1000-1200 m during the April-May peak biomass burning season. Cloud-Aerosol Lidar Orthogonal Polarisation (CALIOP) retrievals show the extent of smoke plume heights beyond the planetary boundary layer during the peak biomass burning month of April. However, comparison of fires in the Himalayan region with other regions and comparisons to aerosol index data from the Ozone Monitoring Instrument (OMI) suggest smoke plumes reaching less than 3 km. Our results on fires and smoke plume height relationships provide valuable information for addressing aerosol transport in the region.

  20. Developments in the Aerosol Layer Height Retrieval Algorithm for the Copernicus Sentinel-4/UVN Instrument

    NASA Astrophysics Data System (ADS)

    Nanda, Swadhin; Sanders, Abram; Veefkind, Pepijn

    2016-04-01

    The Sentinel-4 mission is a part of the European Commission's Copernicus programme, the goal of which is to provide geo-information to manage environmental assets, and to observe, understand and mitigate the effects of the changing climate. The Sentinel-4/UVN instrument design is motivated by the need to monitor trace gas concentrations and aerosols in the atmosphere from a geostationary orbit. The on-board instrument is a high resolution UV-VIS-NIR (UVN) spectrometer system that provides hourly radiance measurements over Europe and northern Africa with a spatial sampling of 8 km. The main application area of Sentinel-4/UVN is air quality. One of the data products that is being developed for Sentinel-4/UVN is the Aerosol Layer Height (ALH). The goal is to determine the height of aerosol plumes with a resolution of better than 0.5 - 1 km. The ALH product thus targets aerosol layers in the free troposphere, such as desert dust, volcanic ash and biomass during plumes. KNMI is assigned with the development of the Aerosol Layer Height (ALH) algorithm. Its heritage is the ALH algorithm developed by Sanders and De Haan (ATBD, 2016) for the TROPOMI instrument on board the Sentinel-5 Precursor mission that is to be launched in June or July 2016 (tentative date). The retrieval algorithm designed so far for the aerosol height product is based on the absorption characteristics of the oxygen-A band (759-770 nm). The algorithm has heritage to the ALH algorithm developed for TROPOMI on the Sentinel 5 precursor satellite. New aspects for Sentinel-4/UVN include the higher resolution (0.116 nm compared to 0.4 for TROPOMI) and hourly observation from the geostationary orbit. The algorithm uses optimal estimation to obtain a spectral fit of the reflectance across absorption band, while assuming a single uniform layer with fixed width to represent the aerosol vertical distribution. The state vector includes amongst other elements the height of this layer and its aerosol optical

  1. Shuttle program: Computing atmospheric scale height for refraction corrections

    NASA Technical Reports Server (NTRS)

    Lear, W. M.

    1980-01-01

    Methods for computing the atmospheric scale height to determine radio wave refraction were investigated for different atmospheres, and different angles of elevation. Tables of refractivity versus altitude are included. The equations used to compute the refraction corrections are given. It is concluded that very accurate corrections are determined with the assumption of an exponential atmosphere.

  2. Stereoscopic Height and Wind Retrievals for Aerosol Plumes with the MISR INteractive eXplorer (MINX)

    NASA Technical Reports Server (NTRS)

    Nelson, D.L.; Garay, M.J.; Kahn, Ralph A.; Dunst, Ben A.

    2013-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) instrument aboard the Terra satellite acquires imagery at 275-m resolution at nine angles ranging from 0deg (nadir) to 70deg off-nadir. This multi-angle capability facilitates the stereoscopic retrieval of heights and motion vectors for clouds and aerosol plumes. MISR's operational stereo product uses this capability to retrieve cloud heights and winds for every satellite orbit, yielding global coverage every nine days. The MISR INteractive eXplorer (MINX) visualization and analysis tool complements the operational stereo product by providing users the ability to retrieve heights and winds locally for detailed studies of smoke, dust and volcanic ash plumes, as well as clouds, at higher spatial resolution and with greater precision than is possible with the operational product or with other space-based, passive, remote sensing instruments. This ability to investigate plume geometry and dynamics is becoming increasingly important as climate and air quality studies require greater knowledge about the injection of aerosols and the location of clouds within the atmosphere. MINX incorporates features that allow users to customize their stereo retrievals for optimum results under varying aerosol and underlying surface conditions. This paper discusses the stereo retrieval algorithms and retrieval options in MINX, and provides appropriate examples to explain how the program can be used to achieve the best results.

  3. Retrieving the height of smoke and dust aerosols by synergistic use of VIIRS, OMPS, and CALIOP observations

    NASA Astrophysics Data System (ADS)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae

    2015-08-01

    This study extends the application of the previously developed Aerosol Single-scattering albedo and layer Height Estimation (ASHE) algorithm, which was originally applied to smoke aerosols only, to both smoke and dust aerosols by including nonspherical dust properties in the retrieval process. The main purpose of the algorithm is to derive aerosol height information over wide areas using aerosol products from multiple satellite sensors simultaneously: aerosol optical depth (AOD) and Ångström exponent from the Visible Infrared Imaging Radiometer Suite (VIIRS), UV aerosol index from the Ozone Mapping and Profiler Suite (OMPS), and total backscatter coefficient profile from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). The case studies suggest that the ASHE algorithm performs well for both smoke and dust aerosols, showing root-mean-square error of the retrieved aerosol height as compared to CALIOP observations from 0.58 to 1.31 km and mean bias from -0.70 to 1.13 km. In addition, the algorithm shows the ability to retrieve single-scattering albedo to within 0.03 of Aerosol Robotic Network inversion data for moderate to thick aerosol loadings (AOD of ~1.0). For typical single-layered aerosol cases, the estimated uncertainty in the retrieved height ranges from 1.20 to 1.80 km over land and from 1.15 to 1.58 km over ocean when favorable conditions are met. Larger errors are observed for multilayered aerosol events, due to the limited sensitivities of the passive sensors to such cases.

  4. Evaluation of the operational Aerosol Layer Height retrieval algorithm for Sentinel-5 Precursor: application to O2 A band observations from GOME-2A

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.; Sneep, M.; Apituley, A.; Stammes, P.; Vieitez, M. O.; Tilstra, L. G.; Tuinder, O. N. E.; Koning, C. E.; Veefkind, J. P.

    2015-06-01

    .e., layer high in the atmosphere) to the extent that retrieved values are not realistically representing actual extinction profiles anymore. When the surface albedo is fixed in retrievals with GOME-2A spectra, convergence deteriorates as expected, but retrieved aerosol layer pressures become much higher (i.e., layer lower in atmosphere). The comparison with lidar measurements indicates that retrieved aerosol layer heights are indeed representative of the underlying profile in that case. Finally, subsequent retrieval simulations with two-layer aerosol profiles show that a model error in the assumed profile (two layers in the simulation but only one in the retrieval) is partly absorbed by the surface albedo when this parameter is fitted. This is expected in view of the correlations between errors in fit parameters and the effect is relatively small for elevated layers (less than 100 hPa). In case one of the scattering layers is near the surface (boundary layer aerosols), the effect becomes surprisingly large such that the retrieved height of the single layer is above the two-layer profile. Furthermore, we find that the retrieval solution, once retrieval converges, hardly depends on the starting values for the fit. Sensitivity experiments with GOME-2A spectra also show that aerosol layer height is indeed relatively robust against inaccuracies in the assumed aerosol model, even when the surface albedo is not fitted. We show spectral fit residuals, which can be used for further investigations. Fit residuals may be partly explained by spectroscopic uncertainties, which is suggested by an experiment showing the improvement of convergence when the absorption cross section is scaled in agreement with Butz et al. (2012) and Crisp et al. (2012) and a temperature offset to the a priori ECMWF temperature profile is fitted. Retrieved temperature offsets are always negative and quite large (ranging between -4 and -8 K), which is not expected if temperature offsets absorb remaining

  5. Evaluation of the operational Aerosol Layer Height retrieval algorithm for Sentinel-5 Precursor: application to O2 A band observations from GOME-2A

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.; Sneep, M.; Apituley, A.; Stammes, P.; Vieitez, M. O.; Tilstra, L. G.; Tuinder, O. N. E.; Koning, C. E.; Veefkind, J. P.

    2015-11-01

    .e., layer high in the atmosphere) to the extent that retrieved values no longer realistically represent actual extinction profiles. When the surface albedo is fixed in retrievals with GOME-2A spectra, convergence deteriorates as expected, but retrieved aerosol layer pressures become much higher (i.e., layer lower in atmosphere). The comparison with lidar measurements indicates that retrieved aerosol layer heights are indeed representative of the underlying profile in that case. Finally, subsequent retrieval simulations with two-layer aerosol profiles show that a model error in the assumed profile (two layers in the simulation but only one in the retrieval) is partly absorbed by the surface albedo when this parameter is fitted. This is expected in view of the correlations between errors in fit parameters and the effect is relatively small for elevated layers (less than 100 hPa). If one of the scattering layers is near the surface (boundary layer aerosols), the effect becomes surprisingly large, in such a way that the retrieved height of the single layer is above the two-layer profile. Furthermore, we find that the retrieval solution, once retrieval converges, hardly depends on the starting values for the fit. Sensitivity experiments with GOME-2A spectra also show that aerosol layer height is indeed relatively robust against inaccuracies in the assumed aerosol model, even when the surface albedo is not fitted. We show spectral fit residuals, which can be used for further investigations. Fit residuals may be partly explained by spectroscopic uncertainties, which is suggested by an experiment showing the improvement of convergence when the absorption cross section is scaled in agreement with Butz et al. (2013) and Crisp et al. (2012), and a temperature offset to the a priori ECMWF temperature profile is fitted. Retrieved temperature offsets are always negative and quite large (ranging between -4 and -8 K), which is not expected if temperature offsets absorb remaining

  6. Separating aerosol microphysical effects and satellite measurement artifacts of the relationships between warm rain onset height and aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Zhu, Yannian; Rosenfeld, Daniel; Yu, Xing; Li, Zhanqing

    2015-08-01

    The high resolution (375 m) of the Visible Infrared Imaging Radiometer Suite on board the Suomi National Polar-Orbiting Partnership satellite allows retrieving relatively accurately the vertical evolution of convective cloud drop effective radius (re) with height or temperature. A tight relationship is found over SE Asia and the adjacent seas during summer between the cloud-free aerosol optical depth (AOD) and the cloud thickness required for the initiation of warm rain, as represented by the satellite-retrieved cloud droplet re of 14 µm, for a subset of conditions that minimize measurement artifacts. This cloud depth (ΔT14) is parameterized as the difference between the cloud base temperature and the temperature at the height where re exceeds 14 µm (T14). For a unit increase of AOD, the height of rain initiation is increased by about 5.5 km. The concern of data artifacts due to the increase in AOD near clouds was mitigated by selecting only scenes with cloud fraction (CF) < 0.1. For CF > 0.1 and ΔT14 > ~20°C, the increase of ΔT14 gradually levels off with further increase of AOD, possibly because the AOD is enhanced by aerosol upward transport and detrainment through the clouds below the T14 isotherm. The bias in the retrieved re due to the different geometries of solar illumination was also quantified. It was shown that the retrievals are valid only for backscatter views or when avoiding scenes with significant amount of cloud self-shadowing. These artifacts might have contributed to past reported relationships between cloud properties and AOD.

  7. Martian thermosphere scale height from SPICAM dayglow measurements

    NASA Astrophysics Data System (ADS)

    Stiepen, A.; Gérard, J.-C.; Bougher, S.; Montmessin, F.

    2014-04-01

    We analyze the ultraviolet dayglow in the atmosphere of Mars through CO2+ and CO Cameron emissions. These emissions are accumulated on a large dataset of dayside grazing limb performed by the Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) instrument on board the Mars Express spacecraft. The temperature of the Martian upper atmosphere can be retrieved from these limb emission profiles. We present discussion on the validity domain for such retrieval. We also show evidence for local (spatial and temporal) variability in the scale height of the atmosphere at the altitude of these emissions.

  8. Modeling the plasmasphere to topside ionosphere scale height ratio

    NASA Astrophysics Data System (ADS)

    Marinov, Pencho; Kutiev, Ivan; Belehaki, Anna; Tsagouri, Ioanna

    2015-08-01

    A new model of plasmasphere to topside ionosphere scale heights ratio is developed, based on topside electron density (Ne) profiles deduced from the International Satellites for Ionospheric Studies (ISIS)-1 satellite measurements. The model is able to improve operational algorithms for space weather predictions. The topside ionospheric and plasmaspheric scale heights are determined by the lowest and largest gradients of measured profiles, respectively, converted in dh/dlnNe units. The new model depends on four parameters: the month of the year (M), the local time (LT), the geomagnetic latitude (glat), and the ln(O+) density (zO) at the O+-H+ ion transition height. It is designed to replace the old one-dimensional model of the ratio in the TaD (TSM-assisted Digisonde) profiler. The parameters M, LT, and glat are approximated by trigonometric basis functions, while zO is described by a polynomial. A series of models were produced with different number of coefficients (number of terms) of the basis functions. Comparison between models revealed that those with larger number of coefficients can produce unrealistic extremes of the model curves due to the non-uniform sampling of data along the axes. Further considered is the simplest model approximating M, LT, and glat by simple 24 sinusoidal functions and linearly depending on zO. The model description and its 54 coefficients are given in Appendix 1 and can be used by other users for reconstruction of plasmasphere density profiles. The main variation of the ratio along geomagnetic latitude at fixed values of the other model parameters is illustrated in a series of plots.

  9. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; Jiang, Jonathan H.

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  10. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the

  11. Turbulence effects in radio occultation studies of atmospheric scale heights

    NASA Technical Reports Server (NTRS)

    Eshleman, V. R.

    1975-01-01

    Atmospheric scale heights derived from radio occultation measurements of a turbulent planetary atmosphere would be accurate if the average angle of refraction through the turbulent atmosphere were equal to the refraction angle for the corresponding quiescent atmosphere. These two angles are not equal (although their difference may not be large enough to cause significant error). If necessary, it should be possible to correct for the systematic error introduced by this inequality by using measurements of signal spectra to determine characteristics of the turbulence. Sensitive dual-frequency measurements could help define the effects of turbulence in future radio occultation experiments. It does not appear that the angular offset due to turbulence has been important in past experiments, although it may become significant and require corrective analysis when improved equipment is used to probe deep into turbulent atmospheres with greater measurement precision.

  12. Aerosol black carbon characteristics over Central India: Temporal variation and its dependence on mixed layer height

    NASA Astrophysics Data System (ADS)

    Kompalli, Sobhan Kumar; Babu, S. Suresh; Moorthy, K. Krishna; Manoj, M. R.; Kumar, N. V. P. Kiran; Shaeb, K. Hareef Baba; Joshi, Ashok Kumar

    2014-10-01

    In a first of its kind study over the Indian region, concurrent and extensive measurements of black carbon (BC) concentration and atmospheric boundary layer parameters are used to quantify the role of atmospheric boundary layer in producing temporal changes in BC. During this study, 18 months (2011-12) data of continuous measurements of BC aerosols, made over a semi-urban location, Nagpur, in Central India are used along with concurrent measurements of vertical profiles of atmospheric thermodynamics, made using weekly ascents of GPS aided Radiosonde for a period of 1 year. From the balloon data, mixed layer heights and ventilation coefficients are estimated, and the monthly and seasonal changes in BC mass concentration are examined in the light of the boundary layer changes. Seasonally, the BC mass concentration was highest (~ 4573 ± 1293 ng m- 3) in winter (December-February), and lowest (~ 1588 ± 897 ng m- 3) in monsoon (June-September), while remained moderate (~ 3137 ± 1446 ng m- 3) in pre-monsoon (March-May), and post-monsoon (~ 3634 ± 813 ng m- 3) (October-November) seasons. During the dry seasons, when the rainfall is scanty or insignificantly small, the seasonal variations in BC concentrations have a strong inverse relationship with mixed layer height and ventilation coefficient. However, the lowest BC concentrations do not occur during the season when the mixed layer height (MLH) is highest or the ventilation coefficient is the highest; rather it occurs when the rainfall is strong (during summer monsoon season) and airmass changes to primarily of marine origin.

  13. Height Distribution Between Cloud and Aerosol Layers from the GLAS Spaceborne Lidar in the Indian Ocean Region

    NASA Technical Reports Server (NTRS)

    Hart, William D.; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis L.

    2005-01-01

    The Geoscience Laser Altimeter System (GLAS), a nadir pointing lidar on the Ice Cloud and land Elevation Satellite (ICESat) launched in 2003, now provides important new global measurements of the relationship between the height distribution of cloud and aerosol layers. GLAS data have the capability to detect, locate, and distinguish between cloud and aerosol layers in the atmosphere up to 40 km altitude. The data product algorithm tests the product of the maximum attenuated backscatter coefficient b'(r) and the vertical gradient of b'(r) within a layer against a predetermined threshold. An initial case result for the critical Indian Ocean region is presented. From the results the relative height distribution between collocated aerosol and cloud shows extensive regions where cloud formation is well within dense aerosol scattering layers at the surface. Citation: Hart, W. D., J. D. Spinhime, S. P. Palm, and D. L. Hlavka (2005), Height distribution between cloud and aerosol layers from the GLAS spaceborne lidar in the Indian Ocean region,

  14. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    NASA Technical Reports Server (NTRS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  15. Utilization of O4 slant column density to derive aerosol layer height from a space-borne UV-visible hyperspectral sensor: sensitivity and case study

    NASA Astrophysics Data System (ADS)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-02-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 1040 molecules2 cm-5, to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nm, the O4 absorption band at 477 nm is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nm is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 m for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 % of retrieved aerosol effective heights are within the error range of 1 km compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  16. Stand variation in Pinus radiata and its relationship with allometric scaling and critical buckling height

    PubMed Central

    Waghorn, Matthew J.; Watt, Michael S.

    2013-01-01

    Background and Aims Allometric relationships and the determination of critical buckling heights have been examined for Pinus radiata in the past. However, how they relate to more mature Pinus radiata exhibiting a wide range of stem diameters, slenderness and modulus of elasticity (E) at operationally used stand densities is largely unknown. The aim of this study was to examine the relationship between Pinus radiata stand structure variables and allometric scaling and critical buckling height. Methods Utilizing a Pinus radiata Nelder trial with stand density and genetic breed as variables, critical buckling height was calculated whilst reduced major axis regression was used to determine scaling exponents between critical height (Hcrit), actual height (H), ground line diameter (D), slenderness (S), density-specific stiffness (E/ρ) and modulus of elasticity (E). Key Results Critical buckling height was highly responsive to decreasing diameter and increasing slenderness. Safety factors in this study were typically considerably lower than previously reported margins in other species. As density-specific stiffness scaled negatively with diameter, the exponent of 0·55 between critical height and diameter did not meet the assumed value of 0·67 under constant density-specific stiffness. E scaled positively with stem slenderness to the power of 0·78. Conclusions The findings suggest that within species density-specific stiffness variation may influence critical height and the scaling exponent between critical height and diameter, which is considered so important in assumptions regarding allometric relationships. PMID:23388878

  17. A review of approaches to estimate wildfire plume injection height within large-scale atmospheric chemical transport models

    NASA Astrophysics Data System (ADS)

    Paugam, R.; Wooster, M.; Freitas, S.; Martin, M. Val

    2016-01-01

    Landscape fires produce smoke containing a very wide variety of chemical species, both gases and aerosols. For larger, more intense fires that produce the greatest amounts of emissions per unit time, the smoke tends initially to be transported vertically or semi-vertically close by the source region, driven by the intense heat and convective energy released by the burning vegetation. The column of hot smoke rapidly entrains cooler ambient air, forming a rising plume within which the fire emissions are transported. The characteristics of this plume, and in particular the height to which it rises before releasing the majority of the smoke burden into the wider atmosphere, are important in terms of how the fire emissions are ultimately transported, since for example winds at different altitudes may be quite different. This difference in atmospheric transport then may also affect the longevity, chemical conversion, and fate of the plumes chemical constituents, with for example very high plume injection heights being associated with extreme long-range atmospheric transport. Here we review how such landscape-scale fire smoke plume injection heights are represented in larger-scale atmospheric transport models aiming to represent the impacts of wildfire emissions on component of the Earth system. In particular we detail (i) satellite Earth observation data sets capable of being used to remotely assess wildfire plume height distributions and (ii) the driving characteristics of the causal fires. We also discuss both the physical mechanisms and dynamics taking place in fire plumes and investigate the efficiency and limitations of currently available injection height parameterizations. Finally, we conclude by suggesting some future parameterization developments and ideas on Earth observation data selection that may be relevant to the instigation of enhanced methodologies aimed at injection height representation.

  18. Parameterization of Fire Injection Height in Large Scale Transport Model

    NASA Astrophysics Data System (ADS)

    Paugam, R.; Wooster, M.; Atherton, J.; Val Martin, M.; Freitas, S.; Kaiser, J. W.; Schultz, M. G.

    2012-12-01

    The parameterization of fire injection height in global chemistry transport model is currently a subject of debate in the atmospheric community. The approach usually proposed in the literature is based on relationships linking injection height and remote sensing products like the Fire Radiative Power (FRP) which can measure active fire properties. In this work we present an approach based on the Plume Rise Model (PRM) developed by Freitas et al (2007, 2010). This plume model is already used in different host models (e.g. WRF, BRAMS). In its original version, the fire is modeled by: a convective heat flux (CHF; pre-defined by the land cover and evaluated as a fixed part of the total heat released) and a plume radius (derived from the GOES Wildfire-ABBA product) which defines the fire extension where the CHF is homogeneously distributed. Here in our approach the Freitas model is modified, in particular we added (i) an equation for mass conservation, (ii) a scheme to parameterize horizontal entrainment/detrainment, and (iii) a new initialization module which estimates the sensible heat released by the fire on the basis of measured FRP rather than fuel cover type. FRP and Active Fire (AF) area necessary for the initialization of the model are directly derived from a modified version of the Dozier algorithm applied to the MOD14 product. An optimization (using the simulating annealing method) of this new version of the PRM is then proposed based on fire plume characteristics derived from the official MISR plume height project and atmospheric profiles extracted from the ECMWF analysis. The data set covers the main fire region (Africa, Siberia, Indonesia, and North and South America) and is set up to (i) retain fires where plume height and FRP can be easily linked (i.e. avoid large fire cluster where individual plume might interact), (ii) keep fire which show decrease of FRP and AF area after MISR overpass (i.e. to minimize effect of the time period needed for the plume to

  19. Parameterization of Fire Injection Height in Large Scale Transport Model

    NASA Astrophysics Data System (ADS)

    Paugam, r.; Wooster, m.; Freitas, s.; Gonzi, s.; Palmer, p.

    2012-04-01

    The parameterization of fire injection height in global chemistry transport model is currently a subject of debate in the atmospheric community. The approach usually proposed in the literature is based on relationships linking injection height and remote sensing products like the Fire Radiative Power (FRP) which can measure active fire properties. In this work we present an approach based on the Plume Rise Model (PRM) developed by Freitas et al (2007, 2010). This plume model is already used in different host models (e.g. WRF, BRAMS). In its original version, the fire is modelled by: a convective heat flux (CHF; pre-defined by the land cover and evaluated as a fixed part of the total heat released) and a plume radius (derived from the GOES Wildfire-ABBA product) which defines the fire extension where the CHF is homogeneously distributed. Here in our approach the Freitas model is modified. Major modifications are implemented in its initialisation module: (i) CHF and the Active Fire area are directly force from FRP data derived from a modified version of the Dozier algorithm applied to the MOD12 product, (ii) and a new module of the buoyancy flux calculation is implemented instead of the original module based on the Morton Taylor and Turner equation. Furthermore the dynamical core of the plume model is also modified with a new entrainment scheme inspired from latest results from shallow convection parameterization. Optimization and validation of this new version of the Freitas PRM is based on fire plume characteristics derived from the official MISR plume height project and atmospheric profile extracted from the ECMWF analysis. The data set is (i) build up to only keep fires where plume height and FRP can be easily linked (i.e. avoid large fire cluster where individual plume might interact) and (ii) split per fire land cover type to optimize the constant of the buoyancy flux module and the entrainment scheme to different fire regime. Result shows that the new PRM is

  20. Tropospheric aerosols: size-differentiated chemistry and large-scale spatial distributions.

    PubMed

    Hidy, George M; Mohnen, Volker; Blanchard, Charles L

    2013-04-01

    Worldwide interest in atmospheric aerosols has emerged since the late 20th century as a part of concerns for air pollution and radiative forcing of the earth's climate. The use of aircraft and balloons for sampling and the use of remote sensing have dramatically expanded knowledge about tropospheric aerosols. Our survey gives an overview of contemporary tropospheric aerosol chemistry based mainly on in situ measurements. It focuses on fine particles less than 1-2.5 microm in diameter. The physical properties of particles by region and altitude are exemplified by particle size distributions, total number and volume concentration, and optical parameters such as extinction coefficient and aerosol optical depth. Particle chemical characterization is size dependent, differentiated by ubiquitous sulfate, and carbon, partially from anthropogenic activity. Large-scale particle distributions extend to intra- and intercontinental proportions involving plumes from population centers to natural disturbances such as dust storms and vegetation fires. In the marine environment, sea salt adds an important component to aerosols. Generally, aerosol components, most of whose sources are at the earth's surface, tend to dilute and decrease in concentration with height, but often show different (layered) profiles depending on meteorological conditions. Key microscopic processes include new particle formation aloft and cloud interactions, both cloud initiation and cloud evaporation. Measurement campaigns aloft are short term, giving snapshots of inherently transient phenomena in the troposphere. Nevertheless, these data, combined with long-term data at the surface and optical depth and transmission observations, yield a unique picture of global tropospheric particle chemistry. PMID:23687724

  1. A DNS study of aerosol and small-scale cloud turbulence interaction

    NASA Astrophysics Data System (ADS)

    Babkovskaia, Natalia; Rannik, Ullar; Phillips, Vaughan; Siebert, Holger; Wehner, Birgit; Boy, Michael

    2016-06-01

    The purpose of this study is to investigate the interaction between small-scale turbulence and aerosol and cloud microphysical properties using direct numerical simulations (DNS). We consider the domain located at the height of about 2000 m from the sea level, experiencing transient high supersaturation due to atmospheric fluctuations of temperature and humidity. To study the effect of total number of particles (Ntot) on air temperature, activation and supersaturation, we vary Ntot. To investigate the effect of aerosol dynamics on small-scale turbulence and vertical air motion, we vary the intensity of turbulent fluctuations and the buoyant force. We find that even a small number of aerosol particles (55.5 cm-3), and therefore a small droplet number concentration, strongly affects the air temperature due to release of latent heat. The system comes to an equilibrium faster and the relative number of activated particles appears to be smaller for larger Ntot. We conclude that aerosol particles strongly affect the air motion. In a case of updraught coursed by buoyant force, the presence of aerosol particles results in acceleration of air motion in vertical direction and increase of turbulent fluctuations.

  2. Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express

    NASA Astrophysics Data System (ADS)

    Stiepen, A.; Gérard, J.-C.; Bougher, S.; Montmessin, F.; Hubert, B.; Bertaux, J.-L.

    2015-01-01

    The CO Cameron (170-270 nm) and CO2+ ultraviolet doublet (298 and 299 nm) emissions have been observed on the Mars dayside with Mars Express Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars (SPICAM) instrument in the limb viewing mode. These ultraviolet emissions ultimately arise from the excitation of the neutral atmosphere by solar extreme ultraviolet radiation. We analyze a wide dataset covering the years 2003-2013 to determine the scale height of the thermosphere and its variability. We show under which conditions the neutral thermospheric temperature is derived from the CO Cameron and CO2+ emission topside scale height of the limb profiles. We show that emission scale heights are highly variable, ranging from 8.4 to 21.8 km and analyze possible differences between CO Cameron and CO2+-derived scale heights. These large variations appear to dominate over the long-term control exerted by the solar flux reaching the top of the atmosphere during the SPICAM observing period when solar minimum to moderate conditions prevailed. Solar heating impacting the topside thermosphere scale height is apparently overwhelmed by other forcing processes (e.g. waves and tides) during this observing period. It also appears that the crustal residual magnetic field does not significantly influence the scale height of the thermosphere. Furthermore, our analysis suggests that local variations in the thermospheric scale height and associated temperature are equal to or larger than seasonal-latitudinal variability.

  3. Winter Mesopause Region Scale Height derived from VHF Meteor Radar Temperatures and LF absolute Reflection Heights measured at Collm

    NASA Astrophysics Data System (ADS)

    Jacobi, Ch.; Kürschner, D.

    The change of ionospheric absolute reflection heights h of low-frequency LF radio waves at oblique incidence in the course of the day is measured at Collm Observatory 51 3 r N 13 0 r E using 1 8 kHz sideband phase comparisons on sporadic oscillation bursts between the sky wave and the ground wave of a commercial 177 kHz transmitter Zehlendorf reflection point 52 1 r N 13 2 r E Plasma scale height H estimates are calculated from the decrease increase of h in the morning evening during winter months The day-to-day variations of H are compared with those of daily mean temperatures at 90 km measured with a VHF meteor radar 36 2 MHz at Collm utilising the amplitude decay of meteor reflections A good qualitative correspondence is found between the two data sets Since mesospheric long-period temperature variations are generally accepted to be the signature of atmospheric planetary waves this shows that LF reflection height measurements can be used for monitoring the dynamics of the upper middle atmosphere

  4. Does the stellar distribution flare? A comparison of stellar scale heights with LAB H I data

    SciTech Connect

    Kalberla, P. M. W.; Kerp, J.; Dedes, L.; Haud, U.

    2014-10-10

    The question of whether the stellar populations in the Milky Way take part in the flaring of scale heights as observed for the H I gas is a matter of debate. Standard mass models for the Milky Way assume a constant scale height for each of the different stellar distributions. However, there is mounting evidence that at least some of the stellar distributions reach, at large galactocentric distances, high altitudes, which are incompatible with a constant scale height. We discuss recent observational evidence for stellar flaring and compare it with H I data from the Leiden/Argentine/Bonn survey. Within the systemic and statistical uncertainties we find a good agreement between both.

  5. Airborne Lidar measurements of aerosols, mixed layer heights, and ozone during the 1980 PEPE/NEROS summer field experiment

    NASA Technical Reports Server (NTRS)

    Browell, E. V.; Shipley, S. T.; Butler, C. F.; Ismail, S.

    1985-01-01

    A detailed summary of the NASA Ultraviolet Differential Absorption Lidar (UV DIAL) data archive obtained during the EPA Persistent Elevated Pollution Episode/Northeast Regional Oxidant Study (PEPE/NEROS) Summer Field Experiment Program (July through August 1980) is presented. The UV dial data set consists of remote measurements of mixed layer heights, aerosol backscatter cross sections, and sequential ozone profiles taken during 14 long-range flights onboard the NASA Wallops Flight Center Electra aircraft. These data are presented in graphic and tabular form, and they have been submitted to the PEPE/NEROS data archive on digital magnetic tape. The derivation of mixing heights and ozone profiles from UV Dial signals is discussed, and detailed intercomparisons with measurements obtained by in situ sensors are presented.

  6. Dependence of the drizzle growth process on the cloud top height and its relevance to the aerosol vertical profile

    NASA Astrophysics Data System (ADS)

    Kawamoto, K.; Suzuki, K.

    2013-12-01

    Transitional processes among cloud droplets, drizzle and raindrops are still uncertain and more efforts are required for the better understanding. In this situation, difference in the drizzle growth process was examined according to the cloud top height using the CloudSat and MODIS synergetic datasets. From the CloudSat products such as 2B-GEOPROF, 2B-TAU, ECMWF-AUX, only one-layered water clouds whose top temperatures were warmer than 273K were extracted over China (a circular area having a diameter of 1800km of the center at 35°N and 120°E) and over ocean (a circular area having a diameter of 1500km of the center at 35°N and 150°E). Then a threshold of 3km of the cloud top height was adopted to divide the extracted clouds into upper and lower cases. First, the probability distribution functions (PDF) of the cloud droplet number density (Nc) and the effective particle radius (Re) were calculated for these four cases (land/ocean/upper/lower). Nc was obtained assuming the adiabatic liquid water content from MODIS-derived cloud optical depth and Re. Oceanic clouds had fewer Nc than land clouds, and almost the same for upper and lower cases. Land clouds had more Nc for the lower case than for the higher case. On the other hand, oceanic clouds had larger Re than land clouds, and almost the same for upper and lower cases. Land clouds had smaller Re for the lower case than for the higher case. These results quite agreed with our existing knowledge on the vertical profile of the aerosol number concentration over ocean (pristine) and land (polluted). Although the number of aerosol particles is fewer and almost the same regardless of the height over the ocean, it is more near the surface and it rapidly decreases according to the height over the land. Next, examining PDF of the radar reflectivity (Ze), we found that although PDFs of Ze were almost the same for oceanic clouds regardless of the cloud top height, PDF of land lower clouds were less frequent at around from

  7. Approximate Schumann resonance parameters for a two-scale-height ionosphere

    NASA Technical Reports Server (NTRS)

    Sentman, D. D.

    1990-01-01

    An isotropic, spherically symmetric two-scale-height ionosphere's transverse magnetic mode eigenfrequencies, as well as the height and angular profiles of its electric and magnetic fields, are presently addressed by an approximate solution. The electromagnetic energy in the eigenmodes is equally partitioned between the electric and magnetic fields, allowing a simple expression of the relative degrees of dissipation within the radial and tangential dissipation layers. The results obtained may be relevant to interpretations of the temporal variations in the Schumann resonances.

  8. New method for deriving the topside ionospheric Vary-Chap scale height

    NASA Astrophysics Data System (ADS)

    Wang, Sicheng; Huang, Sixun; Fang, Hanxian

    2015-09-01

    An α-Chapman function with a continuously varying scale height H(h) can be used to describe the topside ionosphere electron density profile that seamlessly connects the ionosphere with the plasmasphere. Huang and Reinisch have derived the analytic expression of the scale height from the Vary-Chap function, which can be applied to the topside F2 region. However, the H(h) is still difficult to obtain because H(h) is a function of the unknown value H(h) at hmF2. In this paper, the maximum entropy method is introduced to solve this ill-posed problem, and the Vary-Chap scale height for each electron density profile is derived. Then the average percentage errors that defined as the differences between the measured electron density profiles and the Vary-Chap profiles obtained from the Vary-Chap scale heights are calculated with the Alouette/ISIS satellites topside sounder database. The results reveal that the average percentage errors are generally less than 5% and the Vary-Chap profiles can well represent the topside electron density profiles. What is more, the local time, seasonal, solar cycle, and latitudinal variations of the Vary-Chap scale height are preliminarily analyzed.

  9. Topside correction of IRI by global modeling of ionospheric scale height using COSMIC radio occultation data

    NASA Astrophysics Data System (ADS)

    Wu, M. J.; Guo, P.; Fu, N. F.; Xu, T. L.; Xu, X. S.; Jin, H. L.; Hu, X. G.

    2016-06-01

    The ionosphere scale height is one of the most significant ionospheric parameters, which contains information about the ion and electron temperatures and dynamics in upper ionosphere. In this paper, an empirical orthogonal function (EOF) analysis method is applied to process all the ionospheric radio occultations of GPS/COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) from the year 2007 to 2011 to reconstruct a global ionospheric scale height model. This monthly medium model has spatial resolution of 5° in geomagnetic latitude (-87.5° ~ 87.5°) and temporal resolution of 2 h in local time. EOF analysis preserves the characteristics of scale height quite well in the geomagnetic latitudinal, anural, seasonal, and diurnal variations. In comparison with COSMIC measurements of the year of 2012, the reconstructed model indicates a reasonable accuracy. In order to improve the topside model of International Reference Ionosphere (IRI), we attempted to adopt the scale height model in the Bent topside model by applying a scale factor q as an additional constraint. With the factor q functioning in the exponent profile of topside ionosphere, the IRI scale height should be forced equal to the precise COSMIC measurements. In this way, the IRI topside profile can be improved to get closer to the realistic density profiles. Internal quality check of this approach is carried out by comparing COSMIC realistic measurements and IRI with or without correction, respectively. In general, the initial IRI model overestimates the topside electron density to some extent, and with the correction introduced by COSMIC scale height model, the deviation of vertical total electron content (VTEC) between them is reduced. Furthermore, independent validation with Global Ionospheric Maps VTEC implies a reasonable improvement in the IRI VTEC with the topside model correction.

  10. Evidence of scale height variations in the Martian ionosphere over the solar cycle

    NASA Astrophysics Data System (ADS)

    Sánchez-Cano, B.; Lester, M.; Witasse, O.; Milan, S. E.; Hall, B. E. S.; Blelly, P.-L.; Radicella, S. M.; Morgan, D. D.

    2015-12-01

    Solar cycle variations in solar radiation create density changes in any planetary ionosphere, which are well established in the Earth's case. At Mars, however, the ionospheric response to such changes is not well understood. We show the solar cycle impact on the topside ionosphere of Mars, using data from the Mars Advance Radar for Subsurface and Ionospheric Sounding (MARSIS) on board Mars Express. Topside ionospheric variability during the solar cycle is analyzed through neutral scale height behavior. For moderate and high solar activity phases, the topside electron density profile is reproduced with an altitude-variable scale height. However, for the period of extremely low solar activity in 2008 and 2009, the topside was smaller in density than in the other phases of the solar cycle, and there is evidence that it could be reproduced with either a constant scale height or a height-variable scale height with lower electron density. Moreover, the ionosphere during this time did not show any apparent dependence on the EUV flux. This singular behavior during low solar activity may respond to the presence of an induced magnetic field which can penetrate to lower ionospheric altitudes than in other phases of the solar cycle due to the reduced thermal pressure. Numerical simulations of possible scenarios for two different solar cycle phases indicate that this hypothesis is consistent with the observations.

  11. Small-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the

  12. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  13. Assessing Aerosol Mixed Layer Heights from the NASA Larc Airborne High Spectral Resolution Lidar (HSRL) during the Discover-AQ Field Campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Sawamura, P.; Collins, J. E., Jr.; Seaman, S. T.; Cook, A. L.; Harper, D. B.; Follette-Cook, M. B.; daSilva, A.; Randles, C. A.

    2014-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD, during January and February 2013 over the San Joaquin Valley of California, during September 2013 over Houston, TX and during July and August 2014 over Denver, CO. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the mixed layer (ML) height. Analysis of the ML height at these four locations is presented, including temporal and horizontal variability and comparisons between land and water, including the Chesapeake Bay and Galveston Bay. Using the ML heights, the distribution of AOT relative to the ML heights is determined, which is relevant for assessing the long-range transport of aerosols. The ML heights are also used to help relate column AOT measurements and extinction profiles to surface PM2.5 concentrations. The HSRL ML heights are also used to evaluate the performance in simulating the temporal and spatial variability of ML heights from both chemical regional models and global forecast models.

  14. Evaluation of aerosol processes between roadside and neighbourhood scale

    NASA Astrophysics Data System (ADS)

    Karl, Matthias; Kukkonen, Jaakko; Pirjola, Liisa; Keuken, Menno P.

    2015-04-01

    Particle emissions from road transport include vehicle exhaust emissions, tire/brake wear and re-suspension of road dust. Vehicle exhaust emissions usually constitute the most significant source of ultrafine particles (UFP), i.e. particles with diameters <100 nm, in urban environments. Several toxicological studies have concluded that UFP are more toxic than larger particles with the same chemical composition and at the same mass concentration. Since UFP contribute negligibly to the mass concentration of PM10 and PM2.5, they should be described in terms of particle number (PN) concentration. However, only PM10 and PM2.5 are regulated by current air pollution legislation. UFP emitted from road traffic are subject to complex dilution and transformation processes in the urban environment. This model study evaluates the influence of aerosol processes on PN concentration on the spatial and temporal range between the roadside, typically represented by measurements at a traffic monitoring site, and the neighbourhood scale, extending from several hundred meters to several kilometres. Several dispersion scenarios for the cities Oslo, Helsinki and Rotterdam were simulated using the multicomponent aerosol dynamics process model MAFOR, approximating dilution by a power-law function. Aerosol processes considered in this study were condensation/evaporation of n-alkanes, coagulation and the dry deposition of particles. Under typical dispersion conditions dilution clearly dominated the change of total PN on the neighbourhood scale. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamical processes controlling the removal of particles from emitted from vehicular exhaust on urban time scales. The effect of condensation/evaporation of organic vapours emitted by vehicles on particle numbers and on particle size distributions was examined. A simplified parameterization for the implementation of coagulation and dry deposition of particles in

  15. Predicting Maximum Tree Heights and Other Traits from Allometric Scaling and Resource Limitations

    PubMed Central

    Kempes, Christopher P.; West, Geoffrey B.; Crowell, Kelly; Girvan, Michelle

    2011-01-01

    Terrestrial vegetation plays a central role in regulating the carbon and water cycles, and adjusting planetary albedo. As such, a clear understanding and accurate characterization of vegetation dynamics is critical to understanding and modeling the broader climate system. Maximum tree height is an important feature of forest vegetation because it is directly related to the overall scale of many ecological and environmental quantities and is an important indicator for understanding several properties of plant communities, including total standing biomass and resource use. We present a model that predicts local maximal tree height across the entire continental United States, in good agreement with data. The model combines scaling laws, which encode the average, base-line behavior of many tree characteristics, with energy budgets constrained by local resource limitations, such as precipitation, temperature and solar radiation. In addition to predicting maximum tree height in an environment, our framework can be extended to predict how other tree traits, such as stomatal density, depend on these resource constraints. Furthermore, it offers predictions for the relationship between height and whole canopy albedo, which is important for understanding the Earth's radiative budget, a critical component of the climate system. Because our model focuses on dominant features, which are represented by a small set of mechanisms, it can be easily integrated into more complicated ecological or climate models. PMID:21695189

  16. Scale Height variations with solar cycle in the ionosphere of Mars

    NASA Astrophysics Data System (ADS)

    Sanchez-Cano, Beatriz; Lester, Mark; Witasse, Olivier; Milan, Stephen E.; Hall, Benjamin E. S.; Cartacci, Marco; Radicella, Sandro M.; Blelly, Pierre-Louis

    2015-04-01

    The Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) on board the Mars Express spacecraft has been probing the topside of the ionosphere of Mars since June 2005, covering currently almost one solar cycle. A good knowledge of the behaviour of the ionospheric variability for a whole solar period is essential since the ionosphere is strongly dependent on solar activity. Using part of this dataset, covering the years 2005 - 2012, differences in the shape of the topside electron density profiles have been observed. These variations seem to be linked to changes in the ionospheric temperature due to the solar cycle variation. In particular, Mars' ionospheric response to the extreme solar minimum between end-2007 and end-2009 followed a similar pattern to the response observed in the Earth's ionosphere, despite the large differences related to internal origin of the magnetic field between both planets. Plasma parameters such as the scale height as a function of altitude, the main peak characteristics (altitude, density), the total electron content (TEC), the temperatures, and the ionospheric thermal pressures show variations related to the solar cycle. The main changes in the topside ionosphere are detected during the period of very low solar minimum, when ionospheric cooling occurs. The effect on the scale height is analysed in detail. In contrast, a clear increase of the scale height is observed during the high solar activity period due to enhanced ionospheric heating. The scale height variation during the solar cycle has been empirically modelled. The results have been compared with other datasets such as radio-occultation and retarding potential analyser data from old missions, especially in low solar activity periods (e.g. Mariner 4, Viking 1 and 2 landers), as well as with numerical modelling.

  17. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and

  18. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  19. A predictive nondestructive model for the covariation of tree height, diameter, and stem volume scaling relationships.

    PubMed

    Zhang, Zhongrui; Zhong, Quanlin; Niklas, Karl J; Cai, Liang; Yang, Yusheng; Cheng, Dongliang

    2016-01-01

    Metabolic scaling theory (MST) posits that the scaling exponents among plant height H, diameter D, and biomass M will covary across phyletically diverse species. However, the relationships between scaling exponents and normalization constants remain unclear. Therefore, we developed a predictive model for the covariation of H, D, and stem volume V scaling relationships and used data from Chinese fir (Cunninghamia lanceolata) in Jiangxi province, China to test it. As predicted by the model and supported by the data, normalization constants are positively correlated with their associated scaling exponents for D vs. V and H vs. V, whereas normalization constants are negatively correlated with the scaling exponents of H vs. D. The prediction model also yielded reliable estimations of V (mean absolute percentage error = 10.5 ± 0.32 SE across 12 model calibrated sites). These results (1) support a totally new covariation scaling model, (2) indicate that differences in stem volume scaling relationships at the intra-specific level are driven by anatomical or ecophysiological responses to site quality and/or management practices, and (3) provide an accurate non-destructive method for predicting Chinese fir stem volume. PMID:27553773

  20. A predictive nondestructive model for the covariation of tree height, diameter, and stem volume scaling relationships

    PubMed Central

    Zhang, Zhongrui; Zhong, Quanlin; Niklas, Karl J.; Cai, Liang; Yang, Yusheng; Cheng, Dongliang

    2016-01-01

    Metabolic scaling theory (MST) posits that the scaling exponents among plant height H, diameter D, and biomass M will covary across phyletically diverse species. However, the relationships between scaling exponents and normalization constants remain unclear. Therefore, we developed a predictive model for the covariation of H, D, and stem volume V scaling relationships and used data from Chinese fir (Cunninghamia lanceolata) in Jiangxi province, China to test it. As predicted by the model and supported by the data, normalization constants are positively correlated with their associated scaling exponents for D vs. V and H vs. V, whereas normalization constants are negatively correlated with the scaling exponents of H vs. D. The prediction model also yielded reliable estimations of V (mean absolute percentage error = 10.5 ± 0.32 SE across 12 model calibrated sites). These results (1) support a totally new covariation scaling model, (2) indicate that differences in stem volume scaling relationships at the intra-specific level are driven by anatomical or ecophysiological responses to site quality and/or management practices, and (3) provide an accurate non-destructive method for predicting Chinese fir stem volume. PMID:27553773

  1. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  2. NEW ESTIMATES OF THE INCLINATION, POSITION ANGLE, PITCH ANGLE, AND SCALE HEIGHT OF THE WHIRLPOOL GALAXY

    SciTech Connect

    Hu Tao; Shao Zhengyi; Peng Qiuhe E-mail: taohu.nju@gmail.com

    2013-01-10

    The inclination (i) and position angle (PA) of the Whirlpool galaxy (M51) are critical to modeling and interpreting observations. Here we make improved estimates of these parameters by fitting logarithmic spirals to the main arms. From separate fits to each major arm, we obtain i = 20. Degree-Sign 3 {+-} 2. Degree-Sign 8 and PA = 12. Degree-Sign 0 {+-} 2. Degree-Sign 5. We then use Poisson's equation for the logarithmic perturbation of the density to estimate the mean vertical scale height (H) of M51 to be 95-178 pc.

  3. Integrating disparate lidar data at the national scale to assess the relationships between height above ground, land cover and ecoregions

    USGS Publications Warehouse

    Stoker, Jason M.; Cochrane, Mark A.; Roy, David P.

    2013-01-01

    With the acquisition of lidar data for over 30 percent of the US, it is now possible to assess the three-dimensional distribution of features at the national scale. This paper integrates over 350 billion lidar points from 28 disparate datasets into a national-scale database and evaluates if height above ground is an important variable in the context of other nationalscale layers, such as the US Geological Survey National Land Cover Database and the US Environmental Protection Agency ecoregions maps. While the results were not homoscedastic and the available data did not allow for a complete height census in any of the classes, it does appear that where lidar data were used, there were detectable differences in heights among many of these national classification schemes. This study supports the hypothesis that there were real, detectable differences in heights in certain national-scale classification schemes, despite height not being a variable used in any of the classification routines.

  4. Scaling, cumulant ratios, and height distribution of ballistic deposition in 3 +1 and 4 +1 dimensions

    NASA Astrophysics Data System (ADS)

    Alves, Sidiney G.; Ferreira, Silvio C.

    2016-05-01

    We investigate the origin of the scaling corrections in ballistic deposition models in high dimensions using the method proposed by Alves et al. [Phys. Rev. E 90, 052405 (2014), 10.1103/PhysRevE.90.052405] in d =2 +1 dimensions, where the intrinsic width associated with the fluctuations of the height increments during the deposition processes is explicitly taken into account. In the present work, we show that this concept holds for d =3 +1 and 4 +1 dimensions. We have found that growth and roughness exponents and dimensionless cumulant ratios are in agreement with other models, presenting small finite-time corrections to the scaling, that in principle belong to the Kardar-Parisi-Zhang (KPZ) universality class in both d =3 +1 and 4 +1 . Our results constitute further evidence that the upper critical dimension of the KPZ class, if it exists, is larger than 4.

  5. Height bias and scale effect induced by antenna gravitational deformations in geodetic VLBI data analysis

    NASA Astrophysics Data System (ADS)

    Sarti, Pierguido; Abbondanza, Claudio; Petrov, Leonid; Negusini, Monia

    2011-01-01

    The impact of signal path variations (SPVs) caused by antenna gravitational deformations on geodetic very long baseline interferometry (VLBI) results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models in geodetic VLBI data analysis, estimates of the antenna reference point positions are shifted upward by 8.9 and 6.7 mm, respectively. The impact on other parameters is negligible. To simulate the impact of antenna gravitational deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects of the simulations are changes in VLBI heights in the range [-3, 73] mm and a net scale increase of 0.3-0.8 ppb. The height bias is larger than random errors of VLBI position estimates, implying the possibility of significant scale distortions related to antenna gravitational deformations. This demonstrates the need to precisely measure gravitational deformations of other VLBI telescopes, to derive their precise SPV models and to apply them in routine geodetic data analysis.

  6. The upper clouds of Venus: Determination of the scale height from NIMS-Galileo infrared data

    NASA Technical Reports Server (NTRS)

    Roos, M.; Drossart, P.; Encrenaz, TH.; Lellouch, E.; Bezard, B.; Carlson, R. W.; Baines, K. H.; Kamp, L. W.; Taylor, F. W.; Collard, A. D.

    1993-01-01

    The 3-5 micrometer thermal emission of the nightside of Venus, recorded by the Near-Infrared Mapping Spectrometer (NIMS) instrument at the time of the Galileo flyby of Venus, is analysed to infer the properties of the upper cloud boundary. From the global maps of Venus at fixed wavelengths, the limb darkening of the flux is measured at several latitudes, within each infrared channel. By using the nominal Pioneer Venus thermal profile, these data give access to two parameters: the cloud deck temperature and the cloud scale height. It is verified independently, from the NIMS spectra, that this thermal profile is consistent with all the NIMS observations, and that the thermal structure does not vary significantly in the latitude range (25 deg S, 30 deg N). Within this range, the cloud scale height is found to be constant with latitude, and is H = 5.2 km, with an accuracy of about 15%, taking into account the various sources of theoretical and observational uncertainties. At higher latitudes, the temperature profile becomes more isothermal and the presented method to retrieve H is no longer valid.

  7. A large scale height galactic component of the diffuse 2-60 keV background

    NASA Technical Reports Server (NTRS)

    Iwan, D.; Marshall, F. E.; Boldt, E. A.; Mushotzky, R.; Shafer, R. A.; Stottlemyer, A.

    1982-01-01

    The diffuse 2-60 keV X-ray background has a galactic component clearly detectable by its strong variation with both galactic latitude and longitude. This galactic component is typically 10 percent of the extragalactic background toward the galactic center, half that strong toward the anticenter, and extrapolated to a few percent of the extragalactic background toward the galactic poles. It is acceptably modeled by a finite radius emission disk with a scale height of several kiloparsecs. The averaged galactic spectrum is best fitted by a thermal spectrum of kT about 9 keV, a spectrum much softer than the about 40 keV spectrum of the extragalactic component. The most likely source of this emission is low luminosity stars with large scale heights such as subdwarfs. Inverse Compton emission from GeV electrons on the microwave background contributes only a fraction of the galactic component unless the local cosmic ray electron spectrum and intensity are atypical.

  8. Spatial and diurnal variations of storm heights in the East Asia summer monsoon: storm height regimes and large-scale diurnal modulation

    NASA Astrophysics Data System (ADS)

    Park, Myung-Sook; Lee, Myong-In; Kim, Hyerim; Im, Jungho; Yoo, Jung-Moon

    2016-02-01

    This study investigates the spatial and diurnal variation of storm height in the East Asia summer monsoon region using 13-year Tropical Rainfall Measuring Mission Precipitation Radar data. Precipitating storms are classified as shallow (<5 km), middle (5-10 km), and deep (>10 km) depending the height. Four different regimes are identified to characterize the region: the continental (CT) shallow regime over inland China with elevated terrain, the CT deep over the Chinese Plain, the coastal (CS) middle over the East China Sea and South Sea of Korea, and the CS shallow over the south coastal area of Japan. This regime separation reflects well the distinctive regional difference in the rainfall contribution by each storm type. The occurrence frequencies of shallow, middle, and deep storms exhibit pronounced diurnal variation as well, but with significant differences in the amplitude and phase across the regimes. These lead to a diversity in the diurnal variation of surface rainfall such as bimodal morning and late evening peaks in the two CT regimes and the single morning peak in the two CS regimes. Processes involved in the diurnal variation of storms are different across the regimes, indicating difference in the contributing role of surface heating, large-scale diurnal circulation, and diurnal propagations of convective systems. The storm height also affects the rain intensity. This study highlights that the East Asia summer monsoon has distinctive sub-regional variation of the storm height distribution, thereby providing unique differences in the rainfall amount, intensity, and the diurnal variation.

  9. Scaling Heights for Volcanic Plumes Rising Under Wind Stress: Inter-comparison Using Analogue Laboratory Experiments and Observations.

    NASA Astrophysics Data System (ADS)

    Jellinek, M.; Aubry, T. J.

    2015-12-01

    The maximum height of volcanic plumes rising into Earth's atmosphere is governed mostly by the atmospheric stratification, the rate of turbulent entrainment of atmospheric air into the plume, the buoyancy flux at the vent and wind. Turbulent entrainment is commonly assumed to increase proportionally with the average plume rise velocity and the wind stress. There exist multiple scalings linking eruption source conditions to plume height. However, most scalings are empirical and/or incompletely verified with: i) analogue experiments that do not capture the full range of dynamical conditions under which explosive eruption occur; ii) direct observations of a restricted number of eruptions; or iii) numerical models with parameterized turbulent entrainment physics.In this study, we produce a self-consistent intercomparison of scalings commonly used in the literature. We use extensive analogue laboratory experiments on buoyant jets rising into a uniform wind field and a set of observations from 27 explosive eruptions (Mastin, 2014) to test each scaling. We show that predictions for the heights of natural eruptions under various though average wind stress conditions are unsurprisingly similar. On the other hand, existing scalings for plume height vary widely in their predictions for the heights of analog plumes spanning a broader though realist range of wind forcing. Using new analytical scaling that best predict the heights of analog plumes, we improve calibration of turbulent entrainment rates, in turn.

  10. A European research infrastructure for the aerosol study on a continental scale: EARLINET-ASOS

    NASA Astrophysics Data System (ADS)

    Amodeo, Aldo; Pappalardo, Gelsomina; Bösenberg, Jens; Ansmann, Albert; Apituley, Arnoud; Alados-Arboledas, Lucas; Balis, Dimitris; Böckmann, Christine; Chaikovsky, Anatoly; Comeron, Adolfo; Freudenthaler, Volker; Gustaffson, Ove; Hansen, Georg; Mitev, Valentin; Nicolae, Doina; Papayannis, Alexandros; Perrone, Maria Rita; Pietruczuk, Aleksander; Pujadas, Manuel; Putaud, Jean-Philippe; Ravetta, Francois; Rizi, Vincenzo; Simeonov, Valentin; Spinelli, Nicola; Stoyanov, Dimitar; Trickl, Thomas; Wiegner, Matthias

    2007-10-01

    The present knowledge of the aerosol distribution is not sufficient to estimate the aerosol influence on global and regional environmental conditions and climate. This observational gap can be closed by using advanced laser remote sensing. EARLINET (European Aerosol Research Lidar Network) is the first aerosol lidar network, established in 2000, with the main goal to provide a comprehensive, quantitative, and statistically significant database for the aerosol distribution on a continental scale. EARLINET is a coordinated network of European stations (25 at present) using advanced lidar methods for the vertical profiling of aerosols. The network activity is based on simultaneous scheduled measurements, a rigorous quality assurance program addressing both instruments and evaluation algorithms, and a standardised data exchange format. Further observations are performed to monitor special events. EARLINET-ASOS (Advanced Sustainable Observation System) is a five year EC Project started in 2006, based on the EARLINET infrastructure. The main objectives are: to make EARLINET a world-leading instrument for the observation of the 4-D aerosol distribution on continental scale; to foster aerosol-related process studies, validation of satellite sensors, model development and validation, assimilation of aerosol data into operational models; and to build a comprehensive climatology of the aerosol distribution.

  11. Height biases and scale variations in VLBI networks due to antenna gravitational deformations

    NASA Astrophysics Data System (ADS)

    Abbondanza, Claudio; Sarti, Pierguido; Petrov, Leonid; Negusini, Monia

    2010-05-01

    The impact of signal path variations (SPVs) caused by antenna gravity deformations on geodetic VLBI results is evaluated for the first time. Elevation-dependent models of SPV for Medicina and Noto (Italy) telescopes were derived from a combination of terrestrial surveying methods to account for gravitational deformations. After applying these models, estimates of the antenna reference point (ARP) positions are shifted upward by 8.9 mm and 6.7 mm, respectively. The impact on other parameters is negligible. To infer the impact of antenna gravity deformations on the entire VLBI network, lacking measurements for other telescopes, we rescaled the SPV models of Medicina and Noto for other antennas according to their size. The effects are changes in VLBI heights in the range [-3,73] mm and a significant net scale increase of 0.3 - 0.8 ppb. This demonstrates the need to include SPV models in routine VLBI data analysis.

  12. Kinetic model for an auroral double layer that spans many gravitational scale heights

    SciTech Connect

    Robertson, Scott

    2014-12-15

    The electrostatic potential profile and the particle densities of a simplified auroral double layer are found using a relaxation method to solve Poisson's equation in one dimension. The electron and ion distribution functions for the ionosphere and magnetosphere are specified at the boundaries, and the particle densities are found from a collisionless kinetic model. The ion distribution function includes the gravitational potential energy; hence, the unperturbed ionospheric plasma has a density gradient. The plasma potential at the upper boundary is given a large negative value to accelerate electrons downward. The solutions for a wide range of dimensionless parameters show that the double layer forms just above a critical altitude that occurs approximately where the ionospheric density has fallen to the magnetospheric density. Below this altitude, the ionospheric ions are gravitationally confined and have the expected scale height for quasineutral plasma in gravity.

  13. Long-period upper mesosphere temperature and plasma scale height variations derived from VHF meteor radar and LF absolute reflection height measurements

    NASA Astrophysics Data System (ADS)

    Jacobi, C.; Kürschner, D.

    2006-09-01

    The change of ionospheric absolute reflection heights h of low-frequency (LF) radio waves at oblique incidence in the course of the day is measured at Collm Observatory (51.3° N, 13.0° E) using 1.8 kHz sideband phase comparisons between the sky-wave and the ground wave of a commercial 177 kHz transmitter (Zehlendorf, reflection point at 52.1° N, 13.2° E). Plasma scale height estimates H are calculated from the decrease/increase of h in the morning/evening. The day-to-day variations of H are compared with those of daily mean temperatures at 90 km, measured with a VHF meteor radar (36.2 MHz) at Collm and using the amplitude decay of meteor reflections. A good qualitative correspondence is found between the two data sets. Since mesospheric long-period temperature variations are generally accepted to be the signature of atmospheric planetary waves, this shows that LF reflection height measurements can be used for monitoring the dynamics of the upper middle atmosphere.

  14. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    SciTech Connect

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-15

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  15. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments

    NASA Astrophysics Data System (ADS)

    Gopalakrishnan, V.; Subramanian, V.; Baskaran, R.; Venkatraman, B.

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging.

  16. Costs of height gain in rainforest saplings: main-stem scaling, functional traits and strategy variation across 75 species

    PubMed Central

    Kooyman, Robert M.; Westoby, Mark

    2009-01-01

    Background and Aims Height gain plays an important role in plant life-history strategies and species coexistence. Here main-stem costs of height gain of saplings across species within a rainforest community are compared. Methods Scaling relationships of height to diameter at the sapling stage were compared among 75 woody rainforest plant species in subtropical eastern Australia using standardized major axis regression. Main-stem costs of height gain were then related to other functional traits that reflect aspects of species ecological strategies. Key Results Slopes (β) for the height–diameter (H–D) scaling relationship were close to 1·3, in line with previous reports and with theory. Main-stem volume to achieve 5 m in height varied substantially between species, including between species within groups based on adult height and successional status. The variation was largely independent of other species traits, being uncorrelated with mature plant height (Hmax) and with leaf size, and weakly negatively correlated with wood density and seed size. The relationship between volume to reach 5 m and wood density was too weak to be regarded as a trade-off. Estimated main-stem dry mass to achieve 5 m height varied almost three-fold across species, with wood density and stem volume contributing roughly equally to the variation. Conclusion The wide range in economy of sapling height gain reported here is presumed to be associated with a trade-off between faster growth and higher mortality rates. It is suggested that wide diameters would have a stronger effect in preventing main-stem breakage in the short term, while high wood density would have a stronger effect in sustaining stem strength over time. PMID:19635742

  17. Determining the solar-flare photospheric scale height from SMM gamma-ray measurements

    NASA Technical Reports Server (NTRS)

    Lingenfelter, Richard E.

    1991-01-01

    A connected series of Monte Carlo programs was developed to make systematic calculations of the energy, temporal and angular dependences of the gamma-ray line and neutron emission resulting from such accelerated ion interactions. Comparing the results of these calculations with the Solar Maximum Mission/Gamma Ray Spectrometer (SMM/GRS) measurements of gamma-ray line and neutron fluxes, the total number and energy spectrum of the flare-accelerated ions trapped on magnetic loops at the Sun were determined and the angular distribution, pitch angle scattering, and mirroring of the ions on loop fields were constrained. Comparing the calculations with measurements of the time dependence of the neutron capture line emission, a determination of the He-3/H ratio in the photosphere was also made. The diagnostic capabilities of the SMM/GRS measurements were extended by developing a new technique to directly determine the effective photospheric scale height in solar flares from the neutron capture gamma-ray line measurements, and critically test current atmospheric models in the flare region.

  18. INFRARED VARIABILITY OF EVOLVED PROTOPLANETARY DISKS: EVIDENCE FOR SCALE HEIGHT VARIATIONS IN THE INNER DISK

    SciTech Connect

    Flaherty, K. M.; Rieke, G.; Muzerolle, J.; Gutermuth, R.; Balog, Z.; Herbst, W.; Megeath, S. T.; Kun, M.

    2012-03-20

    We present the results of a multi-wavelength multi-epoch survey of five evolved protoplanetary disks in the IC 348 cluster that show significant infrared variability. Using 3-8 {mu}m and 24 {mu}m photometry along with 5-40 {mu}m spectroscopy from the Spitzer Space Telescope, as well as ground-based 0.8-5 {mu}m spectroscopy, optical spectroscopy, and near-infrared photometry, covering timescales of days to years, we examine the variability in the disk, stellar, and accretion flux. We find substantial variations (10%-60%) at all infrared wavelengths on timescales of weeks to months for all of these young stellar objects. This behavior is not unique when compared to other cluster members and is consistent with changes in the structure of the inner disk, most likely scale height fluctuations on a dynamical timescale. Previous observations, along with our near-infrared photometry, indicate that the stellar fluxes are relatively constant; stellar variability does not appear to drive the large changes in the infrared fluxes. Based on our near-infrared spectroscopy of the Pa{beta} and Br{gamma} lines we find that the accretion rates are variable in most of the evolved disks but the overall rates are probably too small to cause the infrared variability. We discuss other possible physical causes for the variability, including the influence of a companion, magnetic fields threading the disk, and X-ray flares.

  19. Filling factors and scale heights of the diffuse ionized gas in the Milky Way

    NASA Astrophysics Data System (ADS)

    Berkhuijsen, E. M.; Mitra, D.; Mueller, P.

    2006-01-01

    The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (\\cite{cordes+lazio02}) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b|>5° and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight /line{f}v and the mean density in ionized clouds /line{n}c are inversely correlated: /line{f}v(/line{n}c ) = (0.0184± 0.0011) /line{n}c{ -1.07± 0.03} for the ranges 0.03 < /line{n}c < 2 {cm-3 and 0.8 > /line{f}v > 0.01. This relationship is very tight. The inverse correlation of /line{f}v and /line{n}c causes the well-known constancy of the average electron density along the line of sight. As /line{f}v(z) increases with distance from the Galactic plane |z|, the average size of the ionized clouds increases with |z|. (2) For |z| < 0.9 kpc the local density in clouds nc (z) and local filling factor f(z) are inversely correlated because the local electron density ne (z) = f(z) nc (z) is constant. We suggest that f(z) reaches a maximum value of >0.3 near |z| = 0.9 kpc, whereas nc (z) continues to decrease to higher |z|, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z| < 0.9 kpc the local distributions nc (z), f(z) and ne2(z) have the same scale height which is in the range 250 < h ⪉ 500 pc. (4) The average degree of ionization of the warm atomic gas /line{I}w (z) increases towards higher |z| similarly to /line{f}v (z). Towards |z| = 1 kpc, /line{f}v (z) = 0.24± 0.05 and /line{I}w (z) = 0.24± 0.02. Near |z| = 1 kpc most of the warm, atomic hydrogen is ionized.

  20. Scaling of adult body weight to height across sex and race/ethnic groups: relevance to BMI1234

    PubMed Central

    Peterson, Courtney M; Thomas, Diana M; Heo, Moonseong; Schuna, John M; Hong, Sangmo; Choi, Woong

    2014-01-01

    Background: Body mass index (BMI) is formulated on the assumption that body weight (BW) scales to height with a power of 2 (BW∝height2), independent of sex and race-ethnicity. Powers differing from 2 are observed in studies of selected samples, thus raising the question if BMI is a generalizable metric that makes BW independent of height across populations. Objectives: The objectives were to test the hypothesis that adult BW scales to height with a power of 2 independent of sex and race-ethnicity and to advance an understanding of BMI as a measure of shape by extending allometric analyses to waist circumference (WC). Design: We conducted cross-sectional subject evaluations, including body composition, from the NHANES and the Korean NHANES (KNHANES). Variations of the allometric model (Y = αXβ) were used to establish height scaling powers (β ± SE) across non-Hispanic white and black, Mexican American, and Korean men and women. Results: Exploratory analyses in population samples established age and adiposity as important independent determinants of height scaling powers (i.e., β). After age and adiposity in the next series of analyses were controlled for, BW scaling powers were nonsignificantly different between race/ethnic groups within each sex group; WC findings were similar in women, whereas small but significant between-race differences were observed in the men. Sex differences in β values were nonsignificant except for BW in non-Hispanic blacks and WC in Koreans (P < 0.05). Nationally representative powers for BW were (NHANES/KNHANES) 2.12 ± 0.05/2.11 ± 0.06 for men and 2.02 ± 0.04/1.99 ± 0.06 for women and for WC were 0.66 ± 0.03/0.67 ± 0.05 for men and 0.61 ± 0.04/0.56 ± 0.05 for women. Conclusions: Adult BW scales to height with a power of ∼2 across the 8 sex and race/ethnic groups, an observation that makes BMI a generalizable height-independent measure of shape across most populations. WC also follows generalizable scaling rules, a

  1. Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles

    NASA Astrophysics Data System (ADS)

    Hummel, M.; Hoose, C.; Gallagher, M.; Healy, D. A.; Huffman, J. A.; O'Connor, D.; Pöschl, U.; Pöhlker, C.; Robinson, N. H.; Schnaiter, M.; Sodeau, J. R.; Stengel, M.; Toprak, E.; Vogel, H.

    2015-06-01

    Fungal spores as a prominent type of primary biological aerosol particles (PBAP) have been incorporated into the COSMO-ART (Consortium for Small-scale Modelling-Aerosols and Reactive Trace gases) regional atmospheric model. Two literature-based emission rates for fungal spores derived from fungal spore colony counts and chemical tracer measurements were used as a parameterization baseline for this study. A third, new emission parameterization for fluorescent biological aerosol particles (FBAP) was adapted to field measurements from four locations across Europe. FBAP concentrations can be regarded as a lower estimate of total PBAP concentrations. Size distributions of FBAP often show a distinct mode at approx. 3 μm, corresponding to a diameter range characteristic for many fungal spores. Previous studies for several locations have suggested that FBAP are in many cases dominated by fungal spores. Thus, we suggest that simulated FBAP and fungal spore concentrations obtained from the three different emission parameterizations can be compared to FBAP measurements. The comparison reveals that simulated fungal spore concentrations based on literature emission parameterizations are lower than measured FBAP concentrations. In agreement with the measurements, the model results show a diurnal cycle in simulated fungal spore concentrations, which may develop partially as a consequence of a varying boundary layer height between day and night. Temperature and specific humidity, together with leaf area index (LAI), were chosen to drive the new emission parameterization which is fitted to the FBAP observations. The new parameterization results in similar root mean square errors (RMSEs) and correlation coefficients compared to the FBAP observations as the previously existing fungal spore emission parameterizations, with some improvements in the bias. Using the new emission parameterization on a model domain covering western Europe, FBAP in the lowest model layer comprise a

  2. Note: Design and development of wireless controlled aerosol sampling network for large scale aerosol dispersion experiments.

    PubMed

    Gopalakrishnan, V; Subramanian, V; Baskaran, R; Venkatraman, B

    2015-07-01

    Wireless based custom built aerosol sampling network is designed, developed, and implemented for environmental aerosol sampling. These aerosol sampling systems are used in field measurement campaign, in which sodium aerosol dispersion experiments have been conducted as a part of environmental impact studies related to sodium cooled fast reactor. The sampling network contains 40 aerosol sampling units and each contains custom built sampling head and the wireless control networking designed with Programmable System on Chip (PSoC™) and Xbee Pro RF modules. The base station control is designed using graphical programming language LabView. The sampling network is programmed to operate in a preset time and the running status of the samplers in the network is visualized from the base station. The system is developed in such a way that it can be used for any other environment sampling system deployed in wide area and uneven terrain where manual operation is difficult due to the requirement of simultaneous operation and status logging. PMID:26233420

  3. Decadal scale, seasonal climate effects of aerosols in China

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Wild, Martin

    2014-05-01

    China is a hot spot in terms of population growth and industrialization. This development is accompanied by a substantial increase in aerosol emissions. We investigate associated impacts of different aerosol emissions on surface solar radiation (SSR), surface air temperature (SAT), and precipitation by means of the global atmosphere only climate model ECHAM5-HAM (aerosol emission data from NIES, the National Institute of Environmental Studies, Japan; prescribed, observation based sea surface temperatures (SSTs) from the Hadley Center). Ensembles of transient (1870 - 2005) sensitivity experiments are performed and analyzed on a seasonal basis. We discuss corresponding findings, among them that inclusion of aerosol emissions leads to a decrease of modeled SSR of around -7 W/m2 in eastern parts of China in recent decades, in good agreement with in situ observations of SSR changes. The associated cooling leads to better agreement between modeled and measures SAT time series, especially in summer. By contrast, the precipitation reduction brought about by aerosols in the model is rather strong compared to observations.

  4. Continental-scale ICESat canopy height modelling sensitivity and random forest simulations in Australia and Canada

    NASA Astrophysics Data System (ADS)

    Hopkinson, C.; Mahoney, C.; Held, A. A.; Hall, R.

    2014-12-01

    The Geoscience Laser Altimeter System (GLAS), previously onboard the Ice, Cloud, and land Elevation Satellite (ICESat) uniquely offers near global waveform LiDAR coverage, however, data quality are subject to system, temporal, and spatial issues. These subtleties are investigated here with respect to canopy height comparisons with 3 airborne LiDAR sites in Australia. Optimal GLAS results were obtained from high energy laser transmissions from laser 3 during leaf-on conditions; GLAS data best corresponded with 95th percentile heights from an all return airborne LiDAR point cloud. In addition, best GLAS results were obtained over relatively open canopies, where prominent ground returns can be retrieved. Optimized GLAS data within Australian forests were employed as canopy height observations, and related to 6 predictor variables (landcover, cover fraction, elevation, slope, soils, and species) by random forest (RF) models. Fifty seven RF models were trained, varying by binomial combinations of predictor data, from 2 to 6 inputs. Trained models were separately utilized to predict Australia wide canopy heights; RF canopy height outputs were validated against spatially concurrent airborne LiDAR 95th percentile canopy heights from an all return point cloud for 10 sites, encompassing multiple ecosystems. The best RF output was obtained from predictor data inputs: landcover, cover fraction, elevation soils, and species, yielding a RMSE=7.98 m, and R2=0.97. Results indicate inherent issues (noted in existing literature) in GLAS observations that propagate through RF algorithms, manifested as canopy height underestimations for taller vegetation (>45 m). To extend this research to the Canadian boreal forest context, research is also targeting canopy height model development in the Northwest Territories, allowing investigations of time-variant phenology and landcover sensitivity due to wetland extent and growth, snow cover and other land cover changes common within boreal

  5. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-06-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies.

  6. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Jathar, Shantanu H; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  7. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  8. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring.

    PubMed

    Gillan, Jeffrey K; Karl, Jason W; Duniway, Michael; Elaksher, Ahmed

    2014-11-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  9. Modeling vegetation heights from high resolution stereo aerial photography: an application for broad-scale rangeland monitoring

    USGS Publications Warehouse

    Gillan, Jeffrey K.; Karl, Jason W.; Duniway, Michael; Elaksher, Ahmed

    2014-01-01

    Vertical vegetation structure in rangeland ecosystems can be a valuable indicator for assessing rangeland health and monitoring riparian areas, post-fire recovery, available forage for livestock, and wildlife habitat. Federal land management agencies are directed to monitor and manage rangelands at landscapes scales, but traditional field methods for measuring vegetation heights are often too costly and time consuming to apply at these broad scales. Most emerging remote sensing techniques capable of measuring surface and vegetation height (e.g., LiDAR or synthetic aperture radar) are often too expensive, and require specialized sensors. An alternative remote sensing approach that is potentially more practical for managers is to measure vegetation heights from digital stereo aerial photographs. As aerial photography is already commonly used for rangeland monitoring, acquiring it in stereo enables three-dimensional modeling and estimation of vegetation height. The purpose of this study was to test the feasibility and accuracy of estimating shrub heights from high-resolution (HR, 3-cm ground sampling distance) digital stereo-pair aerial images. Overlapping HR imagery was taken in March 2009 near Lake Mead, Nevada and 5-cm resolution digital surface models (DSMs) were created by photogrammetric methods (aerial triangulation, digital image matching) for twenty-six test plots. We compared the heights of individual shrubs and plot averages derived from the DSMs to field measurements. We found strong positive correlations between field and image measurements for several metrics. Individual shrub heights tended to be underestimated in the imagery, however, accuracy was higher for dense, compact shrubs compared with shrubs with thin branches. Plot averages of shrub height from DSMs were also strongly correlated to field measurements but consistently underestimated. Grasses and forbs were generally too small to be detected with the resolution of the DSMs. Estimates of

  10. Aerosol penetration measurements through protective clothing in small scale simulation tests

    SciTech Connect

    Bergman, W.; Garr, J.; Fearon, D.; Gerdner, P.

    1989-06-01

    We have developed a new laboratory apparatus and technique to measure the penetration of aerosols through protective clothing. The unique feature of this apparatus is a cylindrical fabric holder that incorporates the complex aerodynamics of flow around protective clothing. Because of this feature, the test results from small patch samples in this apparatus can be used to predict aerosol penetration in full scale clothing. This apparatus has the potential for large time and cost savings in new suit development and in evaluating protective clothing against biological agents and chemical aerosols. 2 refs., 8 figs.

  11. Quantitative analysis of the direct effect of aerosols over decadal scale by using ECHAM6-standalone

    NASA Astrophysics Data System (ADS)

    Muhammad, K.; Bott, A.; Hense, A.

    2013-12-01

    The influence of aerosols on climate is an important but still highly uncertain aspect in climate research. By using atmospheric general circulation model ECHAM6 our objective is to quantify the direct effect of aerosols over decadal time scale in comparison to the variability induced by the varying sea surface temperatures (SST) and sea ice concentrations (SIC) taken by the AMIP-II data base and the inevitable internal and unpredictable climate noise. We integrated the model with prescribed SST/SIC along with observed green house gases and aerosols concentrations for ten year period 1995-2004. Two ensembles with sample size ten, each have been created by starting the integrations on January 1st, 1995 with ten different initial conditions derived from two control runs over 15-years. These ensembles differ for tropospheric aerosols (TA): the non-aerosol case (NAC) is without any TA and aerosol case (AC) is utilizing a time variable data set of aerosols optical properties for input into the solar part of the ECHAM6 radiation code (Kinne et al, 2006). This set-up allows for a quantitative estimation and separation of the stationary and transient aerosol effects, the SST/SIC induced variability and the internal variability due to large scale atmospheric instabilities and non-linearities with the help of a two-way analysis of variance. We analyzed ensemble data for top of atmosphere (TOA) energy balance and temperature at 850 hPa. In the NAC, the ensemble exhibits a global and annual mean 3 W/m2 imbalance of the TOA radiation balance whereas the AC shows only 0.6 W/m2 being much closer in radiative balance over ten year period. The aerosols increase global planetary albedo from 0.29 (non-aerosol) to 0.30 for aerosol case. Extending the analysis to regional values of annual mean TOA radiation balance components, we find that the changes in TOA solar radiation budget are highly significant for static direct aerosol effect with local contributions to the total variability

  12. A study of regional-scale aerosol assimilation using a Stretch-NICAM

    NASA Astrophysics Data System (ADS)

    Misawa, S.; Dai, T.; Schutgens, N.; Nakajima, T.

    2013-12-01

    Although aerosol is considered to be harmful to human health and it became a social issue, aerosol models and emission inventories include large uncertainties. In recent studies, data assimilation is applied to aerosol simulation to get more accurate aerosol field and emission inventory. Most of these studies, however, are carried out only on global scale, and there are only a few researches about regional scale aerosol assimilation. In this study, we have created and verified an aerosol assimilation system on regional scale, in hopes to reduce an error associated with the aerosol emission inventory. Our aerosol assimilation system has been developed using an atmospheric climate model, NICAM (Non-hydrostaric ICosahedral Atmospheric Model; Satoh et al., 2008) with a stretch grid system and coupled with an aerosol transport model, SPRINTARS (Takemura et al., 2000). Also, this assimilation system is based on local ensemble transform Kalman filter (LETKF). To validate this system, we used a simulated observational data by adding some artificial errors to the surface aerosol fields constructed by Stretch-NICAM-SPRINTARS. We also included a small perturbation in original emission inventory. This assimilation with modified observational data and emission inventory was performed in Kanto-plane region around Tokyo, Japan, and the result indicates the system reducing a relative error of aerosol concentration by 20%. Furthermore, we examined a sensitivity of the aerosol assimilation system by varying the number of total ensemble (5, 10 and 15 ensembles) and local patch (domain) size (radius of 50km, 100km and 200km), both of which are the tuning parameters in LETKF. The result of the assimilation with different ensemble number 5, 10 and 15 shows that the larger the number of ensemble is, the smaller the relative error become. This is consistent with ensemble Kalman filter theory and imply that this assimilation system works properly. Also we found that assimilation system

  13. Modelling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    NASA Astrophysics Data System (ADS)

    Karl, M.; Kukkonen, J.; Keuken, M. P.; Lützenkirchen, S.; Pirjola, L.; Hussein, T.

    2015-12-01

    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of one hour, i.e. on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using an aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of n-alkanes, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. It was not necessary to model the nucleation of gas-phase vapors, as the computations were started with roadside conditions. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The effect of condensation and evaporation of organic vapors emitted by vehicles on particle numbers and on particle size distributions was examined. Under inefficient dispersion conditions, condensational growth contributed significantly to the evolution of PN from roadside to the neighborhood scale. The simplified parameterization of aerosol processes can predict particle number concentrations between roadside and the urban background with an inaccuracy of ∼ 10 %, compared to the fully size-resolved MAFOR model.

  14. Water availability predicts forest canopy height at the global scale.

    PubMed

    Klein, Tamir; Randin, Christophe; Körner, Christian

    2015-12-01

    The tendency of trees to grow taller with increasing water availability is common knowledge. Yet a robust, universal relationship between the spatial distribution of water availability and forest canopy height (H) is lacking. Here, we created a global water availability map by calculating an annual budget as the difference between precipitation (P) and potential evapotranspiration (PET) at a 1-km spatial resolution, and in turn correlated it with a global H map of the same resolution. Across forested areas over the globe, Hmean increased with P-PET, roughly: Hmean (m) = 19.3 + 0.077*(P-PET). Maximum forest canopy height also increased gradually from ~ 5 to ~ 50 m, saturating at ~ 45 m for P-PET > 500 mm. Forests were far from their maximum height potential in cold, boreal regions and in disturbed areas. The strong association between forest height and P-PET provides a useful tool when studying future forest dynamics under climate change, and in quantifying anthropogenic forest disturbance. PMID:26423470

  15. Large Scale Covariability in the Aerosol-SST-Precipitation Relation: A Satellite Perspective

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina

    2010-01-01

    Although large scale aerosol effects on precipitation have attracted increasing attention in recent years, significant uncertainties still remain in the current understanding of'such effects. One of the factors contributing to these uncertainties is the availability of aerosol data sets that are sufficiently long, stable, and comprehensive to be used for climate analysis. Such data sets are crucial for any long-term studies that are needed to demonstrate the statistical significance of large scale aerosol effects on precipitation when compared to the effects from other climate factors, such as remote or local sea surface temperature (SST) variability (ENSO. etc.). A longterm consistent aerosol product that complements the existing MODIS and AVHRR aerosol products is therefore needed to minimize aerosol data uncertainty issues for such Studies. The SeaWiFS instrument was primarily designed to measure ocean color, and it has been the mayor source for providing a comprehensive global data set of such measurements since its launch in 1997. Besides being used in this capacity, however, the well-calibrated set of radiances measured in the wavelength range from the visible (0.41 m) to the near infrared (0.87 m) is also well suited to creating long-term climate data records of aerosols. Recently, a new 13-year SeaWiFS aerosol optical depth dataset has been developed that expands its capacity to be used for such atmospheric studies. This SeaWiFS aerosol product provides us with an unprecedented opportunity to examine the covariability of aerosol, SST and precipitation on both a regional and global scale. We also use concurrent independent SST (NOAA Optimum Interpolation, OI, SST V2) and precipitation (GPCP V2) datasets for this study. We will present and discuss results from this study over several aerosol hot spot regions ( -,North Atlantic. South Atlantic, Western Pacific, Indian Ocean etc.) during the SeaWIFS data period (1997 -- current) from this study will be

  16. Revealing the aerosol radiative impact of volcanic ash on synoptic time scales

    NASA Astrophysics Data System (ADS)

    Walter, Carolin; Rieger, Daniel; Gasch, Philipp; Förstner, Jochen; Vogel, Bernhard

    2016-04-01

    Including the interactions of aerosols with radiation in weather forecast models often leads to perturbations of the temperature field even at locations not directly influenced by the regarded aerosols. They arise out of signals propagating with the speed of sound leading to abrupt changes in cloud cover. The temperature perturbations due to these changes hamper the quantification of the aerosol radiative impact as they can appear in the same order of magnitude. In order to reveal the aerosol radiative impact on synoptic time scales we introduce a new method to separate the aerosol induced temperature effect from atmospheric perturbations. We simulated the impact of volcanic ash aerosol on radiation with the new global to regional scale modelling system ICON-ART (ICOsahedral Nonhydrostatic - Aerosols and Reactive Trace gases; Rieger et al., 2015). Within ICON-ART the radiative fluxes and cooling rates are calculated with the RRTM (Rapid Radiative Transfer Model; Mlawer et al., 1997) for 30 longwave and shortwave bands. To determine the optical properties of the prognostic ash aerosol, Mie calculations were conducted for a compilation of ash refractive indices. We obtain a significant change in 2 m temperature of up to several Kelvin for the Puyehue-Cordon Caulle eruption in 2011. In addition to the temperature effect the atmospheric stability is modified and as a consequence the ash concentrations. The temperature effect during the Eyjafjallajökull eruption in 2010 over Europe is much less pronounced. Nevertheless, we are able to show the impact of volcanic ash on the state of the atmosphere by this eruption.

  17. Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) Science Plan

    SciTech Connect

    Fast, JD; Berg, LK

    2015-12-01

    Cumulus convection is an important component in the atmospheric radiation budget and hydrologic cycle over the Southern Great Plains and over many regions of the world, particularly during the summertime growing season when intense turbulence induced by surface radiation couples the land surface to clouds. Current convective cloud parameterizations contain uncertainties resulting in part from insufficient coincident data that couples cloud macrophysical and microphysical properties to inhomogeneities in boundary layer and aerosol properties. The Holistic Interactions of Shallow Clouds, Aerosols, and Land-Ecosystems (HI-SCALE) campaign is designed to provide a detailed set of measurements that are needed to obtain a more complete understanding of the life cycle of shallow clouds by coupling cloud macrophysical and microphysical properties to land surface properties, ecosystems, and aerosols. HI-SCALE consists of 2, 4-week intensive observational periods, one in the spring and the other in the late summer, to take advantage of different stages and distribution of “greenness” for various types of vegetation in the vicinity of the Atmospheric Radiation and Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site as well as aerosol properties that vary during the growing season. Most of the proposed instrumentation will be deployed on the ARM Aerial Facility (AAF) Gulfstream 1 (G-1) aircraft, including those that measure atmospheric turbulence, cloud water content and drop size distributions, aerosol precursor gases, aerosol chemical composition and size distributions, and cloud condensation nuclei concentrations. Routine ARM aerosol measurements made at the surface will be supplemented with aerosol microphysical properties measurements. The G-1 aircraft will complete transects over the SGP Central Facility at multiple altitudes within the boundary layer, within clouds, and above clouds.

  18. Variability of aerosol properties and Planetary Boundary Layer heights from airborne High Spectral Resolution Lidar, ground-based measurements, and the WRF model during CalNex and CARES

    NASA Astrophysics Data System (ADS)

    Obland, M. D.; Swanson, A. J.; Ferrare, R. A.; Burton, S. P.; Hair, J. W.; Hostetler, C. A.; Rogers, R.; Fast, J. D.; Berg, L. K.; Pekour, M. S.; Shaw, W. J.; Zaveri, R. A.; Haman, C. L.; Cook, A.; Harper, D.

    2011-12-01

    The NASA airborne High Spectral Resolution Lidar (HSRL) was deployed on board the NASA Langley Research Center's B200 aircraft to California in May and June of 2010 to aid in characterizing aerosol properties during the CalNex and CARES field missions. Measurements of aerosol extinction (at 532 nm), backscatter (at 532 and 1064 nm), and depolarization (at 532 and 1064 nm) during 31 flights and nearly 100 hours, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Planetary Boundary Layer (PBL). This work examines the variability of the extensive (dependent on aerosol type and number density) and intensive (dependent on aerosol type only) aerosol properties to aid in describing the broader context of aerosol behavior within and nearby the Sacramento and Los Angeles Basin regions. PBL heights derived from HSRL measurements will be compared with those produced by local ceilometers, radiosondes, and the Weather Research and Forecasting (WRF) model. Spatial and temporal averages of aerosol properties will be presented.

  19. Chamberlain Heights Redevelopment: A Large Scale, Cold Climate Study of Affordable Housing Retrofits

    SciTech Connect

    Donnelly, K.; Mahle, M.

    2012-03-01

    The City of Meriden Housing Authority (MHA) collaborated with affordable housing developer Jonathon Rose Companies (JRC) to complete a gut renovation of 124 residential units in the Chamberlain Heights retrofit project. The affordable housing community is made up of 36 buildings in duplex and quad configurations located on 22 acres within two miles of downtown Meriden, CT. The final post-retrofit analysis showed 40-45% source energy savings over the existing pre-retrofit conditions.

  20. Aerosols in Amazonia: Natural biogenic particles and large scale biomass burning impacts

    NASA Astrophysics Data System (ADS)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Rizzo, Luciana V.; Brito, Joel F.; Sena, Elisa T.; Cirino, Glauber G.; Arana, Andrea

    2013-05-01

    The Large Scale Biosphere Atmosphere Experiment in Amazonia (LBA) is a long term (20 years) research effort aimed at the understanding of the functioning of the Amazonian ecosystem. In particular, the strong biosphere-atmosphere interaction is a key component looking at the exchange processes between vegetation and the atmosphere, focusing on aerosol particles. Two aerosol components are the most visible: The natural biogenic emissions of aerosols and VOCs, and the biomass burning emissions. A large effort was done to characterize natural biogenic aerosols that showed detailed organic characterization and optical properties. The biomass burning component in Amazonia is important in term of aerosol and trace gases emissions, with deforestation rates decreasing, from 27,000 Km2 in 2004 to about 5,000 Km2 in 2011. Biomass burning emissions in Amazonia increases concentrations of aerosol particles, CO, ozone and other species, and also change the surface radiation balance in a significant way. Long term monitoring of aerosols and trace gases were performed in two sites: a background site in Central Amazonia, 55 Km North of Manaus (called ZF2 ecological reservation) and a monitoring station in Porto Velho, Rondonia state, a site heavily impacted by biomass burning smoke. Several instruments were operated to measured aerosol size distribution, optical properties (absorption and scattering at several wavelengths), composition of organic (OC/EC) and inorganic components among other measurements. AERONET and MODIS measurements from 5 long term sites show a large year-to year variability due to climatic and socio-economic issues. Aerosol optical depths of more than 4 at 550nm was observed frequently over biomass burning areas. In the pristine Amazonian atmosphere, aerosol scattering coefficients ranged between 1 and 200 Mm-1 at 450 nm, while absorption ranged between 1 and 20 Mm-1 at 637 nm. A strong seasonal behavior was observed, with greater aerosol loadings during the

  1. MULTICOMPONENT AEROSOL DYNAMICS OF THE PB-O2 SYSTEM IN A BENCH SCALE FLAME INCINERATOR

    EPA Science Inventory

    A study was carried out to understand the formation and growth of lead particles in a flame incinerator. A bench scale flame incinerator was used to perform controlled experiments with lead acetate as a test compound. A dilution probe in conjunction with real-time aerosol instrum...

  2. Trace Gas/Aerosol Boundary Concentrations and their Impacts on Continental-scale AQMEII Modelling Domains

    EPA Science Inventory

    Over twenty modeling groups are participating in the Air Quality Model Evaluation International Initiative (AQMEII) in which a variety of mesoscale photochemical and aerosol air quality modeling systems are being applied to continental-scale domains in North America and Europe fo...

  3. Variation of aerosol characteristics in the detail scale of time and space

    NASA Astrophysics Data System (ADS)

    Mukai, S.; Nakata, M.; Sano, I.

    2012-04-01

    -Osaka. We guess dust aerosols are transported over the mountains because dust aerosols exist higher than usual. In order to investigate change of aerosol properties before and after dust event, we analyze particulate matter with scanning electron microscope (SEM) coupled with energy dispersive X-ray analyzer (EDX). It is found from the scaling of particle size and ratio of major and minor axis for PM2.5 sampling on 21 March, 2010 when dust event occurred that at the peak of dust event nonspherical particles with large particle size are dominant. A componential analysis also presents temporal variation of aerosol properties. Sulfur is major component before dust comes but Si becomes major component with dust event.

  4. Modeling and measurements of urban aerosol processes on the neighborhood scale in Rotterdam, Oslo and Helsinki

    NASA Astrophysics Data System (ADS)

    Karl, Matthias; Kukkonen, Jaakko; Keuken, Menno P.; Lützenkirchen, Susanne; Pirjola, Liisa; Hussein, Tareq

    2016-04-01

    This study evaluates the influence of aerosol processes on the particle number (PN) concentrations in three major European cities on the temporal scale of 1 h, i.e., on the neighborhood and city scales. We have used selected measured data of particle size distributions from previous campaigns in the cities of Helsinki, Oslo and Rotterdam. The aerosol transformation processes were evaluated using the aerosol dynamics model MAFOR, combined with a simplified treatment of roadside and urban atmospheric dispersion. We have compared the model predictions of particle number size distributions with the measured data, and conducted sensitivity analyses regarding the influence of various model input variables. We also present a simplified parameterization for aerosol processes, which is based on the more complex aerosol process computations; this simple model can easily be implemented to both Gaussian and Eulerian urban dispersion models. Aerosol processes considered in this study were (i) the coagulation of particles, (ii) the condensation and evaporation of two organic vapors, and (iii) dry deposition. The chemical transformation of gas-phase compounds was not taken into account. By choosing concentrations and particle size distributions at roadside as starting point of the computations, nucleation of gas-phase vapors from the exhaust has been regarded as post tail-pipe emission, avoiding the need to include nucleation in the process analysis. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamic processes that control the evolution and removal of particles. The error of the contribution from dry deposition to PN losses due to the uncertainty of measured deposition velocities ranges from -76 to +64 %. The removal of nanoparticles by coagulation enhanced considerably when considering the fractal nature of soot aggregates and the combined effect of van der Waals and viscous interactions. The effect of condensation and

  5. Investigation on F layer height rise and equatorial spread F onset time: Signature of standing large-scale wave

    NASA Astrophysics Data System (ADS)

    Joshi, Lalit Mohan; Balwada, S.; Pant, T. K.; Sumod, S. G.

    2015-04-01

    Equatorial spread F observations have been categorized into three categories based on ionograms recorded over Sriharikota. First category comprised cases where the onset of equatorial spread F (ESF) was concurrent with the peak h'F time. Second and third categories comprised cases where the onset of ESF happened with a delay of 30 min and more than 30 min, respectively, with reference to the peak h'F time. Average peak h'F in the first category was more than 35 km higher than that in the second and third categories. Also, the peak vertical (upward) plasma drift was higher in the first category. Assuming the genesis of F region irregularity to have happened at or before the time of F layer attaining the peak height, late onset of ESF indicates the genesis of irregularities to have happened westward of Sriharikota. The fact that the peak h'F values were remarkably different in the three categories indicates a zonal variation of eastward electric field and postsunset height rise of F layer. The relative magnitude of the F layer height rise in the three different categories over Sriharikota has also been found to be significantly different than that over Thumba, an equatorial (magnetic) station located ~360 km westward of Sriharikota longitude. This scenario points toward the existence of a large-scale zonal standing wave in the F layer and its important role in F region instability process. Results presented in the manuscript have been discussed in the light of current understanding on the large-scale wave structure.

  6. Scaling from individual plants to the globe in an Earth System Model: height structured competition and carbon cycling

    NASA Astrophysics Data System (ADS)

    Weng, E.; Malyshev, S.; Lichstein, J. W.; Farrior, C. E.; Dybzinski, R.; Zhang, T.; Shevliakova, E.; Pacala, S. W.

    2014-12-01

    The long-term and large scale dynamics of ecosystems are in large part determined by the performances of individual plants in competition with one another for light, water and nutrients. Woody biomass, a pool of carbon (C) larger than that in the atmosphere, exists because of height-structured competition for light. However, none of the current Earth System Models that predict climate change and C cycle feedbacks includes a mechanistic formulation for height-structured competition for light, or an explicit scaling from individual plants to the globe. In this study, we incorporate height-structured competition and explicit scaling from individuals to ecosystems into the land model (LM3) currently used in the Earth System Models developed by the Geophysical Fluid Dynamics Laboratory based on the Perfect Plasticity Approximation model (PPA), which has been shown to scale accurately from individual plants to stands in individual-based simulation models of plant competition for light, water and nutrients. Because of the tractability of the PPA, the coupled LM3-PPA model is able to include a large number of phenomena across a range of spatial and temporal scales, and still retain computational and mathematical tractability. We test a range of predictions against data from the temperate forests in northern USA. The results show the model predictions agree with diurnal and annual C fluxes, growth rates of individual trees in the canopy and understory, tree size distributions, and species-level population dynamics during succession. We also show how the competitively optimal allocation strategy shifts at different atmospheric CO2 concentrations due to competition with alternative strategies in the model. The results show that the competitively optimal allocation of carbon to leaves, wood, and fine roots depends on the atmospheric CO2 concentration, and that C sinks caused by CO2 fertilization in forests limited by light and water are down-regulated if allocation tracks

  7. Evaluation of cloud microphysical schemes on aerosol indirect effects from different scale models

    NASA Astrophysics Data System (ADS)

    Shiu, C. J.; Chen, Y. H.; Hashino, T.; Tsai, I. C.; Chen, W. T.; Chen, J. P.; Hsu, H. H.

    2014-12-01

    Quantification of aerosol indirect effects in climate modeling remain unresolved and of large uncertainties. The complicated aerosol-cloud-precipitation interactions in climate model are suggested to be quite sensitive to some tunable microphysical parameters such as the threshold radius associated with autoconversion of cloud droplets to rain droplets. More fundamental studies regarding to different microphysical processes used in various cloud microphysical schemes should be devoted, evaluated and investigated. In this study, we apply a synergy of different scale models with the same cloud and aerosol microphysical schemes (Chen and Liu, 2004; Cheng et al., 2007; and Chen et al., 2013) to understand and evaluate how cloud microphysical processes can be influenced by different microphysical schemes and their interaction with aerosols and radiation. These models include Kinematic Driver (KiD), Single Column Model of Community Atmosphere Model (SCAM), Large Eddy Simulation (LES), and NCAR CESM model. Simulation results from these models will be further validated and compared to either field campaign or satellite observations depending on the scale of the models. Off-line satellite simulator approach (i.e. Joint-Simulator) will also be applied for evaluating cloud microphysics against CloudSat and CALIPSO. Such type of synergy of models can be very useful for improvement, development and evaluation of physical parameterizations for global climate prediction and weather forecast in the near future especially for processes related to cloud macrophysics and microphysics.

  8. Introducing Subgrid-scale convective cloud and aerosol interactions to the WRF-CMAQ integrated modeling system

    EPA Science Inventory

    Many regional and global climate models include aerosol indirect effects (AIE) on grid-scale/resolved clouds. However, the interaction between aerosols and convective clouds remains highly uncertain, as noted in the IPCC AR4 report. The objective of this work is to help fill in ...

  9. Theoretical and global scale model studies of the atmospheric sulfur/aerosol system

    NASA Technical Reports Server (NTRS)

    Kasibhatla, Prasad

    1996-01-01

    The primary focus during the third-phase of our on-going multi-year research effort has been on 3 activities. These are: (1) a global-scale model study of the anthropogenic component of the tropospheric sulfur cycle; (2) process-scale model studies of the factors influencing the distribution of aerosols in the remote marine atmosphere; and (3) an investigation of the mechanism of the OH-initiated oxidation of DMS in the remote marine boundary layer. In this paper, we describe in more detail our research activities in each of these areas. A major portion of our activities during the fourth and final phase of this project will involve the preparation and submission of manuscripts describing the results from our model studies of marine boundary-layer aerosols and DMS-oxidation mechanisms.

  10. Regional-scale relationships between aerosol and summer monsoon circulation, and precipitation over northeast Asia

    NASA Astrophysics Data System (ADS)

    Yoon, Soon-Chang; Kim, Sang-Woo; Choi, Suk-Jin; Choi, In-Jin

    2010-08-01

    We investigated the regional-scale relationships between columnar aerosol loads and summer monsoon circulation, and also the precipitation over northeast Asia using aerosol optical depth (AOD) data obtained from the 8-year MODIS, AERONET Sun/sky radiometer, and precipitation data acquired under the Global Precipitation Climatology Project (GPCP). These high-quality data revealed the regional-scale link between AOD and summer monsoon circulation, precipitation in July over northeast Asian countries, and their distinct spatial and annual variabilities. Compared to the mean AOD for the entire period of 2001-2008, the increase of almost 40-50% in the AOD value in July 2005 and July 2007 was found over the downwind regions of China (Yellow Sea, Korean peninsula, and East Sea), with negative precipitation anomalies. This can be attributable to the strong westerly confluent flows, between cyclone flows by continental thermal low centered over the northern China and anticyclonic flows by the western North Pacific High, which transport anthropogenic pollution aerosols emitted from east China to aforementioned downwind high AOD regions along the rim of the Pacific marine airmass. In July 2002, however, the easterly flows transported anthropogenic aerosols from east China to the southwestern part of China in July 2002. As a result, the AOD off the coast of China was dramatically reduced in spite of decreasing rainfall. From the calculation of the cross-correlation coefficient between MODIS-derived AOD anomalies and GPCP precipitation anomalies in July over the period 2001-2008, we found negative correlations over the areas encompassed by 105-115°E and 30-35°N and by 120-140°E and 35-40°N (Yellow Sea, Korean peninsula, and East Sea). This suggests that aerosol loads over these regions are easily influenced by the Asian monsoon flow system and associated precipitation.

  11. Influence of aerosol vertical distribution on radiative budget and climate

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Michou, Martine; Saint-Martin, David; Watson, Laura

    2016-04-01

    Aerosols interact with shortwave and longwave radiation with ensuing consequences on radiative budget and climate. Aerosols are represented in climate models either using an interactive aerosol scheme including prognostic aerosol variables, or using climatologies, such as monthly aerosol optical depth (AOD) fields. In the first case, aerosol vertical distribution can vary rapidly, at a daily or even hourly scale, following the aerosol evolution calculated by the interactive scheme. On the contrary, in the second case, a fixed aerosol vertical distribution is generally imposed by climatological profiles. The objective of this work is to study the impact of aerosol vertical distribution on aerosol radiative forcing, with ensuing effects on climate. Simulations have thus been carried out using CNRM-CM, which is a global climate model including an interactive aerosol scheme representing the five main aerosol species (desert dust, sea-salt, sulfate, black carbon and organic matter). Several multi-annual simulations covering the past recent years are compared, including either the prognostic aerosol variables, or monthly AOD fields with different aerosol vertical distributions. In the second case, AOD fields directly come from the first simulation, so that all simulations have the same integrated aerosol loads. The results show that modifying the aerosol vertical distribution has a significant impact on radiative budget, with consequences on global climate. These differences, highlighting the importance of aerosol vertical distribution in climate models, probably come from the modification of atmospheric circulation induced by changes in the heights of the different aerosols. Besides, nonlinear effects in the superposition of aerosol and clouds reinforce the impact of aerosol vertical distribution, since aerosol radiative forcing depends highly upon the presence of clouds, and upon the relative vertical position of aerosols and clouds.

  12. Scale resolving computation of submerged wall jets on flat wall with different roughness heights

    NASA Astrophysics Data System (ADS)

    Paik, Joongcheol; Bombardelli, Fabian

    2014-11-01

    Scale-adaptive simulation is used to investigate the response of velocity and turbulence in submerged wall jets to abrupt changes from smooth to rough beds. The submerged wall jets were experimentally investigated by Dey and Sarkar [JFM, 556, 337, 2006] at the Reynolds number of 17500 the Froude number of 4.09 and the submergence ratio of 1.12 on different rough beds that were generated by uniform sediments of different median diameters The SAS is carried out by means of a second-order-accurate finite volume method in space and time and the effect of bottom roughness is treated by the approach of Cebeci (2004). The evolution of free surface is captured by employing the two-phase volume of fluid (VOF) technique. The numerical results obtained by the SAS approach, incorporated with the VOF and the rough wall treatment, are in good agreement with the experimental measurements. The computed turbulent boundary layer grows more quickly and the depression of the free surface is more increased on the rough wall than those on smooth wall. The size of the fully developed zone shrinks and the decay rate of maximum streamwise velocity and Reynolds stress components are faster with increase in the wall roughness. Supported by NSF and NRF of Korea.

  13. Canopy BRF simulation of forest with different crown shape and height in larger scale based on Radiosity method

    NASA Astrophysics Data System (ADS)

    Song, Jinling; Qu, Yonghua; Wang, Jindi; Wan, Huawei; Liu, Xiaoqing

    2007-06-01

    Radiosity method is based on the computer simulation of 3D real structures of vegetations, such as leaves, branches and stems, which are composed by many facets. Using this method we can simulate the canopy reflectance and its bidirectional distribution of the vegetation canopy in visible and NIR regions. But with vegetations are more complex, more facets to compose them, so large memory and lots of time to calculate view factors are required, which are the choke points of using Radiosity method to calculate canopy BRF of lager scale vegetation scenes. We derived a new method to solve the problem, and the main idea is to abstract vegetation crown shapes and to simplify their structures, which can lessen the number of facets. The facets are given optical properties according to the reflectance, transmission and absorption of the real structure canopy. Based on the above work, we can simulate the canopy BRF of the mix scenes with different species vegetation in the large scale. In this study, taking broadleaf trees as an example, based on their structure characteristics, we abstracted their crowns as ellipsoid shells, and simulated the canopy BRF in visible and NIR regions of the large scale scene with different crown shape and different height ellipsoids. Form this study, we can conclude: LAI, LAD the probability gap, the sunlit and shaded surfaces are more important parameter to simulate the simplified vegetation canopy BRF. And the Radiosity method can apply us canopy BRF data in any conditions for our research.

  14. A Comparison of Large-Scale Atmospheric Sulphate Aerosol Models (COSAM): Overview and Highlights

    SciTech Connect

    Barrie, Leonard A.; Yi, Y.; Leaitch, W. R.; Lohmann, U.; Kasibhatla, P.; Roelofs, G.-J.; Wilson, J.; Mcgovern, F.; Benkovitz, C.; Melieres, M. A.; Law, K.; Prospero, J.; Kritz, M.; Bergmann, D.; Bridgeman, C.; Chin, M.; Christiansen, J.; Easter, Richard C.; Feichter, J.; Land, C.; Jeuken, A.; Kjellstrom, E.; Koch, D.; Rasch, P.

    2001-11-01

    The comparison of large-scale sulphate aerosol models study (COSAM) compared the performance of atmospheric models with each other and observations. It involved: (i) design of a standard model experiment for the world wide web, (ii) 10 model simulations of the cycles of sulphur and 222Rn/210Pb conforming to the experimental design, (iii) assemblage of the best available observations of atmospheric SO4=, SO2 and MSA and (iv) a workshop in Halifax, Canada to analyze model performance and future model development needs. The analysis presented in this paper and two companion papers by Roelofs, and Lohmann and co-workers examines the variance between models and observations, discusses the sources of that variance and suggests ways to improve models. Variations between models in the export of SOx from Europe or North America are not sufficient to explain an order of magnitude variation in spatial distributions of SOx downwind in the northern hemisphere. On average, models predicted surface level seasonal mean SO4= aerosol mixing ratios better (most within 20%) than SO2 mixing ratios (over-prediction by factors of 2 or more). Results suggest that vertical mixing from the planetary boundary layer into the free troposphere in source regions is a major source of uncertainty in predicting the global distribution of SO4= aerosols in climate models today. For improvement, it is essential that globally coordinated research efforts continue to address emissions of all atmospheric species that affect the distribution and optical properties of ambient aerosols in models and that a global network of observations be established that will ultimately produce a world aerosol chemistry climatology.

  15. Integrated Modeling of Aerosol, Cloud, Precipitation and Land Processes at Satellite-Resolved Scales

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa; Tao, Wei-Kuo; Chin, Mian; Braun, Scott; Case, Jonathan; Hou, Arthur; Kumar, Anil; Kumar, Sujay; Lau, William; Matsui, Toshihisa; Miller, Tim; Santanello, Joseph, Jr.; Shi, Jainn; Starr, David; Tao, Qian; Zaitchik, Benjamin

    2012-01-01

    In this talk, I will present recent results from a project led at NASA/GSFC, in collaboration with NASA/MSFC and JHU, focused on the development and application of an observation-driven integrated modeling system that represents aerosol, cloud, precipitation and land processes at satellite-resolved scales. The project, known as the NASA Unified WRF (NU-WRF), is funded by NASA's Modeling and Analysis Program, and leverages prior investments from the Air Force Weather Agency and NASA's Earth Science Technology Office (ESTO). We define "satellite-resolved" scales as being within a typical mesoscale atmospheric modeling grid (roughly 1-25 km), although this work is designed to bridge the continuum between local (microscale), regional (mesoscale) and global (synoptic) processes. NU-WRF is a superset of the standard NCAR Advanced Research WRF model, achieved by fully integrating the GSFC Land Information System (LIS, already coupled to WRF), the WRF/Chem enabled version of the Goddard Chemistry Aerosols Radiation Transport (GOCART) model, the Goddard Satellite Data Simulation Unit (SDSU), and boundary/initial condition preprocessors for MERRA and GEOS-5 into a single software release (with source code available by agreement with NASA/GSFC). I will show examples where the full coupling between aerosol, cloud, precipitation and land processes is critical for predicting local, regional, and global water and energy cycles, including some high-impact phenomena such as floods, hurricanes, mesoscale convective systems, droughts, and monsoons.

  16. Simulating Feedbacks Between Stratocumulus Cloud Dynamics, Microphysics and Aerosols Over Large Scales.

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Field, P.; Hill, A. A.; Shipway, B. J.

    2014-12-01

    The response of a stratocumulus cloud deck to aerosols involves a complex interplay between cloud microphysics, precipitation, cold pool dynamical interactions between neighboring cells, cloud top entrainment and the boundary layer structure over larger scales. Such feedbacks are thought to be involved in, for example, the formation of Pockets of Open Cells (POCs), which represent a large albedo change relative to the closed cell regime. However, they are not represented in GCM parameterizations and have also so far have not been simulated adequately in mesoscale models, which is a necessary step in order to develop parameterizations. We will show results from high resolution (<1 km) mesoscale simulations of stratocumulus using a new multi-moment microphysics scheme coupled to the UK Met Office Unified Model. The new scheme represents the processing of aerosol by clouds, allowing examination of the feedbacks between cloud dynamics, microphysics and aerosol. Results will be shown for domains of order 1000km that are driven by meteorological analysis, allowing realistic forcing and large scale interactions, in contrast to idealized LES simulations. Additionally, a representation of sub-grid vertical velocities based on resolved motions has been implemented, which will allow consistent droplet activation across a range of horizontal model resolutions. A cloud scheme to account for sub-grid humidity variability was also added and was found to be necessary in order to simulate realistic clouds.

  17. Aerosol synthesis of nano and micro-scale zero valent metal particles from oxide precursors

    SciTech Connect

    Phillips, Jonathan; Luhrs, Claudia; Lesman, Zayd; Soliman, Haytham; Zea, Hugo

    2010-01-01

    In this work a novel aerosol method, derived form the batch Reduction/Expansion Synthesis (RES) method, for production of nano / micro-scale metal particles from oxides and hydroxides is presented. In the Aerosol-RES (A-RES) method, an aerosol, consisting of a physical mixture of urea and metal oxide or hydroxides, is passed through a heated oven (1000 C) with a residence time of the order of 1 second, producing pure (zero valent) metal particles. It appears that the process is flexible regarding metal or alloy identity, allows control of particle size and can be readily scaled to very large throughput. Current work is focused on creating nanoparticles of metal and metal alloy using this method. Although this is primarily a report on observations, some key elements of the chemistry are clear. In particular, the reducing species produced by urea decomposition are the primary agents responsible for reduction of oxides and hydroxides to metal. It is also likely that the rapid expansion that takes place when solid/liquid urea decomposes to form gas species influences the final morphology of the particles.

  18. Monitoring and Modeling of Large-Scale Pattern of Forest Height and Biomass based on the Metabolic Scaling Theory and Water-Energy Balance Equation

    NASA Astrophysics Data System (ADS)

    CHOI, S.; Myneni, R. B.; Knyazikhin, Y.; Park, T.

    2015-12-01

    This study applies the metabolic scaling theory (MST) and water-energy balance equation (PM: Penman-Monteith) to monitor and model the large-scale pattern of forest height and biomass. The WBE and PM theories grant a generalized mechanistic understanding of relationships between the forest structure and multiple geospatial predictors including topography and climatic variables. We successfully expanded the average trend and predictions of the MST and PM by including eco-regional and plant functional type variations. Our model now accounts for plant interaction, self-competition and disturbance effects to alleviate known limitations of the MST. The topographic heterogeneity and climate seasonality are additionally incorporated in the model predictions. A simple and clear mechanistic understanding in the model is promising for prognostic applications in contrast to conventional black-box approaches. This study provides baseline maps (circa 2005; 1-km2 grids) of the maximum forest canopy heights and aboveground biomass over the continental USA. Their future projections are also delivered using various climate scenarios. The NASA Earth Exchange (NEX) Downscaled Climate Projections (NEX-DCP30) dataset is used in this task.

  19. Estimating Black Carbon Aging Time-Scales with a Particle-Resolved Aerosol Model

    SciTech Connect

    Riemer, Nicole; West, Matt; Zaveri, Rahul A.; Easter, Richard C.

    2010-01-13

    Understanding the aging process of aerosol particles is important for assessing their chemical reactivity, cloud condensation nuclei activity, radiative properties and health impacts. In this study we investigate the aging of black carbon containing particles in an idealized urban plume using a new approach, the particleresolved aerosol model PartMC-MOSAIC. We present a method to estimate aging time-scales using an aging criterion based on cloud condensation nuclei activation. The results show a separation into a daytime regime where condensation dominates and a nighttime regime where coagulation dominates. For the chosen urban plume scenario, depending on the supersaturation threshold, the values for the aging timescales vary between 0.06 hours and 10 hours during the day, and between 6 hours and 20 hours during the night.

  20. Aerosol cluster impact and break-up : II. Atomic and Cluster Scale Models.

    SciTech Connect

    Lechman, Jeremy B.; Takato, Yoichi

    2010-09-01

    Understanding the interaction of aerosol particle clusters/flocs with surfaces is an area of interest for a number of processes in chemical, pharmaceutical, and powder manufacturing as well as in steam-tube rupture in nuclear power plants. Developing predictive capabilities for these applications involves coupled phenomena on multiple length and timescales from the process macroscopic scale ({approx}1m) to the multi-cluster interaction scale (1mm-0.1m) to the single cluster scale ({approx}1000 - 10000 particles) to the particle scale (10nm-10{micro}m) interactions, and on down to the sub-particle, atomic scale interactions. The focus of this report is on the single cluster scale; although work directed toward developing better models of particle-particle interactions by considering sub-particle scale interactions and phenomena is also described. In particular, results of mesoscale (i.e., particle to single cluster scale) discrete element method (DEM) simulations for aerosol cluster impact with rigid walls are presented. The particle-particle interaction model is based on JKR adhesion theory and is implemented as an enhancement to the granular package in the LAMMPS code. The theory behind the model is outlined and preliminary results are shown. Additionally, as mentioned, results from atomistic classical molecular dynamics simulations are also described as a means of developing higher fidelity models of particle-particle interactions. Ultimately, the results from these and other studies at various scales must be collated to provide systems level models with accurate 'sub-grid' information for design, analysis and control of the underlying systems processes.

  1. Variations of scale height at F-region peak based on ionosonde measurements during solar maximum over the crest of equatorial ionization anomaly region.

    PubMed

    Chuo, Yu-Jung

    2014-01-01

    Scale height is an important parameter in characterizing the shape of the ionosphere and its physical processes. In this study, we attempt to examine and discuss the variation of scale height, H m , around the F-layer peak height during high solar activity at the northern crest of the equatorial ionization anomaly (EIA) region. H m exhibits day-to-day variation and seasonal variation, with a greater average daily variation during daytime in summer. Furthermore, the diurnal variation of H m exhibits an abnormal peak at presunrise during all the seasons, particularly in winter. This increase is also observed in the F2-layer peak height for the same duration with an upward movement associated with thermospheric wind toward the equator; this upward movement increases the N2/O ratio and H m, but it causes a decrease in the F2-layer maximum critical frequency during the presunrise period. PMID:25162048

  2. Variations of Scale Height at F-Region Peak Based on Ionosonde Measurements during Solar Maximum over the Crest of Equatorial Ionization Anomaly Region

    PubMed Central

    Chuo, Yu-Jung

    2014-01-01

    Scale height is an important parameter in characterizing the shape of the ionosphere and its physical processes. In this study, we attempt to examine and discuss the variation of scale height, Hm, around the F-layer peak height during high solar activity at the northern crest of the equatorial ionization anomaly (EIA) region. Hm exhibits day-to-day variation and seasonal variation, with a greater average daily variation during daytime in summer. Furthermore, the diurnal variation of Hm exhibits an abnormal peak at presunrise during all the seasons, particularly in winter. This increase is also observed in the F2-layer peak height for the same duration with an upward movement associated with thermospheric wind toward the equator; this upward movement increases the N2/O ratio and Hm, but it causes a decrease in the F2-layer maximum critical frequency during the presunrise period. PMID:25162048

  3. Scaling New Heights

    ERIC Educational Resources Information Center

    Frey, Malia

    2009-01-01

    In this article, the author describes a rock climbing program at Minneapolis-based Courage Center, a rehabilitation and resource center that advances the lives of children and adults experiencing barriers to health and independence. Rock climbing offered participants a unique opportunity for both personal and physical development. The author…

  4. Scaling the Corporate Heights.

    ERIC Educational Resources Information Center

    Campbell, Bebe Moore

    1983-01-01

    Reviews "Black Life in Corporate America" (Davis and Watson), "Women at Work: A Psychologist's Secrets to Getting Ahead in Business" (Senter), and "The Black Manager, Making It in the Corporate World" (Dickens and Dickens). All three books address general issues confronting Black/female managers, and two offer guidance to corporate newcomers. (CMG)

  5. South Asian Aerosols: Observations and regional scale modeling perspectives from the Nepal Himalayas

    NASA Astrophysics Data System (ADS)

    Adhikary, B.; Bonasoni, P.; Cristofanelli, P.; Marinoni, A.; Duchi, R.; Calzolari, F.; Landi, T.; Putero, D.; Fuzzi, S.; Decesari, S.; Vuillermoz, E.; Stocchi, P.; Verza, G.; Kulkarni, S.

    2012-12-01

    SHARE (Stations at High Altitude Research on the Environment) project is promoted by Ev-K2-CNR and funded by the Ministry of Education, University and Research (MIUR) through the Italian National Research Council (CNR). Today SHARE monitoring stations span four continents around the globe. This paper will present the results from the SHARE-Nepal Climate Observatory-Pyramid (NCO-P) monitoring station located in the foothills of Mount Everest at an altitude of 5079 m.a.s.l. NCO-P is also one of the Global AtmosphericWatch stations of the World Meteorological Organization (WMO-GAW) and is the only currently operating GAW station in South Asia and the highest station of the UNEP ABC (Atmospheric Brown Clouds) project. Results obtained from the monitoring of aerosols and trace gases for multi years starting from 2006 will be presented. Seasonal distribution, composition, case studies and events related to high aerosol loadings will be discussed. A regional scale meteorological / chemical transport modeling projecthas been initiated to help put the measurements in perspective and provide decision support for policy makers. The paper will also describe themodeling framework,modeled case studiesillustrating sectoral and regional contribution to the aerosol loading over the Himalayan region will be presented.

  6. Global scale emission and distribution of sea-spray aerosol: Sea-salt and organic enrichment

    NASA Astrophysics Data System (ADS)

    Vignati, E.; Facchini, M. C.; Rinaldi, M.; Scannell, C.; Ceburnis, D.; Sciare, J.; Kanakidou, M.; Myriokefalitakis, S.; Dentener, F.; O'Dowd, C. D.

    2010-02-01

    The chemical composition of marine aerosols as a function of their size is an important parameter for the evaluation of their impact on the global climate system. In this work we model fine particle organic matter emitted by sea spray processes and its influence on the aerosol chemical properties at the global scale using the off-line global Chemistry-Transport Model TM5. TM5 is coupled to a microphysical aerosol dynamics model providing size resolved information on particle masses and numbers. The mass of the emitted sea spray particles is partitioned between water insoluble organic matter (WIOM) and sea salt components in the accumulation mode using a function that relates the emitted organic fraction to the surface ocean chlorophyll- a concentrations. The global emission in the sub-micron size range of organic matter by sea spray process is 8.2 Tg yr -1, compared to 24 Tg fine yr -1 sea-salt emissions. When the marine sources are included, the concentrations of modelled primary particulate organic matter (POM) increase mainly over the oceans. The model predictions of WIOM and sea salt are evaluated against measurements carried out at Mace Head (Northern Hemisphere) and Amsterdam Island (Southern Hemisphere), showing that in clean marine conditions WIOM marine emissions contribute significantly to POM values.

  7. Scale heights and equivalent widths of the iron K-shell lines in the Galactic diffuse X-ray emission

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Uchiyama, Hideki; Koyama, Katsuji

    2016-06-01

    This paper reports the analysis of the X-ray spectra of the Galactic diffuse X-ray emission (GDXE) in the Suzaku archive. The fluxes of the Fe I Kα (6.4 keV), Fe XXV Heα (6.7 keV), and Fe XXVI Lyα (6.97 keV) lines are separately determined. From the latitude distributions, we confirm that the GDXE is decomposed into the Galactic center (GCXE), the Galactic bulge (GBXE) and the Galactic ridge (GRXE) X-ray emissions. The scale heights (SHs) of the Fe XXV Heα line of the GCXE, GBXE, and GRXE are determined to be ˜40, ˜310, and ˜140 pc, while those of the Fe I Kα line are ˜30, ˜160, and ˜70 pc, respectively. The mean equivalent widths (EWs) of the sum of the Fe XXV Heα and Fe XXVI Lyα lines are ˜750 eV, ˜600 eV, and ˜550 eV, while those of the Fe I Kα line are ˜150 eV, ˜60 eV, and ˜100 eV for the GCXE, GBXE, and GRXE, respectively. The origin of the GBXE, GRXE, and GCXE is separately discussed based on the new results of the SHs and EWs, in comparison with those of the cataclysmic variables, active binaries and coronal active stars.

  8. Scale heights and equivalent widths of the iron K-shell lines in the Galactic diffuse X-ray emission

    NASA Astrophysics Data System (ADS)

    Yamauchi, Shigeo; Nobukawa, Kumiko K.; Nobukawa, Masayoshi; Uchiyama, Hideki; Koyama, Katsuji

    2016-08-01

    This paper reports the analysis of the X-ray spectra of the Galactic diffuse X-ray emission (GDXE) in the Suzaku archive. The fluxes of the Fe I Kα (6.4 keV), Fe XXV Heα (6.7 keV), and Fe XXVI Lyα (6.97 keV) lines are separately determined. From the latitude distributions, we confirm that the GDXE is decomposed into the Galactic center (GCXE), the Galactic bulge (GBXE) and the Galactic ridge (GRXE) X-ray emissions. The scale heights (SHs) of the Fe XXV Heα line of the GCXE, GBXE, and GRXE are determined to be ˜40, ˜310, and ˜140 pc, while those of the Fe I Kα line are ˜30, ˜160, and ˜70 pc, respectively. The mean equivalent widths (EWs) of the sum of the Fe XXV Heα and Fe XXVI Lyα lines are ˜750 eV, ˜600 eV, and ˜550 eV, while those of the Fe I Kα line are ˜150 eV, ˜60 eV, and ˜100 eV for the GCXE, GBXE, and GRXE, respectively. The origin of the GBXE, GRXE, and GCXE is separately discussed based on the new results of the SHs and EWs, in comparison with those of the cataclysmic variables, active binaries and coronal active stars.

  9. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    SciTech Connect

    Yang, Qing; Gustafson, William I.; Fast, Jerome D.; Wang, Hailong; Easter, Richard C.; Morrison, H.; Lee, Y.- N.; Chapman, Elaine G.; Spak, S. N.; Mena-Carrasco, M. A.

    2011-12-02

    In the recent chemistry version (v3.3) of the Weather Research and Forecasting (WRF-Chem) model, we have coupled the Morrison double-moment microphysics scheme with interactive aerosols so that full two-way aerosol-cloud interactions are included in simulations. We have used this new WRF-Chem functionality in a study focused on assessing predictions of aerosols, marine stratocumulus clouds, and their interactions over the Southeast Pacific using measurements from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) and satellite retrievals. This study also serves as a detailed analysis of our WRF-Chem simulations contributed to the VOCALS model Assessment (VOCA) project. The WRF-Chem 31-day (October 15-November 16, 2008) simulation with aerosol-cloud interactions (AERO hereafter) is also compared to a simulation (MET hereafter) with fixed cloud droplet number concentrations assumed by the default in Morrison microphysics scheme with no interactive aerosols. The well-predicted aerosol properties such as number, mass composition, and optical depth lead to significant improvements in many features of the predicted stratocumulus clouds: cloud optical properties and microphysical properties such as cloud top effective radius, cloud water path, and cloud optical thickness, and cloud macrostructure such as cloud depth and cloud base height. These improvements in addition to the aerosol direct and semi-direct effects, in turn, feed back to the prediction of boundary-layer characteristics and energy budgets. Particularly, inclusion of interactive aerosols in AERO strengths temperature and humidity gradients within capping inversion layer and lowers the MBL depth by 150 m from that of the MET simulation. Mean top-of-the-atmosphere outgoing shortwave fluxes, surface latent heat, and surface downwelling longwave fluxes are in better agreement with observations in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated

  10. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  11. Assessing regional scale predictions of aerosols, marine stratocumulus, and their interactions during VOCALS-REx using WRF-Chem

    SciTech Connect

    Yang Q.; Lee Y.; Gustafson Jr., W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Morrison, H.; Chapman, E. G.; Spak, S. N.; Mena-Carrasco, M. A.

    2011-12-02

    in AERO, compared to the MET simulation. Nevertheless, biases in some of the simulated meteorological quantities (e.g., MBL temperature and humidity) and aerosol quantities (e.g., underestimations of accumulation mode aerosol number) might affect simulated stratocumulus and energy fluxes over the Southeastern Pacific, and require further investigation. The well-simulated timing and outflow patterns of polluted and clean episodes demonstrate the model's ability to capture daily/synoptic scale variations of aerosol and cloud properties, and suggest that the model is suitable for studying atmospheric processes associated with pollution outflow over the ocean. The overall performance of the regional model in simulating mesoscale clouds and boundary layer properties is encouraging and suggests that reproducing gradients of aerosol and cloud droplet concentrations and coupling cloud-aerosol-radiation processes are important when simulating marine stratocumulus over the Southeast Pacific.

  12. Path-analysis based validation of aerosol-precipitation micro-scale interaction using observational evidences

    NASA Astrophysics Data System (ADS)

    Dave, Prashant; Bhushan, Mani; Venkataraman, Chandra

    2016-04-01

    Aerosols can modulate variability of Indian summer monsoon by perturbing the radiative balance of the atmosphere, affecting the land-ocean processes and altering the cloud-microphysics at varying spatio-temporal scale, ranging from fast (less than a day) to slow (months) temporal effects. In the literature, overall interaction between AOD and Precipitation was quantified as correlation coefficients (Ramchandran and Kedia, 2013; Gryspeerdt et al., 2012; Gryspeerdt et al., 2014), however the segregation of the interaction was required to better understand the presence/absence of pathway mediated through changes in cloud-microphysics and atmospheric stability. In this work, effects of aerosols on precipitation, mediated through changes in cloud-microphysics and atmospheric stability, on daily time-scales, are studied and quantified using coincident observational data of aerosols, clouds and rainfall, using Path-analysis (Wright, 1969). MODIS, ERA-interim and IMD data-sets for years 2000-2009 for Aerosol optical depth (AOD), Column water vapour (CWV), Cloud droplet effective radius (CDERL), Convective available potential energy (CAPE) and Precipitation, over Indian region were used for the analysis. Cause-effect model was built to validate and quantify the effects of AOD on precipitation, mediated through CDERL and CAPE. To contrast cause-effect mechanism in presence and absence of aerosol fields, high AOD-low Precipitation and low AOD-low Precipitation clusters were formed. Cluster-averaged time series were used to calculate the lagged correlation (AOD leading) and provided as input to Path-analysis. "AOD-CDERL-Precipitation" and "AOD-CAPE-Precipitation" pathways were found to be statistically significant for high AOD-low Precipitation clusters while both were absent for low AOD-low Precipitation clusters, for years 2003 and 2004. For other years statistically significant pathway between AOD and Precipitation could not be found. In "AOD-CDERL-Precipitation" pathway

  13. AERONET data investigation of the aerosol mixtures over Iasi area, One-year time scale overview

    NASA Astrophysics Data System (ADS)

    Cazacu, Mihai Marius; Timofte, Adrian; Unga, Florin; Albina, Bogdan; Gurlui, Silviu

    2015-03-01

    In order to analyze the troposphere dynamics under particular conditions in North-East region of Romania, various types of aerosols chemical compositions have been studied using complementary techniques. Thus, the seasonal trends of aerosols and its external influences have been studied using aerosol optical properties retrieved from Aerosol Robotic Network (AERONET). Complementary studies were taken into account by using several meteorological factors, computational models and meteorological data. Moreover, this paper presents optical properties analysis of different types of aerosols and the seasonal variability of them in one year of measurements. The major categories of aerosol types are evidenced, such as urban/industrial aerosol, biomass burning and mineral dust.

  14. In-Cloud and Below-Cloud Scavenging of Aerosol Particles in Local to Regional Scale Models used for Emergency Response

    NASA Astrophysics Data System (ADS)

    Loosmore, G. A.; Cederwall, R. T.

    2002-12-01

    Precipitation scavenging can be an effective and rapid mechanism for removing aerosol particles from the air. An extensive literature on this topic has developed over the past several decades. From this research, much is known about how aerosol particles are removed by rainout (in-cloud processes) and washout (below-cloud interactions with falling raindrops). This research project focuses on using the best-available scientific method to model these various interactions, within a regional-scale code, for rapid-response modeling of releases of hazardous materials to the environment. The modeling efforts are building upon existing capabilities of the National Atmospheric Release Advisory Capability (NARAC) emergency response modeling system at Lawrence Livermore National Laboratory. NARAC provides real-time operational predictions as well as detailed assessments for events involving atmospheric releases of hazardous material. Within the modeling system, the Lagrangian particle dispersion model, LODI (Nasstrom et al., (2000)) is coupled with a meteorological data assimilation model (Sugiyama and Chan, (1998)) and an in-house version of COAMPS (Hodur, (1997)), the Naval Research Laboratory's mesoscale weather forecast model. The dispersion model, LODI, covers a regional scale, and the information available for modeling precipitation scavenging includes the aerosol size and location of the Lagrangian particle, the hourly, 4-km resolution rain rate, and limited additional meteorologic information. Cloud cover and cloud top height may be utilized when available from satellite data. The effort described here is to parameterize the detailed cloud-aerosol interactions in a simple model, using the limited input data available, in order to obtain a more accurate estimation of the effects of wet-deposition in risk-consequence studies for hazardous airborne materials. The operational model includes an algorithm for washout only, after Slinn (1984). In-cloud scavenging (rainout

  15. Aerosols, Clouds, and Precipitation as Scale Interactions in the Climate System and Controls on Climate Change

    NASA Astrophysics Data System (ADS)

    Donner, Leo

    Clouds are major regulators of atmospheric energy flows. Their character depends on atmospheric composition, dynamics, and thermodynamic state. Clouds can assume organized structures whose scales are planetary, while processes important for determining basic properties occur on the scale of microns. The range of processes, scales, and interactions among them has precluded the development of concise theories for the role of clouds in climate, and limitations in modeling clouds in complex climate models remain among the key uncertainties in understanding and projecting climate change. The distribution function of vertical velocities (updraft speeds) in clouds is an important control on climate forcing by clouds and possibly a strong correlate with climate sensitivity. (Climate forcing refers to the change in Earth's energy balance as atmospheric composition changes, in particular, due to human activity. Climate sensitivity is defined here as the equilibrium change in globally averaged annual surface temperature as a result of doubled carbon dioxide.) Vertical velocities are central because they determine the thermodynamic environment governing phase changes of water, with both equilibrium and non-equilibrium phenomena important. The spatial and temporal spectra of relevant vertical velocities includes scales both numerically resolved by climate models and below their resolution limit. The latter implies a requirement to parameterize these smaller scale motions in models. The scale dependence of vertical velocities and emerging observational constraints on their distribution provide new opportunities for representing aerosols, clouds, and precipitation in climate models. Success in doing so could provide important breakthroughs in understanding both climate forcing and sensitivity.

  16. The Intrinsic Resolution Limit in the Atomic Force Microscope: Implications for Heights of Nano-Scale Features

    PubMed Central

    Santos, Sergio; Barcons, Victor; Christenson, Hugo K.; Font, Josep; Thomson, Neil H.

    2011-01-01

    Background Accurate mechanical characterization by the atomic force microscope at the highest spatial resolution requires that topography is deconvoluted from indentation. The measured height of nanoscale features in the atomic force microscope (AFM) is almost always smaller than the true value, which is often explained away as sample deformation, the formation of salt deposits and/or dehydration. We show that the real height of nano-objects cannot be obtained directly: a result arising as a consequence of the local probe-sample geometry. Methods and Findings We have modeled the tip-surface-sample interaction as the sum of the interaction between the tip and the surface and the tip and the sample. We find that the dynamics of the AFM cannot differentiate between differences in force resulting from 1) the chemical and/or mechanical characteristics of the surface or 2) a step in topography due to the size of the sample; once the size of a feature becomes smaller than the effective area of interaction between the AFM tip and sample, the measured height is compromised. This general result is a major contributor to loss of height and can amount to up to ∼90% for nanoscale features. In particular, these very large values in height loss may occur even when there is no sample deformation, and, more generally, height loss does not correlate with sample deformation. DNA and IgG antibodies have been used as model samples where experimental height measurements are shown to closely match the predicted phenomena. Conclusions Being able to measure the true height of single nanoscale features is paramount in many nanotechnology applications since phenomena and properties in the nanoscale critically depend on dimensions. Our approach allows accurate predictions for the true height of nanoscale objects and will lead to reliable mechanical characterization at the highest spatial resolution. PMID:21912608

  17. Understanding the Rapid Precipitation Response to CO2 and Aerosol Forcing on a Regional Scale

    NASA Astrophysics Data System (ADS)

    Richardson, Thomas; Forster, Piers; Parker, Doug; Andrews, Tim

    2015-04-01

    Regional precipitation change is one of the most uncertain aspects of climate change prediction, and can have major societal implications. On a global scale, precipitation is tightly constrained by the radiative cooling of the troposphere. As a result, precipitation exhibits a significant rapid adjustment in response to certain forcing agents, which is important for understanding long term climate change. However, the mechanisms which drive the spatial pattern of rapid adjustment are not well understood. In this study we analyze the spatial pattern of rapid precipitation change using simulations with fixed sea surface temperature. Using data obtained from sixteen models participating in the Coupled Model Inter-comparison Project Phase 5 (CMIP5), we investigate the response to three different forcing scenarios; an abrupt quadrupling of CO2, an increase in all aerosols, and an increase in sulphate aerosol from pre-industrial to present day levels. Analysis of the local atmospheric energy budget is used to understand the observed changes. We find that the spatial pattern of rapid precipitation adjustment due to forcing is primarily driven by the rapid land surface response. As a result, the spatial pattern due to quadrupling CO2 opposes that due to increased sulphate and increased all aerosols. Increasing CO2 levels causes warming of the land surface, due to enhanced downwelling longwave radiation. This destabilizes the atmosphere by warming the lower troposphere, producing an overall shift of convection and precipitation to over land. The reverse is observed for increased sulphate and increased all aerosols. Changes in tropospheric cooling are important in determining the magnitude of regional precipitation change, thereby satisfying global energy budget constraints. We find the spatial pattern of rapid precipitation change due to quadrupling CO2 levels is robust between models. The most significant precipitation changes occur in the tropics, with significant

  18. Influence of urban aerosol pollution to radiative forcing

    NASA Astrophysics Data System (ADS)

    Nemuc, Anca; Stefan, Sabina; Talianu, Camelia L.

    2007-10-01

    Daily PM10 concentrations of samples collected at two sites, urban and rural from Romania have been used to estimate the aerosol direct radiative forcing. Using OPAC (Optical Properties of Aerosols and Cloud) model we determined the single scattering albedo, the aerosol optical depth and aerosol up-scatter fraction, aerosol's properties needed to estimate the magnitude and sign of direct aerosol radiative forcing. The surface albedo was assumed 0.2 for the urban site and 0.06 for the rural site for all wavelengths. For aerosol scale height we used 1km in winter and 2 km in the summer to calculate the optical depth of the boundary layer. Statistical analysis of the PM10 concentration for both sites show clear seasonal cycle with maxima in the winter. As a consequence of urban atmospheric pollution the radiative forcing for urban site appears strongly modified in comparison with rural site.

  19. Comparison of aerosol behavior during sodium fires in CSTF with the HAA-3B code. [LMFBR

    SciTech Connect

    Postma, A.K.; Owen, R.K.

    1980-03-01

    Four large-scale tests using sodium fire aerosol sources have been carried out in the Containment System Test Facility (CSTF). Two of the tests employed pool fires and two used spray fires as the aerosol source. Because the CSTF containment vessel is approximately half-scale (20.3 m in height) of a typical reactor building, the CSTF results have provided a large-scale proof test of the HAA-3B Code. For the two pool fire tests, the measured and predicted airborne concentrations were in good agreement when the aerosol source term was based on post-test measurements of aerosol formation, accounting for water vapor uptake.

  20. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  1. Non-equilibrium pressure control of the height of a large-scale, ground-coupled, rotating fluid column

    NASA Astrophysics Data System (ADS)

    Ash, R. L.; Zardadkhan, I. R.

    2013-05-01

    When a ground-coupled, rotating fluid column is modeled incorporating non-equilibrium pressure forces in the Navier-Stokes equations, a new exact solution results. The solution has been obtained in a similar manner to the classical equilibrium solution. Unlike the infinite-height, classical solution, the non-equilibrium pressure solution yields a ground-coupled rotating fluid column of finite height. A viscous, non-equilibrium Rankine vortex velocity distribution, developed previously, was used to demonstrate how the viscous and non-equilibrium pressure gradient forces, arising in the vicinity of the velocity gradient discontinuity that is present in the classical Rankine vortex model, effectively isolate the rotating central fluid column from the outer potential vortex region. Thus, the non-equilibrium region acts to confine and shield the central, rigid-body-like, rotating fluid core, justifying this examination of how such a rotating fluid column can interact with the ground. The resulting non-equilibrium ground-coupled, rotating fluid column solution was employed to estimate the central column heights of three well-documented dust devils, and the central column height predictions were consistent with published dust devil height statistics.

  2. Fire emission heights in the climate system - Part 2: Impact on transport, black carbon concentrations and radiation

    NASA Astrophysics Data System (ADS)

    Veira, A.; Kloster, S.; Schutgens, N. A. J.; Kaiser, J. W.

    2015-07-01

    Wildfires represent a major source for aerosols impacting atmospheric radiation, atmospheric chemistry and cloud micro-physical properties. Previous case studies indicated that the height of the aerosol-radiation interaction may crucially affect atmospheric radiation, but the sensitivity to emission heights has been examined with only a few models and is still uncertain. In this study we use the general circulation model ECHAM6 extended by the aerosol module HAM2 to investigate the impact of wildfire emission heights on atmospheric long-range transport, black carbon (BC) concentrations and atmospheric radiation. We simulate the wildfire aerosol release using either various versions of a semi-empirical plume height parametrization or prescribed standard emission heights in ECHAM6-HAM2. Extreme scenarios of near-surface or free-tropospheric-only injections provide lower and upper constraints on the emission height climate impact. We find relative changes in mean global atmospheric BC burden of up to 7.9±4.4 % caused by average changes in emission heights of 1.5-3.5 km. Regionally, changes in BC burden exceed 30-40 % in the major biomass burning regions. The model evaluation of aerosol optical thickness (AOT) against Moderate Resolution Imaging Spectroradiometer (MODIS), AErosol RObotic NETwork (AERONET) and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations indicates that the implementation of a plume height parametrization slightly reduces the ECHAM6-HAM2 biases regionally, but on the global scale these improvements in model performance are small. For prescribed emission release at the surface, wildfire emissions entail a total sky top-of-atmosphere (TOA) radiative forcing (RF) of -0.16±0.06 W m-2. The application of a plume height parametrization which agrees reasonably well with observations introduces a slightly stronger negative TOA RF of -0.20±0.07 W m-2. The standard ECHAM6-HAM2 model in which 25 % of the wildfire emissions are injected

  3. Milky Way Red Dwarfs in the BoRG Survey; Galactic Scale-height and the Distribution of Dwarf Stars in WFC3 Imaging

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Trenti, M.; Clarkson, W.; Sahu, K.; Bradley, L.; Stiavelli, M.; Pirzkal, N.; De Marchi, G.; Andersen, M.; Bouwens, R.; Ryan, R.

    2014-06-01

    We present a tally of Milky Way late-type dwarf stars in 68 Wide Field Camera 3 (WFC3) pure-parallel fields (227 arcmin2) from the Brightest of Reionizing Galaxies survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey and the Early Release Science mosaics, we identify a morphological selection criterion using the half-light radius (r 50), a near-infrared J - H, G - J color region where M-dwarfs are found, and a V - J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selection of M-dwarfs, and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m F125W < 24(AB). Based on the M-dwarf statistics, we conclude that (1) the previously identified north-south discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the northern fields on average than in southern ones, (2) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4 kpc, depending on subtype, (3) the scale-height depends on M-dwarf subtype with early types (M0-4) high scale-height (z 0 = 3-4 kpc) and later types M5 and above in the thin disk (z 0 = 0.3-0.5 kpc), (4) a second component is visible in the vertical distribution, with a different, much higher scale-height in the southern fields compared to the northern ones. We report the M-dwarf component of the Sagittarius stream in one of our fields with 11 confirmed M-dwarfs, seven of which are at the stream's distance. In addition to the M-dwarf catalog, we report the discovery of 1 T-dwarfs and 30 L-dwarfs from their near-infrared colors. The dwarf scale-height and the relative low incidence in our fields of L- and T-dwarfs in these fields makes it unlikely that these stars will be interlopers in great numbers in color-selected samples of high-redshift galaxies. The relative ubiquity

  4. Milky Way red dwarfs in the BoRG survey; galactic scale-height and the distribution of dwarf stars in WFC3 imaging

    SciTech Connect

    Holwerda, B. W.; Bouwens, R.; Trenti, M.; Clarkson, W.; Sahu, K.; Bradley, L.; Stiavelli, M.; Pirzkal, N.; Ryan, R.; De Marchi, G.; Andersen, M.

    2014-06-10

    We present a tally of Milky Way late-type dwarf stars in 68 Wide Field Camera 3 (WFC3) pure-parallel fields (227 arcmin{sup 2}) from the Brightest of Reionizing Galaxies survey for high-redshift galaxies. Using spectroscopically identified M-dwarfs in two public surveys, the Cosmic Assembly Near-IR Deep Extragalactic Legacy Survey and the Early Release Science mosaics, we identify a morphological selection criterion using the half-light radius (r {sub 50}), a near-infrared J – H, G – J color region where M-dwarfs are found, and a V – J relation with M-dwarf subtype. We apply this morphological selection of stellar objects, color-color selection of M-dwarfs, and optical-near-infrared color subtyping to compile a catalog of 274 M-dwarfs belonging to the disk of the Milky Way with a limiting magnitude of m {sub F125W} < 24(AB). Based on the M-dwarf statistics, we conclude that (1) the previously identified north-south discrepancy in M-dwarf numbers persists in our sample; there are more M-dwarfs in the northern fields on average than in southern ones, (2) the Milky Way's single disk scale-height for M-dwarfs is 0.3-4 kpc, depending on subtype, (3) the scale-height depends on M-dwarf subtype with early types (M0-4) high scale-height (z {sub 0} = 3-4 kpc) and later types M5 and above in the thin disk (z {sub 0} = 0.3-0.5 kpc), (4) a second component is visible in the vertical distribution, with a different, much higher scale-height in the southern fields compared to the northern ones. We report the M-dwarf component of the Sagittarius stream in one of our fields with 11 confirmed M-dwarfs, seven of which are at the stream's distance. In addition to the M-dwarf catalog, we report the discovery of 1 T-dwarfs and 30 L-dwarfs from their near-infrared colors. The dwarf scale-height and the relative low incidence in our fields of L- and T-dwarfs in these fields makes it unlikely that these stars will be interlopers in great numbers in color-selected samples of high

  5. HEIGHTS PROGRAM.

    ERIC Educational Resources Information Center

    POTTER, LOUIS A.

    THE "HEIGHTS" PROGRAM, AS PART OF THE GREAT CITIES SCHOOL IMPROVEMENT PROGRAM, IS BASED ON THE BELIEF THAT MUCH CAN BE DONE TO CHANGE THE PATTERNS OF ASPIRATION, ACHIEVEMENT, AND ADJUSTMENT WHICH CULTURALLY DEPRIVED YOUTH TEND TO FOLLOW. TRADITIONAL GOALS OF EDUCATION WILL BE FOLLOWED, BUT THE TEACHERS AND STAFF WILL HAVE AT THEIR DISPOSAL A GROUP…

  6. Raman Lidar Retrievals of Mixed Layer Heights

    NASA Astrophysics Data System (ADS)

    Ferrare, R. A.; Clayton, M.; Turner, D. D.; Newsom, R. K.; Goldsmith, J.

    2012-12-01

    Accurate determination of the atmospheric mixing layer (ML) height is important for modeling the transport of aerosols and aerosol precursors and forecasting air quality. Aerosol and water vapor profiles measured by the DOE ARM SGP and the new TWP (Darwin) ground based Raman lidars provide direct measurements of the vertical structure of ML. We have developed automated algorithms to identify sharp gradients in aerosols and water vapor at the top of the ML and have used these algorithms to derive ML heights for extended periods over the last few years. During the afternoon, these ML heights generally compare favorably with ML heights derived from potential temperature profiles derived from coincident radiosondes. However, retrieving ML heights via lidar measurements of water vapor and aerosol gradients is problematic in the presence of elevated aerosol and water vapor layers which are often observed, especially at night. Consequently, we take advantage of recent modifications to these lidars that permit continuous temperature profiling, and compute ML heights using potential temperature profiles derived from Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) measurements. The resulting ML heights agree well with ML heights derived from radiosondes and provide a more realistic representation of the diurnal ML behavior. We use the Raman lidar aerosol and water vapor profiles and ML heights to derive the fractions of total column precipitable water vapor and aerosol optical thickness within and above the ML and show how the ML heights and these fractions vary with time of day and season. The SGP Raman lidar measurements show that the fraction of the aerosol optical thickness and precipitable water vapor above the ML increases from 30-60% during the day to 60-80% at night. The Darwin Raman lidar measurements reveal a shallow, moist cloud-topped ML with little diurnal variability during the austral summer and deeper ML with more diurnal variability during

  7. Evaluating WRF-Chem multi-scale model in simulating aerosol radiative properties over the tropics – A case study over India

    SciTech Connect

    Seethala, C.; Pandithurai, G.; Fast, Jerome D.; Polade, Suraj D.; Reddy, M. S.; Peckham, Steven E.

    2012-01-24

    We utilized WRF-Chem multi-scale model to simulate the regional distribution of aerosols, optical properties and its effect on radiation over India for a winter month. The model is evaluated using measurements obtained from upper-air soundings, AERONET sun photometers, various satellite instruments, and pyranometers operated by the Indian Meteorological Department. The simulated downward shortwave flux was overestimated when the effect of aerosols on radiation and clouds was neglected. Downward shortwave radiation from a simulation that included aerosol-radiation interaction processes was 5 to 25 Wm{sup -2} closer to the observations, while a simulation that included aerosol-cloud interaction processes were another 1 to 20 Wm{sup -2} closer to the observations. For the few observations available, the model usually underestimated particulate concentration. This is likely due to turbulent mixing, transport errors and the lack of secondary organic aerosol treatment in the model. The model efficiently captured the broad regional hotspots such as high aerosol optical depth over Indo-Gangetic basin as well as the northwestern and southern part of India. The regional distribution of aerosol optical depth compares well with AVHRR aerosol optical depth and the TOMS aerosol index. The magnitude and wavelength-dependence of simulated aerosol optical depth was also similar to the AERONET observations across India. Differences in surface shortwave radiation between simulations that included and neglected aerosol-radiation interactions were as high as -25 Wm{sup -2}, while differences in surface shortwave radiation between simulations that included and neglect aerosol-radiation-cloud interactions were as high as -30 Wm{sup -2}. The spatial variations of these differences were also compared with AVHRR observation. This study suggests that the model is able to qualitatively simulate the impact of aerosols on radiation over India; however, additional measurements of particulate

  8. Simulation of the aerosol effect on the microphysical properties of shallow stratocumulus clouds over East Asia using a bin-based meso-scale cloud model

    NASA Astrophysics Data System (ADS)

    Choi, I.-J.; Iguchi, T.; Kim, S.-W.; Yoon, S.-C.; Nakajima, T.

    2010-10-01

    A bin-based meso-scale cloud model has been employed to explore the aerosol influence on the cloud microphysical properties and precipitation efficiency of shallow stratocumulus in East Asia in March 2005. We newly constructed aerosol size distributions and hygroscopicity parameters for five aerosol species that reproduced observed aerosol and cloud condensation nuclei (CCN) number concentrations in the target period, and thereby used in model simulation of the cloud microphysical properties and precipitation efficiency. It is found that the simulated results were satisfactorily close to the satellite-based observation. Significant effects of aerosols as well as of the meteorological condition were found in the simulated cloud properties and precipitation as confirmed by comparing maritime and polluted aerosol cases and by a sensitivity test with interchanging the aerosol conditions for two cases. Cloud droplets in the polluted condition tended to exhibit relatively narrower cloud drop spectral widths with a bias toward smaller droplet sizes than those in maritime condition, supporting the dispersion effect. The polluted aerosol condition also had a tendency of thinner and higher cloud layers than maritime aerosol condition under relatively humid meteorological condition, possibly due to enhanced updraft. In our cases, vertical structures of cloud droplet number and size were affected predominantly by the change in aerosol conditions, whereas in the structures of liquid water content and cloud fraction were influenced by both meteorological and aerosol conditions. Aerosol change made little differences in cloud liquid water, vertical cloud structure, and updraft/downdraft velocities between the maritime and polluted conditions under dry atmospheric condition. Quantitative evaluations of the sensitivity factor between aerosol and cloud parameters revealed a large sensitivity values in the target area compared to the previously reported values, indicating the strong

  9. Grid-scale Indirect Radiative Forcing of Climate due to aerosols over the northern hemisphere simulated by the integrated WRF-CMAQ model: Preliminary results

    EPA Science Inventory

    In this study, indirect aerosol effects on grid-scale clouds were implemented in the integrated WRF3.3-CMAQ5.0 modeling system by including parameterizations for both cloud droplet and ice number concentrations calculated from the CMAQ-predicted aerosol particles. The resulting c...

  10. CALIOP-derived Smoke Plume Injection Height

    NASA Astrophysics Data System (ADS)

    Soja, A. J.; Winker, D. M.; Choi, H. D.; Fairlie, T. D.; Westberg, D. J.; Roller, C. M.; Pouliot, G.; Vaughan, M.; Pierce, T. E.; Trepte, C. R.; Rao, V.

    2014-12-01

    Biomass burning is a dominant natural and anthropogenic disturbance that feeds back to the climate system. Fire regimes, ecosystem fuels, fire severity and intensity vary widely, even within the same system, largely under the control of weather and climate. These strongly influence fire plume injection height and thus the transport of related biomass burning emissions, affecting air quality, human health and the climate system. If our knowledge of plume injection height is incorrect, transport models of those emissions will likewise be incorrect, adversely affecting our ability to analyze and predict climate feedbacks (i.e. black carbon to the Arctic, precipitation, cloud-radiation relationships) and public health (air quality forecast). Historically, plume height was based on the pioneering work of G.A. Briggs [1969; 1971] and verified with limited field campaigns. However, we currently have two satellite instruments, Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) onboard CALIPSO (afternoon overpass) and Multi-angle Imaging SpectroRadiometer (MISR) onboard TERRA (morning overpass), that can provide the statistics necessary to verify our assumptions and improve fire plume injection height estimates for use in both small- and large-scale models. We have developed a methodology to assess fire plume injection height using the Langley Trajectory Model (LaTM), CALIOP, Hazard Mapping System (HMS) smoke plume, and MODerate Resolution Imaging Spectrometer (MODIS) thermal anomaly data that is capable of generating two distinct types of verification data. A single CALIOP smoke-filled aerosol envelop can be traced back to numerous fire events, and using multiple CALIOP transects from numerous days, a daily smoke plume injection height evolution from a single fire can be defined. Additionally, we have linked the smoke plumes to ecosystems and the meteorological variables that define fire weather. In concert, CALIOP and MISR data can produce the statistical knowledge

  11. Characterization of the seasonal cycle of south Asian aerosols: A Regional-Scale Modeling Analysis.

    SciTech Connect

    Adhikary, Bhupesh; Carmichael, Gregory; Tang, Youhua; Leung, Lai-Yung R.; Qian, Yun; Schauer, James J.; Stone, Elizabeth A.; Ramanathan, Veerabhadran; Ramana, Muvva V.

    2007-11-07

    The STEM chemical transport model is used to study the aerosol distribution, composition and seasonality over South Asia from September 2004 to August 2005. Model predictions of sulfate, black carbon, primary organic carbon, other anthropogenic particulate matter, wind blown mineral dusts and sea salt are compared at two sites in South Asia where year long experimental observations are available from the Atmospheric Brown Cloud (ABC) Project. The model predictions are able to capture both the magnitude and seasonality of aerosols over Hanimaadhoo Observatory, Maldives. However, the model is not able to explain the seasonality at the Kathmandu Observatory; but the model does capture Kathmandu’s observed annual mean concentration. The absence of seasonal brick kiln emissions within Kathmandu valley in the current inventory is a probable reason for this problem. This model study reveals high anthropogenic aerosol loading over the Ganges valley even in the monsoonal months, which needs to be corroborated by experimental observations. Modeling results also show a high dust loading over South Asia with a distinct seasonality. Model results of aerosol monthly composition are also presented at 5 cities in South Asia. Total and fine mode aerosol optical depth along with contribution from each aerosol species is presented; the results show that the anthropogenic fraction dominates in the dry season with major contributions from sulfate and absorbing aerosols. Finally comparison with observations show that model improvements are needed in the treatment of aerosol dry and wet removal processes and increase in sulfate production via heterogeneous pathways.

  12. Performance of the chemical mass balance model with simulated local-scale aerosols

    NASA Astrophysics Data System (ADS)

    Javitz, H. S.; Watson, J. G.; Robinson, N.

    A general methodology for performing simulations of the Chemical Mass Balance (CMB) model is developed and applied to simple and complex local scale scenarios. The simple scenario consists of crustal, coal-fired power plant, motor vehicle and vegetative burning sources; the complex scenario adds oil-fired power plant, ocean, steel mill, lead smelter, municipal incinerator and background aerosol sources. Daily receptor filter concentrations of the most commonly measured elements in the primary emissions are simulated. These simulations incorporate daily fluctuations in source strengths, daily fluctuations in source profiles (as parameterized by a coefficient of variation, or CV, of temporal source profiles) and measurement error at the receptor (as parameterized by a CV of measurement error). The CMB is applied to each daily measurement using a source library containing all sources and their long-term profiles (which, though correct on average, are incorrect on any particular day). The extent of agreement of the actual and CMBestimated primary emission source strengths is measured as an average absolute error (AAE, the absolute difference between the daily actual and estimated primary emission source strengths averaged over 100 simulated days). These moderately realistic simulations provide an encouraging picture of CMB accuracy and precision. The CMB yields acceptable accuracy and precision (an AAE of 50% or less) even when the CV of temporal source profiles is 25% and the CV of measurement error is 10%.

  13. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  14. Scaling from individuals to ecosystems in an Earth System Model using a mathematically tractable model of height-structured competition for light

    NASA Astrophysics Data System (ADS)

    Weng, E. S.; Malyshev, S.; Lichstein, J. W.; Farrior, C. E.; Dybzinski, R.; Zhang, T.; Shevliakova, E.; Pacala, S. W.

    2014-12-01

    The long-term and large scale dynamics of ecosystems are in large part determined by the performances of individual plants in competition with one another for light, water and nutrients. Woody biomass, a pool of carbon (C) larger than 50% of atmospheric CO2, exists because of height-structured competition for light. However, most of the current Earth System Models that predict climate change and C cycle feedbacks lack both a mechanistic formulation for height-structured competition for light and an explicit scaling from individual plants to the globe. In this study, we incorporate height-structured competition and explicit scaling from individuals to ecosystems into the land model (LM3) currently used in the Earth System Models developed by the Geophysical Fluid Dynamics Laboratory (GFDL). The height-structured formulation is based on the Perfect Plasticity Approximation (PPA), which has been shown to accurately scale from individual-level plant competition for light, water and nutrients to the dynamics of whole communities. Because of the tractability of the PPA, the coupled LM3-PPA model is able to include a large number of phenomena across a range of spatial and temporal scales, and still retain computational tractability, as well as close linkages to mathematically tractable forms of the model. We test a range of predictions against data from temperate broadleaved forests in the northern USA. The results show the model predictions agree with diurnal and annual C fluxes, growth rates of individual trees in the canopy and understory, tree size distributions, and species-level population dynamics during succession. We also show how the competitively optimal allocation strategy - the strategy that can competitively exclude all others - shifts as a function of the atmospheric CO2 concentration. This strategy is referred as an evolutionary stable strategy (ESS) in the ecological literature and is typically not the same as a productivity- or growth-maximizing strategy

  15. Scaling from individual trees to forests in an Earth system modeling framework using a mathematically tractable model of height-structured competition

    NASA Astrophysics Data System (ADS)

    Weng, E. S.; Malyshev, S.; Lichstein, J. W.; Farrior, C. E.; Dybzinski, R.; Zhang, T.; Shevliakova, E.; Pacala, S. W.

    2015-05-01

    The long-term and large-scale dynamics of ecosystems are in large part determined by the performances of individual plants in competition with one another for light, water, and nutrients. Woody biomass, a pool of carbon (C) larger than 50% of atmospheric CO2, exists because of height-structured competition for light. However, most of the current Earth system models that predict climate change and C cycle feedbacks lack both a mechanistic formulation for height-structured competition for light and an explicit scaling from individual plants to the globe. In this study, we incorporate height-structured competition for light, competition for water, and explicit scaling from individuals to ecosystems into the land model version 3 (LM3) currently used in the Earth system models developed by the Geophysical Fluid Dynamics Laboratory (GFDL). The height-structured formulation is based on the perfect plasticity approximation (PPA), which has been shown to accurately scale from individual-level plant competition for light, water, and nutrients to the dynamics of whole communities. Because of the tractability of the PPA, the coupled LM3-PPA model is able to include a large number of phenomena across a range of spatial and temporal scales and still retain computational tractability, as well as close linkages to mathematically tractable forms of the model. We test a range of predictions against data from temperate broadleaved forests in the northern USA. The results show the model predictions agree with diurnal and annual C fluxes, growth rates of individual trees in the canopy and understory, tree size distributions, and species-level population dynamics during succession. We also show how the competitively optimal allocation strategy - the strategy that can competitively exclude all others - shifts as a function of the atmospheric CO2 concentration. This strategy is referred to as an evolutionarily stable strategy (ESS) in the ecological literature and is typically not the

  16. A satellite view of the direct effect of aerosols on solar radiation at global scale

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Matsoukas, Christos; Fotiadi, Aggeliki; Benas, Nikolaos; Vardavas, Ilias

    2016-04-01

    Aerosols are a key parameter for better understanding and predicting current and future climate change. They are determining, apart from clouds, patterns of solar radiation through scattering and absorption processes. Especially, under cloud-free skies, aerosols are the major modulator of the solar radiation budget of the Earth-atmosphere system. Although significant improvement has been made as to better understanding the direct radiative effect (DRE) of aerosols, there is still a need for further improvement in our knowledge of the DRE spatial and temporal patterns, in particular with respect to extended spatial and temporal coverage of relevant information. In an ongoing rapidly evolving era of great satellite-based achievements, concerning the knowledge of solar radiation budget and its modulators, and with the great progress in obtaining significant information on key aerosol optical properties needed for modeling DRE, it is a great challenge to use all this new aerosol information and to see what is the new acquired scientific knowledge. The objective of this study is to obtain an improved view of global aerosol DRE effects using contemporary accurate data for the important atmospheric and surface parameters determining the solar radiation budget, with emphasis to state of the art aerosol data. Thus, a synergy is made of different datasets providing the necessary input data and of a detailed spectral radiative transfer model (RTM) to compute spectral globally distributed aerosol DREs. Emphasis is given on using highly accurate and well-tested aerosol optical properties. Spectral information on aerosol optical depth (AOD) is taken from retrieved products of the MODerate resolution Imaging Spectroradiometer (MODIS) instrument, while similar information is taken from MODIS for the aerosol asymmetry parameter (AP) over ocean. Information from MODIS is also taken for the aerosol single scattering albedo (SSA). All this information comes from the latest Collection

  17. Large-scale connection between aerosol optical depth and summer monsoon circulation, and precipitation over northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Woo; Yoon, Soon-Chang; Choi, Suk-Jin; Choi, In-Jin

    2010-05-01

    We investigated the large-scale connection between columnar aerosol loads and summer monsoon circulation, and also the precipitation over northeast Asia using aerosol optical depth (AOD) data obtained from the 8-year MODIS, AERONET Sun/sky radiometer, and precipitation data acquired under the Global Precipitation Climatology Project (GPCP). These high-quality data revealed the large-scale link between AOD and summer monsoon circulation, precipitation in July over northeast Asian countries, and their distinct spatial and annual variabilities. Compared to the mean AOD for the entire period of 2001-2008, the increase of almost 40-50% in the AOD value in July 2005 and July 2007 was found over the downwind regions of China (Yellow Sea, Korean peninsula, and East Sea), with negative precipitation anomalies. This can be attributable to the strong westerly confluent flows, between cyclone flows by continental thermal low centered over the northern China and anti-cyclonic flows by the western North Pacific High, which transport anthropogenic pollution aerosols emitted from east China to aforementioned downwind high AOD regions along the rim of the Pacific marine airmass. In July 2002, however, the easterly flows transported anthropogenic aerosols from east China to the southwestern part of China in July 2002. As a result, the AOD off the coast of China was dramatically reduced in spite of decreasing rainfall. From the calculation of the cross-correlation coefficient between MODIS-derived AOD anomalies and GPCP precipitation anomalies over the period 2001-2008, we found negative correlations over the areas encompassed by 105-115E and 30-35N and by 120-140E and 35-40N (Yellow Sea, Korean peninsula, and East Sea). This suggests that aerosol loads over these regions are easily influenced by the Asian monsoon flow system and associated precipitation.

  18. The generation of aerosols by accidents which may occur during plant-scale production of micro-organisms.

    PubMed Central

    Ashcroft, J.; Pomeroy, N. P.

    1983-01-01

    Experiments have been performed to simulate accidents which may occur during large-scale production of micro-organisms. Four types of accident, which were considered to be the most likely to result in the greatest hazard to health, were simulated using a bacterial model. The accidents were all concerned with faults occurring in the operation of the microbial fermenter. Gross contamination of surfaces occurred in all experiments, but only three types of accident produced a measurable aerosol. PMID:6350448

  19. Aerosol impact on atmospheric meso-scale circulation over the Baltic region: A HARMONIE model case study and verification versus radar data

    NASA Astrophysics Data System (ADS)

    Palamarchuk, Iuliia; Mahura, Alexander; Ivanov, Sergiy; Ruban, Igor; Pavlova, Hanna

    2015-04-01

    An important goal in operational weather forecasting is an accurate prediction of precipitation on meso-scales. This demands, among the others, detailed representation of aerosol impact on the troposphere. Various direct, semi-direct and indirect effects of aerosols lead to significant changes in amount and distribution of precipitation, especially for weak patterns. Features of the atmosphere sensitivity to aerosols is studied employing the HARMONIE (Hirlam Aladin Regional/Meso-scale Operational NWP In Europe) model. Numerical experiments are performed for the Baltic region during the BaltRad experiment (August 2010). The focus of the study is the life-time of convective cells along with feedbacks from aerosols toward meteorological parameters, physical and dynamical mechanisms responsible for developing of precipitation forecast features, direct and indirect aerosol effects. Numerical results are verified by comparing model microphysics fields versus radar reflectivity.

  20. Aerosol entrainment from a sparged non-Newtonian slurry

    SciTech Connect

    Fritz, Brad G.

    2006-08-01

    Aerosol measurements were conducted above a half-scale air sparged mixing tank filled with simulated waste slurry. Three aerosol size fractions were measured at three sampling heights at three different sparging rates using a filter based ambient air sampling technique. Aerosol concentrations in the head space above the closed tank demonstrated a wide range, varying between 97 ?g m-3 for PM2.5 and 5650 ?g m-3 for TSP. The variation in concentrations was a function of sampling heights, size fraction and sparging rate. Measured aerosol entrainment coefficients showed good agreement with existing entrainment models. The models evaluated generally over predicted the entrainment, but were within a factor of two of the measured entrainment. This indicates that the range of applicability of the models may be extendable to include sparged slurries with Bingham plastic rheological properties.

  1. Anthropogenic aerosols and the distribution of past large-scale precipitation change

    NASA Astrophysics Data System (ADS)

    Wang, Chien

    2015-12-01

    The climate response of precipitation to the effects of anthropogenic aerosols is a critical while not yet fully understood aspect in climate science. Results of selected models that participated the Coupled Model Intercomparison Project Phase 5 and the data from the Twentieth Century Reanalysis Project suggest that, throughout the tropics and also in the extratropical Northern Hemisphere, aerosols have largely dominated the distribution of precipitation changes in reference to the preindustrial era in the second half of the last century. Aerosol-induced cooling has offset some of the warming caused by the greenhouse gases from the tropics to the Arctic and thus formed the gradients of surface temperature anomaly that enable the revealed precipitation change patterns to occur. Improved representation of aerosol-cloud interaction has been demonstrated as the key factor for models to reproduce consistent distributions of past precipitation change with the reanalysis data.

  2. Performance evaluation of the pilot-scale, double-shell tank ventilation system using simulated aerosol streams

    SciTech Connect

    Brouns, T.M.; Peterson, M.E.

    1989-12-01

    Radioactive waste slurries are currently being stored in underground tanks on the Hanford Site. The slurries that are being stored in the double-shell tanks (DSTs) are various mixtures of radioactive solids, liquids, and aqueous wastes. The tanks must be maintained at a negative pressure relative to atmospheric pressure to safeguard against pressurization and the subsequent leakage of entrained radioactive aerosols to the environment. A ventilation system must be capable of withdrawing the total volume of off gas generated from the tanks while maintaining the tanks at a negative pressure. Westinghouse Hanford Company (WHC) has identified a need to improve the efficiency of the ventilation system being used on the tank farms to meet the more restrictive release limits for radioactive isotopes. Kaiser Engineers Hanford Company (KEH) has been contracted by WHC to design the new ventilation system for the existing tank farms. WHC contracted the Pacific Northwest Laboratory (PNL) to fabricate and test the prototypic pilot-scale design prior to finalizing the design of the ventilation system. The PNL has conducted tests to determine (1) the effectiveness of the system for removal of vapors condensable at 35{degrees}F, (2) the effectiveness for removal of soluble and insoluble aerosols, and (3) the life span of the mist eliminators to be used in the new system. The results of extensive testing of the pilot-scale system with condensables and both soluble and insoluble aerosols are presented in this report. 7 refs., 25 figs., 8 tabs.

  3. Long-term aerosol study on continental scale through EARLINET vertical profiles

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Pappalardo, Gelsomina; Linne, Holger; Wandinger, Ulla

    2015-04-01

    Lidar techniques offer the opportunity for investigating the aerosol vertical profiles, which is an important information for climatological, meteorological and air quality issues. EARLINET (European Aerosol Research Lidar Network) has been providing aerosol optical properties vertical profiles over Europe since May 2000. Long-term aerosol observations performed within EARLINET allows a climatological study of aerosol properties over Europe. All EARLINET stations perform almost simultaneously measurements three times per week following a scheduling established in 2000. Besides these climatological measurements, additional measurements are performed in order to monitor special events (as volcanic eruptions and desert dust intrusion), for satellite data evaluation and integrated studies and during intensive measurements campaigns. Aerosol optical properties vertical profiles are freely available at www.earlinet.org and through ACRIS data center http://www.actris.net/. This data are currently published on the CERA database with an associated doi number. Based mainly on Raman technique, EARLINET stations typically provide direct measurement of extinction profiles, and therefore of the aerosol optical depth (AOD), a key parameter for understanding the aerosol role on radiation budget. The free troposphere contribution to AOD and altitude of lofted layers are provided thanks to the vertical profiling capability of lidar technique. The representativeness of EARLINET regular scheduling for climatological studies is investigating through the comparison with AERONET and MODIS measurements. We find that the regular measurements schedule is typically sufficient for climatological studies. In addition lidar punctual measurements are representative for a larger area (1°x1°) in a climatological sense. Long term analysis of EARLINET profiles shows that the AOD in generally decreasing over Europe in agreement with both passive-sensors and in situ measurements. Mean vertical

  4. Research on aerosol profiles and parameterization scheme in Southeast China

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Deng, Tao; Tan, Haobo; Liu, Xiantong; Yang, Honglong

    2016-09-01

    The vertical distribution of the aerosol extinction coefficient serves as a basis for evaluating aerosol radiative forcing and air quality modeling. In this study, MODIS AOD data and ground-based lidar extinction coefficients were employed to verify 6 years (2009-2014) aerosol extinction data obtained via CALIOP for Southeast China. The objective was mainly to provide the parameterization scheme of annual and seasonal aerosol extinction profiles. The results showed that the horizontal and vertical distributions of CALIOP extinction data were highly accurate in Southeast China. The annual average AOD below 2 km accounted for 64% of the total layer, with larger proportions observed in winter (80%) and autumn (80%) and lower proportions observed in summer (70%) and spring (59%). The AOD was maximum in the spring (0.58), followed by the autumn and winter (0.44), and reached a minimum in the summer (0.40). The near-surface extinction coefficient increased from summer, spring, autumn and winter, in that order. The Elterman profile is obviously lower than the profiles observed by CALIOP in Southeast China. The annual average and seasonal aerosol profiles showed an exponential distribution, and could be divided into two sections. Two sections exponential fitting was used in the parameterization scheme. In the first section, the aerosol scale height reached 2200 m with a maximum (3,500 m) in summer and a minimum (1,230 m) in winter, which meant that the aerosol extinction decrease with height slower in summer, but more rapidly in winter. In second section, the aerosol scale height was maximum in spring, which meant that the higher aerosol diffused in spring.

  5. How skillfully can we simulate drivers of aerosol direct climate forcing at the regional scale?

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Sullivan, R. C.; Thota, A.; Pryor, S. C.

    2015-10-01

    Assessing the ability of global and regional models to describe aerosol optical properties is essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections. Here we evaluate the skill of high-resolution simulations conducted using the Weather Research and Forecasting model with coupled chemistry (WRF-Chem) in capturing spatio-temporal variability of aerosol optical depth (AOD) and Ångström exponent (AE) by comparison with ground- and space- based remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 12 km for a representative year (2008). A small systematic positive bias in simulated AOD relative to observations is found (annual MFB = 0.17 and 0.50 when comparing with MODIS and AERONET respectively), whereas the spatial variability is well captured during most months. The spatial correlation of AOD shows a clear seasonal cycle with highest correlation during summer months (r = 0.5-0.7) when the aerosol loading is large and more observations are available. AE is retrieved with higher uncertainty from the remote sensing observations. The model is biased towards simulation of coarse mode aerosols (annual MFB for AE = -0.10 relative to MODIS and -0.59 for AERONET), but the spatial correlation for AE with observations is 0.3-0.5 during most months. WRF-Chem also exhibits high skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly simulate the location and relative intensity of an extreme aerosol event (i.e. AOD > 75th percentile) varies between 30 and 70 % during winter and summer months respectively.

  6. The contribution of sub-grid, plume-scale nucleation to global and regional aerosol and CCN concentrations

    NASA Astrophysics Data System (ADS)

    Stevens, R.; Pierce, J. R.

    2013-12-01

    New-particle formation in the plumes of coal-fired power plants and other anthropogenic sulphur sources may be an important source of particles in the atmosphere. It has been unclear, however, how best to reproduce this formation in global and regional aerosol models with grid-box lengths that are 10s of kilometres and larger. The predictive power of these models is thus limited by the resultant uncertainties in aerosol size distributions. Based on the results of the System for Atmospheric Modelling (SAM), a Large-Eddy Simulation/Cloud-Resolving Model (LES/CRM) with online TwO Moment Aerosol Sectional (TOMAS) microphysics, we develop the Predicting Particles Produced in Power-Plant Plumes (P6) parameterization: a computationally-efficient, but physically-based, parameterization that predicts the characteristics of aerosol formed within sulphur-rich plumes based on parameters commonly available in global- and regional-scale models. Given large-scale mean meteorological parameters, emissions from the source, the desired distance from the source, and the mean background SO2, NOx, and condensation sink, the parameterization will predict the fraction of the emitted SO2 that is oxidized to H2SO4, the fraction of that H2SO4 that forms new particles instead of condensing onto preexisting particles, the median diameter of the newly-formed particles, and the number of newly-formed particles per kilogram SO2 emitted. We implement the P6 parameterization in the GEOS-Chem global chemical-transport model in order to evaluate the contributions of coal-fired power plants globally to particle number and CCN concentrations.

  7. Similarities in large-scale pattern of precipitation responses to aerosol and greenhouse gas forcing (Invited)

    NASA Astrophysics Data System (ADS)

    Xie, S.; Lu, B.; Xiang, B.

    2013-12-01

    Developing reliable regional projections for mitigation and adaptation is an emerging challenge for climate change research. Important for regional changes in tropical cyclone, precipitation, and monsoon are spatial patterns of ocean warming. Localized in space, anthropogenic aerosol forcing is considered to induce patterns of climate response distinct from well-mixed greenhouse gases. Using a multi-model ensemble, we show that regional changes in ocean temperature and precipitation are remarkably similar between greenhouse gas and aerosol experiments. This suggests a global ocean-atmosphere mode with spatial patterns common to radiative-induced climate change and relatively insensitive to forcing distribution. While the aerosol forcing is largely confined to the Northern Hemisphere, its climate effect reaches pristine Southern Hemisphere oceans, including decreased temperature and decelerated westerly winds. Ocean-atmosphere interaction spreads the effect of localized forcing around the globe, leaving distinctive patterns on the way. We show that the greenhouse gas- and aerosol-induced climate responses share key ocean-atmospheric feedback, explaining their spatial resemblance. Tropospheric temperature response, homogenized within the tropics and insensitive to forcing distribution, is suggested to be a key mechanism. While large uncertainties remain in microphysics, our results show that there are robust macro-structures in climate response to aerosol forcing.

  8. Use of Observation-Based Aerosol Fields for Detailed Cloud-Scale Modeling Studies

    NASA Astrophysics Data System (ADS)

    Fridlind, A. M.; Vogelmann, A. M.; Ackerman, A. S.; Endo, S.

    2014-12-01

    Within the realm of detailed large-eddy simulation studies with size-resolved microphysics, substantial uncertainties exist regarding the ability of any given model to accurately reproduce basic aspects of cloud microphysics that interact with ambient aerosol properties, such as precipitation formation and evolution. Modeling studies intended to reproduce specific observed cloud fields must also to some degree simplify the complexity of aerosol conditions, and usually lack sufficient measurements to well constrain the most relevant aerosol properties. Here we describe derivation and use of spatiotemporally varying fields of multi-modal aerosol size distributions for 60-hour simulations of boundary-layer clouds observed over Oklahoma during the RACORO campaign. Cases include forced as well as freely convecting shallow clouds, and some warm precipitation. We investigate the sensitivity of simulations to observation-derived aerosol inputs, including hygroscopicity parameter and size distribution properties. Sensitivity is examined in the context of the ability of the simulations to accurately reproduce relevant macrophysical and microphysical cloud properties observed, including droplet size dispersion.

  9. Relationship between low-cloud presence and the amount of overlying aerosols

    NASA Astrophysics Data System (ADS)

    Eddy Chung, Chul; Lewinschal, Anna; Wilcox, Eric

    2016-05-01

    Aerosols are often advected above cloud decks, and the amount of aerosols over cloud has been assumed to be similar to that at the same heights in nearby clear sky. In this assumption, cloud and aerosol above cloud-top height are considered randomly located with respect to each other. The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed here to investigate this assumption on global scales. The CALIPSO data reveal that the aerosol optical depth (AOD) above low cloud tends to be smaller than in nearby clear sky during the daytime, and the opposite is true during the nighttime. In particular, over oceanic regions with wide-spread low cloud, such as the tropical southeastern Atlantic Ocean and northeastern Pacific Ocean, the daytime AOD above low cloud is often 40 % smaller than in surrounding clear skies.

  10. The seasonal and solar cycle variations of electron density gradient scale length, vertical drift and layer height during magnetically quiet days: Implications for Spread F over Trivandrum, India

    NASA Astrophysics Data System (ADS)

    Manju, G.; Devasia, C. V.; Ravindran, S.

    2009-12-01

    A study has been carried out on the behaviour of electron density gradient scale length, L, vertical drift and layer height, around post sunset hours, during the magnetically quiet days of summer, winter and equinox seasons of solar maximum (2002) and minimum years (1995), using ionosonde data of Trivandrum (8.5°N, 76.5°E, dip = 0.5°N) in the Indian longitude sector. The results indicate a clear seasonal and solar cycle variation in all the three parameters. Further, the seasonal variation of equatorial Spread F (ESF) during the above period is examined in terms of the relative roles of L, the vertical drift and layer height (of the F layer) in the triggering of the collisional Rayleigh-Taylor instability. The results, show for the first time, that L also plays an important role, in controlling the quiet time seasonal and solar cycle variability of ESF; whereas in earlier studies this parameter had been taken to be constant. The detailed results are presented and discussed.

  11. Variations over time in latitudinal distribution of the large-scale magnetic fields in the solar atmosphere at heights from the photosphere to the source surface

    NASA Astrophysics Data System (ADS)

    Akhtemov, Z. S.; Andreyeva, O. A.; Rudenko, G. V.; Stepanian, N. N.; Fainshtein, V. G.

    2015-02-01

    Calculations of magnetic field in the solar atmosphere and the "potential field-source surface" model have been used to study time variations in several parameters of the large-scale magnetic field at various heights during the last four solar cycles. At ten heights from the solar surface (R = Ro) to the source surface (R = 2.5Ro), we have constructed synoptic charts (SC) of the radial component Br of the estimated magnetic field. For these SC, we have identified 10-degree latitudinal zones. Within these zones, we found values of Sp (positive Br values averaged within the latitudinal zone over latitude and longitude), Sm (averaged modulus of negative Br values) and S + fields (a part of the latitudinal zone area (in %) occupied by positive Br values). At lower latitudes, cyclic variations in the Sp + Sm parameter are demonstrated to be similar (but not in detail) to time variations in Wolf numbers. Latitudes of 55° and higher exhibited virtually no cyclic peculiarities of time variations in this parameter. The authors believe that this indicates the diverse nature of the large-scale magnetic field in the near-equatorial and polar regions of the solar atmosphere. At R = 2.5Ro, Sp + Sm cyclic variations are almost invisible at all latitudes and only slightly apparent near the equator. The analysis of S + fields variations revealed that at low latitudes at R = 2.5Ro during solar cycles 21, 22 and ascending phase of cycle 23 there were almost no mixed-polarity periods. However, beginning from the maximum of cycle 23, in the near-equatorial region the mixed polarity was observed until the end of the long solar activity minimum. An assumption has been made that this might have been one of the forerunners and manifestations of the prolonged minimum between cycles 23 and 24. It has been found that during solar activity minima poleward there appears motion of magnetic fields with polarity opposite to that of the field at the pole. We have estimated the velocity of such a

  12. MATCH-SALSA - Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model - Part 1: Model description and evaluation

    NASA Astrophysics Data System (ADS)

    Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; Kokkola, H.

    2015-02-01

    We have implemented the sectional aerosol dynamics model SALSA (Sectional Aerosol module for Large Scale Applications) in the European-scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The modeled PNC size distribution peak occurs at the same or smaller particle size as the observed peak at four measurement sites spread across Europe. Total PNC is underestimated at northern and central European sites and accumulation-mode PNC is underestimated at all investigated sites. The low nucleation rate coefficient used in this study is an important reason for the underestimation. On the other hand, the model performs well for particle mass (including secondary inorganic aerosol components), while elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, in terms of biogenic emissions and chemical transformation. Updating the biogenic secondary organic aerosol (SOA) scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation.

  13. Anthropogenic aerosols and the distribution of past large‐scale precipitation change

    PubMed Central

    2015-01-01

    Abstract The climate response of precipitation to the effects of anthropogenic aerosols is a critical while not yet fully understood aspect in climate science. Results of selected models that participated the Coupled Model Intercomparison Project Phase 5 and the data from the Twentieth Century Reanalysis Project suggest that, throughout the tropics and also in the extratropical Northern Hemisphere, aerosols have largely dominated the distribution of precipitation changes in reference to the preindustrial era in the second half of the last century. Aerosol‐induced cooling has offset some of the warming caused by the greenhouse gases from the tropics to the Arctic and thus formed the gradients of surface temperature anomaly that enable the revealed precipitation change patterns to occur. Improved representation of aerosol‐cloud interaction has been demonstrated as the key factor for models to reproduce consistent distributions of past precipitation change with the reanalysis data. PMID:27134319

  14. The RHESSI Microflare Height Distribution

    NASA Technical Reports Server (NTRS)

    Christe, P.; Krucker, S.; Saint-Hilaire, P.

    2011-01-01

    We present the first in-depth statistical survey of flare source heights observed by RHESSI. Flares were found using a flare-finding algorithm designed to search the 6-10 keV count-rate when RHESSI's full sensitivity was available in order to find the smallest events (Christe et al., 2008). Between March 2002 and March 2007, a total of 25,006 events were found. Source locations were determined in the 4-10 keV, 10-15 keV, and 15-30 keV energy ranges for each event. In order to extract the height distribution from the observed projected source positions, a forward-fit model was developed with an assumed source height distribution where height is measured from the photosphere. We find that the best flare height distribution is given by g (h) oc exp(-h/lambda) where lambda = 6.1 plus or minus 0.3 Mm is the scale height. A power law height distribution with a negative power law index, gamma = 3.1 plus or minus 0.3 is also consistent with the data. Interpreted as thermal loop top sources, these heights are compared to loops generated by a potential field model (PFSS). The measured flare heights distribution are found to be much steeper than the potential field loop height distribution which may be a signature of the flare energization process.

  15. Judgments of others' heights are biased toward the height of the perceiver.

    PubMed

    Twedt, Elyssa; Crawford, L Elizabeth; Proffitt, Dennis R

    2015-04-01

    We examined how observers use one aspect of their own morphology, height, when judging the physical characteristics of other people. To address this, participants judged the heights of people as they walked past. We tested the hypothesis that differences between participant and target height account for systematic patterns of variability and bias in height estimation. Height estimate error and error variability increased as the difference between participant height and target height increased, suggesting that estimates are scaled to observers' heights. Furthermore, participants' height estimates were biased toward two standards, demonstrating classic category effects. First, estimates were biased toward participants' own heights. Second, participants biased height estimates toward the average height of the target distribution. These results support past research on using both the body and categorical information to estimate target properties but extend to real-world situations involving interactions with moving people, such as height judgments provided during eyewitness testimony. PMID:25028087

  16. Direct and Semi-direct Radiative Responses to Observation-Constrained Aerosol Absorption over S Asia

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Kotamarthi, V. R.; Manoharan, V.

    2013-12-01

    Climate impacts of aerosols over S. Asia have been studied extensively in both models and observations. However, discrepancies between observed and modeled aerosol concentrations and optical properties have hindered our understanding of the aerosol influences on the regional monsoon circulation and rainfall. We present an in-depth examination of direct and semi-direct radiative responses due to aerosols on the latitudinal heating gradient and cloud distribution, with observational constraints on solar absorption by aerosols. Regional distributions of aerosol concentration are simulated with a 12-km regional climate model (WRF-Chem) driven by the NCEP analysis data from August 2011 to March 2012. During this time period, the ground-based measurements of aerosols and clouds, surface radiation, water vapor, and temperature were taken at Nainital (29.38°N, 79.45°E) during the DOE Ganges Valley Experiment (GVAX). This data set, which is available at high temporal resolution (hourly), is used to evaluate and constrain the simulated wavelength dependence of aerosol absorption and the correlation with changes in surface radiation, cloud base height and liquid water content for the entire post-monsoon period. The analysis is extended to a regional scale by comparing with satellite observation of absorbing aerosol optical depth (OMI) and cloud properties (MODIS). Preliminary results show good agreement in monthly variations of simulated and observed aerosol optical depth (AOD) except during periods of high observed AOD. Initial analysis indicates a possible local origin for the aerosols that is not captured in the model at present. Furthermore, analysis of the spectrally resolved aerosol absorption measurements indicates that these local aerosols exhibit strong absorption in near-UV and visible wavelengths. A large fraction of increased absorption during October and November (local fall harvest season) is attributable to the super-micron sized aerosol particles. In

  17. Estimation of dust variability and scale height of atmospheric optical depth (AOD) in the Valles Marineris on Mars by Indian Mars Orbiter Mission (MOM) data

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj K.; Chauhan, Prakash; Singh, Ramdayal; Moorthi, S. M.; Sarkar, S. S.

    2016-02-01

    In this paper analyses of bright hazes observed inside Valles Marineris formed during mid-southern spring of Mars is presented. The analysis is performed by using data collected by Mars Colour Camera (MCC) onboard Indian Mars Orbiter Mission on orbits 34, 49 and 52 corresponding to the observation dates of October 28, December 5 and December 13, 2014. It is found that during all these orbits the valley was hazy. On orbit 34 a thick layer of haze was observed, which became relatively thinner on orbit 49. Thick haze reappeared after eight days on orbit 52. We also measured the optical depth of martian atmosphere as a function of altitude above two opposing walls (northern and southern walls of the Valles Marineris near Coprates Chasma region) of the valley, from stereo images that were taken with MCC on December 5, 2014. The optical depth was measured from contrast comparisons of the stereo images with "stereo method". In the northern wall of Valles, we estimated the optical depth as a function of altitude (ranging between -6 km and 3 km) and found values between 1.7 (bottom) and 1.0 (top) in red channel and between 2.1 (bottom) and 1.2 (top) in green channel. A fit to these results yields a scale height for the optical depth of 14.08 km and 11.24 km in red and green channel, which are more or less in good agreement to the pressure scaled height of martian atmosphere at that time in the region as consulted from Global Circulation Model (GCM). We also estimated optical depth in southern wall of Valles Marineris. However, in this case optical depth remains nearly constant with decreasing altitude. We consulted GCM for wind direction in the region and found strong wind with direction from south-west to north-east intersecting the mountain like structure of the southern wall of Valles Marineris. Our optical depth results and the wind direction suggest the presence of lee-wave cloud above the southern wall of Valles Marineris.

  18. Importance of clouds and aerosols in assessing climate change (Invited)

    NASA Astrophysics Data System (ADS)

    Boucher, O.; Randall, D. A.; Artaxo, P. P.; Bretherton, C. S.; Feingold, G.; Forster, P.; Kerminen, V.; Kondo, Y.; Liao, H.; Lohmann, U.; Rasch, P. J.; Satheesh, S.; Sherwood, S. C.; Stevens, B. B.; Zhang, X.; Myhre, G.; Shindell, D. T.

    2013-12-01

    Clouds and aerosols continue to contribute the largest uncertainty to estimates and interpretations of the Earth's changing energy budget. This talk will focus on process understanding and will discuss our assessment of how clouds and aerosols contribute and respond to climate change based on observations, theory and models. Many of the cloudiness and humidity changes simulated by climate models in warmer climates are now understood as thermodynamical responses or responses to large-scale circulation changes that do not appear to depend strongly on model parameterizations. For example, multiple lines of evidence now indicate positive feedback contributions from water vapor and lapse rate, and from circulation-driven changes in both the height of high clouds and the latitudinal distribution of clouds. However, some aspects of the overall cloud response vary substantially among models, and these appear to depend strongly on subgrid-scale processes in which there is less confidence. Climate-relevant aerosol processes are better understood, and climate-relevant aerosol properties better observed, than at the time of the Fourth Assessment Report. Our assessment for the effective radiative forcing by aerosol is less negative than before because of a re-evaluation of aerosol absorption, the existence of rapid adjustment of clouds in response to aerosol absorption, and multi-scale assessment of aerosol-cloud interactions. The aerosol forcing continues to dominate the uncertainty in the total anthropogenic forcing, but both models and observations suggest that it has not changed substantially in the global mean over the last couple of decades. Finally many gaps remain in our understanding of the role of clouds and aerosols on the climate system, and we will assess some of the challenges that lie ahead of us.

  19. Assessing the Effects of Anthropogenic Aerosols on Pacific Storm Track Using a Multiscale Global Climate Model

    SciTech Connect

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan; Molina, Mario J.

    2014-05-13

    Atmospheric aerosols impact weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the impacts of anthropogenic aerosols on the Pacific storm track using a multi-scale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and pre-industrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by - 2.5 and + 1.3 W m-2, respectively, by emission changes from pre-industrial to present day, and an increased cloud-top height indicates invigorated mid-latitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides for the first time a global perspective of the impacts of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multi-scale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on the global scale.

  20. Optical and chemical characterization of aerosols emitted from coal, heavy and light fuel oil, and small-scale wood combustion.

    PubMed

    Frey, Anna K; Saarnio, Karri; Lamberg, Heikki; Mylläri, Fanni; Karjalainen, Panu; Teinilä, Kimmo; Carbone, Samara; Tissari, Jarkko; Niemelä, Ville; Häyrinen, Anna; Rautiainen, Jani; Kytömäki, Jorma; Artaxo, Paulo; Virkkula, Aki; Pirjola, Liisa; Rönkkö, Topi; Keskinen, Jorma; Jokiniemi, Jorma; Hillamo, Risto

    2014-01-01

    Particle emissions affect radiative forcing in the atmosphere. Therefore, it is essential to know the physical and chemical characteristics of them. This work studied the chemical, physical, and optical characteristics of particle emissions from small-scale wood combustion, coal combustion of a heating and power plant, as well as heavy and light fuel oil combustion at a district heating station. Fine particle (PM1) emissions were the highest in wood combustion with a high fraction of absorbing material. The emissions were lowest from coal combustion mostly because of efficient cleaning techniques used at the power plant. The chemical composition of aerosols from coal and oil combustion included mostly ions and trace elements with a rather low fraction of absorbing material. The single scattering albedo and aerosol forcing efficiency showed that primary particles emitted from wood combustion and some cases of oil combustion would have a clear climate warming effect even over dark earth surfaces. Instead, coal combustion particle emissions had a cooling effect. Secondary processes in the atmosphere will further change the radiative properties of these emissions but are not considered in this study. PMID:24328080

  1. Liquid-liquid phase separation in aerosol particles: Imaging at the Nanometer Scale

    SciTech Connect

    O'Brien, Rachel; Wang, Bingbing; Kelly, Stephen T.; Lundt, Nils; You, Yuan; Bertram, Allan K.; Leone, Stephen R.; Laskin, Alexander; Gilles, Mary K.

    2015-04-21

    Atmospheric aerosols can undergo phase transitions including liquid-liquid phase separation (LLPS) while responding to changes in the ambient relative humidity (RH). Here, we report results of chemical imaging experiments using environmental scanning electron microscopy (ESEM) and scanning transmission x-ray microscopy (STXM) to investigate the LLPS of micron sized particles undergoing a full hydration-dehydration cycle. Internally mixed particles composed of ammonium sulfate (AS) and either: limonene secondary organic carbon (LSOC), a, 4-dihydroxy-3-methoxybenzeneaceticacid (HMMA), or polyethylene glycol (PEG-400) were studied. Events of LLPS with apparent core-shell particle morphology were observed for all samples with both techniques. Chemical imaging with STXM showed that both LSOC/AS and HMMA/AS particles were never homogeneously mixed for all measured RH’s above the deliquescence point and that the majority of the organic component was located in the shell. The shell composition was estimated as 65:35 organic: inorganic in LSOC/AS and as 50:50 organic: inorganic for HMMA/AS. PEG-400/AS particles showed fully homogeneous mixtures at high RH and phase separated below 89-92% RH with an estimated 50:50% organic to inorganic mix in the shell. These two chemical imaging techniques are well suited for in-situ analysis of the hygroscopic behavior, phase separation, and surface composition of collected ambient aerosol particles.

  2. Ambient aerosol and its carbon content in Gainesville, a mid-scale city in Florida.

    PubMed

    Chuaybamroong, Paradee; Cayse, Kimberleigh; Wu, Chang-Yu; Lundgren, Dale A

    2007-05-01

    Ambient aerosols were collected during 2000-2001 in Gainesville, Florida, using a micro-orifice uniform deposit impactor (MOUDI) to study mass size distribution and carbon composition. A bimodal mass distribution was found in every sample with major peaks for aerosols ranging from 0.32 to 0.56 microm, and 3.2 to 5.6 microm in diameter. The two distributions represent the fine mode (<2.5 microm) and the coarse mode (>2.5 microm) of particle size. Averaged over all sites and seasons, coarse particles consisted of 15% carbon while fine particles consisted of 22% carbon. Considerable variation was noted between winter and summer seasons. Smoke from fireplaces in winter appeared to be an important factor for the carbon, especially the elemental carbon contribution. In summer, organic carbon was more abundant. The maximum secondary organic carbon was also found in this season (7.0 microg m(-3)), and the concentration is between those observed in urban areas (15-20 microg m(-3)) and in rural areas (4-5 microg m(-3)). However, unlike in large cities where photochemical activity of anthropogenic emissions are determinants of carbon composition, biogenic sources were likely the key factor in Gainesville. Other critical factors that affect the distribution, shape and concentration were precipitation, brushfire and wind. PMID:17160439

  3. Growth of aerosols in Titan's atmosphere and related time scales - A stochastic approach

    NASA Astrophysics Data System (ADS)

    Rannou, P.; Cabane, M.; Chassefiere, E.

    1993-05-01

    The evolution of Titan's aerosols is studied from their production altitude down to the ground using a stochastic approach. A background aerosol distribution is assumed, obtained from previous Eulerian modelling. and the evolution of a 'tagged' particle, released near the formation altitude, is followed by simulating in a random way its growth through coagulation with particles of the background distribution. The two distinct growth stages proposed by Cabane et al. (1992) to explain the formation of monomers and subsequent aggregates are confirmed. The first stage may be divided into two parts. First, within roughly one terrestrial day, particles grow mainly through collisions with larger particles. They reach the size of monomer through typically one to five such collisions. Second, within a few terrestrial days to roughly one terrestrial month, particles evolve mainly by collisions with continuously created small particles and acquire their compact spherical structure. In the second stage, whose duration is roughly 30 terrestrial years, or one Titan's seasonal cycle, particles grow by cluster-cluster aggregation during their fall through the atmosphere and reach, at low stratospheric levels, a typical radius of 0.4-0.5 micron.

  4. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    depth gradient, with AOD(500 nm) extremes from 0.1 to 1.1. On the Pacific transit from Honolulu to Hachijo AOD(500 nm) averaged 0.2, including increases to 0.4 after several storms, suggesting the strong impact of wind-generated seasalt. The AOD maximum, found in the Sea of Japan, was influenced by dust and anthropogenic sources. (4) In Beijing, single scattering albedo retrieved from AERONET sun-sky radiometry yielded midvisible SSA=0.88 with strong wavelength dependence, suggesting a significant black carbon component. SSA retrieved during dust episodes was approx. 0.90 and variable but wavelength neutral reflecting the presence of urban haze with the dust. Downwind at Anmyon Island SSA was considerably higher, approx. 0.94, but wavelength neutral for dust episodes and spectrally dependent during non dust periods. (5) Satellite retrievals show major aerosol features moving from Asia over the Pacific; however, determining seasonal-average aerosol effects is hampered by sampling frequency and large-scale cloud systems that obscure key parts of aerosol patterns. Preliminary calculations using, satellite-retrieved AOD fields and initial ACE-Asia aerosol properties (including sulfates, soot, and dust) yield clear-sky aerosol radiative effects in the seasonal-average ACE-Asia plume exceeding those of manmade greenhouse gases. Quantifying all-sky direct aerosol radiative effects is complicated by the need to define the height of absorbing aerosols with respect to cloud decks.

  5. Erratum: “Milky Way Red Dwarfs in the Borg Survey; Galactic Scale-Height and the Distribution of Dwarfs Stars in WFC3 Imaging" (2014, ApJ, 788, 77)

    NASA Astrophysics Data System (ADS)

    Holwerda, B. W.; Trenti, M.; Clarkson, W.; Sahu, K.; Bradley, L.; Stiavelli, M.; Pirzkal, N.; De Marchi, G.; Andersen, M.; Bouwens, R.; Ryan, R.; van Vledder, I.; van der Vlugt, D.

    2016-07-01

    In the catalog of M-dwarfs presented in Holwerda et al. (2014, H14 hereafter), there is an issue with the conversion from celestial coordinates to Galactic ones, done with pyephem a wrapper around a trusted and vetted library ephermis. Here we present the corrected coordinates (using AstroPy) and distances based on AB magnitudes. We have amended the tables and figures accordingly. The relation between vertical scale-height (z0) and M- dwarf subtype found in H14 is no longer present. We find a scale-height of 600 pc for all types, in part due to the presence of a second Galactic structural component.

  6. Worldwide impact of aerosol's time scale on the predicted long-term concentrating solar power potential.

    PubMed

    Ruiz-Arias, Jose A; Gueymard, Christian A; Santos-Alamillos, Francisco J; Pozo-Vázquez, David

    2016-01-01

    Concentrating solar technologies, which are fuelled by the direct normal component of solar irradiance (DNI), are among the most promising solar technologies. Currently, the state-of the-art methods for DNI evaluation use datasets of aerosol optical depth (AOD) with only coarse (typically monthly) temporal resolution. Using daily AOD data from both site-specific observations at ground stations as well as gridded model estimates, a methodology is developed to evaluate how the calculated long-term DNI resource is affected by using AOD data averaged over periods from 1 to 30 days. It is demonstrated here that the use of monthly representations of AOD leads to systematic underestimations of the predicted long-term DNI up to 10% in some areas with high solar resource, which may result in detrimental consequences for the bankability of concentrating solar power projects. Recommendations for the use of either daily or monthly AOD data are provided on a geographical basis. PMID:27507711

  7. Ice-condenser aerosol tests

    SciTech Connect

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. )

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  8. Investigation of aerosol distribution patterns and its optical properties at different time scale by using LIDAR system and AERONET

    NASA Astrophysics Data System (ADS)

    Tan, Fuyi; Khor, Wei Ying; Hee, Wan Shen; Choon, Yeap Eng; San, Lim Hwee; Abdullah, Khiruddin

    2015-04-01

    Atmospheric aerosol is a major health-impairment issue in Malaysia especially during southeast monsoon period (June-September) due to the active open burning activities. However, hazy days were an issue in Penang, Malaysia during March, 2014. Haze intruded Penang during March and lasted for a month except for the few days after rain. Rain water had washed out the aerosols from the atmosphere. Therefore, this study intends to analyse the aerosol profile and the optical properties of aerosol during this haze event and after rain. Meanwhile, several days after the haze event (during April, 2014) were also analyzed for comparison purposes. Additionally, the dominant aerosol type (i.e., dust, biomass burning, industrial and urban, marine, and mixed aerosol) during the study period was identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent.

  9. Cassini/CIRS capabilities for aerosol, cloud, and surface measurements

    NASA Technical Reports Server (NTRS)

    Samuelson, Robert E.

    1992-01-01

    Information that should be revealed by the Cassini Composite Infrared Spectrometer (CIRS) about the aerosol, cloud, and surface properties of Titan are addressed. Limb sounding data will be used to determine aerosol abundances, scale heights, and gradients between 80 and 400 km for various latitudes. Stratospheric condensate cloud top altitudes and column abundances will be inferred as functions of latitude. A search for new species will be conducted. Thermal maps between 500 and 550/cm will be used to investigate tropospheric methane clouds and surface topography; time resolution provided by different orbits will be used to distinguish the two.

  10. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  11. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    DOE PAGESBeta

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convectivemore » cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it

  12. A new WRF-Chem treatment for studying regional-scale impacts of cloud processes on aerosol and trace gases in parameterized cumuli

    SciTech Connect

    Berg, L. K.; Shrivastava, M.; Easter, R. C.; Fast, J. D.; Chapman, E. G.; Liu, Y.; Ferrare, R. A.

    2015-02-24

    A new treatment of cloud effects on aerosol and trace gases within parameterized shallow and deep convection, and aerosol effects on cloud droplet number, has been implemented in the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) version 3.2.1 that can be used to better understand the aerosol life cycle over regional to synoptic scales. The modifications to the model include treatment of the cloud droplet number mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. These changes have been implemented in both the WRF-Chem chemistry packages as well as the Kain–Fritsch (KF) cumulus parameterization that has been modified to better represent shallow convective clouds. Testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS). The simulation results are used to investigate the impact of cloud–aerosol interactions on regional-scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column-integrated BC can be as large as –50% when cloud–aerosol interactions are considered (due largely to wet removal), or as large as +40% for sulfate under non-precipitating conditions due to sulfate production in the parameterized clouds. The modifications to WRF-Chem are found to account for changes in the cloud droplet number concentration (CDNC) and changes in the chemical composition of cloud droplet residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to the latest version of WRF-Chem, and it is

  13. Aerosol Mapping From Space: Strengths, Limitations, and Applications

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2010-01-01

    The aerosol data products from the NASA Earth Observing System's MISR and MODIS instruments provide significant advances in regional and global aerosol optical depth (AOD) mapping, aerosol type measurement, and source plume characterization from space. These products have been and are being used for many applications, ranging from regional air quality assessment, to aerosol air mass type identification and evolution, to wildfire smoke injection height and aerosol transport model validation. However, retrieval uncertainties and coverage gaps still limit the quantitative constraints these satellite data place on some important questions, such as global-scale long-term trends and direct aerosol radiative forcing. Major advances in these areas seem to require a different paradigm, involving the integration of satellite with suborbital data and with models. This presentation will briefly summarize where we stand, and what incremental improvements we can expect, with the current MISR and MODIS aerosol products, and will then elaborate on some initial steps aimed at the necessary integration of satellite data with data from other sources and with chemical transport models.

  14. MATCH-SALSA - Multi-scale Atmospheric Transport and CHemistry model coupled to the SALSA aerosol microphysics model - Part 1: Model description and evaluation

    NASA Astrophysics Data System (ADS)

    Andersson, C.; Bergström, R.; Bennet, C.; Robertson, L.; Thomas, M.; Korhonen, H.; Lehtinen, K. E. J.; Kokkola, H.

    2014-05-01

    We have implemented the sectional aerosol dynamics model SALSA in the European scale chemistry-transport model MATCH (Multi-scale Atmospheric Transport and Chemistry). The new model is called MATCH-SALSA. It includes aerosol microphysics, with several formulations for nucleation, wet scavenging and condensation. The model reproduces observed higher particle number concentration (PNC) in central Europe and lower concentrations in remote regions. The model PNC size distribution peak occurs at the same or smaller particle size as the observed peak at five measurement sites spread across Europe. Total PNC is underestimated at Northern and Central European sites and accumulation mode PNC is underestimated at all investigated sites. On the other hand the model performs well for particle mass, including secondary inorganic aerosol components. Elemental and organic carbon concentrations are underestimated at many of the sites. Further development is needed, primarily for treatment of secondary organic aerosol, both in terms of biogenic emissions and chemical transformation, and for nitrogen gas-particle partitioning. Updating the biogenic SOA scheme will likely have a large impact on modeled PM2.5 and also affect the model performance for PNC through impacts on nucleation and condensation. An improved nitrogen partitioning model may also improve the description of condensational growth.

  15. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  16. Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes during Boreal Spring and Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.; Chin, Mian; Kim, K. M.

    2005-01-01

    Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and.black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol

  17. Effects of Aerosol on Atmospheric Dynamics and Hydrologic Processes During Boreal Spring and Summer

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.; Kim, K. M.; Chin, Mian

    2005-01-01

    Global and regional climate impacts of present-day aerosol loading during boreal spring are investigated using the NASA finite volume General Circulation Model (fvGCM). Three-dimensional distributions of loadings of five species of tropospheric aerosols, i.e., sulfate, black carbon, organic carbon, soil dust, and sea salt are prescribed from outputs of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol loadings are used to calculate the extinction coefficient, single scattering albedo, and asymmetric factor at eleven spectral wavelengths in the radiative transfer code. We find that aerosol-radiative forcing during boreal spring excites a wavetrain-like pattern in tropospheric temperature and geopotential height that emanates from Northern Africa, through Eurasia, to northeastern Pacific. Associated with the teleconnection is strong surface cooling over regions with large aerosol loading, i.e., China, India, and Africa. Low-to-mid tropospheric heating due to shortwave absorption is found in regions with large loading of dust (Northern Africa, and central East Asia), and black carbon (South and East Asia). In addition pronounced surface cooling is found over the Caspian Sea and warming over Eurasian and northeastern Asia, where aerosol loadings are relatively low. These warming and cooling are components of teleconnection pattern produced primarily by atmospheric heating from absorbing aerosols, i.e., dust from North Africa and black carbon from South and East Asia. Effects of aerosols on atmospheric hydrologic cycle in the Asian monsoon region are also investigated. Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in an early onset of the Indian summer monsoon. Absorbing aerosols also enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol

  18. The Impact of Caliop Aerosol Profiling: How Z Influences the X, Y Satellite Perspective

    NASA Astrophysics Data System (ADS)

    Campbell, J. R.; Alfaro-Contreras, R.; Buchard, V.; Toth, T. D.; Vaughan, M.; Zhang, J.

    2014-12-01

    The ever-burgeoning satellite remote sensing era has significantly improved our understanding of the role aerosol particles play in the earth-atmosphere system. Instruments such as MODIS, MISR, OMI, AVHRR, and now VIIRS, among others, are meeting a growing number of observational demands necessary for characterizing aerosol particle influence, on processes such as surface air quality, direct and semi-direct forcing and cloud indirect effects. While these passive sensors have grown to represent the community's fundamental global aerosol observing core, their datasets represent, almost exclusively, a column-integrated view of atmospheric aerosols. In contrast, however, aerosol-climate interaction is inherently sensitive to the vertical distribution of aerosol particle presence. Though the CALIOP instrument, with its relatively limited profiling swath, offers a much smaller observational scale compared with passive imagers, active-sensor aerosol profiling is increasingly adding the necessary vertical perspective required to challenge and fully characterize what has become a predominant two-dimensional global perception of aerosols. In this talk, we highlight the impact of CALIOP-based profiling, and describe how the critical third dimension is contributing to this knowledge. We introduce aerosol scale-heights and the contribution of near-surface particle presence relative to column-integrated aerosol optical depths. We describe the impact of particle profile diffusivity relative to passive-based estimates of surface air quality. The impact of accurate vertical profiling in global modeling systems is conceptualized, through benefits to downwind forecasting from accurate initialization. Sensitivities in semi-direct regional heating rate estimates are shown as a function of model-constrained aerosol vertical profiling. Finally, we highlight perhaps the most important CALIOP observation of all, relative to the passive sensors: the presence of optically-thin cirrus clouds

  19. Using Multi-scale Modeling System to Study the Interactions between Clouds, Precipitation, Aerosols, Radiation and Land Surface

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    technique. A review of developments, improvements and applications of cloud models (GCE and WRF) at Goddard wlll be is presented in this talk. In particular, a new approach to using multi-scale modeling system to study the interactions between clouds, precipitation, aerosols and land will be presented.

  20. Using Multi-scale Modeling System to Study the Interactions between Clouds, Precipitation, Aerosols, Radiation and Land Surface

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    nesting technique. A review of developments, improvements and applications of cloud models (GCE and WRF) at Goddard will be presented in this talk. In particular, a new approach to using multi-scale modeling system to study the interactions between clouds, precipitation, aerosols and land will be presented.

  1. Using Multi-scale Modeling System to Study the Interactions between Clouds, Precipitation, Aerosols, Radiation and Land Surface

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    developments, improvements and applications of cloud models (GCE and WRF) at Goddard will be presented in this talk. In particular, a new approach to using multi-scale modeling system to study the interactions between clouds, precipitation, aerosols and land will be presented.

  2. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model.

    PubMed

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H; Molina, Mario J

    2014-05-13

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol-climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by -2.5 and +1.3 W m(-2), respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors' knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  3. Estimating Mixing Heights Using Microwave Temperature Profiler

    NASA Technical Reports Server (NTRS)

    Nielson-Gammon, John; Powell, Christina; Mahoney, Michael; Angevine, Wayne

    2008-01-01

    A paper describes the Microwave Temperature Profiler (MTP) for making measurements of the planetary boundary layer thermal structure data necessary for air quality forecasting as the Mixing Layer (ML) height determines the volume in which daytime pollution is primarily concentrated. This is the first time that an airborne temperature profiler has been used to measure the mixing layer height. Normally, this is done using a radar wind profiler, which is both noisy and large. The MTP was deployed during the Texas 2000 Air Quality Study (TexAQS-2000). An objective technique was developed and tested for estimating the ML height from the MTP vertical temperature profiles. In order to calibrate the technique and evaluate the usefulness of this approach, estimates from a variety of measurements during the TexAQS-2000 were compared. Estimates of ML height were used from radiosondes, radar wind profilers, an aerosol backscatter lidar, and in-situ aircraft measurements in addition to those from the MTP.

  4. Final Report: Process Models of the Equilibrium Size & State of Organic/Inorganic Aerosols for the Development of Large Scale Atmospheric Models & the Analysis of Field Data

    SciTech Connect

    Wexler, Anthony Stein; Clegg, Simon Leslie

    2013-10-26

    Our work addressed the following elements of the Call for Proposals: (i) “to improve the theoretical representation of aerosol processes studied in ASP laboratory or field studies”, (ii) “to enhance the incorporation of aerosol process information into modules suitable for large-scale or global atmospheric models”, and (iii) “provide systematic experimental validation of process model predictions ... using data from targeted laboratory and field experiments”. Achievements to the end of 2012 are described in four previous reports, and include: new models of densities and surface tensions of pure (single solute) and mixed aqueous solutions of typical aerosol composition under all atmospheric conditions (0 to 100% RH and T > 150 K); inclusion of these models into the widely used Extended Aerosol Inorganics model (E-AIM, http://www.aim.env.uea.ac.uk/aim/aim.php); the addition of vapor pressure calculators for organic compounds to the E-AIM website; the ability of include user-defined organic compounds and/or lumped surrogates in gas/aerosol partitioning calculations; the development of new equations to represent the properties of soluble aerosols over the entire concentration range (using methods based upon adsorption isotherms, and derived using statistical mechanics), including systems at close to zero RH. These results are described in publications 1-6 at the end of this report, and on the “News” page of the E-AIM website (http://www.aim.env.uea.ac.uk/aim/info/news.html). During 2012 and 2013 we have collaborated in a combined observation and lab-based study of the water uptake of the organic component of atmospheric aerosols (PI Gannet Hallar, of the Desert Research Institute). The aerosol samples were analyzed using several complementary techniques (GC/MS, FT-ICR MS, and ion chromatography) to produce a very complete organic “speciation” including both polar and non-polar compounds. Hygroscopic growth factors of the samples were measured, and

  5. Decadal-scale relationship between measurements of aerosols, land-use change, and fire over Southeast Asia

    NASA Astrophysics Data System (ADS)

    Cohen, J. B.; Lecoeur, E.

    2015-10-01

    A simultaneous analysis of 13 years of remotely sensed data of land cover, fires, precipitation, and aerosols from the MODIS, TRMM, and MISR satellites and the AERONET network over Southeast Asia is performed, leading to a set of robust relationships between land-use change and fire being found on inter-annual and intra-annual scales over Southeast Asia, reflecting the heavy amounts of anthropogenic influence over land use change and fires in this region of the world. First, we find that fires occur annually, but with a considerable amount of variance in their onset, duration, and intensity from year to year, and from two separate regions within Southeast Asia from each other. This variability is already partially understood from previous works, including the impacts of both inter-annually and intra-annually occurring influences such as the Monsoon and El-Nino events, but yet there are other as of yet unknown influences that also are found to strongly influence the results. Second, we show that a simple regression-model of the land-cover, fire, and precipitation data can be used to recreate a robust representation of the timing and magnitude of measured AOD from multiple measurements sources of this region using either 8-day (better for onset and duration) or monthly based (better for magnitude) measurements, but not daily measurements. We find that the reconstructed AOD matches the timing and intensity from AERONET measurements to within 70 to 90 % and the timing and intensity of MISR measurements from to within 50 to 95 %. This is a unique finding in this part of the world, since could-covered regions are large, yet the robustness of the model is still capable of holding over many of these regions, where otherwise no fires are observed and hence no emissions source contribution to AOD would otherwise be thought to occur. Third, we determine that while Southeast Asia is a source region of such intense smoke emissions, that it is also impacted by transport of smoke

  6. Closing the Confidence Gap in Aerosol Contributions to Direct Radiative Forcing Using Space-based and Suborbital Resources

    NASA Astrophysics Data System (ADS)

    Kahn, R. A.

    2009-12-01

    As expected, the aerosol data products from the NASA Earth Observing System’s MISR and MODIS instruments provide significant advances in regional and global aerosol optical depth (AOD) mapping, aerosol type measurement, and source plume characterization from space. Although these products have been and are being used for many applications, ranging from regional air quality assessment, to aerosol air mass type evolution, to aerosol injection height and aerosol transport model validation, uncertainties still limit the quantitative constraints these satellite data place on global-scale direct aerosol radiative forcing. Some further refinement of the current aerosol products is possible, but a major advance in this area seems to require a different paradigm, involving the integration of satellite and suborbital data with models. This presentation will briefly summarize where we stand, and what incremental advances we can expect, with the current aerosol products, and will then elaborate on some initial steps aimed at the necessary integration. Many other AGU presentations, covering parts of the community’s emerging efforts in this direction, will be referenced, and key points from the recently released CCSP-SAP (US Climate Change Program - Synthesis and Assessment Product) 2.3 - Atmospheric aerosols: Properties and Climate Impacts, will be included in the discussion.

  7. Analysis of the origin of peak aerosol optical depth in springtime over the Gulf of Tonkin.

    PubMed

    Shan, Xiaoli; Xu, Jun; Li, Yixue; Han, Feng; Du, Xiaohui; Mao, Jingying; Chen, Yunbo; He, Youjiang; Meng, Fan; Dai, Xuezhi

    2016-02-01

    By aggregating MODIS (moderate-resolution imaging spectroradiometer) AOD (aerosol optical depth) and OMI (ozone monitoring instrument) UVAI (ultra violet aerosol index) datasets over 2010-2014, it was found that peak aerosol loading in seasonal variation occurred annually in spring over the Gulf of Tonkin (17-23 °N, 105-110 °E). The vertical structure of the aerosol extinction coefficient retrieved from the spaceborne lidar CALIOP (cloud-aerosol lidar with orthogonal polarization) showed that the springtime peak AOD could be attributed to an abrupt increase in aerosol loading between altitudes of 2 and 5 km. In contrast, aerosol loading in the low atmosphere (below 1 km) was only half of that in winter. Wind fields in the low and high atmosphere exhibited opposite transportation patterns in spring over the Gulf of Tonkin, implying different sources for each level. By comparing the emission inventory of anthropogenic sources with biomass burning, and analyzing the seasonal variation of the vertical structure of aerosols over the Northern Indo-China Peninsula (NIC), it was concluded that biomass burning emissions contributed to high aerosol loading in spring. The relatively high topography and the high surface temperature in spring made planetary boundary layer height greater than 3 km over NIC. In addition, small-scale cumulus convection frequently occurred, facilitating pollutant rising to over 3 km, which was a height favoring long-range transport. Thus, pollutants emitted from biomass burning over NIC in spring were raised to the high atmosphere, then experienced long-range transport, leading to the increase in aerosol loading at high altitudes over the Gulf of Tonkin during spring. PMID:26969552

  8. A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle

    PubMed Central

    Kok, Jasper F.

    2011-01-01

    Mineral dust aerosols impact Earth’s radiation budget through interactions with clouds, ecosystems, and radiation, which constitutes a substantial uncertainty in understanding past and predicting future climate changes. One of the causes of this large uncertainty is that the size distribution of emitted dust aerosols is poorly understood. The present study shows that regional and global circulation models (GCMs) overestimate the emitted fraction of clay aerosols (< 2 μm diameter) by a factor of ∼2–8 relative to measurements. This discrepancy is resolved by deriving a simple theoretical expression of the emitted dust size distribution that is in excellent agreement with measurements. This expression is based on the physics of the scale-invariant fragmentation of brittle materials, which is shown to be applicable to dust emission. Because clay aerosols produce a strong radiative cooling, the overestimation of the clay fraction causes GCMs to also overestimate the radiative cooling of a given quantity of emitted dust. On local and regional scales, this affects the magnitude and possibly the sign of the dust radiative forcing, with implications for numerical weather forecasting and regional climate predictions in dusty regions. On a global scale, the dust cycle in most GCMs is tuned to match radiative measurements, such that the overestimation of the radiative cooling of a given quantity of emitted dust has likely caused GCMs to underestimate the global dust emission rate. This implies that the deposition flux of dust and its fertilizing effects on ecosystems may be substantially larger than thought. PMID:21189304

  9. Effects of height acceleration on Geosat heights

    NASA Technical Reports Server (NTRS)

    Hancock, David W., III; Brooks, Ronald L.; Lockwood, Dennis W.

    1990-01-01

    A radar altimeter tracking loop, such as that utilized by Geosat, produces height errors in the presence of persistent height acceleration h(a). The correction factor for the height error is a function of both the loop feedback parameters and the height acceleration. The correction, in meters, to the sea-surface height (SSH) derived from Geosat is -0.16 h(a), where h(a) is in m/sec per sec. The errors induced by accelerations are produced primarily by changes in along-track geoid slopes. The nearly circular Geosat orbit and dynamic ocean topography produce small h(a) values. One area studied in detail encompasses the Marianas Trench and the Challenger Deep in the west central Pacific Ocean. Histograms of SSH corrections due to range accelerations have also been determined from 24-hour segments of Geosat global data. The findings are that 20 percent of the Geosat measurements have acceleration-induced errors of 2 cm or more, while 8 percent have errors of 3 cm or more.

  10. Aerosols upwind of Mexico City during the MILAGRO campaign: regional scale biomass burning, dust and volcanic ash from aircraft measurements

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Steinbrecher, R.

    2009-04-01

    During the MILAGRO Campaign March/April 2006 a series of aircraft flights with the FZK microlight D-MIFU were performed in the area southeast of Mexico City starting from Puebla airport, circling the national park area of Ixtachiuatl and Popocatepetl and scanning the Chalco valley down to Cuautla in the Cuernavaca province. All flights were combined with vertical profiles up to 4500 m a.s.l. in several locations, typically north of volcano Ixtachiuatl on the Puebla side, above Chalco or Tenago del Aire and south of volcano Popocatepetl, either at Cuautla or Atlixco. In Tenango del Aire a ceilometer was additionally operated continuously for characterization of the planetary boundary layer. The aircraft carried a set of aerosol instrumentation, fine and coarse particles and size distributions as well as a 7 wavelength aethalometer. Additionally meteorological parameters, temperature and dewpoint, global radiation and actinic radiation balance, respectively photolysis rates, and ozone concentrations were measured. The instrumentation allowed to characterize the aerosol according to their sources and also their impact on radiation transfer. Biomass burning aerosol, windblown dust and volcanic ash were identified within the upwind area of Mexico City with large differences between the dry season in the first weeks of the campaign and the by far cleaner situation after beginning thunderstorm activity towards the end of the campaign. Also the aerosol characteristics inside and outside the Mexico City basin were often completely different. With wind speeds of ~ 5 m/sec from southerly directions in the Chalco valley the aerosol mixture can reach the City within ~ 2 h. Rural aerosol mixtures from the Cuernavaca plain were mixed during the transport with dust from the MC basin. Very high intensity biomass burning plumes normally reached higher altitudes and produced pyrocumulus clouds. These aerosols were injected mainly into the free troposphere. Within the MC basin a large

  11. Sensitivity of aerosol properties to new particle formation mechanism and to primary emissions in a continental-scale chemical transport model

    SciTech Connect

    Chang,L.S.; Schwartz, S.E.; McGraw, R.; Lewis, E.R.

    2009-04-02

    Four theoretical formulations of new particle formation (NPF) and one empirical formulation are used to examine the sensitivity of observable aerosol properties to NPF formulation and to properties of emitted particles in a continental-scale model for the United States over a 1-month simulation (July 2004). For each formulation the dominant source of Aitken mode particles is NPF with only a minor contribution from primary emissions, whereas for the accumulation mode both emissions and transfer of particles from the Aitken mode are important. The dominant sink of Aitken mode number is coagulation, whereas the dominant sink of accumulation mode number is wet deposition (including cloud processing), with a minor contribution from coagulation. The aerosol mass concentration, which is primarily in the accumulation mode, is relatively insensitive to NPF formulation despite order-of-magnitude differences in the Aitken mode number concentration among the different parameterizations. The dominant sensitivity of accumulation mode number concentration is to the number of emitted particles (for constant mass emission rate). Comparison of modeled aerosol properties with aircraft measurements shows, as expected, better agreement in aerosol mass concentration than in aerosol number concentration for all NPF formulations considered. These comparisons yield instances of rather accurate simulations in the planetary boundary layer, with poor model performance in the free troposphere attributed mainly to lack of representation of biomass burning and/or to long-range transport of particles from outside the model domain. Agreement between model results and measurements is improved by using smaller grid cells (12 km versus 60 km).

  12. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing During Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2005-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on simulations using the NASA Global Modeling and Assimilation Office (GMAO) finite-volume general circulation model (fvGCM) with Microphyics of clouds in Relaxed Arakawa Schubert Scheme (McRAS). The aerosol loading are prescribed from three-dimensional monthly distribution of tropospheric aerosols viz., sulfate, black carbon, organic carbon, soil dust, and sea salt from output of the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The aerosol extinction coefficient, single scattering albedo, and asymmetric factor are computed as wavelength-dependent radiative forcing in the radiative transfer scheme of the fvGCM, and as a function of the aerosol loading and ambient relative humidity. We find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excites a planetary scale teleconnection pattern in sea level pressure, temperature and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, i.e., South Asia, East Asia, and northern and western Africa. Additionally, atmospheric heating is found in regions with large loading of dust (over Northern Africa, and Middle East), and black carbon (over South-East Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east-west dipole anomaly with strong cooling over the Caspian Sea, and warming over central and northeastern Asia, where aerosol concentration are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes

  13. Assessing the effects of anthropogenic aerosols on Pacific storm track using a multiscale global climate model

    PubMed Central

    Wang, Yuan; Wang, Minghuai; Zhang, Renyi; Ghan, Steven J.; Lin, Yun; Hu, Jiaxi; Pan, Bowen; Levy, Misti; Jiang, Jonathan H.; Molina, Mario J.

    2014-01-01

    Atmospheric aerosols affect weather and global general circulation by modifying cloud and precipitation processes, but the magnitude of cloud adjustment by aerosols remains poorly quantified and represents the largest uncertainty in estimated forcing of climate change. Here we assess the effects of anthropogenic aerosols on the Pacific storm track, using a multiscale global aerosol–climate model (GCM). Simulations of two aerosol scenarios corresponding to the present day and preindustrial conditions reveal long-range transport of anthropogenic aerosols across the north Pacific and large resulting changes in the aerosol optical depth, cloud droplet number concentration, and cloud and ice water paths. Shortwave and longwave cloud radiative forcing at the top of atmosphere are changed by −2.5 and +1.3 W m−2, respectively, by emission changes from preindustrial to present day, and an increased cloud top height indicates invigorated midlatitude cyclones. The overall increased precipitation and poleward heat transport reflect intensification of the Pacific storm track by anthropogenic aerosols. Hence, this work provides, for the first time to the authors’ knowledge, a global perspective of the effects of Asian pollution outflows from GCMs. Furthermore, our results suggest that the multiscale modeling framework is essential in producing the aerosol invigoration effect of deep convective clouds on a global scale. PMID:24733923

  14. Impacts of increasing the aerosol complexity in the Met Office global numerical weather prediction model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2014-05-01

    The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the

  15. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, J. P.; Walters, D. N.; Bellouin, N.; Milton, S. F.

    2013-11-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propogate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high latitude clean air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance

  16. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  17. Modeling ozone and aerosol formation and transport in the pacific northwest with the community Multi-Scale Air Quality (CMAQ) modeling system.

    PubMed

    O'Neill, Susan M; Lamb, Brian K; Chen, Jack; Claiborn, Candis; Finn, Dennis; Otterson, Sally; Figueroa, Cristiana; Bowman, Clint; Boyer, Mike; Wilson, Rob; Arnold, Jeff; Aalbers, Steven; Stocum, Jeffrey; Swab, Christopher; Stoll, Matt; Dubois, Mike; Anderson, Mary

    2006-02-15

    The Community Multi-Scale Air Quality (CMAQ) modeling system was used to investigate ozone and aerosol concentrations in the Pacific Northwest (PNW) during hot summertime conditions during July 1-15, 1996. Two emission inventories (El) were developed: emissions for the first El were based upon the National Emission Trend 1996 (NET96) database and the BEIS2 biogenic emission model, and emissions for the second El were developed through a "bottom up" approach that included biogenic emissions obtained from the GLOBEIS model. The two simulations showed that elevated PM2.5 concentrations occurred near and downwind of the Interstate-5 corridor along the foothills of the Cascade Mountains and in forested areas of central Idaho. The relative contributions of organic and inorganic aerosols varied by region, but generally organic aerosols constituted the largest fraction of PM2.5. In wilderness areas near the 1-5 corridor, organic carbon from anthropogenic sources contributed approximately 50% of the total organic carbon with the remainder from biogenic precursors, while in wilderness areas in Idaho, biogenic organic carbon accounted for 80% of the total organic aerosol. Regional analysis of the secondary organic aerosol formation in the Columbia River Gorge, Central Idaho, and the Olympics/Puget Sound showed that the production rate of secondary organic carbon depends on local terpene concentrations and the local oxidizing capacity of the atmosphere, which was strongly influenced by anthropogenic emissions. Comparison with observations from 12 IMPROVE sites and 21 ozone monitoring sites showed that results from the two El simulations generally bracketed the average observed PM parameters and that errors calculated for the model results were within acceptable bounds. Analysis across all statistical parameters indicated that the NW-AIRQUEST El solution performed better at predicting PM2.5, PM1, and beta(ext) even though organic carbon PM was over-predicted, and the NET96 El

  18. Spatio-temporal variability of aerosols in the tropics relationship with atmospheric and oceanic environments

    NASA Astrophysics Data System (ADS)

    Zuluaga-Arias, Manuel D.

    2011-12-01

    of surface temperature, atmospheric wind, geopotential height, outgoing longwave radiation, water vapor and precipitation together with the climatology of aerosols provide insight on how the variables interact. Different modes of variability, especially in intraseasonal time scales appear as strong modulators of the aerosol distribution. In particular, we investigate how two modes of variability related to the westward propagating synoptic African Easterly Waves of the Tropical Atlantic Ocean affect the horizontal and vertical structure of the environment. The statistical significance of these two modes is tested with the use of two different spectral techniques. The pattern of propagation of aerosol load shows good correspondence with the progression of the atmospheric and oceanic conditions suitable for dust mobilization over the Atlantic Ocean. We present extensions to previous studies related with dust variability over the Atlantic region by evaluating the performance of the long period satellite aerosol retrievals in determining modes of aerosol variability. Results of the covariability between aerosols-environment motivate the use of statistical regression models to test the significance of the forecasting skill of daily AOD time series. The regression models are calibrated using atmospheric variables as predictors from the reanalysis variables. The results show poor forecasting skill with significant error growing after the 3 rd day of the prediction. It is hypothesized that the simplicity of linear models results in an inability to provide a useful forecast.

  19. Aerosol vertical distribution, optical properties and transport over Corsica (western Mediterranean)

    NASA Astrophysics Data System (ADS)

    Léon, J.-F.; Augustin, P.; Mallet, M.; Bourrianne, T.; Pont, V.; Dulac, F.; Fourmentin, M.; Lambert, D.; Sauvage, B.

    2015-03-01

    This paper presents the aerosol vertical distribution observed in the western Mediterranean between February and April 2011 and between February 2012 and August 2013. An elastic backscattering lidar was continuously operated at a coastal site in the northern part of Corsica Island (Cap Corse) for a total of more than 14 000 h of observations. The aerosol extinction coefficient retrieved from cloud-free lidar profiles are analyzed along with the SEVIRI satellite aerosol optical depth (AOD). The SEVIRI AOD was used to constrain the retrieval of the aerosol extinction profiles from the lidar range-corrected signal and to detect the presence of dust or pollution aerosols. The daily average AOD at 550 nm is 0.16 (±0.09) and ranges between 0.05 and 0.80. A seasonal cycle is observed with minima in winter and maxima in spring-summer. High AOD days (above 0.3 at 550 nm) represent less than 10% of the totality of daily observations and correspond to the large scale advection of desert dust from Northern Africa or pollution aerosols from Europe. The respective origin of the air masses is confirmed using FLEXPART simulations in the backward mode. Dust events are characterized by a large turbid layer between 2 and 5 km height while pollution events show a lower vertical development with a thick layer below 3 km in altitude. However low level dust transport is also reported during spring while aerosol pollution layer between 2 and 4 km height has been also observed. We report an effective lidar ratio at 355 nm for pollution aerosols 68 (±13) Sr while it is 63 (±18) Sr for dust. The daily mean AOD at 355 nm for dust events is 0.61 (±0.14) and 0.71 (±0.16) for pollution aerosols events.

  20. CRISM Limb Observations of Aerosols and Water Vapor

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.

    2009-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.

  1. Easy Aerosol - Robust and non-robust circulation responses to aerosol radiative forcing in comprehensive atmosphere models

    NASA Astrophysics Data System (ADS)

    Voigt, Aiko; Bony, Sandrine; Stevens, Bjorn; Boucher, Olivier; Medeiros, Brian; Pincus, Robert; Wang, Zhili; Zhang, Kai; Lewinschal, Anna; Bellouin, Nicolas; Yang, Young-Min

    2015-04-01

    A number of recent studies illustrated the potential of aerosols to change the large-scale atmospheric circulation and precipitation patterns. It remains unclear, however, to what extent the proposed aerosol-induced changes reflect robust model behavior or are affected by uncertainties in the models' treatment of parametrized physical processes, such as those related to clouds. "Easy Aerosol", a model-intercomparison project organized within the Grand Challenge on Clouds, Circulation and Climate Sensitivity of the World Climate Research Programme, addresses this question by subjecting a suite of comprehensive atmosphere general circulation models with prescribed sea-surface temperatures (SSTs) to the same set of idealized "easy" aerosol perturbations. This contribution discusses the aerosol perturbations as well as their impact on the model's precipitation and surface winds. The aerosol perturbations are designed based on a global aerosol climatology and mimic the gravest mode of the anthropogenic aerosol. Specifically, the meridional and zonal distributions of total aerosol optical depth are approximated by a superposition of Gaussian plumes; the vertical distribution is taken as constant within the lowest 1250m of the atmosphere followed by an exponential decay with height above. The aerosol both scatters and absorbs shortwave radiation, but in order to focus on direct radiative effects aerosol-cloud interactions are omitted. Each model contributes seven simulations. A clean control case with no aerosol-radiative effects at all is compared to six perturbed simulations with differing aerosol loading, zonal aerosol distributions, and SSTs. To estimate the role of natural variability, one of the models, MPI-ESM, contributes a 5-member ensemble for each simulation. If the observed SSTs from years 1979-2005 are prescribed, the aerosol leads to a local depression of precipitation at the Northern Hemisphere center of the aerosol and a northward shift of the

  2. Atmospheric Teleconnection over Eurasia Induced by Aerosol Radiative Forcing during Boreal Spring

    NASA Technical Reports Server (NTRS)

    Kim, Maeng-Ki; Lau, William K. M.; Chin, Mian; Kim, Kyu-Myong; Sud, Y. C.; Walker, Greg K.

    2006-01-01

    The direct effects of aerosols on global and regional climate during boreal spring are investigated based on numerical simulations with the NASA Global Modeling and Assimilation Office finite-volume general circulation model (fvGCM) with Microphyics of Clouds with the Relaxed Arakawa Schubert Scheme (McRAS), using aerosol forcing functions derived from the Goddard Ozone Chemistry Aerosol Radiation and Transport model (GOCART). The authors find that anomalous atmospheric heat sources induced by absorbing aerosols (dust and black carbon) excite a planetary-scale teleconnection pattern in sea level pressure, temperature, and geopotential height spanning North Africa through Eurasia to the North Pacific. Surface cooling due to direct effects of aerosols is found in the vicinity and downstream of the aerosol source regions, that is, South Asia, East Asia, and northern and western Africa. Significant atmospheric heating is found in regions with large loading of dust (over northern Africa and the Middle East) and black carbon (over Southeast Asia). Paradoxically, the most pronounced feature in aerosol-induced surface temperature is an east west dipole anomaly with strong cooling over the Caspian Sea and warming over central and northeastern Asia, where aerosol concentrations are low. Analyses of circulation anomalies show that the dipole anomaly is a part of an atmospheric teleconnection pattern driven by atmospheric heating anomalies induced by absorbing aerosols in the source regions, but the influence was conveyed globally through barotropic energy dispersion and sustained by feedback processes associated with the regional circulations. The surface temperature signature associated with the aerosol-induced teleconnection bears striking resemblance to the spatial pattern of observed long-term trend in surface temperature over Eurasia. Additionally, the boreal spring wave train pattern is similar to that reported by Fukutomi et al. associated with the boreal summer

  3. Physicochemical characterization of aged biomass burning aerosol after long-range transport to Greece from large scale wildfires in Russia and surrounding regions, Summer 2010

    NASA Astrophysics Data System (ADS)

    Diapouli, E.; Popovicheva, O.; Kistler, M.; Vratolis, S.; Persiantseva, N.; Timofeev, M.; Kasper-Giebl, A.; Eleftheriadis, K.

    2014-10-01

    Smoke aerosol emitted by large scale wildfires in the European part of Russia and Ukraine, was transported to Athens, Greece during August 2010 and detected at an urban background site. Measurements were conducted for physico-chemical characterization of the aged aerosol and included on-line monitoring of PM10 and carbonaceous particles mass concentrations, as well as number size distributions and aerosol optical properties. In addition TSP filter samples were analyzed for major inorganic ions, while morphology and composition of particles was studied by individual particle analysis. Results supported the long-range transport of smoke plumes from Ukraine and Russia burning areas indicated by back trajectory analysis. An increase of 50% and 40% on average in organic (OC) and elemental carbon (EC) concentrations respectively, and more than 95% in carbonate carbon (CC) levels was observed for the biomass burning (BB) transport period of August with respect to the previous month of July. Mean 24-h OC/EC ratio was found in the range 3.2-8.5. Single scattering albedo (SSA) was also increased, indicating abundance of light scattering constituents and/or shift of size distributions towards larger particles. Increase in particle size was further supported by a decreasing trend in absorption Angström exponent (AAE). Ion analysis showed major contribution of secondary species (ammonium sulfate and nitrate) and soil components (Ca2+, Mg2+). Non-sea salt K+ exhibited very good correlation with secondary species, indicating the long-range transport of BB smoke as a possible common source. Individual particle analysis of the samples collected during BB-transport event in Athens revealed elevated number of soot externally mixed with fly ash Ca-rich particles. This result is in agreement with the increased OC and CC levels measured, thus pointing towards the main components comprising the aged BB aerosol microstructure.

  4. Massive-scale aircraft observations of giant sea-salt aerosol particle size distributions in atmospheric marine boundary layers

    NASA Astrophysics Data System (ADS)

    Jensen, J. B.

    2015-12-01

    iant sea-salt aerosol particles (dry radius, rd > 0.5 μm) occur nearly everywhere in the marine boundary layer and frequently above. This study presents observations of atmospheric sea-salt size distributions in the range 0.7 < rd < 14 μm based on external impaction of sea-spray aerosol particles onto microscope polycarbonate microscope slides. The slides have very large sample volumes, typically about 250 L over a 10-second sampling period. This provides unprecedented sampling of giant sea-salt particles for flights in marine boundary layer air. The slides were subsequently analyzed in a humidified chamber using dual optical digital microscopy. At a relative humidity of 90% the sea-salt aerosol particles form spherical cap drops. Based on measurement the volume of the spherical cap drop and assuming NaCl composition, the Kohler equation is used to derive the dry salt mass of tens of thousands of individual aerosol particles on each slide. Size distributions are given with a 0.2 μm resolution. The slides were exposed from the NSF/NCAR C-130 research aircraft during the 2008 VOCALS project off the coast of northern Chile and the 2011 ICE-T in the Caribbean. In each deployment, size distributions using hundreds of slides are used to relate fitted log-normal size distributions parameters to wind speed, altitude and other atmospheric conditions. The size distributions provide a unique observational set for initializing cloud models with coarse-mode aerosol particle observations for marine atmospheres.

  5. On the Physics of Fizziness: How liquid properties control bursting bubble aerosol production?

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Josserand, Christophe; Seon, Thomas

    2014-11-01

    Either in a champagne glass or at the oceanic scales, the tiny capillary bubbles rising at the surface burst in ejecting myriads of droplets. Focusing on the ejected droplets produced by a single bubble, we investigate experimentally how liquid properties and bubble size affect their characteristics: number, ejection velocities, sizes and ejection heights. These results allow us to finely tune the bursting bubble aerosol production. In the context of champagne industry, aerosols play a major role by spreading wine aroma above the glass. We demonstrate that this champagne fizz can be enhanced by selecting the wine viscosity and the bubble size, thanks to specially designed glass.

  6. Height, health, and development

    PubMed Central

    Deaton, Angus

    2007-01-01

    Adult height is determined by genetic potential and by net nutrition, the balance between food intake and the demands on it, including the demands of disease, most importantly during early childhood. Historians have made effective use of recorded heights to indicate living standards, in both health and income, for periods where there are few other data. Understanding the determinants of height is also important for understanding health; taller people earn more on average, do better on cognitive tests, and live longer. This paper investigates the environmental determinants of height across 43 developing countries. Unlike in rich countries, where adult height is well predicted by mortality in infancy, there is no consistent relationship across and within countries between adult height on the one hand and childhood mortality or living conditions on the other. In particular, adult African women are taller than is warranted by their low incomes and high childhood mortality, not to mention their mothers' educational level and reported nutrition. High childhood mortality in Africa is associated with taller adults, which suggests that mortality selection dominates scarring, the opposite of what is found in the rest of the world. The relationship between population heights and income is inconsistent and unreliable, as is the relationship between income and health more generally. PMID:17686991

  7. Satellite remote sensing of aerosol and cloud properties over Eurasia

    NASA Astrophysics Data System (ADS)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    Satellite remote sensing provides the spatial distribution of aerosol and cloud properties over a wide area. In our studies large data sets are used for statistical studies on aerosol and cloud interaction in an area over Fennoscandia, the Baltic Sea and adjacent regions over the European mainland. This area spans several regimes with different influences on aerosol cloud interaction such as a the transition from relative clean air over Fennoscandia to more anthropogenically polluted air further south, and the influence maritime air over the Baltic and oceanic air advected from the North Atlantic. Anthropogenic pollution occurs in several parts of the study area, and in particular near densely populated areas and megacities, but also in industrialized areas and areas with dense traffic. The aerosol in such areas is quite different from that produced over the boreal forest and has different effects on air quality and climate. Studies have been made on the effects of aerosols on air quality and on the radiation balance in China. The aim of the study is to study the effect of these different regimes on aerosol-cloud interaction using a large aerosol and cloud data set retrieved with the (Advanced) Along Track Scanning Radiometer (A)ATSR Dual View algorithm (ADV) further developed at Finnish Meteorological Institute and aerosol and cloud data provided by MODIS. Retrieval algorithms for aerosol and clouds have been developed for the (A)ATSR, consisting of a series of instruments of which we use the second and third one: ATSR-2 which flew on the ERS-2 satellite (1995-2003) and AATSR which flew on the ENVISAT satellite (2002-2012) (both from the European Space Agency, ESA). The ADV algorithm provides aerosol data on a global scale with a default resolution of 10x10km2 (L2) and an aggregate product on 1x1 degree (L3). Optional, a 1x1 km2 retrieval products is available over smaller areas for specific studies. Since for the retrieval of AOD no prior knowledge is needed on

  8. Impacts of increasing the aerosol complexity in the Met Office global NWP model

    NASA Astrophysics Data System (ADS)

    Mulcahy, Jane; Walters, David; Bellouin, Nicolas; Milton, Sean

    2014-05-01

    Inclusion of the direct and indirect radiative effects of aerosols in high resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing longwave radiation over West Africa due to a better representation of dust. Inclusion of the indirect aerosol effects has significant impacts on the SW radiation particularly at high latitudes due to lower cloud amounts in high latitude clean air regions. This leads to improved surface radiation biases at the North Slope of Alaska ARM site. Verification of temperature and height forecasts is also improved in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short range forecasts. However, the indirect aerosol effect leads to a strengthening of the low level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. This study highlights the importance of including a more realistic treatment of aerosol-cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex

  9. Aerosol characteristics in the UTLS region: A satellite-based study over north India

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Misra, A.; Kanawade, Vijay P.; Devara, P. C. S.

    2016-01-01

    Vertical profiles of aerosol backscatter coefficient and depolarization ratio, obtained from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, were studied in the upper troposphere and lower stratosphere (UTLS) region over North India (21-30° N and 72-90° E), covering the highly polluted Indo-Gangetic Plain (IGP) for one-year period from December 2011 to November 2012. An enhanced aerosol layer was observed between 15 and 18 km altitude, in the vicinity of tropopause, with a broad layer depth of about 2 km. The aerosol layer showed strong seasonal, monthly as well as day and night time variability, with a peak value of backscatter coefficient during monsoon season (˜5.54 × 10-3 sr-1 in September). The corresponding depolarization ratio indicates anisotropic (non-spherical) nature of particles. The aerosol layer was found to be highly linked with the variability in tropopause height, showing a positive correlation between tropopause height and the height of maximum backscatter coefficient (correlation coefficient of 0.8). However, it was found to be negatively correlated with the integrated backscatter coefficient (IBC), with a correlation coefficient of 0.3. We further analyzed outgoing long-wave radiation (OLR) data during the study period to investigate the link between the observed enhanced aerosol layer in the UTLS region and prevailing deep convective activities over the study region. Low values of OLR during monsoon (about 214 W m-2) indicate the occurrence of deep convection over this region, which may cause a large-scale circulation-driven vertical transport of boundary-layer pollution into the atmosphere of UTLS region. Results may have potential implications for better understanding and assessing the chemical and radiative impacts of these aerosols in the tropical UTLS region.

  10. Global profiles of the direct aerosol effect using vertically resolved aerosol data

    NASA Astrophysics Data System (ADS)

    Korras Carraca, Marios Bruno; Pappas, Vasilios; Matsoukas, Christos; Hatzianastassiou, Nikolaos; Vardavas, Ilias

    2014-05-01

    Atmospheric aerosols, both natural and anthropogenic, can cause climate change through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In general, aerosols cause cooling of the surface and the planet, while they warm the atmosphere due to scattering and absorption of incoming solar radiation. The importance of vertically resolved direct radiative effect (DRE) and heating/cooling effects of aerosols is strong, while large uncertainties still lie with their magnitudes. In order to be able to quantify them throughout the atmosphere, a detailed vertical profile of the aerosol effect is required. Such data were made available recently by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) satellite. CALIOP is the first polarization lidar to fly in space and has been acquiring unique data on aerosols and clouds since June 2006. The aim of this study is to investigate both the vertically resolved geographic and seasonal variation of the DRE due to aerosols. The vertical profile of DRE under all-sky and clear-sky conditions is computed using the deterministic spectral radiative transfer model FORTH. From the DRE, the effect on atmospheric heating/cooling rate profiles due to aerosols can also be derived. We use CALIOP Level 2-Version 3 Layer aerosol optical depth data as input to our radiation transfer model, for a period of 3 complete years (2007-2009). These data are provided on a 5 km horizontal resolution and in up to 8 vertical layers and have been regridded on our model horizontal and vertical resolutions. We use cloud data from the International Satellite Cloud Climatology Project (ISCCP), while the aerosol asymmetry factor and single scattering albedo are taken from the Global Aerosol Data Set (GADS). The model computations are performed on a monthly, 2.5°× 2.5° resolution on global scale, at 40

  11. The Organic Aerosols of Titan's Atmosphere

    NASA Technical Reports Server (NTRS)

    Sotin, Christophe; Lawrence, Kenneth; Beauchamp, Patricia M.; Zimmerman, Wayne

    2012-01-01

    One of Titan's many characteristics is the presence of a haze that veils its surface. This haze is composed of heavy organic particles and determining the chemical composition of these particles is a primary objective for future probes that would conduct in situ analysis. Meanwhile, solar occultations provide constraints on the optical characteristics of the haze layer. This paper describes solar occultation observations obtained by the Visual and Infrared Mapping Spectrometer (VIMS) onboard the Cassini spacecraft. These observations strongly constrain the optical characteristics of the haze layer. We detail the different steps involved in the processing of these data and apply them to two occultations that were observed at the South Pole and at the equator in order to investigate the latitudinal dependence of optical properties. The light curves obtained in seven atmospheric windows between 0.933-microns to 5-microns allow us to characterize atmospheric layers from 300 km to the surface. Very good fits of the light curves are obtained using a simple profile of number density of aerosols that is characterized by a scale height. The main difference between the South Pole and the equator is that the value of the scale height increases with altitude at the South Pole whereas it decreases at the equator. The vertically integrated amount of aerosols is similar at the two locations. The curve describing the cross-section versus wavelength is identical at the two locations suggesting that the aerosols have similar characteristics. Finally, we find that the two-way vertical transmission at 5-microns is as large as 80% at both locations.

  12. "APEC Blue": Secondary Aerosol Reductions from Emission Controls in Beijing.

    PubMed

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61-67% and 51-57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2-3, which led to blue sky days during APEC commonly referred to as "APEC Blue". We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  13. Development of large Area Covering Height Model

    NASA Astrophysics Data System (ADS)

    Jacobsen, K.

    2014-04-01

    Height information is a basic part of topographic mapping. Only in special areas frequent update of height models is required, usually the update cycle is quite lower as for horizontal map information. Some height models are available free of charge in the internet; for commercial height models a fee has to be paid. Mostly digital surface models (DSM) with the height of the visible surface are given and not the bare ground height, as required for standard mapping. Nevertheless by filtering of DSM, digital terrain models (DTM) with the height of the bare ground can be generated with the exception of dense forest areas where no height of the bare ground is available. These height models may be better as the DTM of some survey administrations. In addition several DTM from national survey administrations are classified, so as alternative the commercial or free of charge available information from internet can be used. The widely used SRTM DSM is available also as ACE-2 GDEM corrected by altimeter data for systematic height errors caused by vegetation and orientation errors. But the ACE-2 GDEM did not respect neighbourhood information. With the worldwide covering TanDEM-X height model, distributed starting 2014 by Airbus Defence and Space (former ASTRIUM) as WorldDEM, higher level of details and accuracy is reached as with other large area covering height models. At first the raw-version of WorldDEM will be available, followed by an edited version and finally as WorldDEM-DTM a height model of the bare ground. With 12 m spacing and a relative standard deviation of 1.2 m within an area of 1° x 1° an accuracy and resolution level is reached, satisfying also for larger map scales. For limited areas with the HDEM also a height model with 6 m spacing and a relative vertical accuracy of 0.5 m can be generated on demand. By bathymetric LiDAR and stereo images also the height of the sea floor can be determined if the water has satisfying transparency. Another method of getting

  14. Aerosol/Cloud Measurements Using Coherent Wind Doppler Lidars

    NASA Astrophysics Data System (ADS)

    Royer, Philippe; Boquet, Matthieu; Cariou, Jean-Pierre; Sauvage, Laurent; Parmentier, Rémy

    2016-06-01

    The accurate localization and characterization of aerosol and cloud layers is crucial for climate studies (aerosol indirect effect), meteorology (Planetary Boundary Layer PBL height), site monitoring (industrial emissions, mining,…) and natural hazards (thunderstorms, volcanic eruptions). LEOSPHERE has recently developed aerosol/cloud detection and characterization on WINDCUBE long range Coherent Wind Doppler Lidars (CWDL). These new features combine wind and backscatter intensity informations (Carrier-to-Noise Ratio CNR) in order to detect (aerosol/cloud base and top, PBL height) and to characterize atmospheric structures (attenuated backscatter, depolarization ratio). For each aerosol/cloud functionality the method is described, limitations are discussed and examples are given to illustrate the performances.

  15. Tropospheric ozone and aerosols measured by airborne lidar during the 1988 Arctic boundary layer experiment

    NASA Technical Reports Server (NTRS)

    Browell, Edward V.; Butler, Carolyn F.; Kooi, Susan A.

    1991-01-01

    Ozone (O3) and aerosol distributions were measured from an aircraft using a differential absorption lidar (DIAL) system as part of the 1988 NASA Global Tropospheric Experiment - Arctic Boundary Layer Experiment (ABLE-3A) to study the sources and sinks of gases and aerosols over the tundra regions of Alaska during the summer. The tropospheric O3 budget over the Arctic was found to be strongly influenced by stratospheric intrusions. Regions of low aerosol scattering and enhanced O3 mixing ratios were usually correlated with descending air from the upper troposphere or lower stratosphere. Several cases of continental polar air masses were examined during the experiment. The aerosol scattering associated with these air masses was very low, and the atmospheric distribution of aerosols was quite homogeneous for those air masses that had been transported over the ice for greater than or = 3 days. The transition in O3 and aerosol distributions from tundra to marine conditions was examined several times. The aerosol data clearly show an abrupt change in aerosol scattering properties within the mixed layer from lower values over the tundra to generally higher values over the water. The distinct differences in the heights of the mixed layers in the two regions was also readily apparent. Several cases of enhanced O3 were observed during ABLE-3 in conjunction with enhanced aerosol scattering in layers in the free atmosphere. Examples are presented of the large scale variations of O3 and aerosols observed with the airborne lidar system from near the surface to above the tropopause over the Arctic during ABLE-3.

  16. Global Distribution of Planetary Boundary Layer Height Derived from CALIPSO

    NASA Astrophysics Data System (ADS)

    Huang, J.

    2015-12-01

    The global distribution of planetary boundary layer (PBL) height, which was estimated from the attenuated back-scatter observations of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), is presented. In general, the PBL is capped by a temperature inversion that tends to trap moisture and aerosols. The gradient of back-scatter observed by lidar is almost always associated with this temperature inversion and the simultaneous decrease of moisture content. Thus, the PBL top is defined as the location of the maximum aerosol scattering gradient, which is analogous to the more conventional thermodynamic definition. The maximum standard deviation method, developed by Jordan et al. (2010), is modified and used to derive the global PBL heights. The derived PBL heights are not only consistent with the results of McGrath-Spangler and Denning (2012) but also agree well with the ground-based lidar measurements. It is found that the correlation between CALIPSO and the ground-based lidar was 0.73. The seasonal mean patterns from 4-year mid-day PBL heights over global are demonstrated. Also it is found that the largest PBL heights occur over the Tibetan Plateau and the coastal areas. The smallest PBL heights appear in the Tarim Basin and the northeast of China during the local winter. The comparison of PBL heights from CALIPSO and ECMWF under different land-cover conditions showed that, over ocean and forest surface, the PBL height estimated from the CALIPSO back-scatter climatology is larger than the ones estimated from ECMWF data. However, the PBL heights from ECMWF, over grass land and bare land surface in spring and summer are larger than the ones from CALIPSO.

  17. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  18. Experimental study of cake formation on heat treated and membrane coated needle felts in a pilot scale pulse jet bag filter using optical in-situ cake height measurement.

    PubMed

    Saleem, Mahmood; Khan, Rafi Ullah; Tahir, M Suleman; Krammer, Gernot

    2011-12-25

    Pulse-jet bag filters are frequently employed for particle removal from off gases. Separated solids form a layer on the permeable filter media called filter cake. The cake is responsible for increasing pressure drop. Therefore, the cake has to be detached at a predefined upper pressure drop limit or at predefined time intervals. Thus the process is intrinsically semi-continuous. The cake formation and cake detachment are interdependent and may influence the performance of the filter. Therefore, understanding formation and detachment of filter cake is important. In this regard, the filter media is the key component in the system. Needle felts are the most commonly used media in bag filters. Cake formation studies with heat treated and membrane coated needle felts in pilot scale pulse jet bag filter were carried out. The data is processed according to the procedures that were published already [Powder Technology, Volume 173, Issue 2, 19 April 2007, Pages 93-106]. Pressure drop evolution, cake height distribution evolution, cake patches area distribution and their characterization using fractal analysis on different needle felts are presented here. It is observed that concavity of pressure drop curve for membrane coated needle felt is principally caused by presence of inhomogeneous cake area load whereas it is inherent for heat treated media. Presence of residual cake enhances the concavity of pressure drop at the start of filtration cycle. Patchy cleaning is observed only when jet pulse pressure is too low and unable to provide the necessary force to detach the cake. The border line is very sharp. Based on experiments with limestone dust and three types of needle felts, for the jet pulse pressure above 4 bar and filtration velocity below 50 mm/s, cake is detached completely except a thin residual layer (100-200 μm). Uniformity and smoothness of residual cake depends on the surface characteristics of the filter media. Cake height distribution of residual cake and

  19. PULSE HEIGHT ANALYZER

    DOEpatents

    Goldsworthy, W.W.

    1958-06-01

    A differential pulse-height discriminator circuit is described which is readily adaptable for operation in a single-channel pulse-height analyzer. The novel aspect of the circuit lies in the specific arrangement of differential pulse-height discriminator which includes two pulse-height discriminators having a comnnon input and an anticoincidence circuit having two interconnected vacuum tubes with a common cathode resistor. Pulses from the output of one discriminator circuit are delayed and coupled to the grid of one of the anticoincidence tubes by a resistor. The output pulses from the other discriminator circuit are coupled through a cathode follower circuit, which has a cathode resistor of such value as to provide a long time constant with the interelectrode capacitance of the tube, to lenthen the output pulses. The pulses are then fed to the grid of the other anticoincidence tube. With such connections of the circuits, only when the incoming pulse has a pesk value between the operating levels of the two discriminators does an output pulse occur from the anticoincidence circuit.

  20. Aerosol in the Pacific troposphere

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.

    1989-01-01

    The use of near real-time optical techniques is emphasized for the measurement of mid-tropospheric aerosol over the Central Pacific. The primary focus is on measurement of the aerosol size distribution over the range of particle diameters from 0.15 to 5.0 microns that are essential for modeling CO2 backscatter values in support of the laser atmospheric wind sounder (LAWS) program. The measurement system employs a LAS-X (Laser Aerosol Spectrometer-PMS, Boulder, CO) with a custom 256 channel pulse height analyzer and software for detailed measurement and analysis of aerosol size distributions. A thermal preheater system (Thermo Optic Aerosol Descriminator (TOAD) conditions the aerosol in a manner that allows the discrimination of the size distribution of individual aerosol components such as sulfuric acid, sulfates and refractory species. This allows assessment of the relative contribution of each component to the BCO2 signal. This is necessary since the different components have different sources, exhibit independent variability and provide different BCO2 signals for a given mass and particle size. Field activities involve experiments designed to examine both temporal and spatial variability of these aerosol components from ground based and aircraft platforms.

  1. Aerosol variability, synoptic-scale processes, and their link to the cloud microphysics over the northeast Pacific during MAGIC

    NASA Astrophysics Data System (ADS)

    Painemal, David; Minnis, Patrick; Nordeen, Michele

    2015-05-01

    Shipborne aerosol measurements collected from October 2012 to September 2013 along 36 transects between the port of Los Angeles, California (33.7°N, 118.2°), and Honolulu, Hawaii (21.3°N, 157.8°W), during the Marine ARM GPCI (Global Energy and Water Cycle Experiment (GEWEX)-Cloud System Study (GCSS)-Pacific Cross-section Intercomparison) Investigation of Clouds campaign are analyzed to determine the circulation patterns that modulate the synoptic and monthly variability of cloud condensation nuclei (CCN) in the boundary layer. Seasonal changes in CCN are evident, with low magnitudes during autumn/winter, and high CCN during spring/summer accompanied with a characteristic westward decrease. CCN monthly evolution is consistent with satellite-derived cloud droplet number concentration Nd from the Moderate Resolution Imaging Spectroradiometer. One-point correlation (r) analysis between the 1000 hPa zonal wind time series over a region between 125°W and 135°W, 35°N and 45°N, and the Nd field yields a negative r (up to -0.55) over a domain that covers a zonal extent of at least 20° from the California shoreline, indicating that Nd decreases when the zonal wind intensifies. The negative r expands southwestward as the zonal wind precedes Nd by up to 3 days, suggesting a transport mechanism from the coast of North America mediated by the California low-coastal jet, which intensifies in summer when the aerosol concentration and Nd reach a maximum. A first assessment of aerosol-cloud interaction (ACI) is performed by combining CCN and satellite Nd values from the Fifteenth Geostationary Operational Environmental Satellite. The CCN-Nd correlation is 0.66-0.69, and the ACI metric defined as ACI = ∂ln(Nd)/∂ln(CCN) is high at 0.9, similar to other aircraft-based studies and substantially greater than those inferred from satellites and climate models.

  2. A novel methodology for large-scale daily assessment of the direct radiative forcing of smoke aerosols

    NASA Astrophysics Data System (ADS)

    Sena, E. T.; Artaxo, P.

    2015-05-01

    A new methodology was developed for obtaining daily retrievals of the direct radiative forcing of aerosols (24h-DARF) at the top of the atmosphere (TOA) using satellite remote sensing. Simultaneous CERES (Clouds and Earth's Radiant Energy System) shortwave flux at the top of the atmosphere and MODIS (Moderate Resolution Spectroradiometer) aerosol optical depth (AOD) retrievals were used. To analyse the impact of forest smoke on the radiation balance, this methodology was applied over the Amazonia during the peak of the biomass burning season from 2000 to 2009. To assess the spatial distribution of the DARF, background smoke-free scenes were selected. The fluxes at the TOA under clean conditions (Fcl) were estimated as a function of the illumination geometry (θ0) for each 0.5° x 0.5° grid cell. The instantaneous DARF was obtained as the difference between the clean (Fcl (θ0)) and the polluted flux at the TOA measured by CERES in each cell (Fpol (θ0)). The radiative transfer code SBDART (Santa Barbara DISORT Radiative Transfer model) was used to expand instantaneous DARFs to 24 h averages. This new methodology was applied to assess the DARF both at high temporal resolution and over a large area in Amazonia. The spatial distribution shows that the mean 24h-DARF can be as high as -30 W m-2 over some regions. The temporal variability of the 24h-DARF along the biomass burning season was also studied and showed large intraseasonal and interannual variability. We showed that our methodology considerably reduces statistical sources of uncertainties in the estimate of the DARF, when compared to previous approaches. DARF assessments using the new methodology agree well with ground-based measurements and radiative transfer models. This demonstrates the robustness of the new proposed methodology for assessing the radiative forcing for biomass burning aerosols. To our knowledge, this is the first time that satellite remote sensing assessments of the DARF have been compared

  3. Balloon measurements of aerosol in the Antarctic stratosphere

    NASA Technical Reports Server (NTRS)

    Morita, Y.; Takagi, M.; Iwasaka, Y.; Ono, A.

    1985-01-01

    Three balloon soundings of aerosol were conducted from Syowa Station, Antarctica in April, June and October 1983. Number concentration and the size distribution of aerosol particles with diameter greater than 0.3 microns were measured by using a light scattering aerosol particle counter. The influence of the eruption of Mt. El Chichon on the aerosol concentration in the stratosphere was observed on October 16. Very high aerosol concentration at stratospheric heights was obtained from the first successful aerosol sounding in winter Antarctic stratosphere. The result gives direct evidence of winter enhancement in the Antarctic stratosphere.

  4. Micro-scale variability of particulate matter and the influence of urban fabric on the aerosol distribution in two mid-sized German cities

    NASA Astrophysics Data System (ADS)

    Paas, Bastian; Schneider, Christoph

    2016-04-01

    Spatial micro-scale variability of particle mass concentrations is an important criterion for urban air quality assessment. The major proportion of the world's population lives in cities, where exceedances of air quality standards occur regularly. Current research suggests that both long-term and even short-term stays, e.g. during commuting or relaxing, at locations with high PM concentrations could have significant impacts on health. In this study we present results from model calculations in comparison to high resolution spatial and temporal measurements. Airborne particles were sampled using an optical particle counter in two inner-city park areas in Aachen and Munster. Both are mid-sized German cities which, however, are characterized by a different topology. The measurement locations represent spots with different degrees of outdoor particle exposure that can be experienced by a pedestrian walking in an intra-urban recreational area. Simulations of aerosol distributions induced by road traffic were conducted using both the German reference dispersion model Austal2000 and the numerical microclimate model ENVI-met. Simulation results reveal details in the distribution of urban particles with highest concentrations of PM10 in direct vicinity to traffic lines. The corresponding concentrations rapidly decline as the distances to the line sources increase. Still, urban fabric and obstacles like shrubs or trees are proved to have a major impact on the aerosol distribution in the area. Furthermore, the distribution of particles was highly dependent of wind direction and turbulence characteristics. The analysis of observational data leads to the hypothesis that besides motor traffic numerous diffuse particle sources e.g. on the ability of surfaces to release particles by resuspension which were dominantly apparent in measured PM(1;10) and PM(0.25;10) data are present in the urban roughness layer. The results highlight that a conclusive picture concerning micro-scale

  5. Impact of idealized future stratospheric aerosol injection on the large-scale ocean and land carbon cycles

    NASA Astrophysics Data System (ADS)

    Tjiputra, J. F.; Grini, A.; Lee, H.

    2016-01-01

    Using an Earth system model, we simulate stratospheric aerosol injection (SAI) on top of the Representative Concentration Pathways 8.5 future scenario. Our idealized method prescribes aerosol concentration, linearly increasing from 2020 to 2100, and thereafter remaining constant until 2200. In the aggressive scenario, the model projects a cooling trend toward 2100 despite warming that persists in the high latitudes. Following SAI termination in 2100, a rapid global warming of 0.35 K yr-1 is simulated in the subsequent 10 years, and the global mean temperature returns to levels close to the reference state, though roughly 0.5 K cooler. In contrast to earlier findings, we show a weak response in the terrestrial carbon sink during SAI implementation in the 21st century, which we attribute to nitrogen limitation. The SAI increases the land carbon uptake in the temperate forest-, grassland-, and shrub-dominated regions. The resultant lower temperatures lead to a reduction in the heterotrophic respiration rate and increase soil carbon retention. Changes in precipitation patterns are key drivers for variability in vegetation carbon. Upon SAI termination, the level of vegetation carbon storage returns to the reference case, whereas the soil carbon remains high. The ocean absorbs nearly 10% more carbon in the geoengineered simulation than in the reference simulation, leading to a ˜15 ppm lower atmospheric CO2 concentration in 2100. The largest enhancement in uptake occurs in the North Atlantic. In both hemispheres' polar regions, SAI delays the sea ice melting and, consequently, export production remains low. In the deep water of North Atlantic, SAI-induced circulation changes accelerate the ocean acidification rate and broaden the affected area.

  6. DIFFERENTIAL PULSE HEIGHT DISCRIMINATOR

    DOEpatents

    Test, L.D.

    1958-11-11

    Pulse-height discriminators are described, specifically a differential pulse-height discriminator which is adapted to respond to pulses of a band of amplitudes, but to reject pulses of amplitudes greater or less than tbe preselected band. In general, the discriminator includes a vacuum tube having a plurality of grids adapted to cut off plate current in the tube upon the application of sufficient negative voltage. One grid is held below cutoff, while a positive pulse proportional to the amplltude of each pulse is applled to this grid. Another grid has a negative pulse proportional to the amplitude of each pulse simultaneously applied to it. With this arrangement the tube will only pass pulses which are of sufficlent amplitude to counter the cutoff bias but not of sufficlent amplitude to cutoff the tube.

  7. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    SciTech Connect

    Saide, Pablo; Spak, S. N.; Carmichael, Gregory; Mena-Carrasco, M. A.; Yang, Qing; Howell, S. G.; Leon, Dolislager; Snider, Jefferson R.; Bandy, Alan R.; Collett, Jeffrey L.; Benedict, K. B.; de Szoeke, S.; Hawkins, Lisa; Allen, Grant; Crawford, I.; Crosier, J.; Springston, S. R.

    2012-03-30

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

  8. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    SciTech Connect

    Saide P. E.; Springston S.; Spak, S. N.; Carmichael, G. R.; Mena-Carrasco, M. A.; Yang, Q.; Howell, S.; Leon, D. C.; Snider, J. R.; Bandy, A. R.; Collett, J. L.; Benedict, K. B.; de Szoeke, S. P.; Hawkins, L. N.; Allen, G.; Crawford, I.; Crosier, J.

    2012-03-29

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and three aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without (NW) wet deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, especially in the activation parameterization, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions, and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, and may do so with the reliability required for policy analysis.

  9. Evaluating WRF-Chem aerosol indirect effects in Southeast Pacific marine stratocumulus during VOCALS-REx

    NASA Astrophysics Data System (ADS)

    Saide, P. E.; Spak, S. N.; Carmichael, G. R.; Mena-Carrasco, M. A.; Howell, S.; Leon, D. C.; Snider, J. R.; Bandy, A. R.; Collett, J. L.; Benedict, K. B.; de Szoeke, S. P.; Hawkins, L. N.; Allen, G.; Crawford, I.; Crosier, J.; Springston, S. R.

    2011-11-01

    We evaluate a regional-scale simulation with the WRF-Chem model for the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), which sampled the Southeast Pacific's persistent stratocumulus deck. Evaluation of VOCALS-REx ship-based and aircraft observations focuses on analyzing how aerosol loading affects marine boundary layer (MBL) dynamics and cloud microphysics. We compare local time series and campaign-averaged longitudinal gradients, and highlight differences in model simulations with (W) and without wet (NW) deposition processes. The higher aerosol loadings in the NW case produce considerable changes in MBL dynamics and cloud microphysics, in accordance with the established conceptual model of aerosol indirect effects. These include increase in cloud albedo, increase in MBL and cloud heights, drizzle suppression, increase in liquid water content, and increase in cloud lifetime. Moreover, better statistical representation of aerosol mass and number concentration improves model fidelity in reproducing observed spatial and temporal variability in cloud properties, including top and base height, droplet concentration, water content, rain rate, optical depth (COD) and liquid water path (LWP). Together, these help to quantify confidence in WRF-Chem's modeled aerosol-cloud interactions, while identifying structural and parametric uncertainties including: irreversibility in rain wet removal; overestimation of marine DMS and sea salt emissions and accelerated aqueous sulfate conversion. Our findings suggest that WRF-Chem simulates marine cloud-aerosol interactions at a level sufficient for applications in forecasting weather and air quality and studying aerosol climate forcing, including the reliability required for policy analysis and geo-engineering applications.

  10. Analysis of aerosol vertical distribution and variability in Hong Kong

    NASA Astrophysics Data System (ADS)

    He, Qianshan; Li, Chengcai; Mao, Jietai; Lau, Alexis Kai-Hon; Chu, D. A.

    2008-07-01

    Aerosol vertical distribution is an important piece of information to improve aerosol retrieval from satellite remote sensing. Aerosol extinction coefficient profile and its integral form, aerosol optical depth (AOD), as well as atmospheric boundary layer (ABL) height and haze layer height can be derived using lidar measurements. In this paper, we used micropulse lidar measurements acquired from May 2003 to June 2004 to illustrate seasonal variations of AOD and ABL height in Hong Kong. On average, about 64% of monthly mean aerosol optical depths were contributed by aerosols within the mixing layer (with a maximum (˜76%) in November and a minimum (˜55%) in September) revealing the existence of large abundance of aerosols above ABL due to regional transport. The characteristics of seasonal averaged aerosol profiles over Hong Kong in the study period are presented to illustrate seasonal phenomena of aerosol transport and associated meteorological conditions. The correlation between AOD and surface extinction coefficient, as found, is generally poor (r2 ˜0.42) since elevated aerosol layers increase columnar aerosol abundance but not extinction at surface. The typical aerosol extinction profile in the ABL can be characterized by a low value near the surface and values increased with altitude reaching the top of ABL. When aerosol vertical profile is assumed, surface extinction coefficient can be derived from AOD using two algorithms, which are discussed in detail in this paper. Preliminary analysis showed that better estimates of the extinction coefficient at the ground level could be obtained using two-layer aerosol extinction profiles (r2 ˜0.78, slope ˜0.82, and intercept ˜0.15) than uniform profiles of extinction with height within the ABL (r2 ˜0.65, slope ˜0.27, and intercept ˜0.03). The improvement in correlation is promising on mapping satellite retrieved AOD to surface aerosol extinction coefficient for urban and regional environmental studies on air

  11. A Comparison of Aerosol-Layer and Convective Boundary-Layer Structure over a Mountain Range during STAAARTE '97

    SciTech Connect

    De Wekker, Stephan; Steyn, D. G.; Nyeki, Stephan

    2004-11-01

    The temporal evolution and spatial structure of the aerosol layer (AL) height as observed with an airborne downlooking lidar over the Swiss Alps was investigated with a three dimensional mesoscale numerical model and a particle dispersion model. Convective boundary layer (CBL) heights were derived from the mesoscale model output, and the behavior of surface-released particles was investigated with the particle dispersion model. While a previous investigation, using data from the same field study, equated the observed AL height with the CBL height, the results of the current investigation indicate that there is a considerable difference between AL and CBL heights caused by mixing and transport processes between the CBL and the free atmosphere. CBL heights show a more terrain-following behavior and are lower than AL heights. We argue that processes causing the difference between AL and CBL heights are common over mountainous terrain and that the AL height is a length scale that needs t o be considered in air pollution studies in mountainous terrain.

  12. Effects of Ageing on Aerosol Composition and Size Distribution Based on Regional Scale Aircraft Observations During the 2002 and 2004 ICARTT Campaigns

    NASA Astrophysics Data System (ADS)

    Kleinman, L.; Daum, P.; Springston, S.; Lee, Y.; Wang, J.

    2005-12-01

    In the summers of 2002 and 2004 the DOE G-1 aircraft was used to sample aerosols and aerosol precursors in the Midwest and Eastern U.S. We present data on the spatial distribution of aerosols and their physical and chemical properties. Most of the sub-micron size aerosol consists of organics and sulfate. Only a minor fraction of the organic aerosol can be attributed to primary emissions. Formation of secondary organic aerosol is observed as an increase in the organic to CO ratio as a function of photochemical age. Organic aerosol is measured using an Aerodyne Aerosol Mass Spectrometer (AMS). We present comparisons between the AMS and a PCASP, DMA, and nephelometer - as this bears upon our conclusions. Production of aerosol sulfate can likewise be observed as a change in the sulfate to CO ratio but is more easily studied by following the time evolution of a point source plume such as was done for the Homer and Keystone power plants, located east of Pittsburgh. Concomitant with the addition of aerosol mass are changes in size spectra and optical properties.

  13. Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect.

    PubMed

    Mishra, Amit Kumar; Koren, Ilan; Rudich, Yinon

    2015-10-01

    This study presents a theoretical investigation of the effect of the aerosol vertical distribution on the aerosol radiative effect (ARE). Four aerosol composition models (dust, polluted dust, pollution and pure scattering aerosols) with varying aerosol vertical profiles are incorporated into a radiative transfer model. The simulations show interesting spectral dependence of the ARE on the aerosol layer height. ARE increases with the aerosol layer height in the ultraviolet (UV: 0.25-0.42 μm) and thermal-infrared (TH-IR: 4.0-20.0 μm) regions, whereas it decreases in the visible-near infrared (VIS-NIR: 0.42-4.0 μm) region. Changes in the ARE with aerosol layer height are associated with different dominant processes for each spectral region. The combination of molecular (Rayleigh) scattering and aerosol absorption is the key process in the UV region, whereas aerosol (Mie) scattering and atmospheric gaseous absorption are key players in the VIS-NIR region. The longwave emission fluxes are controlled by the environmental temperature at the aerosol layer level. ARE shows maximum sensitivity to the aerosol layer height in the TH-IR region, followed by the UV and VIS-NIR regions. These changes are significant even in relatively low aerosol loading cases (aerosol optical depth ∼0.2-0.3). Dust aerosols are the most sensitive to altitude followed by polluted dust and pollution in all three different wavelength regions. Differences in the sensitivity of the aerosol type are explained by the relative strength of their spectral absorption/scattering properties. The role of surface reflectivity on the overall altitude dependency is shown to be important in the VIS-NIR and UV regions, whereas it is insensitive in the TH-IR region. Our results indicate that the vertical distribution of water vapor with respect to the aerosol layer is an important factor in the ARE estimations. Therefore, improved estimations of the water vapor profiles are needed for the further reduction in

  14. Informing Aerosol Transport Models With Satellite Multi-Angle Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Limbacher, J.; Patadia, F.; Petrenko, M.; Martin, M. Val; Chin, M.; Gaitley, B.; Garay, M.; Kalashnikova, O.; Nelson, D.; Scollo, S.

    2011-01-01

    As the aerosol products from the NASA Earth Observing System's Multi-angle Imaging SpectroRadiometer (MISR) mature, we are placing greater focus on ways of using the aerosol amount and type data products, and aerosol plume heights, to constrain aerosol transport models. We have demonstrated the ability to map aerosol air-mass-types regionally, and have identified product upgrades required to apply them globally, including the need for a quality flag indicating the aerosol type information content, that varies depending upon retrieval conditions. We have shown that MISR aerosol type can distinguish smoke from dust, volcanic ash from sulfate and water particles, and can identify qualitative differences in mixtures of smoke, dust, and pollution aerosol components in urban settings. We demonstrated the use of stereo imaging to map smoke, dust, and volcanic effluent plume injection height, and the combination of MISR and MODIS aerosol optical depth maps to constrain wildfire smoke source strength. This talk will briefly highlight where we stand on these application, with emphasis on the steps we are taking toward applying the capabilities toward constraining aerosol transport models, planet-wide.

  15. A review of measurement-based assessments of the aerosol direct radiative effect and forcing

    NASA Astrophysics Data System (ADS)

    Yu, H.; Kaufman, Y. J.; Chin, M.; Feingold, G.; Remer, L. A.; Anderson, T. L.; Balkanski, Y.; Bellouin, N.; Boucher, O.; Christopher, S.; Decola, P.; Kahn, R.; Koch, D.; Loeb, N.; Reddy, M. S.; Schulz, M.; Takemura, T.; Zhou, M.

    2006-02-01

    of the satellite derived aerosol field will reduce the TOA DRE to -5.0 Wm-2. Because of a lack of measurements of aerosol absorption and difficulty in characterizing land surface reflection, estimates of DRE over land and at the ocean surface are currently realized through a combination of satellite retrievals, surface measurements, and model simulations, and are less constrained. Over the oceans the surface DRE is estimated to be -8.8±0.7 Wm-2. Over land, an integration of satellite retrievals and model simulations derives a DRE of -4.9±0.7 Wm-2 and -11.8±1.9 Wm-2 at the TOA and surface, respectively. CTM simulations derive a wide range of DRE estimates that on average are smaller than the measurement-based DRE by about 30-40%, even after accounting for thin cirrus and cloud contamination.

    height: 20px;"> A number of issues remain. Current estimates of the aerosol direct effect over land are poorly constrained. Uncertainties of DRE estimates are also larger on regional scales than on a global scale and large discrepancies exist between different approaches. The characterization of aerosol absorption and vertical distribution remains challenging. The aerosol direct effect in the thermal infrared range and in cloudy conditions remains relatively unexplored and quite uncertain, because of a lack of global systematic aerosol vertical profile measurements. A coordinated research strategy needs to be developed for integration and assimilation of satellite measurements into models to constrain model simulations. Enhanced measurement capabilities in the next few years and high-level scientific cooperation will further advance our knowledge.

  16. Sensitivity of global-scale climate change attribution results to inclusion of fossil fuel black carbon aerosol - article no. L14701

    SciTech Connect

    Jones, G.S.; Jones, A.; Roberts, D.L.; Stott, P.A.; Williams, K.D.

    2005-07-16

    It is likely that greenhouse gas emissions caused most of the global mean warming observed during the 20th century, and that sulphate aerosols counteracted this warming to some extent, by reflecting solar radiation to space and thereby cooling the planet. However, the importance of another aerosol, namely black carbon, could be underestimated. Here we include fossil fuel black carbon aerosol in a detection and attribution analysis with greenhouse gas and sulphate aerosols. We find that most of the warming of the 20th Century is attributable to changes in greenhouse gases offset by net aerosol cooling. However the pattern of temperature change due to black carbon is currently indistinguishable from the sulphate aerosol pattern of temperature change. The attribution of temperature change due to greenhouse gases is not sensitive to the inclusion of black carbon. We can be confident about the overall attribution of total aerosols, but less so about the contributions of black carbon emissions to 20th century climate change. This work presents no evidence that black carbon aerosol forcing outweighed the cooling due to sulphate aerosol.

  17. A novel methodology using MODIS and CERES for assessing the daily radiative forcing of smoke aerosols in large scale over the Amazonia

    NASA Astrophysics Data System (ADS)

    Sena, E. T.; Artaxo, P.

    2014-12-01

    A new methodology was developed for obtaining daily retrievals of the direct radiative forcing of aerosols (24h-DARF) at the top of the atmosphere (TOA) using satellite remote sensing. For that, simultaneous CERES (Clouds and Earth's Radiant Energy System) shortwave flux at the top of the atmosphere (TOA) and MODIS (Moderate Resolution Spectroradiometer) aerosol optical depth (AOD) retrievals were used. This methodology is applied over a large region of Brazilian Amazonia. We focused our studies on the peak of the biomass burning season (August to September) from 2000 to 2009 to analyse the impact of forest smoke on the radiation balance. To assess the spatial distribution of the DARF, background scenes without biomass burning impacts, were defined as scenes with MODIS AOD < 0.1. The fluxes at the TOA retrieved by CERES for those clean conditions (Fcl) were estimated as a function of the illumination geometry (θ0) for each 0.5° × 0.5° grid cell. The instantaneous DARF was obtained as the difference between clean Fcl (θ0) and the polluted mean flux at the TOA measured by CERES in each cell (Fpol (θ0)). The radiative transfer code SBDART (Santa Barbara DISORT Radiative Transfer model) was used to expand instantaneous DARFs to 24 h averages. With this methodology it is possible to assess the DARF both at large scale and at high temporal resolution. This new methodology also showed to be more robust, because it considerably reduces statistical sources of uncertainties in the estimates of the DARF, when compared to previous assessments of the DARF using satellite remote sensing. The spatial distribution of the 24h-DARF shows that, for some cases, the mean 24h-DARF presents local values as high as -30 W m-2. The temporal variability of the 24h-DARF along the biomass burning season was also studied and showed large intraseasonal and interannual variability. In an attempt to validate the radiative forcing obtained in this work using CERES and MODIS, those results

  18. Characterization and Scaling of Black Carbon Aerosol Concentration with City Population Based on In-Situ Measurements and Analysis

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Moosmuller, H.

    2010-12-01

    The global trend toward urbanization and the resulting increase in city population has directed attention toward air pollution in megacities. A closely related question of importance for urban planning and attainment of air quality standards is how pollutant concentrations scale with city population. In this study, we use measurements of light absorption and light scattering coefficients as proxies for primary (i.e., black carbon; BC) and total (i.e., particulate matter; PM) pollutant concentration, to start addressing the following questions: What patterns and generalizations are emerging from our expanding data sets on urban air pollution? How does the per-capita air pollution vary with economic, geographic, and meteorological conditions of an urban area? Does air pollution provide an upper limit on city size? Diurnal analysis of black carbon concentration measurements in suburban Mexico City, Mexico, Las Vegas, NV, USA, and Reno, NV, USA for similar seasons suggests that commonly emitted primary air pollutant concentrations scale approximately as the square root of the urban population N, consistent with a simple 2-d box model. The measured absorption coefficient Babs is approximately proportional to the BC concentration (primary pollution) and thus scales with the square root of population (N). Since secondary pollutants form through photochemical reactions involving primary pollutants, they scale also with square root of N. Therefore the scattering coefficient Bsca, a proxy for PM concentration is also expected to scale with square root of N. Here we present light absorption and scattering measurements and data on meteorological conditions and compare the population scaling of these pollutant measurements with predictions from the simple 2-d box model. We find that these basin cities are connected by the square root of N dependence. Data from other cities will be discussed as time permits.

  19. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  20. Retrieving Stratospheric Aerosol Extinction from SCIAMACHY Measurements in Limb Geometry

    NASA Astrophysics Data System (ADS)

    Dörner, Steffen; Penning de Vries, Marloes; Pukite, Janis; Beirle, Steffen; Wagner, Thomas

    2015-04-01

    Techniques for retrieving height resolved information on stratospheric aerosol improved significantly in the past decade with the availability of satellite measurements in limb geometry. Instruments like OMPS, OSIRIS and SCIAMACHY provide height resolved radiance spectra with global coverage. Long term data sets of stratospheric aerosol extinction profiles are important for a detailed investigation of spatial and temporal variation and formation processes (e.g. after volcanic eruptions or in polar stratospheric clouds). Resulting data sets contain vital information for climate models (radiative effect) or chemistry models (reaction surface for heterogeneous chemistry). This study focuses on the SCIAMACHY instrument which measured scattered sunlight in the ultra-violet, visible and near infra-red spectral range since the launch on EnviSat in 2002 until an instrumental error occurred in April 2012. SCIAMACHY's unique method of alternating measurements in limb and nadir geometry provides co-located profile and column information respectively that can be used to characterize plumes with small horizontal extents. The covered wavelength range potentially provides information on effective micro-physical properties of the aerosol particles. However, scattering on background aerosol constitutes only a small fraction of detected radiance and assumptions on particle characteristics (e.g. size distribution) have to be made which results in large uncertainties especially for wavelengths below 700nm and for measurements in backscatter geometry. Methods to reduce these uncertainties are investigated and applied to our newly developed retrieval algorithm. In addition, so called spatial straylight contamination of the measured signal was identified as a significant error source and an empirical correction scheme was developed. A large scale comparison study with SAGE II for the temporal overlap of both instruments (2002 to 2005) shows promising results.

  1. Pinatubo Aerosol Global-to-Micro-Scale Evolution: A Unified Picture From Space, Air, and Ground Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Livingston, J. M.; Pueschel, R. F.; Pollack, J. B.; Brooks, S.; Hamill, P.; Hughes, J.; Thomason, L.; Stowe, L.; Deshler, T.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We combine a variety of measurements to develop a composite picture of the post-Pinatubo aerosol and assess the consistency and uncertainties of the measurement and retrieval techniques Satellite infrared spectroscopy, particle morphology, and evaporation temperature measurements are in accord with theoretical calculations In showing a dominant particle composition of H2SO4-H2O mature with H2SO4 weight traction of 65-80% for most stratospheric temperatures and humidities. Important exceptions are: (1) the presence of volcanic ash at all attitudes initially and in a layer just above the tropopause until at least March 1992, and (2) much smaller H2SO4 weight fractions at the low temperatures attained In high latitude winters and at the tropical tropopause. Laboratory spectroscopy and theoretical calculations yield wavelength- and temperature-dependent refractive indices for the dominant H2SO4-H2O droplets. These in turn permit derivation of particle size spectra from measured optical depth spectra for comparison to direct measurements by impactors and optical counters, All three techniques paint a generally consistent picture of the evolution of R(sub eff) the effective, or area-weighted, particle radius. In the first month after the eruption, although particle numbers increased by orders of magnitude, R(sub eff) was similar to the pre-eruption value of 0.1 to 0.2 microns because both small (r less than 0.2 microns) and large (r greater than 0.6 microns) particles increased in number. Over the next 3-6 months, R(sub eff) increased to about 0.5 microns, reflecting particle growth through condensation and coagulation. In general, R(sub eff) continued to increase for about a year after the eruption. Extinction spectra computed from in situ size distribution measurements are consistent with optical depth measurements, which show spectra with maxima initially at wavelengths of 0.42 microns or less, and thereafter progressively increasing to between 0.78 and 1 micron. Not

  2. A Unified Picture of Pinatubo Aerosol Global-to Micro-Scale Evolution, From Space, Air, and Ground Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Livingston, J. M.; Pueschel, R. F.; Pollack, J. B.; Brooks, S.; Hamill, P.; Hughes, J.; Thomason, L.; Stowe, L.; Deshler, T.; Podolske, James R. (Technical Monitor)

    1995-01-01

    We combine a variety of measurements to develop a composite picture of the post-Pinatubo aerosol and assess the consistency and uncertainties of the measurement and retrieval techniques. Satellite infrared spectroscopy, particle morphology, and evaporation temperature measurements are in accord with theoretical calculations in showing a dominant particle composition of H2SO4-H2O mixture, with H2SO4 weight fraction of 65-80% for most stratospheric temperatures and humidities. Important exceptions are: (1) the presence of volcanic ash at all altitudes initially and in a layer just above the tropopause until at least March 1992, and (2) much smaller H2SO4 weight fractions at the low temperatures attained in high latitude winters and at the tropical tropopause, Laboratory spectroscopy and theoretical calculations yield wavelength- and temperature-dependent refractive indices for the dominant H2SO4-H2O droplets. These in turn permit derivation of particle size spectra from measured optical depth spectra, for comparison to direct measurements by impactors and optical counters. All three techniques paint a generally consistent picture of the evolution of R(sub eff), the effective, or area-weighted, particle radius. In the first month after the eruption, although particle numbers increased by orders of magnitude, R(sub eff) was similar to the preemption value of 0.1 to 0.2 microns, because both small (r less than 0.2 microns) and large (r greater than 0.6 micron particles increased in number. Over the next 3-6 months, R(sub eff) increased to about 0.5 microns reflecting particle growth through condensation and coagulation. In general, R(sub eff) continued to increase for about a year after the eruption. Extinction spectra computed from in situ size distribution measurements are consistent with optical depth measurements, which show spectra with maxima initially at wavelengths of 0.42 microns or less, and thereafter progressively increasing to between 0.78 and 1 micron. Not

  3. Aerosol entrainment from a sparged non-Newtonian slurry.

    PubMed

    Fritz, Brad G

    2006-08-01

    Previous bench-scale experiments have provided data necessary for the development of empirical models that describe aerosol entrainment from bubble bursting. However, previous work has not been extended to non-Newtonian liquid slurries. Design of a waste treatment plant on the Hanford Site in Washington required an evaluation of the applicability of these models outside of their intended range. For this evaluation, aerosol measurements were conducted above an air-sparged mixing tank filled with simulated waste slurry possessing Bingham plastic rheological properties. Three aerosol-size fractions were measured at three sampling heights and for three different sparging rates. The measured entrainment was compared with entrainment models. One model developed based on bench-scale air-water experiments agreed well with measured entrainment. Another model did not agree well with the measured entrainment. It appeared that the source of discrepancy between measured and modeled entrainment stemmed from application beyond the range of data used to develop the model. A possible separation in entrainment coefficients between air-water and steam-water systems was identified. A third entrainment model was adapted to match experimental conditions and fit a posteri to the experimental data, resulting in a modified version that resulted in estimated entrainment rates similar to the first model. PMID:16933643

  4. One-dimensional simulation of fire injection heights in contrasted meteorological scenarios with PRM and Meso-NH models

    NASA Astrophysics Data System (ADS)

    Strada, S.; Freitas, S. R.; Mari, C.; Longo, K. M.; Paugam, R.

    2013-02-01

    Wild-fires release huge amounts of aerosol and hazardous trace gases in the atmosphere. The residence time and the dispersion of fire pollutants in the atmosphere can range from hours to days and from local to continental scales. These various scenarios highly depend on the injection height of smoke plumes. The altitude at which fire products are injected in the atmosphere is controlled by fire characteristics and meteorological conditions. Injection height however is still poorly accounted in chemistry transport models for which fires are sub-grid scale processes which need to be parametrised. Only recently, physically-based approaches for estimating the fire injection heights have been developed which consider both the convective updrafts induced by the release of fire sensible heat and the impact of background meteorological environment on the fire convection dynamics. In this work, two different models are used to simulate fire injection heights in contrasted meteorological scenarios: a Mediterranean arson fire and two Amazonian deforestation fires. A Eddy-Diffusivity/Mass-Flux approach, formerly developed to reproduce convective boundary layer in the non-hydrostatic meteorological model Meso-NH, is compared to the 1-D Plume Rise Model. For both models, radiosonde data and re-analyses from the European Center for Medium-Range Weather Forecasts (ECMWF) have been used as initial conditions to explore the sensitivity of the models responses to different meteorological forcings. The two models predict injection heights for the Mediterranean fire between 1.7 and 3.3 km with the Meso-NH/EDMF model systematically higher than the 1-D PRM model. Both models show a limited sensitivity to the meteorological forcings with a 20-30% difference in the injection height between radiosondes and ECMWF data for this case. Injection heights calculated for the two Amazonian fires ranges from 5 to 6.5 km for the 1-D PRM model and from 2 to 4 km for the Meso-NH/EDMF model. The

  5. Seasonality of Forcing by Carbonaceous Aerosols

    NASA Astrophysics Data System (ADS)

    Habib, G.; Bond, T.; Rasch, P. J.; Coleman, D.

    2006-12-01

    Aerosols can influence the energy balance of Earth-Atmosphere system with profound effect on regional climate. Atmospheric processes, such as convection, scavenging, wet and dry deposition, govern the lifetime and location of aerosol; emissions affect its quantity and location. Both affect climate forcing. Here we investigate the effect of seasonality in emissions and atmospheric processes on radiative forcing by carbonaceous aerosols, focusing on aerosol from fossil fuel and biofuel. Because aerosol lifetime is seasonal, ignoring the seasonality of sources such as residential biofuel may introduce a bias in aerosol burden and therefore in predicted climate forcing. We present a global emission inventory of carbonaceous aerosols with seasonality, and simulate atmospheric concentrations using the Community Atmosphere Model (CAM). We discuss where and when the seasonality of emissions and atmospheric processes has strong effects on atmospheric burden, lifetime, climate forcing and aerosol optical depth (AOD). Previous work has shown that aerosol forcing is higher in summer than in winter, and has identified the importance of aerosol above cloud in determining black carbon forcing. We show that predicted cloud height is a very important factor in determining normalized radiative forcing (forcing per mass), especially in summer. This can affect the average summer radiative forcing by nearly 50%. Removal by cloud droplets is the dominant atmospheric cleansing mechanism for carbonaceous aerosols. We demonstrate the modeled seasonality of removal processes and compare the importance of scavenging by warm and cold clouds. Both types of clouds contribute significantly to aerosol removal. We estimate uncertainty in direct radiative forcing due to scavenging by tagging the aerosol which has experienced cloud interactions. Finally, seasonal variations offer an opportunity to assess modeled processes when a single process dominates variability. We identify regions where aerosol

  6. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    EPA Science Inventory

    This study implemented first, second and glaciations aerosol indirect effects (AIE) on resolved clouds in the two-way coupled WRF-CMAQ modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ predicted aerosol distribu...

  7. Sri Lanka, Colored Height

    NASA Technical Reports Server (NTRS)

    2005-01-01

    The topography of the island nation of Sri Lanka is well shown in this color-coded shaded relief map generated with digital elevation data from the Shuttle Radar Topography Mission (SRTM).

    Two visualization methods were combined to produce the image: shading and color coding of topographic height. The shade image was derived by computing topographic slope in the northwest-southeast direction, so that northwest slopes appear bright and southeast slopes appear dark. Color coding is directly related to topographic height, with green at the lower elevations, rising through yellow and tan, to white at the highest elevations.

    For this special view heights below 10 meters (33 feet) above sea level have been colored red. These low coastal elevations extend 5 to 10 km (3.1 to 6.2 mi) inland on Sri Lanka and are especially vulnerable to flooding associated with storm surges, rising sea level, or, as in the aftermath of the earthquake of December 26, 2004, tsunami. These so-called tidal waves have occurred numerous times in history and can be especially destructive, but with the advent of the near-global SRTM elevation data planners can better predict which areas are in the most danger and help develop mitigation plans in the event of particular flood events.

    Sri Lanka is shaped like a giant teardrop falling from the southern tip of the vast Indian subcontinent. It is separated from India by the 50km (31mi) wide Palk Strait, although there is a series of stepping-stone coral islets known as Adam's Bridge that almost form a land bridge between the two countries. The island is just 350km (217mi) long and only 180km (112mi) wide at its broadest, and is about the same size as Ireland, West Virginia or Tasmania.

    The southern half of the island is dominated by beautiful and rugged hill country, and includes Mt Pidurutalagala, the islandaE(TM)s highest point at 2524 meters (8281 ft). The entire northern half comprises a large plain extending from the edge of

  8. Global aerosol effects on convective clouds

    NASA Astrophysics Data System (ADS)

    Wagner, Till; Stier, Philip

    2013-04-01

    Atmospheric aerosols affect cloud properties, and thereby the radiation balance of the planet and the water cycle. The influence of aerosols on clouds is dominated by increase of cloud droplet and ice crystal numbers (CDNC/ICNC) due to enhanced aerosols acting as cloud condensation and ice nuclei. In deep convective clouds this increase in CDNC/ICNC is hypothesised to increase precipitation because of cloud invigoration through enhanced freezing and associated increased latent heat release caused by delayed warm rain formation. Satellite studies robustly show an increase of cloud top height (CTH) and precipitation with increasing aerosol optical depth (AOD, as proxy for aerosol amount). To represent aerosol effects and study their influence on convective clouds in the global climate aerosol model ECHAM-HAM, we substitute the standard convection parameterisation, which uses one mean convective cloud for each grid column, with the convective cloud field model (CCFM), which simulates a spectrum of convective clouds, each with distinct values of radius, mixing ratios, vertical velocity, height and en/detrainment. Aerosol activation and droplet nucleation in convective updrafts at cloud base is the primary driver for microphysical aerosol effects. To produce realistic estimates for vertical velocity at cloud base we use an entraining dry parcel sub cloud model which is triggered by perturbations of sensible and latent heat at the surface. Aerosol activation at cloud base is modelled with a mechanistic, Köhler theory based, scheme, which couples the aerosols to the convective microphysics. Comparison of relationships between CTH and AOD, and precipitation and AOD produced by this novel model and satellite based estimates show general agreement. Through model experiments and analysis of the model cloud processes we are able to investigate the main drivers for the relationship between CTH / precipitation and AOD.

  9. Global Scale Attribution of Anthropogenic and Natural Dust Sources and their Emission Rates Based on MODIS Deep Blue Aerosol Products

    NASA Technical Reports Server (NTRS)

    Ginoux, Paul; Prospero, Joseph M.; Gill, Thomas E.; Hsu, N. Christina; Zhao, Ming

    2012-01-01

    Our understanding of the global dust cycle is limited by a dearth of information about dust sources, especially small-scale features which could account for a large fraction of global emissions. Here we present a global-scale high-resolution (0.1 deg) mapping of sources based on Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue estimates of dust optical depth in conjunction with other data sets including land use. We ascribe dust sources to natural and anthropogenic (primarily agricultural) origins, calculate their respective contributions to emissions, and extensively compare these products against literature. Natural dust sources globally account for 75% of emissions; anthropogenic sources account for 25%. North Africa accounts for 55% of global dust emissions with only 8% being anthropogenic, mostly from the Sahel. Elsewhere, anthropogenic dust emissions can be much higher (75% in Australia). Hydrologic dust sources (e.g., ephemeral water bodies) account for 31% worldwide; 15% of them are natural while 85% are anthropogenic. Globally, 20% of emissions are from vegetated surfaces, primarily desert shrublands and agricultural lands. Since anthropogenic dust sources are associated with land use and ephemeral water bodies, both in turn linked to the hydrological cycle, their emissions are affected by climate variability. Such changes in dust emissions can impact climate, air quality, and human health. Improved dust emission estimates will require a better mapping of threshold wind velocities, vegetation dynamics, and surface conditions (soil moisture and land use) especially in the sensitive regions identified here, as well as improved ability to address small-scale convective processes producing dust via cold pool (haboob) events frequent in monsoon regimes.

  10. PULSE HEIGHT ANALYZER

    DOEpatents

    Johnstone, C.W.

    1958-01-21

    An anticoincidence device is described for a pair of adjacent channels of a multi-channel pulse height analyzer for preventing the lower channel from generating a count pulse in response to an input pulse when the input pulse has sufficient magnitude to reach the upper level channel. The anticoincidence circuit comprises a window amplifier, upper and lower level discriminators, and a biased-off amplifier. The output of the window amplifier is coupled to the inputs of the discriminators, the output of the upper level discriminator is connected to the resistance end of a series R-C network, the output of the lower level discriminator is coupled to the capacitance end of the R-C network, and the grid of the biased-off amplifier is coupled to the junction of the R-C network. In operation each discriminator produces a negative pulse output when the input pulse traverses its voltage setting. As a result of the connections to the R-C network, a trigger pulse will be sent to the biased-off amplifier when the incoming pulse level is sufficient to trigger only the lower level discriminator.

  11. Inhomogeneous models of Titan's aerosol distribution

    NASA Technical Reports Server (NTRS)

    Podolak, M.; Bar-Nun, A.; Noy, N.; Giver, L. P.

    1984-01-01

    A model of Titan's aerosol is presented which allows the particle size to vary with height. The model assumes a refractive index appropriate to an ethylene polymer and a mass flux independent of height equal to the value derived from laboratory measurements. The free parameters of the model are determined by fitting to the observed geometric albedo at 4000 and 6000 A. A methane spectrum is derived which is in excellent agreement with observations. An aerosol optical depth of about 5 is found in the visible, with the particle radius varying from 0.01 to 8 microns. The presence of an optically thick methane cloud at the temperature minimum is indicated.

  12. Relationship between fluid bed aerosol generator operation and the aerosol produced

    SciTech Connect

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriation constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.

  13. On two small-scale circulation mechanisms of fine-aerosol transport in the atmospheric surface layer

    NASA Astrophysics Data System (ADS)

    Granberg, I. G.; Artamonova, M. S.; Dobryshman, E. M.

    2010-12-01

    Small-scale processes are taken to mean the disturbances of the atmospheric basic background which are caused by the thermal inhomogeneity of the underlying surface and under which one can neglect the effects of both centripetal and Coriolis accelerations. Slight disturbances suggest the use of linearized hydrothermodynamic equations of a weakly compressible atmosphere. Two models are considered. In one of the models, circulation over a weakly sloping barchan is analyzed using a refined model of mountain—valley circulation (the well-known Prandtl model). The other model, which is a model of a thermal spot in a geostrophic flow, can conditionally be called "anticonvective." This problem is solved using the method of universal functions for parabolic equations with variable coefficients.

  14. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    PubMed Central

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-01-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution. PMID:26891104

  15. “APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Wang, Zifa; Wild, Oliver; Xu, Weiqi; Chen, Chen; Fu, Pingqing; Du, Wei; Zhou, Libo; Zhang, Qi; Han, Tingting; Wang, Qingqing; Pan, Xiaole; Zheng, Haitao; Li, Jie; Guo, Xiaofeng; Liu, Jianguo; Worsnop, Douglas R.

    2016-02-01

    China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61-67% and 51-57%, and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2-3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution.

  16. Parameterizations of Cloud Microphysics and Indirect Aerosol Effects

    SciTech Connect

    Tao, Wei-Kuo

    2014-05-19

    1. OVERVIEW Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al., 2000]. Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 1999]. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd

  17. Aerosol Absorption and Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, J. H.; Kinne, Stefan; Boucher, Olivier

    2007-01-01

    We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006) significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the shortwave anthropogenic aerosol top-of-atmosphere (TOA) radiative forcing clear-sky from -0.79 to -0.53 W m(sup -2) (33%) and all-sky from -0.47 to -0.13W m(sup -2 (72%). Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19W m(sup -2) (36%) clear-sky and of 0.12W m(sup -2) (92%) all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05W m(sup -2) and a positive TOA forcing perturbation of 0

  18. What We Can Say About the Roles of Natural and Anthropogenic Aerosols in Climate Change

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph

    2016-07-01

    Although particles from natural sources dominate the globally averaged aerosol load, it is widely understood that human activity has added significantly to the atmospheric aerosol inventory in many regions. Anthropogenic contributions include pollution particles from industrial activity, transportation, cook-stoves, and other combustion sources, smoke from agricultural fires and those wildfires that result from land-management practices, soil and mineral dust mobilized in regions where overgrazing, severe tilling, or overuse of surface water resources have occurred, and biogenic particles from vegetation planted and maintained by the populance. The history of human influence is complex - in the 18th and 19th centuries agricultural burning tended to dominate the anthropogenic component in most places, whereas more recently, fossil fuel combustion leads the human contribution is many areas. However, identifying and quantifying the anthropogenic aerosol component on global scales is a challenging endeavor at present. Most estimates of the anthropogenic component come from aerosol transport models that are initialized with aerosol and precursor-gas source locations, emission strengths, and injection heights. The aerosol is then advected based on meteorological modeling, possibly modified chemically or physically, and removed by parameterized wet or dry deposition processes. Aerosol effects on clouds are also represented in some climate models, but with even greater uncertainty than the direct aerosol effects on Earth's radiation balance. Even for present conditions, aerosol source inventories are deduced from whatever constraints can be found, along with much creativity and many assumptions. Aerosol amount (i.e., aerosol optical depth) is routinely measured globally from space, but observational constraints on the anthropogenic component require some knowledge of the aerosol type as well, a much more difficult quantity to derive. As large-swath, multi-spectral, single

  19. Aerosol versus solution composition in occupational exposures.

    PubMed

    Rondia, D; Closset, J

    1985-11-01

    Some industrial processes, such as the electrolysis of zinc solutions, anodic oxidation of aluminum, ore flotation, etc., result in the generation of gas microbubbles; the composition of their liquid envelope depends on, but is not identical to, the composition of the bulk of the liquid phase. An aerosol of respirable size, often toxic or irritant, results from the bursting of the bubbles at a certain height above the liquid. Some factors governing the discrepancy between the composition of the aerosol and that of the liquid have been studied for metal ions in oceanic aerosols. It is not known if these factors also apply to concentrated solutions and to anions. PMID:4081778

  20. The Aerosol/Cloud/Ecosystems Mission (ACE)

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  1. Dielectric strength of voidless BaTiO{sub 3} films with nano-scale grains fabricated by aerosol deposition

    SciTech Connect

    Kim, Hong-Ki; Lee, Young-Hie; Lee, Seung-Hwan; In Kim, Soo; Woo Lee, Chang; Rag Yoon, Jung; Lee, Sung-Gap

    2014-01-07

    In order to investigate the dielectric strength properties of the BaTiO{sub 3} films with nano-scale grains with uniform grain size and no voids, BaTiO{sub 3} films were fabricated with a thickness of 1 μm by an AD process, and the fabricated films were sintered at 800, 900, and 1000 °C in air and reducing atmosphere. The films have superior dielectric strength properties due to their uniform grain size and high density without any voids. In addition, based on investigation of the leakage current (intrinsic) properties, it was confirmed that the sintering conditions of the reducing atmosphere largely increase leakage currents due to generated electrons and doubly ionized oxygen vacancies following the Poole-Frenkel emission mechanism, and increased leakage currents flow at grain boundary regions. Therefore, we conclude that the extrinsic breakdown factors should be eliminated for superior dielectric strength properties, and it is important to enhance grain boundaries by doping acceptors and rare-earth elements.

  2. Unified height systems after GOCE

    NASA Astrophysics Data System (ADS)

    Rummel, Reiner; Gruber, Thomas; Sideris, Michael; Rangelova, Elena; Woodworth, Phil; Hughes, Chris; Ihde, Johannes; Liebsch, Gunter; Rülke, Axel; Gerlach, Christian; Haagmans, Roger

    2015-04-01

    The objectives of global height unification are twofold, (1) the realization of accurate geopotential numbers C together with their standard deviation σ(C) at a selected set of stations (datum points of national height systems, geodetic fundamental stations (IERS), primary tide gauges (PSMSL) and primary reference clocks (IERS)) and (2) the determination of height off-sets between all existing regional/national height systems and one global height reference. In the future the primary method of height determination will be GPS-levelling with very stringent requirements concerning the consistency of the positioning and the gravity potential difference part. Consistency is required in terms of the applied standards (ITRF, zero tide system, geodetic reference system). Geopotential differences will be based on a next generation geopotential model combining GOCE and GRACE and a best possible collection of global terrestrial and altimetric gravity and topographic data. Ultimately, the envisaged accuracy of height unification is about 10 cm2/s2 (or 1cm). At the moment, in well surveyed regions, an accuracy of about 40 to 60 cm2/s2 (or 4 to 6cm) is attainable. Objective One can be realized by straight forward computation of geopotential numbers C, i.e. geopotential differences relative to an adopted height reference. No adjustment is required for this. Objective Two, the unification of existing height systems is achieved by employing a least-squares adjustment based on the GBVP-approach. In order to attain a non-singular solution, this requires for each included datum zone at least one geo-referenced station per zone, i.e. its ellipsoidal height h and, in addition, the corresponding physical height H (geopotential number, normal height, orthometric height, etc.). Changes in geopotential numbers of consecutive realizations reflect (1) temporal changes of station heights, (2) improvements or changes of the applied geopotential (or geoid) model and (3) improvements of the

  3. Indian aerosols: present status.

    PubMed

    Mitra, A P; Sharma, C

    2002-12-01

    This article presents the status of aerosols in India based on the research activities undertaken during last few decades in this region. Programs, like International Geophysical Year (IGY), Monsoon Experiment (MONEX), Indian Middle Atmospheric Program (IMAP) and recently conducted Indian Ocean Experiment (INDOEX), have thrown new lights on the role of aerosols in global change. INDOEX has proved that the effects of aerosols are no longer confined to the local levels but extend at regional as well as global scales due to occurrence of long range transportation of aerosols from source regions along with wind trajectories. The loading of aerosols in the atmosphere is on rising due to energy intensive activities for developmental processes and other anthropogenic activities. One of the significant observation of INDOEX is the presence of high concentrations of carbonaceous aerosols in the near persistent winter time haze layer over tropical Indian Ocean which have probably been emitted from the burning of fossil-fuels and biofuels in the source region. These have significant bearing on the radiative forcing in the region and, therefore, have potential to alter monsoon and hydrological cycles. In general, the SPM concentrations have been found to be on higher sides in ambient atmosphere in many Indian cities but the NOx concentrations have been found to be on lower side. Even in the haze layer over Indian Ocean and surrounding areas, the NOx concentrations have been reported to be low which is not conducive of O3 formation in the haze/smog layer. The acid rain problem does not seem to exist at the moment in India because of the presence of neutralizing soil dust in the atmosphere. But the high particulate concentrations in most of the cities' atmosphere in India are of concern as it can cause deteriorated health conditions. PMID:12492171

  4. Constraints on Smoke Injection Height, Source Strength, and Transports from MISR and MODIS

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.; Petrenko, Mariya; Val Martin, Maria; Chin, Mian

    2014-01-01

    The AeroCom BB (Biomass Burning) Experiment AOD (Aerosol Optical Depth) motivation: We have a substantial set of satellite wildfire plume AOD snapshots and injection heights to help calibrate model/inventory performance; We are 1) adding more fire source-strength cases 2) using MISR to improve the AOD constrains and 3) adding 2008 global injection heights; We selected GFED3-daily due to good overall source strength performance, but any inventory can be tested; Joint effort to test multiple, global models, to draw robust BB injection height and emission strength conclusions. We provide satellite-based injection height and smoke plume AOD climatologies.

  5. Contribution of Brown Carbon to Total Aerosol Absorption in Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Moosakutty, S. P.; Bergin, M.; Vreeland, H. P.

    2015-12-01

    Carbonaceous aerosols play an important role in earth's radiative balance by absorbing and scattering light. We report physical and optical properties of carbonaceous aerosols from Indo-Gangetic Plain (IGP) for 60 days during 2014-15 winter season. Mass concentration and size distribution of black carbon (BC) and organic carbon (OC) were measured in real time using Single Particle Soot Photometer (SP2) and High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) respectively. Optical properties of aerosols at atmospheric and denuded (heated at 300 ˚C) conditions were also measured using 3 wavelength Photo Acoustic Soot Spectrometer (PASS 3). Analysis shows large scale carbonaceous aerosol loading during winter season in IGP. Multiple biomass burning events combined with trash burning contributed to this high loading along with very low boundary layer height. An inter-comparison shows that Aethalometer over estimates BC by a factor of 3 when compared with that of SP 2 measurement. Enhancement in absorption (Eabs) defined as the ratio of atmospheric absorption to denuded absorption shows presence of absorbing organics known as brown carbon (BrC). Optical closure performed between denuded aerosol absorption measured by PASS 3 and Mie theory derived absorption using SP 2 BC size distribution showed a difference of only 30 % at 781 nm. This difference might be due to the non-spherical shape and presence of residual coating on BC. Refractive index of BrC at 405 and 532 nm were derived using optical closure method for the entire sampling period. Overall results indicates that the impact of BrC on optical absorption is significant in areas dominated by biomass burning such as IGP and such effects needs to be considered in global aerosol modelling studies.

  6. Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands

    NASA Astrophysics Data System (ADS)

    Schlag, Patrick; Kiendler-Scharr, Astrid; Blom, Marcus Johannes; Canonaco, Francesco; Sebastiaan Henzing, Jeroen; Moerman, Marcel; Prévôt, André Stephan Henry; Holzinger, Rupert

    2016-07-01

    Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, the Netherlands, sampling at 5 m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network). Including equivalent black carbon an average particulate mass concentration of 9.50 µg m-3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). There were 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 µg m-3) observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by positive matrix factorization (PMF) using the multilinear engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8-16 % contribution to total OA, averaged season-wise) and biomass burning (0-23 %). Secondary organic aerosols (SOAs, 61-84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  7. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  8. Mesoscale Variations of Tropospheric Aerosols(.

    NASA Astrophysics Data System (ADS)

    Anderson, Theodore L.; Charlson, Robert J.; Winker, David M.; Ogren, John A.; Holmén, Kim

    2003-01-01

    Tropospheric aerosols are calculated to cause global-scale changes in the earth's heat balance, but these forcings are space/time integrals over highly variable quantities. Accurate quantification of these forcings will require an unprecedented synergy among satellite, airborne, and surface-based observations, as well as models. This study considers one aspect of achieving this synergy-the need to treat aerosol variability in a consistent and realistic way. This need creates a requirement to rationalize the differences in spatiotemporal resolution and coverage among the various observational and modeling approaches. It is shown, based on aerosol optical data from diverse regions, that mesoscale variability (specifically, for horizontal scales of 40-400 km and temporal scales of 2-48 h) is a common and perhaps universal feature of lower-tropospheric aerosol light extinction. Such variation is below the traditional synoptic or `airmass' scale (where the aerosol is often assumed to be essentially homogeneous except for plumes from point sources) and below the scales that are readily resolved by chemical transport models. The present study focuses on documenting this variability. Possible physical causes and practical implications for coordinated observational strategies are also discussed.

  9. A Variable-Height Wheelchair.

    ERIC Educational Resources Information Center

    Miller, Jack M.; And Others

    1981-01-01

    Describes a variable-height wheelchair which can be raised 18 inches above normal chair height by means of an electrically operated screw jack. Photoqraphs illustrate the chair to be convenient and helpful for a handicapped chemistry student. (Author/SK)

  10. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; de Graaf, M.; Stammes, P.

    2012-10-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressure contains information on aerosol layer pressure. For cloud free scenes, the derived FRESCO cloud pressure is close to the aerosol layer pressure, especially for optically thick aerosol layers. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressure may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO and AAI data, an estimate for the aerosol layer pressure can be given.

  11. Wet scavenging limits the detection of aerosol effects on precipitation

    NASA Astrophysics Data System (ADS)

    Gryspeerdt, E.; Stier, P.; White, B. A.; Kipling, Z.

    2015-07-01

    Satellite studies of aerosol-cloud interactions usually make use of retrievals of both aerosol and cloud properties, but these retrievals are rarely spatially co-located. While it is possible to retrieve aerosol properties above clouds under certain circumstances, aerosol properties are usually only retrieved in cloud-free scenes. Generally, the smaller spatial variability of aerosols compared to clouds reduces the importance of this sampling difference. However, as precipitation generates an increase in spatial variability of aerosols, the imperfect co-location of aerosol and cloud property retrievals may lead to changes in observed aerosol-cloud-precipitation relationships in precipitating environments. In this work, we use a regional-scale model, satellite observations and reanalysis data to investigate how the non-coincidence of aerosol, cloud and precipitation retrievals affects correlations between them. We show that the difference in the aerosol optical depth (AOD)-precipitation relationship between general circulation models (GCMs) and satellite observations can be explained by the wet scavenging of aerosol. Using observations of the development of precipitation from cloud regimes, we show how the influence of wet scavenging can obscure possible aerosol influences on precipitation from convective clouds. This obscuring of aerosol-cloud-precipitation interactions by wet scavenging suggests that even if GCMs contained a perfect representation of aerosol influences on convective clouds, the difficulty of separating the "clear-sky" aerosol from the "all-sky" aerosol in GCMs may prevent them from reproducing the correlations seen in satellite data.

  12. Biology of the Coarse Aerosol Mode: Insights Into Urban Aerosol Ecology

    NASA Astrophysics Data System (ADS)

    Dueker, E.; O'Mullan, G. D.; Montero, A.

    2015-12-01

    Microbial aerosols have been understudied, despite implications for climate studies, public health, and biogeochemical cycling. Because viable bacterial aerosols are often associated with coarse aerosol particles, our limited understanding of the coarse aerosol mode further impedes our ability to develop models of viable bacterial aerosol production, transport, and fate in the outdoor environment, particularly in crowded urban centers. To address this knowledge gap, we studied aerosol particle biology and size distributions in a broad range of urban and rural settings. Our previously published findings suggest a link between microbial viability and local production of coarse aerosols from waterways, waste treatment facilities, and terrestrial systems in urban and rural environments. Both in coastal Maine and in New York Harbor, coarse aerosols and viable bacterial aerosols increased with increasing wind speeds above 4 m s-1, a dynamic that was observed over time scales ranging from minutes to hours. At a New York City superfund-designated waterway regularly contaminated with raw sewage, aeration remediation efforts resulted in significant increases of coarse aerosols and bacterial aerosols above that waterway. Our current research indicates that bacterial communities in aerosols at this superfund site have a greater similarity to bacterial communities in the contaminated waterway with wind speeds above 4 m s-1. Size-fractionated sampling of viable microbial aerosols along the urban waterfront has also revealed significant shifts in bacterial aerosols, and specifically bacteria associated with coarse aerosols, when wind direction changes from onshore to offshore. This research highlights the key connections between bacterial aerosol viability and the coarse aerosol fraction, which is important in assessments of production, transport, and fate of bacterial contamination in the urban environment.

  13. Evaluating the skill of high-resolution WRF-Chem simulations in describing drivers of aerosol direct climate forcing on the regional scale

    NASA Astrophysics Data System (ADS)

    Crippa, P.; Sullivan, R. C.; Thota, A.; Pryor, S. C.

    2016-01-01

    Assessing the ability of global and regional models to describe aerosol optical properties is essential to reducing uncertainty in aerosol direct radiative forcing in the contemporary climate and to improving confidence in future projections. Here we evaluate the performance of high-resolution simulations conducted using the Weather Research and Forecasting model with coupled with Chemistry (WRF-Chem) in capturing spatiotemporal variability of aerosol optical depth (AOD) and the Ångström exponent (AE) by comparison with ground- and space-based remotely sensed observations. WRF-Chem is run over eastern North America at a resolution of 12 km for a representative year (2008). A systematic positive bias in simulated AOD relative to observations is found (annual mean fractional bias (MFB) is 0.15 and 0.50 relative to MODIS (MODerate resolution Imaging Spectroradiometer) and AERONET, respectively), whereas the spatial variability is well captured during most months. The spatial correlation of observed and simulated AOD shows a clear seasonal cycle with highest correlation during summer months (r = 0.5-0.7) when the aerosol loading is large and more observations are available. The model is biased towards the simulation of coarse-mode aerosols (annual MFB for AE = -0.10 relative to MODIS and -0.59 for AERONET), but the spatial correlation for AE with observations is 0.3-0.5 during most months, despite the fact that AE is retrieved with higher uncertainty from the remote-sensing observations. WRF-Chem also exhibits high skill in identifying areas of extreme and non-extreme aerosol loading, and its ability to correctly simulate the location and relative intensity of extreme aerosol events (i.e., AOD > 75th percentile) varies between 30 and 70 % during winter and summer months, respectively.

  14. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  15. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  16. Midweek Increase in U.S. Summer Rain and Storm Heights, Suggests Air Pollution Invigorates Rainstorms

    NASA Technical Reports Server (NTRS)

    Bell, Thomas L.; Rosenfeld, Daniel; Kim, Kyu-Myong; Yoo, Jung-Moon; Hahnenberger, Maura

    2007-01-01

    Tropical Rainfall Measuring Mission (TRMM) satellite data show a significant midweek increase in summertime rainfall over the southeast U.S., due to afternoon intensification. TRMM radar data show a significant midweek increase in rain area and in the heights reached by afternoon storms. Weekly variations in model-reanalysis wind patterns over the region and in rain-gauge data are consistent with the satellite data. A midweek decrease of rainfall over the nearby Atlantic is also seen. EPA measurements of particulate concentrations show a midweek peak over much of the U.S. These observations are consistent with the theory that anthropogenic air pollution suppresses cloud-drop coalescence and early rainout during the growth of thunderstorms over land, allowing more water to be carried above the 0 C isotherm, where freezing yields additional latent heat, invigorating the storms--most dramatically evidenced by the shift in the midweek distribution of afternoon-storm heights--and producing large ice hydrometeors. The enhanced convection induces regional convergence, uplifting and an overall increase of rainfall. Compensating downward air motion suppresses convection over the adjacent ocean areas. Pre-TRMM-era data suggest that the weekly cycle only became strong enough to be detectable beginning in the 1980's. Rain-gauge data also suggest that a weekly cycle may have been detectable in the 1940's, but with peak rainfall on Sunday or Monday, possibly explained by the difference in composition of aerosol pollution at that time. This "weekend effect" may thus offer climate researchers an opportunity to study the regional climate-scale impact of aerosols on storm development and monsoon-like circulation.

  17. CALIPSO inferred most probable heights of global dust and smoke layers

    NASA Astrophysics Data System (ADS)

    Huang, Jingfeng; Guo, Jianping; Wang, Fu; Liu, Zhaoyan; Jeong, Myeong-Jae; Yu, Hongbin; Zhang, Zhibo

    2015-05-01

    The vertical location of aerosol layers is critical for determining predominance of aerosol radiative and microphysical effects in aerosol-cloud-precipitation-climate interaction. The spaceborne lidar system, the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), provides an unprecedented opportunity to observe vertical distributions of global aerosol layers. In this study we examine the most probable height (MPH) of dust and smoke layers, which are calculated either from aerosol occurrence frequency (OF) in vertical feature mask or aerosol extinction profile. The study focuses on six high-aerosol-loading regions where aerosols are of great interest in a range of scientific topics: Saharan Air Layer (SAL) over Tropical Atlantic, West African Monsoon region (WAM), Southeast Atlantic Ocean (SAO), Southeast Asia (SEA) and South China Sea, Amazon (AMZ), and Northwestern Pacific (NWP). The analysis revealed interesting spatial and seasonal variability of different vertical mixture features over these regions: seasonal migration of dust layers over SAL, separation and mixture of dust and smoke layers over WAM and NWP, and smoke layer above clouds over SAO, SEA, and AMZ. Results also indicated that the OF-based MPH tends to be much higher than the aerosol optical depth (AOD)-based MPH, owing to the predominating near-surface sources. Within the same vertical resolution grid of CALIPSO, aerosols are found with higher OF at higher levels but AOD tends to increase toward lower levels, because most aerosol sources are near the surface and the aerosol layers transported to high altitudes are generally much more diluted over larger spatial domain than those near the surface.

  18. New Measurements of Aerosol Vertical Structure from Space using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, E. J.; Spinhime, J.; Palm, S.; Hlavka, D.; Hart, W.; Ginoux, P.; Chin, M.; Colarco, P.

    2004-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth,s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GLAS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output.

  19. New Measurements of Aerosol Vertical Structure from Space Using the NASA Geoscience Laser Altimeter System (GLAS): Applications for Aerosol Transport Models

    NASA Technical Reports Server (NTRS)

    Welton, Ellsworth J.; Ginoux, Paul; Colarco, Peter; Chin, Mian; Spinhirne, James D.; Palm, Steven P.; Hlavka, Dennis; Hart, William

    2003-01-01

    In the past, satellite measurements of aerosols have only been possible using passive sensors. Analysis of passive satellite data has lead to an improved understanding of aerosol properties, spatial distribution, and their effect on the earth s climate. However, direct measurement of aerosol vertical distribution has not been possible using only the passive data. Knowledge of aerosol vertical distribution is important to correctly assess the impact of aerosol absorption, for certain atmospheric correction procedures, and to help constrain height profiles in aerosol transport models. On January 12,2003 NASA launched the first satellite-based lidar, the Geoscience Laser Altimeter System (GLAS), onboard the ICESat spacecraft. GLAS is both an altimeter and an atmospheric lidar, and obtains direct measurements of aerosol and cloud heights. Here we show an overview of GLAS, provide an update of its current status, and discuss how GUS data will be useful for modeling efforts. In particular, a strategy of using GLAS to characterize the height profile of dust plumes over source regions will be presented, along with initial results. Such information can be used to validate and improve output from aerosol transport models. Aerosol height profile comparisons between GLAS and transport models will be shown for regions downwind of aerosol sources. We will also discuss the feasibility of assimilating GLAS profiles into the models in order to improve their output,

  20. A new algorithm for detecting cloud height using OMPS/LP measurements

    NASA Astrophysics Data System (ADS)

    Chen, Zhong; DeLand, Matthew; Bhartia, Pawan K.

    2016-03-01

    The Ozone Mapping and Profiler Suite Limb Profiler (OMPS/LP) ozone product requires the determination of cloud height for each event to establish the lower boundary of the profile for the retrieval algorithm. We have created a revised cloud detection algorithm for LP measurements that uses the spectral dependence of the vertical gradient in radiance between two wavelengths in the visible and near-IR spectral regions. This approach provides better discrimination between clouds and aerosols than results obtained using a single wavelength. Observed LP cloud height values show good agreement with coincident Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements.

  1. Longwave radiative forcing by aqueous aerosols

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1995-01-01

    Recently, a great deal of interest has been focused on the role of aerosols in climatic change because of their potential cooling impacts due to light scattering. Recent advances in infrared spectroscopy using cylindrical internal reflectance have allowed the longwave absorption of dissolved aerosol species and the associated liquid water to be accurately determined and evaluated. Experimental measurements using these techniques have shown that dissolved sulfate, nitrate, and numerous other aerosol species will act to cause greenhouse effects. Preliminary calculations indicate that the longwave climate forcing (i.e., heating) for sulfate aerosol will be comparable in magnitude to the cooling effect produced by light scattering. However, more detailed modeling will clearly be needed to address the impact of the longwave forcing due to aerosols as a function of atmospheric height and composition. Their work has shown that aerosol composition will be important in determining longwave forcing, while shortwave forcing will be more related to the physical size of the aerosol droplets. On the basis of these studies, it is increasingly apparent that aerosols, fogs, and clouds play a key role in determining the radiative balance of the atmosphere and in controlling regional and global climates.

  2. Inorganic Components of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Wexler, Anthony Stein

    The inorganic components comprise 15% to 50% of the mass of atmospheric aerosols. For about the past 10 years the mass of these components was predicted assuming thermodynamic equilibrium between the volatile aerosol -phase inorganic species NH_4NO _3 and NH_4Cl and their gas-phase counterparts NH_3, HNO_3, and HCl. In this thesis I examine this assumption and prove that (1) the time scales for equilibration between the gas and aerosol phases are often too long for equilibrium to hold, and (2) even when equilibrium holds, transport considerations often govern the size distribution of these aerosol components. Water can comprise a significant portion of atmospheric aerosols under conditions of high relative humidity, whereas under conditions of sufficiently low relative humidity atmospheric aerosols tend to be dry. The deliquescence point is the relative humidity where the aerosol goes from a solid dry phase to an aqueous or mixed solid-aqueous phase. In this thesis I derive the temperature dependence of the deliquescence point and prove that in multicomponent solutions the deliquescence point is lower than for corresponding single component solutions. These theories of the transport, thermodynamic, and deliquescent properties of atmospheric aerosols are integrated into an aerosol inorganics model, AIM. The predictions of AIM compare well to fundamental thermodynamic measurements. Comparison of the prediction of AIM to those of other aerosol equilibrium models shows substantial disagreement in the predicted water content at lower relative humidities. The disagreement is due the improved treatment in AIM of the deliquescence properties of multicomponent solutions. In the summer and fall of 1987 the California Air Resources Board conducted the Southern California Air Quality Study, SCAQS, during which atmospheric aerosols were measured in Los Angeles. The size and composition of the aerosol and the concentrations of their gas phase counterparts were measured. When the

  3. Remote sensing of aerosol in the terrestrial atmosphere from space: "AEROSOL-UA" mission

    NASA Astrophysics Data System (ADS)

    Yatskiv, Yaroslav; Milinevsky, Gennadi; Degtyarev, Alexander

    2016-07-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project AEROSOL-UA that will obtain the data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The mission is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  4. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    NASA Astrophysics Data System (ADS)

    Wahab, A. M.; Sarker, M. L. R.

    2014-02-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation.

  5. Sources and formation pathways of organic aerosol in a subtropical metropolis during summer

    NASA Astrophysics Data System (ADS)

    Tsai, I.-Chun; Chen, Jen-Ping; Lung, Candice Shi-Chun; Li, Nan; Chen, Wei-Nai; Fu, Tzung-May; Chang, Chih-Chung; Hwang, Gong-Do

    2015-09-01

    A field campaign combined with numerical simulations was designed to better understand the emission sources and formation processes of organic aerosols (OA) in a subtropical environment. The field campaign measured total and water soluble organic carbon (OC) in aerosol, as well as its precursor gases in the Taipei metropolis and a nearby rural forest during the summer of 2011. A regional air-quality model modified with an additional secondary organic aerosol (SOA) formation pathway was used to decipher the observed variations in OA, with focus on various formation pathways and the relative contributions from anthropogenic and biogenic sources. According to the simulations, biogenic sources contributed to 60% and 72% of total OA production at the NTU (urban) and HL (rural) sites. The simulated fractions of SOA in total OA were 67% and 79% near the surface of NTU and HL, respectively, and these fractions increased with height and reach over 90% at the 1-km altitude. Estimated from the simulation results, aqueous-phase dicarbonyl uptake was responsible of 51% of OA production in the urban area, while the primary emissions, reversible partitioning of semi-volatile oxidation products, oligomerization of semi-volatile SOA in the particulate phase and acid-enhanced oxidation contributed to 33%, 10%, 5% and 1% respectively; in the rural area, the percentages were 59%, 21%, 13%, 7% and 1%, respectively. Meteorological factors, including large-scale wind direction, local circulation and planetary boundary layer height, all have strong influences on the source contributions and diurnal variations of OA concentration.

  6. Recent improvements to the Raman-shifted eye-safe aerosol lidar (REAL)

    NASA Astrophysics Data System (ADS)

    Mayor, Shane D.; Petrova-Mayor, Anna; Morley, Bruce; Spuler, Scott

    2013-09-01

    Improvements to the original NCAR/NSF Raman-shifted Eye-safe Aerosol Lidar (REAL) made between 2008 and 2013 are described. They are aimed mainly at optimizing and stabilizing the performance of the system for long-term, unattended, network-controlled, remote monitoring of the horizontal vector wind field and boundary layer height, and observing atmospheric boundary layer phenomena such as fine-scale waves and density current fronts. In addition, we have improved the polarization purity of the transmitted laser radiation and studied in the laboratory the effect of the beam-steering unit mirrors on the transmitted polarization as part of a longer-term effort to make absolute polarization measurements of aerosols and clouds.

  7. Elevated aerosol layers and their radiative impact over Kanpur during monsoon onset period

    NASA Astrophysics Data System (ADS)

    Sarangi, Chandan; Tripathi, S. N.; Mishra, A. K.; Goel, A.; Welton, E. J.

    2016-07-01

    Accurate information about aerosol vertical distribution is needed to reduce uncertainties in aerosol radiative forcing and its effect on atmospheric dynamics. The present study deals with synergistic analyses of aerosol vertical distribution and aerosol optical depth (AOD) with meteorological variables using multisatellite and ground-based remote sensors over Kanpur in central Indo-Gangetic Plain (IGP). Micro-Pulse Lidar Network-derived aerosol vertical extinction (σ) profiles are analyzed to quantify the interannual and daytime variations during monsoon onset period (May-June) for 2009-2011. The mean aerosol profile is broadly categorized into two layers viz., a surface layer (SL) extending up to 1.5 km (where σ decreased exponentially with height) and an elevated aerosol layer (EAL) extending between 1.5 and 5.5 km. The increase in total columnar aerosol loading is associated with relatively higher increase in contribution from EAL loading than that from SL. The mean contributions of EALs are about 60%, 51%, and 50% to total columnar AOD during 2009, 2010, and 2011, respectively. We observe distinct parabolic EALs during early morning and late evening but uniformly mixed EALs during midday. The interannual and daytime variations of EALs are mainly influenced by long-range transport and convective capacity of the local emissions, respectively. Radiative flux analysis shows that clear-sky incoming solar radiation at surface is reduced with increase in AOD, which indicates significant cooling at surface. Collocated analysis of atmospheric temperature and aerosol loading reveals that increase in AOD not only resulted in surface dimming but also reduced the temperature (˜2-3°C) of lower troposphere (below 3 km altitude). Radiative transfer simulations indicate that the reduction of incoming solar radiation at surface is mainly due to increased absorption by EALs (with increase in total AOD). The observed cooling in lower troposphere in high aerosol loading

  8. Global Lidar Observations of Aerosol Distribution and Radiative Influence

    NASA Technical Reports Server (NTRS)

    Spinhirne, James; Starr, David OC. (Technical Monitor)

    2001-01-01

    A very visible impact of human activities is the brownish aerosol haze that pervades many industrialized regions as well as areas in the subtropics and tropics where biomass burning occurs. Well known examples are the Asian Brown Cloud, Arctic Haze and East Coast Haze. Atmospheric transport transforms this haze into regional and hemispheric aerosol layers of significant concentrations. The overall impact on the radiation balance of the atmosphere, surface solar irradiance and other meteorology factors is recognized as a major uncertainty for climate change. In order to understand the impact, the global distribution of aerosol and their properties must be known. . A missing element of observations, but critical for understanding transport has been the height distribution of aerosol. Lidar measurements of aerosol height distribution have been important in GLOBE, ACE, INDOEX and other field studies A network of continuously operating eye safe lidar ground sites has now been established for baseline aerosol profiling. In 2002 NASA will launch the Geoscience Laser Altimeter System (GLAS) mission which will provide for the first time global observations of the height distribution of aerosol. The combination of these and other modem satellite observations, field experiments and models of global aerosol composition and transport should begin to unravel the impacts of particles in the atmosphere.

  9. Olive School, Arlington Heights, Illinois

    ERIC Educational Resources Information Center

    Rausch, Kathy

    1974-01-01

    Article stressed the need for a music teacher in an open school to have an openness to people and ideas. It also described the educational objectives at the Olive School in Arlington Heights, Illinois. (Author/RK)

  10. Taking America To New Heights

    NASA Video Gallery

    NASA's Commercial Crew Program (CCP) is taking America to new heights with its Commercial Crew Development Round 2 (CCDev2) partners. In 2011, NASA entered into funded Space Act Agreements (SAAs) w...

  11. URBAN AEROSOL TRANSFORMATION AND TRANSPORT MODELING

    EPA Science Inventory

    Modules for secondary aerosol formation have been included in the urban scale K-theory aerosol model, AR0S0L. hese are: (1) An empirical first-order 502 conversion scheme due to Meaghers, termed EMM; (2) The lumped parameter kinetic model termed the Carbon Bond Mechanism, in the ...

  12. Scales

    MedlinePlus

    Scales are a visible peeling or flaking of outer skin layers. These layers are called the stratum ... Scales may be caused by dry skin, certain inflammatory skin conditions, or infections. Eczema , ringworm , and psoriasis ...

  13. Aerosol Best Estimate Value-Added Product

    SciTech Connect

    Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

    2012-07-19

    The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

  14. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  15. Statistical Characteristics of Aerosol Extinction Coefficient Profile in East Asia from CALIPSO

    NASA Astrophysics Data System (ADS)

    Sun, Xuejin; Zhou, Junhao; Zhou, Yongbo

    2016-06-01

    Aerosol extinction coefficient profile (ECP) is important in radiative transfer modeling, however, knowledge of ECP in some area has not been clearly recognized. To get a full understanding of statistical characteristics of ECP in three Asian regions: the Mongolian Plateau, the North China Plain and the Yellow Sea, CALIPSO aerosol product in 2012 is processed by conventional statistical methods. Orbit averaged ECP turns out to be mainly exponential and Gaussian patterns. Curve fitting shows that the two ECP patterns account for more than 50 percent of all the samples, especially in the Yellow Sea where the frequency of occurrence even reaches over 80 percent. Parameters determining fitting curves are provided consequently. To be specific, Gaussian pattern is the main ECP distribution in the Mongolian Plateau and the Yellow Sea, and exponential pattern predominates in the North China Plain. Besides, aerosol scale height reaches its maximum in summer and in the Mongolian Plateau. Meanwhile, the uplifting and deposition of dust during transportation are potentially explanations to the occurrence of Gaussian ECP. The results have certain representativeness, and contribute to reducing uncertainties of aerosol model in relevant researches.

  16. How We Can Constrain Aerosol Type Globally

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph

    2016-01-01

    In addition to aerosol number concentration, aerosol size and composition are essential attributes needed to adequately represent aerosol-cloud interactions (ACI) in models. As the nature of ACI varies enormously with environmental conditions, global-scale constraints on particle properties are indicated. And although advanced satellite remote-sensing instruments can provide categorical aerosol-type classification globally, detailed particle microphysical properties are unobtainable from space with currently available or planned technologies. For the foreseeable future, only in situ measurements can constrain particle properties at the level-of-detail required for ACI, as well as to reduce uncertainties in regional-to-global-scale direct aerosol radiative forcing (DARF). The limitation of in situ measurements for this application is sampling. However, there is a simplifying factor: for a given aerosol source, in a given season, particle microphysical properties tend to be repeatable, even if the amount varies from day-to-day and year-to-year, because the physical nature of the particles is determined primarily by the regional environment. So, if the PDFs of particle properties from major aerosol sources can be adequately characterized, they can be used to add the missing microphysical detail the better sampled satellite aerosol-type maps. This calls for Systematic Aircraft Measurements to Characterize Aerosol Air Masses (SAM-CAAM). We are defining a relatively modest and readily deployable, operational aircraft payload capable of measuring key aerosol absorption, scattering, and chemical properties in situ, and a program for characterizing statistically these properties for the major aerosol air mass types, at a level-of-detail unobtainable from space. It is aimed at: (1) enhancing satellite aerosol-type retrieval products with better aerosol climatology assumptions, and (2) improving the translation between satellite-retrieved aerosol optical properties and

  17. Applications of UV Scattering and Absorbing Aerosol Indices

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M.; Beirle, S.; Wagner, T.

    2009-04-01

    Aerosols cause a substantial amount of radiative forcing, but quantifying this amount is difficult: determining aerosol concentrations in the atmosphere and, especially, characterizing their (optical) properties, has proved to be quite a challenge. A good way to monitor aerosol characteristics on a global scale is to perform satellite remote sensing. Most satellite aerosol retrieval algorithms are based on fitting of aerosol-induced changes in earth reflectance, which are usually subtle and have a smooth wavelength dependence. In such algorithms certain aerosol models are assumed, where optical parameters such as single scattering albedo, asymmetry parameter and size parameter (or Angstrom exponent) are defined. Another, semi-quantitative technique for detecting aerosols is the calculation of UV Aerosol Indices (UVAI). The Absorbing and Scattering Aerosol Indices detect "UV-absorbing" aerosols (most notably mineral dust, black and brown carbon particles) and "scattering" aerosols (sulfate and secondary organic aerosol particles), respectively. UVAI are essentially a measure of the contrast between two wavelengths in the UV range. The advantages of UVAI are: they can be determined in the presence of clouds, they are rather insensitive to surface type, and they are very sensitive to aerosols. The Absorbing Aerosol Index (AAI) has been in use for over a decade, and the Scattering Aerosol Index (SAI) was recently introduced by our group. Whereas the AAI is mainly used to detect desert dust and biomass burning plumes, the SAI can be used to study regions with high concentrations of non-absorbing aerosols, either anthropogenic (e.g. sulfate aerosols in eastern China) or biogenic (e.g. secondary organic aerosols formed from VOCs emitted by plants). Here we will present our recent UVAI results from SCIAMACHY: we will discuss the seasonal trend of SAI, and correlate our UVAI data with other datasets such as trace gases (HCHO, NO2, CO) and fire counts from the (A

  18. Boundary Layer Heights from CALIOP

    NASA Astrophysics Data System (ADS)

    Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.

    2012-12-01

    This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.

  19. 24 CFR 3280.104 - Ceiling heights.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Ceiling heights. 3280.104 Section... heights. (a) Every habitable room and bathroom shall have a minimum ceiling height of not less than 7 feet... with a minimum height of 5 feet, 0 inches. Minimum height under dropped ducts, beams, etc. shall be...

  20. 24 CFR 3280.104 - Ceiling heights.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Ceiling heights. 3280.104 Section... heights. (a) Every habitable room and bathroom shall have a minimum ceiling height of not less than 7 feet... with a minimum height of 5 feet, 0 inches. Minimum height under dropped ducts, beams, etc. shall be...

  1. 24 CFR 3280.104 - Ceiling heights.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 24 Housing and Urban Development 5 2011-04-01 2011-04-01 false Ceiling heights. 3280.104 Section... heights. (a) Every habitable room and bathroom shall have a minimum ceiling height of not less than 7 feet... with a minimum height of 5 feet, 0 inches. Minimum height under dropped ducts, beams, etc. shall be...

  2. 24 CFR 3280.104 - Ceiling heights.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 24 Housing and Urban Development 5 2013-04-01 2013-04-01 false Ceiling heights. 3280.104 Section... heights. (a) Every habitable room and bathroom shall have a minimum ceiling height of not less than 7 feet... with a minimum height of 5 feet, 0 inches. Minimum height under dropped ducts, beams, etc. shall be...

  3. 24 CFR 3280.104 - Ceiling heights.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Ceiling heights. 3280.104 Section... heights. (a) Every habitable room and bathroom shall have a minimum ceiling height of not less than 7 feet... with a minimum height of 5 feet, 0 inches. Minimum height under dropped ducts, beams, etc. shall be...

  4. Satellite Remote Sensing: Aerosol Measurements

    NASA Technical Reports Server (NTRS)

    Kahn, Ralph A.

    2013-01-01

    Aerosols are solid or liquid particles suspended in the air, and those observed by satellite remote sensing are typically between about 0.05 and 10 microns in size. (Note that in traditional aerosol science, the term "aerosol" refers to both the particles and the medium in which they reside, whereas for remote sensing, the term commonly refers to the particles only. In this article, we adopt the remote-sensing definition.) They originate from a great diversity of sources, such as wildfires, volcanoes, soils and desert sands, breaking waves, natural biological activity, agricultural burning, cement production, and fossil fuel combustion. They typically remain in the atmosphere from several days to a week or more, and some travel great distances before returning to Earth's surface via gravitational settling or washout by precipitation. Many aerosol sources exhibit strong seasonal variability, and most experience inter-annual fluctuations. As such, the frequent, global coverage that space-based aerosol remote-sensing instruments can provide is making increasingly important contributions to regional and larger-scale aerosol studies.

  5. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    NASA Astrophysics Data System (ADS)

    Ortega, Ivan

    Air pollution is a major problem worldwide that adversely a_ects human health, impacts ecosystems and climate. In the atmosphere, there are hundreds of important compounds participating in complex atmospheric reactions linked to air quality and climate. Aerosols are relevant because they modify the radiation balance, a_ect clouds, and thus Earth albedo. The amount of aerosol is often characterized by the vertical integral through the entire height of the atmosphere of the logarithm fraction of incident light that is extinguished called Aerosol Optical Depth (AOD). The AOD at 550 nm (AOD550) over land is 0.19 (multi annual global mean), and that over oceans is 0.13. About 43 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions, sample spatial scales that resemble satellite ground-pixels and atmospheric models, and help integrate remote sensing and in-situ observations to obtain optical closure on the effects of aerosols and trace gases in our changing environment. In this work, I present the recent development of the University of Colorado two dimensional (2-D) Multi-AXis Differential Optical Absorption Spectroscopy (2-D-MAX-DOAS) instrument to measure the azimuth and altitude distribution of trace gases and aerosol optical properties simultaneously with a single instrument. The instrument measures solar scattered light from any direction in the sky, including direct sun light in the hyperspectral domain. In Chapter 2, I describe the capabilities of 2-D measurements in the context of retrievals of azimuth distributions of nitrogen dioxide (NO2), formaldehyde (HCHO), and glyoxal (CHOCHO), which are precursors for tropospheric O3 and aerosols. The measurements were carried out during the Multi-Axis DOAS Comparison campaign for Aerosols and Trace gases (MAD-CAT) campaign in Mainz, Germany and show the ability to bridge spatial scales to

  6. Atmospheric Aerosols

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Lawless, James G. (Technical Monitor)

    1994-01-01

    Aerosols, defined as particles and droplets suspended in air, are always present in the atmosphere. They are part of the earth-atmosphere climate system, because they interact with both incoming solar and outgoing terrestrial radiation. They do this directly through scattering and absorption, and indirectly through effects on clouds. Submicrometer aerosols usually predominate in terms of number of particles per unit volume of air. They have dimensions close to the wavelengths of visible light, and thus scatter radiation from the sun very effectively. They are produced in the atmosphere by chemical reactions of sulfur-, nitrogen- and carbon-containing gases of both natural and anthropogenic origins. Light absorption is dominated by particles containing elemental carbon (soot), produced by incomplete combustion of fossil fuels and by biomass burning. Light-scattering dominates globally, although absorption can be significant at high latitudes, particularly over highly reflective snow- or ice-covered surfaces. Other aerosol substances that may be locally important are those from volcanic eruptions, wildfires and windblown dust.

  7. Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    SciTech Connect

    Park, Sungsu

    2014-12-12

    The main goal of this project is to systematically quantify the major uncertainties of aerosol indirect effects due to the treatment of moist turbulent processes that drive aerosol activation, cloud macrophysics and microphysics in response to anthropogenic aerosol perturbations using the CAM5/CESM1. To achieve this goal, the P.I. hired a postdoctoral research scientist (Dr. Anna Fitch) who started her work from the Nov.1st.2012. In order to achieve the project goal, the first task that the Postdoc. and the P.I. did was to quantify the role of subgrid vertical velocity variance on the activation and nucleation of cloud liquid droplets and ice crystals and its impact on the aerosol indirect effect in CAM5. First, we analyzed various LES cases (from dry stable to cloud-topped PBL) to check whether this isotropic turbulence assumption used in CAM5 is really valid. It turned out that this isotropic turbulence assumption is not universally valid. Consequently, from the analysis of LES, we derived an empirical formulation relaxing the isotropic turbulence assumption used for the CAM5 aerosol activation and ice nucleation, and implemented the empirical formulation into CAM5/CESM1, and tested in the single-column and global simulation modes, and examined how it changed aerosol indirect effects in the CAM5/CESM1. These results were reported in the poster section in the 18th Annual CESM workshop held in Breckenridge, CO during Jun.17-20.2013. While we derived an empirical formulation from the analysis of couple of LES from the first task, the general applicability of that empirical formulation was questionable, because it was obtained from the limited number of LES simulations. The second task we did was to derive a more fundamental analytical formulation relating vertical velocity variance to TKE using other information starting from basic physical principles. This was a somewhat challenging subject, but if this could be done in a successful way, it could be directly

  8. The height premium in Indonesia.

    PubMed

    Sohn, Kitae

    2015-01-01

    Analyzing the Indonesian Family Life Survey for the year 2007, this paper estimates that a 10 cm increase in physical stature is associated with an increase in earnings of 7.5% for men and 13.0% for women, even after controlling for an extensive set of productivity variables. When the height premium is estimated by sector, it is 12.3% for self-employed men and 18.0% for self-employed women; a height premium of 11.1% is also estimated for women in the private sector. In the public sector, however, the height premium estimate is not statistically significant for either men or women. This paper provides further evidence of discrimination based on customers' preferences for tall workers. PMID:24480546

  9. Tree Height Calculator: An Android App for Estimating Tree Height

    NASA Astrophysics Data System (ADS)

    Burca, V. S.; Htet, N. M.; Huang, X.; de Lanerolle, T. R.; Morelli, R.; Gourley, J. R.

    2011-12-01

    Conventionally, measuring tree height requires a collection of different tools - clinometer, transit, pencil, paper, laptop computer. Results are recorded manually and entered into a spreadsheet or database for future calculation and analysis. Tree Height Calculator is a mobile Android app the integrates the various steps in this process thereby improving the accuracy and dramatically reducing the time required to go from taking measurements to analyzing data. Given the user's height and the distance from the base of the tree (which can be downloaded into the app from a server), the app uses the phone's orientation sensor to calculate the angle of elevation. A simple trigonometric formula is then used to calculate and record the tree's height in the phone's database. When the phone has a WiFi connection, the data are transmitted to a server, from where they can be downloaded directly into a spreadsheet. The application was first tested in an Environmental Science laboratory at Trinity College. On the first trial, 103 data samples were collected, stored, and uploaded to the online database with only couple of dropped data points. On the second trial, 98 data samples were gathered with no loss of data. The app combined the individual measurements taken by the students in the lab, reducing the time required to produce a graph of the class's results from days to hours.

  10. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  11. Fear of heights in infants?

    PubMed Central

    Adolph, Karen E.; Kretch, Kari S.; LoBue, Vanessa

    2014-01-01

    Based largely on the famous “visual cliff” paradigm, conventional wisdom is that crawling infants avoid crossing the brink of a dangerous drop-off because they are afraid of heights. However, recent research suggests that the conventional wisdom is wrong. Avoidance and fear are conflated, and there is no compelling evidence to support fear of heights in human infants. Infants avoid crawling or walking over an impossibly high drop-off because they perceive affordances for locomotion—the relations between their own bodies and skills and the relevant properties of the environment that make an action such as descent possible or impossible. PMID:25267874

  12. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  13. Mixed Layer Heights Derived from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Scarino, Amy J.; Burton, Sharon P.; Ferrare, Rich A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.; Rogers, Raymond R.; Cook, Anthony L.; Harper, David B.; Fast, Jerome; Dasilva, Arlindo; Benedetti, Angela

    2012-01-01

    The NASA airborne High Spectral Resolution Lidar (HSRL) has been deployed on board the NASA Langley Research Center's B200 aircraft to several locations in North America from 2006 to 2012 to aid in characterizing aerosol properties for over fourteen field missions. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) during 349 science flights, many in coordination with other participating research aircraft, satellites, and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as properties and variability of the Mixing Layer (ML) height. We describe the use of the HSRL data collected during these missions for computing ML heights and show how the HSRL data can be used to determine the fraction of aerosol optical thickness within and above the ML, which is important for air quality assessments. We describe the spatial and temporal variations in ML heights found in the diverse locations associated with these experiments. We also describe how the ML heights derived from HSRL have been used to help assess simulations of Planetary Boundary Layer (PBL) derived using various models, including the Weather Research and Forecasting Chemistry (WRF-Chem), NASA GEOS-5 model, and the ECMWF/MACC models.

  14. Socioeconomic development and secular trend in height in China.

    PubMed

    Zong, Xin-Nan; Li, Hui; Wu, Hua-Hong; Zhang, Ya-Qin

    2015-12-01

    The objective of this study was to examine the effect of socioeconomic development on secular trend in height among children and adolescents in China. Body height and spermarcheal/menarcheal ages were obtained from two periodic large-scale national representative surveys in China between 1975 and 2010. Chinese socioeconomic development indicators were obtained from the United Nations world population prospects. The effects of plausible determinants were assessed by partial least-squares regression. The average height of children and adolescents improved in tandem with socioeconomic development, without any tendency to plateau. The increment of height trend presented larger around puberty than earlier or later ages. The partial least-squares regressions with gross national income, life expectancy and spermarcheal/menarcheal age accounted for increment of height trend from 88.3% to 98.3% for males and from 82.9% to 97.3% for females in adolescence. Further, through the analysis of the variable importance for projection, the contributions of gross national income and life expectancy on height increment were confirmed to be significant in childhood and adolescence, and the contribution of spermarcheal/menarcheal age was superior to both of them in adolescence. We concluded that positive secular trend in height in China was significantly associated with socioeconomic status (GNI as indicator) and medical and health conditions (life expectancy as indicator). Earlier onset of spermarche and menarche proved to be an important role in larger increment of the trend over time of height at puberty for a population. PMID:26452198

  15. Polar and non-polar organic aerosols from large-scale agricultural-waste burning emissions in Northern India: Implications to organic mass-to-organic carbon ratio.

    PubMed

    Rajput, Prashant; Sarin, M M

    2014-05-01

    This study focuses on characteristics of organic aerosols (polar and non-polar) and total organic mass-to-organic carbon ratio (OM/OC) from post-harvest agricultural-waste (paddy- and wheat-residue) burning emissions in Northern India. Aerosol samples from an upwind location (Patiala: 30.2°N, 76.3°E) in the Indo-Gangetic Plain were analyzed for non-polar and polar fractions of organic carbon (OC1 and OC2) and their respective mass (OM1 and OM2). On average, polar organic aerosols (OM2) contribute nearly 85% of the total organic mass (OM) from the paddy- and wheat-residue burning emissions. The water-soluble-OC (WSOC) to OC2 ratio, within the analytical uncertainty, is close to 1 from both paddy- and wheat-residue burning emissions. However, temporal variability and relatively low WSOC/OC2 ratio (Av: 0.67±0.06) is attributed to high moisture content and poor combustion efficiency during paddy-residue burning, indicating significant contribution (∼30%) of aromatic carbon to OC2. The OM/OC ratio for non-polar (OM1/OC1∼1.2) and polar organic aerosols (OM2/OC2∼2.2), hitherto unknown for open agricultural-waste burning emissions, is documented in this study. The total OM/OC ratio is nearly identical, 1.9±0.2 and 1.8±0.2, from paddy- and wheat-residue burning emissions. PMID:24331033

  16. Deriving atmospheric visibility from satellite retrieved aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Riffler, M.; Schneider, Ch.; Popp, Ch.; Wunderle, S.

    2009-04-01

    Atmospheric visibility is a measure that reflects different physical and chemical properties of the atmosphere. In general, poor visibility conditions come along with risks for transportation (e.g. road traffic, aviation) and can negatively impact human health since visibility impairment often implies the presence of atmospheric pollution. Ambient pollutants, particulate matter, and few gaseous species decrease the perceptibility of distant objects. Common estimations of this parameter are usually based on human observations or devices that measure the transmittance of light from an artificial light source over a short distance. Such measurements are mainly performed at airports and some meteorological stations. A major disadvantage of these observations is the gap between the measurements, leaving large areas without any information. As aerosols are one of the most important factors influencing atmospheric visibility in the visible range, the knowledge of their spatial distribution can be used to infer visibility with the so called Koschmieder equation, which relates visibility and atmospheric extinction. In this study, we evaluate the applicability of satellite aerosol optical depth (AOD) products from the Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) to infer atmospheric visibility on large spatial scale. First results applying AOD values scaled with the planetary boundary layer height are promising. For the comparison we use a full automated and objective procedure for the estimation of atmospheric visibility with the help of a digital panorama camera serving as ground truth. To further investigate the relation between the vertical measure of AOD and the horizontal visibility data from the Aerosol Robotic Network (AERONET) site Laegeren (Switzerland), where the digital camera is mounted, are included as well. Finally, the derived visibility maps are compared with synoptical observations in central

  17. Epigenetic heredity of human height

    PubMed Central

    Simeone, Pasquale; Alberti, Saverio

    2014-01-01

    Abstract Genome‐wide SNP analyses have identified genomic variants associated with adult human height. However, these only explain a fraction of human height variation, suggesting that significant information might have been systematically missed by SNP sequencing analysis. A candidate for such non‐SNP‐linked information is DNA methylation. Regulation by DNA methylation requires the presence of CpG islands in the promoter region of candidate genes. Seventy two of 87 (82.8%), height‐associated genes were indeed found to contain CpG islands upstream of the transcription start site (USC CpG island searcher; validation: UCSC Genome Browser), which were shown to correlate with gene regulation. Consistent with this, DNA hypermethylation modules were detected in 42 height‐associated genes, versus 1.5% of control genes (P = 8.0199e−17), as were dynamic methylation changes and gene imprinting. Epigenetic heredity thus appears to be a determinant of adult human height. Major findings in mouse models and in human genetic diseases support this model. Modulation of DNA methylation are candidate to mediate environmental influence on epigenetic traits. This may help to explain progressive height changes over multiple generations, through trans‐generational heredity of progressive DNA methylation patterns. PMID:24963031

  18. Adult Height and Childhood Disease

    PubMed Central

    BOZZOLI, CARLOS; DEATON, ANGUS; QUINTANA-DOMEQUE, CLIMENT

    2009-01-01

    Taller populations are typically richer populations, and taller individuals live longer and earn more. In consequence, adult height has recently become a focus in understanding the relationship between health and wealth. We investigate the childhood determinants of population adult height, focusing on the respective roles of income and of disease. Across a range of European countries and the United States, we find a strong inverse relationship between postneonatal (ages 1 month to 1 year) mortality, interpreted as a measure of the disease and nutritional burden in childhood, and the mean height of those children as adults. Consistent with these findings, we develop a model of selection and stunting in which the early-life burden of undernutrition and disease not only is responsible for mortality in childhood but also leaves a residue of long-term health risks for survivors, risks that express themselves in adult height and in late-life disease. The model predicts that at sufficiently high mortality levels, selection can dominate scarring, leaving a taller population of survivors. We find evidence of this effect in the poorest and highest-mortality countries of the world, supplementing recent findings on the effects of the Great Chinese Famine. PMID:20084823

  19. Sea Surface Height 1993 - 2011

    NASA Video Gallery

    This animation depicts year-to-year variability in sea surface height, and chronicles two decades of El Niño and La Niña events. It was created using NASA ocean altimetry data from 1993 to 2011, ...

  20. Height and Prostate Cancer Risk

    PubMed Central

    Zuccolo, Luisa; Harris, Ross; Gunnell, David; Oliver, Steven; Lane, Jane Athene; Davis, Michael; Donovan, Jenny; Neal, David; Hamdy, Freddie; Beynon, Rebecca; Savovic, Jelena; Martin, Richard Michael

    2008-01-01

    Background Height, a marker of childhood environmental exposures, is positively associated with prostate cancer risk, perhaps through the insulin-like growth factor system. We investigated the relationship of prostate cancer with height and its components (leg and trunk length) in a nested case-control study and with height in a dose-response meta-analysis. Methods We nested a case-control study within a population-based randomized controlled trial evaluating treatments for localized prostate cancer in British men ages 50 to 69 years, including 1,357 cases detected through prostate-specific antigen testing and 7,990 controls (matched on age, general practice, assessment date). Nine bibliographic databases were searched systematically for studies on the height-prostate cancer association that were pooled in a meta-analysis. Results Based on the nested case-control, the odds ratio (OR) of prostate-specific antigen-detected prostate cancer per 10 cm increase in height was 1.06 [95% confidence interval (95% CI): 0.97-1.16; ptrend = 0.2]. There was stronger evidence of an association of height with high-grade prostate cancer (OR: 1.23; 95% CI: 1.06-1.43), mainly due to the leg component, but not with low-grade disease (OR: 0.99; 95% CI: 0.90-1.10). In general, associations with leg or trunk length were similar. A meta-analysis of 58 studies found evidence that height is positively associated with prostate cancer (random-effects OR per 10 cm: 1.06; 95% CI: 1.03-1.09), with a stronger effect for prospective studies of more advanced/aggressive cancers (random-effects OR: 1.12; 95% CI: 1.05-1.19). Conclusion These data indicate a limited role for childhood environmental exposures—as indexed by adult height—on prostate cancer incidence, while suggesting a greater role for progression, through mechanisms requiring further investigation. PMID:18768501

  1. Photochemistry of Model Organic Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Mang, S. A.; Bateman, A. P.; Dailo, M.; Do, T.; Nizkorodov, S. A.; Pan, X.; Underwood, J. S.; Walser, M. L.

    2007-05-01

    Up to 90 percent of urban aerosol particles have been shown to contain organic molecules. Reactions of these particles with atmospheric oxidants and/or sunlight result in large changes in their composition, toxicity, and ability to act as cloud condensation nuclei. For this reason, chemistry of model organic aerosol particles initiated by oxidation and direct photolysis is of great interest to atmospheric, climate, and health scientists. Most studies in this area have focused on identifying the products of oxidation of the organic aerosols, while the products of direct photolysis of the resulting molecules remaining in the aerosol particle have been left mostly unexplored. We have explored direct photolytic processes occurring in selected organic aerosol systems using infrared cavity ringdown spectroscopy to identify small gas phase products of photolysis, and mass-spectrometric and photometric techniques to study the condensed phase products. The first model system was secondary organic aerosol formed from the oxidation of several monoterpenes by ozone in the presence and absence of NOx, under different humidities. The second system modeled after oxidatively aged primary organic aerosol particles was a thin film of either alkanes or saturated fatty acids oxidized in several different ways, with the oxidation initiated by ozone, chlorine atom, or OH. In every case, the general conclusion was that the photochemical processing of model organic aerosols is significant. Such direct photolysis processes are believed to age organic aerosol particles on time scales that are short compared to the particles' atmospheric lifetimes.

  2. Sea surface height and steric height increases in the Southern Hemisphere

    NASA Astrophysics Data System (ADS)

    Tretkoff, Ernie

    2011-06-01

    Sea surface height has increased by 3 millimeters per year, globally averaged, since 1993. Some fraction of sea surface height change is due to added water from melting glaciers, for instance, and some is due to increasing heat and salinity changes (steric effects). Focusing on the Southern Hemisphere, Sutton and Roemmich analyzed temperature and salinity data from the Argo float array in relation to earlier data from the World Ocean Circulation Experiment (WOCE) to estimate the steric changes. These were compared with the total sea surface height changes over the same period seen in satellite altimetric data. They found that on decadal time scales, about half of the rise in sea surface height in the Southern Ocean is due to steric effects, with the proportion increasing southward. The accompanying increase in ocean heat content south of 30°S can account for most of the global heat content change during this period. (Geophysical Research Letters, doi:10.1029/ 2011GL046802, 2011)

  3. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Ignatiev, N. I.; McGouldrick, K.; Wilquet, V.; Wilson, C. F.

    2014-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. This paper gives a summary of new observations and modelling efforts that will form the basis for a relevant chapter in the Venus III book. Venus Express observations reveal significant latitudinal variations and temporal changes in the global cloud top morphology [1]. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression [2, 3]. UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics [4]. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator [5]. Based on Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and midwavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets [6]. The optical model includes H2SO4 concentrations from 60 to 85%. A number of results are strikingly new: (1) an increase of the H2SO4

  4. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Ignatiev, Nikolay; McGouldrick, Kevin; Wilquet, Valerie; Wilson, Colin

    2015-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. Venus Express observations revealed significant latitudinal variations and temporal changes in the global cloud top morphology. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression. The UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator. Based on the Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and mid-wavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets. The optical model includes H2SO4 concentrations from 60% to 85%. A number of results are strikingly new: (1) an increase of the H2SO4 concentration with a decreasing altitude (from 70-75% at about 90 km to 85% at 70 km of altitude) and (2) Many SOIR/SPICAV data cannot be fitted when using

  5. Holistic aerosol evaluation using synthesized aerosol aircraft measurements

    NASA Astrophysics Data System (ADS)

    Watson-Parris, Duncan; Reddington, Carly; Schutgens, Nick; Stier, Philip; Carslaw, Ken; Liu, Dantong; Allan, James; Coe, Hugh

    2016-04-01

    Despite ongoing efforts there are still large uncertainties in aerosol concentrations and loadings across many commonly used GCMs. This in turn leads to large uncertainties in the contributions of the direct and indirect aerosol forcing on climate. However, constraining these fields using earth observation data, although providing global coverage, is problematic for many reasons, including the large uncertainties in retrieving aerosol loadings. Additionally, the inability to retrieve aerosols in or around cloudy scenes leads to further sampling biases (Gryspeerdt 2015). Many in-situ studies have used regional datasets to attempt to evaluate the model uncertainties, but these are unable to provide an assessment of the models ability to represent aerosols properties on a global scale. Within the Global Aerosol Synthesis and Science Project (GASSP) we have assembled the largest collection of quality controlled, in-situ aircraft observations ever synthesized to a consistent format. This provides a global set of in-situ measurements of Cloud Condensation Nuclei (CCN) and Black Carbon (BC), amongst others. In particular, the large number of vertical profiles provided by this aircraft data allows us to investigate the vertical structure of aerosols across a wide range of regions and environments. These vertical distributions are particularly valuable when investigating the dominant processes above or below clouds where remote sensing data is not available. Here we present initial process-based assessments of the BC lifetimes and vertical distributions of CCN in the HadGEM-UKCA and ECHAM-HAM models using this data. We use point-by-point based comparisons to avoid the sampling issues associated with comparing spatio-temporal aggregations.

  6. A modeling study on the climate impacts of black carbon aerosols

    NASA Astrophysics Data System (ADS)

    Wang, Chien

    2004-02-01

    A three-dimensional interactive aerosol-climate model has been developed and used to study the climatic impact of black carbon (BC) aerosols. When compared with the model's natural variability, significant global-scale changes caused by BC aerosols occurred in surface latent and sensible heat flux, surface net long-wave radiative flux, planetary boundary layer height, convective precipitation (all negative), and low-cloud coverage (positive), all closely related to the hydrological cycle. The most significant regional change caused by BC revealed in this study is in precipitation that occurs in the tropics (shift of precipitation center in the ITCZ) and in the middle and high latitudes of the Northern Hemisphere (change in snow depth). Influenced by BC caused changes in cloud cover and surface albedo, the interactive model provides smaller positive all-sky forcing at the top of atmosphere (TOA) and larger negative forcing at the surface than the offline diagnostics (the direct forcings). The actual solar radiative forcings by BC derived from the interactive model also exhibit significant interannual variations that are up to 4 times as large as their means. Based on the revealed changes in cloud radiative forcing by BC, a non-Twomey-Albrecht indirect forcing by BC that alters radiative budgets by changing cloud cover via thermodynamics rather than microphysics is also defined. It has been demonstrated that with an absolute amount more than 2 times higher than that of the TOA forcing, the surface forcing by BC is a very important factor in analyzing the climatic impact of BC. The result of this study suggests that with a constant annual emission of 14 TgC, BC aerosols do not cause a significant change in global-mean surface temperature. The calculated surface temperature change is determined by a subtle balance among changes in surface energy budget as well as in the hydrological cycle, all caused by BC forcing and often compensate each other. The result of this

  7. Observations of height-dependent pressure-perturbation structure of a strong mesoscale gravity wave

    NASA Technical Reports Server (NTRS)

    Starr, David O'C.; Korb, C. L.; Schwemmer, Geary K.; Weng, Chi Y.

    1992-01-01

    Airborne observations using a downward-looking, dual-frequency, near-infrared, differential absorption lidar system provide the first measurements of the height-dependent pressure-perturbation field associated with a strong mesoscale gravity wave. A pressure-perturbation amplitude of 3.5 mb was measured within the lowest 1.6 km of the atmosphere over a 52-km flight line. Corresponding vertical displacements of 250-500 m were inferred from lidar-observed displacement of aerosol layers. Accounting for probable wave orientation, a horizontal wavelength of about 40 km was estimated. Satellite observations reveal wave structure of a comparable scale in concurrent cirrus cloud fields over an extended area. Smaller-scale waves were also observed. Local meteorological soundings are analyzed to confirm the existence of a suitable wave duct. Potential wave-generation mechanisms are examined and discussed. The large pressure-perturbation wave is attributed to rapid amplification or possible wave breaking of a gravity wave as it propagated offshore and interacted with a very stable marine boundary layer capped by a strong shear layer.

  8. Retrieval of Aerosol information from UV measurement by using optimal estimation method

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Jeong, U.; Kim, W. V.; Kim, S. K.; Lee, S. D.; Moon, K. J.

    2014-12-01

    An algorithm to retrieve aerosol optical depth (AOD), single scattering albedo (SSA), and aerosol loading height is developed for GEMS (Geostationary Environment Monitoring Spectrometer) measurement. The GEMS is planned to be launched in geostationary orbit in 2018, and employs hyper-spectral imaging with 0.6 nm resolution to observe solar backscatter radiation in the UV and Visible range. In the UV range, the low surface contribution to the backscattered radiation and strong interaction between aerosol absorption and molecular scattering can be advantageous in retrieving aerosol information such as AOD and SSA [Torres et al., 2007; Torres et al., 2013; Ahn et al., 2014]. However, the large contribution of atmospheric scattering results in the increase of the sensitivity of the backward radiance to aerosol loading height. Thus, the assumption of aerosol loading height becomes important issue to obtain accurate result. Accordingly, this study focused on the simultaneous retrieval of aerosol loading height with AOD and SSA by utilizing the optimal estimation method. For the RTM simulation, the aerosol optical properties were analyzed from AERONET inversion data (level 2.0) at 46 AERONET sites over ASIA. Also, 2-channel inversion method is applied to estimate a priori value of the aerosol information to solve the Lavenberg Marquardt equation. The GEMS aerosol algorithm is tested with OMI level-1B dataset, a provisional data for GEMS measurement, and the result is compared with OMI standard aerosol product and AERONET values. The retrieved AOD and SSA show reasonable distribution compared with OMI products, and are well correlated with the value measured from AERONET. However, retrieval uncertainty in aerosol loading height is relatively larger than other results.

  9. Aerosol Remote Sensing from AERONET, the Ground-Based Satellite

    NASA Technical Reports Server (NTRS)

    Holben, Brent N.

    2012-01-01

    Atmospheric particles including mineral dust, biomass burning smoke, pollution from carbonaceous aerosols and sulfates, sea salt, impact air quality and climate. The Aerosol Robotic Network (AERONET) program, established in the early 1990s, is a federation of ground-based remote sensing aerosol networks of Sun/sky radiometers distributed around the world, which provides a long-term, continuous and readily accessible public domain database of aerosol optical (e.g., aerosol optical depth) and microphysical (e.g., aerosol volume size distribution) properties for aerosol characterization, validation of satellite retrievals, and synergism with Earth science databases. Climatological aerosol properties will be presented at key worldwide locations exhibiting discrete dominant aerosol types. Further, AERONET's temporary mesoscale network campaign (e.g., UAE2, TIGERZ, DRAGON-USA.) results that attempt to quantify spatial and temporal variability of aerosol properties, establish validation of ground-based aerosol retrievals using aircraft profile measurements, and measure aerosol properties on compatible spatial scales with satellite retrievals and aerosol transport models allowing for more robust validation will be discussed.

  10. On the Feasibility of Studying Shortwave Aerosol Radiative Forcing of Climate Using Dual-Wavelength Aerosol Backscatter Lidar

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Winker, David M.; McCormick, M. Patrick; Hipskind, R. Stephen (Technical Monitor)

    2000-01-01

    The current low confidence in the estimates of aerosol-induced perturbations of Earth's radiation balance is caused by the highly non-uniform compositional, spatial and temporal distributions of tropospheric aerosols on a global scale owing to their heterogeneous sources and short lifetimes. Nevertheless, recent studies have shown that the inclusion of aerosol effects in climate model calculations can improve agreement with observed spatial and temporal temperature distributions. In light of the short lifetimes of aerosols, determination of their global distribution with space-borne sensors seems to be a necessary approach. Until recently, satellite measurements of tropospheric aerosols have been approximate and did not provide the full set of information required to determine their radiative effects. With the advent of active aerosol remote sensing from space (e.g., PICASSO-CENA), the applicability fo lidar-derived aerosol 180 deg -backscatter data to radiative flux calculations and hence studies of aerosol effects on climate needs to be investigated.

  11. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Bergstrom, R. W.; Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Livingston, J. M.; Redemann, J.; Dubovik, O.; Strawa, A.

    2010-02-01

    ultraviolet and CALIPSO aerosol layer heights to reduce height-absorption ambiguity.

  12. Comparison of Observed and Simulated Boundary Layer Height Estimates during Discover-Aq July 2011

    NASA Astrophysics Data System (ADS)

    Flynn, C.; Pickering, K. E.; Ferrare, R. A.; Scarino, A. J.; Delgado, R.; Martins, D. K.; Lenschow, D. H.; Loughner, C.; Thompson, A. M.

    2013-12-01

    The first deployment of the NASA Earth Venture -1 DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project was conducted during July 2011 in the Baltimore-Washington region. The P-3B aircraft provided in situ vertical profiles of meteorological quantities, trace gases, and aerosols over six Maryland Department of the Environment (MDE) air quality monitoring sites over fourteen flight days. The UC-12 aircraft provided continuous remote sensing observations of aerosols over its flight track with the High Spectral Resolution Lidar (HSRL). Additionally, several MDE sites were equipped with the ground-based Micro-Pulse Lidar (MPL) instrument, also providing continuous, remotely sensed aerosol observations, and two sites launched ozonesondes during the campaign. A major goal of DISCOVER-AQ is to understand the processes linking trace gas column abundances to surface concentrations, including vertical mixing in the planetary boundary layer (PBL). In support of this goal, estimates of the PBL height output by the WRF/CMAQ model system (ACM2 PBL scheme and Pleim-Xiu surface layer scheme) were compared to observational estimates of PBL height during the July 2011 deployment. WRF/CMAQ typically demonstrated a high bias in PBL height relative to the meteorological PBL height estimates (those based on the potential temperature profile measured by the P-3B or ozonesondes), while the model demonstrated a low bias relative to PBL height estimates based on the aerosol backscatter profile (HSRL and MPL data). Additionally, the model tended to overpredict the PBL height on days when the PBL was well mixed, and underpredicted when the PBL was poorly mixed. Preliminary results from an intercomparison of the WRF model run with six different PBL schemes (ACM2, YSU, MYJ, MYNN, QNSE, and BouLac schemes) will also be presented.

  13. Appearance of strong absorbers and fluorophores in limonene-O3 secondary organic aerosol due to NH4+-mediated chemical aging over long time scales

    NASA Astrophysics Data System (ADS)

    Bones, David L.; Henricksen, Dana K.; Mang, Stephen A.; Gonsior, Michael; Bateman, Adam P.; Nguyen, Tran B.; Cooper, William J.; Nizkorodov, Sergey A.

    2010-03-01

    This study investigated long-term chemical aging of model biogenic secondary organic aerosol (SOA) prepared from the ozonolysis of terpenes. Techniques including electrospray ionization mass spectrometry (ESI-MS), UV-visible spectroscopy, Fourier transform infrared (FTIR) spectroscopy, NMR, and three-dimensional fluorescence were used to probe the changes in chemical composition of SOA collected by impaction on substrates and also of aqueous extracts of SOA. The addition of ammonium ions or amino acids to limonene SOA reproducibly produced orange-colored species that strongly absorbed visible radiation and fluoresced at UV and visible wavelengths. Simultaneous addition of H2SO4 to the SOA aqueous extracts inhibited this color transformation. These observations suggest the existence of aging processes leading to heavily conjugated molecules containing organic nitrogen. The presence of nitrogen in the chromophores was confirmed by the dependence of the absorption and fluorescence spectra on the amino acids added. In contrast to the strong change in the absorption and fluorescence spectra, there was no significant change in the ESI-MS, FTIR, and NMR spectra, suggesting that the chromophores were minor species in the aged SOA. Aqueous extracts of aged limonene + NH4+ SOA were characterized by an effective base-e absorption coefficient of ˜3 L g-1 cm-1 at 500 nm. Assuming particulate matter concentrations typical of polluted rural air gives an upper limit of 0.2 M m-1 for the aerosol absorption coefficient due to the aged limonene oxidation products. Biogenic SOA can therefore become weakly absorbing if they undergo aging in the presence of NH4+-containing aerosol.

  14. The letter height superiority illusion.

    PubMed

    New, Boris; Doré-Mazars, Karine; Cavézian, Céline; Pallier, Christophe; Barra, Julien

    2016-02-01

    Letters are identified better when they are embedded within words rather than within pseudowords, a phenomenon known as the word superiority effect (Reicher in Journal of Experimental Psychology, 81, 275-280, 1969). This effect is, inter alia, accounted for by the interactive-activation model (McClelland & Rumelhart in Psychological Review, 88, 375-407, 1981) through feedback from word to letter nodes. In this study, we investigated whether overactivation of features could lead to perceptual bias, wherein letters would be perceived as being taller than pseudoletters, or words would be perceived as being taller than pseudowords. In two experiments, we investigated the effects of letter and lexical status on the perception of size. Participants who had to compare the heights of letters and pseudoletters, or of words and pseudowords, indeed perceived the former stimuli as being taller than the latter. Possible alternative interpretations of this height superiority effect for letters and words are discussed. PMID:26370216

  15. 29 CFR 1917.113 - Clearance heights.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 7 2013-07-01 2013-07-01 false Clearance heights. 1917.113 Section 1917.113 Labor... (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.113 Clearance heights. Clearance heights shall be prominently posted where the height is insufficient for vehicles and equipment....

  16. 29 CFR 1917.113 - Clearance heights.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Clearance heights. 1917.113 Section 1917.113 Labor... (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.113 Clearance heights. Clearance heights shall be prominently posted where the height is insufficient for vehicles and equipment....

  17. 29 CFR 1917.113 - Clearance heights.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Clearance heights. 1917.113 Section 1917.113 Labor... (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.113 Clearance heights. Clearance heights shall be prominently posted where the height is insufficient for vehicles and equipment....

  18. Future Mission Concept for 3-D Aerosol Monitoring From Space Based on Fusion of Remote Sensing Approaches

    NASA Astrophysics Data System (ADS)

    Diner, D. J.; Kahn, R. A.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.; Cairns, B.; Torres, O.

    2006-05-01

    Fine airborne particles are implicated in adverse impacts on human health. In situ measurements are a critical component of any air quality monitoring system; however, they cover a small fraction of the globe and do not measure aerosols transported aloft or over water. Satellites provide a substantial complementary role, and great strides in aerosol characterization over land from spaceborne platforms are currently taking place. In the passive realm, multiangle sensors such as MISR have unique strengths in determining particle optical depths over land, constraining column-average particle size, shape, and single-scattering albedo, and providing stereoscopic layer-top heights for aerosol plumes and spatially heterogeneous layers. Multispectral information at ultraviolet (UV) wavelengths (e.g., from TOMS and OMI) and in the shortwave infrared (SWIR) (e.g., from MODIS), as well as polarimetry (e.g., from POLDER and in the future, APS) have complementary strengths for measuring aerosol microphysical properties. Active lidars bring added sensitivity to particle vertical distribution. Fusion of such capabilities, particularly at km-scale resolutions required for aerosol monitoring in urban settings, would further improve our ability to identify and track aerosol air mass types on regional and larger scales, giving added value and context to more detailed particle microphysical and chemical properties that can be measured in situ. In 2005 we submitted a mission concept called the Aerosol Global Interactions Satellite (AEGIS), consisting of a notional multiangle spectropolarimetric imager (MSPI) and high spectral resolution lidar (HSRL), to the National Academy of Sciences Decadal Survey. The MSPI instrument is an advanced version of MISR, improving upon current capabilities by adding near-UV, SWIR, and high-accuracy polarimetric imaging channels, and by widening the sensor swath. HSRL measurements are designed to provide vertical profiles of aerosol backscatter and

  19. Formation and deposition of volcanic sulfate aerosols on Mars

    NASA Technical Reports Server (NTRS)

    Settle, M.

    1979-01-01

    The paper considers the formation and deposition of volcanic sulfate aerosols on Mars. The rate limiting step in sulfate aerosol formation on Mars is the gas phase oxidation of SO2 by chemical reactions with O, OH, and HO2; submicron aerosol particles would circuit Mars and then be removed from the atmosphere by gravitational forces, globally dispersed, and deposited over a range of equatorial and mid-latitudes. Volcanic sulfate aerosols on Mars consist of liquid droplets and slurries containing sulfuric acid; aerosol deposition on a global or hemispheric scale could account for the similar concentrations of sulfur within surficial soils at the two Viking lander sites.

  20. Global Analysis of Aerosol Properties Above Clouds

    NASA Technical Reports Server (NTRS)

    Waquet, F.; Peers, F.; Ducos, F.; Goloub, P.; Platnick, S. E.; Riedi, J.; Tanre, D.; Thieuleux, F.

    2013-01-01

    The seasonal and spatial varability of Aerosol Above Cloud (AAC) properties are derived from passive satellite data for the year 2008. A significant amount of aerosols are transported above liquid water clouds on the global scale. For particles in the fine mode (i.e., radius smaller than 0.3 m), including both clear sky and AAC retrievals increases the global mean aerosol optical thickness by 25(+/- 6%). The two main regions with man-made AAC are the tropical Southeast Atlantic, for biomass burning aerosols, and the North Pacific, mainly for pollutants. Man-made AAC are also detected over the Arctic during the spring. Mineral dust particles are detected above clouds within the so-called dust belt region (5-40 N). AAC may cause a warming effect and bias the retrieval of the cloud properties. This study will then help to better quantify the impacts of aerosols on clouds and climate.

  1. Characterization of Cooking-Related Aerosols

    NASA Astrophysics Data System (ADS)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  2. Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results

    NASA Astrophysics Data System (ADS)

    Koffi, Brigitte; Schulz, Michael; Bréon, François-Marie; Dentener, Frank; Steensen, Birthe Marie; Griesfeller, Jan; Winker, David; Balkanski, Yves; Bauer, Susanne E.; Bellouin, Nicolas; Berntsen, Terje; Bian, Huisheng; Chin, Mian; Diehl, Thomas; Easter, Richard; Ghan, Steven; Hauglustaine, Didier A.; Iversen, Trond; Kirkevâg, Alf; Liu, Xiaohong; Lohmann, Ulrike; Myhre, Gunnar; Rasch, Phil; Seland, Åyvind; Skeie, Ragnhild B.; Steenrod, Stephen D.; Stier, Philip; Tackett, Jason; Takemura, Toshihiko; Tsigaridis, Kostas; Vuolo, Maria Raffaella; Yoon, Jinho; Zhang, Kai

    2016-06-01

    The ability of 11 models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model intercomparison initiative (AeroCom II), is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded data set of aerosol extinction profiles built for this purpose from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Layer Product 3.01. Results over 12 subcontinental regions show that five models improved, whereas three degraded in reproducing the interregional variability in Zα0-6 km, the mean extinction height diagnostic, as computed from the CALIOP aerosol profiles over the 0-6 km altitude range for each studied region and season. While the models' performance remains highly variable, the simulation of the timing of the Zα0-6 km peak season has also improved for all but two models from AeroCom Phase I to Phase II. The biases in Zα0-6 km are smaller in all regions except Central Atlantic, East Asia, and North and South Africa. Most of the models now underestimate Zα0-6 km over land, notably in the dust and biomass burning regions in Asia and Africa. At global scale, the AeroCom II models better reproduce the Zα0-6 km latitudinal variability over ocean than over land. Hypotheses for the performance and evolution of the individual models and for the intermodel diversity are discussed. We also provide an analysis of the CALIOP limitations and uncertainties contributing to the differences between the simulations and observations.

  3. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  4. Results and code predictions for ABCOVE (aerosol behavior code validation and evaluation) aerosol code validation: Test AB6 with two aerosol species. [LMFBR

    SciTech Connect

    Hilliard, R K; McCormack, J C; Muhlestein, L D

    1984-12-01

    A program for aerosol behavior code validation and evaluation (ABCOVE) has been developed in accordance with the LMFBR Safety Program Plan. The ABCOVE program is a cooperative effort between the USDOE, the USNRC, and their contractor organizations currently involved in aerosol code development, testing or application. The second large-scale test in the ABCOVE program, AB6, was performed in the 850-m/sup 3/ CSTF vessel with a two-species test aerosol. The test conditions simulated the release of a fission product aerosol, NaI, in the presence of a sodium spray fire. Five organizations made pretest predictions of aerosol behavior using seven computer codes. Three of the codes (QUICKM, MAEROS and CONTAIN) were discrete, multiple species codes, while four (HAA-3, HAA-4, HAARM-3 and SOFIA) were log-normal codes which assume uniform coagglomeration of different aerosol species. Detailed test results are presented and compared with the code predictions for seven key aerosol behavior parameters.

  5. El Nino, from 1870 to 2014, and other Atmospheric Circulation Forcing by Extreme Apparitions of the Eight Annual, Continental Scale, Aerosol Plumes in the Satellite Era which Point to a Possible Cause for the Current Californian Drought

    NASA Astrophysics Data System (ADS)

    Potts, K. A.

    2015-12-01

    Eight continental scale aerosol plumes exist each year as the enclosed image shows. Apparitions of seven plumes only exist for a few months in the same season each year whilst the East Asian Plume is visible all year. The aerosol optical depth (AOD) of all the plumes varies enormously interannually with two studies showing the surface radiative forcing of the South East Asian Plume (SEAP) as -150W/m2 and -286W/m2/AOD. I show that the SEAP, created by volcanic aerosols (natural) and biomass burning and gas flares in the oil industry (anthropogenic), is the sole cause of all El Nino events, the greatest interannual perturbation of the atmospheric circulation system. The SEAP creates an El Nino by absorbing solar radiation at the top of the plume which heats the upper atmosphere and cools the surface. This creates a temperature inversion compared to periods without the plume and reduces convection. With reduced convection in SE Asia, the Maritime Continent, the Trade Winds blowing across the Pacific are forced to relax as their exit into the Hadley and Walker Cells is constrained and the reduced Trade Wind speed causes the Sea Surface Temperature (SST) to rise in the central tropical Pacific Ocean as there is a strong negative correlation between wind speed and SST. The warmer SST in the central Pacific creates convection in the region which further reduces the Trade Wind speed and causes the Walker Cell to reverse - a classic El Nino. Having established the ability of such extreme aerosol plumes to create El Nino events I will then show how the South American, West African, Middle East and SEAP plumes create drought in the Amazon, Spain, Darfur and Australia as well as causing the extremely warm autumn and winter in Europe in 2006-07. All these effects are created by the plumes reducing convection in the region of the plume which forces the regional Hadley Cells into anomalous positions thereby creating persistent high pressure cells in the mid latitudes. This

  6. Scale

    ERIC Educational Resources Information Center

    Schaffhauser, Dian

    2009-01-01

    The common approach to scaling, according to Christopher Dede, a professor of learning technologies at the Harvard Graduate School of Education, is to jump in and say, "Let's go out and find more money, recruit more participants, hire more people. Let's just keep doing the same thing, bigger and bigger." That, he observes, "tends to fail, and fail…

  7. Source apportionment using radiocarbon and organic tracers for PM2.5 carbonaceous aerosols in Guangzhou, South China: contrasting local- and regional-scale haze events.

    PubMed

    Liu, Junwen; Li, Jun; Zhang, Yanlin; Liu, Di; Ding, Ping; Shen, Chengde; Shen, Kaijun; He, Quanfu; Ding, Xiang; Wang, Xinming; Chen, Duohong; Szidat, Sönke; Zhang, Gan

    2014-10-21

    We conducted a source apportionment and investigated the atmospheric behavior of carbonaceous aerosols during hazy and normal days using radiocarbon ((14)C) and biomass burning/secondary organic aerosol (SOA) tracers during winter in Guangzhou, China. Haze episodes were formed either abruptly by local emissions or through the accumulation of particles transported from other areas. The average contributions of fossil carbon to elemental carbon (EC), water-insoluble organic carbon, and water-soluble organic carbon were 71 ± 10%, 40 ± 6% and 33 ± 3%, respectively. High contributions of fossil carbon to EC (80-90%) were observed for haze samples that were substantially impacted by local emissions, as were the highest (lowest) ratios for NO3(-)/SO4(2-) (OC/EC), which indicates that these particles mainly came from local vehicle exhaust. Low contributions of fossil carbon to EC (60-70%) were found for haze particles impacted by regional transport. Secondary organic carbon (SOC) calculated using SOA tracers accounts for only ∼ 20% of the SOC estimated by (14)C, which is probably because some important volatile organic carbons are not taken into account in the SOA tracer calculation method and because of the large discrepancy in ambient conditions between the atmosphere and smog chambers. A total of 33 ± 11% of the SOC was of fossil origin, a portion of which could be influenced by humidity. PMID:25264588

  8. Pinatubo Aerosol Evolution: Using Composite Data Sets to Build the Global- to Micro-Scale Picture and Assess Consistency of Different Measurements

    NASA Technical Reports Server (NTRS)

    Russell, P. B.; Pueschel, R. F.; Livingston, J. M.; Bergstrom, R.; Hamill, P.

    1994-01-01

    This paper brings together experimental evidence required to build realistic models of the global evolution of physical, chemical, and optical properties of the aerosol resulting from the 1991 Pinatubo volcanic eruption. Such models are needed to compute the effects of the aerosol on atmospheric chemistry, dynamics, radiation, and temperature. Whereas there is now a large and growing body of post-Pinatubo measurements by a variety of techniques, some results are in conflict, and a self-consistent, unified picture is needed, along with an assessment of remaining uncertainties. This paper examines data from photometers, radiometers, impactors, optical counters/sizers, and lidars operated on the ground, aircraft, balloons, and spacecraft. Example data sources include: - Tracking sunphotometers and lidars at Mauna Loa Observatory (MLO) and on the DC-8 - Particle spectrometers and wire impactors on the ER-2 and DC-8 - Dustsondes (particle counters/sizers on balloons) - SAGE II, SAM II, AVHRR, CLAES, and ISAMS sensors on a variety of satellites. We assess the mutual consistency of these disparate data sets and recommend 'consensus" properties and uncertainties in the process of developing a composite data set. Recommended properties include the spatial and temporal evolution of particle chemical composition, shape, wavelength and temperature-dependent refractive index, size distribution, and optical depth spectra. Supporting references are cited and representative data shown.

  9. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  10. Recent updates in the aerosol model of C-IFS and their impact on skill scores

    NASA Astrophysics Data System (ADS)

    Remy, Samuel; Boucher, Olivier; Hauglustaine, Didier

    2016-04-01

    The Composition-Integrated Forecast System (C-IFS) is a global atmospheric composition forecasting tool, run by ECMWF within the framework of the Copernicus Atmospheric Monitoring Services (CAMS). The aerosol model of C-IFS is a simple bulk scheme that forecasts 5 species: dust, sea-salt, black carbon, organic matter and sulfates. Three bins represent the dust and sea-salt, for the super-coarse, coarse and fine mode of these species (Morcrette et al., 2009). This talk will present recent updates of the aerosol model, and also introduce coming upgrades. It will also present evaluations of these scores against AERONET observations. Next cycle of the C-IFS will include a mass fixer, because the semi-Lagrangian advection scheme used in C-IFS is not mass-conservative. This modification has a negligible impact for most species except for black carbon and organic matter; it allows to close the budgets between sources and sinks in the diagnostics. Dust emissions have been tuned to favor the emissions of large particles, which were under-represented. This brought an overall decrease of the burden of dust aerosol and improved scores especially close to source regions. The biomass-burning aerosol emissions are now emitted at an injection height that is provided by a new version of the Global Fire Assimilation System (GFAS). This brought a small increase in biomass burning aerosols, and a better representation of some large fire events. Lastly, SO2 emissions are now provided by the MACCity dataset instead of and older version of the EDGAR dataset. The seasonal and yearly variability of SO2 emissions are better captured by the MACCity dataset; the use of which brought significant improvements of the forecasts against observations. Upcoming upgrades of the aerosol model of C-IFS consist mainly in the overhaul of the representation of secondary aerosols. Secondary Organic Aerosols (SOA) production will be dynamically estimated by scaling them on CO fluxes. This approach has been

  11. Sea surface height trend and variability at seasonal and interannual time scales in the Southeastern South American continental shelf between 27°S and 40°S

    NASA Astrophysics Data System (ADS)

    Saraceno, Martin; Simionato, Claudia G.; Ruiz-Etcheverry, Laura A.

    2014-12-01

    Recent improvements in satellite altimetry data correction terms are encouraging studies of the remote sensed sea level anomalies (SLA) progressively closer to the coast and over shallow continental shelves. In this paper we describe and discuss the SLA trend and variability at seasonal and interannual time scales in the southeastern South American continental shelf influenced by the Río de la Plata estuary and the Patos Lagoon fresh waters. The spatio-temporal coverage of the gridded altimetry SLA data allows identify several variability patterns and the associated physical processes. On seasonal time scales, the combination of the solar radiation and wind forcing cycles accounts for up to 98% of the variability. Seasonal variability of the wind is responsible for a difference of up to 16 cm between the southern (Argentinean) Río de la Plata estuary coast and the Uruguayan and southern Brazilian coasts. On interannual time scales, positive/negative SLA anomalies are coherent with El Niño/La Niña events. Finally, a significant positive trend of up to 5 mm yr-1 is found in all the study area except in the region around the Patos Lagoon (Brazil) and part of the Río de la Plata. Besides the local relevance of the results, this study indicates that satellite altimetry data are accurate enough to unveil SLA spatio-temporal patterns close to the coast and over continental shelves in the mentioned time scales.

  12. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Bergstrom, R. W.; Shinozuka, Y.; Clarke, A. D.; Decarlo, P. F.; Jimenez, J. L.; Livingston, J. M.; Redemann, J.; Holben, B.; Dubovik, O.; Strawa, A.

    2009-10-01

    Recent results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (expressed as Absorption Angstrom Exponent, or AAE). Taken together, these results hold promise of improving information on aerosol composition from remote measurements. The purpose of this paper is to show that AAE values for Aerosol Robotic Network (AERONET) retrievals from Sun-sky measurements describing the full aerosol vertical column are also strongly correlated with aerosol composition or type. In particular, we find AAE values near 1 (the theoretical value for black carbon) for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger AAE values for biomass burning aerosols, and the largest AAE values for Sahara dust aerosols. Ambiguities in aerosol composition or mixtures thereof, resulting from intermediate AAE values, can be reduced via cluster analyses that supplement AAE with other variables, for example Extinction Angstrom Exponent (EAE), which is an indicator of particle size. Together with previous results, these results strengthen prospects for determining aerosol composition from space, for example using the Glory Aerosol Polarimetry Sensor (APS), which promises retrievals of multiwavelength single-scattering albedo (SSA) and aerosol optical depth (and therefore aerosol absorption optical depth (AAOD) and AAE), as well as shape and other aerosol properties. Cluster analyses promise additional information content, for example by using the Ozone Monitoring Instrument (OMI) to add AAOD in the near ultraviolet and CALIPSO aerosol layer heights to reduce height-absorption ambiguity.

  13. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Ignatiev, Nikolay; McGouldrick, Kevin; Wilquet, Valerie; Wilson, Colin

    2015-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. Venus Express observations revealed significant latitudinal variations and temporal changes in the global cloud top morphology. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression. The UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator. Based on the Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and mid-wavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets. The optical model includes H2SO4 concentrations from 60% to 85%. A number of results are strikingly new: (1) an increase of the H2SO4 concentration with a decreasing altitude (from 70-75% at about 90 km to 85% at 70 km of altitude) and (2) Many SOIR/SPICAV data cannot be fitted when using

  14. Eruption column height: a comparison between ground and satellite measurements

    NASA Astrophysics Data System (ADS)

    Scollo, Simona; Prestifilippo, Michele; Pecora, Emilio; Corradini, Stefano; Merucci, Luca; Spata, Gaetano; Coltelli, Mauro

    2014-05-01

    The eruption column height estimation is an essential parameter to evaluate the total mass eruption rate, the gas and aerosol plume dispersal and retrievals. The column height may be estimated using different systems (e.g. satellite, aircraft and ground observations) which may present marked differences. In this work we use the calibrated images collected by the video-surveillance system of the Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, from the visible camera located in Catania, 27 km from the vent. The analysis is carried out on twenty lava fountains from the New South East Crater during the recent Etna explosive activity. Firstly, we calibrated the camera to estimate its intrinsic parameters and the full camera model. Furthermore, we selected the images which recorded the maximum phase of the eruptive activity. Hence, we applied an appropriate correction to take into account the wind effect. The column height was also evaluated using SEVIRI and MODIS satellite images collected at the same time of the video camera measurements. The satellite column height retrievals is realized by comparing the 11 μm brightness temperature of the most opaque plume pixels with the atmospheric temperature profile measured at Trapani WMO Meteo station (the nearest WMO station to the Etnean area). The comparison between satellite and ground data show a good agreement and the column altitudes ranges between 7.5 and 9 km (upper limit of the camera system). For nine events we evaluated also the thickness of the volcanic plumes in the umbrella region (near the vent) which ranges between 2 and 3 km. The proposed approach help to quantitatively evaluate the column height that may be used by volcanic ash dispersal and sedimentation models for improving forecasts and reducing risks to aviation during volcanic crisis.

  15. Meniscus height controlled convective self-assembly

    NASA Astrophysics Data System (ADS)

    Choudhary, Satyan; Crosby, Alfred

    Convective self-assembly techniques based on the 'coffee-ring effect' allow for the fabrication of materials with structural hierarchy and multi-functionality across a wide range of length scales. The coffee-ring effect describes deposition of non-volatiles at the edge of droplet due to capillary flow and pattern formations due to pinning and de-pinning of meniscus with the solvent evaporation. We demonstrate a novel convective self-assembly method which uses a piezo-actuated bending motion for driving the de-pinning step. In this method, a dilute solution of nanoparticles or polymers is trapped by capillary forces between a blade and substrate. As the blade oscillates with a fixed frequency and amplitude and the substrate translates at a fixed velocity, the height of the capillary meniscus oscillates. The meniscus height controls the contact angle of three phase contact line and at a critical angle de-pinning occurs. The combination of convective flux and continuously changing contact angle drives the assembly of the solute and subsequent de-pinning step, providing a direct means for producing linear assemblies. We demonstrate a new method for convective self-assembly at an accelerated rate when compared to other techniques, with control over deposit dimensions. Army Research Office (W911NF-14-1-0185).

  16. Vertical Distribution of Aerosols and Water Vapor Using CRISM Limb Observations

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.; Clancy, R. T.; CRISM Science; Operations Teams

    2011-12-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of CO2 (or surface pressure) and H2O gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 nm for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available

  17. MULTICHANNEL PULSE-HEIGHT ANALYZER

    DOEpatents

    Russell, J.T.; Lefevre, H.W.

    1958-01-21

    This patent deals with electronic computing circuits and more particularly to pulse-height analyzers used for classifying variable amplitude pulses into groups of different amplitudes. The device accomplishes this pulse allocation by by converting the pulses into frequencies corresponding to the amplitudes of the pulses, which frequencies are filtered in channels individually pretuned to a particular frequency and then detected and recorded in the responsive channel. This circuit substantially overcomes the disadvantages of prior annlyzers incorporating discriminators pre-set to respond to certain voltage levels, since small variation in component values is not as critical to satisfactory circuit operation.

  18. HRS Pulse Height Analysis - 2

    NASA Astrophysics Data System (ADS)

    Skapik, Joe

    1991-07-01

    This test performs a pulse height analysis to determine individual diode response as a function of threshold for HRS detector 2. Based on this evaluation new thresholds may be determined for optimal HRS operation. Command blocks ZCTFLIT1 and ZCTFLIT2 will be updated accordingly. This test will run once during the year. Also included is one ion test which is a PHA of twice normal threshold to look for ion events (which accelerate back up the 22 kV potential of the tube, liberate electrons from the phocathode, and produce events of twice normal energy (this should be a very low, stable rate).

  19. Post-volcanic stratospheric aerosol decay as measured by lidar

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Chu, W. P.; Fuller, W. H., Jr.; Swissler, T. J.

    1978-01-01

    The paper summarizes and discusses results of lidar observations, at Hampton (Virginia), of the stratospheric aerosol vertical distribution for a period of 22 months (October 1974 to July 1976) after the volcanic eruption of the Volcan de Fuego in Guatemala. Data are presented in terms of lidar scattering ratio, vertically integrated aerosol backscattering, layer structure and location, and rawinsonde temperature profiles as a function of time. The results reveal a sudden increase in the stratospheric aerosol content after the volcanic eruption as well as its subsequent decline. There exists a high degree of correlation between the integrated aerosol backscattering and the tropopause height such that as one decreases the other increases and vice versa. Rapid decay of the stratospheric aerosol is found to occur over the late winter to early spring period.

  20. Estimating Biomass Burning Injection Heights using CALIOP, MODIS, and NASA Langley Trajectory Model: Focus on the Tripod Fire, Washington 2006

    NASA Astrophysics Data System (ADS)

    Choi, H. D.; Roller, C. M.; Soja, A. J.; Fairlie, T. D.

    2014-12-01

    Biomass burning emissions have the potential to alter numerous land and atmospheric processes, which has strong implications for air quality and feedbacks within the climate system. Plume injection height influences plume transport characteristics, such as directly injected into the free troposphere, resulting the long-range transport. We developed a new method to estimate biomass burning plume injection heights with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) aerosol data, Moderate Resolution Imaging Spectroradiometer (MODIS) Fire Detection data, and the NASA Langley Trajectory model. We use CALIOP aerosol information to initialize aerosol-filled air parcels in the Trajectory model. Then, the trajectory model is run backwards until there is a coincidence between MODIS fire detections and smoke parcels. In this presentation, we focus on the Tripod fire, one of the largest fires in the lower 48 in recent US history for July-August 2006. We examine biomass burning injection heights of the Tripod fire and evaluate the modeled plume injection height with satellite derived observed plume height.

  1. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    recommended height for pollutant measurements to represent pedestrian exposure. The vertical structure of aerosols within a street canyon is a topic of constant debate, due to the inability of measurement campaigns to have sufficient spatial resolution to adequately represent the entire vertical structure. Several vertical profiles have been proposed: one where the concentration is the highest at the bottom, decreasing exponentially with increasing height; a homogenous profile across the canyon depth or one with a maximum observed near the road surface. Consistent with previous measurement results, modelling studies found that at the leeward side of the canyon, there was an increase in aerosol concentration up to approximately 2 m in height, followed by a decrease along the height of the canyon. It was also found that the vertical structure of the aerosols would be influenced by the relative contributions of convection and turbulent diffusivities and therefore vary at different locations of the canyon. Using a first-order eddy viscosity turbulence closure, knowledge of the vertical structure of the aerosol concentration would provide insights into the emission velocity structure within the canyon and account for its observed heterogeneity. Investigation of the different factors which influence the ventilation characteristics of the canyon are presented and we show how these facilitate parameterizations into other modelling platforms. Both vertical turbulent flux and flux due to mean flow contribute to the overall ventilation characteristics of a street canyon and these are described. The influence of micro-meteorological factors on the vertical flux of aerosols at the roof level of the street canyon and the relative contributions of flux due to mean flow and turbulent flux at different flow conditions are also investigated. Turbulent flux was found to be of an order of magnitude higher than mean flow flux in isothermal conditions. Therefore, whilst the net effect of turbulent

  2. Physical and optical properties of aerosols over an urban location in western India: Implications for shortwave radiative forcing

    NASA Astrophysics Data System (ADS)

    Ganguly, Dilip; Jayaraman, A.

    2006-12-01

    We discuss results on implications of seasonal and interannual variabilities in aerosol parameters measured over Ahmedabad, an urban location in western India, for the regional-scale shortwave aerosol direct radiative forcing. Results on physical and optical properties of aerosols are discussed in a companion paper. A discrete ordinate radiative transfer model has been used to carry out the radiative transfer computations. Two different approaches are followed to generate spectral values of aerosol parameters required as input for the radiative transfer computations, and the estimated values are found comparable for both methods. Magnitudes of surface forcing are found to be highest during postmonsoon (-63 ± 10 W/m2), followed by dry (-54 ± 6 W/m2) and lower values during premonsoon (-41.4 ± 5 W/m2) and monsoon (-41 ± 11 W/m2) seasons. In case of TOA, radiative forcing are found to be negative during dry (-26 ± 3 W/m2) and postmonsoon (-22), while positive values are obtained during monsoon (14) and premonsoon (8). Large differences between TOA and surface forcing during monsoon and premonsoon indicate large absorption of radiant energy (˜50 W/m2) within the atmosphere during these seasons. Different properties of aerosols and differences in their vertical distribution give rise to different heating rates within the atmosphere for different seasons. Heating rates at the surface are found to be highest during postmonsoon (5.6°K/day) but decreases sharply with increase in height. Atmosphere is heated strongly at higher levels between 1 and 2 km during monsoon. Results from several sensitivity studies have emphasized the importance of solar zenith angle and other related factors in modulating the values of aerosol radiative forcing.

  3. Characterization and sources of regional-scale transported carbonaceous and dust aerosols from different pathways in coastal and sandy land areas of China

    NASA Astrophysics Data System (ADS)

    Zhang, X. Y.; Wang, Y. Q.; Wang, D.; Gong, S. L.; Arimoto, R.; Mao, L. J.; Li, J.

    2005-08-01

    Concentrations of 12-hour averaged organic carbon (OC), elemental carbon (EC), and other trace elements were determined from bulk aerosol samples at a coastal city of Lian Yun Gang (LYG) in east China from June to December 2003 and a sandy land site of Tong Liao in northeast China from June to August 2003. Regional transports from four main source areas accounted for ˜35-49% of the Asian dust and 16-18% of the carbonaceous particles for both sites. The regional mean concentrations of various species, especially EC, were comparable to or lower than those in urban areas of inland China, Korea, and Japan but tended to be higher than those in Hong Kong or rural sites in east Asia. At LYG, OC showed a clear seasonal pattern with a peak loading in winter (24 μg m-3) and a low in summer (10 μg m-3). Seasonality of EC was more pronounced than that of OC with a difference of approximately threefold (3.8 to 11 μg m-3). Three types of air masses with high particulate loadings were found to be responsible for the peak EC and low OC/EC ratios in winter. Clean air masses with more than 50% secondary organic carbon contents were largely of marine origins. Elemental concentrations (Ca, Fe, K, Mn, and Ti) were mainly associated with Asian dust aerosols with a certain fraction of K from biomass burning in mainland China characterized with a ratio of 1.3 for OC/K.

  4. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly. PMID:27295588

  5. Scales

    ScienceCinema

    Murray Gibson

    2010-01-08

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain ? a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  6. Scales

    SciTech Connect

    Murray Gibson

    2007-04-27

    Musical scales involve notes that, sounded simultaneously (chords), sound good together. The result is the left brain meeting the right brain — a Pythagorean interval of overlapping notes. This synergy would suggest less difference between the working of the right brain and the left brain than common wisdom would dictate. The pleasing sound of harmony comes when two notes share a common harmonic, meaning that their frequencies are in simple integer ratios, such as 3/2 (G/C) or 5/4 (E/C).

  7. The influence of ionospheric thin shell height on TEC retrieval from GPS observation

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-Lan; Wan, Qing-Tao; Ma, Guan-Yi; Li, Jing-Hua; Fan, Jiang-Tao

    2016-07-01

    We investigate the influence of assumed height for the thin shell ionosphere model on the Total Electron Content (TEC) derived from a small scale Global Positioning System (GPS) network. TEC and instrumental bias are determined by applying a grid-based algorithm to the data on several geomagnetically quiet days covering a 10 month period in 2006. Comparisons of TEC and instrumental bias are made among assumed heights from 250 km to 700 km with an interval of 10 km. While the TEC variations with time follow the same trend, TEC tends to increase with the height of the thin shell. The difference in TEC between heights 250 km and 700 km can be as large as ∼ 8 TECU in both daytime and nighttime. The times at which the TEC reaches its peak or valley do not vary much with the assumed heights. The instrumental biases, especially bias from the satellite, can vary irregularly with assumed height. Several satellites show a large deviation of ∼ 3 ns for heights larger than 550 km. The goodness of fit for different assumed heights is also examined. The data can be generally well-fitted for heights from 350 km to 700 km. A large deviation happens at heights lower than 350 km. Using the grid-based algorithm, there is no consensus on assumed height as related to data fitting. A thin shell height in the range 350 – 500 km can be a reasonable compromise between data fitting and peak height of the ionosphere.

  8. Radiative impact of aerosols generated from biomass burning

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Vulcan, Donna V.; Welch, Ronald M.

    1995-01-01

    Atmospheric aerosol particles play a vital role in the Earth's radiative energy budget. They exert a net cooling influence on climate by directly reflecting the solar radiation to space and by modifying the shortwave reflective properties of clouds. Each year, increasing amounts of aerosol particles are released into the atmosphere due to biomass burning, dust storms, forest fires, and volcanic activity. These particles significantly perturb the radiative balance on local, regional, and global scales. While the detection of aerosols over water is a well established procedure, the detection of aerosols over land is often difficult due to the poor contrast between the aerosols and the underlying terrain. In this study, we use textural measures in order to detect aerosols generated from biomass burning over South America, using AVHRR data. The regional radiative effects are then examined using ERBE data. Preliminary results show that the net radiative forcing of aerosols is about -36 W/sq m.

  9. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  10. Satellite Perspective of Aerosol Intercontinental Transport: From Qualitative Tracking to Quantitative Characterization

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Remer, Lorraine A.; Kahn, Ralph A.; Chin, Mian; Zhang, Yan

    2012-01-01

    Evidence of aerosol intercontinental transport (ICT) is both widespread and compelling. Model simulations suggest that ICT could significantly affect regional air quality and climate, but the broad inter-model spread of results underscores a need of constraining model simulations with measurements. Satellites have inherent advantages over in situ measurements to characterize aerosol ICT, because of their spatial and temporal coverage. Significant progress in satellite remote sensing of aerosol properties during the Earth Observing System (EOS) era offers opportunity to increase quantitative characterization and estimates of aerosol ICT, beyond the capability of pre-EOS era satellites that could only qualitatively track aerosol plumes. EOS satellites also observe emission strengths and injection heights of some aerosols, aerosol precursors, and aerosol-related gases, which can help characterize aerosol ICT. After an overview of these advances, we review how the current generation of satellite measurements have been used to (1) characterize the evolution of aerosol plumes (e.g., both horizontal and vertical transport, and properties) on an episodic basis, (2) understand the seasonal and inter-annual variations of aerosol ICT and their control factors, (3) estimate the export and import fluxes of aerosols, and (4) evaluate and constrain model simulations. Substantial effort is needed to further explore an integrated approach using measurements from on-orbit satellites (e.g., A-Train synergy) for observational characterization and model constraint of aerosol intercontinental transport and to develop advanced sensors for future missions.

  11. Improvements to the OMI Near-uv Aerosol Algorithm Using A-train CALIOP and AIRS Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Ahn, C.; Zhong, C.

    2014-01-01

    The height of desert dust and carbonaceous aerosols layers and, to a lesser extent, the difficulty in assessing the predominant size mode of these absorbing aerosol types, are sources of uncertainty in the retrieval of aerosol properties from near UV satellite observations. The availability of independent, near-simultaneous measurements of aerosol layer height, and aerosol-type related parameters derived from observations by other A-train sensors, makes possible the direct use of these parameters as input to the OMI (Ozone Monitoring Instrument) near UV retrieval algorithm. A monthly climatology of aerosol layer height derived from observations by the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) sensor, and real-time AIRS (Atmospheric Infrared Sounder) CO observations are used in an upgraded version of the OMI near UV aerosol algorithm. AIRS CO measurements are used as a reliable tracer of carbonaceous aerosols, which allows the identification of smoke layers in areas and times of the year where the dust-smoke differentiation is difficult in the near-UV. The use of CO measurements also enables the identification of elevated levels of boundary layer pollution undetectable by near UV observations alone. In this paper we discuss the combined use of OMI, CALIOP and AIRS observations for the characterization of aerosol properties, and show a significant improvement in OMI aerosol retrieval capabilities.

  12. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  13. Thermal Infrared Radiative Forcing By Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan

    the aerosol constituents. We have also demonstrated that LW aerosol radiative forcing is somewhat sensitive to the water vapor content in the atmosphere, and increases with the dryness of the atmosphere. This evidence supports our argument that the Great Basin area of the USA, which usually has extremely dry atmospheric conditions, can be an appropriate place to study the dry-desert aerosol climate forcing in a regional scale. An analysis of aerosol IR backscattering shows that the effect significantly contributes to both the BOA and TOA IR forcings, even if the aerosols do not exhibit absorption at all in the thermal IR. The general LW radiative forcing is, therefore, associated with both the absorption and scattering effects of the aerosols. Neglecting LW scattering will result in an underestimation of LW radiative forcing by aerosols. Finally, the discrepancy between the FTIR-observed and modeled radiance with aerosols indicates a significant uncertainty, which demands further research on the LW optical properties of fine and coarse mode aerosol.

  14. Interpretation of FRESCO cloud retrievals in case of absorbing aerosol events

    NASA Astrophysics Data System (ADS)

    Wang, P.; Tuinder, O. N. E.; Tilstra, L. G.; Stammes, P.

    2011-12-01

    Cloud and aerosol information is needed in trace gas retrievals from satellite measurements. The Fast REtrieval Scheme for Clouds from the Oxygen A band (FRESCO) cloud algorithm employs reflectance spectra of the O2 A band around 760 nm to derive cloud pressure and effective cloud fraction. In general, clouds contribute more to the O2 A band reflectance than aerosols. Therefore, the FRESCO algorithm does not correct for aerosol effects in the retrievals and attributes the retrieved cloud information entirely to the presence of clouds, and not to aerosols. For events with high aerosol loading, aerosols may have a dominant effect, especially for almost cloud-free scenes. We have analysed FRESCO cloud data and Absorbing Aerosol Index (AAI) data from the Global Ozone Monitoring Experiment (GOME-2) instrument on the Metop-A satellite for events with typical absorbing aerosol types, such as volcanic ash, desert dust and smoke. We find that the FRESCO effective cloud fractions are correlated with the AAI data for these absorbing aerosol events and that the FRESCO cloud pressures contain information on aerosol layer pressure. For cloud-free scenes, the derived FRESCO cloud pressures are close to those of the aerosol layer for optically thick aerosols. For cloudy scenes, if the strongly absorbing aerosols are located above the clouds, then the retrieved FRESCO cloud pressures may represent the height of the aerosol layer rather than the height of the clouds. Combining FRESCO cloud data and AAI, an estimate for the aerosol layer pressure can be given, which can be beneficial for aviation safety and operations in case of e.g. volcanic ash plumes.

  15. Effects of biomass-burning-derived aerosols on precipitation and clouds in the Amazon Basin: a satellite-based empirical study

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Matsui, T.; Pielke, R. A.; Kummerow, C.

    2006-10-01

    Biomass burning in the Amazon provides strong input of aerosols into the atmosphere, with potential effects on precipitation, cloud properties, and radiative balance. However, few studies to date have systematically examined these effects at the scale of the Amazon Basin, over an entire burning season, using available data sets. We empirically study the relationships of aerosol optical depth (τa) versus rainfall and cloud properties measured from satellites over the entire Brazilian Amazon during the dry, biomass burning seasons (August-October) of 2000 and 2003. Elevated τa was associated with increased rainfall in both 2000 and 2003. With enhanced τa, cloud cover increased significantly, and cloud top temperature/pressure decreased, suggesting higher cloud tops. The cloud droplet effective radius (Re) exhibited minimal growth with cloud height under background levels of τa, while distinct increases in Re at cloud top temperatures below -10°C, indicative of ice formation, were observed with aerosol loading. Although empirical correlations do not unequivocally establish the causal link from aerosols, these results are consistent with previous observational and modeling studies that pointed to dynamical effects from aerosols that invigorate convection, leading to higher clouds, enhanced cloud cover, and stronger rainfall. We speculate that changes in precipitation and cloud properties associated with aerosol loading observed in this study could have important radiative and hydrological effects on the Amazonian climate system. The accelerated forest burning for agricultural land clearing and the resulting enhancements in aerosols and rainfall may even partially account for the observed positive trend in Amazonian precipitation over the past several decades.

  16. Have tropospheric aerosol emissions contributed to the recent climate hiatus?

    NASA Astrophysics Data System (ADS)

    Kühn, Thomas; Partanen, Antti-Ilari; Laakso, Anton; Lu, Zifeng; Bergman, Tommi; Mikkonen, Santtu; Kokkola, Harri; Korhonen, Hannele; Räisänen, Petri; Streets, David G.; Romakkaniemi, Sami; Laaksonen, Ari

    2014-05-01

    During the last 15 years global warming has slowed considerably, with the resulting plateau in global temperature records being dubbed the climate hiatus. Apart from variations in solar irradiance and ocean temperature, increased anthropogenic aerosol emissions in South and East Asia have been suggested as possible causes for this hiatus. While European and and North American aerosol emissions have constantly decreased since the 1980's, emissions in China and India have started increasing at the same time and, although total global aerosol emissions have decreased, aerosol effects on the global energy budget are expected to enhance towards the equator due to stronger irradiance there. In this study we used the aerosol-climate model ECHAM5-HAM2 to assess the effect that this re-distribution of anthropogenic aerosol emissions towards the equator may have on climate. To this end, we computed radiative forcing and equilibrium temperature response due to the change in global aerosol emissions (black carbon (BC), organic carbon and sulphur dioxide) between 1996 and 2010, keeping all other anthropogenic influences fixed. Surprisingly we found that the cooling due the increased aerosol emissions in China and India is almost negligible compared to the warming caused by the decreasing aerosol emissions in Europe and North America. The radiative flux perturbation (RFP; includes aerosol indirect effects) was 0.42 W/m2 and the change in global equilibrium 2 m temperature increased by 0.25 °C. The lack of cooling in China and India stems from a cancellation of sulfate cooling and BC warming, especially over China. There, the strong cloud cover leads to both attenuation of sulphate aerosol light scattering and saturation tendency of indirect aerosol effects on clouds. BC levels on the other hand increase also above the clouds (relative increase of BC levels is almost uniform with height), leading to warming through light absorption.

  17. Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head?

    NASA Astrophysics Data System (ADS)

    O'Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Vaishya, A.; Rinaldi, M.; Facchini, M. C.

    2014-10-01

    conclude that negligible coastal, surf zone, or tidal effects are discernible in the secondary or primary aerosol mass residing in the submicron size range for sampling heights of 7 m and above. The Mace Head marine-air criteria ensure anthropogenic and coastal effects are sufficiently minimised so as to guarantee a predominant, and sometimes overwhelming, natural marine aerosol contribution to the total aerosol population when the criteria are adhered to.

  18. Anomalies of the Asian Monsoon Induced by Aerosol Forcings

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, M. K.

    2004-01-01

    Impacts of aerosols on the Asian summer monsoon are studied using the NASA finite volume General Circulation Model (fvGCM), with radiative forcing derived from three-dimensional distributions of five aerosol species i.e., black carbon, organic carbon, soil dust, and sea salt from the Goddard Chemistry Aerosol Radiation and Transport Model (GOCART). Results show that absorbing aerosols, i.e., black carbon and dust, induce large-scale upper-level heating anomaly over the Tibetan Plateau in April and May, ushering in & early onset of the Indian summer monsoon. Absorbing aerosols also I i enhance lower-level heating and anomalous ascent over northern India, intensifying the Indian monsoon. Overall, the aerosol-induced large-scale surface' temperature cooling leads to a reduction of monsoon rainfall over the East Asia continent, and adjacent oceanic regions.

  19. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF–CMAQ: model description, development, evaluation and regional analysis

    SciTech Connect

    Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Gilliam, R.; Alapaty, K.; Zhao, C.; Liu, X.

    2014-01-01

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF–CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF–CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN, and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF–CMAQ/CAM (WRF–CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF–CMAQ/CAM (WRF–CMAQ/RRTMG) consistently underestimated the observed SO42- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF–CMAQ/CAM, WRF–CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the

  20. Aerosol indirect effect on the grid-scale clouds in the two-way coupled WRF-CMAQ: model description, development, evaluation and regional analysis

    NASA Astrophysics Data System (ADS)

    Yu, S.; Mathur, R.; Pleim, J.; Wong, D.; Gilliam, R.; Alapaty, K.; Zhao, C.; Liu, X.

    2014-10-01

    This study implemented first, second and glaciation aerosol indirect effects (AIE) on resolved clouds in the two-way coupled Weather Research and Forecasting Community Multiscale Air Quality (WRF-CMAQ) modeling system by including parameterizations for both cloud drop and ice number concentrations on the basis of CMAQ-predicted aerosol distributions and WRF meteorological conditions. The performance of the newly developed WRF-CMAQ model, with alternate Community Atmospheric Model (CAM) and Rapid Radiative Transfer Model for GCMs (RRTMG) radiation schemes, was evaluated with observations from the Clouds and the See http://ceres.larc.nasa.gov/. Earth's Radiant Energy System (CERES) satellite and surface monitoring networks (AQS, IMPROVE, CASTNET, STN, and PRISM) over the continental US (CONUS) (12 km resolution) and eastern Texas (4 km resolution) during August and September of 2006. The results at the Air Quality System (AQS) surface sites show that in August, the normalized mean bias (NMB) values for PM2.5 over the eastern US (EUS) and the western US (WUS) are 5.3% (-0.1%) and 0.4% (-5.2%) for WRF-CMAQ/CAM (WRF-CMAQ/RRTMG), respectively. The evaluation of PM2.5 chemical composition reveals that in August, WRF-CMAQ/CAM (WRF-CMAQ/RRTMG) consistently underestimated the observed SO42- by -23.0% (-27.7%), -12.5% (-18.9%) and -7.9% (-14.8%) over the EUS at the Clean Air Status Trends Network (CASTNET), Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciated Trends Network (STN) sites, respectively. Both configurations (WRF-CMAQ/CAM, WRF-CMAQ/RRTMG) overestimated the observed mean organic carbon (OC), elemental carbon (EC) and and total carbon (TC) concentrations over the EUS in August at the IMPROVE sites. Both configurations generally underestimated the cloud field (shortwave cloud forcing, SWCF) over the CONUS in August due to the fact that the AIE on the subgrid convective clouds was not

  1. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  2. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  3. 29 CFR 1917.113 - Clearance heights.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Clearance heights. 1917.113 Section 1917.113 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.113 Clearance heights. Clearance heights shall...

  4. The genetic architecture of maize height

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Height is one of the most heritable and easily measured traits in maize (Zea mays L.). Given a pedigree or estimates of the genomic identity-by-state (IBS) among related plants, height is also accurately predictable. But, mapping alleles explaining natural variation in maize height remains a formida...

  5. 29 CFR 1917.113 - Clearance heights.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 7 2011-07-01 2011-07-01 false Clearance heights. 1917.113 Section 1917.113 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Terminal Facilities § 1917.113 Clearance heights. Clearance heights shall...

  6. Clouds and aerosols on Venus: an overview

    NASA Astrophysics Data System (ADS)

    Titov, D. V.; Ignatiev, N. I.; McGouldrick, K.; Wilquet, V.; Wilson, C. F.

    2014-04-01

    The past decade demonstrated significant progress in understanding of the Venus cloud system. This paper gives a summary of new observations and modelling efforts that will form the basis for a relevant chapter in the Venus III book. Venus Express observations reveal significant latitudinal variations and temporal changes in the global cloud top morphology [1]. The cloud top altitude varies from ~72 km in the low and middle latitudes to ~64 km in the polar region, correlated with decrease of the aerosol scale height from 4 ± 1.6 km to 1.7 ± 2.4 km marking a vast polar depression [2, 3]. UV imaging shows the middle latitudes and polar regions in unprecedented detail. The eye of the Southern polar vortex was found to be a strongly variable feature with complex morphology and dynamics [4]. Solar and stellar occultations give access to a vertical profiling of the light absorption by the aerosols in the upper haze. The aerosol loading in the mesosphere of Venus investigated by SPICAV experiment onboard Venus Express between 2006 and 2010 was highly variable on both short and long time scales. The extinction at a given altitude can vary with a factor of 10 for occultations separated by a few Earth days. The extinction at a given altitude is also significantly lower towards the poles (by a factor 10 at least) compared to the values around the equator, while there is apparently no correlation between the extinction and the latitude in the region comprised between ±40° around the equator [5]. Based on Mie theory and on the observed spectral dependence of light extinction in spectra recorded simultaneously in the UV (SPICAV-UV), in the near IR (SPICAV-IR), and in the short-and midwavelength IR (SPICAV-SOIR), the size distribution of aerosols in the upper haze of Venus was retrieved, assuming H2SO4/water composition of the droplets [6]. The optical model includes H2SO4 concentrations from 60 to 85%. A number of results are strikingly new: (1) an increase of the H2SO4

  7. Comparing Icesat/glas Based Elevation Heights with Photogrammetric Terrain Heights from Uav-Imagery on the East Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Enßle, F.; Fritz, A.; Koch, B.

    2015-08-01

    Digital elevation models (DEMs) and height measurements are broadly used in environmental studies. Two common elevation sources are the Ice Cloud and land elevation Satellite (ICESat), which acquired laser range measurements with the Geoscience Laser Altimeter System (GLAS) across the globe and elevation data from the Shuttle Radar Topography Mission (SRTM). Current developments of small unmanned aerial vehicles (UAV) provide the opportunity to collect aerial images of remote areas at a high spatial resolution. These can be further processed to digital surface models by stereophotogrammetry and provide a reliable data source to evaluate coarse scale Digital Elevation Models (DEMs). This study compares ICESat/GLAS and SRTM90 elevation data against photogrammetric terrain heights within GLAS footprints on high altitudes on the East Tibetan Plateau. Without vegetation-bias, we were able to examine height differences under different topographic conditions and of different acquisition dates. Several resampling techniques were applied to SRTM90 data and averaged height within each footprint was calculated. ICESat/GLAS heights (n = 148) are most similar to UAV data based elevations with an averaged difference of -0.8m ±3.1m. Results furthermore indicate the validity of ICESat/GLAS heights, which are usually removed from analyses by applying different quality flags. Smallest difference of SRTM90 to UAV based heights could be observed by a natural neighbour resampling technique (averaged 3.6m ±14m), whereat other techniques achieved quite similar results. It can be confirmed that within a range of 3,800-4,200m above mean sea level the ICESat/GLAS heights are a precise source to determine elevation at footprint geolocation.

  8. Local - Air Project: Tropospheric Aerosol Monitoring by CALIPSO Lidar Satellite and Ground-Based Observations

    NASA Astrophysics Data System (ADS)

    Sarli, V.; Trippetta, S.; Bitonto, P.; Papagiannopoulos, N.; Caggiano, R.; Donvito, A.; Mona, L.

    2016-06-01

    A new method for the detection of the Planetary Boundary Layer (PBL) height from CALIPSO space-borne lidar data was developed and the possibility to infer the sub-micrometric aerosol particle (i.e., PM1) concentrations at ground level from CALIPSO observations was also explored. The comparison with ground-based lidar measurements from an EARLINET (European Aerosol Research LIdar Network) station showed the reliability of the developed method for the PBL. Moreover, empirical relationships between integrated backscatter values from CALIPSO and PM1 concentrations were found thanks to the combined use of the retrieved PBL heights, CALIPSO aerosol profiles and typing and PM1 insitu measurements.

  9. Mixing-height measurement by lidar, particle counter, and rawinsonde in the Williamette Valley, Oregon

    NASA Technical Reports Server (NTRS)

    Mccormick, M. P.; Melfi, S. H.; Olsson, L. E.; Tuft, W. L.; Elliott, W. P.; Egami, R.

    1972-01-01

    The feasibility of using laser radar (lidar) to measure the spatial distribution of aerosols and water vapor in the earth's mixing or boundary layer is shown. From these data the important parameter of actual mixing height was determined, that is, the maximum height to which particulate pollutants actually mix. Data are shown for simultaneous lidar, rawinsonde, and aircraft-mounted condensation nuclei counter and temperature measurements. The synoptic meteorology is also presented. The Williamette Valley, Oregon, was chosen for the measurements because of its unique combination of meteorology, terrain, and pollutant source, along with an ongoing Oregon State University study of the natural ventilation of this valley.

  10. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  11. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  12. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  13. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  14. Immunization by a bacterial aerosol.

    PubMed

    Garcia-Contreras, Lucila; Wong, Yun-Ling; Muttil, Pavan; Padilla, Danielle; Sadoff, Jerry; Derousse, Jessica; Germishuizen, Willem Andreas; Goonesekera, Sunali; Elbert, Katharina; Bloom, Barry R; Miller, Rich; Fourie, P Bernard; Hickey, Anthony; Edwards, David

    2008-03-25

    By manufacturing a single-particle system in two particulate forms (i.e., micrometer size and nanometer size), we have designed a bacterial vaccine form that exhibits improved efficacy of immunization. Microstructural properties are adapted to alter dispersive and aerosol properties independently. Dried "nanomicroparticle" vaccines possess two axes of nanoscale dimensions and a third axis of micrometer dimension; the last one permits effective micrometer-like physical dispersion, and the former provides alignment of the principal nanodimension particle axes with the direction of airflow. Particles formed with this combination of nano- and micrometer-scale dimensions possess a greater ability to aerosolize than particles of standard spherical isotropic shape and of similar geometric diameter. Here, we demonstrate effective application of this biomaterial by using the live attenuated tuberculosis vaccine bacille Calmette-Guérin (BCG). Prepared as a spray-dried nanomicroparticle aerosol, BCG vaccine exhibited high-efficiency delivery and peripheral lung targeting capacity from a low-cost and technically simple delivery system. Aerosol delivery of the BCG nanomicroparticle to normal guinea pigs subsequently challenged with virulent Mycobacterium tuberculosis significantly reduced bacterial burden and lung pathology both relative to untreated animals and to control animals immunized with the standard parenteral BCG. PMID:18344320

  15. Radiative Importance of Aerosol-Cloud Interaction

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    1999-01-01

    Aerosol particles are input into the troposphere by biomass burning, among other sources. These aerosol palls cover large expanses of the earth's surface. Aerosols may directly scatter solar radiation back to space, thus increasing the earth's albedo and act to cool the earth's surface and atmosphere. Aerosols also contribute to the earth's energy balance indirectly. Hygroscopic aerosol act as cloud condensation nuclei (CCN) and thus affects cloud properties. In 1977, Twomey theorized that additional available CCN would create smaller but more numerous cloud droplets in a cloud with a given amount of liquid water. This in turn would increase the cloud albedo which would scatter additional radiation back to space and create a similar cooling pattern as the direct aerosol effect. Estimates of the magnitude of the aerosol indirect effect on a global scale range from 0.0 to -4.8 W/sq m. Thus the indirect effect can be of comparable magnitude and opposite in sign to the estimates of global greenhouse gas forcing Aerosol-cloud interaction is not a one-way process. Just as aerosols have an influence on clouds through the cloud microphysics, clouds have an influence on aerosols. Cloud droplets are solutions of liquid water and CCN, now dissolved. When the cloud droplet evaporates it leaves behind an aerosol particle. This new particle does not have to have the same properties as the original CCN. In fact, studies show that aerosol particles that result from cloud processing are larger in size than the original CCN. Optical properties of aerosol particles are dependent on the size of the particles. Larger particles have a smaller backscattering fraction, and thus less incoming solar radiation will be backscattered to space if the aerosol particles are larger. Therefore, we see that aerosols and clouds modify each other to influence the radiative balance of the earth. Understanding and quantifying the spatial and seasonal patterns of the aerosol indirect forcing may have

  16. Degree and plane of polarization of multiple scattered light. 2: Earth's atmosphere with aerosols

    NASA Technical Reports Server (NTRS)

    Plass, G. N.; Kattawar, G. W.

    1972-01-01

    The degree of polarization, as well as the direction of the plane of polarization, were calculated by a Monte Carlo method for the reflected and transmitted photons from the earth's atmosphere. The solar photons were observed during multiple collisions with aerosols and the Rayleigh scattering centers in the atmosphere. The aerosol number density, as well as the ratio of aerosol to Rayleigh scattering, varies with height. The proportion of aerosol to Rayleigh scattering was appropriately chosen at each wavelength 0.4 microns and 0.7 microns; ozone absorption was included where appropriate. Three different aerosol number densities were used to study the effects of aerosol variations. Results are given for a solar zenith angle of 81.37 deg and a surface albedo of zero. The polarization of the reflected and transmitted photons was found to be sensitive to the amount of aerosols in the atmosphere at certain angles of observation.

  17. Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.

    1998-01-01

    The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.

  18. Estimating vehicle height using homographic projections

    DOEpatents

    Cunningham, Mark F; Fabris, Lorenzo; Gee, Timothy F; Ghebretati, Jr., Frezghi H; Goddard, James S; Karnowski, Thomas P; Ziock, Klaus-peter

    2013-07-16

    Multiple homography transformations corresponding to different heights are generated in the field of view. A group of salient points within a common estimated height range is identified in a time series of video images of a moving object. Inter-salient point distances are measured for the group of salient points under the multiple homography transformations corresponding to the different heights. Variations in the inter-salient point distances under the multiple homography transformations are compared. The height of the group of salient points is estimated to be the height corresponding to the homography transformation that minimizes the variations.

  19. Long-term impacts of aerosols on vertical development of cloud and precipitation

    SciTech Connect

    Li Z.; Liu Y.; Niu, F.; Fan, J.; Rosenfeld, D.; Ding, Y.

    2011-11-13

    Aerosols alter cloud density and the radiative balance of the atmosphere. This leads to changes in cloud microphysics and atmospheric stability, which can either suppress or foster the development of clouds and precipitation. The net effect is largely unknown, but depends on meteorological conditions and aerosol properties. Here, we examine the long-term impact of aerosols on the vertical development of clouds and rainfall frequencies, using a 10-year dataset of aerosol, cloud and meteorological variables collected in the Southern Great Plains in the United States. We show that cloud-top height and thickness increase with aerosol concentration measured near the ground in mixed-phase clouds-which contain both liquid water and ice-that have a warm, low base. We attribute the effect, which is most significant in summer, to an aerosol-induced invigoration of upward winds. In contrast, we find no change in cloud-top height and precipitation with aerosol concentration in clouds with no ice or cool bases. We further show that precipitation frequency and rain rate are altered by aerosols. Rain increases with aerosol concentration in deep clouds that have a high liquid-water content, but declines in clouds that have a low liquid-water content. Simulations using a cloud-resolving model confirm these observations. Our findings provide unprecedented insights of the long-term net impacts of aerosols on clouds and precipitation.

  20. Tropopsheric Aerosol Chemistry via Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Worsnop, Douglas

    2008-03-01

    A broad overview of size resolved aerosol chemistry in urban, rural and remote regions is evolving from deployment of aerosol mass spectrometers (AMS) throughout the northern hemisphere. Using thermal vaporization and electron impact ionization as universal detector of non-refractory inorganic and organic composition, the accumulation of AMS results represent a library of mass spectral signatures of aerosol chemistry. For organics in particular, mass spectral factor analysis provides a procedure for classifying (and simplifying) complex mixtures composed of the hundreds or thousands of individual compounds. Correlations with parallel gas and aerosol measurements (e.g. GC/MS, HNMR, FTIR) supply additional chemical information needed to interpret mass spectra. The challenge is to separate primary and secondary; anthropogenic, biogenic and biomass burning sources - and subsequent - transformations of aerosol chemistry and microphysics.

  1. Anthropogenic Aerosol Effects on Sea Surface Temperatures: Mixed-Layer Ocean Experiments with Explicit Aerosol Representation

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    Anthropogenic aerosols affect the Earth's radiative balance both through direct and indirect effects. These effects can lead to a reduction of the incoming solar radiation at the surface, i.e. dimming, which may lead to a change in sea surface temperatures (SST) or SST pattern. This, in turn, may affect precipitation patterns. The goal of the present work is to achieve an estimate of the equilibrium SST changes under anthropogenic aerosol forcing since industrialisation. We show preliminary results from mixed-layer ocean (MLO) experiments with explicit aerosol representation performed with ECHAM6-HAM. The (fixed) MLO heat flux into the deep ocean was derived from atmosphere only runs with fixed climatological SSTs (1961-1990 average) and present day (year 2000) aerosols and GHG burdens. Some experiments we repeated with an alternative MLO deep ocean heat flux (based on pre-industrial conditions) to test the robustness of our results with regard to this boundary condition. The maximum surface temperature responses towards anthropogenic aerosol and GHG forcing (separately and combined) were derived on a global and regional scale. The same set of experiments was performed with aerosol and GHG forcings representative of different decades over the past one and a half centuries. This allows to assess how SST patterns at equilibrium changed with changing aerosol (and GHG) forcing. Correlating SST responses with the change in downward clear-sky and all-sky shortwave radiation provides a first estimate of the response to anthropogenic aerosols. Our results show a clear contrast in hemispheric surface temperature response, as expected from the inter-hemispheric asymmetry of aerosol forcing The presented work is part of a project aiming at quantifying the effect of anthropogenic aerosol forcing on SSTs and the consequences for global precipitation patterns. Results from this study will serve as a starting point for further experiments involving a dynamic ocean model, which

  2. Two Alternative Methods for Height Transformation

    NASA Astrophysics Data System (ADS)

    Kollo, Karin

    2008-03-01

    Geodesists have always been dealing with coordinate transformations. There exist various kinds of transformations, like three-dimensional (spatial datum) transformations, two-dimensional (horizontal datum) transformations and one-dimensional (eg, height) transformations. In this article we discuss height transformations. Height data is usually obtained by levelling. The problematic side of levelling is that this technique is very labour intensive and costly. Nowadays as well GPS measurements can be used, which are much faster and cheaper, but in order to use GPS measurements for height determination, we need a precise geoid model to transform GPS heights to heights above sea level. In this article two different approaches to this transformation are presented. At first, the affine transformation is discussed. The method is by nature linear, and employs the barycentric coordinates of the point, the height of which is going to be computed. Secondly, the method of fuzzy modelling is used. By these methods, the transformation surface is determined and the heights of desired points can be determined. As the input data, height information from the precise levelling campaign in Estonia is used. The computed values are tested against height information, gathered from the reference geoid model. The objectives of this research are acquiring insight into using alternative methods for height transformation as well as to statistically characterise the suitability of the proposed methods.

  3. Impact of Aerosol Processing on Orographic Clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, Sara; Zubler, Elias M.; Lohmann, Ulrike

    2010-05-01

    . [6]. Our investigation regarding the influence of aerosol processing will focus on the regional scale using a cloud-system resolving model with a much higher resolution. Emphasis will be placed on orographic mixed-phase precipitation. Different two-dimensional simulations of idealized orographic clouds will be conducted to estimate the effect of aerosol processing on orographic cloud formation and precipitation. Here, cloud lifetime, location and extent as well as the cloud type will be of particular interest. In a supplementary study, the new parameterization will be compared to observations of total and interstitial aerosol concentrations and size distribution at the remote high alpine research station Jungfraujoch in Switzerland. In addition, our simulations will be compared to recent simulations of aerosol processing in warm, mixed-phase and cold clouds, which have been carried out at the location of Jungfraujoch station [5]. References: [1] Pruppacher & Jaenicke (1995), The processing of water vapor and aerosols by atmospheric clouds, a global estimate, Atmos. Res., 38, 283295. [2] Seifert & Beheng (2006), A two-moment microphysics parameterization for mixed-phase clouds. Part 1: Model description, Meteorol. Atmos. Phys., 92, 4566. [3] Vignati et al. (2004), An efficient size-resolved aerosol microphysics module for large-scale transport models, J. Geophys. Res., 109, D22202 [4] Muhlbauer & Lohmann (2008), Sensitivity studies of the role of aerosols in warm-phase orographic precipitation in different flow regimes, J. Atmos. Sci., 65, 25222542. [5] Hoose et al. (2008), Aerosol processing in mixed-phase clouds in ECHAM5HAM: Model description and comparison to observations, J. Geophys. Res., 113, D071210. [6] Hoose et al. (2008), Global simulations of aerosol processing in clouds, Atmos. Chem. Phys., 8, 69396963.

  4. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  5. Aerosol Composition and Morphology during the 2005 Marine Stratus Radiation Aerosol and Drizzle Study

    SciTech Connect

    Berkowitz, Carl M.; Jobson, B Tom T.; Alexander, M. Lizabeth; Laskin, Alexander; Laulainen, Nels S.

    2005-12-01

    The composition and morphology of aerosols activated within cloud droplets relative to the properties of aerosols not activated is of central importance to studies directed at improved parameterization of the treatment of aerosols in large-scale models. These models have many applications, including evaluations of the impact of anthropogenic aerosols on climate. To further our understanding of these aerosol characteristics, scientists from the U.S. Department of Energy Atmospheric Science Program (ASP), joined forces with other participants of the Atmospheric Radiation Measurement (ARM) "Marine Stratus Radiation Aerosol and Drizzle Study" between July 4 and July 29, 2005, at Pt. Reyes, California. Observations from in situ aerosol instruments and from the ARM Mobile Facility will be combined in a first look at observations from this period. The in situ aerosol measurements included high time resolution data of size-resolved bulk composition (sulfate, nitrate, NH4, organics, etc.) and single particle analysis to determine elemental composition and morphology. A CCN counter was also deployed to measure the fraction of cloud droplet kernels that are CCN active over a range of super-saturations. Our presentation will partition measurements into periods of cloudy and cloud-free periods, and will also be partitioned between periods associated with northerly back trajectories that arrived at Pt. Reyes after passing along the Washington-Oregon coast, westerly oceanic trajectories and a very limited number of periods when the air flow appeared to be associated with urban areas to the south and southeast.

  6. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    NASA Technical Reports Server (NTRS)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  7. Aerosol optical properties in the southeastern United States in summer - Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N. L.; Anderson, B. E.; Beyersdorf, A.; Campuzano-Jost, P.; Day, D. A.; Diskin, G. S.; Gordon, T. D.; Jimenez, J. L.; Lack, D. A.; Liao, J.; Markovic, M.; Middlebrook, A. M.; Perring, A. E.; Richardson, M. S.; Schwarz, J. P.; Welti, A.; Ziemba, L. D.; Murphy, D. M.

    2015-11-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013. Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0-4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation of these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry-climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of ~ 25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental airmasses in which an accumulation mode between 0.1-0.5 μm diameter dominates aerosol extinction.

  8. Aerosol optical properties in the southeastern United States in summer - Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.; Beyersdorf, Andreas; Campuzano-Jost, Pedro; Day, Douglas A.; Diskin, Glenn S.; Gordon, Timothy D.; Jimenez, Jose L.; Lack, Daniel A.; Liao, Jin; Markovic, Milos Z.; Middlebrook, Ann M.; Perring, Anne E.; Richardson, Matthews S.; Schwarz, Joshua P.; Welti, Andre; Ziemba, Luke D.; Murphy, Daniel M.

    2016-04-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US). Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0-4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry-climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of ˜ 25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1-0.5 µm diameter dominates aerosol extinction.

  9. Complex Aerosol Experiment in Western Siberia (April - October 2013)

    NASA Astrophysics Data System (ADS)

    Matvienko, G. G.; Belan, B. D.; Panchenko, M. V.; Romanovskii, O. A.; Sakerin, S. M.; Kabanov, D. M.; Turchinovich, S. A.; Turchinovich, Yu. S.; Eremina, T. A.; Kozlov, V. S.; Terpugova, S. A.; Pol'kin, V. V.; Yausheva, E. P.; Chernov, D. G.; Zuravleva, T. B.; Bedareva, T. V.; Odintsov, S. L.; Burlakov, V. D.; Arshinov, M. Yu.; Ivlev, G. A.; Savkin, D. E.; Fofonov, A. V.; Gladkikh, V. A.; Kamardin, A. P.; Balin, Yu. S.; Kokhanenko, G. P.; Penner, I. E.; Samoilova, S. V.; Antokhin, P. N.; Arshinova, V. G.; Davydov, D. K.; Kozlov, A. V.; Pestunov, D. A.; Rasskazchikova, T. M.; Simonenkov, D. V.; Sklyadneva, T. K.; Tolmachev, G. N.; Belan, S. B.; Shmargunov, V. P.

    2016-06-01

    The primary project objective was to accomplish the Complex Aerosol Experiment, during which the aerosol properties should be measured in the near-ground layer and free atmosphere. Three measurement cycles were performed during the project implementation: in spring period (April), when the maximum of aerosol generation is observed; in summer (July), when atmospheric boundary layer height and mixing layer height are maximal; and in late summer - early autumn (October), when the secondary particle nucleation period is recorded. Numerical calculations were compared with measurements of fluxes of downward solar radiation. It was shown that the relative differences between model and experimental values of fluxes of direct and total radiation, on the average, do not exceed 1% and 3% respectively.

  10. Evaluating Aerosol Process Modules within the Framework of the Aerosol Modeling Testbed

    NASA Astrophysics Data System (ADS)

    Fast, J. D.; Velu, V.; Gustafson, W. I.; Chapman, E.; Easter, R. C.; Shrivastava, M.; Singh, B.

    2012-12-01

    Factors that influence predictions of aerosol direct and indirect forcing, such as aerosol mass, composition, size distribution, hygroscopicity, and optical properties, still contain large uncertainties in both regional and global models. New aerosol treatments are usually implemented into a 3-D atmospheric model and evaluated using a limited number of measurements from a specific case study. Under this modeling paradigm, the performance and computational efficiency of several treatments for a specific aerosol process cannot be adequately quantified because many other processes among various modeling studies (e.g. grid configuration, meteorology, emission rates) are different as well. The scientific community needs to know the advantages and disadvantages of specific aerosol treatments when the meteorology, chemistry, and other aerosol processes are identical in order to reduce the uncertainties associated with aerosols predictions. To address these issues, an Aerosol Modeling Testbed (AMT) has been developed that systematically and objectively evaluates new aerosol treatments for use in regional and global models. The AMT consists of the modular Weather Research and Forecasting (WRF) model, a series testbed cases for which extensive in situ and remote sensing measurements of meteorological, trace gas, and aerosol properties are available, and a suite of tools to evaluate the performance of meteorological, chemical, aerosol process modules. WRF contains various parameterizations of meteorological, chemical, and aerosol processes and includes interactive aerosol-cloud-radiation treatments similar to those employed by climate models. In addition, the physics suite from the Community Atmosphere Model version 5 (CAM5) have also been ported to WRF so that they can be tested at various spatial scales and compared directly with field campaign data and other parameterizations commonly used by the mesoscale modeling community. Data from several campaigns, including the 2006

  11. Optical Properties of Aerosols and Clouds: The Software Package OPAC.

    NASA Astrophysics Data System (ADS)

    Hess, M.; Koepke, P.; Schult, I.

    1998-05-01

    The software package OPAC (Optical Properties of Aerosols and Clouds) is described. It easily provides optical properties in the solar and terrestrial spectral range of atmospheric particulate matter. Microphysical and optical properties of six water clouds, three ice clouds, and 10 aerosol components, which are considered as typical cases, are stored as ASCII files. The optical properties are the extinction, scattering, and absorption coefficients, the single scattering albedo, the asymmetry parameter, and the phase function. They are calculated on the basis of the microphysical data (size distribution and spectral refractive index) under the assumption of spherical particles in case of aerosols and cloud droplets and assuming hexagonal columns in case of cirrus clouds. Data are given for up to 61 wavelengths between 0.25 and 40 m and up to eight values of the relative humidity. The software package also allows calculation of derived optical properties like mass extinction coefficients and Ångström coefficients.Real aerosol in the atmosphere always is a mixture of different components. Thus, in OPAC it is made possible to get optical properties of any mixtures of the basic components and to calculate optical depths on the base of exponential aerosol height profiles. Typical mixtures of aerosol components as well as typical height profiles are proposed as default values, but mixtures and profiles for the description of individual cases may also be achieved simply.

  12. SOIR/VEX mesospheric aerosols observations and modelling

    NASA Astrophysics Data System (ADS)

    Wilquet, Valérie; Carine Vandaele, Ann; Drummond, Rachel; Mahieux, Arnaud; Robert, Séverine; Daerden, Frank; Neary, Lori; Bertaux, Jean-Loup

    2013-04-01

    SPICAV/SOIR on-board Venus Express is able to target the layer of aerosols above the cloud layer at the terminator (Wilquet et al., 2009). A high temporal variability in the aerosol content in Venus' atmosphere was inferred from SOIR observations, as well as a latitudinal dependency of the aerosol loading (Wilquet et al., 2012). This is in agreement with results from previous missions and with the facts that (i) H2SO4 aerosol particles are formed through SO2 photo-oxidation and hydration at the cloud top of Venus, (ii) SO2 photolysis is more efficient at low latitudes, (iii) the altitude of the cloud top is up to one scale height lower in the polar region than at the equator. A increasing SO2 abundance with increasing altitude was recently observed with SPICAV-UV at altitudes of ~ 85-105 km (Belyaev et al., 2012) but also from microwave ground-based spectra in the Venus mesosphere (Sandor et al., 2010), which suggest a source of SO2 at high altitudes. Zhang et al. (2012) proposed a one dimensional photochemistry-diffusion model in order to reconcile these puzzling findings; he suggested that H2SO4 might be a source of SO2 above 90 km through aerosol evaporation followed by SO3 photolysis. This model and the observations are however disputed by others demonstrating the necessity for a more global interpretation of the observations and for modelling of the upper haze layer. For example, the variations in aerosol loading can be compared to other key parameters of the atmosphere retrieved from the same SOIR spectra such as water and SO2 composition or temperature. In addition, a microphysical model is being developed that will calculate the time dependent haze particle size distributions assuming an initial size distribution of background sulphate aerosols. The model will simulate the formation, growth, evaporation, and sedimentation of particles. Results of this on-going research will be presented and discussed. References : Belyaev, D.A., F. Montmessin, J.-L. Bertaux

  13. CMAQ validation of optical parameters and PM2.5 based on lidar and sky radiometers: a sensitivity study of optical parameters to hygroscopic aerosols

    NASA Astrophysics Data System (ADS)

    Vladutescu, Daniela Viviana; Garofalo, Erika; Gross, Barry; Moshary, Fred; Ahmed, Samir

    2009-08-01

    With the dramatically climate changing we are facing today atmospheric monitoring is of major importance. Several atmospheric monitoring instruments are used for measuring atmospheric composition, optical coefficients, PM2.5, aerosol optical depth, size distribution, PBL height and many other parameters. However an inexpensive method of determining these parameters is by use of models and one model that depicts the aerosol dynamics in the atmosphere is the Community Multi-scale Air Quality (CMAQ) model. Our paper is focused on converting CMAQ retrieval outputs into optical coefficients that can then be comparing the lidar, AERONET and TEOM measurements performed at City College of the City University of New York . Differences between the full approach and parameterized methods such as the MALM formula used in AIR-NOW are observed and comparisons with AERONET show the full modeling is in general superior to the MALM formula.

  14. Aerosol profiling by calibrated ceilometer data

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2015-04-01

    Recently, networks of automated single-wavelength backscatter lidars ("ceilometers") were implemented, primarily by weather services. As a consequence, the potential of ceilometers to quantitatively determine the spatiotemporal distribution of atmospheric aerosols was investigated, to derive mixing layer heights for air quality studies and to assess optical properties. The main issues are the limited signal-to-noise ratio and the inherent problems of the calibration. We have studied several approaches for calibrating ceilometers, based on different numerical solutions and on auxiliary data of different remote sensing techniques. As a result, the backscatter coefficient can be determined with a relative accuracy of typically 10% and a time resolution in the order of 5 minutes. This parameter is used to estimate the mixing layer height by applying different techniques of averaging and pattern recognition. In this context, it is assumed that aerosols are a good tracer for the thermodynamic stratification of the troposphere. Our algorithm is fully automated and was tested for several commercially available ceilometers. For this purpose, a simplified version for non-calibrated ceilometers, based on the so called range corrected signal, was additionally developed. We used data of the CHM15k-x ceilometer (manufactured by Jenoptik) from more than 5 years of continuous operation by the LMU-MIM in Munich (Germany) to establish climatologies of mixing layer heights (MLH), cloud cover, cloud heights and vertical profiles of the backscatter coefficient. Among others, the mean diurnal cycle and the interannual variability of the MLH for different months were determined. Ceilometer derived MLH were also used to validate different parameterization of chemistry transport models and to validate forecasts of the dispersion of aerosol layers. For the latter applications backscatter coefficients are required. That means, a calibration of the ceilometers is mandatory.

  15. A Comparison of Seasonal and Interannual Variability of Soil Dust Aerosols Over the Atlantic Ocean as Inferred by the Toms AI and AVHRR AOT Retrievals

    NASA Technical Reports Server (NTRS)

    Cakmur, R. V.; Miller, R. L.; Tegen, Ina; Hansen, James E. (Technical Monitor)

    2001-01-01

    The seasonal cycle and interannual variability of two estimates of soil (or 'mineral') dust aerosols are compared: Advanced Very High Resolution Radiometer (AVHRR) aerosol optical thickness (AOT) and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI), Both data sets, comprising more than a decade of global, daily images, are commonly used to evaluate aerosol transport models. The present comparison is based upon monthly averages, constructed from daily images of each data set for the period between 1984 and 1990, a period that excludes contamination from volcanic eruptions. The comparison focuses upon the Northern Hemisphere subtropical Atlantic Ocean, where soil dust aerosols make the largest contribution to the aerosol load, and are assumed to dominate the variability of each data set. While each retrieval is sensitive to a different aerosol radiative property - absorption for the TOMS AI versus reflectance for the AVHRR AOT - the seasonal cycles of dust loading implied by each retrieval are consistent, if seasonal variations in the height of the aerosol layer are taken into account when interpreting the TOMS AI. On interannual time scales, the correlation is low at most locations. It is suggested that the poor interannual correlation is at least partly a consequence of data availability. When the monthly averages are constructed using only days common to both data sets, the correlation is substantially increased: this consistency suggests that both TOMS and AVHRR accurately measure the aerosol load in any given scene. However, the two retrievals have only a few days in common per month so that these restricted monthly averages have a large uncertainty. Calculations suggest that at least 7 to 10 daily images are needed to estimate reliably the average dust load during any particular month, a threshold that is rarely satisfied by the AVHRR AOT due to the presence of clouds in the domain. By rebinning each data set onto a coarser grid, the availability of

  16. Microphysical processing of aerosol particles in orographic clouds

    NASA Astrophysics Data System (ADS)

    Pousse-Nottelmann, S.; Zubler, E. M.; Lohmann, U.

    2015-08-01

    An explicit and detailed treatment of cloud-borne particles allowing for the consideration of aerosol cycling in clouds has been implemented into COSMO-Model, the regional weather forecast and climate model of the Consortium for Small-scale Modeling (COSMO). The effects of aerosol scavenging, cloud microphysical processing and regeneration upon cloud evaporation on the aerosol population and on subsequent cloud formation are investigated. For this, two-dimensional idealized simulations of moist flow over two bell-shaped mountains were carried out varying the treatment of aerosol scavenging and regeneration processes for a warm-phase and a mixed-phase orographic cloud. The results allowed us to identify different aerosol cycling mechanisms. In the simulated non-precipitating warm-phase cloud, aerosol mass is incorporated into cloud droplets by activation scavenging and released back to the atmosphere upon cloud droplet evaporation. In the mixed-phase cloud, a first cycle comprises cloud droplet activation and evaporation via the Wegener-Bergeron-Findeisen (WBF) process. A second cycle includes below-cloud scavenging by precipitating snow particles and snow sublimation and is connected to the first cycle via the riming process which transfers aerosol mass from cloud droplets to snowflakes. In the simulated mixed-phase cloud, only a negligible part of the total aerosol mass is incorporated into ice crystals. Sedimenting snowflakes reaching the surface remove aerosol mass from the atmosphere. The results show that aerosol processing and regeneration lead to a vertical redistribution of aerosol mass and number. Thereby, the processes impact the total aerosol number and mass and additionally alter the shape of the aerosol size distributions by enhancing the internally mixed/soluble Aitken and accumulation mode and generating coarse-mode particles. Concerning subsequent cloud formation at the second mountain, accounting for aerosol processing and regeneration increases

  17. Size distribution and optical properties of mineral dust aerosols transported in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Denjean, C.; Cassola, F.; Mazzino, A.; Triquet, S.; Chevaillier, S.; Grand, N.; Bourrianne, T.; Momboisse, G.; Sellegri, K.; Schwarzenbock, A.; Freney, E.; Mallet, M.; Formenti, P.

    2016-02-01

    This study presents in situ aircraft measurements of Saharan mineral dust transported over the western Mediterranean basin in June-July 2013 during the ChArMEx/ADRIMED (the Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) airborne campaign. Dust events differing in terms of source region (Algeria, Tunisia and Morocco), time of transport (1-5 days) and height of transport were sampled. Mineral dust were transported above the marine boundary layer, which conversely was dominated by pollution and marine aerosols. The dust vertical structure was extremely variable and characterized by either a single layer or a more complex and stratified structure with layers originating from different source regions. Mixing of mineral dust with pollution particles was observed depending on the height of transport of the dust layers. Dust layers carried a higher concentration of pollution particles below 3 km above sea level (a.s.l.) than above 3 km a.s.l., resulting in a scattering Ångström exponent up to 2.2 below 3 km a.s.l. However, the optical properties of the dust plumes remained practically unchanged with respect to values previously measured over source regions, regardless of the altitude. Moderate absorption of light by the dust plumes was observed with values of aerosol single scattering albedo at 530 nm ranging from 0.90 to 1.00. Concurrent calculations from the aerosol chemical composition revealed a negligible contribution of pollution particles to the absorption properties of the dust plumes that was due to a low contribution of refractory black carbon in regards to the fraction of dust and sulfate particles. This suggests that, even in the presence of moderate pollution, likely a persistent feature in the Mediterranean, the optical properties of the dust plumes could be assumed similar to those of native dust in radiative transfer simulations, modelling studies and satellite retrievals

  18. In Situ Chemical Characterization of Organic Aerosol Surfaces using Direct Analysis in Real Time

    NASA Astrophysics Data System (ADS)

    Chan, M.; Nah, T.; Wilson, K. R.

    2012-12-01

    Obtaining in situ information on the molecular composition of atmospheric aerosol is important for understanding the sources, formation mechanisms, aging and physiochemical properties of atmospheric aerosol. Most recently, we have used Direct Analysis in Real Time (DART), which is a "soft" atmospheric pressure ionization technique, for in situ chemical characterization of a variety of laboratory generated organic aerosol and heterogeneous processing oleic acid aerosol. A stream of aerosol particles is crossed with a thermal flow of metastable He atoms (produced by the DART source) in front of an inlet of a mass spectrometer. The thermally desorbed analytes are subsequently ionized with minimal fragmentation by reactive species in the DART ionization source (e.g., metastable He atoms). The ion signal scales with the aerosol surface area rather than aerosol volume, suggesting that aerosol particles are not completely vaporized in the ionization region. The DART can thus measure the chemical composition as a function of aerosol depth. Probing aerosol depth is determined by the thermal desorption rates of aerosol particles. Here, we investigate how the experimental parameters (e.g., DART gas temperature and residence time) and the physiochemical properties of aerosol particles (e.g., enthalpy of vaporization) affect the probing aerosol depth and the desorption-ionization mechanism of aerosol particles in the DART using a series of model organic compounds. We also demonstrate the potential application of DART for in situ chemically analyzing wet aerosol particles undergoing oxidation reactions.

  19. Anomalous variations of tropopause height in low latitude regions

    NASA Astrophysics Data System (ADS)

    Ramkumar, T. K.; Narayana Rao, D.

    Successful attempts have been made in early 1990s to link the possible influence of equatorial stratospheric quasi-biennial-oscillation QBO on tropopause dynamics at longer period scales leading ultimately to the evolution of strong El Nino events of global economic importance Gray et al 1992 GRL JMSJ As a result of this influence it is possible that the tropopause height may be increasing instead of decreasing with latitude from the equator in tropical regions during particular phase of QBO say westerly phase over the equator In the present work we report such observations using radiosonde data obtained from fourteen different tropical 30 N to 30 S radio-sounding stations located in the wide longitudinal zone of South East Asia South Pacific and Africa in the year 2004 The daily tropopause height determined at 00 00 and 12 00 hrs GMT is averaged for each month separately The tropopause height Cold Point Tropopause CPT is determined by noting the height of minimum temperature between 12 and 20 km It is observed further that the latitude variation of tropopause height in southern Hemisphere is much less when compared to that in the Northern Hemisphere The reason for this asymmetric characteristic of tropopause about the equator may be that greater fraction of the northern hemisphere is covered with land and it is ocean in the southern hemisphere Because of large variations in topography of the land and the associated thermal conductivity it is possible that convection activities of the

  20. Genetically Determined Height and Coronary Artery Disease

    PubMed Central

    Nelson, C.P.; Hamby, S.E.; Saleheen, D.; Hopewell, J.C.; Zeng, L.; Assimes, T.L.; Kanoni, S.; Willenborg, C.; Burgess, S.; Amouyel, P.; Anand, S.; Blankenberg, S.; Boehm, B.O.; Clarke, R.J.; Collins, R.; Dedoussis, G.; Farrall, M.; Franks, P.W.; Groop, L.; Hall, A.S.; Hamsten, A.; Hengstenberg, C.; Hovingh, G. Kees; Ingelsson, E.; Kathiresan, S.; Kee, F.; König, I.R.; Kooner, J.; Lehtimäki, T.; März, W.; McPherson, R.; Metspalu, A.; Nieminen, M.S.; O’Donnell, C.J.; Palmer, C.N.A.; Peters, A.; Perola, M.; Reilly, M.P.; Ripatti, S.; Roberts, R.; Salomaa, V.; Shah, S.H.; Schreiber, S.; Siegbahn, A.; Thorsteinsdottir, U.; Veronesi, G.; Wareham, N.; Willer, C.J.; Zalloua, P.A.; Erdmann, J.; Deloukas, P.; Watkins, H.; Schunkert, H.; Danesh, J.; Thompson, J.R.; Samani, N.J.

    2015-01-01

    BACKGROUND The nature and underlying mechanisms of an inverse association between adult height and the risk of coronary artery disease (CAD) are unclear. METHODS We used a genetic approach to investigate the association between height and CAD, using 180 height-associated genetic variants. We tested the association between a change in genetically determined height of 1 SD (6.5 cm) with the risk of CAD in 65,066 cases and 128,383 controls. Using individual-level genotype data from 18,249 persons, we also examined the risk of CAD associated with the presence of various numbers of height-associated alleles. To identify putative mechanisms, we analyzed whether genetically determined height was associated with known cardiovascular risk factors and performed a pathway analysis of the height-associated genes. RESULTS We observed a relative increase of 13.5% (95% confidence interval [CI], 5.4 to 22.1; P<0.001) in the risk of CAD per 1-SD decrease in genetically determined height. There was a graded relationship between the presence of an increased number of height-raising variants and a reduced risk of CAD (odds ratio for height quartile 4 versus quartile 1, 0.74; 95% CI, 0.68 to 0.84; P<0.001). Of the 12 risk factors that we studied, we observed significant associations only with levels of low-density lipoprotein cholesterol and triglycerides (accounting for approximately 30% of the association). We identified several overlapping pathways involving genes associated with both development and atherosclerosis. CONCLUSIONS There is a primary association between a genetically determined shorter height and an increased risk of CAD, a link that is partly explained by the association between shorter height and an adverse lipid profile. Shared biologic processes that determine achieved height and the development of atherosclerosis may explain some of the association. PMID:25853659

  1. The Regional Environmental Impacts of Atmospheric Aerosols over Egypt

    NASA Astrophysics Data System (ADS)

    Zakey, Ashraf; Ibrahim, Alaa

    2015-04-01

    Identifying the origin (natural versus anthropogenic) and the dynamics of aerosols over Egypt at varying temporal and spatial scales provide valuable knowledge on the regional climate impacts of aerosols and their ultimate connections to the Earth's regional climate system at the MENA region. At regional scale, Egypt is exposed to air pollution with levels exceeding typical air-quality standards. This is particularly true for the Nile Delta region, being at the crossroads of different aerosol species originating from local urban-industrial and biomass-burning activities, regional dust sources, and European pollution from the north. The Environmental Climate Model (EnvClimA) is used to investigate both of the biogenic and anthropogenic aerosols over Egypt. The dominant natural aerosols over Egypt are due to the sand and dust storms, which frequently occur during the transitional seasons (spring and autumn). In winter, the maximum frequency reaches 2 to 3 per day in the north, which decreases gradually southward with a frequency of 0.5-1 per day. Monitoring one of the most basic aerosol parameters, the aerosol optical depth (AOD), is a main experimental and modeling task in aerosol studies. We used the aerosol optical depth to quantify the amount and variability of aerosol loading in the atmospheric column over a certain areas. The aerosols optical depth from the model is higher in spring season due to the impacts of dust activity over Egypt as results of the westerly wind, which carries more dust particles from the Libyan Desert. The model result shows that the mass load of fine aerosols has a longer life-time than the coarse aerosols. In autumn season, the modelled aerosol optical depth tends to increase due to the biomass burning in the delta of Egypt. Natural aerosol from the model tends to scatter the solar radiation while most of the anthropogenic aerosols tend to absorb the longwave solar radiation. The overall results indicate that the AOD is lowest in winter

  2. Latitudinal variation of Cloud Top