Science.gov

Sample records for aerosol shock tube

  1. Development of an Aerosol Loading Technique for Ignition Time Measurements in Shock Tubes

    DTIC Science & Technology

    2007-08-01

    initial pressure. For the present ignition study a 21% oxygen-79% argon mixture was used. Poppet valves in the endwall are then opened as well as a...the pressure in the driven section of the tube constant. The narrow flow passage past the poppet valves serves to accelerate the flow and generate... valve near the diaphragm connected to a vacuum pump, and a steady-state flow of aerosol/carrier gas mixture is feed into the shock tube while keeping

  2. Biophysical analysis of bacterial and viral systems. A shock tube study of bio-aerosols and a correlated AFM/nanosims investigation of vaccinia virus

    SciTech Connect

    Gates, Sean Damien

    2013-05-01

    The work presented herein is concerned with the development of biophysical methodology designed to address pertinent questions regarding the behavior and structure of select pathogenic agents. Two distinct studies are documented: a shock tube analysis of endospore-laden bio-aerosols and a correlated AFM/NanoSIMS study of the structure of vaccinia virus.

  3. Shock Tube Measurements of Ignition Processes and Spray-Shock Wave Interactions

    DTIC Science & Technology

    2008-04-06

    of species time-histories for OH radicals and alkanes; (4) ignition delay times of n-dodecane, jet fuel and diesel using the aerosol shock tube...of n-dodecane, jet fuel and diesel using the aerosol shock tube technique; and (5) improving shock tube performance and modeling. (a) Papers... Octane and n-Heptane Oxidation,” Proceedings of the Combustion Institute 31 (2007) 321-328. T. C. Hanson, D. F. Davidson, R. K. Hanson, “Shock Induced

  4. Interpreting Shock Tube Ignition Data

    DTIC Science & Technology

    2003-10-01

    times only for high concentrations (of order 1% fuel or greater). The requirements of engine (IC, HCCI , CI and SI) modelers also present a different...Paper 03F-61 Interpreting Shock Tube Ignition Data D. F. Davidson and R. K. Hanson Mechanical Engineering ... Engineering Department Stanford University, Stanford CA 94305 Abstract Chemical kinetic modelers make extensive use of shock tube ignition data

  5. Principles and application of shock-tubes and shock tunnels

    NASA Technical Reports Server (NTRS)

    Ried, R. C.; Clauss, H. G., Jr.

    1963-01-01

    The principles, theoretical flow equations, calculation techniques, limitations and practical performance characteristics of basic and high performance shock tubes and shock tunnels are presented. Selected operating curves are included.

  6. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho

    1993-07-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar{mu}s/cm{sup 2}. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/{mu}s under a loading pressure rate of several Mbar/{mu}s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/{mu}s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/{mu}s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/{mu}s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  7. Phase detonated shock tube (PFST)

    SciTech Connect

    Zerwekh, W.D.; Marsh, S.P.; Tan, Tai-Ho.

    1993-01-01

    The simple, cylindrically imploding and axially driven fast shock tube (FST) has been a basic component in the high velocity penetrator (HVP) program. It is a powerful device capable of delivering a directed and very high pressure output that has been successfully employed to drive hypervelocity projectiles. The FST is configured from a hollow, high-explosive (HE) cylinder, a low-density Styrofoam core, and a one-point initiator at one end. A Mach stem is formed in the core as the forward-propagating, HE detonation wave intersects the reflected radial wave. This simple FST has been found to be a powerful pressure multiplier. Up to 1-Mbar output pressure can be obtained from this device. Further increase in the output pressure can be achieved by increasing the HE detonation velocity. The FST has been fine tuned to drive a thin plate to very high velocity under an impulse per unit area of about 1 Mbar[mu]s/cm[sup 2]. A 1.5-mm-thick stainless steel disk has been accelerated intact to 0.8 cm/[mu]s under a loading pressure rate of several Mbar/[mu]s. By making the plate curvature slightly convex at the loading side the authors have successfully accelerated it to almost 1.0 cm/[mu]s. The incorporation of a barrel at the end of the FST has been found to be important as confinement of the propellant gas by the barrel tends to accelerate the projectile to higher velocity. The desire to accelerate the plate above 1.0 cm/[mu]s provided the impetus to develop a more advanced fast shock tube to deliver a much higher output pressure. This report describes the investigation of a relatively simple air-lens phase-detonation system (PFST) with fifty percent higher phase-detonation velocity and a modest 2 Mbar output. Code calculations have shown that this PFST acceleration of a plate to about 1.2 cm/[mu]s can be achieved. The performance of these PFSTs has been evaluated and the details are discussed.

  8. Radiative effects in radiative shocks in shock tubes

    NASA Astrophysics Data System (ADS)

    Drake, R. P.; Doss, F. W.; McClarren, R. G.; Adams, M. L.; Amato, N.; Bingham, D.; Chou, C. C.; DiStefano, C.; Fidkowski, K.; Fryxell, B.; Gombosi, T. I.; Grosskopf, M. J.; Holloway, J. P.; van der Holst, B.; Huntington, C. M.; Karni, S.; Krauland, C. M.; Kuranz, C. C.; Larsen, E.; van Leer, B.; Mallick, B.; Marion, D.; Martin, W.; Morel, J. E.; Myra, E. S.; Nair, V.; Powell, K. G.; Rauchwerger, L.; Roe, P.; Rutter, E.; Sokolov, I. V.; Stout, Q.; Torralva, B. R.; Toth, G.; Thornton, K.; Visco, A. J.

    2011-09-01

    Using modern high-energy-density facilities it is straightforward to produce radiative shock waves in which the transfer of energy by radiation controls the hydrodynamic structure of the system. Some of these experiments use shock tubes. This paper discusses such experiments, with an emphasis on the simple physical relations that determine the primary features of such shocks and on the details and impact of radiative energy transfer in such systems. Notable aspects include the creation of high-density shocked layers, the flow of radiative energy toward regions of higher energy density, and the creation of secondary shocks by ablation of the tube walls ahead of the primary shock front. Simulations of one such experimental system are also shown.

  9. Condensate Accretion in Shock Tube's Expansion Fan

    NASA Technical Reports Server (NTRS)

    Mezonlin, Ephrem-Denis; DeSilva, Upul P.; Hunte, F.; Johnson, Joseph A., III

    1997-01-01

    It has been shown that turbulence and temperature influence the droplet sizes in expansion fan induced condensation by studying the Rayleigh scattering from one port in our shock tube's test section. We have modified our set-up so as to allow, using two ports, the real time measurement of the influence of turbulence and temperature on the rate at which these droplets grow. To do this, we looked at the Rayleigh scattering from two different ports for ten Reynolds numbers at five different temperatures. We modeled the time of flight of droplets, using the equations of one-dimensional gas dynamics and the measured shock wave speed in shock tube's driven section.

  10. An explosively driven, fast shock tube

    SciTech Connect

    Tan, T.H.; Marsh, S.

    1992-01-01

    A simple, cylindrically configured fast shock tube (FST) has been employed as a tool to investigate the hydrodynamics of plate drive under a very high impulse-loading condition. The shock tube has a high-explosive outer shell and a low-density foam core. The implosion produces a well-defined Mach disk that is then subsequently used to drive a metallic plate. A thin stainless steel (SS) plate has been successfully launched to 9 km/s with this device. The experimental results from the study of material flow will be presented and compared with numerical calculation. Various interesting measurement techniques will also be discussed.

  11. An explosively driven, fast shock tube

    SciTech Connect

    Tan, T.H.; Marsh, S.

    1992-03-01

    A simple, cylindrically configured fast shock tube (FST) has been employed as a tool to investigate the hydrodynamics of plate drive under a very high impulse-loading condition. The shock tube has a high-explosive outer shell and a low-density foam core. The implosion produces a well-defined Mach disk that is then subsequently used to drive a metallic plate. A thin stainless steel (SS) plate has been successfully launched to 9 km/s with this device. The experimental results from the study of material flow will be presented and compared with numerical calculation. Various interesting measurement techniques will also be discussed.

  12. Numerical simulation of flow characteristics in micro shock tubes

    NASA Astrophysics Data System (ADS)

    Zhang, Guang; Setoguchi, Toshiaki; Kim, Heuy Dong

    2015-06-01

    Recently micro shock tubes have been widely used in many engineering and industrial fields, but the characteristics of unsteady flow are not well known to date in micro shock tubes. Compared to conventional shock tubes with macro scales, flows related to shock waves in micro shock tubes are highly complicated. Stronger viscous and dissipative interactions make shock wave dynamic behaviors significantly different from theoretical predictions. In the present study, a CFD work was applied to the unsteady compressible Navier-Stokes equations which were solved using a fully implicit finite volume scheme. The diaphragm pressure ratio and shock tube diameter were varied to investigate their effects on micro shock tube flows. Different wall boundary conditions were also performed to observe shock wave and contact surface propagation with no slip and slip walls. Detailed flow characteristics at the foot of shock wave and contact surface propagation were known from the present numerical simulations.

  13. Shock Tube/Laser Absorption Studies of Jet Fuels at Low Temperatures (600-1200K)

    DTIC Science & Technology

    2013-08-27

    Davidson, Ronald K. Hanson. A second-generation aerosol shock tube and its use in studying ignition delay times of large biodiesel surrogates, 28th... Biodiesel Surrogate behind Reflected Shock Waves,” 8th US National Combustion Meeting, Paper 070RK-0008 Park City, UT 5/2013.   These  studies provide...apply this extended diagnostic scheme to pyroly- sis and oxidation of other fuels, including jet fuel and biodiesel fuel surrogates. SUPPORTING

  14. Ten Years of Shock Tube Research at Marseille

    NASA Astrophysics Data System (ADS)

    Houas, L.

    The invention of the shock tube is attributed to Paul Vieille [1] in the late 19th century. The first simplest shock tube was composed of two chambers separated by a diaphragm.With the pressure increase in the first chamber causing the diaphragm rupture, a shock wave was generated and propagated with a supersonic velocity in the second chamber.

  15. Characterization of a 4-inch Portable Shock Tube

    DTIC Science & Technology

    2014-12-01

    USAARL Report No. 2015-04 Characterization of a 4-inch Portable Shock Tube By Trevor W. Jerome1, 2 Stephanie J. Karch1, 2 Joshua C. Beech1...756 recordings of 126 blasts. .................. 11 15. Shock tube impulse A-durations for various Mylar® film configurations…………………...12 vi...duration of positive phase (A- duration), and peak pressure (Kerr and Byrne, 1975). Shock tubes can produce blasts in a controlled environment

  16. Jet-flow from shock tubes

    NASA Astrophysics Data System (ADS)

    Kingery, Charles N.; Gion, Edmund J.

    1989-07-01

    This project was designed to map the magnitude and extent of the high velocity jet flow exiting shock tubes. The flow was measured by installing stagnation probes along three blast lines and by supplementing these measurements with calibrated displacement cubes. The side-on and stagnation overpressure versus time were measured, and from that, the side-on and stagnation impulse were calculated. The stagnation impulse showed a large drop in magnitude as the blast line was moved from the zero line to a 1.5 and then to a 3-diameter offset. A helium driver was used in the 2.54-cm-diameter shock tube to simulate an explosion in a storage magazine. Results are presented in the form of stagnation impulse versus distance along the three blast lines. The significance of these findings is that the present quantity-distance criteria for munitions stored in underground magazines are based on side-on peak overpressure, but our results show that the peak stagnation pressure and impulse are much greater. At a distance where 10.3-kPa (1.5 psi) side-on pressure was measured, a 49.6-kPa (7.2 psi) stagnation pressure was measured. At the same distance, a side-on impulse was 12.6 kPa-ms (1.83 psi-ms), while the stagnation impulse was 134 kPa-ms (20.2 psi-ms)--a dramatic difference.

  17. Rupture-disk-less shock-tube with compression tube driven by free piston

    NASA Astrophysics Data System (ADS)

    Abe, T.; Ogura, E.; Sato, S.; Funabiki, K.

    A new technique is proposed for a shock tube driven by a freely moving piston. In a conventional free-piston-driven shock tube, a rupture disk is employed between the compression tube and the shock generation tube. In the present method, however, the conventional rupture disk is replaced by a newly developed fast action valve which is activated by the compressed gas generated in the compression tube. The present method enables us to generate high Mach number shock waves of arbitrary strength with good reproducibility. The performance of the new method is demonstrated experimentally. This also enables us to be carefree to scattering of fragments of the rupture disk.

  18. Note: A table-top blast driven shock tube

    NASA Astrophysics Data System (ADS)

    Courtney, Michael W.; Courtney, Amy C.

    2010-12-01

    The prevalence of blast-induced traumatic brain injury in conflicts in Iraq and Afghanistan has motivated laboratory scale experiments on biomedical effects of blast waves and studies of blast wave transmission properties of various materials in hopes of improving armor design to mitigate these injuries. This paper describes the design and performance of a table-top shock tube that is more convenient and widely accessible than traditional compression driven and blast driven shock tubes. The design is simple: it is an explosive driven shock tube employing a rifle primer that explodes when impacted by the firing pin. The firearm barrel acts as the shock tube, and the shock wave emerges from the muzzle. The small size of this shock tube can facilitate localized application of a blast wave to a subject, tissue, or material under test.

  19. Flash photolysis-shock tube studies

    SciTech Connect

    Michael, J.V.

    1993-12-01

    Even though this project in the past has concentrated on the measurement of thermal bimolecular reactions of atomic species with stable molecules by the flash or laser photolysis-shock tube (FP- or LP-ST) method using atomic resonance absorption spectrometry (ARAS) as the diagnostic technique, during the past year the authors have concentrated on studies of the thermal decompositions of selected chlorocarbon molecules. These studies are necessary if the degradation of chlorine containing organic molecules by incineration are to be understood at the molecular level. Clearly, destruction of these molecules will not only involve abstraction reactions, when possible, but also thermal decomposition followed by secondary reactions of the initially formed atoms and radicals. Studies on the thermal decomposition of CH{sub 3}Cl are complete, and the curve-of-growth for Cl-atom atomic resonance absorption has been determined. The new thermal decomposition studies are similar to those already reported for CH{sub 3}Cl.

  20. Shock waves from an open-ended shock tube with different shapes

    NASA Astrophysics Data System (ADS)

    Yu, Q.; Grönig, H.

    1996-11-01

    A new method for decreasing the attenuation of a shock wave emerging from an open-ended shock tube exit into a large free space has been developed to improve the shock wave technique for cleaning deposits on the surfaces in industrial equipments by changing the tube exit geometry. Three tube exits (the simple tube exit, a tube exit with ring and a coaxial tube exit) were used to study the propagation processes of the shock waves. The detailed flow features were experimentally investigated by use of a two-dimensional color schlieren method and by pressure measurements. By comparing the results for different tube exits, it is shown that the expansion of the shock waves near the mouth can be restricted by using the tube exit with ring or the coaxial tube exit. Thus, the attenuation of the shock waves is reduced. The time histories of overpressure have illustrated that the best results are obtained for the coaxial tube exit. But the pressure signals for the tube exit with ring showed comparable results with the advantage of a relatively simple geometry. The flow structures of diffracting shock waves have also been simulated by using an upwind finite volume scheme based on a high order extension of Godunov's method as well as an adaptive unstructured triangular mesh refinement/unrefinement algorithm. The numerical results agree remarkably with the experimental ones.

  1. Explosively driven air blast in a conical shock tube

    SciTech Connect

    Stewart, Joel B. Pecora, Collin

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  2. Note: An improved solenoid driver valve for miniature shock tubes.

    PubMed

    Lynch, P T

    2016-05-01

    A solenoid driver valve has been built to improve the operating performance of diaphragmless shock tubes, which are used for high pressure, high temperature chemical kinetics, and fluid mechanics studies. For shock tube driver application, the most important characteristics are those of sealing, strength, and quality of the generated shock waves and repeatability of opening characteristics and therefore subsequent post-shock conditions. The main features of the new driver valve are a face o-ring sealing design of the valve, the large internal volume, and through inserts near the solenoid core: adjustable opening characteristics of the valve.

  3. 25. View down launch tube, showing shock absorption system. Lyon ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. View down launch tube, showing shock absorption system. Lyon - Whiteman Air Force Base, Minuteman Missile Launch Facility Trainer T-12, Northeast of Oscar-01 Missile Alert Facility, Knob Noster, Johnson County, MO

  4. 48. Bottom of shock absorber, bottom of launch tube, soda ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    48. Bottom of shock absorber, bottom of launch tube, soda bottle liter at right - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD

  5. Plasma Shock Wave Modification Experiments in a Temperature Compensated Shock Tube

    NASA Technical Reports Server (NTRS)

    Vine, Frances J.; Mankowski, John J.; Saeks, Richard E.; Chow, Alan S.

    2003-01-01

    A number of researchers have observed that the intensity of a shock wave is reduced when it passes through a weakly ionized plasma. While there is little doubt that the intensity of a shock is reduced when it propagates through a weakly ionized plasma, the major question associated with the research is whether the reduction in shock wave intensity is due to the plasma or the concomitant heating of the flow by the plasma generator. The goal of this paper is to describe a temperature compensated experiment in a "large" diameter shock tube with an external heating source, used to control the temperature in the shock tube independently of the plasma density.

  6. Kinetic theory and turbulent discontinuities. [shock tube flow

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; I, L.; Li, Y.; Ramaian, R.; Santigo, J. P.

    1981-01-01

    Shock tube discontinuities were used to test and extend a kinetic theory of turbulence. In shock wave and contact surface fluctuations, coherent phenomena were found which provide new support for the microscopic nonempirical approach to turbulent systems, especially those with boundary layer-like instabilities.

  7. Comparisons between Fast Shock Tube Simulations and Tests

    NASA Astrophysics Data System (ADS)

    Mehra, V.; Mishra, V.; D, Sijoy C.; Chaturvedi, S.

    2012-07-01

    The experiments of Menikoff et al on a projectile hypervelocity launcher using a fast shock tube (FST) are modelled using smooth particle hydrodynamics (SPH) technique. In a FST, the progressive detonation of a co-axial HE cylinder induces a cumulative shock in the liquid-filled core. This shock hits a thin flyer and accelerates it to hypervelocity. The comparisons are made on flyer velocity profile, peak pressure and shock speed in liquid core. The SPH reproduces the qualitative and quantitative aspects of the FST and is well-suited to the high strain-rate feature of this experiment.

  8. International Symposium on Shock Tubes and Waves (16th)

    DTIC Science & Technology

    1988-05-10

    layer in the bottom of (RWTH),currentl attended by over 35,000 students, 80 a 17-inch shock tube, along with laser Doppler percent of whom s, udy...the ptecursor and other features appear steady in the in- plosions of AgN3 triggered by laser light. When a shock cident shock frame. The precursor...hours of Cray time!) of shock-bubble inter- Bazhenova, T.V., L.G. Gvozdeva, and N. Nettleton , Progress of actions, done by Karl-Heinz Winkler and Paul

  9. Transient hot-film sensor response in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ortgies, K. R.; Gartenberg, E.

    1989-01-01

    Shock tube experiments were performed to determine the response of a hot-film sensor, mounted flush on the side wall of a shock tube, to unsteady flow behind a normal shock wave. The present experiments attempt to isolate the response of the anemometer due only to the change in convective heat transfer at the hot-film surface. The experiments, performed at low supersonic shock speeds in air, are described along with the data acquisition procedure. The change in convective heat transfer is deduced from the data and the results are compared with those from transient boundary layer theory and another set of experimental results. Finally, a transient local heat transfer coefficient is formulated for use as the forcing function in a hot-film sensor instrument model simulation.

  10. Viscous Shear Layers Formed by Non-Bifurcating Shock Waves in Shock-Tubes

    NASA Astrophysics Data System (ADS)

    Grogan, Kevin; Ihme, Matthias

    2015-11-01

    Shock-tubes are test apparatuses that are used extensively for chemical kinetic measurements. Under ideal conditions, shock-tubes provide a quiescent region behind a reflected shock wave where combustion may take place without complications arising from gas-dynamic effects. However, due to the reflected shock wave encountering a boundary layer, significant inhomogeneity may be introduced into the test region. The bifurcation of the reflected shock-wave is well-known to occur under certain conditions; however, a viscous shear layer may form behind a non-bifurcating reflected shock wave as well and may affect chemical kinetics and ignition of certain fuels. The focus of this talk is on the development of the viscous shear layer and the coupling to the ignition in the regime corresponding to the negative temperature conditions.

  11. Calibration of PCB-132 Sensors in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Berridge, Dennis C.; Schneider, Steven P.

    2012-01-01

    While PCB-132 sensors have proven useful for measuring second-mode instability waves in many hypersonic wind tunnels, they are currently limited by their calibration. Until now, the factory calibration has been all that was available, which is a single-point calibration at an amplitude three orders of magnitude higher than a second-mode wave. In addition, little information has been available about the frequency response or spatial resolution of the sensors, which is important for measuring high-frequency instability waves. These shortcomings make it difficult to compare measurements at different conditions and between different sensors. If accurate quantitative measurements could be performed, comparisons of the growth and breakdown of instability waves could be made in different facilities, possibly leading to a method of predicting the amplitude at which the waves break down into turbulence, improving transition prediction. A method for calibrating the sensors is proposed using a newly-built shock tube at Purdue University. This shock tube, essentially a half-scale version of the 6-Inch shock tube at the Graduate Aerospace Laboratories at Caltech, has been designed to attain a moderate vacuum in the driven section. Low driven pressures should allow the creation of very weak, yet still relatively thin shock waves. It is expected that static pressure rises within the range of second-mode amplitudes should be possible. The shock tube has been designed to create clean, planar shock waves with a laminar boundary layer to allow for accurate calibrations. Stronger shock waves can be used to identify the frequency response of the sensors out to hundreds of kilohertz.

  12. Uncertainty quantification of bacterial aerosol neutralization in shock heated gases

    NASA Astrophysics Data System (ADS)

    Schulz, J. C.; Gottiparthi, K. C.; Menon, S.

    2015-01-01

    A potential method for the neutralization of bacterial endospores is the use of explosive charges since the high thermal and mechanical stresses in the post-detonation flow are thought to be sufficient in reducing the endospore survivability to levels that pose no significant health threat. While several experiments have attempted to quantify endospore survivability by emulating such environments in shock tube configurations, numerical simulations are necessary to provide information in scenarios where experimental data are difficult to obtain. Since such numerical predictions require complex, multi-physics models, significant uncertainties could be present. This work investigates the uncertainty in determining the endospore survivability from using a reduced order model based on a critical endospore temperature. Understanding the uncertainty in such a model is necessary in quantifying the variability in predictions using large-scale, realistic simulations of bacterial endospore neutralization by explosive charges. This work extends the analysis of previous large-scale simulations of endospore neutralization [Gottiparthi et al. in (Shock Waves, 2014. doi:10.1007/s00193-014-0504-9)] by focusing on the uncertainty quantification of predicting endospore neutralization. For a given initial mass distribution of the bacterial endospore aerosol, predictions of the intact endospore percentage using nominal values of the input parameters match the experimental data well. The uncertainty in these predictions are then investigated using the Dempster-Shafer theory of evidence and polynomial chaos expansion. The studies show that the endospore survivability is governed largely by the endospore's mass distribution and their exposure or residence time at the elevated temperatures and pressures. Deviations from the nominal predictions can be as much as 20-30 % in the intermediate temperature ranges. At high temperatures, i.e., strong shocks, which are of the most interest, the

  13. A diaphragmless shock tube for high temperature kinetic studies

    SciTech Connect

    Tranter, Robert S.; Giri, Binod R.

    2008-09-15

    A novel, diaphragmless shock tube (DFST) has been developed for use in high temperature chemical kinetic studies. The design of the apparatus is presented along with performance data that demonstrate the range and reproducibility of reaction conditions that can be generated. The ability to obtain data in the fall off region, confined to much narrower pressure ranges than can be obtained with a conventional shock tube is shown, and results from laser schlieren densitometry experiments on the unimolecular dissociation of phenyl iodide (P{sub 2}=57{+-}9 and 122{+-}7 torr, T{sub 2}=1250-1804 K) are presented. These are compared with results similar to those that would be obtained from a classical shock tube and the implications for extrapolation by theoretical methods are discussed. Finally, the use of the DFST with an online mass spectrometer to create reproducible experiments that can be signal averaged to improve signal/noise and the quality of mass peaks is demonstrated; something that is not possible with a conventional shock tube where each experiment has to be considered unique.

  14. Dust Particle Velocity Measurement in Shock Tubes.

    DTIC Science & Technology

    1985-12-08

    00. . .. 0 . 37 21 Photography of Electronic System for CERF 6’ Shock Tubeo..o..... 38 22 Record of a Typical Doppler Burst...2.1 PRINCIPLE OF OPERATION. Direct measurement of the particle velocity was obtained using Laser Doppler Velocimetry (LDV) [Ref. 2 and 3]. The...and transforms it into an electri- cal signal, known as Doppler burst. The period of the burst (T) is a function of the fringe spacing and the

  15. Improvement of pump tubes for gas guns and shock tube drivers

    NASA Technical Reports Server (NTRS)

    Bogdanoff, D. W.

    1990-01-01

    In a pump tube, a gas is mechanically compressed, producing very high pressures and sound speeds. The intensely heated gas produced in such a tube can be used to drive light gas guns and shock tubes. Three concepts are presented that have the potential to allow substantial reductions in the size and mass of the pump tube to be achieved. The first concept involves the use of one or more diaphragms in the pump tube, thus replacing a single compression process by multiple, successive compressions. The second concept involves a radical reduction in the length-to-diameter ratio of the pump tube and the pump tube piston. The third concept involves shock heating of the working gas by high explosives in a cyclindrical geometry reusable device. Preliminary design analyses are performed on all three concepts and they appear to be quite feasible. Reductions in the length and mass of the pump tube by factors up to about 11 and about 7, respectively, are predicted, relative to a benchmark conventional pump tube.

  16. Radiative cooling of shock-heated air in an explosively driven shock tube.

    NASA Technical Reports Server (NTRS)

    Cooper, D. M.; Borucki, W. J.; Chien, K. Y.

    1972-01-01

    Results are presented of an experimental program to measure the effect of radiative cooling on the enthalpy distribution behind incident shock waves traveling in air. The shock velocity was nominally 16 km/sec and the preshock ambient pressure was varied from 0.4 to 1.6 torr. Shock-tube diameters of 4.7 and 9.4 cm were used to investigate the effects of varying optical depths. Radiative cooling rates were determined from spatially resolved measurements of the profile of the H sub alpha line and from absolute measurements of the continuum radiation. The measured enthalpy profiles are in good agreement with the theoretical predictions of Chien and Compton which account for both nongrey and multidimensional aspects of the radiative transport in the shock tube.

  17. Particle seeding flow system for horizontal shock tube

    SciTech Connect

    Johnston, Stephen; Garcia, Nicolas J.; Martinez, Adam A.; Orlicz, Gregory C.; Prestridge, Katherine P.

    2012-08-01

    The Extreme Fluids Team in P-23, Physics Division, studies fluid dynamics at high speeds using high resolution diagnostics. The unsteady forces on a particle driven by a shock wave are not well understood, and they are difficult to model. A horizontal shock tube (HST) is being modified to collect data about the behavior of particles accelerated by shocks. The HST has been used previously for studies of Richtmyer-Meshkov instability using Planar Laser-Induced Fluorescence (PLIF) as well as Particle Image Velocimetry (PIV), diagnostics that measure density and velocity. The purpose of our project is to design a flow system that will introduce particles into the HST. The requirements for this particle flow system (PFS) are that it be non-intrusive, be able to introduce either solid or liquid particles, have an exhaust capability, not interfere with existing diagnostics, and couple with the existing HST components. In addition, the particles must flow through the tube in a uniform way. We met these design criteria by first drawing the existing shock tube and diagnostics and doing an initial design of the ducts for the PFS. We then estimated the losses through the particle flow system from friction and researched possible fans that could be used to drive the particles. Finally, the most challenging component of the design was the coupling to the HST. If we used large inlets, the shock would lose strength as it passed by the inlet, so we designed a novel coupling inlet and outlet that minimize the losses to the shock wave. Our design was reviewed by the Extreme Fluids Team, and it is now being manufactured and built based upon our technical drawings.

  18. Analysis of shock-wave propagation in aqueous foams using shock tube experiments

    NASA Astrophysics Data System (ADS)

    Jourdan, G.; Mariani, C.; Houas, L.; Chinnayya, A.; Hadjadj, A.; Del Prete, E.; Haas, J.-F.; Rambert, N.; Counilh, D.; Faure, S.

    2015-05-01

    This paper reports experimental results of planar shock waves interacting with aqueous foams in a horizontal conventional shock tube. Four incident shock wave Mach numbers are considered, ranging from 1.07 to 1.8, with two different foam columns of one meter thickness and expansion ratios of 30 and 80. High-speed flow visualizations are used along with pressure measurements to analyse the main physical mechanisms that govern shock wave mitigation in foams. During the shock/foam interaction, a precursor leading pressure jump was identified as the trace of the liquid film destruction stage in the foam fragmentation process. The corresponding pressure threshold is found to be invariant for a given foam. Regarding the mitigation effect, the results show that the speed of the shock is drastically reduced and that wetter is the foam, slower are the transmitted waves. The presence of the foam barrier attenuates the induced pressure impulse behind the transmitted shock, while the driest foam appears to be more effective, as it limits the pressure induced by the reflected shock off the foam front. Finally, it was found that the pressure histories in the two-phase gas-liquid mixture are different from those previously obtained within a cloud of droplets. The observed behavior is attributed to the process of foam fragmentation and to the modification of the flow topology past the shock. These physical phenomena occurring during the shock/foam interaction should be properly accounted for when elaborating new physical models.

  19. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    SciTech Connect

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Matsumoto, Yoichiro; Takagi, Shu

    2008-12-31

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  20. Shock tubes and waves; Proceedings of the Thirteenth International Symposium, Niagara Falls, NY, July 6-9, 1981

    NASA Astrophysics Data System (ADS)

    Treanor, C. E.; Hall, J. G.

    1982-10-01

    The present conference on shock tubes and waves considers shock tube drivers, luminous shock tubes, shock tube temperature and pressure measurement, shock front distortion in real gases, nonlinear standing waves, transonic flow shock wave turbulent boundary interactions, wall roughness effects on reflected shock bifurcation, argon thermal conductivity, pattern generation in gaseous detonations, cylindrical resonators, shock tunnel-produced high gain lasers, fluid dynamic aspects of laser-metal interaction, and the ionization of argon gas behind reflected shock waves. Also discussed are the ionization relaxation of shock-heated plasmas and gases, discharge flow/shock tube studies of singlet oxygen, rotational and vibrational relaxation, chemiluminescence thermal and shock wave decomposition of hydrogen cyanide and hydrogen azide, shock wave structure in gas-particle mixtures at low Mach numbers, binary nucleation in a Ludwieg tube, shock liquefaction experiments, pipeline explosions, the shock wave ignition of pulverized coal, and shock-initiated methane combustion.

  1. Shock Tube Experiments for Earth and Mars Entry Conditions

    DTIC Science & Technology

    2009-09-01

    RTO-EN-AVT-162 13 - 1 Shock Tube Experiments for Earth and Mars Entry Conditions David W. Bogdanoff ELORET Corporation 465 S. Mathilda...Ave., Suite 103 Sunnyvale, CA 94086 USA David.W.Bogdanoff@nasa.gov ABSTRACT This seminar describes how radiative heating for earth and Mars entry...data acquistion system and representative spectra are presented for earth and Mars entry conditions. 1.0 INTRODUCTION The motivations for the

  2. Handbook of Supersonic Aerodynamics. Section 18. Shock Tubes

    DTIC Science & Technology

    1959-12-01

    they cannot be terminated properly. The natural crystals, quartz and tourmaline , and barium titan- ate ceramics have been the most used materials for...shock tube applica- tions. Quartz and tourmaline are excellent mechanically with modulus K insensitive to temperature and about 11 gg coulombs/lb. The...the crystallographic axes may be controlled. A limitation on barium titanate is its narrow stable temperature range (about 20 to 1000C).* Tourmaline

  3. Blast Loading of Epoxy Panels Using a Shock Tube

    NASA Technical Reports Server (NTRS)

    Pankow, Mark; Waas, Anthony M.; Bednarcyk, Brett

    2010-01-01

    The high strain rate mechanical response of thin polymer plates has been studied using a modified shock tube. Diagnostics include the pressure-time history of the incident and reflected pulses and the use of digital image correlation (DIC) techniques to extract the time-history of the out-of-plane displacement distribution. Additionally, finite element models have been developed to understand the plate response and to validate and modify plate material constitutive models that have been proposed.

  4. Shock waves and shock tubes; Proceedings of the Fifteenth International Symposium, Berkeley, CA, July 28-August 2, 1985

    NASA Technical Reports Server (NTRS)

    Bershader, D. (Editor); Hanson, R. (Editor)

    1986-01-01

    A detailed survey is presented of shock tube experiments, theoretical developments, and applications being carried out worldwide. The discussions explore shock tube physics and the related chemical, physical and biological science and technology. Extensive attention is devoted to shock wave phenomena in dusty gases and other multiphase and heterogeneous systems, including chemically reactive mixtures. Consideration is given to techniques for measuring, visualizing and theoretically modeling flowfield, shock wave and rarefaction wave characteristics. Numerical modeling is explored in terms of the application of computational fluid dynamics techniques to describing flowfields in shock tubes. Shock interactions and propagation, in both solids, fluids, gases and mixed media are investigated, along with the behavior of shocks in condensed matter. Finally, chemical reactions that are initiated as the result of passage of a shock wave are discussed, together with methods of controlling the evolution of laminar separated flows at concave corners on advanced reentry vehicles.

  5. Shock-tube studies of silicon-compound vapors

    NASA Technical Reports Server (NTRS)

    Park, C.; Fujiwara, T.

    1977-01-01

    Test gas mixtures containing SiO, SiO2, Si2, and SiH were produced in a shock tube by processing shock waves through a mixture of SiCl4 + N2O + Ar, SiH4 + Ar, or SiH4 + O2 + Ar. Absorption spectra of the test gases were studied photographically in the reflected shock region using a xenon flash lamp as the light source in the range of wavelengths between 250 and 600 nm. SiO was found to be a dominant species in the vapors produced by the SiCl4 + N2O and SiH4 + O2 mixtures. Spontaneous combustion was observed in the SiH4 + O2 + Ar mixture prior to the shock arrival, and the resulting solid SiO2 particles evaporated behind the shock wave. Spectral absorption characteristics of SiO, SiO2, Si2, and SiH were determined by studying the test gases.

  6. Properties of longitudinal flux tube waves. II. Limiting shock strength behavior

    NASA Astrophysics Data System (ADS)

    Cuntz, M.

    2004-06-01

    We extend our previous work on analytic evaluations of properties of longitudinal tube waves to waves propagating in gravitational atmospheres. We derive an expression for the limiting shock strength and discuss the behavior of the shock strength in tubes of different geometry. It is found that a height-independent value for the limiting strength is attained for constant cross-section tubes and exponential tubes, whereas for wine-glass tubes the limiting shock strength increases with height due to the increase of the tube cross section. The limiting shock strength is well reproduced by time-dependent simulations. The derived limiting shock strength as well as the energy dissipation rate of the waves show significant similarities to acoustic waves. The limiting shock strength allows to estimate the heating potential of waves in the absence of detailed time-dependent computations.

  7. A non-diaphragm type small shock tube for application to a molecular beam source

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Yuta; Osuka, Kenichi; Miyoshi, Nobuya; Kinefuchi, Ikuya; Takagi, Shu; Matsumoto, Yoichiro

    2013-07-01

    A non-diaphragm type small shock tube was developed for application to a molecular beam source, which can generate beams in the energy range from 1 to several electron volts and beams containing dissociated species such as atomic oxygen. Since repetitive high-frequency operation is indispensable for rapid signal acquisition in beam scattering experiments, the dimensions of the shock tube were miniaturized to reduce the evacuation time between shots. The designed shock tube is 2-4 mm in diameter and can operate at 0.5 Hz. Moreover, a high shock Mach number at the tube end is required for high-energy molecular beam generation. To reduce the shock attenuation caused by the wall boundary layer, which becomes significant in small-diameter tubes, we developed a high-speed response valve employing the current-loop mechanism. The response time of this mechanism is about 100 μs, which is shorter than the rupture time of conventional diaphragms. We show that the current-loop valve generates shock waves with shorter formation distances (about 200-300 mm) than those of conventional shock tubes. In addition, the converging geometry efficiently accelerates shock wave in the small-diameter tubes. The optimal geometry of the shock tube yields shock Mach number around 7, which indicates that the translation energy of molecular beams can exceed 1 eV even in the presence of the real gas effect.

  8. Single pulse shock tube study of allyl radical recombination.

    PubMed

    Fridlyand, Aleksandr; Lynch, Patrick T; Tranter, Robert S; Brezinsky, Kenneth

    2013-06-13

    The recombination and disproportionation of allyl radicals has been studied in a single pulse shock tube with gas chromatographic measurements at 1-10 bar, 650-1300 K, and 1.4-2 ms reaction times. 1,5-Hexadiene and allyl iodide were used as precursors. Simulation of the results using derived rate expressions from a complementary diaphragmless shock tube/laser schlieren densitometry study provided excellent agreement with precursor consumption and formation of all major stable intermediates. No significant pressure dependence was observed at the present conditions. It was found that under the conditions of these experiments, reactions of allyl radicals in the cooling wave had to be accounted for to accurately simulate the experimental results, and this unusual situation is discussed. In the allyl iodide experiments, higher amounts of allene, propene, and benzene were found at lower temperatures than expected. Possible mechanisms are discussed and suggest that iodine containing species are responsible for the low temperature formation of allene, propene, and benzene.

  9. The Interaction of a Reflected Shock Wave with the Boundary Layer in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Mark, Herman

    1958-01-01

    Ideally, the reflection of a shock from the closed end of a shock tube provides, for laboratory study, a quantity of stationary gas at extremely high temperature. Because of the action of viscosity, however, the flow in the real case is not one-dimensional, and a boundary layer grows in the fluid following the initial shock wave. In this paper simplifying assumptions are made to allow an analysis of the interaction of the shock reflected from the closed end with the boundary layer of the initial shock afterflow. The analysis predicts that interactions of several different types will exist in different ranges of initial shock Mach number. It is shown that the cooling effect of the wall on the afterflow boundary layer accounts for the change in interaction type. An experiment is carried out which verifies the existence of the several interaction regions and shows that they are satisfactorily predicted by the theory. Along with these results, sufficient information is obtained from the experiments to make possible a model for the interaction in the most complicated case. This model is further verified by measurements made during the experiment. The case of interaction with a turbulent boundary layer is also considered. Identifying the type of interaction with the state of turbulence of the interacting boundary layer allows for an estimate of the state of turbulence of the boundary layer based on an experimental investigation of the type of interaction. A method is proposed whereby the effect of the boundary-layer interaction on the strength of the reflected shock may be calculated. The calculation indicates that the reflected shock is rapidly attenuated for a short distance after reflection, and this result compares favorably with available experimental results.

  10. Comparisons of Air Radiation Model with Shock Tube Measurements

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; McCorkle, Evan; Bogdanoff, David W.; Allen, Gary A., Jr.

    2009-01-01

    This paper presents an assessment of the predictive capability of shock layer radiation model appropriate for NASA s Orion Crew Exploration Vehicle lunar return entry. A detailed set of spectrally resolved radiation intensity comparisons are made with recently conducted tests in the Electric Arc Shock Tube (EAST) facility at NASA Ames Research Center. The spectral range spanned from vacuum ultraviolet wavelength of 115 nm to infrared wavelength of 1400 nm. The analysis is done for 9.5-10.5 km/s shock passing through room temperature synthetic air at 0.2, 0.3 and 0.7 Torr. The comparisons between model and measurements show discrepancies in the level of background continuum radiation and intensities of atomic lines. Impurities in the EAST facility in the form of carbon bearing species are also modeled to estimate the level of contaminants and their impact on the comparisons. The discrepancies, although large is some cases, exhibit order and consistency. A set of tests and analyses improvements are proposed as forward work plan in order to confirm or reject various proposed reasons for the observed discrepancies.

  11. High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall

    NASA Astrophysics Data System (ADS)

    Troutman, V. A.; Strand, C. L.; Campbell, M. F.; Tulgestke, A. M.; Miller, V. A.; Davidson, D. F.; Hanson, R. K.

    2016-03-01

    A high-speed OH* chemiluminescence imaging diagnostic was developed to image the structure and homogeneity of combustion events behind reflected shock waves in the Stanford Constrained Reaction Volume Shock Tube. An intensified high-repetition-rate imaging system was used to acquire images of OH* chemiluminescence (near 308 nm) through a fused quartz shock tube end-wall window at 10-33 kHz during the combustion of n-heptane (21 % O2/Ar, φ = 0.5). In general, the imaging technique enabled observation of the main ignition event in the core of the shock tube that corresponded to typical markers of ignition (e.g., pressure rise), as well as localized ignition near the wall that preceded the main core ignition event for some conditions. Case studies were performed to illustrate the utility of this novel imaging diagnostic. First, by comparing localized wall ignition events to the core ignition event, the temperature homogeneity of the post-reflected shock gas near the end-wall was estimated to be within 0.5 % for the test condition presented (T=1159 hbox {K}, P=0.25 hbox {MPa}). Second, the effect of a recession in the shock tube wall, created by an observation window, on the combustion event was visualized. Localized ignition was observed near the window, but this disturbance did not propagate to the core of the shock tube before the main ignition event. Third, the effect of shock tube cleanliness was investigated by conducting tests in which the shock tube was not cleaned for multiple consecutive runs. For tests after no cleaning was performed, ignition events were concentrated in the lower half of the shock tube. In contrast, when the shock tube was cleaned, the ignition event was distributed around the entire circumference of the shock tube; validating the cleaning procedure.

  12. A Shock Tube for Downselecting Material Concepts for Blast Protection. Part I: Description of the Shock Tube and a Comparison of Flush Mounted and Recess Mounted Pressure Sensors

    DTIC Science & Technology

    2008-12-01

    III with Mod 4, used for materials testing with a force gage V Endplate I with the recessed sensor only 0.11 mm below the endplate surface VI A ...TECHNICAL REPORT AD ________________ NATICK/TR-09/010 A SHOCK TUBE FOR...DOWNSELECTING MATERIAL CONCEPTS FOR BLAST PROTECTION PART I: DESCRIPTION OF THE SHOCK TUBE AND A COMPARISON OF FLUSH MOUNTED AND RECESS MOUNTED PRESSURE

  13. Towards a shock tube method for the dynamic calibration of pressure sensors

    PubMed Central

    Downes, Stephen; Knott, Andy; Robinson, Ian

    2014-01-01

    In theory, shock tubes provide a pressure change with a very fast rise time and calculable amplitude. This pressure step could provide the basis for the calibration of pressure transducers used in highly dynamic applications. However, conventional metal shock tubes can be expensive, unwieldy and difficult to modify. We describe the development of a 1.4 MPa (maximum pressure) shock tube made from unplasticized polyvinyl chloride pressure tubing which provides a low-cost, light and easily modifiable basis for establishing a method for determining the dynamic characteristics of pressure sensors. PMID:25071242

  14. Absorption/emission spectroscopy and applications using shock tubes

    NASA Astrophysics Data System (ADS)

    Sulzmann, K. G. P.

    1988-09-01

    A historical overview is presented about the important contributions made by Penner, his co-workers, and his students to the application of shock-tube techniques for quantitative emission and absorption spectroscopy and its applications to chemical kinetics studies in high-temperature gases. The discussions address critical aspects related to valid determinations of quantitative spectroscopic data and chemical rate parameters and stress the requirements for uniformly heated gas samples, temperature determinations, gas-mixture preparations, selection of useful spectral intervals, verification of LTE conditions, time resolutions for concentration histories, uniqueness of kinetic measurements, as well as accuracies and reproducibilities of measurement results.The potential of absorption spectroscopy by molecule and/or radical resonance radiation and by laser transmission techniques is highlighted for kinetic studies in mixtures with very small reactant concentrations.Besides the work by the honoree and his school, the references include books, monographs and key articles related to the subjects discussed.

  15. Measurement of the shock front velocity produced in a T-tube

    SciTech Connect

    Djurović, S.; Mijatović, Z.; Vujičić, B.; Kobilarov, R.; Savić, I.; Gavanski, L.

    2015-01-15

    A set of shock front velocity measurements is described in this paper. The shock waves were produced in a small electromagnetically driven shock T-tube. Most of the measurements were performed in hydrogen. The shock front velocity measurements in other gases and the velocity of the gas behind the shock front were also analyzed, as well as the velocity dependence on applied input energy. Some measurements with an applied external magnetic field were also performed. The used method of shock front velocity is simple and was shown to be very reliable. Measured values were compared with the calculated ones for the incident and reflected shock waves.

  16. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects

    NASA Astrophysics Data System (ADS)

    Courtney, Amy C.; Andrusiv, Lubov P.; Courtney, Michael W.

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  17. Quantifying Momentum Transfer Due to Blast Waves from Oxy-Acetylene Driven Shock Tubes

    DTIC Science & Technology

    2012-05-30

    Transfer Due to Blast Waves from Oxy - Acetylene Driven Shock Tubes 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d...and the response of materiel to blast loading. Recently, laboratory-scale shock tubes driven by oxy - acetylene were described. It was estimated that...later. In each case, most of the momentum transfer was due to the shock wave itself. The results support previous estimates that the oxy - acetylene

  18. Oxy-acetylene driven laboratory scale shock tubes for studying blast wave effects.

    PubMed

    Courtney, Amy C; Andrusiv, Lubov P; Courtney, Michael W

    2012-04-01

    This paper describes the development and characterization of modular, oxy-acetylene driven laboratory scale shock tubes. Such tools are needed to produce realistic blast waves in a laboratory setting. The pressure-time profiles measured at 1 MHz using high-speed piezoelectric pressure sensors have relevant durations and show a true shock front and exponential decay characteristic of free-field blast waves. Descriptions are included for shock tube diameters of 27-79 mm. A range of peak pressures from 204 kPa to 1187 kPa (with 0.5-5.6% standard error of the mean) were produced by selection of the driver section diameter and distance from the shock tube opening. The peak pressures varied predictably with distance from the shock tube opening while maintaining both a true blast wave profile and relevant pulse duration for distances up to about one diameter from the shock tube opening. This shock tube design provides a more realistic blast profile than current compression-driven shock tubes, and it does not have a large jet effect. In addition, operation does not require specialized personnel or facilities like most blast-driven shock tubes, which reduces operating costs and effort and permits greater throughput and accessibility. It is expected to be useful in assessing the response of various sensors to shock wave loading; assessing the reflection, transmission, and absorption properties of candidate armor materials; assessing material properties at high rates of loading; assessing the response of biological materials to shock wave exposure; and providing a means to validate numerical models of the interaction of shock waves with structures. All of these activities have been difficult to pursue in a laboratory setting due in part to lack of appropriate means to produce a realistic blast loading profile.

  19. 75 FR 3160 - Commerce in Explosives-Storage of Shock Tube With Detonators (2005R-3P)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ...--Storage of Shock Tube With Detonators (2005R-3P) AGENCY: Bureau of Alcohol, Tobacco, Firearms, and... tube to be stored with detonators because these materials when stored together do not pose a mass detonation hazard. Shock tube is a small diameter plastic laminate tube coated with a very thin layer...

  20. Fission-fragment attachment to aerosols and their transport through capillary tubes

    SciTech Connect

    Novick, V.J.; Alvarez, J.L.; Greenwood, R.C.

    1981-01-01

    The transport of radioactive aerosols was studied using equipment, collectively called the Helium jet, that has been constructed to provide basic nuclear physics data on fission product nuclides. The transport of the fission products in the system depends on their attachment to aerosol particles. The system consists of 1) a tube furnace which generates aerosols by the sublimation or evaporation of source material, 2) a helium stream used to transport the aerosols, 3) a 25 m settling tube to eliminate the larger aerosols and smaller aerosols that would deposit in the capillary, 4) a Californium-252 self-fissioning source of fission product nuclides, and 5) a small capillary to carry the radioactive aerosols from the hot cell to the laboratory. Different source materials were aerosolized but NaCl is generally used because it yielded the highest transport efficiencies through the capillary. Particle size measurments were made with NaCl aerosols by using a cascade impactor, an optical light scattering device, and the capillary itself as a diffusion battery by performing radiation measurements and/or electrical conductivity measurements. Both radioactive and nonradioactive aerosols were measured in order to investigate the possibility of a preferential size range for fission product attachment. The measured size distributions were then used to calculate attachment coefficients and finally an attachment time.

  1. Simulations of transient shock motion within a biological contoured-shock-tube system

    NASA Astrophysics Data System (ADS)

    Liu, Y.

    2008-02-01

    This study is motivated by the author’s interest in developing needle-free powdered vaccine/drug delivery systems. One system configuration is called the Contoured Shock Tube (CST). Of great importance is the behaviour of a transonic gas flow with a strongly nonlinear starting process, which accelerates powdered vaccines in micro-form to a sufficient momentum to penetrate the outer layer of human skin or mucosal tissue. In this paper, an established Modified Implicit Flux Vector Splitting (MIFVS) solver for the Navier-Stokes equations is extended to numerically study these transient transonic gas flows. A low Reynolds number k-ɛ turbulence model, with the compressibility effect considered, is integrated into the MIFVS solver to predict the turbulent structures and interactions with inherent shock systems. The MIFVS is first calibrated for NASA validation case, NPARC, and the resulting flow characteristic are compared with experimental date and simulations published. The MIFVS calculation with the modified k-ɛ model shows the best agreement. Subsequently, the MIFVS is applied to model the transient gas flow within a biolistic CST prototype. Comparison with experimental pressure traces shows the MIFVS captures gas flow mechanics with more accuracy than calculations with a commercial code (Fluent). This illustrates that the MIFVS is well-suited to model the strongly nonlinear fluid dynamics associated with the CST biolistic particle delivery system.

  2. On the formation of Friedlander waves in a compressed-gas-driven shock tube

    PubMed Central

    Tasissa, Abiy F.; Hautefeuille, Martin; Fitek, John H.; Radovitzky, Raúl A.

    2016-01-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing. PMID:27118888

  3. On the formation of Friedlander waves in a compressed-gas-driven shock tube.

    PubMed

    Tasissa, Abiy F; Hautefeuille, Martin; Fitek, John H; Radovitzky, Raúl A

    2016-02-01

    Compressed-gas-driven shock tubes have become popular as a laboratory-scale replacement for field blast tests. The well-known initial structure of the Riemann problem eventually evolves into a shock structure thought to resemble a Friedlander wave, although this remains to be demonstrated theoretically. In this paper, we develop a semi-analytical model to predict the key characteristics of pseudo blast waves forming in a shock tube: location where the wave first forms, peak over-pressure, decay time and impulse. The approach is based on combining the solutions of the two different types of wave interactions that arise in the shock tube after the family of rarefaction waves in the Riemann solution interacts with the closed end of the tube. The results of the analytical model are verified against numerical simulations obtained with a finite volume method. The model furnishes a rational approach to relate shock tube parameters to desired blast wave characteristics, and thus constitutes a useful tool for the design of shock tubes for blast testing.

  4. Probing combustion chemistry in a miniature shock tube with synchrotron VUV photo ionization mass spectrometry.

    PubMed

    Lynch, Patrick T; Troy, Tyler P; Ahmed, Musahid; Tranter, Robert S

    2015-02-17

    Tunable synchrotron-sourced photoionization time-of-flight mass spectrometry (PI-TOF-MS) is an important technique in combustion chemistry, complementing lab-scale electron impact and laser photoionization studies for a wide variety of reactors, typically at low pressure. For high-temperature and high-pressure chemical kinetics studies, the shock tube is the reactor of choice. Extending the benefits of shock tube/TOF-MS research to include synchrotron sourced PI-TOF-MS required a radical reconception of the shock tube. An automated, miniature, high-repetition-rate shock tube was developed and can be used to study high-pressure reactive systems (T > 600 K, P < 100 bar) behind reflected shock waves. In this paper, we present results of a PI-TOF-MS study at the Advanced Light Source at Lawrence Berkeley National Laboratory. Dimethyl ether pyrolysis (2% CH3OCH3/Ar) was observed behind the reflected shock (1400 < T5 < 1700 K, 3 < P5 < 16 bar) with ionization energies between 10 and 13 eV. Individual experiments have extremely low signal levels. However, product species and radical intermediates are well-resolved when averaging over hundreds of shots, which is ordinarily impractical in conventional shock tube studies. The signal levels attained and data throughput rates with this technique are comparable to those with other synchrotron-based PI-TOF-MS reactors, and it is anticipated that this high pressure technique will greatly complement those lower pressure techniques.

  5. Note: A high Mach number arc-driven shock tube for turbulence studies

    NASA Astrophysics Data System (ADS)

    Titus, J. B.; Alexander, A. B.; Johnson, J. A.

    2013-04-01

    A high Mach arc-driven shock tube has been built at the Center for Plasma Science and Technology of Florida A&M University to study shock waves. A larger apparatus with higher voltage was built to study more stable shock waves and subsequent plasmas. Initial measurements of the apparatus conclude that the desired Mach numbers can be reached using only two-thirds the maximum possible energy that the circuit can provide.

  6. Contamination from electrically conductive silicone tubing during aerosol chemical analysis

    SciTech Connect

    Yu, Yong; Alexander, M. L.; Perraud, Veronique; Bruns, Emily; Johnson, Stan; Ezell, Michael J.; Finlayson-Pitts, Barbara J.

    2009-06-01

    Electrically conductive silicone tubing is used to minimize losses in sampling lines during the analysis of airborne particle size distributions and number concentrations. We report contamination from this tubing using gas chromatography-mass spectrometry (GC-MS) of filter-collected samples as well as by particle mass spectrometry. Comparison of electrically conductive silicone and stainless steel tubing showed elevated siloxanes only for the silicone tubing. The extent of contamination increased with length of tubing to which the sample was exposed, and decreased with increasing relative humidity.

  7. High sensitivity of diesel soot morphological and optical properties to combustion temperature in a shock tube.

    PubMed

    Qiu, Chong; Khalizov, Alexei F; Hogan, Brian; Petersen, Eric L; Zhang, Renyi

    2014-06-03

    Carbonaceous particles produced from combustion of fossil fuels have strong impacts on air quality and climate, yet quantitative relationships between particle characteristics and combustion conditions remain inadequately understood. We have used a shock tube to study the formation and properties of diesel combustion soot, including particle size distributions, effective density, elemental carbon (EC) mass fraction, mass-mobility scaling exponent, hygroscopicity, and light absorption and scattering. These properties are found to be strongly dependent on the combustion temperature and fuel equivalence ratio. Whereas combustion at higher temperatures (∼2000 K) yields fractal particles of a larger size and high EC content (90 wt %), at lower temperatures (∼1400 K) smaller particles of a higher organic content (up to 65 wt %) are produced. Single scattering albedo of soot particles depends largely on their organic content, increasing drastically from 0.3 to 0.8 when the particle EC mass fraction decreases from 0.9 to 0.3. The mass absorption cross-section of diesel soot increases with combustion temperature, being the highest for particles with a higher EC content. Our results reveal that combustion conditions, especially the temperature, may have significant impacts on the direct and indirect climate forcing of atmospheric soot aerosols.

  8. Design and Construction of a Shock Tube Experiment for Multiphase Instability Experiments

    NASA Astrophysics Data System (ADS)

    Middlebrooks, John; Black, Wolfgang; Avgoustopoulos, Constantine; Allen, Roy; Kathakapa, Raj; Guo, Qiwen; McFarland, Jacob

    2016-11-01

    Hydrodynamic instabilities are important phenomena that have a wide range of practical applications in engineering and physics. One such instability, the shock driven multiphase instability (SDMI), arises when a shockwave accelerates an interface between two particle-gas mixtures with differing multiphase properties. The SDMI is present in high energy explosives, scramjets, and supernovae. A practical way of studying shock wave driven instabilities is through experimentation in a shock tube laboratory. This poster presentation will cover the design and data acquisition process of the University of Missouri's Fluid Mixing Shock Tube Laboratory. In the shock tube, a pressure generated shockwave is passed through a multiphase interface, creating the SDMI instability. This can be photographed for observation using high speed cameras, lasers, and advance imaging techniques. Important experimental parameters such as internal pressure and temperature, and mass flow rates of gases can be set and recorded by remotely controlled devices. The experimental facility provides the University of Missouri's Fluid Mixing Shock Tube Laboratory with the ability to validate simulated experiments and to conduct further inquiry into the field of shock driven multiphase hydrodynamic instabilities. Advisor.

  9. New Design of Shock Tube for the Study of Vapour Cloud Explosion

    NASA Astrophysics Data System (ADS)

    Mataradze, Edgar; Chikhradze, Nikoloz; Akhvlediani, Irakli; Bochorishvili, Nika; Krauthammer, Ted

    2016-10-01

    Determination of blast energy suppression characteristics is key to developing new protective techniques ensuring effective blast-suppression capacity, and enabling the formation of a blast-suppression barrier. The Mining Institute of Georgia and CIPPS of the University of Florida have designed a new type of a shock tube for investigating the processes of explosion suppression by a water mist barrier. The shock tube consists of a blast chamber, a tube, a system for dosed supply of fuel and water, sensors, registering equipment, and a process control module. The paper describes the structural and flow characteristics of the shock tube, and the possibilities it may offer for the study of the processes of blast mitigation with water mist.

  10. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen.

    PubMed

    Kuriakose, Matthew; Skotak, Maciej; Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent.

  11. Tailoring the Blast Exposure Conditions in the Shock Tube for Generating Pure, Primary Shock Waves: The End Plate Facilitates Elimination of Secondary Loading of the Specimen

    PubMed Central

    Misistia, Anthony; Kahali, Sudeepto; Sundaramurthy, Aravind; Chandra, Namas

    2016-01-01

    The end plate mounted at the mouth of the shock tube is a versatile and effective implement to control and mitigate the end effects. We have performed a series of measurements of incident shock wave velocities and overpressures followed by quantification of impulse values (integral of pressure in time domain) for four different end plate configurations (0.625, 2, 4 inches, and an open end). Shock wave characteristics were monitored by high response rate pressure sensors allocated in six positions along the length of 6 meters long 229 mm square cross section shock tube. Tests were performed at three shock wave intensities, which was controlled by varying the Mylar membrane thickness (0.02, 0.04 and 0.06 inch). The end reflector plate installed at the exit of the shock tube allows precise control over the intensity of reflected waves penetrating into the shock tube. At the optimized distance of the tube to end plate gap the secondary waves were entirely eliminated from the test section, which was confirmed by pressure sensor at T4 location. This is pronounced finding for implementation of pure primary blast wave animal model. These data also suggest only deep in the shock tube experimental conditions allow exposure to a single shock wave free of artifacts. Our results provide detailed insight into spatiotemporal dynamics of shock waves with Friedlander waveform generated using helium as a driver gas and propagating in the air inside medium sized tube. Diffusion of driver gas (helium) inside the shock tube was responsible for velocity increase of reflected shock waves. Numerical simulations combined with experimental data suggest the shock wave attenuation mechanism is simply the expansion of the internal pressure. In the absence of any other postulated shock wave decay mechanisms, which were not implemented in the model the agreement between theory and experimental data is excellent. PMID:27603017

  12. Program and charts for determining shock tube, and expansion tunnel flow quantities for real air

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1975-01-01

    A computer program in FORTRAN 4 language was written to determine shock tube, expansion tube, and expansion tunnel flow quantities for real-air test gas. This program permits, as input data, a number of possible combinations of flow quantities generally measured during a test. The versatility of the program is enhanced by the inclusion of such effects as a standing or totally reflected shock at the secondary diaphragm, thermochemical-equilibrium flow expansion and frozen flow expansion for the expansion tube and expansion tunnel, attenuation of the flow in traversing the acceleration section of the expansion tube, real air as the acceleration gas, and the effect of wall boundary layer on the acceleration section air flow. Charts which provide a rapid estimation of expansion tube performance prior to a test are included.

  13. Microscopic phenomena and a modern approach to turbulence. [using arc driven shock tubes to support the kinetic theory of turbulence

    NASA Technical Reports Server (NTRS)

    Johnson, J. A., III; Chen, S.; I, L.; Jones, W.; Ramaiah, R.; Santiago, J.

    1979-01-01

    The use of an arc driven shock tube as a technique in the study of turbulence and evidence to support a kinetic theory of turbulence are described. Topics covered include: (1) reaction rate distortion in turbulent flow; (2) turbulent bursts in a shock tube; (3) driver gas flow with fluctuations; (4) improving the Mach number capabilities of arc driver shock tubes; and (5) resonant absorption in an argon plasma at thermal equilibrium.

  14. A study of test section configuration for shock tube testing of transonic airfoils

    NASA Technical Reports Server (NTRS)

    Cook, W. J.

    1978-01-01

    Two methods are investigated for alleviating wall interference effects in a shock tube test section intended for testing two-dimensional transonic airfoils. The first method involves contouring the test section walls to match approximate streamlines in the flow. Contours are matched to each airfoil tested to produce results close to those obtained in a conventional wind tunnel. Data from a previous study and the present study for two different airfoils demonstrate that useful results are obtained in a shock tube using a test section with contoured walls. The second method involves use of a fixed-geometry slotted-wall test section to provide automatic flow compensation for various airfoils. The slotted-wall test section developed exhibited the desired performance characteristics in the approximate Mach number range 0.82 to 0.89, as evidenced by good agreement obtained between shock tube and wind tunnel results for several airfoil flows.

  15. Application of shock tubes to transonic airfoil testing at high Reynolds numbers

    NASA Technical Reports Server (NTRS)

    Cook, W. J.; Chaney, M. J.; Presley, L. L.; Chapman, G. T.

    1978-01-01

    Performance analysis of a gas-driven shock tube shows that transonic airfoil flows with chord Reynolds numbers of the order of 100 million can be produced, with limitations being imposed by the structural integrity of the facility or the model. A study of flow development over a simple circular arc airfoil at zero angle of attack was carried out in a shock tube at low and intermediate Reynolds numbers to assess the testing technique. Results obtained from schlieren photography and airfoil pressure measurements show that steady transonic flows similar to those produced for the same airfoil in a wind tunnel can be generated within the available testing time in a shock tube with properly contoured test section walls.

  16. Appraisal of UTIAS implosion-driven hypervelocity launchers and shock tubes.

    NASA Technical Reports Server (NTRS)

    Glass, I. I.

    1972-01-01

    A critical appraisal is made of the design, research, development, and operation of the novel UTIAS implosion-driven hypervelocity launchers and shock tubes. Explosively driven (PbN6-lead azide, PETN-pentaerythritetetranitrate) implosions in detonating stoichiometric hydrogen-oxygen mixtures have been successfully developed as drivers for hypervelocity launchers and shock tubes in a safe and reusable facility. Intense loadings at very high calculated pressures, densities, and temperatures, at the implosion center, cause severe problems with projectile integrity. Misalignment of the focal point can occur and add to the difficulty in using small caliber projectiles. In addition, the extreme driving conditions cause barrel expansion, erosion, and possible gas leakage from the base to the head of the projectile which cut the predicted muzzle velocities to half or a third of the lossless calculated values. However, in the case of a shock-tube operation these difficulties are minimized or eliminated and the possibilities of approaching Jovian reentry velocities are encouraging.

  17. Determination of explosive blast loading equivalencies with an explosively driven shock tube

    SciTech Connect

    Jackson, Scott I; Hill, Larry G; Morris, John S

    2009-01-01

    Recently there has been significant interest in evaluating the potential of many different non-ideal energetic materials to cause blast damage. We present a method intended to quantitatively compare the blast loading generated by different energetic materials through use of an explosively driven shock tube. The test explosive is placed at the closed breech end of the tube and initiated with a booster charge. The resulting shock waves are then contained and focused by the tube walls to form a quasi-one-dimensional blast wave. Pressure transducers along the tube wall measure the blast overpressure versus distance from the source and allow the use of the one-dimensional blast scaling relationship to determine the energy deposited into the blast wave per unit mass of test explosive. These values are then compared for different explosives of interest and to other methods of equivalency determination.

  18. Performance and operating characteristics of the arc-driven Langley 6-inch shock tube

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1972-01-01

    Performance characteristics for the arc-driven Langley 6-inch shock tube were determined for driver energies from 0.62 to 5 MJ. Voltage, current and pressure histories of the arc driver were recorded, and driver efficiencies were determined from measured shock velocities. Time-resolved spectra for test gases of air, carbon monoxide, xenon, and a mixture of 80 percent helium and 20 percent hydrogen are presented.

  19. Radiative Interaction Between Driver and Driven Gases in an Arc-Driven Shock Tube

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Park, Chul

    2001-01-01

    An electric-arc driven shock tube was operated with hydrogen as the driven gas and either hydrogen or helium as the driver gas. Electron density was measured behind the primary shock wave spectroscopically from the width of the Beta line of hydrogen. The measured electron density values were many times greater than the values calculated by the Rankine - Hugoniot relations. By accounting for the radiative transfer from the driver gas to the driven gas, the measured electron density values were numerically recreated.

  20. Recent Progress in Entry Radiation Measurements in the NASA Ames Electric ARC Shock Tube Facility

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2012-01-01

    The Electric Arc Shock Tube (EAST) at NASA Ames Research Center is NASA's only working shock tube capable of obtaining conditions representative of entry in a multitude of planetary atmospheres. The facility is capable of mapping spectroscopic signatures of a wide range of planetary entries from the Vacuum Ultraviolet through Mid-Wave Infrared (120-5500 nm). This paper summarizes the tests performed in EAST for Earth, Mars and Venus entries since 2008, then focuses on a specific test case for CO2/N2 mixtures. In particular, the paper will focus on providing information for the proper interpretation of the EAST data.

  1. Shock Tube Simulation of Low Mach Number Blast Waves

    NASA Astrophysics Data System (ADS)

    Morgan, R. G.; Gildfind, D. E.

    The underground mining environment has always been high risk due to the presence of solid and gaseous flammables, and the potential for the creation of detonablemixtures. Following explosions in confined spaces, shock waves are generated and may propagate through the tunnel system, causing injuries and possibly initiating further combusting or detonating events. The ability to generate the conditions which exist post shock is a useful experimental tool for the study of such processes, and for the evaluation of techniques to control and limit propagation.

  2. Numerical simulations of a nonequilibrium argon plasma in a shock-tube experiment

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc

    1991-01-01

    A code developed for the numerical modeling of nonequilibrium radiative plasmas is applied to the simulation of the propagation of strong ionizing shock waves in argon gas. The simulations attempt to reproduce a series of shock-tube experiments which will be used to validate the numerical models and procedures. The ability to perform unsteady simulations makes it possible to observe some fluctuations in the shock propagation, coupled to the kinetic processes. A coupling mechanism by pressure waves, reminiscent of oscillation mechanisms observed in detonation waves, is described. The effect of upper atomic levels is also briefly discussed.

  3. Incident shock-wave characteristics in air, argon, carbon dioxide, and helium in a shock tube with unheated helium driver

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Jones, J. J.

    1975-01-01

    Incident shock-wave velocities were measured in the Langley 6-inch expansion tube, operated as a shock tube, with air, argon, carbon dioxide, and helium as test gases. Unheated helium was used as the driver gas and most data were obtained at pressures of approximately 34 and 54 MN/sq m. A range of pressure ratio across the diaphragm was obtained by varying the quiescent test-gas pressure, for a given driver pressure, from 0.0276 to 34.5 kN/sq m. Single- and double-diaphragm modes of operation were employed and diaphragms of various materials tested. Shock velocity was determined from microwave interferometer measurements, response of pressure transducers positioned along interferometer measurements, response of pressure transducers positioned along the driven section (time-of-arrival gages), and to a lesser extent, measured tube-wall pressure. Velocities obtained from these methods are compared and limitations of the methods discussed. The present results are compared with theory and the effects of diaphragm mode (single or double diaphragm), diaphragm material, heating of the driver gas upon pressurization of the driver section, diaphragm opening time, interface mixing, and two-dimensional (nonplanar) flow are discussed.

  4. Optical diagnostics of turbulent mixing in explosively-driven shock tube

    NASA Astrophysics Data System (ADS)

    Anderson, James; Hargather, Michael

    2016-11-01

    Explosively-driven shock tube experiments were performed to investigate the turbulent mixing of explosive product gases and ambient air. A small detonator initiated Al / I2O5 thermite, which produced a shock wave and expanding product gases. Schlieren and imaging spectroscopy were applied simultaneously along a common optical path to identify correlations between turbulent structures and spatially-resolved absorbance. The schlieren imaging identifies flow features including shock waves and turbulent structures while the imaging spectroscopy identifies regions of iodine gas presence in the product gases. Pressure transducers located before and after the optical diagnostic section measure time-resolved pressure. Shock speed is measured from tracking the leading edge of the shockwave in the schlieren images and from the pressure transducers. The turbulent mixing characteristics were determined using digital image processing. Results show changes in shock speed, product gas propagation, and species concentrations for varied explosive charge mass. Funded by DTRA Grant HDTRA1-14-1-0070.

  5. Elastic response of water-filled fiber composite tubes under shock wave loading

    SciTech Connect

    Perotti, Luigi E.; Deiterding, Ralf; Inaba, Kazuaki; Shepherd, Joseph E; Ortiz, Michael

    2013-01-01

    We experimentally and numerically investigate the response of fluid-filled filament-wound composite tubes subjected to axial shock wave loading in water. Our study focuses on the fluid structure interaction occurring when the shock wave in the fluid propagates parallel to the axis of the tube, creating pressure waves in the fluid coupled to flexural waves in the shell. The in-house-developed computational scheme couples an Eulerian fluid solver with a Lagrangian shell solver, which includes a new and simple material model to capture the response of fiber composites in finite kinematics. In the experiments and simulations we examine tubes with fiber winding angles equal to 45 and 60 , and we measure the precursor and primary wave speeds, hoop and longitudinal strains, and pressure. The experimental and computational results are in agreement, showing the validity of the computational scheme in complex fluid structure interaction problems involving fiber composite materials subjected to shock waves. The analyses of the measured quantities show the strong coupling of axial and hoop deformations and the significant effect of fiber winding angle on the composite tube response, which differs substantially from that of a metal tube in the same configuration.

  6. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3x10(exp 17) and 9x10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  7. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17) cm(exp -3). The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  8. Vacuum Ultraviolet Absorption Measurements of Atomic Oxygen in a Shock Tube

    NASA Technical Reports Server (NTRS)

    Meyer, Scott Andrew

    1995-01-01

    The absorption of vacuum ultraviolet light by atomic oxygen has been measured in the Electric Arc-driven Shock Tube (EAST) Facility at NASA-Ames Research Center. This investigation demonstrates the instrumentation required to determine atomic oxygen concentrations from absorption measurements in impulse facilities. A shock wave dissociates molecular oxygen, producing a high temperature sample of atomic oxygen in the shock tube. A probe beam is generated with a Raman-shifted ArF excimer laser. By suitable tuning of the laser, absorption is measured over a range of wavelengths in the region of the atomic line at 130.49 nm. The line shape function is determined from measurements at atomic oxygen densities of 3 x 10(exp 17) and 9 x 10(exp 17)/cu cm. The broadening coefficient for resonance interactions is deduced from this data, and this value is in accord with available theoretical models.

  9. Propagating Structure Of A Microwave Driven Shock wave Inside A Tube

    SciTech Connect

    Shimada, Yutaka; Shibata, Teppei; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Oda, Yasuhisa; Kajiwara, Ken; Takahashi, Koji; Kasugai, Atsushi; Sakamoto, Keishi; Arakawa, Yoshihiro

    2010-05-06

    The thrust generation process of a microwave rocket is similar to a pulse detonation engine, and understanding the interactions between microwave plasma and shock waves is important. Shadowgraph images of the microwave plasma generated in a tube under atmospheric air were taken. The observed plasma and shock wave were propagating one-dimensionally at constant velocity inside the tube. In order to understand the flow field inside the rocket, one-dimensional CFD analysis was conducted. With the change of microwave power density, the structure of the flow field was classified into two regimes: Microwave Supported Combustion (MSC), and Microwave Supported Detonation (MSD). The structure of the MSD was different from the structure of a chemical detonation, which implied the existence of a preheating in front of the shock wave. Furthermore, the flight performance was estimated by calculating the momentum coupling coefficient. It was confirmed that the efficiency was nearly constant in the MSD regime, with the increase of microwave power density.

  10. Convective response of a wall-mounted hot-film sensor in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. Sidney, Jr.; Ortgies, Kelly R.; Gartenberg, Ehud; Carraway, Debra L.

    1991-01-01

    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in an hot-film instrument model and simulation which remains under investigation.

  11. Convective response of a wall-mounted hot-film sensor in a shock tube

    NASA Technical Reports Server (NTRS)

    Roberts, A. S., Jr.; Ortgies, K. R.; Gartenberg, E.; Carraway, D. L.

    1990-01-01

    Shock tube experiments were performed in order to determine the response of a single hot-film element of a sensor array to transiently induced flow behind weak normal shock waves. The experiments attempt to isolate the response due only to the change in convective heat transfer at the hot-film surface mounted on the wall of the shock tube. The experiments are described, the results being correlated with transient boundary layer theory and compared with an independent set of experimental results. One of the findings indicates that the change in the air properties (temperature and pressure) precedes the air mass transport, causing an ambiguity in the sensor response to the development of the velocity boundary layer. Also, a transient, local heat transfer coefficient is formulated to be used as a forcing function in a hot-film instrument model and simulation which remains under investigation.

  12. 'GAIM' - Gas-addition, impedance-matched arc driver. [shock tube gas dynamics

    NASA Technical Reports Server (NTRS)

    Dannenberg, R. E.

    1980-01-01

    A conceptual view for a GAIM energy/driver system to maximize shock-tube performance through efficient interfacing of the energy source with the gas dynamics of the arc driver is presented. Electrical and arc-chamber requirements are evaluated utilizing two new computer codes. One code calculates the shock wave generated for a selected time rate and magnitude of arc-energy input; the other computes the values of external circuit elements required to produce the selected energy input, with the driver represented as the load element of the electrical discharge circuit. Results indicate that the energy-storage capability and the driver arrangement needed to produce the highest shock Mach number can be achieved by means of driver gas addition and by impedance matching (GAIM). Design criteria are presented for arc energy requirements necessary to produce given shock-wave speeds. Shock velocities as high as the 70 km/sec required for simulating Jovian entry now seem possible in shock-tube operation. Practical implementation of a GAIM system is discussed.

  13. Temperature perturbations evolution as a possible mechanism of exothermal reaction kernels formation in shock tubes

    NASA Astrophysics Data System (ADS)

    Drakon, A. V.; Kiverin, A. D.; Yakovenko, I. S.

    2016-11-01

    The basic question raised in the paper concerns the origins of exothermal reaction kernels and the mechanisms of detonation onset behind the reflected shock wave in shock-tube experiments. Using the conventional experimental technique, it is obtained that in the certain diapason of conditions behind the reflected shocks a so-called “mild ignition” arises which is characterized by the detonation formation from the kernel distant from the end-wall. The results of 2-D and 3-D simulations of the flow evolution behind the incident and reflected shocks allow formulation of the following scenario of ignition kernels formation. Initial stage during and after the diaphragm rupture is characterized by a set of non-steady gasdynamical processes. As a result, the flow behind the incident shock occurs to be saturated with temperature perturbations. Further evolution of these perturbations provides generating of the shear stresses in the flow accompanied with intensification of velocity and temperature perturbations. After reflection the shock wave interacts with the formed kernels of higher temperature and more pronounced kernels arise on the background of reactivity profile determined by moving reflected shock. Exothermal reaction starts inside such kernels and propagates into the ambient medium as a spontaneous ignition wave with minimum initial speed equal to the reflected shock wave speed.

  14. Modeling wall effects in a micro-scale shock tube using hybrid MD-DSMC algorithm

    NASA Astrophysics Data System (ADS)

    Watvisave, D. S.; Puranik, B. P.; Bhandarkar, U. V.

    2016-07-01

    Wall effects in a micro-scale shock tube are investigated using the Direct Simulation Monte Carlo method as well as a hybrid Molecular Dynamics-Direct Simulation Monte Carlo algorithm. In the Direct Simulation Monte Carlo simulations, the Cercignani-Lampis-Lord model of gas-surface interactions is employed to incorporate the wall effects, and it is shown that the shock attenuation is significantly affected by the choice of the values of tangential momentum accommodation coefficient. A loosely coupled Molecular Dynamics-Direct Simulation Monte Carlo approach is then employed to demonstrate incomplete accommodation in micro-scale shock tube flows. This approach uses fixed values of the accommodation coefficients in the gas-surface interaction model, with their values determined from a separate dynamically similar Molecular Dynamics simulation. Finally, a completely coupled Molecular Dynamics-Direct Simulation Monte Carlo algorithm is used, wherein the bulk of the flow is modeled using Direct Simulation Monte Carlo, while the interaction of gas molecules with the shock tube walls is modeled using Molecular Dynamics. The two regions are separate and coupled both ways using buffer zones and a bootstrap coupling algorithm that accounts for the mismatch of the number of molecules in both regions. It is shown that the hybrid method captures the effect of local properties that cannot be captured using a single value of accommodation coefficient for the entire domain.

  15. An improved thin-film gauge for shock-tube thermal studies.

    NASA Technical Reports Server (NTRS)

    Willeke, K.; Bershader, D.

    1973-01-01

    An improved type of thin-film heat gauge has been developed and used to measure heat-transfer rates from a shock-heated plasma to the end wall of a shock tube. The gauge is a resistance thermometer consisting of a triple-layered sensor coated by a moderately thick film of SiO2. It was used to measure heat transfer from nonionized argon at temperatures of up to 16000 K. A marked increase in heat transfer at the onset of ionization near the wall indicates that the gauge can be used to obtain the contribution of free electrons to the thermal transport.

  16. Fundamental Kinetics Database Utilizing Shock Tube Measurements (Volumes 1, 2, 3, 4, and Volume 6)

    DOE Data Explorer

    Davidson, D. F.; Hanson, R. K

    The data from shock tube experiments generally takes three forms: ignition delay times, species concentration time-histories and reaction rate measurements. Volume 1 focuses on ignition delay time data measured and published by the Shock Tube Group in the Mechanical Engineering Department of Stanford University. The cut-off date for inclusion into this volume was January 2005. Volume 2 focuses on species concentration time-histories and was cut off December 2005. The two volumes are in PDF format and are accompanied by a zipped file of supporting data. Volume 3 was issued in 2009. Volume 4, Ignition delay times measurements came out in May, 2014, along with Reaction Rates Measurements, Vol 6. Volume 5 is not available at this time.

  17. Sensitive and rapid laser diagnostic for shock tube kinetics studies using cavity-enhanced absorption spectroscopy.

    PubMed

    Sun, Kai; Wang, Shengkai; Sur, Ritobrata; Chao, Xing; Jeffries, Jay B; Hanson, Ronald K

    2014-04-21

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) using a coherent light source for sensitive and rapid gaseous species time-history measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 83 with a measurement time resolution of 20 µs was demonstrated for C2H2 detection using a near-infrared transition near 1537 nm, corresponding to a noise-equivalent detection limit of 20 ppm at 296 K and 76 ppm at 906 K at 50 kHz. This substantial gain in signal, relative to conventional single-pass absorption, will enable ultra-sensitive species detection in shock tube kinetics studies, particularly useful for measurements of minor species and for studies of dilute reactive systems.

  18. The Shock Test Facility: An Explosive-Driven, Water-Filled Conical Shock Tube

    DTIC Science & Technology

    1989-11-01

    Redort Date. Full publication date availability to the public. Enter additional including day, month, and year, if available (e.g. 1 limitations or...19 Acoustic and Sonic Fatigue Environment of the C-141A Aircraft with Universal...Hunter’s Point are expensive. In addition , environmental restrictions have led to a reduction in the number of tests that can be performed. Shock

  19. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components

  20. NASTRAN Analysis Comparison to Shock Tube Tests Used to Simulate Nuclear Overpressures

    NASA Technical Reports Server (NTRS)

    Wheless, T. K.

    1985-01-01

    This report presents a study of the effectiveness of the NASTRAN computer code for predicting structural response to nuclear blast overpressures. NASTRAN's effectiveness is determined by comparing results against shock tube tests used to simulate nuclear overpressures. Seven panels of various configurations are compared in this study. Panel deflections are the criteria used to measure NASTRAN's effectiveness. This study is a result of needed improvements in the survivability/vulnerability analyses subjected to nuclear blast.

  1. Shock Tube and Ballistic Range Facilities at NASA Ames Research Center

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cornelison, Charles J.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and the Hypervelocity Free Flight Aerodynamic Facility (HFFAF) at NASA Ames Research Center are described. These facilities have been in operation since the 1960s and have supported many NASA missions and technology development initiatives. The facilities have world-unique capabilities that enable experimental studies of real-gas aerothermal, gas dynamic, and kinetic phenomena of atmospheric entry.

  2. Dynamic calibration of pressure transducers with an improved shock tube system

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2013-04-01

    The need for reliable dynamic calibration of pressure transducers is becoming increasingly more important, especially with growing demands for improved performance, increased reliability and efficient energy generation from the aerospace, defense and energy sectors - all while being mindful of low lifecycle cost, minimizing maintenance downtime and reducing any negative impact to the environment. State of the art piezoelectric (PE) and piezoresistive (PR) silicon MEMS pressure transducers specifically designed for harsh environments are answering the call to provide the necessary measurements for applications such as high temperature gas turbine engine health monitoring (both in-flight and land/marine based aero-derivative), high pressure blast studies/ordnance explosion optimization, low profile wind tunnel testing/flight testing, etc. However, these pressure transducers are only as valuable as the dynamic calibration they possess so that more understanding of the physical measurement can be ascertained by the end-user. The shock tube is an established laboratory tool capable of imparting near instantaneous pressure stimulus for the purpose of providing quantifiable dynamic calibration of pressure transducers. From a performance perspective, a vast amount of empirical data has been collected over fifteen years and used to model more accurately the one-dimensional gas dynamics occurring within a shock tube so that the time interval of the reflected shock - the most critical parameter in determining the transfer function for the pressure transducer under test - can be optimized for the largest frequency bandwidth over varying shock amplitudes. Accordingly, an introduction of an improved shock tube system offering both increased performance and ease of user operation is presented.

  3. Numerical modeling of an experimental shock tube for traumatic brain injury studies

    NASA Astrophysics Data System (ADS)

    Phillips, Michael; Regele, Jonathan D.

    2015-11-01

    Unfortunately, Improvised Explosive Devices (IEDs) are encountered commonly by both civilians and military soldiers throughout the world. Over a decade of medical history suggests that traumatic brain injury (TBI) may result from exposure to the blast waves created by these explosions, even if the person does not experience any immediate injury or lose consciousness. Medical researchers study the exposure of mice and rats to blast waves created in specially designed shock tubes to understand the effect on brain tissue. A newly developed table-top shock tube with a short driver section has been developed for mice experiments to reduce the time necessary to administer the blast radiation and increase the amount of statistical information available. In this study, numerical simulations of this shock tube are performed to assess how the blast wave takes its shape. The pressure profiles obtained from the numerical results are compared with the pressure histories from the experimental pressure transducers. The results show differences in behavior from what was expected, but the blast wave may still be an effective means of studying TBI.

  4. The Effect of Diluent Gases In The Shock Tube and Rapid Compression Machine

    SciTech Connect

    Silke, E; W?rmel, J; O?Conaire, M; Simmie, J; Curran, H

    2007-02-09

    Studying the details of hydrocarbon chemistry in an internal combustion engine is not straightforward. A number of factors, including varying conditions of temperature and pressure, complex fluid motions, as well as variation in the composition of gasoline, render a meaningful characterization of the combusting system difficult. Some simplified experimental laboratory devices offer an alternative to complex engine environments: they remove some of the complexities that exist in real engines but retain the ability to work under engine-relevant conditions. The choice of simplified experimental devices is limited by the range of temperature and pressure at which they can operate; only the shock tube and rapid compression machine (RCM) can reach engine-relevant temperatures and pressures quickly enough and yet withstand the high pressures that occur after the ignition event. Both devices, however, suffer a common drawback: the use of inert diluent gases has been shown to affect the measured ignition delay time under some experimental conditions. Interestingly, this effect appears to be opposite in the shock tube and RCM: in the comparative study of the carrier gases argon and nitrogen, argon decreases the ignition delay time in the shock tube, but increases it in the RCM. This observation is investigated in more detail in this study.

  5. Very High Pressure Single Pulse Shock Tube Studies of Aromatic Species

    SciTech Connect

    Brezinsky, K.

    2006-11-28

    The principal focus of this research program is aimed at understanding the oxidation and pyrolysis chemistry of primary aromatic molecules and radicals with the goal of developing a comprehensive kinetic model at conditions that are relevant to practical combustion devices. A very high pressure single pulse shock tube is used to obtain experimental data over a wide pressure range in the high pressure regime, 5-1000 bars, at pre-flame temperatures for fuel pyrolysis and oxidation over a broad spectrum of equivalence ratios. Stable species sampled from the shock tube are analyzed using standard chromatographic techniques using GC/MS-PDD and GC/TCD-FID. Experimental data from the HPST (stable species profiles) and data from other laboratories (if available) are simulated using kinetic models (if available) to develop a comprehensive model that can describe aromatics oxidation and pyrolysis over a wide range of experimental conditions. The shock tube has been heated (1000C) recently to minimize effects due to condensation of aromatic, polycyclic and other heavy species. Work during this grant period has focused on 7 main areas summarized in the final technical report.

  6. Mix experiments using a two-dimensional convergent shock-tube

    NASA Astrophysics Data System (ADS)

    Holder, D. A.; Smith, A. V.; Barton, C. J.; Youngs, D. L.

    2003-07-01

    This article reports the first Richtmyer Meshkov instability experiments using an improved version of the Atomic Weapons Establishment convergent shock tube. These investigate the shock-induced turbulent mixing across the interfaces of an air/dense gas/air region. Multipoint ignition of a detonatable gas mixture produces a cylindrically convergent shock that travels into a test cell containing the dense gas region. The mixing process is imaged with shadowgraphy. Sample results are presented from an unperturbed experiment and one with a notch perturbation imposed on one of the dense gas interfaces. The unperturbed experiment shows the mixing across the dense gas boundaries and the motion of the bulk dense gas region. Imposition of the notch perturbation produces a mushroom-shaped air void penetrating the dense gas region. Three-dimensional simulations performed using the AWE TURMOIL3D code are presented and compared with the sample experimental results. A very good agreement is demonstrated. Conducting these first turbulent mixing experiments has highlighted a number of areas for future development of the convergent shock-tube facility; these are also presented.

  7. Shock-tube measurements of excited oxygen atoms using cavity-enhanced absorption spectroscopy.

    PubMed

    Nations, Marcel; Wang, Shengkai; Goldenstein, Christopher S; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-10-10

    We report the use of cavity-enhanced absorption spectroscopy (CEAS) using two distributed feedback diode lasers near 777.2 and 844.6 nm for sensitive, time-resolved, in situ measurements of excited-state populations of atomic oxygen in a shock tube. Here, a 1% O2/Ar mixture was shock-heated to 5400-8000 K behind reflected shock waves. The combined use of a low-finesse cavity, fast wavelength scanning of the lasers, and an off-axis alignment enabled measurements with 10 μs time response and low cavity noise. The CEAS absorption gain factors of 104 and 142 for the P35←S520 (777.2 nm) and P0,1,23←S310 (844.6 nm) atomic oxygen transitions, respectively, significantly improved the detection sensitivity over conventional single-pass measurements. This work demonstrates the potential of using CEAS to improve shock-tube studies of nonequilibrium electronic-excitation processes at high temperatures.

  8. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube.

    PubMed

    Nájera, Juan J; Fochesatto, Javier G; Last, Deborah J; Percival, Carl J; Horn, Andrew B

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0+/-0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 mum for size diameter and (0.8-4.9)x10(6) particles/cm(3) for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as d(p)=0.9 mum and N=5x10(3) particles/cm(3) with sigma=1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the

  9. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube

    NASA Astrophysics Data System (ADS)

    Nájera, Juan J.; Fochesatto, Javier G.; Last, Deborah J.; Percival, Carl J.; Horn, Andrew B.

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0±0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 μm for size diameter and (0.8-4.9)×106 particles/cm3 for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as dp=0.9 μm and N =5×103 particles/cm3 with σ =1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the flow tube

  10. The Autoignition of iso-Cetane: Shock Tube Experiments and Kinetic Modeling

    SciTech Connect

    Oehlschlaeger, M A; Steinberg, J; Westbrook, C K; Pitz, W J

    2009-02-25

    Iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C{sub 16}H{sub 34}) is a highly branched alkane reference compound for determining cetane ratings. It is also a candidate branched alkane representative in surrogate mixtures for diesel and jet fuels. Here new experiments and kinetic modeling results are presented for the autoignition of iso-cetane at elevated temperatures and pressures relevant to combustion in internal combustion engines. Ignition delay time measurements were made in reflected shock experiments in a heated shock tube for {Phi} = 0.5 and 1.0 iso-cetane/air mixtures at temperatures ranging from 953 to 1347 K and pressures from 8 to 47 atm. Ignition delay times were measured using electronically excited OH emission, monitored through the shock tube end wall, and piezoelectric pressure transducer measurements, made at side wall locations. A new kinetic mechanism for the description of the oxidation of iso-cetane is presented that is developed based on a previous mechanism for iso-octane. Computed results from the mechanism are found in good agreement with the experimental measurements. To our knowledge, the ignition time measurements and detailed kinetic mechanism for isocetane presented here are the first of their kind.

  11. Shock-tube and modeling study of methane pyrolysis and oxidation

    SciTech Connect

    Hidaka, Yoshiaki; Sato, Kazutaka; Henmi, Yusuke; Tanaka, Hiroya; Inami, Koji

    1999-08-01

    Methane pyrolysis and oxidation were studied behind reflected shock waves in the temperature range 1350--2400 K at pressures of 1.6 to 4.4 atm. Methane decay in both the pyrolysis and oxidation reactions was measured by using time-resolved infrared (IR) laser absorption at 3.39 {micro}m. CO{sub 2} production was also measured by time-resolved IR emission at 4.24 {micro}m. The production yields were also studied using a single-pulse method. The pyrolysis and oxidation of methane were modeled using a kinetic reaction mechanism including the most recent mechanism for formaldehyde, ketene, acetylene, ethylene, and ethane oxidations. The present and earlier shock tube data is reproduced by the proposed mechanism with 157 reaction steps and 48 species. The reactions and the rate constants, which were important to predict these and earlier shock tube data for methane pyrolysis and the oxidation with mixtures of wide composition from methane-rich to methane-lean, are discussed in detail.

  12. Optimizing Facility Configurations and Operating Conditions for Improved Performance in the NASA Ames 24 Inch Shock Tube

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cruden, Brett A.

    2016-01-01

    The Ames Electric Arc Shock Tube (EAST) is a shock tube wherein the driver gas can be heated by an electric arc discharge. The electrical energy is stored in a 1.2 MJ capacitor bank. Four inch and 24 inch diameter driven tubes are available. The facility is described and the need for testing in the 24 inch tube to better simulate low density NASA mission profiles is discussed. Three test entries, 53, 53B and 59, are discussed. Tests are done with air or Mars gas (95.7% CO2/2.7% N2/1.6% Ar) at pressures of 0.01 to 0.14 Torr. Velocities spanned 6.3-9.2 km/s, with a nominal center of 7 km/s. Many facility configurations are studied in an effort to improve data quality. Various driver and driven tube configurations and the use of a buffer section between the driver and the driven tube are studied. Diagnostics include test times, time histories of the shock light pulses and tilts of the shock wave off the plane normal to the tube axis. The report will detail the results of the various trials, give the best configuration/operating conditions found to date and provide recommendations for further improvements. Finally, diaphragm performance is discussed.

  13. Tables and charts of equilibrium normal shock and shock tube solutions for pure CO2 with velocities to 16 km/second

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1974-01-01

    Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2, representative of Mars and Venus atmospheres. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 Newtons per square meter to 500 kilo Newtons per square meter. The present results are applicable to shock tube flows, and to free-flight conditions for a blunt body at high velocities. Working charts illustrating idealized shock-tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.

  14. Table and charts of equilibrium normal-shock and shock-tube properties for pure carbon dioxide with velocities from 1 to 16 km/sec

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1976-01-01

    Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure CO2. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 1 to 16 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. The present results are applicable to shock tube flows and to freeflight conditions for a blunt body at high velocities. Working charts illustrating idealized shock tube performance with CO2 test gas and heated helium and hydrogen driver gases are also presented.

  15. Single-interface Richtmyer-Meshkov turbulent mixing at the Los Alamos Vertical Shock Tube

    DOE PAGES

    Wilson, Brandon Merrill; Mejia Alvarez, Ricardo; Prestridge, Katherine Philomena

    2016-04-12

    We studied Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF6, A=0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma=1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shocked interface.more » Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N=5 realizations at ten locations) and statistics (N=100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. Lastly, the enstrophy and strain show focused mixing activity in the spike regions.« less

  16. Single-interface Richtmyer-Meshkov turbulent mixing at the Los Alamos Vertical Shock Tube

    SciTech Connect

    Wilson, Brandon Merrill; Mejia Alvarez, Ricardo; Prestridge, Katherine Philomena

    2016-04-12

    We studied Mach number and initial conditions effects on Richtmyer–Meshkov (RM) mixing by the vertical shock tube (VST) at Los Alamos National Laboratory (LANL). At the VST, a perturbed stable light-to-heavy (air–SF6, A=0.64) interface is impulsively accelerated with a shock wave to induce RM mixing. We investigate changes to both large and small scales of mixing caused by changing the incident Mach number (Ma=1.3 and 1.45) and the three-dimensional (3D) perturbations on the interface. Simultaneous density (quantitative planar laser-induced fluorescence (PLIF)) and velocity (particle image velocimetry (PIV)) measurements are used to characterize preshock initial conditions and the dynamic shocked interface. Initial conditions and fluid properties are characterized before shock. Using two types of dynamic measurements, time series (N=5 realizations at ten locations) and statistics (N=100 realizations at a single location) of the density and velocity fields, we calculate several mixing quantities. Mix width, density-specific volume correlations, density–vorticity correlations, vorticity, enstrophy, strain, and instantaneous dissipation rate are examined at one downstream location. Results indicate that large-scale mixing, such as the mix width, is strongly dependent on Mach number, whereas small scales are strongly influenced by initial conditions. Lastly, the enstrophy and strain show focused mixing activity in the spike regions.

  17. Hyperthermal molecular beam source using a non-diaphragm-type small shock tube

    NASA Astrophysics Data System (ADS)

    Yoshimoto, Yuta; Osuka, Kenichi; Miyoshi, Nobuya; Kinefuchi, Ikuya; Takagi, Shu; Matsumoto, Yoichiro

    2016-10-01

    We have developed a hyperthermal molecular beam source employing a non-diaphragm-type small shock tube for gas-surface interaction studies. Unlike conventional shock-heated beam sources, the capability of repetitive beam generation without the need for replacing a diaphragm makes our beam source suitable for scattering experiments, which require signal accumulation for a large number of beam pulses. The short duration of shock heating alleviates the usual temperature limit due to the nozzle material, enabling the generation of a molecular beam with higher translational energy or that containing dissociated species. The shock-heated beam is substantially free from surface-contaminating impurities that are pronounced in arc-heated beams. We characterize the properties of nitrogen and oxygen molecular beams using the time-of-flight method. When both the timing of beam extraction and the supply quantity of nitrogen gas are appropriately regulated, our beam source can generate a nitrogen molecular beam with translational energy of approximately 1 eV, which corresponds to the typical activation energy of surface reactions. Furthermore, our beam source can generate an oxygen molecular beam containing dissociated oxygen atoms, which can be a useful probe for surface oxidation. The dissociation fraction along with the translational energy can be adjusted through the supply quantity of oxygen gas.

  18. Strategies for obtaining long constant-pressure test times in shock tubes

    SciTech Connect

    Campbell, Matthew Frederick; Parise, T.; Tulgestke, A. M.; Spearrin, R. M.; Davidson, D. F.; Hanson, R. K.

    2015-09-22

    Several techniques have been developed for obtaining long, constant-pressure test times in reflected shock wave experiments in a shock tube, including the use of driver inserts, driver gas tailoring, helium gas diaphragm interfaces, driver extensions, and staged driver gas filling. Here, we detail these techniques, including discussion on the most recent strategy, staged driver gas filling. Experiments indicate that this staged filling strategy increases available test time by roughly 20 % relative to single-stage filling of tailored driver gas mixtures, while simultaneously reducing the helium required per shock by up to 85 %. This filling scheme involves firstly mixing a tailored helium–nitrogen mixture in the driver section as in conventional driver filling and, secondly, backfilling a low-speed-of-sound gas such as nitrogen or carbon dioxide from a port close to the end cap of the driver section. Using this staged driver gas filling, in addition to the other techniques listed above, post-reflected shock test times of up to 0.102 s (102 ms) at 524 K and 1.6 atm have been obtained. Spectroscopically based temperature measurements in non-reactive mixtures have confirmed that temperature and pressure conditions remain constant throughout the length of these long test duration trials. Finally, these strategies have been used to measure low-temperature n-heptane ignition delay times.

  19. Strategies for obtaining long constant-pressure test times in shock tubes

    DOE PAGES

    Campbell, Matthew Frederick; Parise, T.; Tulgestke, A. M.; ...

    2015-09-22

    Several techniques have been developed for obtaining long, constant-pressure test times in reflected shock wave experiments in a shock tube, including the use of driver inserts, driver gas tailoring, helium gas diaphragm interfaces, driver extensions, and staged driver gas filling. Here, we detail these techniques, including discussion on the most recent strategy, staged driver gas filling. Experiments indicate that this staged filling strategy increases available test time by roughly 20 % relative to single-stage filling of tailored driver gas mixtures, while simultaneously reducing the helium required per shock by up to 85 %. This filling scheme involves firstly mixing amore » tailored helium–nitrogen mixture in the driver section as in conventional driver filling and, secondly, backfilling a low-speed-of-sound gas such as nitrogen or carbon dioxide from a port close to the end cap of the driver section. Using this staged driver gas filling, in addition to the other techniques listed above, post-reflected shock test times of up to 0.102 s (102 ms) at 524 K and 1.6 atm have been obtained. Spectroscopically based temperature measurements in non-reactive mixtures have confirmed that temperature and pressure conditions remain constant throughout the length of these long test duration trials. Finally, these strategies have been used to measure low-temperature n-heptane ignition delay times.« less

  20. Shock tube measurements of the optical absorption of triatomic carbon, C3

    NASA Technical Reports Server (NTRS)

    Jones, J. J.

    1977-01-01

    The spectral absorption of C3 has been measured in a shock tube using a test gas mixture of acetylene diluted with argon. The absorption of a pulsed xenon light source was measured by means of eight photomultiplier channels to a spectrograph and an accompanying drum camera. The postshock test gas temperature and pressure were varied over the range 3300-4300 K and 0.36 to 2.13 atmospheres, respectively. The results showed appreciable absorption from C3 for the wavelength range 300 to 540 nanometers. The computed electronic oscillator strength varied from 0.12 to 0.06 as a function of temperature.

  1. Planar blast scaling with condensed-phase explosives in a shock tube

    SciTech Connect

    Jackson, Scott L

    2011-01-25

    Blast waves are strong shock waves that result from large power density deposition into a fluid. The rapid energy release of high-explosive (HE) detonation provides sufficiently high power density for blast wave generation. Often it is desirable to quantify the energy released by such an event and to determine that energy relative to other reference explosives to derive an explosive-equivalence value. In this study, we use condensed-phase explosives to drive a blast wave in a shock tube. The explosive material and quantity were varied to produce blast waves of differing strengths. Pressure transducers at varying lengths measured the post-shock pressure, shock-wave arrival time and sidewall impulse associated with each test. Blast-scaling concepts in a one-dimensional geometry were then used to both determine the energy release associated with each test and to verify the scaling of the shock position versus time, overpressure versus distance, and impulse. Most blast scaling measurements to-date have been performed in a three-dimensional geometry such as a blast arena. Testing in a three-dimensional geometry can be challenging, however, as spherical shock-wave symmetry is required for good measurements. Additionally, the spherical wave strength decays rapidly with distance and it can be necessary to utilize larger (several kg) quantities of explosive to prevent significant decay from occurring before an idealized blast wave has formed. Such a mode of testing can be expensive, require large quantities of explosive, and be limited by both atmospheric conditions (such as rain) and by noise complaints from the population density near the test arena. Testing is possible in more compact geometries, however. Non-planar blast waves can be formed into a quasi-planar shape by confining the shock diffraction with the walls of a shock tube. Regardless of the initial form, the wave shape will begin to approximate a planar front after successive wave reflections from the tube

  2. Development of a novel miniature detonation-driven shock tube assembly that uses in situ generated oxyhydrogen mixture

    NASA Astrophysics Data System (ADS)

    Janardhanraj, S.; Jagadeesh, G.

    2016-08-01

    A novel concept to generate miniature shockwaves in a safe, repeatable, and controllable manner in laboratory confinements using an in situ oxyhydrogen generator has been proposed and demonstrated. This method proves to be more advantageous than existing methods because there is flexibility to vary strength of the shockwave, there is no need for storage of high pressure gases, and there is minimal waste disposal. The required amount of oxyhydrogen mixture is generated using alkaline electrolysis that produces hydrogen and oxygen gases in stoichiometric quantity. The rate of oxyhydrogen mixture production for the newly designed oxyhydrogen generator is found to be around 8 ml/s experimentally. The oxyhydrogen generator is connected to the driver section of a specially designed 10 mm square miniature shock tube assembly. A numerical code that uses CANTERA software package is used to predict the properties of the driver gas in the miniature shock tube. This prediction along with the 1-D shock tube theory is used to calculate the properties of the generated shockwave and matches reasonably well with the experimentally obtained values for oxyhydrogen mixture fill pressures less than 2.5 bars. The miniature shock tube employs a modified tri-clover clamp assembly to facilitate quick changing of diaphragm and replaces the more cumbersome nut and bolt system of fastening components. The versatile nature of oxyhydrogen detonation-driven miniature shock tube opens up new horizons for shockwave-assisted interdisciplinary applications.

  3. A Comparison of EAST Shock-Tube Radiation Measurements with a New Air Radiation Model

    NASA Technical Reports Server (NTRS)

    Johnston, Christopher O.

    2008-01-01

    This paper presents a comparison between the recent EAST shock tube radiation measurements (Grinstead et al., AIAA 2008-1244) and the HARA radiation model. The equilibrium and nonequilibrium radiation measurements are studied for conditions relevant to lunar-return shock-layers; specifically shock velocities ranging from 9 to 11 kilometers per second at initial pressures of 0.1 and 0.3 Torr. The simulated shock-tube flow is assumed one-dimensional and is calculated using the LAURA code, while a detailed nonequilibrium radiation prediction is obtained in an uncoupled manner from the HARA code. The measured and predicted intensities are separated into several spectral ranges to isolate significant spectral features, mainly strong atomic line multiplets. The equations and physical data required for the prediction of these strong atomic lines are reviewed and their uncertainties identified. The 700-1020 nm wavelength range, which accounts for roughly 30% of the radiative flux to a peak-heating lunar return shock-layer, is studied in detail and the measurements and predictions are shown to agree within 15% in equilibrium. The plus or minus 1.5% uncertainty on the measured shock velocity is shown to cause up to a plus or minus 30% difference in the predicted radiation. This band of predictions contains the measured values in almost all cases. For the highly nonequilibrium 0.1 Torr cases, the nonequilibrium radiation peaks are under-predicted by about half. This under-prediction is considered acceptable when compared to the order-of-magnitude over-prediction obtained using a Boltzmann population of electronic states. The reasonable comparison in the nonequilibrium regions provides validation for both the non-Boltzmann modeling in HARA and the thermochemical nonequilibrium modeling in LAURA. The N2 (+)(1-) and N2(2+) molecular band systems are studied in the 290 480 nm wavelength range for both equilibrium and nonequilibrium regimes. The non-Boltzmann rate models for these

  4. Table and charts of equilibrium normal shock and shock tube properties for pure argon with velocities to 18 km/sec

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III; Wilder, S. E.

    1976-01-01

    Equilibrium thermodynamic and flow properties are presented in tabulated and graphical form for moving, standing, and reflected normal shock waves in pure argon. Properties include pressure, temperature, density, enthalpy, speed of sound, entropy, molecular-weight ratio, isentropic exponent, velocity, and species mole fractions. Incident (moving) shock velocities are varied from 2 to 18 km/sec for a range of initial pressure of 5 N/sq m to 500 kN/sq m. Working charts illustrating shock tube performance with argon test gas and heated helium and hydrogen driver gases are also presented.

  5. Shock tubes and waves; Proceedings of the Sixteenth International Symposium, Rheinisch-Westfaelische Technische Hochschule, Aachen, Federal Republic of Germany, July 26-31, 1987

    NASA Astrophysics Data System (ADS)

    Groenig, Hans

    Topics discussed in this volume include shock wave structure, propagation, and interaction; shocks in condensed matter, dusty gases, and multiphase media; chemical processes and related combustion and detonation phenomena; shock wave reflection, diffraction, and focusing; computational fluid dynamic code development and shock wave application; blast and detonation waves; advanced shock tube technology and measuring technique; and shock wave applications. Papers are presented on dust explosions, the dynamics of shock waves in certain dense gases, studies of condensation kinetics behind incident shock waves, the autoignition mechanism of n-butane behind a reflected shock wave, and a numerical simulation of the focusing process of reflected shock waves. Attention is also given to the equilibrium shock tube flow of real gases, blast waves generated by planar detonations, modern diagnostic methods for high-speed flows, and interaction between induced waves and electric discharge in a very high repetition rate excimer laser.

  6. A Parametric Approach to Shape Field-Relevant Blast Wave Profiles in Compressed-Gas-Driven Shock Tube

    PubMed Central

    Sundaramurthy, Aravind; Chandra, Namas

    2014-01-01

    Detonation of a high-explosive produces shock-blast wave, shrapnel, and gaseous products. While direct exposure to blast is a concern near the epicenter, shock-blast can affect subjects, even at farther distances. When a pure shock-blast wave encounters the subject, in the absence of shrapnels, fall, or gaseous products the loading is termed as primary blast loading and is the subject of this paper. The wave profile is characterized by blast overpressure, positive time duration, and impulse and called herein as shock-blast wave parameters (SWPs). These parameters in turn are uniquely determined by the strength of high explosive and the distance of the human subjects from the epicenter. The shape and magnitude of the profile determine the severity of injury to the subjects. As shown in some of our recent works (1–3), the profile not only determines the survival of the subjects (e.g., animals) but also the acute and chronic biomechanical injuries along with the following bio-chemical sequelae. It is extremely important to carefully design and operate the shock tube to produce field-relevant SWPs. Furthermore, it is vital to identify and eliminate the artifacts that are inadvertently introduced in the shock-blast profile that may affect the results. In this work, we examine the relationship between shock tube adjustable parameters (SAPs) and SWPs that can be used to control the blast profile; the results can be easily applied to many of the laboratory shock tubes. Further, replication of shock profile (magnitude and shape) can be related to field explosions and can be a standard in comparing results across different laboratories. Forty experiments are carried out by judiciously varying SAPs such as membrane thickness, breech length (66.68–1209.68 mm), measurement location, and type of driver gas (nitrogen, helium). The effects SAPs have on the resulting shock-blast profiles are shown. Also, the shock-blast profiles of a TNT explosion from ConWep software is

  7. Quantification of non-ideal explosion violence with a shock tube

    SciTech Connect

    Jackson, Scott I; Hill, Larry G

    2009-01-01

    There is significant interest in quantifying the blast violence associated with various nonideal explosions. Such data is essential to evaluate the damage potential of both explosive cookoff and terrorist explosive scenarios. We present a technique designed to measure the source energy associated with a non-ideal, asymmetrical, and three-dimensional explosion. A tube is used to confine and focus energy from a blast event into a one-dimensional, quasi-planar shock front. During propagation along the length of the tube, the wave is allowed to shocksteepen into a more ideal form. Pressure transducers then measure the shock overpressure as a function of the distance from the source. One-dimensional blast scaling theory allows calculation of the source energy from this data. This small-scale test method addresses cost and noise concerns as well as boosting and symmetry issues associated with large-scale, three-dimensional, blast arena tests. Results from both ideal explosives and non-ideal explosives are discussed.

  8. Model predictions of higher-order normal alkane ignition from dilute shock-tube experiments

    NASA Astrophysics Data System (ADS)

    Rotavera, B.; Petersen, E. L.

    2013-07-01

    Shock-induced oxidation of two higher-order linear alkanes was measured using a heated shock tube facility. Experimental overlap in stoichiometric ignition delay times obtained under dilute (99 % Ar) conditions near atmospheric pressure was observed in the temperature-dependent ignition trends of n-nonane ( n-C9H20) and n-undecane ( n-C11H24). Despite the overlap, model predictions of ignition using two different detailed chemical kinetics mechanisms show discrepancies relative to both the measured data as well as to one another. The present study therefore focuses on the differences observed in the modeled, high-temperature ignition delay times of higher-order n-alkanes, which are generally regarded to have identical ignition behavior for carbon numbers above C7. Comparisons are drawn using experimental data from the present study and from recent work by the authors relative to two existing chemical kinetics mechanisms. Time histories from the shock-tube OH* measurements are also compared to the model predictions; a double-peaked structure observed in the data shows that the time response of the detector electronics is crucial for properly capturing the first, incipient peak near time zero. Calculations using the two mechanisms were carried out at the dilution level employed in the shock-tube experiments for lean {({φ} = 0.5)}, stoichiometric, and rich {({φ} = 2.0)} equivalence ratios, 1230-1620 K, and for both 1.5 and 10 atm. In general, the models show differing trends relative to both measured data and to one another, indicating that agreement among chemical kinetics models for higher-order n-alkanes is not consistent. For example, under certain conditions, one mechanism predicts the ignition delay times to be virtually identical between the n-nonane and n-undecane fuels (in fact, also for all alkanes between at least C8 and C12), which is in agreement with the experiment, while the other mechanism predicts the larger fuels to ignite progressively more slowly.

  9. Numerical Studies of the Application of Shock Tube Technology for Cold Gas Dynamic Spray Process

    NASA Astrophysics Data System (ADS)

    Nickel, R.; Bobzin, K.; Lugscheider, E.; Parkot, D.; Varava, W.; Olivier, H.; Luo, X.

    2007-12-01

    A new method for a combustion-free spraying is studied fundamentally by modeling and simulation in comparison with first experiments. The article focuses on the numerical simulation of the gas-particle nozzle flow, which is generated by the shock reflection at the end wall section of a shock tube. To study the physical fundamentals of this process, at present only a single shot operation is considered. The particles are injected downstream of the nozzle throat into a supersonic nozzle flow. The measurements of the particle velocity made by a laser Doppler anemometry (LDA) set up show that the maximum velocity amounts to 1220 m/s for stainless steel particles of 15 μm diameter. The CFD-Code (Fluent) is first verified by a comparison with available numerical and experimental data for gas and gas-particle flow fields in a long Laval-nozzle. The good agreement implied the great potential of the new dynamic process concept for cold-gas coating applications. Then the flow fields in the short Laval nozzle designed and realized by the Shock Wave Laboratory (SWL) are investigated. The gas flow for experimentally obtained stagnation conditions is simulated. The gas-particle flow without and with the influence of the particles on the gas flow is calculated by the Surface Engineering Institute (IOT) and compared with experiments. The influence of the injection parameters on the particle velocities is investigated, as well.

  10. Advanced Spectroscopic and Thermal Imaging Instrumentation for Shock Tube and Ballistic Range Facilities

    NASA Technical Reports Server (NTRS)

    Grinstead, Jay H.; Wilder, Michael C.; Reda, Daniel C.; Cruden, Brett A.; Bogdanoff, David W.

    2010-01-01

    The Electric Arc Shock Tube (EAST) facility and Hypervelocity Free Flight Aerodynamic Facility (HFFAF, an aeroballistic range) at NASA Ames support basic research in aerothermodynamic phenomena of atmospheric entry, specifically shock layer radiation spectroscopy, convective and radiative heat transfer, and transition to turbulence. Innovative optical instrumentation has been developed and implemented to meet the challenges posed from obtaining such data in these impulse facilities. Spatially and spectrally resolved measurements of absolute radiance of a travelling shock wave in EAST are acquired using multiplexed, time-gated imaging spectrographs. Nearly complete spectral coverage from the vacuum ultraviolet to the near infrared is possible in a single experiment. Time-gated thermal imaging of ballistic range models in flight enables quantitative, global measurements of surface temperature. These images can be interpreted to determine convective heat transfer rates and reveal transition to turbulence due to isolated and distributed surface roughness at hypersonic velocities. The focus of this paper is a detailed description of the optical instrumentation currently in use in the EAST and HFFAF.

  11. Shock tube study of the reaction H plus O2 plus Ar yields HO2 plus Ar

    NASA Technical Reports Server (NTRS)

    Jachimowski, C. J.; Houghton, W. M.

    1972-01-01

    Rate coefficient data for the recombination reaction H + 02 + Ar yields H02 + Ar have been determined from studies of lean hydrogen-oxygen mixtures behind incident shock waves over the temperature range of 948 to 1125 K. Hydroxyl radical concentration profiles were measured by ultraviolet absorption spectroscopy, and rate data were obtained through analysis of induction time and exponential growth parameter data. Analysis of the data yielded a rate coefficient which was generally lower than most of the more recent values obtained from shock tube studies. The effect of boundary layer formation on the conditions behind the shock was also examined and found to be negligible.

  12. Application of the space-time conservation element and solution element method to shock-tube problem

    NASA Technical Reports Server (NTRS)

    Wang, Xiao-Yen; Chow, Chuen-Yen; Chang, Sin-Chung

    1994-01-01

    An Euler solver based on the method of space-time conservation element and solution element is in this paper to simulate shock-tube flows involving shock waves, contact discontinuities, expansion waves and their intersections. Seven test problems are considered to examine the capability of this method. The numerical results, when compared with exact solutions and/or numerical solutions by other methods, indicate that the present method can accurately resolve strong shock and contact discontinuities without using any ad hoc techniques which are used only at the neighborhood of a discontinuity.

  13. Shock-tube pyrolysis of acetylene - Sensitivity analysis of the reaction mechanism for soot formation

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Gardiner, W. C., Jr.; Stein, S. E.

    1986-01-01

    The impact of thermodynamic parameters on the sensitivity of model predictions of soot formation by shock-tube pyrolysis of acetylene were assessed analytically. The pyrolysis process was treated as having three components: initiation, the initial pyrolysis stages; cyclization, formation of larger molecules and radicals and small aromatic molecules; and polymerization, further growth of aromatic rings. Rate equations are reviewed for each component. Thermodynamic effects were assessed by varying the C2H-H and C2H3-H bond energies and the Ct-(Ct) group additivity value. Any change in the C2H-H bond energy had a significant impact on the temperature and the maximum amount of the soot yield. The findings underscore the necessity of using accurate thermodynamic data for modeling high-temperature chemical kinetics.

  14. Homogeneous nucleation of ethanol and n-propanol in a shock tube

    NASA Technical Reports Server (NTRS)

    Peters, F.

    1982-01-01

    The condensation by homogeneous nucleation of ethanol (200 proof) and of n-propanol (99.98%) carried at small mole fraction in dry air (99.995%) was studied in the unsteady, isentropic expansion of a shock tube. Samples of the vapor at different partial pressures in dry air at room temperature were expanded into the liquid coexistence regime of the condensing species. A Kristler pressure transducer and Rayleigh light scattering were used to measure the pressure in the expansion and the onset of condensation. Condensation was observed at different locations between 0.15 and 1 m upstream of the diaphragm location, which correspond to different cooling rates of of the vapor samples about 50 to 10 C/ms.

  15. Single-pulse shock tube pyrolysis of toluene and 1,3-butadiene

    NASA Technical Reports Server (NTRS)

    Colket, M. B.

    1983-01-01

    The objective of this research is to investigate the rate limiting chemical mechanisms leading to the formation of soot precursors. A single-pulse shock tube is being used to collect gas samples of stable intermediates and end products of hydrocarbon pyrolysis. These gas samples are analyzed quantitatively using gas chromatography and any mass imbalance is believed to be due to the formation of PAH's and soot. Experimental decomposition rates of the parent hydrocarbon are determined and compared to predictions from the literature. Detailed chemical kinetic mechanisms describing hydrocarbon pyrolysis are being developed and models of soot formation are being compared with the experimental results. Information developed from these pyrolysis studies will provide the fundamental understanding for modeling subsequent oxidation experiments.

  16. Numerical study of the effect of oxygenated blending compounds on soot formation in shock tubes

    SciTech Connect

    Boehm, H.; Braun-Unkhoff, M.

    2008-04-15

    This numerical study deals with the influence of blends on the amount of soot formed in shock tubes, which were simulated by assuming a homogeneous plug flow reactor model. For this purpose, first, the reaction model used here was validated against experimental results previously obtained in the literature. Then, the soot volume fractions of various mixtures of methyl tert-butyl ether (MTBE)-benzene, isobutene-benzene, methanol-benzene, and ethanol-benzene diluted in argon were simulated and compared to the results of benzene-argon pyrolysis at 1721 K and 5.4 MPa. For MTBE, isobutene, methanol, and ethanol, small amounts of additives to benzene-argon mixtures promoted soot formation, for the shock tube model assumed, while higher concentrations of these additives led to smaller soot volume fractions in comparison to pure benzene-argon pyrolysis. The most significant soot promotion effect was found for the additives MTBE and isobutene. The channel for MTBE decomposition producing isobutene and methanol is very effective at temperatures beyond 1200 K. Thus, both MTBE-benzene and isobutene-benzene mixtures diluted in argon showed rather similar behavior in regard to soot formation. Special emphasis was directed toward the causes for the concentration-dependent influence of the blends on the amount of soot formed. Aromatic hydrocarbons and acetylene were identified as key gas-phase species that determine the trends in the formation of soot of various mixtures. From reaction flux analysis for phenanthrene, it was deduced that the combinative routes including phenyl species play a major role in forming PAHs, especially at early reaction times. It is found that the additives play an important role in providing material to grow side chains, such as by reaction channels including phenylacetylene or benzyl, which are confirmed to form aromatic hydrocarbons and thus to influence the amount of soot formed, particularly when the concentrations of the blends are increased

  17. A multiple shock tube and chemical kinetic modeling study of diethyl ether pyrolysis and oxidation.

    PubMed

    Yasunaga, K; Gillespie, F; Simmie, J M; Curran, H J; Kuraguchi, Y; Hoshikawa, H; Yamane, M; Hidaka, Y

    2010-09-02

    The pyrolysis and oxidation of diethyl ether (DEE) has been studied at pressures from 1 to 4 atm and temperatures of 900-1900 K behind reflected shock waves. A variety of spectroscopic diagnostics have been used, including time-resolved infrared absorption at 3.39 mum and time-resolved ultraviolet emission at 431 nm and absorption at 306.7 nm. In addition, a single-pulse shock tube was used to measure reactant, intermediate, and product species profiles by GC samplings at different reaction times varying from 1.2 to 1.8 ms. A detailed chemical kinetic model comprising 751 reactions involving 148 species was assembled and tested against the experiments with generally good agreement. In the early stages of reaction the unimolecular decomposition and hydrogen atom abstraction of DEE and the decomposition of the ethoxy radical have the largest influence. In separate experiments at 1.9 atm and 1340 K, it is shown that DEE inhibits the reactivity of an equimolar mixture of hydrogen and oxygen (1% of each).

  18. Shock-Tube Measurement of Acetone Dissociation Using Cavity-Enhanced Absorption Spectroscopy of CO.

    PubMed

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2015-07-16

    A direct measurement for the rate constant of the acetone dissociation reaction (CH3COCH3 = CH3CO + CH3) was conducted behind reflected shock wave, utilizing a sub-ppm sensitivity CO diagnostic achieved by cavity-enhanced absorption spectroscopy (CEAS). The current experiment eliminated the influence from secondary reactions and temperature change by investigating the clean pyrolysis of <20 ppm acetone in argon. For the first time, the acetone dissociation rate constant (k1) was directly measured over 5.5 orders of magnitude with a high degree of accuracy: k1 (1004-1494 K, 1.6 atm) = 4.39 × 10(55) T(-11.394) exp(-52 140K/T) ± 24% s(-1). This result was seen to agree with most previous studies and has bridged the gap between their temperature and pressure conditions. The current work also served as an example demonstration of the potential of using the CEAS technique in shock-tube kinetics studies.

  19. Shock tube study on the thermal decomposition of fluoroethane using infrared laser absorption detection of hydrogen fluoride.

    PubMed

    Matsugi, Akira; Shiina, Hiroumi

    2014-08-28

    Motivated by recent shock tube studies on the thermal unimolecular decomposition of fluoroethanes, in which unusual trends have been reported for collisional energy-transfer parameters, the rate constants for the thermal decomposition of fluoroethane were investigated using a shock tube/laser absorption spectroscopy technique. The rate constants were measured behind reflected shock waves by monitoring the formation of HF by IR absorption at the R(1) transition in the fundamental vibrational band near 2476 nm using a distributed-feedback diode laser. The peak absorption cross sections of this absorption line have also been determined and parametrized using the Rautian-Sobel'man line shape function. The rate constant measurements covered a wide temperature range of 1018-1710 K at pressures from 100 to 290 kPa, and the derived rate constants were successfully reproduced by the master equation calculation with an average downward energy transfer, ⟨ΔEdown⟩, of 400 cm(-1).

  20. Time-resolved detection of temperature, concentration, and pressure in a shock tube by intracavity absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Fjodorow, Peter; Fikri, Mustapha; Schulz, Christof; Hellmig, Ortwin; Baev, Valery M.

    2016-06-01

    In this paper, we demonstrate the first application of intracavity absorption spectroscopy (ICAS) for monitoring species concentration, total pressure, and temperature in shock-tube experiments. ICAS with a broadband Er3+-doped fiber laser is applied to time-resolved measurements of absorption spectra of shock-heated C2H2. The measurements are performed in a spectral range between 6512 and 6542 cm-1, including many absorption lines of C2H2, with a time resolution of 100 µs and an effective absorption path length of 15 m. Up to 18-times increase of the total pressure and a temperature rise of up to 1200 K have been monitored. Due to the ability of simultaneously recording many absorption lines in a broad spectral range, the presented technique can also be applied to multi-component analysis of transient single-shot processes in reactive gas mixtures in shock tubes, pulse detonation engines, or explosions.

  1. Proceedings of the International Symposium on Shock Waves and Shock Tubes (15th) Held in Berkeley, California on July 28-August 2, 1985

    DTIC Science & Technology

    1986-09-01

    Chair) J. Jones C. Park J. Dewey J. Keefer D. Russell D. Eekstrom J. Kiefer G. Skinner R. Emnrich Y. Kim B. Sturtevant R. Fowler A. Mark C. 1Tvanor Host... Skinner Shock Tube Study of Acetaldehyde Oxidation 277 A. Koichi Hayashi and Toshi Fj4iwara Chemical Kinetics Modeing of the Influence of Molecular...produce deviations from thermal equilibrium. At the conditions considered here, however, examples of nonequilibrium behavior are difficult to identify

  2. Heterogeneous uptake of NO2 on Arizona Test Dust under UV-A irradiation: An aerosol flow tube study

    NASA Astrophysics Data System (ADS)

    Dupart, Yoan; Fine, Ludovic; D'Anna, Barbara; George, Christian

    2014-12-01

    The uptake rate of NO2 on Arizona Test Dust aerosols was measured using an aerosol flow tube (AFT). While the uptake rate in the dark could not be measured, the uptake under UV-A irradiation was enhanced, with values in the range from (0.6 ± 0.3) × 10-8, (2.4 ± 0.4) × 10-8. The observed gas phase products were HONO and NO, with yields of at 30% and 9.6%, respectively. The difference between these measurements and those previously reported on macroscopic films are discussed and differences highlighted. Interestingly, a reasonable agreement is observed between the uptake kinetics of NO2 on Arizona Test Dust macroscopic films and aerosols, despite the different experimental approaches. The simplest approach i.e. thin films having a significant porosity, provides similar uptake kinetics to the more complex and realistic AFT approach.

  3. A Nonlinear Theory for Predicting the Effects of Unsteady Laminar, Turbulent, or Transitional Boundary Layers on the Attenuation of Shock Waves in a Shock Tube with Experimental Comparison

    NASA Technical Reports Server (NTRS)

    Trimpi, Robert L.; Cohen, Nathaniel B.

    1961-01-01

    The linearized attenuation theory of NACA Technical Note 3375 is modified in the following manner: (a) an unsteady compressible local skin-friction coefficient is employed rather than the equivalent steady-flow incompressible coefficient; (b) a nonlinear approach is used to permit application of the theory to large attenuations; and (c) transition effects are considered. Curves are presented for predicting attenuation for a shock pressure ratio up to 20 and a range of shock-tube Reynolds numbers. Comparison of theory and experimental data for shock-wave strengths between 1.5 and 10 over a wide range of Reynolds numbers shows good agreement with the nonlinear theory evaluated for a transition Reynolds number of 2.5 X 10(exp 5).

  4. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    SciTech Connect

    Kim, Y.W.

    1990-01-01

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  5. Current topics in shock waves; Proceedings of the International Symposium on Shock Waves and Shock Tubes, 17th, Lehigh University, Bethlehem, PA, July 17-21, 1989

    NASA Astrophysics Data System (ADS)

    Kim, Yong W.

    Various papers on shock waves are presented. The general topics addressed include: shock formation, focusing, and implosion; shock reflection and diffraction; turbulence; laser-produced plasmas and waves; ionization and shock-plasma interaction; chemical kinetics, pyrolysis, and soot formation; experimental facilities, techniques, and applications; ignition of detonation and combustion; particle entrainment and shock propagation through particle suspension; boundary layers and blast simulation; computational methods and numerical simulation.

  6. Numerical investigation of the effects of shock tube geometry on the propagation of an ideal blast wave profile

    NASA Astrophysics Data System (ADS)

    Li, X. D.; Hu, Z. M.; Jiang, Z. L.

    2017-03-01

    Bio-shock tubes (BSTs) can approximately simulate the typical blast waves produced by nuclear or chemical charge explosions for use in biological damage studies. The profile of an ideal blast wave in air is characterized by the overpressure, the negative pressure, and the positive pressure duration, which are determined by the geometric configurations of BSTs. Numerical experiments are carried out using the Eulerian equations by the dispersion-controlled dissipative scheme to investigate the effect of different structural components on ideal blast waveforms. The results show that cylindrical and conical frustum driver sections with an appropriate length can produce typical blast wave profiles, but a flattened peak pressure may appear when using a tube of a longer length. Neither a double-expansion tube nor a shrinkage tube set in BSTs is practical for the production of an ideal blast waveform. In addition, negative pressure recovery will occur, exceeding the ambient pressure with an increase in pressure in the vacuum section.

  7. Benchmark Shock Tube Experiments for Radiative Heating Relevant to Earth Re-Entry

    NASA Technical Reports Server (NTRS)

    Brandis, A. M.; Cruden, B. A.

    2017-01-01

    Detailed spectrally and spatially resolved radiance has been measured in the Electric Arc Shock Tube (EAST) facility for conditions relevant to high speed entry into a variety of atmospheres, including Earth, Venus, Titan, Mars and the Outer Planets. The tests that measured radiation relevant for Earth re-entry are the focus of this work and are taken from campaigns 47, 50, 52 and 57. These tests covered conditions from 8 km/s to 15.5 km/s at initial pressures ranging from 0.05 Torr to 1 Torr, of which shots at 0.1 and 0.2 Torr are analyzed in this paper. These conditions cover a range of points of interest for potential fight missions, including return from Low Earth Orbit, the Moon and Mars. The large volume of testing available from EAST is useful for statistical analysis of radiation data, but is problematic for identifying representative experiments for performing detailed analysis. Therefore, the intent of this paper is to select a subset of benchmark test data that can be considered for further detailed study. These benchmark shots are intended to provide more accessible data sets for future code validation studies and facility-to-facility comparisons. The shots that have been selected as benchmark data are the ones in closest agreement to a line of best fit through all of the EAST results, whilst also showing the best experimental characteristics, such as test time and convergence to equilibrium. The EAST data are presented in different formats for analysis. These data include the spectral radiance at equilibrium, the spatial dependence of radiance over defined wavelength ranges and the mean non-equilibrium spectral radiance (so-called 'spectral non-equilibrium metric'). All the information needed to simulate each experimental trace, including free-stream conditions, shock time of arrival (i.e. x-t) relation, and the spectral and spatial resolution functions, are provided.

  8. Shock tube study of dissociation and relaxation in 1,1-difluoroethane and vinyl fluoride.

    PubMed

    Xu, Hui; Kiefer, John H; Sivaramakrishnan, Raghu; Giri, Binod R; Tranter, Robert S

    2007-08-21

    This paper reports measurements of the thermal dissociation of 1,1-difluoroethane in the shock tube. The experiments employ laser-schlieren measurements of rate for the dominant HF elimination using 10% 1,1-difluoroethane in Kr over 1500-2000 K and 43 < P < 424 torr. The vinyl fluoride product of this process then dissociates affecting the late observations. We thus include a laser schlieren study (1717-2332 K, 75 < P < 482 torr in 10 and 4% vinyl fluoride in Kr) of this dissociation. This latter work also includes a set of experiments using shock-tube time-of-flight mass spectrometry (4% vinyl fluoride in neon, 1500-1980 K, 500 < P < 1300 torr). These time-of-flight experiments confirm the theoretical expectation that the only reaction in vinyl fluoride is HF elimination. The dissociation experiments are augmented by laser schlieren measurements of vibrational relaxation (1-20% C(2)H(3)F in Kr, 415-1975 K, 5 < P < 50 torr, and 2 and 5% C(2)H(4)F(2) in Kr, 700-1350 K, 6 < P < 22 torr). These experiments exhibit very rapid relaxation, and incubation delays should be negligible in dissociation. An RRKM model of dissociation in 1,1-difluoroethane based on a G3B3 calculation of barrier and other properties fits the experiments but requires a very large DeltaE(down) of 1600 cm(-1), similar to that found in a previous examination of 1,1,1-trifluoroethane. Dissociation of vinyl fluoride is complicated by the presence of two parallel HF eliminations, both three-center and four-center. Structure calculations find nearly equal barriers for these, and TST calculations show almost identical k(infinity). An RRKM fit to the observed falloff again requires an unusually large DeltaE(down) and the experiments actually support a slightly reduced barrier. These large energy-transfer parameters now seem routine in these large fluorinated species. It is perhaps a surprising result for which there is as yet no explanation.

  9. Numerical study of the transient flow in the driven tube and the nozzle section of a shock tunnel

    NASA Technical Reports Server (NTRS)

    Tokarcik-Polsky, Susan; Cambier, Jean-Luc

    1993-01-01

    The initial flow in a shock tunnel was examined numerically using computational fluid dynamics (CFD). A finite-volume total variation diminishing (TVD) scheme was used to calculate the transient flow in a shock tunnel. Both viscous and inviscid, chemically nonreacting flows were studied. The study consisted of two parts, the first dealt with the transient flow in the driven-tube/nozzle interface region (inviscid calculations). The effects of varying the geometry in this region was examined. The second part of the study examined the transient flow in the nozzle (viscous calculations). The results were compared to experimental data.

  10. Predictive value of low tube voltage and dual-energy CT for successful shock wave lithotripsy: an in vitro study.

    PubMed

    Largo, Remo; Stolzmann, Paul; Fankhauser, Christian D; Poyet, Cédric; Wolfsgruber, Pirmin; Sulser, Tullio; Alkadhi, Hatem; Winklhofer, Sebastian

    2016-06-01

    This study investigates the capabilities of low tube voltage computed tomography (CT) and dual-energy CT (DECT) for predicting successful shock wave lithotripsy (SWL) of urinary stones in vitro. A total of 33 urinary calculi (six different chemical compositions; mean size 6 ± 3 mm) were scanned using a dual-source CT machine with single- (120 kVp) and dual-energy settings (80/150, 100/150 Sn kVp) resulting in six different datasets. The attenuation (Hounsfield Units) of calculi was measured on single-energy CT images and the dual-energy indices (DEIs) were calculated from DECT acquisitions. Calculi underwent SWL and the number of shock waves for successful disintegration was recorded. The prediction of required shock waves regarding stone attenuation/DEI was calculated using regression analysis (adjusted for stone size and composition) and the correlation between CT attenuation/DEI and the number of shock waves was assessed for all datasets. The median number of shock waves for successful stone disintegration was 72 (interquartile range 30-361). CT attenuation/DEI of stones was a significant, independent predictor (P < 0.01) for the number of required shock waves with the best prediction at 80 kVp (β estimate 0.576) (P < 0.05). Correlation coefficients between attenuation/DEI and the number of required shock waves ranged between ρ = 0.31 and 0.68 showing the best correlation at 80 kVp (P < 0.001). The attenuation of urinary stones at low tube voltage CT is the best predictor for successful stone disintegration, being independent of stone composition and size. DECT shows no added value for predicting the success of SWL.

  11. A Shock Tube and Chemical Kinetic Modeling Study of the Oxidation of 2,5-Dimethylfuran

    PubMed Central

    Sirjean, Baptiste; Fournet, René; Glaude, Pierre-Alexandre; Battin-Leclerc, Frédérique; Wang, Weijing; Oehlschlaeger, Matthew A.

    2013-01-01

    A detailed kinetic model describing the oxidation of 2,5-dimethylfuran (DMF), a potential second-generation biofuel, is proposed. The kinetic model is based upon quantum chemical calculations for the initial DMF consumption reactions and important reactions of intermediates. The model is validated by comparison to new DMF shock tube ignition delay time measurements (over the temperature range 1300 – 1831 K and at nominal pressures of 1 and 4 bar) and the DMF pyrolysis speciation measurements of Lifshitz et al. [J. Phys. Chem. A 102 (52) (1998) 10655-10670] Globally, modeling predictions are in good agreement with the considered experimental targets. In particular, ignition delay times are predicted well by the new model, with model experiment deviations of at most a factor of two, and DMF pyrolysis conversion is predicted well, to within experimental scatter of the Lifshitz et al. data. Additionally, comparisons of measured and model predicted pyrolysis speciation provides validation of theoretically calculated channels for the oxidation of DMF. Sensitivity and reaction flux analyses highlight important reactions as well as the primary reaction pathways responsible for the decomposition of DMF and formation and destruction of key intermediate and product species. PMID:23327724

  12. The dissociation of diacetyl : a shock-tube and theoretical study.

    SciTech Connect

    Yang, X.; Jasper, A. W.; Kiefer, J. H.; Tranter, R. S.

    2009-07-01

    The dissociation of diacetyl dilute in krypton has been studied in a shock tube using laser schlieren densitometry at 1200-1800 K and reaction pressures of 55 {+-} 2, 120 {+-} 3, and 225 {+-} 5 Torr. The experimentally determined rate coefficients show falloff and an ab initio/Master Equation/VRC-TST analysis was used to determine pressure-dependent rate coefficient expressions that are in good agreement with the experimental data. From the theoretical calculations k{sub {infinity}} (T) = 5.029 x 10{sup 19} (T/298 K){sup -3.40} exp(-37665/T) s{sup -1} for 300 < T < 2000 K. The laser schlieren profiles were simulated using a model for methyl recombination with appropriate additions for diacetyl. From the simulations rate coefficients were determined for CH{sub 3} + CH{sub 3} = C{sub 2}H{sub 6} and CH{sub 3} + C{sub 4}H{sub 6}O{sub 2} = CH{sub 3}CO + CH{sub 2}CO + CH{sub 4} (k(T) = 2.818T{sup 4.00} exp(-5737/T) cm{sup 3} mol{sup -1} s{sup -1}). Excellent agreement is found between the simulations and experimental profiles, and Troe type parameters have been calculated for the dissociation of diacetyl and the recombination of methyl radicals.

  13. Assessment of Blasting Performance Using Electronic Vis-à-Vis Shock Tube Detonators in Strong Garnet Biotite Sillimanite Gneiss Formations

    NASA Astrophysics Data System (ADS)

    Sharma, Suresh Kumar; Rai, Piyush

    2016-04-01

    This paper presents a comparative investigation of the shock tube and electronic detonating systems practised in bench blasting. The blast trials were conducted on overburden rocks of Garnet Biotite Sillimanite Gneiss formations in one of the largest metalliferous mine of India. The study revealed that the choice of detonating system was crucial in deciding the fragment size and its distribution within the blasted muck-piles. The fragment size and its distribution affected the digging rate of excavators. Also, the shape of the blasted muck-pile was found to be related to the degree of fragmentation. From the present work, it may be inferred that in electronic detonation system, timely release of explosive energy resulted in better overall blasting performance. Hence, the precision in delay time must be considered in designing blast rounds in such overburden rock formations. State-of-art image analysis, GPS based muck-pile profile plotting techniques were rigorously used in the investigation. The study revealed that a mean fragment size (K50) value for shock tube detonated blasts (0.55-0.59 m) was higher than that of electronically detonated blasts (0.43-0.45 m). The digging rate of designated shovels (34 m3) with electronically detonated blasts was consistently more than 5000 t/h, which was almost 13 % higher in comparison to shock tube detonated blasts. Furthermore, favourable muck-pile shapes were witnessed in electronically detonated blasts from the observations made on the dozer performance.

  14. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  15. Experimental study of soot formation from a diesel fuel surrogate in a shock tube

    SciTech Connect

    Mathieu, Olivier; Djebaili-Chaumeix, Nabiha; Paillard, Claude-Etienne; Douce, Francoise

    2009-08-15

    The soot tendency (soot induction delay time and soot yield) of a diesel fuel surrogate and of the hydrocarbons that constitute this mixture was studied in a heated shock tube. The surrogate is composed of three hydrocarbons representative of major chemical families of diesel fuels (39% n-propylcyclohexane, 28% n-butylbenzene, and 33% 2,2,4,4,6,8,8-heptamethylnonane in mass proportion). Experiments were carried out for highly diluted mixtures in argon; in the case of pyrolysis and at two equivalence ratios: 18 and 5. The pressure range was relatively high (1090-1870 kPa) and the carbon atom concentration was kept constant at around 2 x 10{sup +18} atoms cm{sup -3}. The effects of the nature of the hydrocarbon, the oxygen addition, and the temperature on the soot induction delay time and soot yield were investigated. A second growth stage of the soot volume fraction was observed. The influence of several parameters on the existence and/or on the amplitude of this second growth seems to indicate the chemical nature of this phenomenon. Results for the soot tendency show that the soot induction delay time and soot yield depend strongly on the structure of the hydrocarbon and on the concentration of oxygen. The study of the diesel surrogate shows that the soot inception process does not depend on synergistic effects between hydrocarbons but seems to be initiated by the constituent of the surrogate that produces soot fastest, while other constituents were consumed later during the soot growth. (author)

  16. Investigating pyroclast ejection dynamics using shock-tube experiments: temperature, grain size and vent geometry effects.

    NASA Astrophysics Data System (ADS)

    Cigala, V.; Kueppers, U.; Dingwell, D. B.

    2015-12-01

    Explosive volcanic eruptions eject large quantities of gas and particles into the atmosphere. The portion directly above the vent commonly shows characteristics of underexpanded jets. Understanding the factors that influence the initial pyroclast ejection dynamics is necessary in order to better assess the resulting near- and far-field hazards. Field observations are often insufficient for the characterization of volcanic explosions due to lack of safe access to such environments. Fortunately, their dynamics can be simulated in the laboratory where experiments are performed under controlled conditions. We ejected loose natural particles from a shock-tube while controlling temperature (25˚ and 500˚C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), sample-to-vent distance and vent geometry. For each explosion we quantified the velocity of individual particles, the jet spreading angle and the production of fines. Further, we varied the setup to allow for different sample-to-gas ratios and deployed four different vent geometries: 1) cylindrical, 2) funnel with a flaring of 30˚, 3) funnel with a flaring of 15˚ and 4) nozzle. The results showed maximum particle velocities up to 296 m/s, gas spreading angles varying from 21˚ to 37˚ and particle spreading angles from 3˚ to 40˚. Moreover we observed dynamically evolving ejection characteristics and variations in the production of fines during the course of individual experiments. Our experiments mechanistically mimic the process of pyroclast ejection. Thus the capability for constraining the effects of input parameters (fragmentation conditions) and conduit/vent geometry on ballistic pyroclastic plumes has been clearly established. These data obtained in the presence of well-documented conduit and vent conditions, should greatly enhance our ability to numerically model explosive ejecta in nature.

  17. Neutralization of Bacterial Aerosols by Aerodynamic Shocks in a Novel Impactor System: An Integrated Computational and Experimental Study

    DTIC Science & Technology

    2010-10-15

    the upstream impactor pressure at 1 atm. Nebulization The phosphate buffered saline (PBS) (BP2438-4, Fisher Scientific) suspension con- taining the...shocks on spores which are more relevant as bioterrorism threats. In laboratory settings, Bacillus subtilis var niger , reclassified as Bacillus...deceleration tube (see Fig. 5.1; parts 4 k. 5) is filled with 600 fiL of phosphate buffer saline (PBS) solution (BP2438-4, Fisher Scientific), which keeps

  18. Break-up of metal tube makes one-time shock absorber, bars rebound

    NASA Technical Reports Server (NTRS)

    Hathaway, M.; Mc Gehee, J. R.; Zavada, E.

    1964-01-01

    A frangible metal tube has the capability to dissipate the energy generated when a vehicle lands with excessive velocity. The tube is so placed that, at impact, it is forced against a die and, as it fragments, energy is absorbed.

  19. The autoignition of iso-cetane at high to moderate temperatures and elevated pressures: Shock tube experiments and kinetic modeling

    SciTech Connect

    Oehlschlaeger, Matthew A.; Steinberg, Justin; Westbrook, Charles K.; Pitz, William J.

    2009-11-15

    Iso-cetane (2,2,4,4,6,8,8-heptamethylnonane, C{sub 16}H{sub 34}) is a highly branched alkane reference compound for determining cetane ratings. It is also a candidate branched alkane representative in surrogate mixtures for diesel and jet fuels. Here new experiments and kinetic modeling results are presented for the autoignition of iso-cetane at elevated temperatures and pressures relevant to combustion in internal combustion engines. Ignition delay time measurements were made in reflected shock experiments in a heated shock tube for {phi} = 0.5, 1.0, and 1.5 iso-cetane/air mixtures at temperatures ranging from 879 to 1347 K and pressures from 8 to 47 atm. Ignition delay times were measured using electronically excited OH emission, monitored through the shock tube end wall, and piezoelectric pressure transducer measurements, made at side wall locations. A new kinetic mechanism for the description of the oxidation of iso-cetane is presented that is developed based on a previous mechanism for iso-octane. Computed results from the mechanism are found in good agreement with the experimental measurements. To our knowledge, the ignition time measurements for iso-cetane presented here are the first of their kind. (author)

  20. Shock shapes on blunt bodies in hypersonic-hypervelocity helium, air, and CO2 flows, and calibration results in Langley 6-inch expansion tube

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1975-01-01

    Shock shape results for flat-faced cylinders, spheres, and spherically blunted cones in various test gases, along with preliminary results from a calibration study performed in the Langley 6-inch expansion tube are presented. Free-stream velocities from 5 to 7 km/sec are generated at hypersonic conditions with helium, air, and CO2, resulting in normal shock density ratios from 4 to 19. Ideal-gas shock shape predictions, in which an effective ratio of specific heats is used as input, are compared with the measured results. The effect of model diameter is examined to provide insight to the thermochemical state of the flow in the shock layer. The regime for which equilibrium exists in the shock layer for the present air and CO2 test conditions is defined. Test core flow quality, test repeatability, and comparison of measured and predicted expansion-tube flow quantities are discussed.

  1. Shock

    MedlinePlus

    ... Many organs can be damaged as a result. Shock requires immediate treatment and can get worse very rapidly. As many 1 in 5 people who suffer shock will die from it. Considerations The main types ...

  2. Shock Tube and Theory Investigation of Cyclohexane and 1-Hexene Decomposition

    NASA Astrophysics Data System (ADS)

    Kiefer, J. H.; Gupte, K. S.; Harding, L. B.; Klippenstein, S. J.

    2009-10-01

    The decomposition of cyclohexane (c-C6H12) was studied in a shock tube using the laser-schlieren technique over the temperature range 1300-2000 K and for 25-200 Torr in mixtures of 2%, 4%, 10%, and 20% cyclohexane in Kr. Vibrational relaxation of the cyclohexane was also examined in 10 experiments covering 1100-1600 K for pressures below 20 Torr, and relaxation was found to be too fast to allow resolution of incubation times. The dissociation of 1-hexene (1- C6H12), apparently the sole initial product of cyclohexane decomposition, was also studied over 1220-1700 K for 50 and 200 Torr using 2% and 3% 1-hexene in Kr. On heating, cyclohexane simply isomerizes to 1-hexene, and this then dissociates almost entirely by a more rapid C-C scission to allyl and n-propyl radicals. This two-step reaction results in an initial small density gradient from the slight endothermicity of the isomerization. The gradient then rises strongly as the product 1-hexene dissociates. For the lower temperatures, this behavior is fully resolved here. For the higher pressures, 1-hexene decomposition generates negative gradients (exothermic reaction) as the radicals formed begin to recombine. Cyclohexane also generates such gradients, but these are now much smaller because the radical pool is depleted by abstraction from the reactant. A complete mechanism for the 1-hexene decomposition and for that of cyclohexane involving 79 reactions and 30 species is used in the final modeling of the gradients. Rate constants and RRKM fit parameters for the initial reactions are provided for the entire range of conditions. The possibility of direct reaction to allyl and n-propyl radicals, without stabilization of the intermediate 1-hexene, is examined down to pressures as low as 25 Torr, without a clear resolution of the issue. High-pressure limit rate constants from RRKM extrapolation are k∞(c-C6H12 → 1-C6H12) = (8.76 × 1017) exp((-91.94 kcal/mol)/RT) s-1 (T = 1300-2000 K) and k∞(1-C6H12 → •C3H7

  3. Hook-method measurements of gf-values for ultraviolet Fe I and Fe II lines on a shock tube

    NASA Technical Reports Server (NTRS)

    Huber, M. C. E.

    1974-01-01

    Transition probabilities for 14 lines of Fe II and 12 lines of Fe I in the wavelength region 2560-2737 A were measured by use of a shock tube and the hook method. Absolute oscillator strengths for resonance lines of Fe I reported by Banfield and Huber were used to determine the number density of neutral iron in the shock-heated gas. With the assumption of thermal equilibrium, the density of singly ionized iron atoms in this gas was then computed from the measured temperature and pressure with the aid of the Saha equation. Our results on the 12 strongest of the 13 lines belonging to the first ultraviolet multiplet of Fe II indicate that the multiplet f-value is larger by a factor of 2 than that derived from lifetime measurements by Assousa and Smith.

  4. Statistical simulation of the flow of vibrationally preexcited hydrogen in a shock tube and the possibility of physical detonation

    NASA Astrophysics Data System (ADS)

    Kulikov, S. V.; Chervonnaya, N. A.; Ternovaya, O. N.

    2016-08-01

    The direct simulation Monte Carlo method is used to numerically simulate the problem of the shock wave front in vibrationally excited hydrogen flowing in the low-pressure channel of a shock tube. It is assumed that the vibrational temperature of the hydrogen equals 3000 K. The cases of partially and completely excited hydrogen are considered. Equilibrium hydrogen is applied as a pusher gas, but its concentration is 50 times higher than the hydrogen concentration in the low-pressure channel. In addition, the strength of the shock wave is varied by heating the pusher gas. It has been shown that, if the prestored vibrational energy is weakly converted to translational energy, the shock wave slows down over time. If the energy conversion is sufficiently intense, when the pusher gas is warm and only completely vibrationally excited hydrogen is in the low-pressure channel, the wave gains speed over time (its velocity increases roughly by a factor of 1.5). This causes physical detonation, in which case the parameters of the wave become dependent on the vibrational-to-thermal energy conversion and independent of the way of its initiation.

  5. The flexible asymmetric shock tube (FAST): a Ludwieg tube facility for wave propagation measurements in high-temperature vapours of organic fluids

    NASA Astrophysics Data System (ADS)

    Mathijssen, T.; Gallo, M.; Casati, E.; Nannan, N. R.; Zamfirescu, C.; Guardone, A.; Colonna, P.

    2015-10-01

    This paper describes the commissioning of the flexible asymmetric shock tube (FAST), a novel Ludwieg tube-type facility designed and built at Delft University of Technology, together with the results of preliminary experiments. The FAST is conceived to measure the velocity of waves propagating in dense vapours of organic fluids, in the so-called non-ideal compressible fluid dynamics (NICFD) regime, and can operate at pressures and temperatures as high as 21 bar and 400°C, respectively. The set-up is equipped with a special fast-opening valve, separating the high-pressure charge tube from the low-pressure plenum. When the valve is opened, a wave propagates into the charge tube. The wave speed is measured using a time-of-flight technique employing four pressure transducers placed at known distances from each other. The first tests led to the following results: (1) the leakage rate of 5 × {10}^{-4} {mbar l s^{-1}} for subatmospheric and 5 × {10}^{-2} {mbar l s^{-1}} for a superatmospheric pressure is compatible with the purpose of the conceived experiments, (2) the process start-up time of the valve has been found to be between 2.1 and 9.0 ms, (3) preliminary rarefaction wave experiments in the dense vapour of siloxane {D}_6 (dodecamethylcyclohexasiloxane, an organic fluid) were successfully accomplished up to temperatures of 300°C, and (4) a method for the estimation of the speed of sound from wave propagation experiments is proposed. Results are found to be within 2.1 % of accurate model predictions for various gases. The method is then applied to estimate the speed of sound of {D}_6 in the NICFD regime.

  6. Laser measurements of bacterial endospore destruction from shock waves

    NASA Astrophysics Data System (ADS)

    Lappas, Petros P.; McCartt, A. Daniel; Gates, Sean D.; Jeffries, Jay B.; Hanson, Ronald K.

    2013-12-01

    The effects of shock waves on bioaerosols containing endospores were measured by combined laser absorption and scattering. Experiments were conducted in the Stanford aerosol shock tube for post-shock temperatures ranging from 400 K to 1100 K. Laser intensity measurements through the test section of the shock tube at wavelengths of 266 and 665 nm provided real-time monitoring of the morphological changes (includes changes in shape, structure and optical properties) in the endospores. Scatter of the visible light measured the integrity of endospore structure, while absorption of the UV light provided a measure of biochemicals released when endospores ruptured. For post-shock temperatures above 750 K the structural breakdown of Bacillus atrophaeus (BA) endospores was observed. A simple theoretical model using laser extinction is presented for determining the fraction of endospores that are ruptured by the shock waves. In addition, mechanisms of endospore mortality preceding their disintegration due to shock waves are discussed.

  7. High Pressure Shock Tube Ignition Delay Time Measurements During Oxy-Methane Combustion With High Levels of CO 2 Dilution

    DOE PAGES

    Pryor, Owen; Barak, Samuel; Lopez, Joseph; ...

    2017-03-30

    For this study, ignition delay times and methane species time-histories were measured for methane/O2 mixtures in a high CO2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH4 mole fractions ranging from 3.5% -5% and up to 85% CO2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of two literature kinetic mechanisms (GRImore » 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO2/O2 under these conditions. In conclusion, current data provides crucial validation data needed for development of future kinetic mechanisms.« less

  8. High presure shock tube ignition delay time measurements during oxy-methane combustion with high levels of CO2 dilution

    DOE PAGES

    Pryor, Owen; Barak, Samuel; Lopez, Joseph; ...

    2017-03-16

    For this study, ignition delay times and methane species time-histories were measured for methane/O2 mixtures in a high CO2 diluted environment using shock tube and laser absorption spectroscopy. The experiments were performed between 1300 K and 2000 K at pressures between 6 and 31 atm. The test mixtures were at an equivalence ratio of 1 with CH4 mole fractions ranging from 3.5% -5% and up to 85% CO2 with a bath of argon gas as necessary. The ignition delay times and methane time histories were measured using pressure, emission, and laser diagnostics. Predictive ability of two literature kinetic mechanisms (GRImore » 3.0 and ARAMCO Mech 1.3) was tested against current data. In general, both mechanisms performed reasonably well against measured ignition delay time data. The methane time-histories showed good agreement with the mechanisms for most of the conditions measured. A correlation for ignition delay time was created taking into the different parameters showing that the ignition activation energy for the fuel to be 49.64 kcal/mol. Through a sensitivity analysis, CO2 is shown to slow the overall reaction rate and increase the ignition delay time. To the best of our knowledge, we present the first shock tube data during ignition of methane/CO2/O2 under these conditions. In conclusion, current data provides crucial validation data needed for development of future kinetic mechanisms.« less

  9. AEROFROSH: a shock condition calculator for multi-component fuel aerosol-laden flows

    DOE PAGES

    Campbell, Matthew Frederick; Haylett, D. R.; Davidson, D. F.; ...

    2015-08-18

    Here, this paper introduces an algorithm that determines the thermodynamic conditions behind incident and reflectedshocksinaerosol-ladenflows.Importantly,the algorithm accounts for the effects of droplet evaporation on post-shock properties. Additionally, this article describes an algorithm for resolving the effects of multiple-component- fuel droplets. This article presents the solution methodology and compares the results to those of another similar shock calculator. It also provides examples to show the impact of droplets on post-shock properties and the impact that multi-component fuel droplets have on shock experimental parameters. Finally, this paper presents a detailed uncertainty analysis of this algorithm’s calculations given typical exper- imental uncertainties

  10. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-05-01

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length 4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm3 molecule-1 s-1, can be expressed in Arrhenius form as k{sub OH+Cyclopentane} = (1.90 {+-} 0.30) x 10{sup -10} exp(-1705 {+-} 156 K/T) (813-1341 K), k{sub OH+Cyclohexane} = (1.86 {+-} 0.24) x 10{sup -10} exp(-1513 {+-} 123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane} = (2.02 {+-} 0.19) x 10{sup -10} exp(-1799 {+-} 96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane} = (2.55 {+-} 0.30) x 10{sup -10} exp(-1824 {+-} 114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane} = 1.390 x 10{sup -16}T{sup 1.779} exp(97 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (209-1341 K), k{sub OH+Cyclohexane} = 3.169 x 10{sup -16} T{sup 1.679} exp(119 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane} = 6.903 x 10{sup -18}T{sup 2.148} exp(536 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane} = 2.341 x 10{sup -18}T{sup 2.325} exp(602 K/T) cm{sup 3} molecule{sup -1} s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the

  11. Shock tube measurements of high temperature rate constants for OH with cycloalkanes and methylcycloalkanes

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J.V.

    2009-05-15

    High temperature experiments were performed with the reflected shock tube technique using multi-pass absorption spectrometric detection of OH radicals at 308 nm. The present experiments span a wide T-range, 801-1347 K, and represent the first direct measurements of the title rate constants at T>500 K for cyclopentane and cyclohexane and the only high temperature measurements for the corresponding methyl derivatives. The present work utilized 48 optical passes corresponding to a total path length {proportional_to}4.2 m. As a result of this increased path length, the high [OH] detection sensitivity permitted unambiguous analyses for measuring the title rate constants. The experimental rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, can be expressed in Arrhenius form as k{sub OH+Cyclopentane}=(1.90{+-}0.30) x 10{sup -10}exp(-1705{+-}56 K/T) (813-1341 K), k{sub OH+Cyclohexane}=(1.86{+-}0.24) x 10{sup -10}exp(-1513{+-}123 K/T) (801-1347 K), k{sub OH+Methylcyclopentane}=(2.02{+-}0.19) x 10{sup -10}exp(-1799{+-}96 K/T) (859-1344 K), k{sub OH+Methylcyclohexane}=(2.55{+-}0.30) x 10{sup -10}exp(-1824{+-}114 K/T) (836-1273 K). These results and lower-T experimental data were used to obtain three parameter evaluations of the experimental rate constants for the title reactions over an even wider T-range. These experimental three parameter fits to the rate constants in units, cm{sup 3} molecule{sup -1} s{sup -1}, are k{sub OH+Cyclopentane}=1.390 x 10{sup -16}T{sup 1.779}exp(97 K/T)cm{sup 3} molecule{sup -1}s{sup -1} (209-1341 K), k{sub OH+Cyclohexane}=3.169 x 10{sup -16}T{sup 1.679}exp(119 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (225-1347 K), k{sub OH+Methylcyclopentane}=6.903 x 10{sup -18}T{sup 2.148}exp(536 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1344 K), k{sub OH+Methylcyclohexane}=2.341 x 10{sup -18}T{sup 2.325}exp(602 K/T)cm{sup 3}molecule{sup -1}s{sup -1} (296-1273 K). High level electronic structure methods were used to characterize the first three

  12. Kinetics of the Thermal Decomposition of Tetramethylsilane behind the Reflected Shock Waves in a Single Pulse Shock Tube (SPST) and Modeling Study

    NASA Astrophysics Data System (ADS)

    Parandaman, A.; Sudhakar, G.; Rajakumar, B.

    Thermal reactions of Tetramethylsilane (TMS) diluted in argon were studied behind the reflected shock waves in a single-pulse shock tube (SPST) over the temperature range of 1085-1221 K and pressures varied between 10.6 and 22.8 atm. The stable products resulting from the decomposition of TMS were identified and quantified using gas chromatography and also verified with Fourier Transform Infrared (FTIR) spectrometer. The major reaction products are methane (CH4) and ethylene (C2H4). The minor reaction products are ethane (C2H6) and propylene (C3H6). The initiation of mechanism in the decomposition of TMS takes plays via the Si-C bond scission by ejecting the methyl radicals (CH3) and trimethylsilyl radicals ((CH3)3Si). The measured temperature dependent rate coefficient for the total decomposition of TMS was to be ktotal = 1.66 ×1015 exp (-64.46/RT) s-1 and for the formation of CH4 reaction channel was to be k = 2.20 × 1014 exp (-60.15/RT) s-1, where the activation energies are given in kcal mol-1. A kinetic scheme containing 17 species and 28 elementary reactions was used for the simulation using chemical kinetic simulator over the temperature range of 1085-1221 K. The agreement between the experimental and simulated results was satisfactory.

  13. Understanding the Effects of Blast Wave on the Intracranial Pressure and Traumatic Brain Injury in Rodents and Humans Using Experimental Shock Tube and Numerical Simulations

    DTIC Science & Technology

    2014-07-01

    tube system, (b) realistic explosive surrogate (RED) head with hybrid III neck inside 28 in. shock tube, (c) head with hybrid III neck outside 9 in...Chapter 4 describes the experiments of the blast response of a surrogate head. the pressure-acceleration response of a head- neck human surrogate RED...the neck . The loading had an initial acceleration phase followed by deceleration. During both acceleration and deceleration phases, high shear

  14. Flow-Tube Investigations of Hypergolic Reactions of a Dicyanamide Ionic Liquid Via Tunable Vacuum Ultraviolet Aerosol Mass Spectrometry.

    PubMed

    Chambreau, Steven D; Koh, Christine J; Popolan-Vaida, Denisia M; Gallegos, Christopher J; Hooper, Justin B; Bedrov, Dmitry; Vaghjiani, Ghanshyam L; Leone, Stephen R

    2016-10-07

    The unusually high heats of vaporization of room-temperature ionic liquids (RTILs) complicate the utilization of thermal evaporation to study ionic liquid reactivity. Although effusion of RTILs into a reaction flow-tube or mass spectrometer is possible, competition between vaporization and thermal decomposition of the RTIL can greatly increase the complexity of the observed reaction products. In order to investigate the reaction kinetics of a hypergolic RTIL, 1-butyl-3-methylimidazolium dicyanamide (BMIM(+)DCA(-)) was aerosolized and reacted with gaseous nitric acid, and the products were monitored via tunable vacuum ultraviolet photoionization time-of-flight mass spectrometry at the Chemical Dynamics Beamline 9.0.2 at the Advanced Light Source. Reaction product formation at m/z 42, 43, 44, 67, 85, 126, and higher masses was observed as a function of HNO3 exposure. The identities of the product species were assigned to the masses on the basis of their ionization energies. The observed exposure profile of the m/z 67 signal suggests that the excess gaseous HNO3 initiates rapid reactions near the surface of the RTIL aerosol. Nonreactive molecular dynamics simulations support this observation, suggesting that diffusion within the particle may be a limiting step. The mechanism is consistent with previous reports that nitric acid forms protonated dicyanamide species in the first step of the reaction.

  15. Shock-tube thermochemistry tables for high-temperature gases. Volume 5: Carbon dioxide

    NASA Technical Reports Server (NTRS)

    Menard, W. A.; Horton, T. E.

    1971-01-01

    Equilibrium thermodynamic properties and species concentrations for carbon dioxide are tabulated for moving, standing, and reflected shock waves. Initial pressures range from 6.665 to 6665 N/sq m (0.05 to 50.0 torr), and temperatures from 2,000 to over 80,000K. In this study, 20 molecular and atomic species were considered.

  16. Experimental study and two-dimensional modelling of the plasma dynamics of magnetically driven shock waves in a coaxial tube

    NASA Astrophysics Data System (ADS)

    Moreno, C.; Casanova, F.; Correa, G.; Clausse, A.

    2003-12-01

    Plasma shocks can be magnetically driven during high current discharges in low-pressure gases, induced by an external electric circuit. Radial currents between two coaxial electrodes can be accelerated to velocities of the order of 10 cm µs-1, thus being an effective method to transform potential energy in kinetic energy. A series of experiments were conducted using a low energy plasma focus device to measure the dynamics of plasma shocks in coaxial tubes. The radial position of the current sheath near the closed end of the electrodes was determined by means of a magnetic probe. The pinching time at the open end of the electrodes was measured using a Rogowski coil. Both, the movement and shaping of the plasma sheath were modelled by means of finite elements. The sheath was represented by coupled conical segments carrying current, mass, internal energy and momentum. The Lorentz force accelerates each element in its normal direction, which leads to the continuous reshaping of the sheath. The numerical results are compared against the experimental data showing good agreement.

  17. Measurements and interpretation of shock tube ignition delay times in highly CO2 diluted mixtures using multiple diagnostics

    DOE PAGES

    Vasu, Subith S.; Pryor, Owen; Barak, Samuel; ...

    2017-03-12

    Common definitions for ignition delay time are often hard to determine due to the issue of bifurcation and other non-idealities that result from high levels of CO2 addition. Using high-speed camera imagery in comparison with more standard methods (e.g., pressure, emission, and laser absorption spectroscopy) to measure the ignition delay time, the effect of bifurcation has been examined in this study. Experiments were performed at pressures between 0.6 and 1.2 atm for temperatures between 1650 and 2040 K. The equivalence ratio for all experiments was kept at a constant value of 1 with methane as the fuel. The CO2 molemore » fraction was varied between a value of XCO2 = 0.00 to 0.895. The ignition delay time was determined from three different measurements at the sidewall: broadband chemiluminescent emission captured via a photodetector, CH4 concentrations determined using a distributed feedback interband cascade laser centered at 3403.4 nm, and pressure recorded via a dynamic Kistler type transducer. All methods for the ignition delay time were compared to high-speed camera images taken of the axial cross-section during combustion. Methane time-histories and the methane decay times were also measured using the laser. It was determined that the flame could be correlated to the ignition delay time measured at the side wall but that the flame as captured by the camera was not homogeneous as assumed in typical shock tube experiments. The bifurcation of the shock wave resulted in smaller flames with large boundary layers and that the flame could be as small as 30% of the cross-sectional area of the shock tube at the highest levels of CO2 dilution. Here, comparisons between the camera images and the different ignition delay time methods show that care must be taken in interpreting traditional ignition delay data for experiments with large bifurcation effects as different methods in measuring the ignition delay time could result in different interpretations of kinetic

  18. Computational fluid dynamics (CFD) simulations of aerosol in a U-shaped steam generator tube

    NASA Astrophysics Data System (ADS)

    Longmire, Pamela

    To quantify primary side aerosol retention, an Eulerian/Lagrangian approach was used to investigate aerosol transport in a compressible, turbulent, adiabatic, internal, wall-bounded flow. The ARTIST experimental project (Phase I) served as the physical model replicated for numerical simulation. Realizable k-epsilon and standard k-o turbulence models were selected from the computational fluid dynamics (CFD) code, FLUENT, to provide the Eulerian description of the gaseous phase. Flow field simulation results exhibited: (a) onset of weak secondary flow accelerated at bend entrance towards the inner wall; (b) flow separation zone development on the convex wall that persisted from the point of onset; (c) centrifugal force concentrated high velocity flow in the direction of the concave wall; (d) formation of vortices throughout the flow domain resulted from rotational (Dean-type) flow; (e) weakened secondary flow assisted the formation of twin vortices in the outflow cross section; and (f) perturbations induced by the bend influenced flow recovery several pipe diameters upstream of the bend. These observations were consistent with those of previous investigators. The Lagrangian discrete random walk model, with and without turbulent dispersion, simulated the dispersed phase behavior, incorrectly. Accurate deposition predictions in wall-bounded flow require modification of the Eddy Impaction Model (EIM). Thus, to circumvent shortcomings of the EIM, the Lagrangian time scale was changed to a wall function and the root-mean-square (RMS) fluctuating velocities were modified to account for the strong anisotropic nature of flow in the immediate vicinity of the wall (boundary layer). Subsequent computed trajectories suggest a precision that ranges from 0.1% to 0.7%, statistical sampling error. The aerodynamic mass median diameter (AMMD) at the inlet (5.5 mum) was consistent with the ARTIST experimental findings. The geometric standard deviation (GSD) varied depending on the

  19. High density turbulent plasma processes from a shock tube. Final performance report

    SciTech Connect

    Johnson, J.A. III

    1997-01-01

    A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions.

  20. Shock tube/laser absorption measurements of the reaction rates of OH with ethylene and propene.

    PubMed

    Vasu, Subith S; Hong, Zekai; Davidson, David F; Hanson, Ronald K; Golden, David M

    2010-11-04

    Reaction rates of hydroxyl (OH) radicals with ethylene (C₂H₄) and propene (C₃H₆) were studied behind reflected shock waves. OH + ethylene → products (rxn 1) rate measurements were conducted in the temperature range 973-1438 K, for pressures from 2 to 10 atm, and for initial concentrations of ethylene of 500, 751, and 1000 ppm. OH + propene → products (rxn 2) rate measurements spanned temperatures of 890-1366 K, pressures near 2.3 atm, and initial propene concentrations near 300 ppm. OH radicals were produced by shock-heating tert-butyl hydroperoxide, (CH₃)₃-CO-OH, and monitored by laser absorption near 306.7 nm. Rate constants for the reactions of OH with ethylene and propene were extracted by matching modeled and measured OH concentration time-histories in the reflected shock region. Current data are in excellent agreement with previous studies and extend the temperature range of OH + propene data. Transition state theory calculations using recent ab initio results give excellent agreement with our measurements and other data outside our temperature range. Fits (in units of cm³/mol/s) to the abstraction channels of OH + ethylene and OH + propene are k₁ = 2.23 × 10⁴ (T)(2.745) exp(-1115 K/T) for 600-2000 K and k₂ = 1.94 × 10⁶ (T)(2.229) exp(-540 K/T) for 700-1500 K, respectively. A rate constant determination for the reaction TBHP → products (rxn 3) was also obtained in the range 745-1014 K using OH data from behind both incident and reflected shock waves. These high-temperature measurements were fit with previous low-temperature data, and the following rate expression (0.6-2.6 atm), applicable over the temperature range 400-1050 K, was obtained: k₃ (1/s) = 8.13 × 10⁻¹² (T)(7.83) exp(-14598 K/T).

  1. Three dimensional simulations of Richtmyer-Meshkov instabilities in shock-tube experiments

    SciTech Connect

    Gowardhan, Akshay A; Grinstein, Fernando F; Wachtor, Adam J

    2010-01-01

    In the large eddy simulation (LES) approach large-scale energy-containing structures are resolved, smaller (presumably) more isotropic structures are filtered out, and unresolved subgrid effects are modeled. Extensive recent work has demonstrated that predictive simulations of turbulent velocity fields are possible based on subgrid scale modeling implicitly provided by a class of high-resolution finite-volume algorithms. This strategy is called implicit LES. The extension of the approach to the substantially more difficult problem of material mixing IS addressed, and progress in representative shock-driven turbulent mixing studies is reported.

  2. DERIVATIONS FOR HOOP STRESSES DUE TO SHOCK WAVES IN A TUBE

    SciTech Connect

    Leishear, R

    2007-04-30

    Equations describing the hoop stresses in a pipe due to water hammer have been presented in the literature in a series of papers, and this paper discusses the complete derivation of the pertinent equation. The derivation considers the pipe wall response to a water hammer induced shock wave moving along the inner wall of the pipe. Factors such as fluid properties, pipe wall materials, pipe dimensions, and damping are considered. These factors are combined to present a single, albeit rather complicated, equation to describe the pipe wall vibrations and hoop stresses as a function of time. This equation is also compared to another theoretical prediction for hoop stresses, which is also derived herein. Specifically, the two theories predict different maximum stresses, and the differences between these predictions are graphically displayed.

  3. Thermal Decomposition of NCN: Shock-Tube Study, Quantum Chemical Calculations, and Master-Equation Modeling.

    PubMed

    Busch, Anna; González-García, Núria; Lendvay, György; Olzmann, Matthias

    2015-07-16

    The thermal decomposition of cyanonitrene, NCN, was studied behind reflected shock waves in the temperature range 1790-2960 K at pressures near 1 and 4 bar. Highly diluted mixtures of NCN3 in argon were shock-heated to produce NCN, and concentration-time profiles of C atoms as reaction product were monitored with atomic resonance absorption spectroscopy at 156.1 nm. Calibration was performed with methane pyrolysis experiments. Rate coefficients for the reaction (3)NCN + M → (3)C + N2 + M (R1) were determined from the initial slopes of the C atom concentration-time profiles. Reaction R1 was found to be in the low-pressure regime at the conditions of the experiments. The temperature dependence of the bimolecular rate coefficient can be expressed with the following Arrhenius equation: k1(bim) = (4.2 ± 2.1) × 10(14) exp[-242.3 kJ mol(-1)/(RT)] cm(3) mol(-1) s(-1). The rate coefficients were analyzed by using a master equation with specific rate coefficients from RRKM theory. The necessary molecular data and energies were calculated with quantum chemical methods up to the CCSD(T)/CBS//CCSD/cc-pVTZ level of theory. From the topography of the potential energy surface, it follows that reaction R1 proceeds via isomerization of NCN to CNN and subsequent C-N bond fission along a collinear reaction coordinate without a tight transition state. The calculations reproduce the magnitude and temperature dependence of the rate coefficient and confirm that reaction R1 is in the low-pressure regime under our experimental conditions.

  4. Shock.

    PubMed

    Wacker, David A; Winters, Michael E

    2014-11-01

    Critically ill patients with undifferentiated shock are complex and challenging cases in the ED. A systematic approach to assessment and management is essential to prevent unnecessary morbidity and mortality. The simplified, systematic approach described in this article focuses on determining the presence of problems with cardiac function (the pump), intravascular volume (the tank), or systemic vascular resistance (the pipes). With this approach, the emergency physician can detect life-threatening conditions and implement time-sensitive therapy.

  5. Optimal Control of Shock Tube Flow via Water Addition with Application to Ignition Overpressure Mitigation in Launch Vehicles

    NASA Astrophysics Data System (ADS)

    Moshman, Nathan

    2009-11-01

    Ignition Overpressure (IOP) in launch vehicles occurs at the start of ignition when a steep rise in pressure propagates outward from the rocket nozzle. It is crucial to minimize the overpressure so as to decrease risk of damage to the rocket body. Currently, CFD studies exist on this situation but there are no optimization studies of the water addition as a means to suppress the IOP. The proposed dissertation will use a numerical method to compute an approximate solution for an optimal control problem constrained by the one-dimensional Euler PDEs of fluid dynamics as well as volume fraction conservation. A model for inter-phase transport of mass momentum and energy and fluid interface quantities will be given. The control will be water addition from external nozzles. The adjoint system of equations will be derived and discretized. Necessary optimal conditions will be derived. An SQP method will solve an optimal situation. Predictions will be validated against shock tube experiments at the NPS rocket lab.

  6. Rate constant for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-06

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants.

  7. A shock tube with a high-repetition-rate time-of-flight mass spectrometer for investigations of complex reaction systems

    SciTech Connect

    Duerrstein, Steffen H.; Aghsaee, Mohammad; Jerig, Ludger; Fikri, Mustapha; Schulz, Christof

    2011-08-15

    A conventional membrane-type stainless steel shock tube has been coupled to a high-repetition-rate time-of-flight mass spectrometer (HRR-TOF-MS) to be used to study complex reaction systems such as the formation of pollutants in combustion processes or formation of nanoparticles from metal containing organic compounds. Opposed to other TOF-MS shock tubes, our instrument is equipped with a modular sampling unit that allows to sample with or without a skimmer. The skimmer unit can be mounted or removed in less than 10 min. Thus, it is possible to adjust the sampling procedure, namely, the mass flux into the ionization chamber of the HRR-TOF-MS, to the experimental situation imposed by species-specific ionization cross sections and vapor pressures. The whole sampling section was optimized with respect to a minimal distance between the nozzle tip inside the shock tube and the ion source inside the TOF-MS. The design of the apparatus is presented and the influence of the skimmer on the measured spectra is demonstrated by comparing data from both operation modes for conditions typical for chemical kinetics experiments. The well-studied thermal decomposition of acetylene has been used as a test system to validate the new setup against kinetics mechanisms reported in literature.

  8. Spectral studies of SiCl4 + N2O + Ar and SiH4 + Ar mixtures in a shock tube in 160-550 nm range

    NASA Technical Reports Server (NTRS)

    Park, C.; Fujiwara, T.

    1978-01-01

    Gases containing SiO, SiO2, SiH, and Si2 were produced in the reflected-shock region of a shock tube by heating SiCl4 + N2O + Ar and SiH4 + Ar mixtures with shock waves. Spectral absorption characteristics were measured in the 160-550 nm wavelength range and in the 2800-3600 K temperature range and compared to calculated values. The sums of the squares of electronic transition moments at equilibrium separation were derived. It was found that absorption by SiO2 and other known bands of SiO, SiH, and Si2 were too weak to be measured. The cross section of absorption by a continuum, believed due to SiH, varied from 2.5 x 10 to the -17th sq cm at 280 nm to 1.6 x 10 to the -18th sq cm at 440 nm.

  9. Evolution of the air/SF6 turbulent mixing zone for different lengths of SF6: shock tube visualizations and 3D simulations

    NASA Astrophysics Data System (ADS)

    Haas, Jean-Francois; Griffond, Jerome; Souffland, Denis; Bouzgarrou, Ghazi; Bury, Yannick; Jamme, Stephane

    2015-11-01

    A turbulent mixing zone (TMZ) is created in a vertical shock tube (based in ISAE DAEP) when a Mach 1.2 shock wave in air accelerates impulsively to 70 m/s an air/SF6 interface. The gases are initially separated by a thin nitrocellulose membrane maintained flat and parallel to the shock by two wire grids. The upper grid (SF6 side) of square mesh spacing hu 1.8 or 12.1 mm is expected to seed perturbation for the Richtmyer-Meshkov instability (RMI) while the lower grid with hl 1 mm is needed to prevent the membrane from bulging prior to the shot. The experiments were carried out for different lengths L of SF6 between the initial interface and the shock tube's end plate: 10, 15, 20, 25 and 30 cm. The time resolved Schlieren image processing based on space and frequency filtering yields similar evolution for the TMZ thickness. Before reshock, the thickness grows initially fast then slows down and reaches different values (10 to 14 mm) according to L. Soon after reshock, the TMZ thickness growths rate is 21 mm/ms independently of L and hu. Numerical Schlieren images generated from 3D numerical simulations (performed at CEA DAM IDF) are analyzed as the experimental ones for L 15 and 25 cm and for hu 1.8 and 12.1 mm. The very weak experimental dependence on hu is not obtained by simulation as expected from dimensional reasoning. This discrepancy remains paradoxical.

  10. High-Temperature Shock Tube Measurements of Dimethyl Ether Decomposition and the Reaction of Dimethyl Ether with OH

    NASA Astrophysics Data System (ADS)

    Cook, Robert D.; Davidson, David F.; Hanson, Ronald K.

    2009-08-01

    We measured the first high-temperature rate measurements of two dimethyl ether (DME) reactions, (1) DME + Ar → CH3O + CH3 + Ar and (2) DME + OH → CH3OCH2 + H2O, in a shock tube by monitoring OH radicals. OH was measured with a narrow-line width laser absorption diagnostic using the well-known R1(5) line of the A-X(0,0) transition at 306.7 nm. The rate k1 is in the falloff regime at high temperatures, so it was measured at several pressures from 0.6 to 11.5 atm and temperatures from 1349 to 1790 K. OH radicals were formed by shock-heating mixtures of DME and O2 in Ar. These mixtures take advantage of the rapid decomposition of the product CH3O, forming H-atoms, which react with O2 to form OH. In carefully chosen mixtures, OH concentration is primarily sensitive to k1 and the well-known rate of H + O2 → OH + O. Uncertainty in the k1 measurements was estimated to be ±35%. The rate measurements were then modeled using RRKM theory, which describes the data quite well. Both the rate measurements and the RRKM model were fit from 1000 to 1800 K using the Troe falloff form: k1,∞(T) = (4.38 × 1021)T-1.57 exp(-42 220 K/T) s-1, k1,o = 7.52 × 1015 exp(-21 537 K/T) cm3 mol-1 s-1, and Fcent = 0.454 exp(-T/2510). The rate of k2 was measured at pressures near 1.6 atm and temperatures from 923 to 1423 K. OH radicals were generated by the thermal decomposition of the OH precursor tert-butyl hydroperoxide (TBHP), and k2 was inferred from the observed decay of OH with an estimated uncertainty of ±40%. The high-temperature measurements were compared with several rate evaluations and previous low-temperature measurements. The rate evaluation by Curran et al. of k2 = (6.32 × 106)T2 exp(328 K/T) (cm3 mol-1 s-1) was found to be an excellent fit to both the previous low-temperature measurements and this work.

  11. Self-ignition of S.I. engine model fuels: A shock tube investigation at high pressure

    SciTech Connect

    Fieweger, K.; Blumenthal, R.; Adomeit, G.

    1997-06-01

    The self-ignition of several spark-ignition (SI) engine fuels (iso-octane, methanol, methyl tert-butyl ether and three different mixtures of iso-octane and n-heptane), mixed with air, was investigated experimentally under relevant engine conditions by the shock tube technique. Typical modes of the self-ignition process were registered cinematographically. For temperatures relevant to piston engine combustion, the self-ignition process always starts as an inhomogeneous, deflagrative mild ignition. This instant is defined by the ignition delay time, {tau}{sub defl}. The deflagration process in most cases is followed by a secondary explosion (DDT). This transition defines a second ignition delay time, {tau}{sub DDT}, which is a suitable approximation for the chemical ignition delay time, if the change of the thermodynamic conditions of the unburned test gas due to deflagration is taken into account. For iso-octane at p = 40 bar, a NTC (negative temperature coefficient), behavior connected with a two step (cool flame) self-ignition at low temperatures was observed. This process was very pronounced for rich and less pronounced for stoichiometric mixtures. The results of the {tau}{sub DDT} delays of the stoichiometric mixtures were shortened by the primary deflagration process in the temperature range between 800 and 1,000 K. Various mixtures of iso-octane and n-heptane were investigated. The results show a strong influence of the n-heptane fraction in the mixture, both on the ignition delay time and on the mode of self-ignition. The self-ignition of methanol and MTBE (methyl tert-butyl ether) is characterized by a very pronounced initial deflagration. For temperatures below 900 K (methanol: 800 K), no secondary explosion occurs. Taking into account the pressure increase due to deflagration, the measured delays {tau}{sub DDT} of the secondary explosion are shortened by up to one order of magnitude.

  12. Effects of temperature, particle features and vent geometry on volcanic jet dynamics, a shock-tube investigation.

    NASA Astrophysics Data System (ADS)

    Cigala, Valeria; Kueppers, Ulrich; Dingwell, Donald B.

    2016-04-01

    The lowermost part of an eruptive plume commonly shows characteristics of an underexpanded jet. The dynamics of this gas-thrust region are likely to be a direct consequence of intrinsic (magma properties, overpressure) and extrinsic (vent geometry, weather) eruption conditions. Additionally, they affect the subsequent evolution of the eruptive column and have, therefore, important hazard assessment implications for both near- and far-field. Direct observation of eruptive events is possible, but often insufficient for complete characterization. Important complementary data can be achieved using controlled and calibrated laboratory experiments. Loose natural particles were ejected from a shock-tube while controlling temperature (25° and 500°C), overpressure (15MPa), starting grain size distribution (1-2 mm, 0.5-1 mm and 0.125-0.250 mm), density (basaltic and phonolitic), gas-particle ratio and vent geometry (nozzle, cylindrical, funnel with a flaring of 15° and 30°, respectively). For each experiment, we quantified the velocity of individual particles, the jet spreading angle, the presence of electric discharges and the production of fines and analysed their dynamic evolution. Data shows velocity of up to 296 m/s and deceleration patterns following nonlinear paths. Gas spreading angles range between 21° and 41° while the particle spreading angles between 3° and 32°. Electric discharges, in the form of lightning, are observed, quantified and described. Moreover, a variation in the production of fines is recognized during the course of single experiments. This experimental investigation, which mechanistically mimics the process of pyroclast ejection, is shown to be capable of constraining the effects of input parameters and conduit/vent geometry on pyroclastic plumes. Therefore, the results should greatly enhance the ability of numerically model explosive ejecta in nature.

  13. EMI Shock Tube Experiments.

    DTIC Science & Technology

    1991-07-01

    ASSOCIATES, INC ATN: NTE ATTN: R FRANK ATTN: NTE G BALADI ATTN: NTED G GOODFELLOW APPLIED RESEARCH ASSOCIATES, INC ATTN: NTED J RENICK ATTN: J L DRAKE...C HSIAO KAMAN SCIENCES CORP ATTN: G T PHILLIPS ATTN: F SHELTON ATTN: H WILSON ATTN: LIBRARY B KINSLOW ATTN: TECHNICAL REPORT SYSTEM KAMAN SCIENCES

  14. Dry powder aerosols generated by standardized entrainment tubes from drug blends with lactose monohydrate: 2. Ipratropium bromide monohydrate and fluticasone propionate.

    PubMed

    Xu, Zhen; Mansour, Heidi M; Mulder, Tako; McLean, Richard; Langridge, John; Hickey, Anthony J

    2010-08-01

    The objectives of this study were: systematic investigation of dry powder aerosol performance using standardized entrainment tubes (SETs) and lactose-based formulations with two model drugs; mechanistic evaluation of performance data by powder aerosol deaggregation equation (PADE). The drugs (IPB and FP) were prepared in sieved and milled lactose carriers (2% w/w). Aerosol studies were performed using SETs (shear stresses tau(s) = 0.624-13.143 N/m(2)) by twin-stage liquid impinger, operated at 60 L/min. PADE was applied for formulation screening. Excellent correlation was observed when PADE was adopted correlating FPF to tau(s). Higher tau(s) corresponded to higher FPF values followed by a plateau representing invariance of FPF with increasing tau(s). The R(2) values for PADE linear regression were 0.9905-0.9999. Performance described in terms of the maximum FPF (FPF(max): 15.0-37.6%) resulted in a rank order of ML-B/IPB > ML-A/IPB > SV-A/IPB > SV-B/IPB > ML-B/FP > ML-A/FP > SV-B/FP > SV-A/FP. The performance of IPB was superior to FP in all formulations. The difference in lactose monohydrate carriers was less pronounced for the FPF in IPB than in FP formulations. The novel PADE offers a robust method for evaluating aerodynamic performance of dry powder formulations within a defined tau(s) range.

  15. Reactions of 1-Naphthyl Radicals with Acetylene. Single-Pulse Shock Tube Experiments and Quantum Chemical Calculations. Differences and Similarities in the Reaction with Ethylene

    NASA Astrophysics Data System (ADS)

    Lifshitz, Assa; Tamburu, Carmen; Dubnikova, Faina

    2009-09-01

    The reactions of 1-naphthyl radicals with acetylene were studied behind reflected shock waves in a single-pulse shock tube, covering the temperature range 950-1200 K at overall densities behind the reflected shocks of ˜2.5 × 10-5 mol/cm3. 1-Iodonaphthalene served as the source for 1-naphthyl radicals. The [acetylene]/[1-iodonaphthalene] ratio in all of the experiments was ˜100 to channel the free radicals into reactions with acetylene rather than iodonaphthalene. Only two major products resulting from the reactions of 1-naphthyl radicals with acetylene and with hydrogen atoms were found in the post shock samples. They were acenaphthylene and naphthalene. Some low molecular weight aliphatic products at rather low concentrations, resulting from an attack of various free radicals on acetylene, were also found in the shocked samples. In view of the relatively low temperatures employed in the present experiments, the unimolecular decomposition rate of acetylene is negligible. One potential energy surface describes the production of acenaphthylene and 1-naphthyl acetylene, although the latter was not found experimentally due to the high barrier (calculated) required for its production. Using quantum chemical methods, the rate constants for three unimolecular elementary steps on the surface were calculated using transition state theory. A kinetics scheme containing 16 elementary steps was constructed, and computer modeling was performed. An excellent agreement between the experimental yields of the two major products and the calculated yields was obtained. Differences and similarities in the potential energy surfaces of 1-naphthyl radical + acetylene and those of ethylene are presented, and the kinetics mechanisms are discussed.

  16. Shock tube measurements of specific reaction rates in branched chain CH4-CO-O2 system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1974-01-01

    Rate constants of two elementary bimolecular reactions involved in the oxidation of methane were determined by monitoring the exponential growth of CO flame band emission behind incident shocks in three suitably chosen gas mixtures.

  17. Shock tube study of the reactions of the hydroxyl radical with combustion species and pollutants. Final report

    SciTech Connect

    Cohen, N.; Koffend, J.B.

    1998-02-01

    Shock heating t-butyl hydroperoxide behind a reflected shock wave has proved to be as a convenient source of hydroxyl radicals at temperatures near 1000 K. We applied this technique to the measurement of reaction rate coefficients of OH with several species of interest in combustion chemistry, and developed a thermochemical kinetics/transition state theory (TK-TST) model for predicting the temperature dependence of OH rate coefficients.

  18. Time-resolved in situ detection of CO in a shock tube using cavity-enhanced absorption spectroscopy with a quantum-cascade laser near 4.6 µm.

    PubMed

    Sun, Kai; Wang, Shengkai; Sur, Ritobrata; Chao, Xing; Jeffries, Jay B; Hanson, Ronald K

    2014-10-06

    Cavity-enhanced absorption spectroscopy (CEAS) using a mid-infrared DFB quantum-cascade laser is reported for sensitive time-resolved (10 μs) in situ CO measurements in a shock tube. Off-axis alignment and fast scanning of the laser wavelength were used to minimize coupling noise in a low-finesse cavity. An absorption gain factor of 91 was demonstrated, which enabled sub-ppm detection sensitivity for gas temperatures of 1000-2100K in a 15 cm diameter shock tube. This substantial improvement in detection sensitivity compared to conventional single-pass absorption measurements, shows great potential for the study of reaction pathways of high-temperature combustion kinetics mechanisms in shock tubes.

  19. The Development of a Detailed Chemical Kinetic Mechanism for Diisobutylene and Comparison to Shock Tube Ignition Times

    SciTech Connect

    Metcalfe, W; Curran, H J; Simmie, J M; Pitz, W J; Westbrook, C K

    2005-01-21

    skeletal structure of iso-octane. There are few previous studies on diisobutylene. Kaiser et al. [1] examined the exhaust emission from a production spark ignition engine with neat diisobutylene and with it mixed with gasoline. They found the exhaust emissions of diisobutylene to be similar to that of iso-octane. They saw a significant increase in the amount of 2-methyl-1,3-butadiene measured in the exhaust of the engine. They also found appreciable amount of propene in the exhaust, but could not explain the source of this product as they did others in terms of C-C bond beta scission of alkyl radicals. Risberg et al. [2] studied a number of fuel blends to evaluate their autoignition quality for use in a homogeneous charge compression ignition engine, using diisobutylene to represent olefins in one of their test fuels. In this study, experiments on the shock tube ignition of both isomers of diisobutylene will be described. Then, the development of a detailed chemical kinetic mechanism for the two isomers of diisobutylene will be discussed.

  20. Interaction of Bio-Aerosols with Shock/Blast Waves: Dispersion, Activation, and Destruction of Airborne Biological Threats

    DTIC Science & Technology

    2011-05-01

    and Bacillus thuringiensis , Al Hakam). The loss of viability by shock-treated endospores was discovered to follow an exponential decay with...investigate the post-shock-heating survival of three strains of endospores ( Bacillus atrophaeus, Bacillus subtilis and Bacillus thuringiensis , Al Hakam...investigated: Bacillus subtilis, Bacillus atrophaeus and Bacillus thuringiensis (Al Hakam). The exposporium on these three strains are radically different

  1. Experiments of high-amplitude and shock-free oscillations of air column in a tube with array of Helmholtz resonators.

    PubMed

    Masuda, M; Sugimoto, N

    2005-07-01

    This experimental study is made to verify the weakly nonlinear theory for high-amplitude and shock-free oscillations of an air column developed in the previous paper [Sugimoto et al., J. Acoust. Soc. Am., 114, 1772-1784 (2003)]. The experiments use a new tube and resonators designed so as to not only avoid higher harmonic resonances and evanescences but also reduce the values of the coefficient of Q in the amplitude equation, and a rubber diaphragm sandwiched by circular plates to drive the air column. The steady-state pressure field in the tube and in the cavities of the resonators is measured, from which Fourier coefficients are obtained. In spite of nonlinearity, higher harmonics are suppressed significantly as designed, and the frequency response measured shows quantitatively good agreement with the one predicted up to about 170 dB (SPL). The first harmonics and the nonoscillatory component in the pressure field are well predicted, though the second harmonics show a quantitative discrepancy with the theory. In view of the good agreement of the frequency response, it is concluded that the theory is valid and useful enough to provide guidelines in designing the tube with the array of resonators.

  2. Shock tube measurements of specific reaction rates in the branched chain CH4-CO-O2 system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1974-01-01

    Rate constants of two elementary bimolecular reactions involved in the oxidation of methane have been determined by monitoring the exponential growth of CO flame band emission behind incident shocks in three suitably chosen gas mixtures. The data do not support a mechanism which invokes the four center process CH3 + O2 yields CH2O + OH for the reaction of methyl with oxygen.

  3. AEROSOL NUCLEATION AND GROWTH DURING LAMINAR TUBE FLOW: MAXIMUM SATURATIONS AND NUCLEATION RATES. (R827354C008)

    EPA Science Inventory

    An approximate method of estimating the maximum saturation, the nucleation rate, and the total number nucleated per second during the laminar flow of a hot vapour–gas mixture along a tube with cold walls is described. The basis of the approach is that the temperature an...

  4. Rate constants for OH with selected large alkanes : shock-tube measurements and an improved group scheme.

    SciTech Connect

    Sivaramakrishnan, R.; Michael, J. V.; Chemical Sciences and Engineering Division

    2009-04-30

    High-temperature rate constant experiments on OH with the five large (C{sub 5}-C{sub 8}) saturated hydrocarbons n-heptane, 2,2,3,3-tetramethylbutane (2,2,3,3-TMB), n-pentane, n-hexane, and 2,3-dimethylbutane (2,3-DMB) were performed with the reflected-shock-tube technique using multipass absorption spectrometric detection of OH radicals at 308 nm. Single-point determinations at {approx}1200 K on n-heptane, 2,2,3,3-TMB, n-hexane, and 2,3-DMB were previously reported by Cohen and co-workers; however, the present work substantially extends the database to both lower and higher temperature. The present experiments span a wide temperature range, 789-1308 K, and represent the first direct measurements of rate constants at T > 800 K for n-pentane. The present work utilized 48 optical passes corresponding to a total path length of {approx}4.2 m. As a result of this increased path length, the high OH concentration detection sensitivity permitted pseudo-first-order analyses for unambiguously measuring rate constants. The experimental results can be expressed in Arrhenius form in units of cm{sup 3} molecule{sup -1} s{sup -1} as follows: K{sub OH+n-heptane} = (2.48 {+-} 0.17) x 10{sup -10} exp[(-1927 {+-} 69 K)/T] (838-1287 K); k{sub OH+2,2,3,3-TMB} = (8.26 {+-} 0.89) x 10{sup -11} exp[(-1337 {+-} 94 K)/T] (789-1061 K); K{sub OH+n-pentane} = (1.60 {+-} 0.25) x 10{sup -10} exp[(-1903 {+-} 146 K)/T] (823-1308 K); K{sub OH+n-hexane} = (2.79 {+-} 0.39) x 10{sup -10} exp[(-2301 {+-} 134 K)/T] (798-1299 K); and k{sub OH+2,3-DMB} = (1.27 {+-} 0.16) x 10{sup -10} exp[(-1617 {+-} 118 K)/T] (843-1292 K). The available experimental data, along with lower-T determinations, were used to obtain evaluations of the experimental rate constants over the temperature range from {approx}230 to 1300 K for most of the title reactions. These extended-temperature-range evaluations, given as three-parameter fits, are as follows: k{sub OH+n-heptane} = 2.059 x 10{sup -5}T{sup 1.401} exp(33 K/T) cm{sup 3

  5. The delivery of particulate vaccines and drugs to human skin with a practical, hand-held shock tube-based system

    NASA Astrophysics Data System (ADS)

    Kendall, M. A. F.

    A unique form of powdered vaccine and drug delivery has been developed. The principle behind the concept is to accelerate vaccine and drug particles, using a gas flow, so that they attain sufficient velocities to enter the skin and achieve a pharmaceutical effect. This paper presents the Contoured Shock Tube (CST), configured to deliver particles to the skin with a narrow and controlled velocity distribution and uniform spatial distribution. The gas and particle flows of a prototype CST are explored experimentally and compared with Computational Fluid Dynamics (CFD) calculations. Some key steps in converting the prototype into a practical hand-held vaccine and drug delivery system are discussed. The ability of this system to deliver particles to the skin is illustrated by sample penetration data into excised human tissue.

  6. Cavity-enhanced absorption spectroscopy with a ps-pulsed UV laser for sensitive, high-speed measurements in a shock tube.

    PubMed

    Wang, Shengkai; Sun, Kai; Davidson, David F; Jeffries, Jay B; Hanson, Ronald K

    2016-01-11

    We report the first application of cavity-enhanced absorption spectroscopy (CEAS) with a ps-pulsed UV laser for sensitive and rapid gaseous species time-history measurements in a transient environment (in this study, a shock tube). The broadband nature of the ps pulses enabled instantaneous coupling of the laser beam into roughly a thousand cavity modes, which grants excellent immunity to laser-cavity coupling noise in environments with heavy vibrations, even with an on-axis alignment. In this proof-of-concept experiment, we demonstrated an absorption gain of 49, which improved the minimum detectable absorbance by ~20 compared to the conventional single-pass strategy at similar experimental conditions. For absorption measurements behind reflected shock waves, an effective time-resolution of ~2 μs was achieved, which enabled time-resolved observations of transient phenomena, such as the vibrational relaxation of O(2) demonstrated here. The substantial improvement in detection sensitivity, together with microsecond measurement resolution implies excellent potential for studies of transient physical and chemical processes in nonequilibrium situations, particularly via measurements of weak absorptions of trace species in dilute reactive systems.

  7. General chemical kinetics computer program for static and flow reactions, with application to combustion and shock-tube kinetics

    NASA Technical Reports Server (NTRS)

    Bittker, D. A.; Scullin, V. J.

    1972-01-01

    A general chemical kinetics program is described for complex, homogeneous ideal-gas reactions in any chemical system. Its main features are flexibility and convenience in treating many different reaction conditions. The program solves numerically the differential equations describing complex reaction in either a static system or one-dimensional inviscid flow. Applications include ignition and combustion, shock wave reactions, and general reactions in a flowing or static system. An implicit numerical solution method is used which works efficiently for the extreme conditions of a very slow or a very fast reaction. The theory is described, and the computer program and users' manual are included.

  8. Laser schlieren, shock tube studies of high temperature hydrocarbon pyrolysis rates. Progress report, June 1, 1980-January 31, 1981

    SciTech Connect

    Kiefer, J.H.

    1981-01-01

    Progress during the period has been in five areas: completion of a rigorous physical optics study of laser-schlieren measurements, completion of a study showing that angled laser beam refraction by the shock front can give accurate values for total density change, continuation of a study of the induction time for CO/sub 2/ dissociation, improvements in equipment, and near completion of an extensive study of propane pyrolysis. The propane pyrolysis study has provided rates for the primary step C/sub 3/H/sub 8/ ..-->.. CH/sub 3/ + C/sub 2/H/sub 5/ over the range 1400 to 2400/sup 0/K.

  9. Heterogeneous interaction of SiO2 with N2O5: aerosol flow tube and single particle optical levitation-Raman spectroscopy studies.

    PubMed

    Tang, M J; Camp, J C J; Rkiouak, L; McGregor, J; Watson, I M; Cox, R A; Kalberer, M; Ward, A D; Pope, F D

    2014-09-25

    Silica (SiO2) is an important mineral present in atmospheric mineral dust particles, and the heterogeneous reaction of N2O5 on atmospheric aerosol is one of the major pathways to remove nitrogen oxides from the atmosphere. The heterogeneous reaction of N2O5 with SiO2 has only been investigated by two studies previously, and the reported uptake coefficients differ by a factor of >10. In this work two complementary laboratory techniques were used to study the heterogeneous reaction of SiO2 particles with N2O5 at room temperature and at different relative humidities (RHs). The uptake coefficients of N2O5, γ(N2O5), were determined to be (7.2 ± 0.6) × 10(-3) (1σ) at 7% RH and (5.3 ± 0.8) × 10(-3) (1σ) at 40% RH for SiO2 particles, using the aerosol flow tube technique. We show that γ(N2O5) determined in this work can be reconciled with the two previous studies by accounting for the difference in geometric and BET derived aerosol surface areas. To probe the particle phase chemistry, individual micrometer sized SiO2 particles were optically levitated and exposed to a continuous flow of N2O5 at different RHs, and the composition of levitated particles was monitored online using Raman spectroscopy. This study represents the first investigation into the heterogeneous reactions of levitated individual SiO2 particles as a surrogate for mineral dust. Relative humidity was found to play a critical role: while no significant change of particle composition was observed by Raman spectroscopy during exposure to N2O5 at RH of <2%, increasing the RH led to the formation of nitrate species on the particle surface which could be completely removed after decreasing the RH back to <2%. This can be explained by the partitioning of HNO3 between the gas and adsorbed phases. The atmospheric implications of this work are discussed.

  10. Laboratory studies of interaction between trace gases and sulphuric acid or sulphate aerosols using flow-tube reactors

    NASA Astrophysics Data System (ADS)

    Leu, Ming-Taun

    Stratospheric ozone provides a protective shield for humanity and the global biosphere from harmful ultraviolet solar radiation. In past decades, theoretical models for the calculation of ozone balance frequently used gas-phase reactions alone in their studies. Since the discovery of the Antarctic ozone hole in 1985, however, it has been demonstrated that knowledge of heterogeneous reactions is needed to understand this significant natural event owing to the anthropogenic emission of chlorofluorocarbons. In this review I will briefly discuss the experimental techniques for the research of heterogeneous chemistry carried out in our laboratory. These experimental instruments include flow-tube reactors, an electron-impact ionization mass spectrometer, a chemical ionization mass spectrometer and a scanning mobility particle spectrometer. Numerous measurements of uptake coefficient (or reaction probability) and solubility of trace gases in liquid sulphuric acid have been performed under the ambient conditions in the upper troposphere and lower stratosphere, mainly 190-250 K and 40-80 wt% of H

  11. Shock tube study of the fuel structure effects on the chemical kinetic mechanisms responsible for soot formation, part 2

    NASA Technical Reports Server (NTRS)

    Frenklach, M.; Clary, D. W.; Ramachandra, M. K.

    1985-01-01

    Soot formation in oxidation of allene, 1,3-butadiene, vinylacetylene and chlorobenzene and in pyrolysis of ethylene, vinylacetylene, 1-butene, chlorobenzene, acetylen-hydrogen, benzene-acetylene, benzene-butadiene and chlorobenzene-acetylene argon-diluted mixtures was studied behind reflected shock waves. The results are rationalized within the framework of the conceptual models. It is shown that vinylacetylene is much less sooty than allene, which indicates that conjugation by itself is not a sufficient factor for determining the sooting tendency of a molecule. Structural reactivity in the context of the chemical kinetics is the dominant factor in soot formation. Detailed chemical kinetic modeling of soot formation in pyrolysis of acetylene is reported. The main mass growth was found to proceed through a single dominant route composed of conventional radical reactions. The practically irreversible formation reactions of the fused polycyclic aromatics and the overshoot by hydrogen atom over its equilibrium concentration are the g-driving kinetic forces for soot formation.

  12. Shock tube study of the fuel molecular structure effects on the chemical kinetic mechanisms for soot formation

    NASA Technical Reports Server (NTRS)

    Krech, R. H.; Cowles, L. M.; Rawlins, W. T.

    1983-01-01

    The objective of this research effort is to investigate the gas-phase mechanisms which lead to soot formation in the combustion of complex hydrocarbon fuels. The fuel decomposition is studied under pyrolytic and oxidative conditions behind incident shock waves, using various optical diagnostics to monitor particle appearance and the behavior of gas phase species. In particular, we are investigating: (1) improved quantification of UV/visible soot yield measurements using infrared attenuation and emission techniques; (2) spectral characteristics of gas-phase emission and absorption in the ultraviolet, visible, and infrared; and (3) a conceptual view of the chemical pathways for fuel decomposition and the gas-phase reactions leading to soot formation.

  13. Shock tube measurements of specific reaction rates in the branched chain CH4-CO-O2 system

    NASA Technical Reports Server (NTRS)

    Brabbs, T. A.; Brokaw, R. S.

    1975-01-01

    Growth constants, obtained by measuring the blue CO flame band emission behind incident shock waves, were obtained for two elementary bimolecular reactions involved in the oxidation of methane. Gas mixtures containing small amounts of CH4 with varying amounts of CO, O2, and in one case CO2, diluted with argon, were investigated, and exponential growth constants were derived from plots of the logarithm of observed light intensity versus gas time. The rate constant for the reaction O + CH4 yields CH3 + OH was found to be 1.9 times 10 to the 14th exp(-5900/T) cu cm per mole per sec in the range 1300-2000 K; for the reaction CH3 + O2 yields CH3O + O, the rate constant was determined to be 2.4 times 10 to the 13th exp(-14,500/T) cu cm per mole per sec in the range 1200 to 1900 K.

  14. Combustion of n-heptane in a shock tube and in a stirred reactor: A detailed kinetic modeling study

    SciTech Connect

    Gaffuri, P.; Curran, H.J.; Pitz, W.J.; Westbrook, C.K.

    1995-04-13

    A detailed chemical kinetic reaction mechanism is used to study the oxidation of n-heptane under several classes of conditions. Experimental results from ignition behind reflected shock waves and in a rapid compression machine were used to develop and validate the reaction mechanism at relatively high temperatures, while data from a continuously stirred tank reactor (cstr) were used to refine the low temperature portions of the reaction mechanism. In addition to the detailed kinetic modeling, a global or lumped kinetic mechanism was used to study the same experimental results. The lumped model was able to identify key reactions and reaction paths that were most sensitive in each experimental regime and provide important guidance for the detailed modeling effort. In each set of experiments, a region of negative temperature coefficient (NTC) was observed. Variation in pressure from 5 to 40 bars were found to change the temperature range over which the NTC region occurred. Both the lumped and detailed kinetic models reproduced the measured results in each type of experiments, including the features of the NTC region, and the specific elementary reactions and reaction paths responsible for this behavior were identified and rate expressions for these reactions were determined.

  15. Experimental Demonstration of the Use of a N2O/N2 Mixture in the Driven Tube of a Reflected Shock Tunnel in Order to Increase Test Time

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Wilson, Gregory J.; Sussman, Myles A.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    An experimental investigation was carried out into the replacement of air in the driven tube of a reflected shock tunnel by an N2O/N2 mixture in order to increase the test time. The incident shock velocities were between 2 and 3 km/sec. Test times were estimated from light emission histories in the driven tube (at distance of L/D = 46.5 from the main diaphragm) and in the nozzle at an area ratio of 27.9 and from pressure histories just upstream of the nozzle entrance (at L/D = 54). The test times estimated from the light emission histories in the driven tube showed that consistent increases of 60-100% were obtained upon substituting N2O/N2 for air in the driven tube. These increases were in very good agreement with theoretical estimates. The test times estimated from the light emission histories in the nozzle or pressure histories at the nozzle inlet showed significant improvements with N2O/N2 only for cases where the facility was operated at substantially overtailored conditions. It is believed that this is due to the greater stability of the driver-driven interface at overtailored operating conditions. At overtailored operating conditions, test times increases of 60-100% with N2O/N2 were observed with all three diagnostic techniques. These increases were in reasonable agreement with theoretical estimates.

  16. Apparatus Splits Glass Tubes Longitudinally

    NASA Technical Reports Server (NTRS)

    Shaw, Ernest; Manahan, Robert O'neil

    1993-01-01

    Tubes split into half cylinders by hot-wire/thermal-shock method. Tube to be cut placed on notched jig in apparatus. Nichrome wire stretched between arms of pivoted carriage and oriented parallel to notch. Wire heated by electrical current while resting on tube. After heating for about 1 minute for each millimeter of thickness of glass, tube quenched in water and split by resulting thermal shock. Apparatus used to split tubes in sizes ranging from 3/8 in. in diameter by 1 in. long to 1 1/2 in. in diameter by 4 in. long.

  17. Dynamics of explosively imploded pressurized tubes

    NASA Astrophysics Data System (ADS)

    Szirti, Daniel; Loiseau, Jason; Higgins, Andrew; Tanguay, Vincent

    2011-04-01

    The detonation of an explosive layer surrounding a pressurized thin-walled tube causes the formation of a virtual piston that drives a precursor shock wave ahead of the detonation, generating very high temperatures and pressures in the gas contained within the tube. Such a device can be used as the driver for a high energy density shock tube or hypervelocity gas gun. The dynamics of the precursor shock wave were investigated for different tube sizes and initial fill pressures. Shock velocity and standoff distance were found to decrease with increasing fill pressure, mainly due to radial expansion of the tube. Adding a tamper can reduce this effect, but may increase jetting. A simple analytical model based on acoustic wave interactions was developed to calculate pump tube expansion and the resulting effect on the shock velocity and standoff distance. Results from this model agree quite well with experimental data.

  18. Highly stable aerosol generator

    SciTech Connect

    DeFord, Henry S.; Clark, Mark L.

    1981-01-01

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly.

  19. Highly stable aerosol generator

    DOEpatents

    DeFord, H.S.; Clark, M.L.

    1981-11-03

    An improved compressed air nebulizer has been developed such that a uniform aerosol particle size and concentration may be produced over long time periods. This result is achieved by applying a vacuum pressure to the makeup assembly and by use of a vent tube between the atmosphere and the makeup solution. By applying appropriate vacuum pressures to the makeup solution container and by proper positioning of the vent tube, a constant level of aspirating solution may be maintained within the aspirating assembly with aspirating solution continuously replaced from the makeup solution supply. This device may also be adapted to have a plurality of aerosol generators and only one central makeup assembly. 2 figs.

  20. A single-pulse shock tube coupled with high-repetition-rate time-of-flight mass spectrometry and gas chromatography for high-temperature gas-phase kinetics studies

    NASA Astrophysics Data System (ADS)

    Sela, P.; Shu, B.; Aghsaee, M.; Herzler, J.; Welz, O.; Fikri, M.; Schulz, C.

    2016-10-01

    Shock tubes are frequently used to investigate the kinetics of chemical reactions in the gas phase at high temperatures. Conventionally, two complementary arrangements are used where either time-resolved intermediate species measurements are conducted after the initiation of the reaction or where the product composition is determined after rapid initiation and quenching of the reaction through gas-dynamic processes. This paper presents a facility that combines both approaches to determine comprehensive information. A single-pulse shock tube is combined with high-sensitivity gas chromatography/mass spectrometry for product composition and concentration measurement as well as high-repetition-rate time-of-flight mass spectrometry for time-dependent intermediate concentration determination with 10 μs time resolution. Both methods can be applied simultaneously. The arrangement is validated with investigations of the well-documented thermal unimolecular decomposition of cyclohexene towards ethylene and 1,3-butadiene at temperatures between 1000 and 1500 K and pressures ranging from 0.8 to 2.4 bars. The comparison shows that the experimental results for both detections are in very good agreement with each other and with literature data.

  1. Evaluated kinetics of terminal and non-terminal addition of hydrogen atoms to 1-alkenes: a shock tube study of H + 1-butene.

    PubMed

    Manion, Jeffrey A; Awan, Iftikhar A

    2015-01-22

    Single-pulse shock tube methods have been used to thermally generate hydrogen atoms and investigate the kinetics of their addition reactions with 1-butene at temperatures of 880 to 1120 K and pressures of 145 to 245 kPa. Rate parameters for the unimolecular decomposition of 1-butene are also reported. Addition of H atoms to the π bond of 1-butene results in displacement of either methyl or ethyl depending on whether addition occurs at the terminal or nonterminal position. Postshock monitoring of the initial alkene products has been used to determine the relative and absolute reaction rates. Absolute rate constants have been derived relative to the reference reaction of displacement of methyl from 1,3,5-trimethylbenzene (135TMB). With k(H + 135TMB → m-xylene + CH3) = 6.7 × 10(13) exp(-3255/T) cm(3) mol(-1) s(-1), we find the following: k(H + 1-butene → propene + CH3) = k10 = 3.93 × 10(13) exp(-1152 K/T) cm(3) mol(-1) s(-1), [880-1120 K; 145-245 kPa]; k(H + 1-butene → ethene + C2H5) = k11 = 3.44 × 10(13) exp(-1971 K/T) cm(3) mol(-1) s(-1), [971-1120 K; 145-245 kPa]; k10/k11 = 10((0.058±0.059)) exp [(818 ± 141) K/T), 971-1120 K. Uncertainties (2σ) in the absolute rate constants are about a factor of 1.5, while the relative rate constants should be accurate to within ±15%. The displacement rate constants are shown to be very close to the high pressure limiting rate constants for addition of H, and the present measurements are the first direct determination of the branching ratio for 1-olefins at high temperatures. At 1000 K, addition to the terminal site is favored over the nonterminal position by a factor of 2.59 ± 0.39, where the uncertainty is 2σ and includes possible systematic errors. Combining the present results with evaluated data from the literature pertaining to temperatures of <440 K leads us to recommend the following: k∞(H + 1-butene → 2-butyl) = 1.05 × 10(9)T(1.40) exp(-366/T) cm(3) mol(-1) s(-1), [220-2000 K]; k∞(H + 1-butene → 1

  2. Tube support

    DOEpatents

    Mullinax, Jerry L.

    1988-01-01

    A tube support for supporting horizontal tubes from an inclined vertical support tube passing between the horizontal tubes. A support button is welded to the vertical support tube. Two clamping bars or plates, the lower edges of one bearing on the support button, are removably bolted to the inclined vertical tube. The clamping bars provide upper and lower surface support for the horizontal tubes.

  3. Structure in Radiating Shocks

    NASA Astrophysics Data System (ADS)

    Doss, Forrest

    2010-11-01

    The basic radiative shock experiment is a shock launched into a gas of high-atomic-number material at high velocities, which fulfills the conditions for radiative losses to collapse the post-shock material to over 20 times the initial gas density. This has been accomplished using the OMEGA Laser Facility by illuminating a Be ablator for 1 ns with a total of 4 kJ, launching the requisite shock, faster than 100 km/sec, into a polyimide shock tube filled with Xe. The experiments have lateral dimensions of 600 μm and axial dimensions of 2-3 mm, and are diagnosed by x-ray backlighting. Repeatable structure beyond the one-dimensional picture of a shock as a planar discontinuity was discovered in the experimental data. One form this took was that of radial boundary effects near the tube walls, extended approximately seventy microns into the system. The cause of this effect - low density wall material which is heated by radiation transport ahead of the shock, launching a new converging shock ahead of the main shock - is apparently unique to high-energy-density experiments. Another form of structure is the appearance of small-scale perturbations in the post-shock layer, modulating the shock and material interfaces and creating regions of enhanced and diminished aerial density within the layer. The authors have applied an instability theory, a variation of the Vishniac instability of decelerating shocks, to describe the growth of these perturbations. We have also applied Bayesian statistical methods to better understand the uncertainties associated with measuring shocked layer thickness in the presence of tilt. Collaborators: R. P. Drake, H. F. Robey, C. C. Kuranz, C. M. Huntington, M. J. Grosskopf, D. C. Marion.

  4. Ear Tubes

    MedlinePlus

    ... Marketplace Find an ENT Doctor Near You Ear Tubes Ear Tubes Patient Health Information News media interested ... throat specialist) may be considered. What are ear tubes? Ear tubes are tiny cylinders placed through the ...

  5. A shock-tube determination of the CN ground state dissociation energy and electronic transition moments for the CN violet and red band systems

    NASA Technical Reports Server (NTRS)

    Arnold, J. O.; Nicholls, R. W.

    1973-01-01

    The CN ground state dissociation energy and the sum of squares of the electronic transition moments of the CN violet bands have been simultaneously determined from spectral emission measurements behind incident shock waves. The unshocked test gases were composed of various CO2-CO-N2-Ar mixtures, and the temperatures behind the incident shocks ranged from 3500 to 8000 K. The variation of the electronic transition moment with internuclear separation was found to be small for both the CN violet and red band systems.

  6. Rate constants for the reaction, O + H sub 2 O yields OH + OH, over the temperature range, 1500--2400 K, by the flash photolysis-shock tube technique: A further consideration of the back reaction

    SciTech Connect

    Lifshitz, A.; Michael, J.V.

    1990-01-01

    Rate constants for the reaction, O + H{sub 2}O {yields} OH + OH, have been measured by the Flash Photolysis-Shock Tube (FP-ST) technique over the temperature range, 1500--2400 K. This technique combines stock heating with flash photolysis in the reflected shock wave regime, and the transient species, O-atoms in this case, are monitored by atomic resonance absorption spectroscopy (aras). Additional experiments were performed with N{sub 2}O as a thermal source of O-atoms, and the formation and depletion of (O) were followed by the aras technique. These results require that the decomposition rate behavior of N{sub 2}O be known. The results obtained by this technique are compared to those obtained by the FP-ST technique and are found to be corroborative. Hence, the combined results are used to describe the rate constants for the title reaction. The experimental results are compared to earlier work, and rate constants for the title reaction are additionally calculated from published results for the reverse reaction, OH + OH, and the well known equilibrium constant. All results are combined, and the rate behavior for the title reaction is evaluated. Lastly, the results for both forward and reverse reactions are compared to the theoretical calculations presented recently by Harding and Wagner. It is concluded that theory and experiment are in agreement within experimental error.

  7. Temperature measurements of explosively driven strong shock waves in gases

    NASA Astrophysics Data System (ADS)

    Nakayama, Yoshio; Yoshida, Masatake; Kakudate, Yozo; Usuba, Shu; Yamawaki, Hiroaki; Aoki, Katsutoshi; Tanaka, Katsumi; Fujiwara, Shuzo

    1992-03-01

    Two types of explosively driven shock tube; one-dimensional shock tube, and cumulative shock tube were used to generate strong shock waves in gases. Temperature measurements were made by using a spectroscope with eight-PIN photodiode system over the visible wavelength range (440-740 nm). The color temperature as well as the brightness temperature for one-dimensional shock tube with atmospheric pressure argon agreed fairly well with theoretical calculations; the brightness temperature was 18,000 K and 19,200 K for shock velocity of 4.8 km/s and 5.7 km/s respectively with an accuracy of +/- 500 K. The brightness temperature in the cumulative shock tube was 62,200 +/- 2,010 K at shock velocity of 27 km/s for atmospheric pressure air and agreed with theoretical values.

  8. Proceedings of the International Symposium on Shock Tubes and Waves (12th) Held at Jerusalem on 16-19 July 1979.

    DTIC Science & Technology

    1980-02-01

    a laser transmission link from space to ground. An overall study of the Space Laser Power System has been performed by Jones et al. 35 who have...and R.L. Morse, Phys. Rev. Lett. 34, 721 (1975). 52. M.S. White , J.D. Kilkenny and A.E. Dangor, Phys. Rev. Lett. 35, 524 (1975) 53. A. Zigler, H. Zmora...examined using the scalar formulation of Huygens’ principle (Kirchoff integral), with the shock density pro- file introduced as a transmission coefficient

  9. MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES

    DOEpatents

    Josephson, V.

    1960-01-26

    A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

  10. Method of making shock cells

    SciTech Connect

    Leblanc, R. F.; Cummins, W. T.

    1984-10-16

    A method of making an energy-absorbing shock cell for mounting bumper devices on legs of offshore oil rig structures having inner and outer metal tubes connected by an intervening vulcanized rubber sleeve maintained under compression adhesively bonded to the inner and outer metal tubes. The shock cell is made by a series of operations in which portions of the metal tubes are coated with adhesive material, and the rubber sleeve is bonded to the adhesive coated areas by vulcanization and post-vulcanized heating.

  11. Improved Shock Tube Measurement of the CH4 + Ar = CH3 + H + Ar Rate Constant using UV Cavity-Enhanced Absorption Spectroscopy of CH3.

    PubMed

    Wang, Shengkai; Davidson, David F; Hanson, Ronald K

    2016-07-21

    We report an improved measurement for the rate constant of methane dissociation in argon (CH4 + Ar = CH3 + H + Ar) behind reflected shock waves. The experiment was conducted using a sub-parts per million sensitivity CH3 diagnostic recently developed in our laboratory based on ultraviolet cavity-enhanced absorption spectroscopy. The high sensitivity of this diagnostic allowed for measurements of quantitatively resolved CH3 time histories during the initial stage of CH4 pyrolysis, where the reaction system is clean and free from influences of secondary reactions and temperature change. This high sensitivity also allowed extension of our measurement range to much lower temperatures (<1500 K). The current-reflected shock measurements were performed at temperatures between 1487 and 1866 K and pressures near 1.7 atm, resulting in the following Arrhenius rate constant expression for the title reaction: k(1.7 atm) = 3.7 × 10(16) exp(-42 200 K/T) cm(3)/mol·s, with a 2σ uncertainty factor of 1.25. The current data are in good consensus with various theoretical and review studies, but at the low temperature end they suggest a slightly higher (up to 35%) rate constant compared to these previous results. A re-evaluation of previous and current experimental data in the falloff region was also performed, yielding updated expressions for both the low-pressure limit and the high-pressure limit rate constants and improved agreement with all existing data.

  12. TUBE TESTER

    DOEpatents

    Gittings, H.T. Jr.; Kalbach, J.F.

    1958-01-14

    This patent relates to tube testing, and in particular describes a tube tester for automatic testing of a number of vacuum tubes while in service and as frequently as may be desired. In it broadest aspects the tube tester compares a particular tube with a standard tube tarough a difference amplifier. An unbalanced condition in the circuit of the latter produced by excessive deviation of the tube in its characteristics from standard actuates a switch mechanism stopping the testing cycle and indicating the defective tube.

  13. Infrared spectroscopy of aerosols

    NASA Astrophysics Data System (ADS)

    Mentel, Th.; Sebald, H.

    2003-04-01

    In our large Aerosol Chamber at the FZ Jülich we apply HR FTIR absorption spectroscopy for the determination of trace gases. In the FTIR spectra we also observe broad absorptions of several 10 to a few 100 cm-1 widths that arise from species in the condensed aerosol phase: liquid H_2O, NO_3^-, SO_42-, HSO_4^-, or dicarboxylic acids. Moreover, the aerosol droplets caused extinctions over several 1000 cm-1 by IR scattering. This allows for in-situ observation of changes in the condensed aerosol phase e.g. on HNO_3 uptake, like the shift of the sulfate/bisulfate equilibrium or the growth by water condensation. The IR absorptions of the condensed aerosol phase provide useful extra information in process studies, if they can be quantified. Therefore the absorption cross section, respective, the absorption index which is the imaginary part of the complex refractive index is needed. We set up an aerosol flow tube in which IR spectroscopy on a 8 m light path and aerosol size distribution measurements in the range from 20 nm - 10 μm can be performed simultaneously. We measured sulfate aerosols at several relative humidities (dry, metastable, deliquescent). We will demonstrate an iterative procedure based on Mie calculations and Kramers Kronig transformation to retrieve the absorption index from the observed IR spectra and the corresponding size distribution (for dry ammonium sulfate). We will compare resulting absorption indices for aqueous sodium bisulfate aerosols at several relative humidties with thermodynamic model calculations for the Na^+/H^+/HSO_4^-/SO_42-/H_2O system.

  14. Sampling Artifacts from Conductive Silicone Tubing

    SciTech Connect

    Timko, Michael T.; Yu, Zhenhong; Kroll, Jesse; Jayne, John T.; Worsnop, Douglas R.; Miake-Lye, Richard C.; Onasch, Timothy B.; Liscinsky, David; Kirchstetter, Thomas W.; Destaillats, Hugo; Holder, Amara L.; Smith, Jared D.; Wilson, Kevin R.

    2009-05-15

    We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 oC). Further evaluation is warranted.

  15. High temperature kinetic study of the reactions H + O2 = OH + O and O + H2 = OH + H in H2/O2 system by shock tube-laser absorption spectroscopy

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Dewitt, Kenneth J.

    1995-01-01

    The reactions: (1) H + O2 = OH + O; and (2) O + H2 = OH + H are the most important elementary reactions in gas phase combustion. They are the main chain-branching reaction in the oxidation of H2 and hydrocarbon fuels. In this study, rate coefficients of the reactions and have been measured over a wide range of composition, pressure, density and temperature behind the reflected shock waves. The experiments were performed using the shock tube - laser absorption spectroscopic technique to monitor OH radicals formed in the shock-heated H2/O2/Ar mixtures. The OH radicals were detected using the P(1)(5) line of (0,0) band of the A(exp 2) Sigma(+) from X(exp 2) Pi transition of OH at 310.023 nm (air). The data were analyzed with the aid of computer modeling. In the experiments great care was exercised to obtain high time resolution, linearity and signal-to-noise. The results are well represented by the Arrhenius expressions. The rate coefficient expression for reaction (1) obtained in this study is k(1) = (7.13 +/- 0.31) x 10(exp 13) exp(-6957+/- 30 K/T) cu cm/mol/s (1050 K less than or equal to T less than or equal to 2500 K) and a consensus expression for k(1) from a critical review of the most recent evaluations of k(1) (including our own) is k(1) = 7.82 x 10(exp 13) exp(-7105 K/T) cu cm/mol/s (960 K less than or equal to T less than or equal to 5300 K). The rate coefficient expression of k(2) is given by k(2) = (1.88 +/- 0.07) x 10(exp 14) exp(-6897 +/- 53 K/T) cu cm/mol/s (1424 K less than or equal to T less than or equal to 2427 K). For k(1), the temperature dependent A-factor and the correlation between the values of k(1) and the inverse reactant densities were not found. In the temperature range of this study, non-Arrhenius expression of k(2) which shows the upward curvature was not supported.

  16. Volatility of Aerosols in the Western European Environment

    DTIC Science & Technology

    1989-12-01

    562-576, 1987.I Stratmann, F. and H. Fissan. Convection, diffusion and thermophoresis in cooled laminar tube flow. J. Aerosol Sci., 19. 793-796, 1988.I...Waldmann, L. and K.H. Schmitt. Thermophoresis and diffusiophoresis of aerosols, in Aerosol Science, Ed. C.N. Davies, Academic Press, London and New

  17. Shock Tube and Modeling Study of the H + O2 = OH + O Reaction over a Wide Range of Composition, Pressure, and Temperature

    NASA Technical Reports Server (NTRS)

    Ryu, Si-Ok; Hwang, Soon Muk; Rabinowitz, Martin Jay

    1995-01-01

    The rate coefficient of the reaction H + 02 = OH + 0 was determined using OH laser absorption spectroscopy behind reflected shock waves over the temperature range 1050-2500 K and the pressure range 0.7-4.0 atm. Eight mixtures and three stoichiometries were used. Two distinct and independent criteria were employed in the evaluation of k(sub 1). Our recommended expression for k(sub 1) is k(sub 1) = 7.13 x 10(exp 13)exp(-6957 K/T) cm(exp 3)mol(exp -1)s(exp -1) with a statistical uncertainty of 6%. A critical review of recent evaluations of k(sub 1) yields a consensus expression given by k(sub 1) = 7.82 x 10(exp 13)exp(-7105 K/7) cm(exp 3)mol(exp -1)s(exp -1) over the temperature range 960-5300 K. We do not support a non-Arrhenius rate coefficient expression, nor do we find evidence of composition dependence upon the determination of k(sub 1).

  18. Hydrogen peroxide decomposition rate: a shock tube study using tunable laser absorption of H(2)O near 2.5 microm.

    PubMed

    Hong, Zekai; Farooq, Aamir; Barbour, Ethan A; Davidson, David F; Hanson, Ronald K

    2009-11-19

    The thermal decomposition of hydrogen peroxide was measured behind reflected shock waves in hydrogen peroxide/inert gas mixtures using a sensitive laser diagnostic for water vapor. In these mixtures, the formation rate of water is predominantly controlled by the decomposition rate of hydrogen peroxide. Rate determinations were made over a temperature range of 1000-1200 K and a pressure range of 0.9-3.2 atm for both argon and nitrogen carrier gases. Good detection sensitivity for water was achieved using tunable diode laser absorption of water at 2550.96 nm within its v(3) fundamental band. Hydrogen peroxide decomposition rates were found to be independent of pressure at 0.9 and 1.7 atm and showed only slight influence of pressure at 3.2 atm. The best fit of the current data to the low-pressure-limit rate for H(2)O(2) dissociation in argon bath gas is k(1,0) = 10(15.97+/-0.10) exp(-21 220 +/- 250 K/T) [cm(3) mol(-1) s(-1)] (1000-1200 K). Experiments conducted in a nitrogen bath gas show a relative collision efficiency of argon to nitrogen of 0.67.

  19. Auto-ignition of toluene-doped n-heptane and iso-octane/air mixtures: High-pressure shock-tube experiments and kinetics modeling

    SciTech Connect

    Hartmann, M.; Fikri, M.; Schulz, C.; Gushterova, I.; Schiessl, R.; Maas, U.

    2011-01-15

    Toluene is often used as a fluorescent tracer for fuel concentration measurements, but without considering whether it affects the auto-ignition properties of the base fuel. We investigate the auto-ignition of pure toluene and its influence on the auto-ignition of n-heptane and iso-octane/air mixtures under engine-relevant conditions at typical tracer concentrations. Ignition delay times {tau}{sub ign} were measured behind reflected shock waves in mixtures with air at {phi}=1.0 and 0.5 at p=40 bar, over a temperature range of T=700-1200 K and compared to numerical results using two different mechanisms. Based on the models, information is derived about the relative influence of toluene on {tau}{sub ign} on the base fuels as function of temperature. For typical toluene tracer concentrations {<=}10%, the ignition delay time {tau}{sub ign} changes by less than 10% in the relevant pressure and temperature range. (author)

  20. Energy absorber uses expanded coiled tube

    NASA Technical Reports Server (NTRS)

    Johnson, E. F.

    1972-01-01

    Mechanical shock mitigating device, based on working material to its failure point, absorbs mechanical energy by bending or twisting tubing. It functions under axial or tangential loading, has no rebound, is area independent, and is easy and inexpensive to build.

  1. Feeding Tubes

    MedlinePlus

    ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ... Feeding Tubes Health Information Sheet Q & A with Experts Patient Stories Social Security Disability Application Process For Kids ...

  2. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  3. Shock Absorbing System

    NASA Astrophysics Data System (ADS)

    1982-01-01

    A lightweight, inexpensive shock-absorbing system, developed by Langley Research Center 20 years ago, is now in service as safety device for an automated railway at Duke University Medical Center. The transportation system travels at about 25 miles per hour, carrying patients, visitors, staff and cargo. At the end of each guideway of the system are "frangible," (breakable) tube "buffers." If a slowing car fails to make a complete stop at the terminal, it would bump and shatter the tubes, absorbing energy that might otherwise jolt the passengers or damage the vehicle.

  4. Tracheostomy tubes.

    PubMed

    Hess, Dean R; Altobelli, Neila P

    2014-06-01

    Tracheostomy tubes are used to administer positive-pressure ventilation, to provide a patent airway, and to provide access to the lower respiratory tract for airway clearance. They are available in a variety of sizes and styles from several manufacturers. The dimensions of tracheostomy tubes are given by their inner diameter, outer diameter, length, and curvature. Differences in dimensions between tubes with the same inner diameter from different manufacturers are not commonly appreciated but may have important clinical implications. Tracheostomy tubes can be cuffed or uncuffed and may be fenestrated. Some tracheostomy tubes are designed with an inner cannula. It is important for clinicians caring for patients with a tracheostomy tube to appreciate the nuances of various tracheostomy tube designs and to select a tube that appropriately fits the patient. The optimal frequency of changing a chronic tracheostomy tube is controversial. Specialized teams may be useful in managing patients with a tracheostomy. Speech can be facilitated with a speaking valve in patients with a tracheostomy tube who are breathing spontaneously. In mechanically ventilated patients with a tracheostomy, a talking tracheostomy tube, a deflated cuff technique with a speaking valve, or a deflated cuff technique without a speaking valve can be used to facilitate speech.

  5. The boiling point of stratospheric aerosols.

    NASA Technical Reports Server (NTRS)

    Rosen, J. M.

    1971-01-01

    A photoelectric particle counter was used for the measurement of aerosol boiling points. The operational principle involves raising the temperature of the aerosol by vigorously heating a portion of the intake tube. At or above the boiling point, the particles disintegrate rather quickly, and a noticeable effect on the size distribution and concentration is observed. Stratospheric aerosols appear to have the same volatility as a solution of 75% sulfuric acid. Chemical analysis of the aerosols indicates that there are other substances present, but that the sulfate radical is apparently the major constituent.

  6. TIMING OF SHOCK WAVES

    DOEpatents

    Tuck, J.L.

    1955-03-01

    This patent relates to means for ascertaining the instant of arrival of a shock wave in an exploslve charge and apparatus utilizing this means to coordinate the timing of two operations involving a short lnterval of time. A pair of spaced electrodes are inserted along the line of an explosive train with a voltage applied there-across which is insufficient to cause discharge. When it is desired to initiate operation of a device at the time the explosive shock wave reaches a particular point on the explosive line, the device having an inherent time delay, the electrodes are located ahead of the point such that the ionization of the area between the electrodes caused by the traveling explosive shock wave sends a signal to initiate operation of the device to cause it to operate at the proper time. The operated device may be photographic equipment consisting of an x-ray illuminating tube.

  7. Explosive-driven shock wave and vortex ring interaction with a propane flame

    NASA Astrophysics Data System (ADS)

    Giannuzzi, P. M.; Hargather, M. J.; Doig, G. C.

    2016-11-01

    Experiments were performed to analyze the interaction of an explosively driven shock wave and a propane flame. A 30 g explosive charge was detonated at one end of a 3-m-long, 0.6-m-diameter shock tube to produce a shock wave which propagated into the atmosphere. A propane flame source was positioned at various locations outside of the shock tube to investigate the effect of different strength shock waves. High-speed retroreflective shadowgraph imaging visualized the shock wave motion and flame response, while a synchronized color camera imaged the flame directly. The explosively driven shock tube was shown to produce a repeatable shock wave and vortex ring. Digital streak images show the shock wave and vortex ring propagation and expansion. The shadowgrams show that the shock wave extinguishes the propane flame by pushing it off of the fuel source. Even a weak shock wave was found to be capable of extinguishing the flame.

  8. Feeding tube insertion - gastrostomy

    MedlinePlus

    ... tube insertion; G-tube insertion; PEG tube insertion; Stomach tube insertion; Percutaneous endoscopic gastrostomy tube insertion ... and down the esophagus, which leads to the stomach. After the endoscopy tube is inserted, the skin ...

  9. Shock Layer Radiation Measurements and Analysis for Mars Entry

    NASA Technical Reports Server (NTRS)

    Bose, Deepak; Grinstead, Jay Henderson; Bogdanoff, David W.; Wright, Michael J.

    2009-01-01

    NASA's In-Space Propulsion program is supporting the development of shock radiation transport models for aerocapture missions to Mars. A comprehensive test series in the NASA Antes Electric Arc Shock Tube facility at a representative flight condition was recently completed. The facility optical instrumentation enabled spectral measurements of shocked gas radiation from the vacuum ultraviolet to the near infrared. The instrumentation captured the nonequilibrium post-shock excitation and relaxation dynamics of dispersed spectral features. A description of the shock tube facility, optical instrumentation, and examples of the test data are presented. Comparisons of measured spectra with model predictions are also made.

  10. Shock Tubes and Shock Tunnels: Design and Experiments

    DTIC Science & Technology

    2009-09-01

    12 - 4 RTO-EN-AVT-162 2.2 Disturbing Effects Obviously, this ideal scheme of operation corresponds only roughly to reality and various...phenomena contribute to somewhat modify this scheme and have an influence on the analysed non-equilibrium phenomena. The most significant effects concern...pressure, the boundary layer is turbulent but approximate models are available [10,11]. These effects are all the more significant as the initial

  11. Shock Tube Test for Energy Absorbing Materials

    DTIC Science & Technology

    2013-09-13

    Compressed  Air  Cylinder Driver  Section Driven  Section Max Driver  Pressure: 200 PSI Diaphragm Striker Material Nylon Striker Face Diameter...part of a study of materials for an impact attenuating helmet liner project (3). Table 2. Foam materials for testing (7) (8) (9) Manufacturer...including application in helmet liners (8). Zorbium™ is the viscoelastic polyurethane foam used in military helmet suspension system pads (9). 8

  12. Gastrostomy Tube (G-Tube)

    MedlinePlus

    ... warmth at the tube site; discharge that's yellow, green, or foul-smelling; fever) excessive bleeding or drainage from the tube site severe abdominal pain persistent vomiting or diarrhea trouble passing gas or having a bowel movement pink-red tissue (called granulation tissue) coming out ...

  13. Shock Wave Dynamics in Weakly Ionized Plasmas

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1999-01-01

    An investigation of the dynamics of shock waves in weakly ionized argon plasmas has been performed using a pressure ruptured shock tube. The velocity of the shock is observed to increase when the shock traverses the plasma. The observed increases cannot be accounted for by thermal effects alone. Possible mechanisms that could explain the anomalous behavior include a vibrational/translational relaxation in the nonequilibrium plasma, electron diffusion across the shock front resulting from high electron mobility, and the propagation of ion-acoustic waves generated at the shock front. Using a turbulence model based on reduced kinetic theory, analysis of the observed results suggest a role for turbulence in anomalous shock dynamics in weakly ionized media and plasma-induced hypersonic drag reduction.

  14. Plume Mechanics and Aerosol Growth Processes.

    DTIC Science & Technology

    1987-07-01

    UNIT ELEMENT NO. NO NO ACCESSION NO %. Aberdeen Proving Ground, MD 21010-5423 II 11 TITLE (include Security Classification) Plume Mechanics and...formulation and a finite element sc hem e ......... ..................... 192 c. Diffusion of aerosols in laminar flow in a cylindrical tube...The principal elements are the liquid oil and carrier gas metering systems, the oil vaporizer, coaxial jet system, and the sampling and aerosol

  15. Propagation of nonlinear, radiatively damped longitudinal waves along magnetic flux tubes in the solar atmosphere

    NASA Technical Reports Server (NTRS)

    Herbold, G.; Ulmschneider, P.; Spruit, H. C.; Rosner, R.

    1985-01-01

    For solar magnetic flux tubes three types of waves are compared: longitudinal MHD tube waves, acoustic tube waves propagating in the same tube geometry but with rigid walls and ordinary acoustic waves in plane geometry. It is found that the effect of the distensibility of the tube is small and that longitudinal waves are essentially acoustic tube waves. Due to the tube geometry there is considerable difference between longitudinal waves or acoustic tube waves and ordinary acoustic waves. Longitudinal waves as well as acoustic tube waves show a smaller amplitude growth, larger shock formation heights, smaller mean chromospheric temperature but a steeper dependence of the temperature gradient on wave period.

  16. Protective tubes for sodium heated water tubes

    DOEpatents

    Essebaggers, Jan

    1979-01-01

    A heat exchanger in which water tubes are heated by liquid sodium which minimizes the results of accidental contact between the water and the sodium caused by failure of one or more of the water tubes. A cylindrical protective tube envelopes each water tube and the sodium flows axially in the annular spaces between the protective tubes and the water tubes.

  17. Propagation of Sinusoidally-Corrugated Shock Fronts of Laser-Supported Detonations

    NASA Astrophysics Data System (ADS)

    Honda, T.; Kawaguchi, A.; Hanta, Y.; Susa, A.; Namba, S.; Johzaki, T.; Endo, T.; Shiraga, H.; Shigemori, K.; Koga, M.; Nagatomo, H.

    The behavior of sinusoidally-rippled shock fronts is a fundamental research topic in the dynamics of shock waves [1]. The Whitham's ray-shock theory, which is sometimes called the geometrical-shock-dynamics (GSD) theory, is known as a simple method for analyzing the behavior of a non-planar shock front. In this theory, narrow ray tubes corresponding to the light rays in the geometrical optics are placed perpendicularly to the every portions of a non-planar shock front, and the evolution of the shock front is calculated by tracking the shock front in each ray tube sequentially. When the behavior of an inert sinusoidally-rippled shock front is analyzed by the GSD theory and the Chester-Chisnell-Whitham's (CCW's) A-M relationship [2], where A is the cross-sectional area of a ray tube and M is the propagation Mach number of the shock wave in the ray tube, the amplitude of the shock-front ripple oscillates as the shock wave propagates [3]. Actually, the behavior of an inert sinusoidally-rippled shock front is influenced by the fluid motion in the shock-compressed region, and the amplitude of the shock-front ripple shows damped oscillation as the shock wave propagates [1,3,4,5].

  18. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Varatharajan, Balachandar; Ziminsky, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2012-12-11

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  19. Multiple tube premixing device

    DOEpatents

    Uhm, Jong Ho; Naidu, Balachandar; Ziminksy, Willy Steve; Kraemer, Gilbert Otto; Yilmaz, Ertan; Lacy, Benjamin; Stevenson, Christian; Felling, David

    2013-08-13

    The present application provides a premixer for a combustor. The premixer may include a fuel plenum with a number of fuel tubes and a burner tube with a number of air tubes. The fuel tubes extend about the air tubes.

  20. Advanced Aerosol Sampling Technologies For Point Biodetection

    DTIC Science & Technology

    2004-11-17

    Impaction Aerosol Particle Behavior TAKE-HOME MESSAGE: Aerosols are NOT gases. Their inertia gives us a handle on them. Their inertia can confound...tubing to collector without wall losses0 25 50 75 100 0 2 4 6 8 10 Particle Size (m) S a m p l i n g E f f i c i e n c y , % Typical sampler ...efficiency data 10 Aerosol Sampler Technology Challenges Description Goals • High efficiency inlets for 1-10 micron particles and wind speeds

  1. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    acetate, polymerized rapidly and produced some polymer film encapsulation of the aerosol droplets. A two-stage microcapsule generator was designed...encapsulating material, the generator also produced microcapsules of dibutyl phosphite in polyethylene, nitrocellulose, and natural rubber.

  2. Electronic cigarette solutions and resultant aerosol profiles.

    PubMed

    Herrington, Jason S; Myers, Colton

    2015-10-30

    Electronic cigarettes (e-cigarettes) are growing in popularity exponentially. Despite their ever-growing acceptance, their aerosol has not been fully characterized. The current study focused on evaluating e-cigarette solutions and their resultant aerosol for potential differences. A simple sampling device was developed to draw e-cigarette aerosol into a multi-sorbent thermal desorption (TD) tube, which was then thermally extracted and analyzed via a gas chromatography (GC) mass spectrometry (GC-MS) method. This novel application provided detectable levels of over one hundred fifteen volatile organic compounds (VOCs) and semivolatile organic compounds (SVOCs) from a single 40mL puff. The aerosol profiles from four commercially available e-cigarettes were compared to their respective solution profiles with the same GC-MS method. Solution profiles produced upwards of sixty four unidentified and identified (some only tentatively) constituents and aerosol profiles produced upwards of eighty two compounds. Results demonstrated distinct analyte profiles between liquid and aerosol samples. Most notably, formaldehyde, acetaldehyde, acrolein, and siloxanes were found in the aerosol profiles; however, these compounds were never present in the solutions. These results implicate the aerosolization process in the formation of compounds not found in solutions; have potential implications for human health; and stress the need for an emphasis on electronic cigarette aerosol testing.

  3. Method of pressure pulse cleaning a tube bundle heat exchanger

    SciTech Connect

    Scharton, T.D.; Taylor, G.B.

    1987-04-07

    A method is described of removing the products of corrosion, oxidation, sedimentation and comparable chemical reactions collectively known as sludge which settle on the bottom of a tube bundle heat exchange and form a pile of sludge. The tube bundle heat exchanger is characterized by a tube bundle heat exchanger wall and a thick metal plate known as a tube sheet near the lower portion of the tube bundle heat exchanger wall's interior surface. The tube sheet serves to support the lower ends of a multiplicity of heat exchanger tubes within the tube bundle heat exchanger. The tube bundle heat exchange wall further comprises a multiplicity of small holes known as hand holes, manways, drain lines and vents, located around its circumference and above the tube sheet. The method is described of removing the pile of sludge which settles on the tube sheet comprising: a. locating at least one air-gun type pressure pulse shock wave source outside the tube bundle heat exchanger so as to be able to introduce pressure pulse shock waves through one or more of the multiplicity of hand holes, manways, drain lines and vents; and b. filling the tube bundle heat exchanger with a liquid to a level above the pile of sludge.

  4. Tube Feedings.

    ERIC Educational Resources Information Center

    Plummer, Nancy

    This module on tube feedings is intended for use in inservice or continuing education programs for persons who work in long-term care. Instructor information, including teaching suggestions and a listing of recommended audiovisual materials and their sources appear first. The module goal and objectives are then provided. A brief discussion follows…

  5. Intense shock waves and shock-compressed gas flows in the channels of rail accelerators

    NASA Astrophysics Data System (ADS)

    Bobashev, S. V.; Zhukov, B. G.; Kurakin, R. O.; Ponyaev, S. A.; Reznikov, B. I.; Tverdokhlebov, K. V.

    2015-01-01

    Shock wave generation and shock-compressed gas flows attendant on the acceleration of an striker-free plasma piston in the channels of electromagnetic rail accelerators (railguns) are studied. Experiments are carried out in channels filled with helium or argon to an initial pressure of 25-500 Torr. At a pressure of 25 Torr, Mach numbers equal 32 in argon and 16 in helium. It is found that with the initial currents and gas initial densities in the channels being the same, the shock wave velocities in both gases almost coincide. Unlike standard shock tubes, a high electric field (up to 300 V/cm) present in the channel governs the motion of a shock-compressed layer. Once the charged particle concentration behind the shock wave becomes sufficiently high, the field causes part of the discharge current to pass through the shock-compressed layer. As a result, the glow of the layer becomes much more intense.

  6. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    It is widely believed that "On a clear day you can see forever," as proclaimed in the 1965 Broadway musical of the same name. While an admittedly beautiful thought, we all know that this concept is only figurative. Aside from Earth's curvature and Rayleigh scattering by air molecules, aerosols - colloidal suspensions of solid or liquid particles in a gas - limit our vision. Even on the clearest day, there are billions of aerosol particles per cubic meter of air.Atmospheric aerosols are commonly referred to as smoke, dust, haze, and smog, terms that are loosely reflective of their origin and composition. Aerosol particles have arisen naturally for eons from sea spray, volcanic emissions, wind entrainment of mineral dust, wildfires, and gas-to-particle conversion of hydrocarbons from plants and dimethylsulfide from the oceans. However, over the industrial period, the natural background aerosol has been greatly augmented by anthropogenic contributions, i.e., those produced by human activities. One manifestation of this impact is reduced visibility (Figure 1). Thus, perhaps more than in other realms of geochemistry, when considering the composition of the troposphere one must consider the effects of these activities. The atmosphere has become a reservoir for vast quantities of anthropogenic emissions that exert important perturbations on it and on the planetary ecosystem in general. Consequently, much recent research focuses on the effects of human activities on the atmosphere and, through them, on the environment and Earth's climate. For these reasons consideration of the geochemistry of the atmosphere, and of atmospheric aerosols in particular, must include the effects of human activities. (201K)Figure 1. Impairment of visibility by aerosols. Photographs at Yosemite National Park, California, USA. (a) Low aerosol concentration (particulate matter of aerodynamic diameter less than 2.5 μm, PM2.5=0.3 μg m-3; particulate matter of aerodynamic diameter less than 10

  7. Investigation of shock focusing in a cavity with incident shock diffracted by an obstacle

    NASA Astrophysics Data System (ADS)

    Zhang, Q.; Chen, X.; He, L.-M.; Rong, K.; Deiterding, R.

    2017-03-01

    Experiments and numerical simulations were carried out in order to investigate the focusing of a shock wave in a test section after the incident shock has been diffracted by an obstacle. A conventional shock tube was used to generate the planar shock. Incident shock Mach numbers of 1.4 and 2.1 were tested. A high-speed camera was employed to obtain schlieren photos of the flow field in the experiments. In the numerical simulations, a weighted essentially non-oscillatory (WENO) scheme of third-order accuracy supplemented with structured dynamic mesh adaptation was adopted to simulate the shock wave interaction. Good agreement between experiments and numerical results is observed. The configurations exhibit shock reflection phenomena, shock-vortex interaction and—in particular—shock focusing. The pressure history in the cavity apex was recorded and compared with the numerical results. A quantitative analysis of the numerically observed shock reflection configurations is also performed by employing a pseudo-steady shock transition boundary calculation technique. Regular reflection, single Mach reflection and transitional Mach reflection phenomena are observed and are found to correlate well with analytic predictions from shock reflection theory.

  8. The effect of organic aerosol material on aerosol reactivity towards ozone

    NASA Astrophysics Data System (ADS)

    Batenburg, Anneke; Gaston, Cassandra; Thornton, Joel; Virtanen, Annele

    2015-04-01

    After aerosol particles are formed or emitted into the atmosphere, heterogeneous reactions with gaseous oxidants cause them to 'age'. Aging can change aerosol properties, such as the hygroscopicity, which is an important parameter in how the particles scatter radiation and form clouds. Conversely, heterogeneous reactions on aerosol particles play a significant role in the cycles of various atmospheric trace gases. Organic compounds, a large part of the total global aerosol matter, can exist in liquid or amorphous (semi)solid physical phases. Different groups have shown that reactions with ozone (O3) can be limited by bulk diffusion in organic aerosol, particularly in viscous, (semi)solid materials, and that organic coatings alter the surface interactions between gas and aerosol particles. We aim to better understand and quantify how the viscosity and phase of organic aerosol matter affect gas-particle interactions. We have chosen the reaction of O3 with particles composed of a potassium iodide (KI) core and a variable organic coating as a model system. The reaction is studied in an aerosol flow reactor that consists of a laminar flow tube and a movable, axial injector for the injection of O3. The aerosol-containing air is inserted at the tube's top. The interaction length (and therefore time), between the particles and the O3 can be varied by moving the injector. Alternatively, the production of aerosol particles can be modulated. The remaining O3 concentration is monitored from the bottom of the tube and particle concentrations are measured simultaneously, which allows us to calculate the reactive uptake coefficient γ. We performed exploratory experiments with internally mixed KI and polyethylene glycol (PEG) particles at the University of Washington (UW) in a setup with a residence time around 50 s. Aerosol particles were generated in an atomizer from solutions with varying concentrations of KI and PEG and inserted into the flow tube after they were diluted and

  9. Neutron tubes

    DOEpatents

    Leung, Ka-Ngo; Lou, Tak Pui; Reijonen, Jani

    2008-03-11

    A neutron tube or generator is based on a RF driven plasma ion source having a quartz or other chamber surrounded by an external RF antenna. A deuterium or mixed deuterium/tritium (or even just a tritium) plasma is generated in the chamber and D or D/T (or T) ions are extracted from the plasma. A neutron generating target is positioned so that the ion beam is incident thereon and loads the target. Incident ions cause D-D or D-T (or T-T) reactions which generate neutrons. Various embodiments differ primarily in size of the chamber and position and shape of the neutron generating target. Some neutron generators are small enough for implantation in the body. The target may be at the end of a catheter-like drift tube. The target may have a tapered or conical surface to increase target surface area.

  10. QUANTIZING TUBE

    DOEpatents

    Jensen, A.S.; Gray, G.W.

    1958-07-01

    Beam deflection tubes are described for use in switching or pulse amplitude analysis. The salient features of the invention reside in the target arrangement whereby outputs are obtained from a plurality of collector electrodes each correspondlng with a non-overlapping range of amplitudes of the input sigmal. The tube is provded with mcans for deflecting the electron beam a1ong a line in accordance with the amplitude of an input signal. The target structure consists of a first dymode positioned in the path of the beam wlth slots spaced a1ong thc deflection line, and a second dymode posltioned behind the first dainode. When the beam strikes the solid portions along the length of the first dymode the excited electrons are multiplied and collected in separate collector electrodes spaced along the beam line. Similarly, the electrons excited when the beam strikes the second dynode are multiplied and collected in separate electrodes spaced along the length of the second dyode.

  11. Electron tube

    DOEpatents

    Suyama, Motohiro [Hamamatsu, JP; Fukasawa, Atsuhito [Hamamatsu, JP; Arisaka, Katsushi [Los Angeles, CA; Wang, Hanguo [North Hills, CA

    2011-12-20

    An electron tube of the present invention includes: a vacuum vessel including a face plate portion made of synthetic silica and having a surface on which a photoelectric surface is provided, a stem portion arranged facing the photoelectric surface and made of synthetic silica, and a side tube portion having one end connected to the face plate portion and the other end connected to the stem portion and made of synthetic silica; a projection portion arranged in the vacuum vessel, extending from the stem portion toward the photoelectric surface, and made of synthetic silica; and an electron detector arranged on the projection portion, for detecting electrons from the photoelectric surface, and made of silicon.

  12. Chest tube insertion

    MedlinePlus

    Chest drainage tube insertion; Insertion of tube into chest; Tube thoracostomy; Pericardial drain ... When your chest tube is inserted, you will lie on your side or sit partly upright, with one arm over your head. Sometimes, ...

  13. Nasogastric feeding tube

    MedlinePlus

    Feeding - nasogastric tube; NG tube; Bolus feeding; Continuous pump feeding; Gavage tube ... If your child has an NG tube, try to keep your child from touching or pulling on the tube. After your nurse teaches you how to flush the tube ...

  14. Modeling of Multi-Tube Pulse Detonation Engine Operation

    NASA Technical Reports Server (NTRS)

    Ebrahimi, Houshang B.; Mohanraj, Rajendran; Merkle, Charles L.

    2001-01-01

    The present paper explores some preliminary issues concerning the operational characteristics of multiple-tube pulsed detonation engines (PDEs). The study is based on a two-dimensional analysis of the first-pulse operation of two detonation tubes exhausting through a common nozzle. Computations are first performed to assess isolated tube behavior followed by results for multi-tube flow phenomena. The computations are based on an eight-species, finite-rate transient flow-field model. The results serve as an important precursor to understanding appropriate propellant fill procedures and shock wave propagation in multi-tube, multi-dimensional simulations. Differences in behavior between single and multi-tube PDE models are discussed, The influence of multi-tube geometry and the preferred times for injecting the fresh propellant mixture during multi-tube PDE operation are studied.

  15. The influence of incident shock Mach number on radial incident shock wave focusing

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Tan, Sheng; He, Liming; Rong, Kang; Zhang, Qiang; Zhu, Xiaobin

    2016-04-01

    Experiments and numerical simulations were carried out to investigate radial incident shock focusing on a test section where the planar incident shock wave was divided into two identical ones. A conventional shock tube was used to generate the planar shock. Incident shock Mach number of 1.51, 1.84 and 2.18 were tested. CCD camera was used to obtain the schlieren photos of the flow field. Third-order, three step strong-stability-preserving (SSP) Runge-Kutta method, third-order weighed essential non-oscillation (WENO) scheme and adaptive mesh refinement (AMR) algorithm were adopted to simulate the complicated flow fields characterized by shock wave interaction. Good agreement between experimental and numerical results was observed. Complex shock wave configurations and interactions (such as shock reflection, shock-vortex interaction and shock focusing) were observed in both the experiments and numerical results. Some new features were observed and discussed. The differences of structure of flow field and the variation trends of pressure were compared and analyzed under the condition of different Mach numbers while shock wave focusing.

  16. Tube furnace

    DOEpatents

    Foster, Kenneth G.; Frohwein, Eugene J.; Taylor, Robert W.; Bowen, David W.

    1991-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  17. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-12-31

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  18. Tube furnace

    SciTech Connect

    Foster, K.G.; Frohwein, E.J.; Taylor, R.W.; Bowen, D.W.

    1990-01-01

    A vermiculite insulated tube furnace is heated by a helically-wound resistance wire positioned within a helical groove on the surface of a ceramic cylinder, that in turn is surroundingly disposed about a doubly slotted stainless steel cylindrical liner. For uniform heating, the pitch of the helix is of shorter length over the two end portions of the ceramic cylinder. The furnace is of large volume, provides uniform temperature, offers an extremely precise programmed heating capability, features very rapid cool-down, and has a modest electrical power requirement.

  19. Septic Shock

    PubMed Central

    Lansing, Allan M.

    1963-01-01

    Septic shock may be defined as hypotension caused by bacteremia and accompanied by decreased peripheral blood flow, evidenced by oliguria. Clinically, a shaking chill is the warning signal. The immediate cause of hypotension is pooling of blood in the periphery, leading to decreased venous return: later, peripheral resistance falls and cardiac failure may occur. Irreversible shock is comparable to massive reactive hyperemia. Reticuloendothelial failure, histamine release, and toxic hypersensitivity may be factors in the pathogenesis of septic shock. Adrenal failure does not usually occur, but large doses of corticosteroid are employed therapeutically to counteract the effect of histamine release or hypersensitivity to endotoxin. The keys to successful therapy are time, antibiotics, vasopressors, cortisone and correction of acidosis. PMID:14063936

  20. Experimental Investigation of Passive Shock Wave Mitigation using Obstacle Arrangements

    NASA Astrophysics Data System (ADS)

    Nguyen, Monica; Wan, Qian; Eliasson, Veronica

    2014-11-01

    With its vast range in applications, especially in the defense industry, shock wave mitigation is an ongoing research area of interest to the shock dynamics community. Passive shock wave mitigation methods range from forcing the shock wave to abruptly change its direction to introducing barriers or obstacles of various shapes and materials in the path of the shock wave. Obstacles provide attenuation through complicated shock wave interactions and reflections. In this work, we have performed shock tube experiments to investigate shock wave mitigation due to solid obstacles placed along the curve of a logarithmic spiral. Different shapes (cylindrical and square) of obstacles with different materials (solid and foam) have been used. High-speed schlieren optics and background-oriented schlieren techniques have been used together with pressure measurements to quantify the effects of mitigation. Results have also been compared to numerical simulations and show good agreement.

  1. Tapered pulse tube for pulse tube refrigerators

    DOEpatents

    Swift, Gregory W.; Olson, Jeffrey R.

    1999-01-01

    Thermal insulation of the pulse tube in a pulse-tube refrigerator is maintained by optimally varying the radius of the pulse tube to suppress convective heat loss from mass flux streaming in the pulse tube. A simple cone with an optimum taper angle will often provide sufficient improvement. Alternatively, the pulse tube radius r as a function of axial position x can be shaped with r(x) such that streaming is optimally suppressed at each x.

  2. Shock interactions with a dense-gas wall layer

    SciTech Connect

    Kuhl, A.L.; Reichenbach, H.; Ferguson, R.E.

    1991-11-19

    Described here are experiments and calculations of the interaction of a planar shock with a dense-gas layer located on the floor of the shock tube test section. The shock front deposited vorticity in the layer by the baroclynic mechanism. The wall shear layer was unstable and rapidly evolved into a turbulent boundary layer with a wide spectrum of mixing scales. Density effects dominated the dynamics in the wall region.

  3. ENCAPSULATED AEROSOLS

    DTIC Science & Technology

    materials determine the range of applicability of each method. A useful microencapsulation method, based on coagulation by inertial force was developed...The generation apparatus, consisting of two aerosol generators in series, was utilized to produce many kinds of microcapsules . A fluid energy mill...was found useful for the production of some microcapsules . The permeability of microcapsule films and the effect of exposure time and humidity were

  4. Modelling of ion-acoustic shocks with reflected ions

    NASA Astrophysics Data System (ADS)

    Hanusch, Adrian; Liseykina, Tatyana

    2016-10-01

    In the studies of electrostatic shocks a distinction is made between electrons, that freely pass the shock structure and those that get trapped into the shock potential. If the width of the trapping region in velocity space is bigger than the change of the electron velocity by collisions over the evolution time of the trapping potential, the captured electrons are better described by the adiabatic trapping model. In the opposite case electrons remain Maxwellian. Which model is suitable in the real situation depends on how the shock is generated: adiabatic trapping is used for the shock generated in the piston tube, while Boltzmannian - in the shock tube. Recently the self-regulated ion reflection and acceleration in ion-acoustic shocks for both electron models was studied analytically. Here we present the numerical study of electrostatic shocks generated by reflection of a high-speed plasma off a conducting wall and by the decay of plasma density discontinuity. Different assumptions for the electron distribution are compared to the fully kinetic simulations. Special attention is given to the shock reflected ions. The finite ion temperature effect on the shock electrostatic structure and ion reflection efficiency is analyzed. The work was supported by DFG Grant Number 278305671 ``Plasma hybrid modelling of supernova remnants shock precursors''.

  5. Tube-in-tube thermophotovoltaic generator

    DOEpatents

    Ashcroft, J.; Campbell, B.; DePoy, D.

    1998-06-30

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell. 8 figs.

  6. Tube-in-tube thermophotovoltaic generator

    SciTech Connect

    Ashcroft, John; Campbell, Brian; DePoy, David

    1998-01-01

    A thermophotovoltaic device includes at least one thermal radiator tube, a cooling tube concentrically disposed within each thermal radiator tube and an array of thermophotovoltaic cells disposed on the exterior surface of the cooling tube. A shell having a first end and a second end surrounds the thermal radiator tube. Inner and outer tubesheets, each having an aperture corresponding to each cooling tube, are located at each end of the shell. The thermal radiator tube extends within the shell between the inner tubesheets. The cooling tube extends within the shell through the corresponding apertures of the two inner tubesheets to the corresponding apertures of the two outer tubesheets. A plurality of the thermal radiator tubes can be arranged in a staggered or an in-line configuration within the shell.

  7. Gastrostomy feeding tube - bolus

    MedlinePlus

    Feeding - gastrostomy tube - bolus; G-tube - bolus; Gastrostomy button - bolus; Bard Button - bolus; MIC-KEY - bolus ... Your child's gastrostomy tube (G-tube) is a special tube in your child's stomach that will help deliver food and medicines until your ...

  8. Phase transition behaviour of sodium oleate aerosol particles

    NASA Astrophysics Data System (ADS)

    Nájera, Juan J.

    Field measurements have shown that organic surfactants are significant components of atmospheric aerosols. While fatty acids, among other surfactants, are prevalent in the atmosphere, the influence of these species on the chemical and physical properties of atmospheric aerosols remains not fully characterized. In order to assess the phase in which particles may exist, a detailed study of the deliquescence of a model surfactant aerosol has been carried out. Sodium oleate was chosen as a surfactant proxy relevant in atmospheric aerosol. Sodium oleate micelle aerosol particles were generated nebulizing a sodium oleate aqueous solution. In this study, the water uptake and phase transition of sodium oleate aerosol particles have been studied in a room temperature aerosol flow tube system (AFT) using Fourier transform infrared (FTIR) spectroscopy. Aerosol morphology and elemental composition were also analysed using scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDX) techniques. The particles are homogeneously distributed as ellipsoidal-shape aggregates of micelles particles with an average size of ˜1.1 μm. The deliquescence by the sodium oleate aerosol particles was monitored by infrared extinction spectroscopy, where the dried aerosol particles were exposed to increasing relative humidity as they passed through the AFT. Observations of the infrared absorption features of condensed phase liquid water enable to determine the sodium oleate deliquescence phase transition at 88±2%.

  9. Feeding tube - infants

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007235.htm Feeding tube - infants To use the sharing features on this page, please enable JavaScript. A feeding tube is a small, soft, plastic tube placed ...

  10. Tracheostomy tube - eating

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000464.htm Tracheostomy tube - eating To use the sharing features on this ... you swallow foods or liquids. Eating and Tracheostomy Tubes When you get your tracheostomy tube, or trach, ...

  11. Eustachian tube patency

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001630.htm Eustachian tube patency To use the sharing features on this page, please enable JavaScript. Eustachian tube patency refers to how much the eustachian tube ...

  12. Heat exchanger tube mounts

    DOEpatents

    Wolowodiuk, W.; Anelli, J.; Dawson, B.E.

    1974-01-01

    A heat exchanger in which tubes are secured to a tube sheet by internal bore welding is described. The tubes may be moved into place in preparation for welding with comparatively little trouble. A number of segmented tube support plates are provided which allow a considerable portion of each of the tubes to be moved laterally after the end thereof has been positioned in preparation for internal bore welding to the tube sheet. (auth)

  13. Shock wave interactions with liquid sheets

    NASA Astrophysics Data System (ADS)

    Jeon, H.; Eliasson, V.

    2017-04-01

    Shock wave interactions with a liquid sheet are investigated by impacting planar liquid sheets of varying thicknesses with a planar shock wave. A square frame was designed to hold a rectangular liquid sheet, with a thickness of 5 or 10 mm, using plastic membranes and cotton wires to maintain the planar shape and minimize bulge. The flat liquid sheet, consisting of either water or a cornstarch and water mixture, was suspended in the test section of a shock tube. Incident shock waves with Mach numbers of M_s = 1.34 and 1.46 were considered. A schlieren technique with a high-speed camera was used to visualize the shock wave interaction with the liquid sheets. High-frequency pressure sensors were used to measure wave speed, overpressure, and impulse both upstream and downstream of the liquid sheet. Results showed that no transmitted shock wave could be observed through the liquid sheets, but compression waves induced by the shock-accelerated liquid coalesced into a shock wave farther downstream. A thicker liquid sheet resulted in a lower peak overpressure and impulse, and a cornstarch suspension sheet showed a higher attenuation factor compared to a water sheet.

  14. Shock propagation and attenuation in high-power excimer lasers

    NASA Astrophysics Data System (ADS)

    Holzwarth, Achim; Berger, Peter; Huegel, Helmut

    1993-05-01

    Theoretical and experimental investigations on the propagation, reflection, and attenuation of shock waves as they occur in excimer lasers have been performed. The numerical simulations have been carried out using a two-dimensional, unsteady finite difference scheme. The experimental setup is a piston driven shock tube with a rectangular cross section working in air at atmospheric pressure. The shocks were detected interferometrically as well as by means of pressure transducers. This shock tube allows us to investigate basic phenomena of shock diffraction which can be used to confirm the computational results in the range of weak shock waves. In particular, the influence of the shape of the wall contour on the reflection of shock waves has been investigated theoretically. The decay time of pressure and density perturbations differs for various wall configurations in such a way that short electrodes accelerate the attenuation as well as does a strong area increase in the vicinity of them. After each laser pulse there is a shock travelling into the laser channel. Experiments have been carried out on the reflection of this shock at a specially formed bend that is able to focus the shock into a muffling element.

  15. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  16. An Evaluation of the Compressive Properties of Helmet Pads Pre- and Post-Shock Wave Overpressure Exposure

    DTIC Science & Technology

    2015-08-14

    HELMET PADS HEAD (ANATOMY) TRAUMATIC BRAIN INJURY HELMETS SHOCK TUBES ACH(ADVANCED COMBAT HELMET) U.S...4 Figure 5. RED Head , manufactured by Humanetics and modified by UNL. ................................ 5 Figure 6...Surface pressure sensor locations on the RED Head . ..................................................... 5 Figure 7. External shock tube exit with RED

  17. Contaminated aerosol recovery from pulmonary function testing equipment.

    PubMed

    Hiebert, T; Miles, J; Okeson, G C

    1999-02-01

    Clinically, the spread of infectious agents between subjects undergoing spirometry is quite uncommon. There is almost no documentation in the medical literature on this subject. We studied the retrieval of nonpathogenic Escherichia coli after aerosolizing organisms into standard pulmonary function tubing of a type that is frequently used by volume-sensing spirometers. The arrival of the aerosol at the distal end of the tubing was documented by culture. After delays of 0, 1, 5, and 10 min, respectively, air was forcibly withdrawn from the proximal end of the tubing through a special petri plate assembly. The plates were cultured and the colonies were counted. Immediately after insufflation of organisms, air withdrawn from the proximal tubing had counts similar to the air sampled at the distal end. After a 1-min delay, the proximal samples contained only rare organisms. No organisms were recovered from proximal air samples after a delay of 5 or 10 min after insufflation of organisms. The absence of detectable aerosolized E. coli after delays of 5 and 10 min after insufflation of organisms into spirometry tubing supports the hypothesis that a significant transfer of aerosolized organisms does not occur during routine pulmonary function testing as long as an interval of 5 min or more is allowed between tests.

  18. Statistical inference in the presence of an inclination effect in laboratory radiative shock experiments

    NASA Astrophysics Data System (ADS)

    Doss, F. W.; Drake, R. P.; Kuranz, C. C.

    2011-11-01

    A laser-driven experiment produces images of dense shocked material by x-ray transmission. The post-shock material is sufficiently dense that no significant signal passes through the dense layer, and therefore the shock compression cannot be directly measured by comparing transmitted intensities. One could try to determine the shock compression ratio by observing the ratio of the total distance travelled by the shock to the dense post-shock layer width, but small deviations of the angle of the shock with respect to the angle of imaging create large asymmetric errors in observation. A statistical approach to recovering shock compression by appropriately combining data from several experiments is developed, using fits to a simple model for the shock and shock tube geometry.

  19. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  20. Multiple shocks

    NASA Astrophysics Data System (ADS)

    Shenker, Stephen H.; Stanford, Douglas

    2014-12-01

    Using gauge/gravity duality, we explore a class of states of two CFTs with a large degree of entanglement, but with very weak local two-sided correlation. These states are constructed by perturbing the thermofield double state with thermal-scale operators that are local at different times. Acting on the dual black hole geometry, these perturbations create an intersecting network of shock waves, supporting a very long wormhole. Chaotic CFT dynamics and the associated fast scrambling time play an essential role in determining the qualitative features of the resulting geometries.

  1. A simple method for estimation of coagulation efficiency in mixed aerosols. [environmental pollution control

    NASA Technical Reports Server (NTRS)

    Dimmick, R. L.; Boyd, A.; Wolochow, H.

    1975-01-01

    Aerosols of KBr and AgNO3 were mixed, exposed to light in a glass tube and collected in the dark. About 15% of the collected material was reduced to silver upon development. Thus, two aerosols of particles that react to form a photo-reducible compound can be used to measure coagulation efficiency.

  2. Bender/Coiler for Tubing

    NASA Technical Reports Server (NTRS)

    Stoltzfus, J. M.

    1983-01-01

    Easy-to-use tool makes coils of tubing. Tubing to be bend clamped with stop post. Die positioned snugly against tubing. Operator turns handle to slide die along tubing, pushing tubing into spiral groove on mandrel.

  3. Oscillations of a standing shock in the Richtmyer-Meshkov instability (II)

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig

    2016-11-01

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing shock undergoes well known damped oscillations. We present the conditions required for producing such a standing shock wave which greatly facilitates the measurement of the oscillations and their rate of damping. This work was performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  4. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  5. Shock Prevention

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The electrician pictured is installing a General Electric Ground Fault Interrupter (GFI), a device which provides protection against electrical shock in the home or in industrial facilities. Shocks due to defective wiring in home appliances or other electrical equipment can cause severe burns, even death. As a result, the National Electrical Code now requires GFIs in all new homes constructed. This particular type of GFI employs a sensing element which derives from technology acquired in space projects by SCI Systems, Inc., Huntsville, Alabama, producer of sensors for GE and other manufacturers of GFI equipment. The sensor is based on the company's experience in developing miniaturized circuitry for space telemetry and other spacecraft electrical systems; this experience enabled SCI to package interruptor circuitry in the extremely limited space available and to produce sensory devices at practicable cost. The tiny sensor measures the strength of the electrical current and detects current differentials that indicate a fault in the functioning of an electrical system. The sensing element then triggers a signal to a disconnect mechanism in the GFI, which cuts off the current in the faulty circuit.

  6. Cytoplasmic molecular delivery with shock waves: importance of impulse.

    PubMed Central

    Kodama, T; Hamblin, M R; Doukas, A G

    2000-01-01

    Cell permeabilization using shock waves may be a way of introducing macromolecules and small polar molecules into the cytoplasm, and may have applications in gene therapy and anticancer drug delivery. The pressure profile of a shock wave indicates its energy content, and shock-wave propagation in tissue is associated with cellular displacement, leading to the development of cell deformation. In the present study, three different shock-wave sources were investigated; argon fluoride excimer laser, ruby laser, and shock tube. The duration of the pressure pulse of the shock tube was 100 times longer than the lasers. The uptake of two fluorophores, calcein (molecular weight: 622) and fluorescein isothiocyanate-dextran (molecular weight: 71,600), into HL-60 human promyelocytic leukemia cells was investigated. The intracellular fluorescence was measured by a spectrofluorometer, and the cells were examined by confocal fluorescence microscopy. A single shock wave generated by the shock tube delivered both fluorophores into approximately 50% of the cells (p < 0.01), whereas shock waves from the lasers did not. The cell survival fraction was >0.95. Confocal microscopy showed that, in the case of calcein, there was a uniform fluorescence throughout the cell, whereas, in the case of FITC-dextran, the fluorescence was sometimes in the nucleus and at other times not. We conclude that the impulse of the shock wave (i.e., the pressure integrated over time), rather than the peak pressure, was a dominant factor for causing fluorophore uptake into living cells, and that shock waves might have changed the permeability of the nuclear membrane and transferred molecules directly into the nucleus. PMID:11023888

  7. A shock tube study of OH + H(2)O(2) --> H(2)O + HO(2) and H(2)O(2) + M --> 2OH + M using laser absorption of H(2)O and OH.

    PubMed

    Hong, Zekai; Cook, Robert D; Davidson, David F; Hanson, Ronald K

    2010-05-13

    The rate constants of the reactions: (1) H2O2+M-->2OH+M, (2) OH+H2O2-->H2O+HO2 were measured in shock-heated H(2)O(2)/Ar mixtures using laser absorption diagnostics for H(2)O and OH. Time-histories of H(2)O were monitored using tunable diode laser absorption at 2550.96 nm, and time-histories of OH were achieved using ring dye laser absorption at 306 nm. Initial H(2)O(2) concentrations were also determined utilizing the H(2)O diagnostic. On the basis of simultaneous time-history measurements of OH and H(2)O, k(2) was found to be 4.6 x 10(13) exp(-2630 K/T) [cm(3) mol(-1) s(-1)] over the temperature range 1020-1460 K at 1.8 atm; additional measurements of k(2) near 1 atm showed no significant pressure dependence. Similarly, k(1) was found to be 9.5 x 10(15) exp(-21 250 K/T) [cm(3) mol(-1) s(-1)] over the same temperature and pressure range.

  8. YAG aerosol lidar

    NASA Technical Reports Server (NTRS)

    Sullivan, R.

    1988-01-01

    The Global Atmospheric Backscatter Experiment (GLOBE) Mission, using the NASA DC-8 aircraft platform, is designed to provide the magnitude and statistical distribution of atmospheric backscatter cross section at lidar operating wavelengths. This is a fundamental parameter required for the Doppler lidar proposed to be used on a spacecraft platform for global wind field measurements. The prime measurements will be made by a CO2 lidar instrument in the 9 to 10 micron range. These measurements will be complemented with the Goddard YAG Aerosol Lidar (YAL) data in two wavelengths, 0.532 and 1.06 micron, in the visible and near-infrared. The YAL, is being designed to utilize as much existing hardware, as feasible, to minimize cost and reduce implementation time. The laser, energy monitor, telescope and detector package will be mounted on an optical breadboard. The optical breadboard is mounted through isolation mounts between two low boy racks. The detector package will utilize a photomultiplier tube for the 0.532 micron channel and a silicon avalanche photo detector (APD) for the 1.06 micron channel.

  9. Geometrical shock dynamics of fast magnetohydrodynamic shocks

    NASA Astrophysics Data System (ADS)

    Mostert, Wouter; Pullin, Dale I.; Samtaney, Ravi; Wheatley, Vincent

    2016-11-01

    We extend the theory of geometrical shock dynamics (GSD, Whitham 1958), to two-dimensional fast magnetohydrodynamic (MHD) shocks moving in the presence of nonuniform magnetic fields of general orientation and strength. The resulting generalized area-Mach number rule is adapted to MHD shocks moving in two spatial dimensions. A partially-spectral numerical scheme developed from that of Schwendeman (1993) is described. This is applied to the stability of plane MHD fast shocks moving into a quiescent medium containing a uniform magnetic field whose field lines are inclined to the plane-shock normal. In particular, we consider the time taken for an initially planar shock subject to an initial perturbed magnetosonic Mach number distribution, to first form shock-shocks. Supported by KAUST OCRF Award No. URF/1/2162-01.

  10. Experimental study of shock-wave reflection from a thermally accommodating wall.

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.

    1973-01-01

    Shock-tube experiments have been conducted to study the nonequilibrium gas-surface interaction which occurs when a thick shock wave in argon reflects from a coplanar, heat-conducting wall. Fast-response instrumentation was used to monitor variations in temperature and normal stress on the surface of the shock-tube end wall during and immediately following reflection of the incident shock wave. The laboratory observations are compared with computer predictions obtained by Deiwert using the direct-simulation Monte Carlo method, and excellent agreement is obtained when a suitable average thermal accommodation coefficient is chosen for the wall surface.

  11. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-01-28

    An apparatus for reducing shock and overpressure is particularly useful in connection with the sequential detonation of a series of nuclear explosives under ground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accomodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure. (10 claims)

  12. Apparatus for reducing shock and overpressure

    DOEpatents

    Walter, C.E.

    1975-10-21

    The design is given of an apparatus for reducing shock and overpressure particularly useful in connection with the sequential detonation of a series of nuclear explosives underground. A coupling and decoupling arrangement between adjacent nuclear explosives in the tubing string utilized to emplace the explosives is able to support lower elements on the string but yields in a manner which absorbs energy when subjected to the shock wave produced upon detonation of one of the explosives. Overpressure is accommodated by an arrangement in the string which provides an additional space into which the pressurized material can expand at a predetermined overpressure.

  13. Experimental Plans for Subsystems of a Shock Wave Driven Gas Core Reactor

    NASA Technical Reports Server (NTRS)

    Kazeminezhad, F.; Anghai, S.

    2008-01-01

    This Contractor Report proposes a number of plans for experiments on subsystems of a shock wave driven pulsed magnetic induction gas core reactor (PMI-GCR, or PMD-GCR pulsed magnet driven gas core reactor). Computer models of shock generation and collision in a large-scale PMI-GCR shock tube have been performed. Based upon the simulation results a number of issues arose that can only be addressed adequately by capturing experimental data on high pressure (approx.1 atmosphere or greater) partial plasma shock wave effects in large bore shock tubes ( 10 cm radius). There are three main subsystems that are of immediate interest (for appraisal of the concept viability). These are (1) the shock generation in a high pressure gas using either a plasma thruster or pulsed high magnetic field, (2) collision of MHD or gas dynamic shocks, their interaction time, and collision pile-up region thickness, and (3) magnetic flux compression power generation (not included here).

  14. Average molecular weight of surfactants in aerosols

    NASA Astrophysics Data System (ADS)

    Latif, M. T.; Brimblecombe, P.

    2007-09-01

    Surfactants in atmospheric aerosols determined as methylene blue active substances (MBAS) and ethyl violet active substances (EVAS). The MBAS and EVAS concentrations can be correlated with surface tension as determined by pendant drop analysis. The effect of surface tension was more clearly indicated in fine mode aerosol extracts. The concentration of MBAS and EVAS was determined before and after ultrafiltration analysis using AMICON centrifuge tubes that define a 5000 Da (5 K Da) nominal molecular weight fraction. Overall, MBAS and to a greater extent EVAS predominates in fraction with molecular weight below 5 K Da. In case of aerosols collected in Malaysia the higher molecular fractions tended to be a more predominant. The MBAS and EVAS are correlated with yellow to brown colours in aerosol extracts. Further experiments showed possible sources of surfactants (e.g. petrol soot, diesel soot) in atmospheric aerosols to yield material having molecular size below 5 K Da except for humic acid. The concentration of surfactants from these sources increased after ozone exposure and for humic acids it also general included smaller molecular weight surfactants.

  15. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  16. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  17. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  18. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  19. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  20. Toxic Shock Syndrome

    MedlinePlus

    ... burn to avoid getting a staph infection. Toxic shock syndrome treatment Because toxic shock syndrome gets worse quickly, you may be seriously ... toxic shock syndrome in a wound? Resources Toxic Shock Syndrome ... treatment, women's health Family Health, Women January 2017 Copyright © ...

  1. Molecular transformations accompanying the aging of laboratory secondary organic aerosol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aging of fresh secondary organic aerosol, generated by alpha-pinene ozonolysis in a flow tube reactor, was studied by passing it through a second reaction chamber where hydroxyl radicals were generated. Two types of experiments were performed: plug injection experiments where the particle mass a...

  2. Experimental study of a shock accelerated thin gas layer

    SciTech Connect

    Jacobs, J.W.; Jenkins, D.G.; Klein, D.L.; Benjamin, R.F.

    1993-08-01

    Planar laser-induced fluorescence imaging is utilized in shock-tube experiments to visualize the development of a shock-accelerated thin gas layer. The Richtmyer-Meshkov instability of both sides of the heavy gas layer causes perturbations initially imposed on the two interfaces to develop into one of three distinct flow patterns. Two of the patterns exhibit vortex pairs which travel either upstream or downstream in the shock tube, while the third is a sinuous pattern that shows no vortex development until late in its evolution. The development of the observed patterns as well as the growth in the layer thickness is modeled by considering the dynamics of vorticity deposited in the layer by the shock interaction process. This model yields an expression for the layer growth which is in good agreement with measurements.

  3. PEG tube insertion -- discharge

    MedlinePlus

    ... shower or bathe. Keeping the PEG-tube in Place If the feeding tube comes out, the stoma ... eds. Pfenninger and Fowler's Procedures for Primary Care . 3rd ed. Philadelphia, PA: Elsevier Mosby; 2011:chap 100. ...

  4. Glass tube splitting tool

    NASA Technical Reports Server (NTRS)

    Klein, J. A.; Murray, C. D.; Stein, J. A.

    1971-01-01

    Tool accurately splits glass tubing so cuts are aligned 180 deg apart and reassembled tube forms low pressure, gastight enclosure. Device should interest industries using cylindrical closed glass containers.

  5. Eustachian tube (image)

    MedlinePlus

    ... are more common in children because their eustachian tubes are shorter, narrower, and more horizontal than in ... become trapped when the tissue of the eustachian tube becomes swollen from colds or allergies. Bacteria trapped ...

  6. Neural Tube Defects

    MedlinePlus

    Neural tube defects are birth defects of the brain, spine, or spinal cord. They happen in the first month ... she is pregnant. The two most common neural tube defects are spina bifida and anencephaly. In spina ...

  7. Aerosol algorithm evaluation within aerosol-CCI

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan; Schulz, Michael; Griesfeller, Jan

    Properties of aerosol retrievals from space are difficult. Even data from dedicated satellite sensors face contaminations which limit the accuracy of aerosol retrieval products. Issues are the identification of complete cloud-free scenes, the need to assume aerosol compositional features in an underdetermined solution space and the requirement to characterize the background at high accuracy. Usually the development of aerosol is a slow process, requiring continuous feedback from evaluations. To demonstrate maturity, these evaluations need to cover different regions and seasons and many different aerosol properties, because aerosol composition is quite diverse and highly variable in space and time, as atmospheric aerosol lifetimes are only a few days. Three years ago the ESA Climate Change Initiative started to support aerosol retrieval efforts in order to develop aerosol retrieval products for the climate community from underutilized ESA satellite sensors. The initial focus was on retrievals of AOD (a measure for the atmospheric column amount) and of Angstrom (a proxy for aerosol size) from the ATSR and MERIS sensors on ENVISAT. The goal was to offer retrieval products that are comparable or better in accuracy than commonly used NASA products of MODIS or MISR. Fortunately, accurate reference data of ground based sun-/sky-photometry networks exist. Thus, retrieval assessments could and were conducted independently by different evaluation groups. Here, results of these evaluations for the year 2008 are summarized. The capability of these newly developed retrievals is analyzed and quantified in scores. These scores allowed a ranking of competing efforts and also allow skill comparisons of these new retrievals against existing and commonly used retrievals.

  8. Guide tube flow diffuser

    SciTech Connect

    Berringer, R.T.; Myron, D.L.

    1980-11-04

    A nuclear reactor upper internal guide tube has a flow diffuser integral with its bottom end. The guide tube provides guidance for control rods during their ascent or descent from the reactor core. The flow diffuser serves to divert the upward flow of reactor coolant around the outside of the guide tube thereby limiting the amount of coolant flow and turbulence within the guide tube, thus enhancing the ease of movement of the control rods.

  9. A direct method for e-cigarette aerosol sample collection.

    PubMed

    Olmedo, Pablo; Navas-Acien, Ana; Hess, Catherine; Jarmul, Stephanie; Rule, Ana

    2016-08-01

    E-cigarette use is increasing in populations around the world. Recent evidence has shown that the aerosol produced by e-cigarettes can contain a variety of toxicants. Published studies characterizing toxicants in e-cigarette aerosol have relied on filters, impingers or sorbent tubes, which are methods that require diluting or extracting the sample in a solution during collection. We have developed a collection system that directly condenses e-cigarette aerosol samples for chemical and toxicological analyses. The collection system consists of several cut pipette tips connected with short pieces of tubing. The pipette tip-based collection system can be connected to a peristaltic pump, a vacuum pump, or directly to an e-cigarette user for the e-cigarette aerosol to flow through the system. The pipette tip-based system condenses the aerosol produced by the e-cigarette and collects a liquid sample that is ready for analysis without the need of intermediate extraction solutions. We tested a total of 20 e-cigarettes from 5 different brands commercially available in Maryland. The pipette tip-based collection system condensed between 0.23 and 0.53mL of post-vaped e-liquid after 150 puffs. The proposed method is highly adaptable, can be used during field work and in experimental settings, and allows collecting aerosol samples from a wide variety of e-cigarette devices, yielding a condensate of the likely exact substance that is being delivered to the lungs.

  10. Shock synthesis of amino acids in simulated primitive environments.

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Bar-Nun, N.; Bauer, S. H.; Sagan, C.

    1971-01-01

    A single pulse shock tube of a uniform bore was used in the experiments. The reaction mixture consisted of 3.3 per cent methane, 11 per cent ethane, and 5.6 per cent ammonia, diluted with ultra-pure argon. The formation of glycine, alanine, valine, and leucine under conditions of shock heating was observed. Thermodynamic relations are discussed together with questions of conversion efficiency.

  11. Direct Numerical Simulation of a Shocked Helium Jet

    SciTech Connect

    Cloutman, L D

    2002-02-01

    We present direct numerical simulations of a shock tube experiment in which a cylindrical laminar jet of helium doped with biacetyl is injected into air and subjected to a weak shock wave. Computed species distributions in a planar cross section of the jet are compared to planar laser-induced fluorescence (PLIF) images produced by the experiment. The calculations are in excellent agreement with the experimental images. We find that differential diffusion of species is an important feature of this experiment.

  12. Microhole Tubing Bending Report

    DOE Data Explorer

    Oglesby, Ken

    2012-01-01

    A downhole tubing bending study was made and is reported herein. IT contains a report and 2 excel spreadsheets to calculate tubing bending and to estimate contact points of the tubing to the drilled hole wall (creating a new support point).

  13. 1992 tubing tables

    SciTech Connect

    Not Available

    1992-01-01

    This paper is helpful to those designing oil well completions or purchasing tubing with proprietary or premium connections. Tables contain specifications and application data for over 100 different tubing joints, including those used with fiberglass pipe. The tables this year contain dimensional and performance data for coiled tubing.

  14. Standing Shocks in the Inner Slow Solar Wind

    NASA Astrophysics Data System (ADS)

    Li, Bo; Chen, Yan-Jun; Li, Xing

    2011-05-01

    We examine whether the now tube along the edge of a coronal streamer supports standing shocks in the inner slow wind by solving an isothermal wind model in terms of the Lambert W function. It is shown that solutions with standing shocks do exist and they exist in a broad area in the parameter space characterizing the wind temperature and now tube. In particular, streamers with cusps located at a heliocentric distance ≳ 3.2Rodot can readily support discontinuous slow winds with temperatures barely higher than 1 MK.

  15. Shock tunnel studies of scramjet phenomena, supplement 5

    NASA Technical Reports Server (NTRS)

    Casey, R.; Stalker, R. J.; Brescianini, C. P.; Morgan, R. G.; Jacobs, P. A.; Wendt, M.; Ward, N. R.; Akman, N.; Allen, G. A.; Skinner, K.

    1990-01-01

    A series of reports are presented on SCRAMjet studies, shock tunnel studies, and expansion tube studies. The SCRAMjet studies include: (1) Investigation of a Supersonic Combustion Layer; (2) Wall Injected SCRAMjet Experiments; (3) Supersonic Combustion with Transvers, Circular, Wall Jets; (4) Dissociated Test Gas Effects on SCRAMjet Combustors; (5) Use of Silane as a Fuel Additive for Hypersonic Thrust Production, (6) Pressure-length Correlations in Supersonic Combustion; (7) Hot Hydrogen Injection Technique for Shock Tunnels; (8) Heat Release - Wave Interaction Phenomena in Hypersonic Flows; (9) A Study of the Wave Drag in Hypersonic SCRAMjets; (10) Parametric Study of Thrust Production in the Two Dimensional SCRAMjet; (11) The Design of a Mass Spectrometer for use in Hypersonic Impulse Facilities; and (12) Development of a Skin Friction Gauge for use in an Impulse Facility. The shock tunnel studies include: (1) Hypervelocity flow in Axisymmetric Nozzles; (2) Shock Tunnel Development; and (3) Real Gas Efects in Hypervelocity Flows over an Inclined Cone. The expansion tube studies include: (1) Investigation of Flow Characteristics in TQ Expansion Tube; and (2) Disturbances in the Driver Gas of a Shock Tube.

  16. Underwater Shock Wave Research Applied to Therapeutic Device Developments

    NASA Astrophysics Data System (ADS)

    Takayama, K.; Yamamoto, H.; Shimokawa, H.

    2013-07-01

    The chronological development of underwater shock wave research performed at the Shock Wave Research Center of the Institute of Fluid Science at the Tohoku University is presented. Firstly, the generation of planar underwater shock waves in shock tubes and their visualization by using the conventional shadowgraph and schlieren methods are described. Secondly, the generation of spherical underwater shock waves by exploding lead azide pellets weighing from several tens of micrograms to 100 mg, that were ignited by irradiating with a Q-switched laser beam, and their visualization by using double exposure holographic interferometry are presented. The initiation, propagation, reflection, focusing of underwater shock waves, and their interaction with various interfaces, in particular, with air bubbles, are visualized quantitatively. Based on such a fundamental underwater shock wave research, collaboration with the School of Medicine at the Tohoku University was started for developing a shock wave assisted therapeutic device, which was named an extracorporeal shock wave lithotripter (ESWL). Miniature shock waves created by irradiation with Q-switched HO:YAG laser beams are studied, as applied to damaged dysfunctional nerve cells in the myocardium in a precisely controlled manner, and are effectively used to design a catheter for treating arrhythmia.

  17. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  18. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  19. 21 CFR 868.5800 - Tracheostomy tube and tube cuff.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Tracheostomy tube and tube cuff. 868.5800 Section... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5800 Tracheostomy tube and tube cuff. (a) Identification. A tracheostomy tube and tube cuff is a device intended to be placed into...

  20. Research of laser cleaning technology for steam generator tubing

    NASA Astrophysics Data System (ADS)

    Hou, Suixa; Luo, Jijun; Xu, Jun; Yuan, Bo

    2010-10-01

    Surface cleaning based on the laser-induced breakdown of gas and subsequent shock wave generation can remove small particles from solid surfaces. Accordingly, several studies in steam generator tubes of nuclear power plants were performed to expand the cleaning capability of the process. In this work, experimental apparatus of laser cleaning was designed in order to clean heat tubes in steam generator. The laser cleaning process is monitored by analyzing acoustic emission signal experimentally. Experiments demonstrate that laser cleaning can remove smaller particles from the surface of steam generator tubes better than other cleaning process. It has advantages in saving on much manpower and material resource, and it is a good cleaning method for heat tubes, which can be real-time monitoring in laser cleaning process of heat tubes by AE signal. As a green cleaning process, laser cleaning technology in equipment maintenance will be a good prospect.

  1. Pollen tube development.

    PubMed

    Johnson, Mark A; Kost, Benedikt

    2010-01-01

    Pollen tubes grow rapidly in a strictly polarized manner as they transport male reproductive cells through female flower tissues to bring about fertilization. Vegetative pollen tube cells are an excellent model system to investigate processes underlying directional cell expansion. In this chapter, we describe materials and methods required for (1) the identification of novel factors essential for polarized cell growth through the isolation and analysis of Arabidopsis mutants with defects in pollen tube growth and (2) the detailed functional characterization of pollen tube proteins based on transient transformation and microscopic analysis of cultured tobacco pollen tubes.

  2. REACTOR COOLANT TUBE SEAL

    DOEpatents

    Morris, W.J.

    1958-12-01

    A plle-flattenlng control element and a fluid seal therefore to permit movement of the element into a liquld contnining region of a neutronlc reactor are described. The device consists of flattened, thin-walled aluminum tubing contalnlng a uniform mixture of thermal neutron absorbing material, and a number of soft rubber closures for the process tubes, having silts capable of passing the flattened elements therethrough, but effectively sealing the process tubes against fluld leaknge by compression of the rubber. The flattened tubing is sufficiently flexible to enable it to conform to the configuratlon of the annular spacing surrounding the fuel elements ln the process tubes.

  3. Low power acoustic harvesting of aerosols

    SciTech Connect

    Kaduchak, G.; Sinha, D. N.

    2001-01-01

    A new acoustic device for levitation and/or concentration of aerosols and sniall liquid/solid samples (up to several millimeters in diameter) in air has been developed. The device is inexpensive, low-power, and, in its simplest embodiment, does not require accurate alignmen1 of a resonant cavity. It is constructed from a cylindrical PZT tube of outside diameter D = 19.0 mm and thickness-to-radius ratio h/a - 0.03. The lowest-order breathing mode of the tube is tuned to match a resonant mode of the interior air-filled cylindrical cavity. A high Q cavity results that can be driven efficiently. An acoustic standing wave is created in the inteirior cavity of the cylindrical shell where particle concrmtration takes place at the nodal planes of the field. It is shown that drops of water in excess of 1 mm in diameter may be levitated against the force of gravity for approxirnately 100 mW of input electrical power. The main objective of the research is to implement this lowpower device to concentrate and harvest aerosols in a flowing system. Several different cavity geonietries iwe presented for efficient collection of 1 he conaartratetl aerosols. Concentraiion factors greater than 40 iue demonstrated for particles of size 0.7 1.1 in a flow volume of 50 L/minute.

  4. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  5. Radiative Shock Waves In Emerging Shocks

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul; Doss, F.; Visco, A.

    2011-05-01

    In laboratory experiments we produce radiative shock waves having dense, thin shells. These shocks are similar to shocks emerging from optically thick environments in astrophysics in that they are strongly radiative with optically thick shocked layers and optically thin or intermediate downstream layers through which radiation readily escapes. Examples include shocks breaking out of a Type II supernova (SN) and the radiative reverse shock during the early phases of the SN remnant produced by a red supergiant star. We produce these shocks by driving a low-Z plasma piston (Be) at > 100 km/s into Xe gas at 1.1 atm. pressure. The shocked Xe collapses to > 20 times its initial density. Measurements of structure by radiography and temperature by several methods confirm that the shock wave is strongly radiative. We observe small-scale perturbations in the post-shock layer, modulating the shock and material interfaces. We describe a variation of the Vishniac instability theory of decelerating shocks and an analysis of associated scaling relations to account for the growth of these perturbations, identify how they scale to astrophysical systems such as SN 1993J, and consider possible future experiments. Collaborators in this work have included H.F. Robey, J.P. Hughes, C.C. Kuranz, C.M. Huntington, S.H. Glenzer, T. Doeppner, D.H. Froula, M.J. Grosskopf, and D.C. Marion ________________________________ * Supported by the US DOE NNSA under the Predictive Sci. Academic Alliance Program by grant DE-FC52-08NA28616, the Stewardship Sci. Academic Alliances program by grant DE-FG52-04NA00064, and the Nat. Laser User Facility by grant DE-FG03-00SF22021.

  6. Particle Loss Calculator - a new software tool for the assessment of the performance of aerosol inlet systems

    NASA Astrophysics Data System (ADS)

    von der Weiden, S.-L.; Drewnick, F.; Borrmann, S.

    2009-09-01

    Most aerosol measurements require an inlet system to transport aerosols from a select sampling location to a suitable measurement device through some length of tubing. Such inlet systems must be optimized to minimize aerosol sampling artifacts and maximize sampling efficiency. In this study we introduce a new multifunctional software tool (Particle Loss Calculator, PLC) that can be used to quickly determine aerosol sampling efficiency and particle transport losses due to passage through arbitrary tubing systems. The software employs relevant empirical and theoretical relationships found in established literature and accounts for the most important sampling and transport effects that might be encountered during deployment of typical, ground-based ambient aerosol measurements through a constant-diameter sampling probe. The software treats non-isoaxial and non-isokinetic aerosol sampling, aerosol diffusion and sedimentation as well as turbulent inertial deposition and inertial deposition in bends and contractions of tubing. This software was validated through comparison with experimentally determined particle losses for several tubing systems bent to create various diffusion, sedimentation and inertial deposition properties. As long as the tube geometries are not "too extreme", agreement is satisfactory. We discuss the conclusions of these experiments, the limitations of the software and present three examples of the use of the Particle Loss Calculator in the field.

  7. Particle Loss Calculator - a new software tool for the assessment of the performance of aerosol inlet systems

    NASA Astrophysics Data System (ADS)

    von der Weiden, S.-L.; Drewnick, F.; Borrmann, S.

    2009-04-01

    Most aerosol measurements require an inlet system to transport aerosols from a select sampling location to a suitable measurement device through some length of tubing. Such inlet systems must be optimized to minimize aerosol sampling artifacts and maximize sampling efficiency. In this study we introduce a new multifunctional software tool (Particle Loss Calculator, PLC) that can be used to quickly determine aerosol sampling efficiency and particle transport losses due to passage through arbitrary tubing systems. The software employs relevant empirical and theoretical relationships found in established literature and accounts for the most important sampling and transport effects that might be encountered during deployment of typical, ground-based ambient aerosol measurements. The software treats non-isoaxial and non-isokinetic aerosol sampling, aerosol diffusion and sedimentation as well as turbulent inertial deposition and inertial deposition in bends and contractions of tubing. This software was validated through comparison with experimentally determined particle losses for several tubing systems bent to create various diffusion, sedimentation and inertial deposition properties. As long as the tube geometries are not "too extreme", agreement is satisfactory. We discuss the conclusions of these experiments, the limitations of the software and present three examples of the use of the Particle Loss Calculator in the field.

  8. Intercostal drainage tube or intracardiac drainage tube?

    PubMed Central

    Anitha, N.; Kamath, S. Ganesh; Khymdeit, Edison; Prabhu, Manjunath

    2016-01-01

    Although insertion of chest drain tubes is a common medical practice, there are risks associated with this procedure, especially when inexperienced physicians perform it. Wrong insertion of the tube has been known to cause morbidity and occasional mortality. We report a case where the left ventricle was accidentally punctured leading to near-exsanguination. This report is to highlight the need for experienced physicians to supervise the procedure and train the younger physician in the safe performance of the procedure. PMID:27397467

  9. Program computes equilibrium normal shock and stagnation point solutions for arbitrary gas mixtures

    NASA Technical Reports Server (NTRS)

    Callis, L. B.; Kemper, J. T.

    1967-01-01

    Program computes solutions for flow parameters in arbitrary gas mixtures behind a normal and a reflected normal shock, for in-flight and shock-tube stagnation conditions. Equilibrium flow calculations are made by a free-energy minimization technique coupled with the steady-flow conservation equations and a modified Newton-Raphson iterative scheme.

  10. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  11. Experimental and numerical investigation of reactive shock-accelerated flows

    SciTech Connect

    Bonazza, Riccardo

    2016-12-20

    The main goal of this program was to establish a qualitative and quantitative connection, based on the appropriate dimensionless parameters and scaling laws, between shock-induced distortion of astrophysical plasma density clumps and their earthbound analog in a shock tube. These objectives were pursued by carrying out laboratory experiments and numerical simulations to study the evolution of two gas bubbles accelerated by planar shock waves and compare the results to available astrophysical observations. The experiments were carried out in an vertical, downward-firing shock tube, 9.2 m long, with square internal cross section (25×25 cm2). Specific goals were to quantify the effect of the shock strength (Mach number, M) and the density contrast between the bubble gas and its surroundings (usually quantified by the Atwood number, i.e. the dimensionless density difference between the two gases) upon some of the most important flow features (e.g. macroscopic properties; turbulence and mixing rates). The computational component of the work performed through this program was aimed at (a) studying the physics of multi-phase compressible flows in the context of astrophysics plasmas and (b) providing a computational connection between laboratory experiments and the astrophysical application of shock-bubble interactions. Throughout the study, we used the FLASH4.2 code to run hydrodynamical and magnetohydrodynamical simulations of shock bubble interactions on an adaptive mesh.

  12. Radiative transfer effects on reflected shock waves. II - Absorbing gas.

    NASA Technical Reports Server (NTRS)

    Su, F. Y.; Olfe, D. B.

    1972-01-01

    Radiative cooling effects behind a reflected shock wave are calculated for an absorbing-emitting gas by means of an expansion procedure in the small density ratio across the shock front. For a gray gas shock layer with an optical thickness of order unity or less the absorption integral is simplified by use of the local temperature approximation, whereas for larger optical thicknesses a Rosseland diffusion type of solution is matched with the local temperature approximation solution. The calculations show that the shock wave will attenuate at first and then accelerate to a constant velocity. Under appropriate conditions the gas enthalpy near the wall may increase at intermediate times before ultimately decreasing to zero. A two-band absorption model yields end-wall radiant-heat fluxes which agree well with available shock-tube measurements.

  13. Simulations for detonation initiation behind reflected shock waves

    NASA Astrophysics Data System (ADS)

    Takano, Yasunari

    Numerical simulations are carried out for detonation initiation behind reflected shock waves in a shock tube. The two-dimensional thin-layer Navier-Stokes equations with chemical effects are numerically solved by use of a combined method consisting of the Flux-Corrected Transport scheme, the Crank-Nicolson scheme, and a chemical calculation step. Effects of chemical reactions occurring in a shock-heated hydrogen, oxygen, and argon mixture are estimated by using a simplified reaction model: two progress parameters are introduced to take account of induction reactions as well as exothermic reactions. Simulations are carried out referring to several experiments: generation of multidimensional and unstable reaction shock waves; strong and mild ignitions; and reacting shock waves in hydrogen and oxygen diluted in argon mixture.

  14. Experiments in hand-operated, hypersonic shock tunnel facility

    NASA Astrophysics Data System (ADS)

    Sudhiesh Kumar, Chintoo; Reddy, K. P. J.

    2016-11-01

    Experiments were conducted using the newly developed table-top, hand-operated hypersonic shock tunnel, otherwise known as the Reddy hypersonic shock tunnel. This novel instrument uses only manual force to generate the shock wave in the shock tube, and is designed to generate a freestream flow of Mach 6.5 in the test section. The flow was characterized using stagnation point pressure measurements made using fast-acting piezoelectric transducers. Schlieren visualization was also carried out to capture the bow shock in front of a hemispherical body placed in the flow. Freestream Mach numbers estimated at various points in the test section showed that for a minimum diameter of 46 mm within the test section, the value did not vary by more than 3 % along any cross-sectional plane. The results of the experiments presented here indicate that the device may be successfully employed for basic hypersonic research activities at the university level.

  15. Shock enhancement and control of hypersonic mixing and combustion

    NASA Technical Reports Server (NTRS)

    Marble, Frank E.; Zukoski, Edward E.; Jacobs, Jeffrey; Hendricks, Gavin; Waitz, Ian

    1990-01-01

    Experimental and computational analyses of the possibility that shock-enhanced mixing can substantially increase the rate of mixing between coflowing streams of hydrogen and air are discussed. Numerical computations indicate that the steady interaction between a weak shock in air with a coflowing hydrogen jet can be approximated by the two-dimensional time-dependent interaction between a weak shock and an initially circular region filled with hydrogen imbedded in air. Experimental results obtained in a shock tube and contoured wall injector are presented. It is shown that the shock impinging process causes the light gas cylinder to split into two parts; one of these mixes rapidly with air and the other forms a stably stratified vortex pair which mixes more slowly. The geometry of the flow field and the mixing process and scaling parameters are assessed.

  16. Overview of Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram

    2005-01-01

    Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with clouds and precipitation is still lacking despite decades of research. Understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 years ago that the global CO2 levels are rising, posing threat of global warming, we need an array of satellites and field measurements coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week) and variable chemical composition. A new generation of satellites provides exciting opportunities to measure the global distribution of aerosols, distinguishing natural from anthropogenic aerosol and measuring their interaction with clouds and climate. I shall discuss these topics and application of the data to air quality monitoring.

  17. Numerical study of transient flow phenomena in shock tunnels

    NASA Technical Reports Server (NTRS)

    Tokarcik-Polsky, Susan; Cambier, Jean-Luc

    1994-01-01

    Computational fluid dynamics (CFD) was used to study some transient flow features that can occur during the startup process of a shoch tunnel. The investigation concentrated on two areas: (1) the flow near the endwall of the driven tube during shock reflection and (2) the transient flow in the nozzle. The driven tube calculations were inviscid and focused on the study of a vortex system that was seen to form at the driven tube's axis of symmetry. The nozzle flow calculations examined viscous and inviscid effects during nozzle startup. The CFD solutions of the nozzle flows were compared with experimental data to demonstrate the effectiveness of the numerical analysis.

  18. Analysis of the flow in a 1-MJ electric-arc shock tunnel

    NASA Technical Reports Server (NTRS)

    Reller, J. O., Jr.; Reddy, N. M.

    1972-01-01

    In the electric-arc-heated shock tunnel, the facility performance over a range of shock Mach numbers from 7 to 19 was evaluated. The efficiency of the arc-heated driver is deduced using an improved form of the shock tube equation. A theoretical and experimental analysis is made of the tailored-interface condition. The free stream properties in the test section, with nitrogen as the test gas, are evaluated using a method based on stagnation point, heat transfer measurements.

  19. Simulation of transient flow in a shock tunnel and a high Mach number nozzle

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1991-01-01

    A finite volume Navier-Stokes code was used to simulate the shock reflection and nozzle starting processes in an axisymmetric shock tube and a high Mach number nozzle. The simulated nozzle starting processes were found to match the classical quasi-1-D theory and some features of the experimental measurements. The shock reflection simulation illustrated a new mechanism for the driver gas contamination of the stagnated test gas.

  20. Measurement of Radiative Non-Equilibrium for Air Shocks Between 7-9 Km/s

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.; Brandis, Aaron M.

    2016-01-01

    This paper describes a recent characterization of non-equilibrium radiation for shock speeds between 7 and 9 km/s in the NASA Ames Electric Arc Shock Tube (EAST) Facility. Data is spectrally resolved from 190- 1450 nm and spatially resolved behind the shock front. Comparisons are made to DPLR/NEQAIR simulations using different modeling options and recommendations for future study are made based on these comparisons.

  1. How Is Cardiogenic Shock Diagnosed?

    MedlinePlus

    ... from the NHLBI on Twitter. How Is Cardiogenic Shock Diagnosed? The first step in diagnosing cardiogenic shock ... is cardiogenic shock. Tests and Procedures To Diagnose Shock and Its Underlying Causes Blood Pressure Test Medical ...

  2. Toxic Shock Syndrome

    MedlinePlus

    ... toxic shock syndrome results from toxins produced by Staphylococcus aureus (staph) bacteria, but the condition may also ... a skin or wound infection. Bacteria, most commonly Staphylococcus aureus (staph), causes toxic shock syndrome. It can ...

  3. Neptune inbound bow shock

    NASA Technical Reports Server (NTRS)

    Szabo, Adam; Lepping, Ronald P.

    1995-01-01

    Voyager 2 crossed the inbound or upstream Neptunian bow shock at 1430 spacecraft event time on August 24 in 1989 (Belcher et al., 1989). The plasma and magnetic field measurements allow us to study the solar wind interaction with the outermost gas giant. To fully utilize all of the spacecraft observations, an improved nonlinear least squares, 'Rankine-Hugoniot' magnetohydrodynamic shock-fitting technique has been developed (Szabo, 1994). This technique is applied to the Neptunian data set. We find that the upstream bow shock normal points nearly exactly toward the Sun consistent with any reasonable large-scale model of the bow shock for a near subsolar crossing. The shock was moving outward with a speed of 14 +/- 12 km/s. The shock can be characterized as a low beta, high Mach number, strong quasi-perpendicular shock. Finally, the shock microstructure features are resolved and found to scale well with theoretical expectations.

  4. Shock & Anaphylactic Shock. Learning Activity Package.

    ERIC Educational Resources Information Center

    Hime, Kirsten

    This learning activity package on shock and anaphylactic shock is one of a series of 12 titles developed for use in health occupations education programs. Materials in the package include objectives, a list of materials needed, information sheets, reviews (self evaluations) of portions of the content, and answers to reviews. These topics are…

  5. Initiation of detonation by steady planar incident shock waves

    NASA Astrophysics Data System (ADS)

    Edwards, D. H.; Thomas, G. O.; Williams, T. L.

    1981-11-01

    The initiation of detonation by planar shocks is studied in a vertical shock tube in which a removable diaphragm allows the generated shock to be transmitted into the gas mixture, without any reflection at the interface. Streak schlieren photography confirms that a quasi-steady shock reaction complex is formed prior to the shock acceleration phase. The steady phase enabled the induction delay time to be measured in a direct manner, and microwave interferometry, along with pressure transducers, gave an accurate value for the delay time. The shock acceleration was determined from the locus of the exothermic reaction zone, and it is shown that the time coherence of energy release between particles entering the shock front at different times leads to the formation of reactive centers which are characteristic of mild ignition. Ignition delay data obtained by the incident shock method for oxyacetylene, diluted with nitrogen, are compared with those obtained by the reflected shock technique and shown to have advantages in high heat capacity systems.

  6. Aerosol, radiation, and climate

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.

    1983-01-01

    Airborne, spaceborne, and ground-based measurements are used to study the radiative and climatic effects of aerosols. The data, which are modelled with a hierarchy of radiation and climate models, and their implications are summarized. Consideration is given to volcanic aerosols, polar stratospheric clouds, and the Arctic haze. It is shown that several types of aerosols (volcanic particles and the Arctic haze) cause significant alterations to the radiation budget of the regions where they are located.

  7. Lunar Lava Tube Sensing

    NASA Technical Reports Server (NTRS)

    York, Cheryl Lynn; Walden, Bryce; Billings, Thomas L.; Reeder, P. Douglas

    1992-01-01

    Large (greater than 300 m diameter) lava tube caverns appear to exist on the Moon and could provide substantial safety and cost benefits for lunar bases. Over 40 m of basalt and regolith constitute the lava tube roof and would protect both construction and operations. Constant temperatures of -20 C reduce thermal stress on structures and machines. Base designs need not incorporate heavy shielding, so lightweight materials can be used and construction can be expedited. Identification and characterization of lava tube caverns can be incorporated into current precursor lunar mission plans. Some searches can even be done from Earth. Specific recommendations for lunar lava tube search and exploration are (1) an Earth-based radar interferometer, (2) an Earth-penetrating radar (EPR) orbiter, (3) kinetic penetrators for lunar lava tube confirmation, (4) a 'Moon Bat' hovering rocket vehicle, and (5) the use of other proposed landers and orbiters to help find lunar lava tubes.

  8. Biomass shock pretreatment

    SciTech Connect

    Holtzapple, Mark T.; Madison, Maxine Jones; Ramirez, Rocio Sierra; Deimund, Mark A.; Falls, Matthew; Dunkelman, John J.

    2014-07-01

    Methods and apparatus for treating biomass that may include introducing a biomass to a chamber; exposing the biomass in the chamber to a shock event to produce a shocked biomass; and transferring the shocked biomass from the chamber. In some aspects, the method may include pretreating the biomass with a chemical before introducing the biomass to the chamber and/or after transferring shocked biomass from the chamber.

  9. Physiopathology of shock

    PubMed Central

    Bonanno, Fabrizio Giuseppe

    2011-01-01

    Shock syndromes are of three types: cardiogenic, hemorrhagic and inflammatory. Hemorrhagic shock has its initial deranged macro-hemodynamic variables in the blood volume and venous return. In cardiogenic shock there is a primary pump failure that has cardiac output/mean arterial pressure as initial deranged variables. In Inflammatory Shock it is the microcirculation that is mainly affected, while the initial deranged macrocirculation variable is the total peripheral resistance hit by systemic inflammatory response. PMID:21769210

  10. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    NASA Astrophysics Data System (ADS)

    Mikaelian, Karnig O.

    2016-07-01

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and a critical Mach number Mscritical of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mscritical . Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. We point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.

  11. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    DOE PAGES

    Mikaelian, Karnig O.

    2016-07-13

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and amore » critical Mach number Mcriticals of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mcriticals. Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. Furthermore, we point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.« less

  12. Geometrical on-the-fly shock detection in smoothed particle hydrodynamics

    NASA Astrophysics Data System (ADS)

    Beck, A. M.; Dolag, K.; Donnert, J. M. F.

    2016-05-01

    We present an on-the-fly geometrical approach for shock detection and Mach number calculation in simulations employing smoothed particle hydrodynamics (SPH). We utilize pressure gradients to select shock candidates and define up- and downstream positions. We obtain hydrodynamical states in the up- and downstream regimes with a series of normal and inverted kernel weightings parallel and perpendicular to the shock normals. Our on-the-fly geometrical Mach detector incorporates well within the SPH formalism and has low computational cost. We implement our Mach detector into the simulation code GADGET and alongside many SPH improvements. We test our shock finder in a sequence of shock tube tests with successively increasing Mach numbers exceeding by far the typical values inside galaxy clusters. For all shocks, we resolve the shocks well and the correct Mach numbers are assigned. An application to a strong magnetized shock tube gives stable results in full magnetohydrodynamic setups. We simulate a merger of two idealized galaxy clusters and study the shock front. Shock structures within the merging clusters as well as the cluster shock are well captured by our algorithm and assigned correct Mach numbers.

  13. Oscillations of a standing shock wave generated by the Richtmyer-Meshkov instability

    SciTech Connect

    Mikaelian, Karnig O.

    2016-07-13

    In a typical Richtmyer-Meshkov experiment a fast moving flat shock strikes a stationary perturbed interface between fluids A and B creating a transmitted and a reflected shock, both of which are perturbed. We propose shock tube experiments in which the reflected shock is stationary in the laboratory. Such a standing perturbed shock undergoes well-known damped oscillations. We present the conditions required for producing such a standing shock wave, which greatly facilitates the measurement of the oscillations and their rate of damping. We define a critical density ratio Rcritical, in terms of the adiabatic indices of the two fluids, and a critical Mach number Mcriticals of the incident shock wave, which produces a standing reflected wave. If the initial density ratio R of the two fluids is less than Rcritical then a standing shock wave is possible at Ms=Mcriticals. Otherwise a standing shock is not possible and the reflected wave always moves in the direction opposite the incident shock. Examples are given for present-day operating shock tubes with sinusoidal or inclined interfaces. We consider the effect of viscosity, which affects the damping rate of the oscillations. Furthermore, we point out that nonlinear bubble and spike amplitudes depend relatively weakly on the viscosity of the fluids and that the interface area is a better diagnostic.

  14. Conduction cooled tube supports

    DOEpatents

    Worley, Arthur C.; Becht, IV, Charles

    1984-01-01

    In boilers, process tubes are suspended by means of support studs that are in thermal contact with and attached to the metal roof casing of the boiler and the upper bend portions of the process tubes. The support studs are sufficiently short that when the boiler is in use, the support studs are cooled by conduction of heat to the process tubes and the roof casing thereby maintaining the temperature of the stud so that it does not exceed 1400.degree. F.

  15. Programming DNA tube circumferences.

    PubMed

    Yin, Peng; Hariadi, Rizal F; Sahu, Sudheer; Choi, Harry M T; Park, Sung Ha; Labean, Thomas H; Reif, John H

    2008-08-08

    Synthesizing molecular tubes with monodisperse, programmable circumferences is an important goal shared by nanotechnology, materials science, and supermolecular chemistry. We program molecular tube circumferences by specifying the complementarity relationships between modular domains in a 42-base single-stranded DNA motif. Single-step annealing results in the self-assembly of long tubes displaying monodisperse circumferences of 4, 5, 6, 7, 8, 10, or 20 DNA helices.

  16. Ruggedized electronographic tube development

    NASA Technical Reports Server (NTRS)

    Nevin, S.

    1981-01-01

    Because of their glass components and lack of far ultraviolet sensitivity, currently available Spectracons are not suited for rocket launch. Technology developed for second generation image tubes and for magnetically focused image tubes can be applied to improve the optical and mechanical properties of these magnetically focused electronographic tubes whose 40 kilovolt signal electrons exit a 4-micrometer thick mica window and penetrate a photographic recording emulsion.

  17. Retrograde gastrojejunostomy tube migration.

    PubMed

    Adesina, Adeleke; Rammohan, Guhan; Jeanmonod, Rebecca

    2014-01-01

    Percutaneous enteral feeding tubes are placed about 250,000 times each year in the United States. Although they are relatively safe, their placement may be complicated by perforation, infection, bleeding, vomiting, dislodgment, and obstruction. There have been numerous reports of antegrade migration of gastrojejunostomy (G-J) tubes. We report a case of G-J tube regurgitation following protracted vomiting and discuss the management of this very rare entity.

  18. COAXIAL TUBE COUPLING

    DOEpatents

    Niemoth, H.R.

    1963-02-26

    BS>This patent shows a device for quickly coupling coaxial tubes in metal-to-metal fashion, so as to be suitable for use in a nuclear reactor. A threaded coliar urges a tapered metal extension on the outer coaxial tube into a tapered seat in the device and simultaneously exerts pressure through a coaxial helical spring so that a similar extension on the inner tube seats in a similar seat near the other end. (AEC)

  19. TUBE SPLITTING APPARATUS

    DOEpatents

    Frantz, C.E.; Cawley, W.E.

    1961-05-01

    A tool is described for cutting a coolant tube adapted to contain fuel elements to enable the tube to be removed from a graphite moderator mass. The tool splits the tube longitudinally into halves and curls the longitudinal edges of the halves inwardly so that they occupy less space and can be moved radially inwardly away from the walls of the hole in the graphite for easy removal from the graphite.

  20. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1997-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size resolved aerosol microphysics and chemistry. Both profiles included pollution haze layer from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core.

  1. Sapphire tube pressure vessel

    SciTech Connect

    Outwater, J.O.

    2000-05-23

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  2. Composite Pulse Tube

    NASA Technical Reports Server (NTRS)

    Martin, Jerry L.; Cloyd, Jason H.

    2007-01-01

    A modification of the design of the pulse tube in a pulse-tube cryocooler reduces axial thermal conductance while preserving radial thermal conductance. It is desirable to minimize axial thermal conductance in the pulse-tube wall to minimize leakage of heat between the warm and cold ends of the pulse tube. At the same time, it is desirable to maximize radial thermal conductance at the cold end of the pulse tube to ensure adequate thermal contact between (1) a heat exchanger in the form of a stack of copper screens inside the pulse tube at the cold end and (2) the remainder of the cold tip, which is the object to which the heat load is applied and from which heat must be removed. The modified design yields a low-heat-leak pulse tube that can be easily integrated with a cold tip. A typical pulse tube of prior design is either a thin-walled metal tube or a metal tube with a nonmetallic lining. It is desirable that the outer surface of a pulse tube be cylindrical (in contradistinction to tapered) to simplify the design of a regenerator that is also part of the cryocooler. Under some conditions, it is desirable to taper the inner surface of the pulse tube to reduce acoustic streaming. The combination of a cylindrical outer surface and a tapered inner surface can lead to unacceptably large axial conduction if the pulse tube is made entirely of metal. Making the pulse-tube wall of a nonmetallic, lowthermal- conductivity material would not solve the problem because the wall would not afford the needed thermal contact for the stack of screens in the cold end. The modified design calls for fabricating the pulse tube in two parts: a longer, nonmetallic part that is tapered on the inside and cylindrical on the outside and a shorter, metallic part that is cylindrical on both the inside and the outside. The nonmetallic part can be made from G-10 fiberglass-reinforced epoxy or other low-thermal-conductivity, cryogenically compatible material. The metallic part must have high

  3. Wound tube heat exchanger

    DOEpatents

    Ecker, Amir L.

    1983-01-01

    What is disclosed is a wound tube heat exchanger in which a plurality of tubes having flattened areas are held contiguous adjacent flattened areas of tubes by a plurality of windings to give a double walled heat exchanger. The plurality of windings serve as a plurality of effective force vectors holding the conduits contiguous heat conducting walls of another conduit and result in highly efficient heat transfer. The resulting heat exchange bundle is economical and can be coiled into the desired shape. Also disclosed are specific embodiments such as the one in which the tubes are expanded against their windings after being coiled to insure highly efficient heat transfer.

  4. Sapphire tube pressure vessel

    DOEpatents

    Outwater, John O.

    2000-01-01

    A pressure vessel is provided for observing corrosive fluids at high temperatures and pressures. A transparent Teflon bag contains the corrosive fluid and provides an inert barrier. The Teflon bag is placed within a sapphire tube, which forms a pressure boundary. The tube is received within a pipe including a viewing window. The combination of the Teflon bag, sapphire tube and pipe provides a strong and inert pressure vessel. In an alternative embodiment, tie rods connect together compression fittings at opposite ends of the sapphire tube.

  5. Fuel nozzle tube retention

    DOEpatents

    Cihlar, David William; Melton, Patrick Benedict

    2017-02-28

    A system for retaining a fuel nozzle premix tube includes a retention plate and a premix tube which extends downstream from an outlet of a premix passage defined along an aft side of a fuel plenum body. The premix tube includes an inlet end and a spring support feature which is disposed proximate to the inlet end. The premix tube extends through the retention plate. The spring retention feature is disposed between an aft side of the fuel plenum and the retention plate. The system further includes a spring which extends between the spring retention feature and the retention plate.

  6. An experimental study of shock wave propagation through a polyester film

    NASA Astrophysics Data System (ADS)

    Eliasson, Veronica; Jeon, Hongjoo

    2016-11-01

    A polyester film is available in a variety of uses such as packaging, protective overlay, barrier protection, and other industrial applications. In the current study, shock tube experiments are performed to study the influence of a polyester film on the propagation of a planar shock wave. A conventional shock tube is used to create incident shock Mach numbers of Ms = 1.34 and 1.46. A test section of the shock tube is designed to hold a 0.009 mm, 0.127 mm, 0.254 mm, or 0.508 mm thick polyester film (Dura-Lar). High-temporal resolution schlieren photography is used to visualize the shock wave mitigation caused by the polyester film. In addition, four pressure transducers are used to measure the elapsed time of arrival and overpressure of the shock wave both upstream and downstream of the test section. Results show that the transmitted shock wave in the polyester film is clearly observed and the transmitted shock Mach number is decreased by increasing film thickness. This study is supported by the National Science Foundation under Grant No. CBET-1437412.

  7. Response of Clothing Materials to Air Shock Waves

    DTIC Science & Technology

    1989-09-01

    SECURITY CLASSIFICATION [1UNCLASSIFIED•JNLIMITED’ [I SAME AS RPT Q OTIC USERS UNCLASSIFIED 22a NAME OF RESPONSIBLE INDIVIOUAL 22b TELEPMONE ,,". Iude Are...measurements are applicable to-the soft body armor problem. Shock tube test data are available for many types of foams, metal felts, steel and copper wool, cloth

  8. Steam generator tube failures

    SciTech Connect

    MacDonald, P.E.; Shah, V.N.; Ward, L.W.; Ellison, P.G.

    1996-04-01

    A review and summary of the available information on steam generator tubing failures and the impact of these failures on plant safety is presented. The following topics are covered: pressurized water reactor (PWR), Canadian deuterium uranium (CANDU) reactor, and Russian water moderated, water cooled energy reactor (VVER) steam generator degradation, PWR steam generator tube ruptures, the thermal-hydraulic response of a PWR plant with a faulted steam generator, the risk significance of steam generator tube rupture accidents, tubing inspection requirements and fitness-for-service criteria in various countries, and defect detection reliability and sizing accuracy. A significant number of steam generator tubes are defective and are removed from service or repaired each year. This wide spread damage has been caused by many diverse degradation mechanisms, some of which are difficult to detect and predict. In addition, spontaneous tube ruptures have occurred at the rate of about one every 2 years over the last 20 years, and incipient tube ruptures (tube failures usually identified with leak detection monitors just before rupture) have been occurring at the rate of about one per year. These ruptures have caused complex plant transients which have not always been easy for the reactor operators to control. Our analysis shows that if more than 15 tubes rupture during a main steam line break, the system response could lead to core melting. Although spontaneous and induced steam generator tube ruptures are small contributors to the total core damage frequency calculated in probabilistic risk assessments, they are risk significant because the radionuclides are likely to bypass the reactor containment building. The frequency of steam generator tube ruptures can be significantly reduced through appropriate and timely inspections and repairs or removal from service.

  9. Method for shaping polyethylene tubing

    NASA Technical Reports Server (NTRS)

    Kramer, R. C.

    1981-01-01

    Method forms polyethylene plastic tubing into configurations previously only possible with metal tubing. By using polyethylene in place of copper or stain less steel tubing inlow pressure systems, fabrication costs are significantly reduced. Polyethylene tubing can be used whenever low pressure tubing is needed in oil operations, aircraft and space applications, powerplants, and testing laboratories.

  10. Thermochemical Nonequilibrium Analysis of Oxygen in Shock Tube Flows

    NASA Astrophysics Data System (ADS)

    Neitzel, Kevin; Kim, Jae Gang; Boyd, Iain D.

    The successful development of hypersonic vehicles requires a detailed knowledge of the flow physics around the vehicle. The physics knowledge and modeling confidence drives the development of the major vehicle flight systems including the thermal protection system and flight control system. Specifically, an understanding of the thermochemical nonequilibrium behavior is crucial for this flight regime. The hypersonic flight regime involves an extremely high level of energy so a small error in the modeling of the energy processes can result in drastic changes in the vehicle design, including prohibitive design requirements. This emphasizes the need for a deep understanding of the underlying flow phenomena and molecular energy transfer processes in order to adequately design a hypersonic vehicle computationally.

  11. The evolution of condensates in shock tube flow

    NASA Technical Reports Server (NTRS)

    Johnson, Joseph A., III

    1995-01-01

    When a simple model for the relationship between the density-temperature fluctuation correlation and mean values is used, we determine that the rate of change of turbulent intensity can influence directly the accretion rate of droplets. We find, experimentally, that the droplet particle size is both temperature and Reynolds number dependent. We also find that the rate of droplet growth has an important dependence on Reynolds number, in a manner stronger than its simple temperature dependence, thereby suggesting a previously unsuspected role for turbulence in the control of condensate accretion.

  12. Radiation Modeling in Shock-Tubes and Entry Flows

    DTIC Science & Technology

    2009-09-01

    atomic lines . Then spectral transmission along the homogeneous optical path L is calculated as follows:     1 , N i i T T      , (1...The further transformation (20) is possible at detailing of spectral dependence of absorption coefficient in atomic lines . Exact and approximation...expressions for equivalent width of lines of Lorentzian, Doppler, and Voigt contours were obtained in the theory of statistical modelling of spectral

  13. Development of a Distributed Breach for the Conical Shock Tube.

    DTIC Science & Technology

    1983-01-01

    has been used to evaluate in-plane and hoop stresses before and after firing. A coarse finite element model is used to find points of high stresses...before a finer mesh thereat is adopted. Results confirm the existance of a prestress three dimensional continuum which creates a very high ...utilized an expendable mild steel breach to confine the explosive. The number of shots which could be made before replacing the breach plug varied

  14. Shock Tube Study of the Ignition and Combustion of Aluminum.

    DTIC Science & Technology

    1983-08-01

    temperatures above 2400K. A number of intermediate species were detected in the Al-N 2 -H2 - Cl -0 reaction at 40 atm.,5000K using emission spectroscopy ...NH4 CI, ACl3 or NH3 were found. Gaseous HCl and H 20 ere detected using infared spectrometry to analyze the end gas. Levels of NO and NO were more than...camera. 5. To use emission spectroscopy to identify intermediate species in the A + 02 reaction and in the At + .1 N + .4 H + .1 CZ 2 2 2 2 + .4 02

  15. Pyrotechnic Tubing Connector

    NASA Technical Reports Server (NTRS)

    Graves, Thomas J.; Yang, Robert A.

    1988-01-01

    Tool forms mechanical seal at joint without levers or hydraulic apparatus. Proposed tool intended for use in outer space used on Earth by heavily garbed workers to join tubing in difficult environments. Called Pyrotool, used with Lokring (or equivalent) fittings. Piston slides in cylinder when pushed by gas from detonating pyrotechnic charge. Impulse of piston compresses fittings, sealing around butting ends of tubes.

  16. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  17. Global Aerosol Observations

    Atmospheric Science Data Center

    2013-04-19

    ... atmosphere, directly influencing global climate and human health. Ground-based networks that accurately measure column aerosol amount and ... being used to improve Air Quality Models and for regional health studies. To assess the human-health impact of chronic aerosol exposure, ...

  18. Portable Aerosol Contaminant Extractor

    DOEpatents

    Carlson, Duane C.; DeGange, John J.; Cable-Dunlap, Paula

    2005-11-15

    A compact, portable, aerosol contaminant extractor having ionization and collection sections through which ambient air may be drawn at a nominal rate so that aerosol particles ionized in the ionization section may be collected on charged plate in the collection section, the charged plate being readily removed for analyses of the particles collected thereon.

  19. Ganges valley aerosol experiment.

    SciTech Connect

    Kotamarthi, V.R.; Satheesh, S.K.

    2011-08-01

    In June 2011, the Ganges Valley Aerosol Experiment (GVAX) began in the Ganges Valley region of India. The objective of this field campaign is to obtain measurements of clouds, precipitation, and complex aerosols to study their impact on cloud formation and monsoon activity in the region.

  20. Fallopian Tube Catheterization

    PubMed Central

    Thurmond, Amy Suzanne

    2013-01-01

    Fallopian tube catheterization is used for treatment of infertility caused by proximal tubal occlusion, and has replaced surgical treatment for this condition. More recently, fallopian tube catheterization has been used for tubal sterilization. Interventional radiologists tested numerous methods for tubal occlusion using the rabbit as an animal model. As a result, a tubal device has recently been Food and Drug Administration approved for permanent sterilization using hysteroscopic guidance; it can also be placed fluoroscopically by fallopian tube catheterization as an “off-label” procedure. This is a 5-year continuation and update on a procedure that has been done by interventional radiologists for 25 years; history of the development of fallopian tube catheterization in women has been published in detail in this journal. Highlighted in this article will be description of the basic components needed for fallopian tube catheterization. PMID:24436565

  1. Uptake of HO2 Radicals Onto Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2013-12-01

    OH and HO2 radicals play an important role in the troposphere by controlling its oxidative capacity and therefore the concentration of many trace species. Several field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models (1,2). HO2 loss onto aerosols has been suggested as a possible sink. Mineral dust has an estimated annual flux of 2000 Tg year-1 (3). However, there has only been one study of HO2 uptake onto Arizona Test Dust (ATD) surfaces (4) and there are currently no published studies for dust aerosols. Therefore, the aim of this study was to measure the HO2 uptake coefficient onto ATD aerosols over a range of humidities and for different HO2 concentrations, as well as investigating the uptake as a function of the exposure time to the aerosol, for which a dependence had been observed for aqueous salt aerosols (5). Uptake coefficients were measured for ATD aerosols at atmospheric pressure and at 291 K using a Fluorescence Assay by Gas Expansion (FAGE) detector combined with a flow tube. HO2 was formed from the photolysis of water vapour and was injected into the flow tube using a moveable injector, which was placed in six different positions along the flow tube. The non stable aerosol output was produced by stirring ATD in a bottle producing a dust cloud which was entrained into a flow. The aerosol number concentration was measured using a Condensation Particle Counter (CPC) and was converted into a surface area using the average radius of one aerosol. The uptake coefficient was then able to be calculated by assuming first order kinetics. The HO2 uptake coefficient was measured at a relative humidity of between 6 and 75% and at initial HO2 concentrations of ~ 0.3 - 1 × 10^9 molecule cm-3. Average uptake coefficients of 0.018 × 0.006 and 0.031 × 0.008 were measured for the higher and lower HO2 concentrations respectively, and the impact investigated using a constrained box model. A time dependence was also

  2. Radiative Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Valero, Francisco P. J.

    1996-01-01

    During the Atlantic Stratocumulus Transition Experiment (ASTEX) in June 1992, two descents in cloud-free regions allowed comparison of the change in aerosol optical depth as determined by an onboard total-direct-diffuse radiometer (TDDR) to the change calculated from measured size-resolved aerosol microphysics and chemistry. Both profiles included a pollution haze from Europe but the second also included the effect of a Saharan dust layer above the haze. The separate contributions of supermicrometer (coarse) and submicrometer (fine) aerosol were determined and thermal analysis of the pollution haze indicated that the fine aerosol was composed primarily of a sulfate/water mixture with a refractory soot-like core. The soot core increased the calculated extinction by about 10% in the most polluted drier layer relative to a pure sulfate aerosol but had significantly less effect at higher humidities. A 3 km descent through a boundary layer air mass dominated by pollutant aerosol with relative humidities (RH) 10-77% yielded a close agreement between the measured and calculated aerosol optical depths (550 nm) of 0.160 (+/- 0.07) and 0. 157 (+/- 0.034) respectively. During descent the aerosol mass scattering coefficient per unit sulfate mass varied from about 5 to 16 m(exp 2)/g and primarily dependent upon ambient RH. However, the total scattering coefficient per total fine mass was far less variable at about 4+/- 0.7 m(exp 2)/g. A subsequent descent through a Saharan dust layer located above the pollution aerosol layer revealed that both layers contributed similarly to aerosol optical depth. The scattering per unit mass of the coarse aged dust was estimated at 1.1 +/- 0.2 m(exp 2)/g. The large difference (50%) in measured and calculated optical depth for the dust layer exceeded measurements.

  3. The uptake of HO2 radicals to organic aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, Pascale; Krapf, Manuel; Dommen, Josef; George, Ingrid; Whalley, Lisa; Ingham, Trevor; Baeza-Romero, Maria Teresa; Ammann, Markus; Heard, Dwayne

    2014-05-01

    HOx (OH + HO2) radicals are responsible for the majority of the oxidation in the troposphere and control the concentrations of many trace species in the atmosphere. There have been many field studies where the measured HO2 concentrations have been smaller than the concentration predicted by model calculations [1,2]. The difference has often been attributed to HO2 uptake by aerosols. Organics are a major component of aerosols accounting for 10 - 70 % of their mass [3]. However, there have been very few laboratory studies measuring HO2 uptake onto organic aerosols [4]. Uptake coefficients (γ) were measured for a range of aerosols using a Fluorescence Assay By Gas Expansion (FAGE) detector combined with an aerosol flow tube. HO2 was injected into the flow tube using a moveable injector which allowed first order HO2 decays to be measured along the flow tube both with and without aerosols. Laboratory generated aerosols were made using an atomiser or by homogeneous nucleation. Secondary organic aerosols (SOA) were made using the Paul Scherrer Institute smog chamber and also by means of a Potential Aerosol Mass (PAM) chamber. The total aerosol surface area was then measured using a Scanning Mobility Particle Sizer (SMPS). Experiments were carried out on aerosols containing glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid and squalene. The HO2 uptake coefficients for these species were measured in the range of γ < 0.004 to γ = 0.008 ± 0.004. Humic acid was also studied, however, much larger uptake coefficients (γ = 0.007 - 0.09) were measured, probably due to the fact that these aerosols contained elevated levels of transition metal ions. For humic acid the uptake coefficient was highly dependent on humidity and this may be explained by the liquid water content of the aerosols. Measurements were also performed on copper doped aerosols containing different organics. An uptake coefficient of 0.23 ± 0.07 was measured for copper doped ammonium sulphate

  4. Shock front nonstationarity of supercritical perpendicular shocks

    NASA Astrophysics Data System (ADS)

    Hada, Tohru; Oonishi, Makiko; LembèGe, Bertrand; Savoini, Philippe

    2003-06-01

    The shock front nonstationarity of perpendicular shocks in super-critical regime is analyzed by examining the coupling between "incoming" and "reflected" ion populations. For a given set of parameters including the upstream Mach number (MA) and the fraction α of reflected to incoming ions, a self-consistent, time-stationary solution of the coupling between ion streams and the electromagnetic field is sought for. If such a solution is found, the shock is stationary; otherwise, the shock is nonstationary, leading to a self-reforming shock front often observed in full particle simulations of quasi-perpendicular shocks. A parametric study of this numerical model allows us to define a critical αcrit between stationary and nonstationary regimes. The shock can be nonstationary even for relatively low MA(2-5). For a moderate MA(5-10), the critical value αcrit is about 15 to 20%. For very high MA (>10), αcrit saturates around 20%. Moreover, present full simulations show that self-reformation of the shock front occurs for relatively low βi and disappears for high βi, where βi is the ratio of upstream ion plasma to magnetic field pressures. Results issued from the present theoretical model are found to be in good agreement with full particle simulations for low βi case; this agreement holds as long as the motion of reflected ions is coherent enough (narrow ion ring) to be described by a single population in the model. The present model reveals to be "at variance" with full particle simulations results for the high βi case. Present results are also compared with previous hybrid simulations.

  5. Planar shock wave sliding over a water layer

    NASA Astrophysics Data System (ADS)

    Rodriguez, V.; Jourdan, G.; Marty, A.; Allou, A.; Parisse, J.-D.

    2016-08-01

    In this work, we conduct experiments to study the interaction between a horizontal free water layer and a planar shock wave that is sliding over it. Experiments are performed at atmospheric pressure in a shock tube with a square cross section (200× 200 mm^2) for depths of 10, 20, and 30 mm; a 1500-mm-long water layer; and two incident planar shock waves having Mach numbers of 1.11 and 1.43. We record the pressure histories and high-speed visualizations to study the flow patterns, surface waves, and spray layers behind the shock wave. We observe two different flow patterns with ripples formed at the air-water interface for the weaker shock wave and the dispersion of a droplet mist for the stronger shock wave. From the pressure signals, we extract the delay time between the arrival of the compression wave into water and the shock wave in air at the same location. We show that the delay time evolves with the distance traveled over the water layer, the depth of the water layer, and the Mach number of the shock wave.

  6. Understanding the Acceleration of Energetic Particles at the Termination Shock

    NASA Astrophysics Data System (ADS)

    Gloeckler, G.; Fisk, L. A.

    2006-05-01

    Voyager 1 observations of energetic particles during the crossing of the Termination Shock of the solar wind present a number of puzzles, and challenges to existing acceleration theories. For example, downstream from the shock the low-energy phase space density spectra are power laws exhibiting a remarkably constant spectral index, which is difficult to understand in terms of standard diffusive shock acceleration. Upstream from the shock there are beams of highly anisotropic energetic particles, with varying spectral shapes. Again, diffusive shock acceleration has difficultly in dealing with such large anisotropies. Here we show that the observed, constant spectral index of -5 can be accounted for by a simple theory in which the pressure in the accelerated particles behaves according to the Rankine-Hugoniot relationship of an ideal gas at the shock. We also demonstrate that the observed varying spectral shapes of the upstream beams result from velocity dispersion of a downstream spectrum with index of -5 propagating along magnetic flux tubes connecting the termination shock to Voyager 1. We show that even though the beams dominate the upstream foreshock region, they do not have an appreciable effect on the shock acceleration process. The implications of our theory for the acceleration of the Anomalous Cosmic Rays in the heliosheath are also discussed.

  7. Theoretical and experimental investigation of converging cylindrical shock waves propagating in narrow cylindrical chambers

    NASA Astrophysics Data System (ADS)

    Zitouni, Gley

    1992-09-01

    The propagation and stability of converging cylindrical shocks produced in an annular shock tube equipped with a three increment area contraction were investigated for various cylindrical chamber widths and two annular shock Mach numbers of 1.26 and 1.44. The method of characteristics, integrated using the Hartree scheme, was employed to determine the shock Mach number and pressure-time variations in the cylindrical chamber. These numerical values were verified experimentally by employing a set of piezoelectric pressure transducers placed at five different locations. In narrow cylindrical chambers, a new test section was used to determine the boundary layer effect on the shock strength. For a cylindrical chamber width of 2.5 mm, experimental results were found to be in excellent agreement with the inviscid numerical solution. For smaller widths, an empirical equation of the shock Mach number variation was developed. Stability of the converging shocks was examined from the series of spark shadowgraphs taken near the geometric center.

  8. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  9. [Enteral tube feeding].

    PubMed

    Haller, Alois

    2014-03-01

    Tube feeding is an integral part of medical therapies, and can be easily managed also in the outpatient setting. Tube feeding by the stomach or small intestine with nasogastral or nasojejunal tubes is common in clinical practice. Long-term nutrition is usually provided through a permanent tube, i. e. a percutaneous endoscopic gastrostomy (PEG). Modern portable nutrition pumps are used to cover the patient's nutritional needs. Enteral nutrition is always indicated if patients can not or should not eat or if nutritional requirements cannot be covered within 3 days after an intervention, e. g. after abdominal surgery. Industrially produced tube feedings with defined substrate concentrations are being used; different compositions of nutrients, such as glutamine fish oil etc., are used dependent on the the condition of the patient. Enteral nutrition may be associated with complications of the tube, e. g. dislocation, malposition or obstruction, as well as the feeding itself, e. g.hyperglycaemia, electrolyte disturbances, refeeding syndrome diarrhea or aspiration). However, the benefit of tube feeding usually exceeds the potential harm substantially.

  10. Electro-magnetically driven shock and dissociated hydrogen target for stopping power measurement

    NASA Astrophysics Data System (ADS)

    Kondo, K.; Moriyama, T.; Hasegawa, J.; Horioka, K.; Oguri, Y.

    2014-01-01

    A design study of electro-magnetic shock tube for dissociated gas targets is presented. Behind the shock front, there is a dissociated gas region without ionization. That is suitable target for the stopping power measurement when we have an appropriate shock velocity. The previous experiments showed that the dissociated target duration with uniform density and temperature profiles as long as microsecond was required for synchronization with projectile. A new shock tube with long drift section is proposed. The duration of shock heated region can be estimated to be 2μs in this design. This configuration enables us to measure the difference of the stopping power between molecules and dissociated atoms for heavy ion beams more reliably.

  11. Velocity evolution of electro-magnetically driven shock wave for beam-dissociated hydrogen interaction experiment

    NASA Astrophysics Data System (ADS)

    Kondo, Kotaro; Oguri, Yoshiyuki

    2016-03-01

    We present the velocity measurements in electro-magnetic shock tube for beam interaction experiment by three methods; laser refraction, photodiode for self-emission, and high speed framing camera. The laser refraction showed that the average shock velocity was 6.7 km/s when the initial pressure was 1000 Pa and the initial charging voltage was 16 kV. The self-emissions from piston discharge plasma were measured by photodiodes and by high speed framing camera. The measurements showed that the duration between shock and piston was up to 8 microseconds with a 400-mm propagation in the shock tube, which is enough time as dissociation target for beam interaction experiment.The complementary velocity measurement is significant for understanding the electro-magnetically driven shock physics.

  12. Sugars in Antarctic aerosol

    NASA Astrophysics Data System (ADS)

    Barbaro, Elena; Kirchgeorg, Torben; Zangrando, Roberta; Vecchiato, Marco; Piazza, Rossano; Barbante, Carlo; Gambaro, Andrea

    2015-10-01

    The processes and transformations occurring in the Antarctic aerosol during atmospheric transport were described using selected sugars as source tracers. Monosaccharides (arabinose, fructose, galactose, glucose, mannose, ribose, xylose), disaccharides (sucrose, lactose, maltose, lactulose), alcohol-sugars (erythritol, mannitol, ribitol, sorbitol, xylitol, maltitol, galactitol) and anhydrosugars (levoglucosan, mannosan and galactosan) were measured in the Antarctic aerosol collected during four different sampling campaigns. For quantification, a sensitive high-pressure anion exchange chromatography was coupled with a single quadrupole mass spectrometer. The method was validated, showing good accuracy and low method quantification limits. This study describes the first determination of sugars in the Antarctic aerosol. The total mean concentration of sugars in the aerosol collected at the "Mario Zucchelli" coastal station was 140 pg m-3; as for the aerosol collected over the Antarctic plateau during two consecutive sampling campaigns, the concentration amounted to 440 and 438 pg m-3. The study of particle-size distribution allowed us to identify the natural emission from spores or from sea-spray as the main sources of sugars in the coastal area. The enrichment of sugars in the fine fraction of the aerosol collected on the Antarctic plateau is due to the degradation of particles during long-range atmospheric transport. The composition of sugars in the coarse fraction was also investigated in the aerosol collected during the oceanographic cruise.

  13. Temperature Sensitivity of Neural Tube Defects in Zoep Mutants.

    PubMed

    Ma, Phyo; Swartz, Morgan R; Kindt, Lexy M; Kangas, Ashley M; Liang, Jennifer Ostrom

    2015-12-01

    Neural tube defects (NTD) occur when the flat neural plate epithelium fails to fold into the neural tube, the precursor to the brain and spinal cord. Squint (Sqt/Ndr1), a Nodal ligand, and One-eyed pinhead (Oep), a component of the Nodal receptor, are required for anterior neural tube closure in zebrafish. The NTD in sqt and Zoep mutants are incompletely penetrant. The penetrance of several defects in sqt mutants increases upon heat or cold shock. In this project, undergraduate students tested whether temperature influences the Zoep open neural tube phenotype. Single pairs of adults were spawned at 28.5°C, the normal temperature for zebrafish, and one half of the resulting embryos were moved to 34°C at different developmental time points. Analysis of variance indicated temperature and clutch/genetic background significantly contributed to the penetrance of the open neural tube phenotype. Heat shock affected the embryos only at or before the midblastula stage. Many factors, including temperature changes in the mother, nutrition, and genetic background, contribute to NTD in humans. Thus, sqt and Zoep mutants may serve as valuable models for studying the interactions between genetics and the environment during neurulation.

  14. Temperature Sensitivity of Neural Tube Defects in Zoep Mutants

    PubMed Central

    Ma, Phyo; Swartz, Morgan R.; Kindt, Lexy M.; Kangas, Ashley M.

    2015-01-01

    Abstract Neural tube defects (NTD) occur when the flat neural plate epithelium fails to fold into the neural tube, the precursor to the brain and spinal cord. Squint (Sqt/Ndr1), a Nodal ligand, and One-eyed pinhead (Oep), a component of the Nodal receptor, are required for anterior neural tube closure in zebrafish. The NTD in sqt and Zoep mutants are incompletely penetrant. The penetrance of several defects in sqt mutants increases upon heat or cold shock. In this project, undergraduate students tested whether temperature influences the Zoep open neural tube phenotype. Single pairs of adults were spawned at 28.5°C, the normal temperature for zebrafish, and one half of the resulting embryos were moved to 34°C at different developmental time points. Analysis of variance indicated temperature and clutch/genetic background significantly contributed to the penetrance of the open neural tube phenotype. Heat shock affected the embryos only at or before the midblastula stage. Many factors, including temperature changes in the mother, nutrition, and genetic background, contribute to NTD in humans. Thus, sqt and Zoep mutants may serve as valuable models for studying the interactions between genetics and the environment during neurulation. PMID:26366681

  15. Shock absorber control system

    SciTech Connect

    Nakano, Y.; Ohira, M.; Ushida, M.; Miyagawa, T.; Shimodaira, T.

    1987-01-13

    A shock absorber control system is described for controlling a dampening force of a shock absorber of a vehicle comprising: setting means for setting a desired dampening force changeable within a predetermined range; drive means for driving the shock absorber to change the dampening force of the shock absorber linearly; control means for controlling the drive means in accordance with the desired dampening force when the setting of the desired dampening force has been changed; detecting means for detecting an actual dampening force of the shock absorber; and correcting means for correcting the dampening force of the shock absorber by controlling the drive means in accordance with a difference between the desired dampening force and the detected actual dampening force.

  16. Experimental investigation of shock wave diffraction over a single- or double-sphere model

    NASA Astrophysics Data System (ADS)

    Zhang, L. T.; Wang, T. H.; Hao, L. N.; Huang, B. Q.; Chen, W. J.; Shi, H. H.

    2017-01-01

    In this study, the unsteady drag produced by the interaction of a shock wave with a single- and a double-sphere model is measured using imbedded accelerometers. The shock wave is generated in a horizontal circular shock tube with an inner diameter of 200 mm. The effect of the shock Mach number and the dimensionless distance between spheres is investigated. The time-history of the drag coefficient is obtained based on Fast Fourier Transformation (FFT) band-block filtering and polynomial fitting of the measured acceleration. The measured peak values of the drag coefficient, with the associated uncertainty, are reported.

  17. Inlet boundary conditions for shock wave propagation problems in air ducts

    NASA Astrophysics Data System (ADS)

    Fashbaugh, R. H.

    1992-03-01

    Shock waves propagating into air ducting systems are numerically studied using data from Kriebel (1972). Small-scale junctions mounted in shock tubes with an incident shock wave are considered. The stagnation pressure ratio through a duct inlet is evaluated for various junction types. The logarithm of this ratio varies linearly with the Mach number of the flow behind the incident shock wave. The static pressure inside the inlet is established using experimental data with given Mach numbers of the incident and inlet flows. A constant stagnation enthalpy through the inlet junction is assumed to establish inflow to the duct.

  18. Micro-blast waves using detonation transmission tubing

    NASA Astrophysics Data System (ADS)

    Samuelraj, I. Obed; Jagadeesh, G.; Kontis, K.

    2013-07-01

    Micro-blast waves emerging from the open end of a detonation transmission tube were experimentally visualized in this study. A commercially available detonation transmission tube was used (Nonel tube, M/s Dyno Nobel, Sweden), which is a small diameter tube coated with a thin layer of explosive mixture (HMX + traces of Al) on its inner side. The typical explosive loading for this tube is of the order of 18 mg/m of tube length. The blast wave was visualized using a high speed digital camera (frame rate 1 MHz) to acquire time-resolved schlieren images of the resulting flow field. The visualization studies were complemented by computational fluid dynamic simulations. An analysis of the schlieren images showed that although the blast wave appears to be spherical, it propagates faster along the tube axis than along a direction perpendicular to the tube axis. Additionally, CFD analysis revealed the presence of a barrel shock and Mach disc, showing structures that are typical of an underexpanded jet. A theory in use for centered large-scale explosions of intermediate strength (10 < Δ {p}/{p}_0 ≲ 0.02) gave good agreement with the blast trajectory along the tube axis. The energy of these micro-blast waves was found to be 1.25 ± 0.94 J and the average TNT equivalent was found to be 0.3. The repeatability in generating these micro-blast waves using the Nonel tube was very good (± 2 %) and this opens up the possibility of using this device for studying some of the phenomena associated with muzzle blasts in the near future.

  19. When shock waves collide

    SciTech Connect

    Martinez, D.; Hartigan, P.; Frank, A.; Hansen, E.; Yirak, K.; Liao, A. S.; Graham, P.; Foster, J.; Wilde, B.; Blue, B.; Rosen, P.; Farley, D.; Paguio, R.

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed to quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.

  20. When shock waves collide

    DOE PAGES

    Martinez, D.; Hartigan, P.; Frank, A.; ...

    2016-06-01

    Supersonic outflows from objects as varied as stellar jets, massive stars, and novae often exhibit multiple shock waves that overlap one another. When the intersection angle between two shock waves exceeds a critical value, the system reconfigures its geometry to create a normal shock known as a Mach stem where the shocks meet. Mach stems are important for interpreting emission-line images of shocked gas because a normal shock produces higher postshock temperatures, and therefore a higher-excitation spectrum than does an oblique shock. In this paper, we summarize the results of a series of numerical simulations and laboratory experiments designed tomore » quantify how Mach stems behave in supersonic plasmas that are the norm in astrophysical flows. The experiments test analytical predictions for critical angles where Mach stems should form, and quantify how Mach stems grow and decay as intersection angles between the incident shock and a surface change. While small Mach stems are destroyed by surface irregularities and subcritical angles, larger ones persist in these situations and can regrow if the intersection angle changes to become more favorable. Furthermore, the experimental and numerical results show that although Mach stems occur only over a limited range of intersection angles and size scales, within these ranges they are relatively robust, and hence are a viable explanation for variable bright knots observed in Hubble Space Telescope images at the intersections of some bow shocks in stellar jets.« less

  1. Shock initiation of nitromethane

    SciTech Connect

    Yoo, C.S.; Holmes, N.C.

    1993-12-31

    The shock initiation processes of nitromethane have been examined by using a fast time-resolved emission spectroscopy at a two-stage gas gun. a broad, but strong emission has been observed in a spectral range between 350 and 700 nm from shocked nitromethane above 9 GPa. The temporal profile suggests that shocked nitromethane detonates through three characteristic periods, namely an induction period, a hock initiation period, and a thermal explosion period. This paper discusses temporal and chemical characteristics of these periods and present the temperature of the shock-detonating nitromethane at pressures between 9 and 15 GPa.

  2. Anti-Shock Garment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Ames Research Center developed a prototype pressure suit for hemophiliac children, based on research of astronauts' physiological responses in microgravity. Zoex Corporation picked up the design and patents and developed an anti-shock garment for paramedic use. Marketed by Dyna Med, the suit reverses the effect of shock on the body's blood distribution by applying counterpressure to the legs and abdomen, returning blood to vital organs and stabilizing body pressure until the patient reaches a hospital. The DMAST (Dyna Med Anti-Shock Trousers) employ lower pressure than other shock garments, and are non-inflatable.

  3. Optical studies of shock generated transient supersonic base flows

    NASA Technical Reports Server (NTRS)

    Liang, P.-Y.; Bershader, D.; Wray, A.

    1982-01-01

    A shock tube employing interferometric and schlieren techniques is used to study transient base flow phenomena following shock wave passage over two plane bluff bodies: a hemicircular cylinder and a cylinder with the Galileo Jovian probe profile. An attempt is made to understand the physics of transition from transient to steady state flow, and to provide code verification for a study employing the Illiac IV computer. Transient base flow interactions include a series of shock diffraction, regular, and Mach reflections, coupled with boundary layer development, separation, and recompression. Vorticity generation and transport underlie these features. The quantitative verification of the computer code includes comparisons of transient pressure and density fields, near wake geometries, and bow shock standoff distances.

  4. A novel method to transform prokaryotic cells using shock waves

    NASA Astrophysics Data System (ADS)

    Nataraja, K. N.; Udayakumar, M.; Jagadeesh, G.

    The transgenic approach that is being used to study gene function or to improve the efficiency of crop plants/organisms involves transformation of a wide range of cells, tissues, and organisms with nucleic acid. In this study we report a new micro- shock assisted prokaryotic cell transformation technique. An underwater electric discharge based shock wave generator (25 kV; 150 m A; high voltage capacitor) has been designed and fabricated to carry out the prokaryotic cell transformation experiments. Test tubes with bacterial cell suspension with appropriate plasmid DNA, immersed in water are exposed to shock wave loading (typical overpressure 130 bar). The transformation efficiency of samples of the prokaryotic cells exposed to shock waves is very high compared to conventional methods.

  5. Transmission and Emission of Solar Energetic Particles in Semi-transparent Shocks

    NASA Astrophysics Data System (ADS)

    Kocharov, Leon; Laitinen, Timo; Usoskin, Ilya; Vainio, Rami

    2014-06-01

    While major solar energetic particle (SEP) events are associated with coronal mass ejection (CME)-driven shocks in solar wind, accurate SEP measurements reveal that more than one component of energetic ions exist in the beginning of the events. Solar electromagnetic emissions, including nuclear gamma-rays, suggest that high-energy ions could also be accelerated by coronal shocks, and some of those particles could contribute to SEPs in interplanetary space. However, the CME-driven shock in solar wind is thought to shield any particle source beneath the shock because of the strong scattering required for the diffusive shock acceleration. In this Letter, we consider a shock model that allows energetic particles from the possible behind-shock source to appear in front of the shock simultaneously with SEPs accelerated by the shock itself. We model the energetic particle transport in directions parallel and perpendicular to the magnetic field in a spherical shock expanding through the highly turbulent magnetic sector with an embedded quiet magnetic tube, which makes the shock semi-transparent for energetic particles. The model energy spectra and time profiles of energetic ions escaping far upstream of the shock are similar to the profiles observed during the first hour of some gradual SEP events.

  6. Snorkeling and Jones tubes.

    PubMed

    Lam, Lewis Y W; Weatherhead, Robert G

    2015-01-01

    We report a case of tympanic membrane rupture during snorkeling in a 17-year-old young man who had previously undergone bilateral Jones tubes placed for epiphora. To our knowledge, this phenomenon has not been previously reported.

  7. Enteral nutrition by tube.

    PubMed

    Armstrong, P J; Hand, M S; Frederick, G S

    1990-01-01

    When oral intake is unsatisfactory or contraindicated, maintenance of nutrition by tube feeding is an alternative to the parenteral route. A large volume of research data supports the decision to use the enteral route whenever possible. Entry of food into the alimentary tract is a stimulus to structural and functional maintenance of that tract. Enteral nutrition can be given via indwelling nasoesophageal, pharyngostomy, esophagostomy, percutaneous or surgical gastrostomy, or enterostomy tube. Use of an appropriate catheter, familiarity with the technique used, and careful patient selection and monitoring are important factors in successful tube feeding. Blenderized pet food diets should be fed whenever possible; commercially available liquid diets provide an alternative when tube caliber or patient factors preclude the use of blenderized foods.

  8. Integrated structure vacuum tube

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Kerwin, W. J. (Inventor)

    1976-01-01

    High efficiency, multi-dimensional thin film vacuum tubes suitable for use in high temperature, high radiation environments are described. The tubes are fabricated by placing thin film electrode members in selected arrays on facing interior wall surfaces of an alumina substrate envelope. Cathode members are formed using thin films of triple carbonate. The photoresist used in photolithography aids in activation of the cathodes by carbonizing and reacting with the reduced carbonates when heated in vacuum during forming. The finely powdered triple carbonate is mixed with the photoresist used to delineate the cathode locations in the conventional solid state photolithographic manner. Anode and grid members are formed using thin films of refractory metal. Electron flow in the tubes is between grid elements from cathode to anode as in a conventional three-dimensional tube.

  9. Tube-Forming Assays.

    PubMed

    Brown, Ryan M; Meah, Christopher J; Heath, Victoria L; Styles, Iain B; Bicknell, Roy

    2016-01-01

    Angiogenesis involves the generation of new blood vessels from the existing vasculature and is dependent on many growth factors and signaling events. In vivo angiogenesis is dynamic and complex, meaning assays are commonly utilized to explore specific targets for research into this area. Tube-forming assays offer an excellent overview of the molecular processes in angiogenesis. The Matrigel tube forming assay is a simple-to-implement but powerful tool for identifying biomolecules involved in angiogenesis. A detailed experimental protocol on the implementation of the assay is described in conjunction with an in-depth review of methods that can be applied to the analysis of the tube formation. In addition, an ImageJ plug-in is presented which allows automatic quantification of tube images reducing analysis times while removing user bias and subjectivity.

  10. Kinking of medical tubes.

    PubMed

    Ingles, David

    2004-05-01

    The phenomenon of kinking in medical tubing remains a problem for some applications, particularly critical ones such as transporting gasses or fluids. Design features are described to prevent its occurrence.

  11. Ear tube insertion

    MedlinePlus

    ... Ear tube surgery - what to ask your doctor Review Date 8/5/2015 Updated by: Sumana Jothi ... Otolaryngology, NCHCS VA, SFVA, San Francisco, CA. Internal review and update on 09/01/2016 by David ...

  12. Ear tube insertion - slideshow

    MedlinePlus

    ... this page: //medlineplus.gov/ency/presentations/100045.htm Ear tube insertion - series—Normal anatomy To use the ... 4 Overview The eardrum (tympanic membrane) separates the ear canal from the middle ear. Review Date 8/ ...

  13. Tracheostomy tube - speaking

    MedlinePlus

    Air passing through vocal cords (larynx) causes them to vibrate, creating sounds and speech. A tracheostomy tube blocks most of the air from passing through your vocal cords. Instead, your breath (air) goes out ...

  14. Gastrostomy tube placement - slideshow

    MedlinePlus

    ... presentations/100125.htm Gastrostomy tube placement - series—Normal anatomy To use the sharing features on this page, ... Bethesda, MD 20894 U.S. Department of Health and Human Services National Institutes of Health Page last updated: ...

  15. Aerosol deposition in bends with turbulent flow

    SciTech Connect

    McFarland, A.R.; Gong, H.; Wente, W.B.

    1997-08-01

    The losses of aerosol particles in bends were determined numerically for a broad range of design and operational conditions. Experimental data were used to check the validity of the numerical model, where the latter employs a commercially available computational fluid dynamics code for characterizing the fluid flow field and Lagrangian particle tracking technique for characterizing aerosol losses. Physical experiments have been conducted to examine the effect of curvature ratio and distortion of the cross section of bends. If it curvature ratio ({delta} = R/a) is greater than about 4, it has little effect on deposition, which is in contrast with the recommendation given in ANSI N13.1-1969 for a minimum curvature ratio of 10. Also, experimental results show that if the tube cross section is flattened by 25% or less, the flattening also has little effect on deposition. Results of numerical tests have been used to develop a correlation of aerosol penetration through a bend as a function of Stokes number (Stk), curvature ratio ({delta}) and the bend angle ({theta}). 17 refs., 10 figs., 2 tabs.

  16. Shock tunnel studies of scramjet phenomena 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A new expansion tube facility has been built, and is in the process of being commissioned. It has a bore of 90 mm, and has been designed for peak rupture pressures of 100 Mpa. It is configured with multiple sections and diaphragm location stations to give optimized performance over a range of sub and superorbital conditions. It has a compound piston arrangement for a two stage compression, designed to maximize the length of shock expansion tube which can be driven within a fixed total facility length. Experiments have been successfully performed with a dummy first stage piston, and a rubber energy absorbing brake. The results agree well with a one-dimensional stress wave model of the piston impacting on the rubber, and codes for piston motion. Strain of the rubber is restricted to approximately 20 percent at which level no damage is to be expected in the buffer material, and none has been observed, indicating that the mechanism will be fully reuseable.

  17. Clearing obstructed feeding tubes.

    PubMed

    Marcuard, S P; Stegall, K L; Trogdon, S

    1989-01-01

    This is a report of an in vitro study evaluating the ability of six solutions to dissolve clotted enteral feeding, which can cause feeding tube occlusion. The following clotted enteral feeding products were tested: Ensure Plus, Ensure Plus with added protein (Promod 20 g/liter), Osmolite, Enrich, and Pulmocare. Clot dissolution was then tested by adding Adolf's Meat Tenderizer, Viokase, Sprite, Pepsi, Coke, or Mountain Dew. Distilled water served as control. Dissolution score for each mixture was assessed blindly. Best dissolution was observed with Viokase in pH 7.9 solution (p less than 0.01). Similar results were obtained when feeding tube patency was restored in eight in vitro occluded feeding tubes (Dobbhoff, French size 8) by using first Pepsi (two/eight successful) and then Viokase in pH 7.9 (six/six successful). We also report our experience in the first 10 patients with occluded feeding tubes using this Viokase solution injected through a Drum catheter into the feeding tube. In seven patients, this method proved to be successful, and the reasons for failure in three patients include a knotted tube, impacted tablet powder, and a formula clot fo 24 hr duration and 45 cm in length.

  18. Shock Tunnel Studies of Scramjet Phenomena 1994

    NASA Technical Reports Server (NTRS)

    Morgan, R. G.; Paull, A.; Stalker, R. J.

    1997-01-01

    Reports by the research staff and graduate students of the Mechanical Engineering Department at the University of Queensland are collected and presented. These reports cover various studies related to the advancement of scramjet technology and the operation of advanced hypervelocity shock-expansion tubes. The report topics include the experimental studies of mixing and combustion in a scramjet flow path, the measurement of integrated thrust and skin friction, and the development of a free-piston-driven expansion tunnel capable of delivering a test gas at superorbital velocities.

  19. Shock-wave processing of C60 in hydrogen

    NASA Astrophysics Data System (ADS)

    Biennier, L.; Jayaram, V.; Suas-David, N.; Georges, R.; Singh, M. Kiran; Arunan, E.; Kassi, S.; Dartois, E.; Reddy, K. P. J.

    2017-02-01

    Context. Interstellar carbonaceous particles and molecules are subject to intense shocks in astrophysical environments. Shocks induce a rapid raise in temperature and density which strongly affects the chemical and physical properties of both the gas and solid phases of the interstellar matter. Aims: The shock-induced thermal processing of C60 particles in hydrogen has been investigated in the laboratory under controlled conditions up to 3900 K with the help of a material shock-tube. Methods: The solid residues generated by the exposure of a C60/H2 mixture to a millisecond shock wave were collected and analyzed using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Raman micro-spectroscopy, and infrared micro-spectroscopy. The gaseous products were analyzed by Gas Chromatography and Cavity Ring Down Spectroscopy. Results: Volatile end-products appear above reflected shock gas temperatures of 2540 K and reveal the substantial presence of small molecules with one or two C atoms. These observations confirm the role played by the C2 radical as a major product of C60 fragmentation and less expectedly highlight the existence of a single C atom loss channel. Molecules with more than two carbon atoms are not observed in the post-shock gas. The analysis of the solid component shows that C60 particles are rapidly converted into amorphous carbon with a number of aliphatic bridges. Conclusions: The absence of aromatic CH stretches on the IR spectra indicates that H atoms do not link directly to aromatic cycles. The fast thermal processing of C60 in H2 over the 800-3400 K temperature range leads to amorphous carbon. The analysis hints at a collapse of the cage with the formation of a few aliphatic connections. A low amount of hydrogen is incorporated into the carbon material. This work extends the range of applications of shock tubes to studies of astrophysical interest.

  20. Volcanic Aerosol Radiative Properties

    NASA Technical Reports Server (NTRS)

    Lacis, Andrew

    2015-01-01

    Large sporadic volcanic eruptions inject large amounts of sulfur bearing gases into the stratosphere which then get photochemically converted to sulfuric acid aerosol droplets that exert a radiative cooling effect on the global climate system lasting for several years.

  1. Palaeoclimate: Aerosols and rainfall

    NASA Astrophysics Data System (ADS)

    Partin, Jud

    2015-03-01

    Instrumental records have hinted that aerosol emissions may be shifting rainfall over Central America southwards. A 450-year-long precipitation reconstruction indicates that this shift began shortly after the Industrial Revolution.

  2. In the footsteps of Ernst Mach - A historical review of shock wave research at the Ernst-Mach-Institut

    NASA Astrophysics Data System (ADS)

    Reichenbach, H.

    The aim of this paper is to recall some of the historical work on shock waves and to give a brief survey of research activities at the Ernst-Mach-Institut (EMI). Some fundamental results of Ernst Mach (1838 - 1916) are demonstrated and historical remarks are given to the shock tube as an important tool in shock wave research. The activity at EMI in this field was initiated by Prof. H. Schardin (1902 - 1965) in 1955 and has since been continued. Propagation processes of shock and blast waves, blast loading phenomena, shock attenuation, shock reflection at various surfaces, development of new types of blast simulators, electromagnetically driven T-tubes, precursor and decursor phenomena are only a few examples of research topics at EMI that will be discussed.

  3. Aerosol generation and distribution system for the Third International Cloud Condensation Nuclei Workshop

    NASA Technical Reports Server (NTRS)

    Katz, U.; Dea, J. Y.

    1981-01-01

    In order to obtain identical samples participating CCN instruments and aerosol characterizing equipment were located along and connected to a 8.2 cm diameter aluminum tube through which the test aerosols were pumped directly from the source at very slight overpressure. Of the total of 29 experiments, 18 were carried out with artificial NaCl or (NH4)2SO4 aerosols. These were generated from salt solutions by pneumatic atomizers of special design to ensure high constancy of the aerosol output concentration. In three experiments with insoluble CCN (AgI, paraffin wax) the aerosols were generated thermally. In some of the tests, an electrostatic classifier was used for narrowing the particle size distributions.

  4. Emergency Protection from Aerosols

    SciTech Connect

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  5. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  6. Reactions and mass spectra of complex particles using Aerosol CIMS

    NASA Astrophysics Data System (ADS)

    Hearn, John D.; Smith, Geoffrey D.

    2006-12-01

    Aerosol chemical ionization mass spectrometry (CIMS) is used both on- and off-line for the analysis of complex laboratory-generated and ambient particles. One of the primary advantages of Aerosol CIMS is the low degree of ion fragmentation, making this technique well suited for investigating the reactivity of complex particles. To demonstrate the usefulness of this "soft" ionization, particles generated from meat cooking were reacted with ozone and the composition was monitored as a function of reaction time. Two distinct kinetic regimes were observed with most of the oleic acid in these particles reacting quickly but with 30% appearing to be trapped in the complex mixture. Additionally, detection limits are measured to be sufficiently low (100-200 ng/m3) to detect some of the more abundant constituents in ambient particles, including sulfate, which is measured in real-time at 1.2 [mu]g/m3. To better characterize complex aerosols from a variety of sources, a novel off-line collection method was also developed in which non-volatile and semi-volatile organics are desorbed from particles and concentrated in a cold U-tube. Desorption from the U-tube followed by analysis with Aerosol CIMS revealed significant amounts of nicotine in cigarette smoke and levoglucosan in oak and pine smoke, suggesting that this may be a useful technique for monitoring particle tracer species. Additionally, secondary organic aerosol formed from the reaction of ozone with R-limonene and volatile organics from orange peel were analyzed off-line showing large molecular weight products (m/z > 300 amu) that may indicate the formation of oligomers. Finally, mass spectra of ambient aerosol collected offline reveal a complex mixture of what appears to be highly processed organics, some of which may contain nitrogen.

  7. Organic Aerosol Formation Photoenhanced by the Formation of Secondary Photo-sensitizers in ageing Aerosols

    NASA Astrophysics Data System (ADS)

    Aregahegn, Kifle; Nozière, Barbara; George, Christian

    2013-04-01

    Humankind is facing a changing environment possibly due to anthropogenic stress on the atmosphere. In this context, aerosols play a key role by affecting the radiative climate forcing, hydrological cycle, and by their adverse effect on health. The role of organic compounds in these processes is however still poorly understood because of their massive chemical complexity and numerous transformations. This is particularly true for Secondary Organic Aerosol (SOA), which are produced in the atmosphere by organic gases. Traditionally, the driving forces for SOA growth is believed to be the partitioning onto aerosol seeds of condensable gases, either emitted primarily or resulting from the gas phase oxidation of organic gases. However, even the most up-to-date models based on such mechanisms can not account for the SOA mass observed in the atmosphere, suggesting the existence of other, yet unknown formation processes. The present study shows experimental evidence that particulate phase chemistry produces photo-sensitizers that lead to photo-induced formation and growth of secondary organic aerosol in the near UV and the presence of volatile organic compounds (VOC) such as terpenes. By means of an aerosol flow tube reactor equipped with Scanning Mobility Particle Sizer (SMPS) having Kr-85 source aerosol neutralizer, Differential Mobility Analyser (DMA) and Condensation Particle Sizer (CPC), we identified that traces of the aerosol phase product of glyoxal chemistry as is explained in Gallway et al., and Yu et al., namely imidazole-2-carboxaldehyde (IC) is a strong photo-sensitizer when irradiated by near-UV in the presence of volatile organic compounds such as terpenes. Furthermore, the influence of pH, type and concentration of VOCs, composition of seed particles, relative humidity and irradiation intensity on particle growth were studied. This novel photo-sensitizer contributed to more than 30% of SOA growth in 19min irradiation time in the presence of terpenes in the

  8. Coiled tubing operations and services

    SciTech Connect

    Jaworsky, A.S. II )

    1991-11-01

    Coiled tubing offers many advantages over conventional jointed tubing used for drilling in oil fields, including time savings, pumping flexibility, fluid placement, reduced formation damage and safety. The article gives an overview of coiled tubing history and development. Operating concepts are explained, along with descriptions of the major equipment and components associated with coiled tubing use in the oil field today.

  9. Determination of LCt50s in Anesthetized Rats Exposed to Aerosolized Nerve Agents

    DTIC Science & Technology

    2013-01-01

    kg ketamine. Following anesthesia, rats were intubated with a glass endotracheal tube (ET) and placed in a glove box. The ET was connected to a...using an aerosolization technique, directly into the intubated airway of anes- thetized rats using a small animal ventilator (Harvard Model 683...and the endotracheal tube. Agent off-gassing from the lung into the expira- tion air outflow was trapped in 10% NaOH (or char- coal) prior to the

  10. RACORO aerosol data processing

    SciTech Connect

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  11. Blueberry shock virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Blueberry shock disease first observed in Washington state in 1987 and initially confused with blueberry scorch caused by Blueberry scorch virus (BlScV). However, shock affected plants produced a second flush of leaves after flowering and the plants appeared normal by late summer except for the lac...

  12. What Is Cardiogenic Shock?

    MedlinePlus

    ... think that you or someone else is in shock, call 9–1–1 right away for emergency treatment. Prompt medical care can save your life and ... half of the people who go into cardiogenic shock survive. This is because of ... improved treatments, such as medicines and devices. These treatments can ...

  13. [Historical vision of shock].

    PubMed

    Dosne Pasqualini, C

    1998-01-01

    The concept of shock and its close relationship with that of stress dates back to the experiments of Hans Selye initiated in 1936 at McGill University in Montreal, with whom I collaborated between 1939 and 1942. It was demonstrated that the General Adaptation Syndrome begins with an Alarm Reaction, which consists of a Stage of Shock and one of Counter-Shock, followed by a Stage of Adaptation and finally a Stage of Exhaustion. My Ph.D. thesis concluded that shock was due to an adrenal insufficiency postulating that active metabolic processes drain the body of certain essential compounds the lack of which causes shock. My interest in the role of the glucose metabolism in shock led me to work with Bernardo Houssay in 1942 at the Institute of Physiology of the University of Buenos Aires and in 1944 with C.N.H. Long at Yale University. There I developed a method for the induction of hemorrhagic shock in the guinea pig with 94% lethality; curiously, the administration of 200 mg of ascorbic acid prevented death. Upon my return to Buenos Aires, these results were confirmed and moreover, it was demonstrated that the administration of cortisone led to 40% survival of the animals while desoxycorticosterone had no effect. At the time, no explanation was available but to-day, half a century later, this Symposium should be able to explain the mechanisms leading to death by hemorrhagic shock.

  14. Normal Shock Vortex Interaction

    DTIC Science & Technology

    2003-03-01

    Figure 9: Breakdown map for normal-shock vortex-interaction. References [1] O. Thomer, W. Schroder and M. Meinke , Numerical Simulation of Normal...and Oblique-Shock Vortex Interaction, ZAMM Band 80, Sub. 1, pp. 181-184, 2000. [2] O. Thomer, E. Krause, W. Schroder and M. Meinke , Computational

  15. Pathophysiology of shock.

    PubMed

    Houston, M C

    1990-06-01

    Shock is an acute widespread reduction in effective tissue perfusion that invokes an imbalance of oxygen supply and demand, anaerobic metabolism, lactic acidosis, cellular and organ dysfunction, metabolic abnormalities, and, if prolonged, irreversible damage and death. The pathophysiologic events in the various types of shock are different and complex with hemodynamic and oxygenation changes, alterations in the composition of the fluid compartments, and various mediators. Shock results from a change in one or a combination of the following: intravascular volume, myocardial function, systemic vascular resistance, or distribution of blood flow. The clinical types of shock include hypovolemic, cardiogenic, distributive (septic), and obstructive. An understanding of the pathophysiologic changes, rapid diagnosis, appropriate monitoring, and appropriate therapy can reduce the high morbidity and mortality in shock states.

  16. A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results

    NASA Technical Reports Server (NTRS)

    Miller, C. G., III

    1972-01-01

    A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube.

  17. Reflection of curved shock waves

    NASA Astrophysics Data System (ADS)

    Mölder, S.

    2017-03-01

    Shock curvatures are related to pressure gradients, streamline curvatures and vorticity in flows with planar and axial symmetry. Explicit expressions, in an influence coefficient format, are used to relate post-shock pressure gradient, streamline curvature and vorticity to pre-shock gradients and shock curvature in steady flow. Using higher order, von Neumann-type, compatibility conditions, curved shock theory is applied to calculate the flow near singly and doubly curved shocks on curved surfaces, in regular shock reflection and in Mach reflection. Theoretical curved shock shapes are in good agreement with computational fluid dynamics calculations and experiment.

  18. DSMC Shock Simulation of Saturn Entry Probe Conditions

    NASA Technical Reports Server (NTRS)

    Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.

    2016-01-01

    This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 kms shock waves are obtained at 0.2 and 0.1 Torr respectively and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.

  19. DSMC Shock Simulation of Saturn Entry Probe Conditions

    NASA Technical Reports Server (NTRS)

    Higdon, Kyle J.; Cruden, Brett A.; Brandis, Aaron M.; Liechty, Derek S.; Goldstein, David B.; Varghese, Philip L.

    2016-01-01

    This work describes the direct simulation Monte Carlo (DSMC) investigation of Saturn entry probe scenarios and the influence of non-equilibrium phenomena on Saturn entry conditions. The DSMC simulations coincide with rarefied hypersonic shock tube experiments of a hydrogen-helium mixture performed in the Electric Arc Shock Tube (EAST) at the NASA Ames Research Center. The DSMC simulations are post-processed through the NEQAIR line-by-line radiation code to compare directly to the experimental results. Improved collision cross-sections, inelastic collision parameters, and reaction rates are determined for a high temperature DSMC simulation of a 7-species H2-He mixture and an electronic excitation model is implemented in the DSMC code. Simulation results for 27.8 and 27.4 km/s shock waves are obtained at 0.2 and 0.1 Torr, respectively, and compared to measured spectra in the VUV, UV, visible, and IR ranges. These results confirm the persistence of non-equilibrium for several centimeters behind the shock and the diffusion of atomic hydrogen upstream of the shock wave. Although the magnitude of the radiance did not match experiments and an ionization inductance period was not observed in the simulations, the discrepancies indicated where improvements are needed in the DSMC and NEQAIR models.

  20. Simulations of Shock Wave Interaction with a Particle Cloud

    NASA Astrophysics Data System (ADS)

    Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'

    2016-11-01

    Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.

  1. Dynamics of Magnetic Flux Tubes in an Advective Flow around a Black Hole

    NASA Astrophysics Data System (ADS)

    Deb, Arnab; Chakrabarti, Sandip Kumar; Giri, Kinsuk

    2016-07-01

    Magnetic fields cannibalized by an accretion flow would very soon have a dominant toroidal component. Without changing the topology, we study the movements of these flux tubes inside a geometrically thick advective disk which undergo centrifugal pressure supported shocks. We also consider the effects of the flux tubes on the flow. We use a finite element method (Total Variation Diminishing) for this purpose and specifically focussed whether the flux tubes contribute to changes in outflow properties in terms of its collimation and outflow rates. It is seen that depending upon the cross sectional radius of the flux tubes (which control the drag force), these field lines may move towards the central object or oscillate vertically before eventually escaping out of the funnel wall (pressure zero surface). These interesting results obtained with and without flux tubes point to the role the flux tubes play in collimation of jets and outflows.

  2. Asymptotic solutions for shocked resonant acoustic oscillations between concentric spheres and coaxial cylinders

    NASA Astrophysics Data System (ADS)

    Seymour, Brian R.; Mortell, Michael P.; Amundsen, David E.

    2012-02-01

    For resonant oscillations of a gas in a straight tube with a closed end, shocks form and all harmonics are generated, see Chester ["Resonant oscillations in a closed tube," J. Fluid Mech. 18, 44 (1964)], 10.1017/S0022112064000040. When the gas is confined between two concentric spheres or coaxial cylinders, the radially symmetric resonant oscillations may be continuous or shocked. For a fixed small Mach number of the input, the flow is continuous for sufficiently small L, defined as the ratio of the inner radius to the difference of the radii, see Seymour et al. ["Resonant oscillations of an inhomogeneous gas between concentric spheres," Proc. R. Soc. London, Ser. A 467, 2149 (2011)], 10.1098/rspa.2010.0576. However, shocks appear in the resonant flow for either larger values of L or larger input Mach number. A nonlinear geometric acoustics approximation is used to analyse the shocked motion of the gas when L ≫ 1. This approximation and the exact numerical solution are compared for the shocked wave profiles and shock strengths, and the approximation is valid for surprisingly small values of L. The flow in the plane wave case for a straight tube is recovered in the limit L → ∞ for both the spherical and cylindrical cases, providing a check on the results. The shocked solutions given here complement those continuous solutions previously derived from a dominant first mode approximation.

  3. Circle nephrostomy tube revisited

    PubMed Central

    Noureldin, Yasser A.; Diab, Christian; Valenti, David; Andonian, Sero

    2016-01-01

    Introduction: There are few options for patients requiring chronic urinary drainage using nephrostomy tubes. Although circle nephrostomy tube (CNT) was invented in 1954, it is rarely used. Its advantages include longer indwelling time such that it is changed semi-annually when compared with the standard nephrostomy tube (SNT), which is changed monthly. However, there are no studies comparing indwelling times and costs with these two tubes. The aim of the present study was to compare CNT with SNT in terms of frequency of tube changes, reasons for earlier tube changes, and associated costs. Methods: Patients who had CNT inserted between 2009 and 2015 were reviewed. The indications for chronic indwelling nephrostomy tubes were tabulated. The frequency of tube changes was compared between CNT and SNT in the same patients. Furthermore, costs associated with insertion and exchange of CNT and SNT were analyzed. Results: Seven patients with mean age of 71.9 ± 7.6 years (range 43–96) had a total of 36 CNT changes. The mean number of CNT changes was four (range 2–5) at a mean interval of 168.3 ± 15.6 days (range 120–231). All patients had SNT prior to converting to CNT. When compared with the mean interval for SNT changes, the mean interval for CNT changes was significantly longer (44.8 ± 19.4 vs. 168.3 ± 41.3 days; p=0.028). Tube blockage and urinary leakage were the most common reasons for earlier than scheduled CNT changes. In our centre, CNT insertion and exchange cost $1965.48 and $923.96 compared with $1450.43 and $803.81 for SNT, respectively. There was an estimated cost savings of $46 861.10 (range $87 414.30 –$40 553.20) for the whole cohort by switching from SNTs to CNTs. Conclusions: Despite the small sample size as the main limitation, this study confirms that CNTs are associated with significantly fewer changes and lower cost when compared with SNTs for poor-surgical-risk patients requiring chronic NTs.

  4. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    George, I. J.; Matthews, P. S.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2011-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, together known as HOx, play a vital role in atmospheric chemistry by controlling the oxidative capacity of the troposphere. The atmospheric lifetime and concentrations of many trace reactive species, such as volatile organic compounds (VOCs), are determined by HOx radical levels. Therefore, the ability to accurately predict atmospheric HOx concentrations from a detailed knowledge of their sources and sinks is a very useful diagnostic tool to assess our current understanding of atmospheric chemistry. Several recent field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models, where HO2 loss onto aerosols was suggested as a possible missing sink [1, 2]. However, the mechanism on HO2 uptake onto aerosols and its impact on ambient HOx levels are currently not well understood. To improve our understanding of this process, we have conducted laboratory experiments to measure HO2 uptake coefficients onto submicron aerosol particles. The FAGE (Fluorescence Assay by Gas Expansion) technique, a highly sensitive laser induced fluorescence based detection method, was used to monitor HO2 uptake kinetics onto aerosol particles in an aerosol flow tube. The application of the FAGE technique allowed for kinetic experiments to be performed under low HO2 concentrations, i.e. [HO2] < 109 molecules cm-3. HO2 radicals were produced by the photolysis of water vapour in the presence of O2 and aerosol particles were produced either by atomizing dilute salt solutions or by homogeneous nucleation. HO2 uptake coefficients (γ) have been measured for single-component solid and aqueous inorganic salt and organic aerosol particles with a wide range of hygroscopicities. HO2 uptake coefficients on solid particles were below the detection limit (γ < 0.001), whereas on aqueous aerosols uptake coefficients were somewhat larger (γ = 0.001 - 0.008). HO2 uptake coefficients were highest on aerosols

  5. Detonation Initiation by Annular Jets and Shock Waves

    DTIC Science & Technology

    2007-11-02

    11,12,13,14,15,16,17,18, 19,20,21,22 to better understand the shock implosion process. The current interest in air-breathing pulse detonation engines ( PDEs ) has led...This technology has yet to be realized and, as a result, current PDEs use initiator tubes sensitized with oxygen 23 or detonate more sensitive mixtures... Detonation Initiation by Annular Jets and Shock Waves Final Report for Award ONR N00014-03 -0931 Joseph E. Shepherd Aeronautics California Institute

  6. Parametric study on the performance of automotive MR shock absorbers

    NASA Astrophysics Data System (ADS)

    Gołdasz, J.; Dzierżek, S.

    2016-09-01

    The paper contains the results of a parametric study to explore the influence of various quantities on the performance range of semi-active automotive shock absorbers using the magnetorheological (MR) fluid under steady-state and transient excitations. The analysis was performed with simulated data and using a standard single-tube shock absorber configuration with a single-gap MR valve. Additionally, the impact of material variables and valves geometry was examined as the parameters were varied and its dynamic range studied.

  7. 'Thunder' - Shock waves in pre-biological organic synthesis.

    NASA Technical Reports Server (NTRS)

    Bar-Nun, A.; Tauber, M. E.

    1972-01-01

    Theoretical study of the gasdynamics and chemistry of lightning-produced shock waves in a postulated primordial reducing atmosphere. It is shown that the conditions are similar to those encountered in a previously performed shock-tube experiment which resulted in 36% of the ammonia in the original mixture being converted into amino acids. The calculations give the (very large) energy rate of about 0.4 cal/sq cm/yr available for amino acid production, supporting previous hypotheses that 'thunder' could have been responsible for efficient large-scale production of organic molecules serving as precursors of life.

  8. Flow visualization of shock propagation in baffle systems

    SciTech Connect

    Kuhl, A.L. ); Reichenbach, H. , Freiburg im Breisgau )

    1992-09-01

    There is renewed interest in blast propagation in multi-chamber systems, related to the vulnerabilities of buried bunker systems to conventional weapons effects. In this short report, the authors suggest some idealized test problems that can be used to evaluate the accuracy of computer code calculations of such problems. The generic problem selected was that of shock wave propagation through a baffle system -- either aligned baffles or staggered baffles -- as shown schematically in a figure. Here results of shock tube experiments performed previously in the Ernst-Mach-Institut are reported.

  9. Comparison of shock severity measures

    SciTech Connect

    Baca, T.J.

    1989-01-01

    In an effort to clarify the issues associated with quantifying shock severity, this paper compares the merits of two measures of shock severity. The first measure is the widely used absolute acceleration shock response spectrum (SAA). The second measure of shock severity is relatively new and is known as the shock intensity spectrum (SIS). Overall information content of SAA and SIS spectra are compared and discussed in the context of two shock excitations having known amplitude, duration, and frequency content. The first is a burst of band-limited white noise and the second is a classical haversine pulse. After describing both the SAA and SIS shock measures, numerous examples are described which emphasize the strengths and limitations of each shock characterization method. This discussion reveals how the use of different shock measures may alter an engineer's conclusions about relative shock severity between two shock environments. 8 refs., 15 figs.

  10. Behavior of embedded phase in shock-driven two-phase flow

    NASA Astrophysics Data System (ADS)

    Kuehner, Garrett; Wayne, Patrick; Olmstead, Dell; Corbin, Clint; Bernard, Tennille; Vorobieff, Peter; Truman, C. Randall

    2013-11-01

    We present an experimental study of droplet acceleration in a shock-driven two-phase flow (air with embedded liquid droplets). The droplets (propylene glycol, diameter 0.5-3 μm) were pre-mixed with the air in the test section of a shock tube, then impulsively accelerated with planar shock wave with a Mach number of 1.7. A cross-section of the flow is illuminated with multiple pulses from Nd:YAG lasers, producing time-resolved visualizations of the seeded volume. The images are then analyzed to quantify droplet velocity and acceleration from the shock passage to about 1.5 ms after the shock. Based on the velocity measurements, we can resolve the droplet lag after the shock, when the massive droplets ``catch up'' with the flow of the surrounding air, as well as validate our earlier estimates of boundary layer growth. This research is supported by NNSA (US National Nuclear Security Agency).

  11. Neural tube defects.

    PubMed

    Greene, Nicholas D E; Copp, Andrew J

    2014-01-01

    Neural tube defects (NTDs), including spina bifida and anencephaly, are severe birth defects of the central nervous system that originate during embryonic development when the neural tube fails to close completely. Human NTDs are multifactorial, with contributions from both genetic and environmental factors. The genetic basis is not yet well understood, but several nongenetic risk factors have been identified as have possibilities for prevention by maternal folic acid supplementation. Mechanisms underlying neural tube closure and NTDs may be informed by experimental models, which have revealed numerous genes whose abnormal function causes NTDs and have provided details of critical cellular and morphological events whose regulation is essential for closure. Such models also provide an opportunity to investigate potential risk factors and to develop novel preventive therapies.

  12. Temperature measurements behind reflected shock waves in air. [radiometric measurement of gas temperature in self-absorbing gas flow

    NASA Technical Reports Server (NTRS)

    Bader, J. B.; Nerem, R. M.; Dann, J. B.; Culp, M. A.

    1972-01-01

    A radiometric method for the measurement of gas temperature in self-absorbing gases has been applied in the study of shock tube generated flows. This method involves making two absolute intensity measurements at identical wavelengths, but for two different pathlengths in the same gas sample. Experimental results are presented for reflected shock waves in air at conditions corresponding to incident shock velocities from 7 to 10 km/s and an initial driven tube pressure of 1 torr. These results indicate that, with this technique, temperature measurements with an accuracy of + or - 5 percent can be carried out. The results also suggest certain facility related problems.

  13. Shock Bench Enhancements

    NASA Astrophysics Data System (ADS)

    Charvet, B.; Dilhan, D.; Palladino, M.

    2014-06-01

    In 2008 a contract placed by CNES in partnership with ESA has led MECANO ID to develop a shock bench to qualify spacecraft equipment. A spacecraft shall withstand several shocks without degradation: launcher fairing or stages separation, spacecraft separation, the release of appendage (solar arrays, antenna reflectors, booms) and shocks generated when the pyrovalves of the propulsion system are fired.The Shock Response Spectrum (SRS) requirement, to be applied to the equipment, depends on its mass, its size and its location in the satellite. CNES has performed a survey of the pyroshock qualification requirements on CNES and ESA satellites. The outcome of the activity was the input for the bench development (Fig. 1). The design and sizing of the pyroshock bench started with non linear shock analysis with the help of the Dytran software.A lot of solutions have been compared: mono-plate, bi- plate, Hopkinson bar. The bi-plate was chosen thanks to its very rich frequency content. Also, the shock can be generated on one plate with the equipment mounted on the other, to avoid the direct transmission of the shock to the equipment basis.This study led to a 1000 mm x 650 mm steel bi-plate with a 300 mm aluminum cube fitted on one side. The equipment to test is mounted on the cube (Fig. 2 & 3).

  14. Increase of stagnation pressure and enthalpy in shock tunnels

    NASA Technical Reports Server (NTRS)

    Bogdanoff, David W.; Cambier, Jean-Luc

    1992-01-01

    High stagnation pressures and enthalpies are required for the testing of aerospace vehicles such as aerospace planes, aeroassist vehicles, and reentry vehicles. Among the most useful ground test facilities for performing such tests are shock tunnels. With a given driver gas condition, the enthalpy and pressure in the driven tube nozzle reservoir condition can be varied by changing the driven tube geometry and initial gas fill pressure. Reducing the driven tube diameter yields only very modest increases in reservoir pressure and enthalpy. Reducing the driven tube initial gas fill pressure can increase the reservoir enthalpy significantly, but at the cost of reduced reservoir pressure and useful test time. A new technique, the insertion of a converging section in the driven tube is found to produce substantial increases in both reservoir pressure and enthalpy. Using a one-dimensional inviscid full kinetics code, a number of different locations and shapes for the converging driven tube section were studied and the best cases found. For these best cases, for driven tube diameter reductions of factors of 2 and 3, the reservoir pressure can be increased by factors of 2.1 and 3.2, respectively and the enthalpy can be increased by factors of 1.5 and 2.1, respectively.

  15. Echocardiography in shock management.

    PubMed

    McLean, Anthony S

    2016-08-20

    Echocardiography is pivotal in the diagnosis and management of the shocked patient. Important characteristics in the setting of shock are that it is non-invasive and can be rapidly applied.In the acute situation a basic study often yields immediate results allowing for the initiation of therapy, while a follow-up advanced study brings the advantage of further refining the diagnosis and providing an in-depth hemodynamic assessment. Competency in basic critical care echocardiography is now regarded as a mandatory part of critical care training with clear guidelines available. The majority of pathologies found in shocked patients are readily identified using basic level 2D and M-mode echocardiography. A more comprehensive diagnosis can be achieved with advanced levels of competency, for which practice guidelines are also now available. Hemodynamic evaluation and ongoing monitoring are possible with advanced levels of competency, which includes the use of colour Doppler, spectral Doppler, and tissue Doppler imaging and occasionally the use of more recent technological advances such as 3D or speckled tracking.The four core types of shock-cardiogenic, hypovolemic, obstructive, and vasoplegic-can readily be identified by echocardiography. Even within each of the main headings contained in the shock classification, a variety of pathologies may be the cause and echocardiography will differentiate which of these is responsible. Increasingly, as a result of more complex and elderly patients, the shock may be multifactorial, such as a combination of cardiogenic and septic shock or hypovolemia and ventricular outflow obstruction.The diagnostic benefit of echocardiography in the shocked patient is obvious. The increasing prevalence of critical care physicians experienced in advanced techniques means echocardiography often supplants the need for more invasive hemodynamic assessment and monitoring in shock.

  16. The electrostatic storage tube

    NASA Technical Reports Server (NTRS)

    Rutherford, R. E., Jr.

    1973-01-01

    An electrostatic camera system is discussed which is based on the electrostatic storage tube. The development of the system was begun following a series of experiments which indicated that the device offers signficantly improved performance over currently available devices. The approach used in developing the high performance camera involves: converting the input image to an electron image at low loss, applying a low noise gain process, and storing the resulting charge pattern in a low-loss target. The basic processes and elements of the electrostatic storage tube are illustrated and discussed. Graphs that depict the camera performance characteristics are included.

  17. PRODUCTION OF URANIUM TUBING

    DOEpatents

    Creutz, E.C.

    1958-04-15

    The manufacture of thin-walled uranium tubing by the hot-piercing techique is described. Uranium billets are preheated to a temperature above 780 d C. The heated billet is fed to a station where it is engaged on its external surface by three convex-surfaced rotating rollers which are set at an angle to the axis of the billet to produce a surface friction force in one direction to force the billet over a piercing mandrel. While being formed around the mandrel and before losing the desired shape, the tube thus formed is cooled by a water spray.

  18. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  19. Palaeoclimate: Aerosols shift lake ecosystem

    NASA Astrophysics Data System (ADS)

    Dowsett, Harry J.

    2017-02-01

    Anthropogenic aerosols over the Chinese Loess Plateau have diminished monsoon precipitation and concomitant soil erosion that plagues the region. Now, a reconstruction documents the differences between historical warming events and the present, highlighting the paradoxical implications of decreasing atmospheric aerosols.

  20. Generation of aerosolized drugs.

    PubMed

    Wolff, R K; Niven, R W

    1994-01-01

    The expanding use of inhalation therapy has placed demands on current aerosol generation systems that are difficult to meet with current inhalers. The desire to deliver novel drug entities such as proteins and peptides, as well as complex formulations including liposomes and microspheres, requires delivery systems of improved efficiency that will target the lung in a reproducible manner. These efforts have also been spurred by the phase out of chlorofluorocarbons (CFCs) and this has included a directed search for alternative propellants. Consequently, a variety of new aerosol devices and methods of generating aerosols are being studied. This includes the use of freon replacement propellants, dry powder generation systems, aqueous unit spray systems and microprocessor controlled technologies. Each approach has advantages and disadvantages depending upon each principle of action and set of design variables. In addition, specific drugs may be better suited for one type of inhaler device vs. another. The extent to which aerosol generation systems achieve their goals is discussed together with a summary of selected papers presented at the recent International Congress of Aerosols in Medicine.

  1. Aerosol chemistry in GLOBE

    NASA Technical Reports Server (NTRS)

    Clarke, Antony D.; Rothermel, Jeffry; Jarzembski, Maurice A.

    1993-01-01

    This task addresses the measurement and understanding of the physical and chemical properties of aerosol in remote regions that are responsible for aerosol backscatter at infrared wavelengths. Because it is representative of other clean areas, the remote Pacific is of extreme interest. Emphasis is on the determination size dependent aerosol properties that are required for modeling backscatter at various wavelengths and upon those features that may be used to help understand the nature, origin, cycling and climatology of these aerosols in the remote troposphere. Empirical relationships will be established between lidar measurements and backscatter derived from the aerosol microphysics as required by the NASA Doppler Lidar Program. This will include the analysis of results from the NASA GLOBE Survey Mission Flight Program. Additional instrument development and deployment will be carried out in order to extend and refine this data base. Identified activities include participation in groundbased and airborne experiments. Progress to date includes participation in, analysis of, and publication of results from Mauna Loa Backscatter Intercomparison Experiment (MABIE) and Global Backscatter Experiment (GLOBE).

  2. Numerical simulation of transient hypervelocity flow in an expansion tube

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1992-01-01

    Several numerical simulations of the transient flow of helium in an expansion tube are presented. The aim of the exercise is to provide further information on the operational problems of the NASA Langley expansion tube. The calculations were performed with an axisymmetric Navier-Stokes code based on a finite-volume formulation and upwinding techniques. Although laminar flow and ideal bursting of the diaphragms was assumed, the simulations showed some of the important features seen in the experiments. In particular, the discontinuity in the tube diameter at the primary diaphragm station introduced a transverse perturbation to the expanding driver gas, and this perturbation was seen to propagate into the test gas under some flow conditions. The disturbances seen in the test flow can be characterized as either 'small-amplitude' noise possibly introduced during shock compression or 'large-amplitude' noise associated with the passage of the reflected head of the unsteady expansion.

  3. Analysis of potential for jet-impingement erosion from leaking steam generator tubes during severe accidents.

    SciTech Connect

    Majumdar, S.; Diercks, D. R.; Shack, W. J.; Energy Technology

    2002-05-01

    This report summarizes analytical evaluation of crack-opening areas and leak rates of superheated steam through flaws in steam generator tubes and erosion of neighboring tubes due to jet impingement of superheated steam with entrained particles from core debris created during severe accidents. An analytical model for calculating crack-opening area as a function of time and temperature was validated with tests on tubes with machined flaws. A three-dimensional computational fluid dynamics code was used to calculate the jet velocity impinging on neighboring tubes as a function of tube spacing and crack-opening area. Erosion tests were conducted in a high-temperature, high-velocity erosion rig at the University of Cincinnati, using micrometer-sized nickel particles mixed in with high-temperature gas from a burner. The erosion results, together with analytical models, were used to estimate the erosive effects of superheated steam with entrained aerosols from the core during severe accidents.

  4. Shock formation of HCO/+/

    NASA Astrophysics Data System (ADS)

    Elitzur, M.

    1983-04-01

    It is shown that shocks propagating in dense molecular regions will lead to a decrease in HCO(+) relative abundance, in agreement with previous results by Iglesias and Silk (1978). The shock enhancement of HCO(+) detected in the supernova remnant IC 443 by Dickinson et al. (1980) is due to enhanced ionization in the shocked material. This is the result of the material penetrating the remnant cavity where it becomes exposed to the trapped cosmic rays. A similar enhancement appears to have been detected by Wootten in W28 and is explained by the same model.

  5. Sepsis and septic shock.

    PubMed

    Maloney, Patrick J

    2013-08-01

    Early recognition of sepsis and septic shock in children relies on obtaining an attentive clinical history, accurate vital signs, and a physical examination focused on mental status, work of breathing, and circulatory status. Laboratory tests may support the diagnosis but are not reliable in isolation. The goal of septic shock management is reversal of tissue hypoperfusion. The therapeutic end point is shock reversal. Mortality is significantly better among children when managed appropriately. Every physician who cares for children must strive to have a high level of suspicion and keen clinical acumen for recognizing the rare but potentially seriously ill child.

  6. Shock effects in meteorites

    NASA Technical Reports Server (NTRS)

    Stoeffler, D.; Bischoff, A.; Buchwald, V.; Rubin, A. E.

    1988-01-01

    The impacts that can occur between objects on intersecting solar system orbits can generate shock-induced deformations and transformations, creating new mineral phases or melting old ones. These shock-metamorphic effects affect not only the petrography but the chemical and isotopic properties and the ages of primordial meteoritic materials. A fuller understanding of shock metamorphism and breccia formation in meteorites will be essential not only in the study of early accretion, differentiation, and regolith-evolution processes, but in the characterization of the primordial composition of the accreted material itself.

  7. Shocks near Jamming

    NASA Astrophysics Data System (ADS)

    Gómez, Leopoldo R.; Turner, Ari M.; van Hecke, Martin; Vitelli, Vincenzo

    2012-02-01

    Nonlinear sound is an extreme phenomenon typically observed in solids after violent explosions. But granular media are different. Right when they jam, these fragile and disordered solids exhibit a vanishing rigidity and sound speed, so that even tiny mechanical perturbations form supersonic shocks. Here, we perform simulations in which two-dimensional jammed granular packings are dynamically compressed and demonstrate that the elementary excitations are strongly nonlinear shocks, rather than ordinary phonons. We capture the full dependence of the shock speed on pressure and impact intensity by a surprisingly simple analytical model.

  8. Converging shocks for DSD modelling

    NASA Astrophysics Data System (ADS)

    Matignon, Christophe

    2013-06-01

    Modelling of pyrotechnic systems requires both, a good understanding and precise prediction capabilities of the dynamics of detonation. When using insensitive high explosives IHE (such as TATB-based explosives) the interaction of the detonation front with the confinement can lead to very different detonation velocities. One of the most popular engineering tools used to model this behaviour is the Detonation Shock Dynamics (DSD). In the DSD assumption, the detonation front propagates at a normal shock velocity (Dn) which depends only on its local curvature (κ). For divergent detonations, the DSD limit is very well established both experimentally and theoretically and one can easily propose a model (which obeys the 1D quasi-steady weakly curved detonation theory) to reproduce this behavior. We propose to extend the DSD theory to slightly convergent detonation fronts and to validate it against experimental data. Two series of experiments were carried out. The first series was designed to collect precise information regarding converging detonation. Usually, in such configurations, the detonation is non steady, making precise and simultaneous measurements of velocity and curvature difficult to achieve. The originality of the proposed setup is to drive a self similar convergent detonation at constant speed in an IHE rod by an external explosive tube of greater detonation velocity (allowing an accurate recording of both velocity and curvature). A wide range EOS/reaction rate model (inspired from previous works of Wescott et al.) was then calibrated to reproduce both the strong shock initiation and the newly extended (Dn- κ) law. This model can be used to perform either direct numerical simulation (DNS) on fine resolved mesh grid, or its reduced PZR model (DSD based) on a much coarser grid. This model was then successfully validated against the second series of experiments involving a detonation propagating around an obstacle and exhibiting a non steady converging front

  9. Manufacturing SP-100 rhenium tubes

    NASA Astrophysics Data System (ADS)

    Sayre, Edwin D.; Ruffo, Thomas J.

    1992-01-01

    A process for producing high quality, thin walled, wrought, rhenium tubing was successfully developed and qualified in the SP-100 fuel fabrication program. Rhenium was selected for the fuel-cladding barrier versus tungsten because of the cold workability and nuclear characteristics of rhenium. Several tube fabricating processes including swaging, drawing, and extruding sintered tube shells and chemical vapor deposition were evaluated before a drawn tube made by forming and electron beam welding rhenium strip was selected as the most cost effective. The process for making the rhenium tubes is discussed in general and the tube, room temperature, tensile properties are compared favorably with the properties reported in the literature.

  10. Chemical aerosol Raman detector

    NASA Astrophysics Data System (ADS)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Amin, M.; Perkins, B. G.; Clark, M. L.; Jeys, T. H.; Sickenberger, D. W.; D'Amico, F. M.; Emmons, E. D.; Christesen, S. D.; Kreis, R. J.; Kilper, G. K.

    2017-03-01

    A sensitive chemical aerosol Raman detector (CARD) has been developed for the trace detection and identification of chemical particles in the ambient atmosphere. CARD includes an improved aerosol concentrator with a concentration factor of about 40 and a CCD camera for improved detection sensitivity. Aerosolized isovanillin, which is relatively safe, has been used to characterize the performance of the CARD. The limit of detection (SNR = 10) for isovanillin in 15 s has been determined to be 1.6 pg/cm3, which corresponds to 6.3 × 109 molecules/cm3 or 0.26 ppb. While less sensitive, CARD can also detect gases. This paper provides a more detailed description of the CARD hardware and detection algorithm than has previously been published.

  11. Heat-shrink plastic tubing seals joints in glass tubing

    NASA Technical Reports Server (NTRS)

    Del Duca, B.; Downey, A.

    1968-01-01

    Small units of standard glass apparatus held together by short lengths of transparent heat-shrinkable polyolefin tubing. The tubing is shrunk over glass O-ring type connectors having O-rings but no lubricant.

  12. Time-dependent simulation of reflected-shock/boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Wilson, Gregory J.; Sharma, Surendra P.; Gillespie, Walter D.

    1993-01-01

    An initial numerical/experimental investigation has been done to better understand multi-dimensional flow phenomena inside pulse facilities. Time-dependent quasi-one-dimensional and axisymmetric numerical simulations of complete shock tube flow are compared with experimental pressure traces recorded at the NASA Ames electric-arc driven shock tube facility (from cold driver shots). Of particular interest is the interaction between the reflected shock wave and the boundary layer. Evidence of the shock bifurcation caused by this interaction is clearly seen in the present experimental data. The axisymmetric simulations reproduce this phenomenon and demonstrate how this interaction can provide a mechanism for driver gas to contaminate the stagnation region. The simulations incorporate finite-rate chemistry, a moving mesh and laminar viscosity.

  13. Evolution of shock through a void in foam

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Smidt, J. M.; Murphy, T. J.; Douglass, M. R.; Devolder, B. G.; Fincke, J. R.; Schmidt, D. W.; Cardenas, T.; Newman, S. G.; Hamilton, C. E.; Sedillo, T. J.; Los Alamos, NM 87544 Team

    2016-10-01

    Marble implosion is an experimental campaign intended to study the effects of heterogeneous mix on fusion burn. A spherical capsule is composed of deuterated plastic foam of controlled pore (or void) size with tritium fill in pores. As capsule implosion evolves, the initially separated deuterium and tritium will mix, producing DT yields. Void evolution during implosion is of interest for the Marble campaign. A shock tube, driven by the laser at Omega, was designed to study the evolution of a shock through a foam-filled ``void'' and subsequent void evolution. Targets were comprised of a 100 mg/cc CH foam tube containing a 200-µm diameter, lower density doped foam sphere. High-quality, radiographic images were obtained from both 2% iodine-doped in plastic foam and 15% tin-doped in aerogel foam. These experiments will be used to inform simulations.

  14. Flux Tube Model

    NASA Astrophysics Data System (ADS)

    Steiner, O.

    2011-05-01

    This Fortran code computes magnetohydrostatic flux tubes and sheets according to the method of Steiner, Pneuman, & Stenflo (1986) A&A 170, 126-137. The code has many parameters contained in one input file that are easily modified. Extensive documentation is provided in README files.

  15. Snorkeling and Jones tubes

    PubMed Central

    Lam, Lewis Y. W.; Weatherhead, Robert G.

    2015-01-01

    Summary We report a case of tympanic membrane rupture during snorkeling in a 17-year-old young man who had previously undergone bilateral Jones tubes placed for epiphora. To our knowledge, this phenomenon has not been previously reported. PMID:27330470

  16. Tube Feeding Transition Plateaus

    ERIC Educational Resources Information Center

    Klein, Marsha Dunn

    2007-01-01

    The journey children make from tube feeding to oral feeding is personal for each child and family. There is a sequence of predictable plateaus that children climb as they move toward orally eating. By better understanding this sequence, parents and children can maximize the development, learning, enjoyment and confidence at each plateau. The…

  17. Misdirected Minitracheostomy Tube

    PubMed Central

    Singh, Ajmer; Nanda, Chinmaya; Mehta, Yatin

    2017-01-01

    We report a patient who after an uneventful coronary artery bypass graft surgery and left ventricular aneurysmorrhaphy developed intracerebral hemorrhage and subsequently required minitracheostomy. Chest X-ray showed misdirected minitracheostomy tube facing upward toward the laryngeal opening which was repositioned using bronchoscope. PMID:28074805

  18. Misdirected minitracheostomy tube.

    PubMed

    Singh, Ajmer; Nanda, Chinmaya; Mehta, Yatin

    2017-01-01

    We report a patient who after an uneventful coronary artery bypass graft surgery and left ventricular aneurysmorrhaphy developed intracerebral hemorrhage and subsequently required minitracheostomy. Chest X-ray showed misdirected minitracheostomy tube facing upward toward the laryngeal opening which was repositioned using bronchoscope.

  19. Investigation of Pitot tubes

    NASA Technical Reports Server (NTRS)

    Herschel, W H; Buckingham, E

    1917-01-01

    Report describes the principles of operation and characteristics of some of the instruments which have been devised or used to measure both low and high speeds of aeroplanes. Since the pitot tube is the instrument which has been most commonly used in the United States and Great Britain as a speedometer for aeroplanes, it is treated first and somewhat more fully than the others.

  20. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.