Science.gov

Sample records for aerosol source regions

  1. AERONET - Aerosol Climatology From Megalopolis Aerosol Source Regions

    NASA Astrophysics Data System (ADS)

    Holben, B. N.; Eck, T. F.; Dubovik, O.; Smirnov, A.; Slutsker, I.; Artaxo, P.; Leyva, A.; Lu, D.; Sano, I.; Singh, R. P.; Quel, E.; Tanre, D.; Zibordi, G.

    2002-05-01

    AERONET is a globally distributed network of ~170 identical sun and sky scanning spectral radiometers expanded by federation with collaborating investigators that contribute to the AERONET public domain data-base. We will detail the current distribution and plans for expanded collaboration. Recent products available through the project database are important for assessment of human health as well as climate forcing issues. We will illustrate a summary of aerosol optical properties measured in Indian, East Asian, North American, South American and European megalopolis source regions. We will present monthly mean fine and coarse particle aerosol optical depth, particle size distributions and single scattering albedos. Each region represents a population in excess of 10 million inhabitants within a 200 km radius of the observation site that dictate the anthropogenic aerosol sources contributing to significantly diverse aerosol properties as a function of economic development and seasonally dependent meteorological processes. The diversity of the measured optical properties of urban aerosols illustrates the need for long-term regional monitoring that contribute to comparative assessments for health and climate change investigations.

  2. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  3. Regional versus Local Sources of aerosols over Cyprus

    NASA Astrophysics Data System (ADS)

    Kleanthous, Savvas; Nicolaou, Panagiota; Theodosi, Christina; Zarmpas, Pavlos; Christofides, Ioannis; Mihalopoulos, Nikolaos

    2013-04-01

    Long term monitoring of PM concentrations in Cyprus reported the occurrence of a significant number of PM exceedances above the limits set by EU legislation and point out the need for abatement strategies. To address these critical issues, mass and chemical composition of daily PM10 aerosol samples were collected at a suburban (Limassol; LIM RES), a natural background site (EMEP site, Ayia Marina) and an urban center (Nicosia, NIC TRA) from January 2010 to December 2010. By considering the chemical composition measured at EMEP as representative of the regional background, the contribution of local sources at both NIC TRA and LIM RES sites can be also estimated. In total, "local" ions account for 1.7 and 2.4 μg m-3, i.e 33 and 48% of the total ionic mass recorded in NIC TRA and LIM RES. Sea salt attained levels of 2.3 ± 1.2 μg m-3, 1.9 ± 1.3 μg m-3 and 3.5 ± 2.3 μg m-3, contributing up to 10, 7 and 11% of the PM10 mass measured at EMEP, NIC TRA and LIM RES, respectively. The local concentrations of OC and EC were equal to 3.3±1.1 μg m-3 and 3.2±1.3 μg m-3 for NIC TRA and 1.70±0.03 μg m-3 and 1.39±0.42 μg m-3 for LIM RES relative to the values measured at the EMEP site. The high EC concentrations in NIC TRA underline the major role of traffic-related emissions. As expected for the natural background site, OC/EC ratio equals 4.84, a strong indicator of secondary organic aerosol (SOA) formation. Whereas in the urban and suburban sites, the OC/EC ratio is lower ranging from 1.46 to 1.84, denoting significant influence from fossil fuel primary emissions in the studied areas. Considering that dust at EMEP is due to "regional" dust, the dust measured at both traffic related sites is the sum of "regional" and "local dust", the second most probably originating from soil dust and car/road abrasion. The "local dust" at NIC TRA and LIM RES accounted for 28% and 21% of the total PM10 mass, whilst regional dust at EMEP of 45%. The temporal variation of "local dust

  4. Blowing Snow - A Major Source of Aerosol in the Polar Regions?

    NASA Astrophysics Data System (ADS)

    Kalnajs, L.; DeCarlo, P. F.; Giordano, M.; Davis, S. M.; Deshler, T.; Johnson, A.; Goetz, J. D.; Mukherjee, A. D.; Slater, A. G.

    2015-12-01

    Sea salt aerosol is the dominant aerosol component in unpolluted Polar Regions, particularly in the sea ice zone. In the lower latitude liquid ocean, wave action and bubble bursting is thought to be the main mechanism for sea salt aerosol production. However there is growing evidence that in the Polar Regions, particularly near sea ice, that the sublimation of wind lofted salty snow may be a dominant source of sea salt aerosol. An extensive set of aerosol sizing and compositional measurements was made at sea ice location near Ross Island, Antarctica during two field measurement campaigns - a summer campaign in 2014 and late winter campaign in 2015. Sizing measurements from both open and closed path aerosol instruments, and compositional measurements from an Aerosol Mass Spectrometer suggest that there is a significant enhancement in both super and sub micron aerosol associated with high wind events and blowing snow in the boundary layer. While the composition of this aerosol indicates that it is primarily of marine origin, the ratios of the major sea salt ions suggest that processing in the snow pack significantly modifies the aerosol. This alternate sea salt aerosol production mechanism could have significant impact on the modeling of tropospheric halogen chemistry and on the interpretation of sea salt-based proxies in the ice core record.

  5. Solubility of aerosol trace elements: sources and deposition fluxes in the Canary Region

    NASA Astrophysics Data System (ADS)

    Gelado-Caballero, María Dolores; López-García, Patricia; Patey, Matthew; Prieto, Sandra; Collado, Cayetano; Santana, Desire; Hernández-Brito, Joaquín

    2013-04-01

    To date there have been no long-term aerosol studies in the Canary Basin, and current estimates of soluble fluxes of Al, Mn, Fe, P and N for the region are based on limited data available from several oceanographic research cruises which have crossed the region during large transects of the Atlantic Ocean. In this study, aerosol samples have been collected at two stations on the island of Gran Canaria regularly since 2006 (Taliarte, at sea level, and Pico de la Gorra, at 1930 m altitude). Samples have been analysed for total and soluble trace metals (Al, Mn, Fe, Co, Cu and Ti). The high temporal resolution of this dataset represents a valuable contribution to the understanding of aerosol deposition of trace metals to the region. Solubility measurements from acetate buffer leaching experiments showed the same tendency in the percentage of soluble metals in the samples: a higher percentage solubility of metals in anthropogenic aerosols and at low dust loading. Moreover, categorisation of aerosol samples with a continental African origin according to air-mass back-trajectories (North of Africa, Central and Western Sahara and Sahel) showed a decreasing tendency in the percentage of soluble Al and Fe to the south. In addition, factors that can affect the percentage solubility values for crustal elements and comparisons with different methods were studied. Freezing the samples stored affects the measurements of Al and Fe solubility. This last result is important for the design of future aerosol sampling programmes and aerosol solubility experiments. Flux estimates for aerosol-derived soluble metals reveal that phosphate is highly depleted relative to Fe and N when compared with Redfield values. It appears that aerosol deposition is an important source of N and trace metals (Fe, Co, Mn and Al) to the NE subtropical Atlantic Ocean. This work has been supported by the European Commission FEDER funds (PCT MAC 2007-2013, ESTRAMAR Mac/3/C177).

  6. The Vertical Structure, Sources, and Evolution of Aerosols in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Bourrianne, Thierry; Léon, Jean-François; Pont, Véronique; Mallet, Marc; Lambert, Dominique; Augustin, Patrick; Dulac, François; Junkermann, Wolfgang

    2013-04-01

    The VESSAER campaign (VErtical Structure and Sources of AERosols in the Mediterranean Region) was designed to characterize the different sources of aerosol in the Mediterranean Basin and assess the regional impact of aerosol on cloud microphysical and radiative properties. VESSAER was conducted on an ultra-light aircraft in summer 2012. Research activities included ground-based observations in the central and northern regions of Corsica, as well as aerosol lidar and sunphotometer measurements near the eastern coast. The main scientific goals were to investigate local versus long-range sources of aerosol and cloud condensation nuclei (CCN) and their vertical stratification in the lower troposphere, study evolution and ageing due to atmospheric processes, and determine aerosol direct radiative impacts over a larger spatial scale. The background aerosol concentrations (D > 0.01 um) within the boundary layer in Corsica were nearly 2000 cm^-3 and increased to ca. 104 cm^-3 during pollution events when back-trajectories originated from coastal areas in France and Italy and the Po Valley. Nearly all of these particles were CCN-active at 0.38% supersaturation, indicating a relatively hygroscopic aerosol. Vertical profiles of aerosol hygroscopicity revealed that ageing (with respect to CCN-activity) of European emissions occurred exclusively in the boundary layer. Within two days, the European emissions had become hygroscopic, probably a result of cloud processing. In contrast, aerosol hygroscopicity did not change as a function of transport time in elevated aerosol layers, suggesting that photochemical ageing of less hygroscopic material is relatively slow compared to ageing processes in the boundary layer. The vertical profiles clearly showed the long-range transport of dust from the Saharan Desert and pollution from the European continent, which were the two major sources of aerosol during the campaign. Two of the research flights coincided with CALIPSO overpasses, when

  7. Tracing impacts of local and regional emission sources on the aerosols over Central Himalayan region during GVAX

    NASA Astrophysics Data System (ADS)

    Sahai, Shivraj; Sagar, Ram; Pant, P.; Krishna Moorthy, K.; Venkata Phanikumar, Devulapalli; Dumka, Umesh Chandra; Pant, Vimlesh; Singh, Narendra; Kotamarthi, V. R.; Naja, Manish; Satheesh, S. K.

    2012-07-01

    -range transport impact, available satellite products over the Indo-Gangetic Plain (IGP) of relevance to biomass burning (Carbon monoxide, Aerosol Optical Depth, Fire products, etc) have been exploited to relate to the observed aerosol physical properties during GVAX. The findings are expected to reveal the linkages between local and regional emission sources (biomass burning in particular) and atmospheric perturbations.

  8. Potential source regions and processes of aerosol in the summer Arctic

    NASA Astrophysics Data System (ADS)

    Heintzenberg, J.; Leck, C.; Tunved, P.

    2015-06-01

    Sub-micrometer particle size distributions measured during four summer cruises of the Swedish icebreaker Oden 1991, 1996, 2001, and 2008 were combined with dimethyl sulfide gas data, back trajectories, and daily maps of pack ice cover in order to investigate source areas and aerosol formation processes of the boundary layer aerosol in the central Arctic. With a clustering algorithm, potential aerosol source areas were explored. Clustering of particle size distributions together with back trajectories delineated five potential source regions and three different aerosol types that covered most of the Arctic Basin: marine, newly formed and aged particles over the pack ice. Most of the pack ice area with < 15% of open water under the trajectories exhibited the aged aerosol type with only one major mode around 40 nm. For newly formed particles to occur, two conditions had to be fulfilled over the pack ice: the air had spent 10 days while traveling over ever more contiguous ice and had traveled over less than 30% open water during the last 5 days. Additionally, the air had experienced more open water (at least twice as much as in the cases of aged aerosol) during the last 4 days before arrival in heavy ice conditions at Oden. Thus we hypothesize that these two conditions were essential factors for the formation of ultrafine particles over the central Arctic pack ice. In a comparison the Oden data with summer size distribution data from Alert, Nunavut, and Mt. Zeppelin, Spitsbergen, we confirmed the Oden findings with respect to particle sources over the central Arctic. Future more frequent broken-ice or open water patches in summer will spur biological activity in surface water promoting the formation of biological particles. Thereby low clouds and fogs and subsequently the surface energy balance and ice melt may be affected.

  9. Vertical Structure and Sources of Aerosols in the Mediterranean Region (VESSAER)

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Junkermann, W.; Leon, J.; Pont, V.; Mallet, M.; Augustin, P.; Dulac, F.

    2012-12-01

    The Mediterranean region has been identified as one of the most prominent global "Hot-Spots" in future climate change projections [Giorgi and Lionello, 2008] and is particularly characterized by its vulnerability to changes in the water cycle. To this end, the VESSAER campaign (VErtical Structure and Sources of AERosols in the Mediterranean Region) was designed to characterize the different sources of aerosol in the Mediterranean Basin and assess their regional impact on cloud microphysical and radiative properties. VESSAER was conducted on the ENDURO-KIT ultra-light aircraft [W. Junkermann, 2001] in late June-early July 2012. Activities include ground observations as well as aerosol lidar and sunphotometer measurements in conjunction with the airborne measurements. The VESSAER campaign complements existing ChArMEx (http://charmex.lsce.ipsl.fr/ ; PI: F. Dulac) and HyMeX (http://www.hymex.org/ ; PI: V. Ducroc and P. Drobinski) activities, which are the target of many European research institutes in 2012 and 2013. The main scientific goals during VESSAER are to investigate local versus long-range sources of aerosol and cloud condensation nuclei (CCN) and their vertical stratification in the lower troposphere, use aerosol hygroscopicity to study their evolution due to atmospheric processes, and couple in-situ airborne measurements with ground-based remote sensing to determine aerosol direct radiative impacts over a larger spatial scale. The background aerosol concentrations within the boundary layer (BL) in Corsica are nearly 2000 cm-3 (Dp > 10 nm); 50 cm-3 (Dp > 300 nm). We were surprised to find that nearly all of these particles are CCN-active at 0.3% supersaturation and presume that ageing and/or cloud processing play a role in rendering the aerosol in the Mediterranean Basin more hygroscopic. The vertical profiles during VESSAER clearly show the long-range transport of dust from the Saharan Desert and pollution from the European continent -- which were the two

  10. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    NASA Technical Reports Server (NTRS)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  11. Regional source identification of atmospheric aerosols in Beijing based on sulfur isotopic compositions

    NASA Astrophysics Data System (ADS)

    Lianfang, Wei; Pingqing, Fu; Xiaokun, Han; Qingjun, Guo; Yele, Sun; Zifa, Wang

    2016-04-01

    65 daily PM2.5 (aerosol particle with aerodynamic diameter less than 2.5 μm) samples were collected from an urban site in Beijing in four months representing the four seasons between September 2013 and July 2014. Inorganic ions, organic/elemental carbon and stable sulfur isotopes of sulfate aerosols were analyzed systematically. The "fingerprint" characteristics of the stable sulfur isotopic composition, together with trajectory clustering modeled by HYSPLIT-4 and potential source contribution function (PSCF), were employed for identifying potential regional sources. Results obviously exhibited the distinctive seasonality for various aerosol speciation associated with PM2.5 in Beijing with sulfate, nitrate, ammonium, organic matter, and element carbon being the dominant species. Elevated chloride associated with higher concentration of organics were found in autumn and winter, due to enhanced coal combustion emissions. The δ34S values of Beijing aerosol samples ranged from 2.94‰ to 10.2‰ with an average value of 6.18±1.87‰ indicating that the major sulfur source is direct fossil fuel burning-related emissions. Owning to a temperature-dependent fractionation and elevated biogenic sources of isotopically light sulfur in summer, the δ34S values had significant seasonal variations with a winter maximum ( 8.6‰)and a summer minimum ( 5.0‰). The results of trajectory clustering and the PSCF method demonstrated that higher concentrations of sulfate with lower sulfur isotope ratios ( 4.83‰) were associated with air masses from the south, southeast or east, whereas lower sulfate concentrations with higher δ34S values ( 6.69‰) when the air masses were mainly from north or northwest. These results suggested two main different kinds of regional coal combustion sources contributed to the pollution in Beijing.

  12. MISR observations at dust source regions: 10-year analysis of aerosol properties and plume heights.

    NASA Astrophysics Data System (ADS)

    Kalashnikova, Olga; Sokolik, Irina; Garay, Michael; Wu, Dong

    Multiangle remote sensing, in particular from Terra/MISR, provides a unique, independent source of data for study dust emission and transport. MISR/Terra is an imaging instrument that uses combination of multi-spectral and multi-angle data to retrieve aerosol properties and aerosol plume heights. A number of validation studies have shown that MISR provides reliable optical depth values over the bright desert. We use the 10-year aerosol data record from the Multi-angle Imaging SpectroRadiometer (MISR) aboard the Terra satellite to investigate the inter-annual and seasonal variability of dust loadings and properties as retrieved by MISR at selected dust source regions. In particular, we examine the Taklamakan, East and Central Gobi regions in Asia, and Mauritania desert and Bodélé Basin regions in Africa. Within each ee selected region, the analysis was performed to examine the multi-annual mean and variability of the aerosol optical depth and particle properties, taking into account the effects of MISR sampling and cloud coverage. To avoid the gridding and averaging effects as much as possible we use the instantaneous Level 2 MISR data for the analysis. We use AERONET data and other independent measurements where available to supplement and constrain MISR product. In addition to the optical depth/property analysis, we report 10-year climatology of dust plume heights over Bodélé Basin as function of the distance from the source. We demonstrate that, ee while there are some effects of large-scale dynamics on dust loadings and heights, the various differences in anomaly time series (including month-to-month differences) reveal the role of meso-scale systems specific to the each source region. These source-specific differences provide valuable information for testing/validating the regional dust transport models. The results will be presented and interpreted in the context of atmospheric dynamics variability, including variability of meteorological regimes in dust

  13. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-09-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  14. Aeronet-based Microphysical and Optical Properties of Smoke-dominated Aerosol near Source Regions and Transported over Oceans, and Implications for Satellite Retrievals of Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-01-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad families of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA 0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA 0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savanna at Mongu (Zambia), with average SSA 0.85 in the midvisible. These can serve as candidate sets of aerosol microphysicaloptical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  15. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    NASA Astrophysics Data System (ADS)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  16. Carbonaceous aerosol over semi-arid region of western India: Heterogeneity in sources and characteristics

    NASA Astrophysics Data System (ADS)

    Sudheer, A. K.; Aslam, M. Y.; Upadhyay, M.; Rengarajan, R.; Bhushan, R.; Rathore, J. S.; Singh, S. K.; Kumar, S.

    2016-09-01

    Carbonaceous species (elemental carbon (EC), organic carbon (OC), water-soluble organic carbon (WSOC)) and water-soluble inorganic species (Na+, NH4+, K+, Ca2 +, Mg2 +, Cl-, NO3-, SO42 -) in PM10 and PM2.5 from Ahmedabad and Jodhpur (urban and semi-urban locations, respectively) in western India were measured during May-September, 2011. Stable isotope composition of carbonaceous aerosol (δ13C of TC) in PM10 samples was also determined. Average EC concentration in PM10 at Ahmedabad was 1 μg m- 3 (range: 0.34 to 3.4 μg m- 3), almost 80% of which remained in PM2.5. Similarly, 70% of EC in PM10 (average: 0.9 μg m- 3) resided in PM2.5 at Jodhpur. Average OC concentration at Ahmedabad was 6.4 μg m- 3 and ~ 52% of this was found in PM2.5. On the contrary, OC concentration at Jodhpur was 40 μg m- 3, 80% of which was found in coarse particles contributing substantially to aerosol mass. δ13C of TC (average: - 27.5‰, range: - 29.6 to - 25.8‰) along with WSOC/EC ratio shows an increasing trend at Jodhpur suggesting the possibility of aging of aerosol, since aging results in enrichment of heavier isotope. OC and WSOC show significant correlations with K+ and not with EC, indicating biogenic origin of OC. Different size distributions are also exhibited by WSOC at the two stations. On the other hand, δ13C exhibits an inverse trend with sea-salt constituents at Ahmedabad, indicating the influence of air masses transported from the western/south-western region on carbonaceous aerosol. These results suggest that a strong heterogeneity exists in the sources of carbonaceous aerosol over this region and potential sources of non-combustion emissions such as bio-aerosol that need further investigation.

  17. AERONET-based models of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2014-10-01

    Smoke aerosols from biomass burning are an important component of the global aerosol system. Analysis of Aerosol Robotic Network (AERONET) retrievals of aerosol microphysical/optical parameters at 10 sites reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke observed at coastal/island AERONET sites also mostly lie within the range of variability at the near-source sites. Differences between sites tend to be larger than variability at an individual site, although optical properties for some sites in different regions can be quite similar. Across the sites, typical midvisible SSA ranges from ~ 0.95-0.97 (sites dominated by boreal forest or peat burning, typically with larger fine-mode particle radius and spread) to ~ 0.88-0.9 (sites most influenced by grass, shrub, or crop burning, typically smaller fine-mode particle radius and spread). The tropical forest site Alta Floresta (Brazil) is closer to this second category, although with intermediate SSA ~ 0.92. The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average midvisible SSA ~ 0.85. Sites with stronger absorption also tend to have stronger spectral gradients in SSA, becoming more absorbing at longer wavelengths. Microphysical/optical models are presented in detail so as to facilitate their use in radiative transfer calculations, including extension to UV (ultraviolet) wavelengths, and lidar ratios. One intended application is to serve as candidate optical models for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean often have insufficient absorption (i.e. too high SSA) to represent these biomass burning aerosols. The underestimates in satellite-retrieved AOD in smoke outflow regions, which have important consequences for applications of these satellite data sets, are consistent with

  18. The AIRPARIF-AEROSOL project: A comprehensive source apportionment study of fine aerosols (PM2.5) in the region of Paris (France)

    NASA Astrophysics Data System (ADS)

    Sciare, Jean; Ghersi, Veronique; Bressi, Michael; Lameloise, Philippe; Bonnaire, Nicolas; Rosso, Amandine; Nicolas, Jose; Moukhtar, Sophie; Ferron, Anais; Baumier, Dominique

    2010-05-01

    With a population of about 12 millions inhabitants (20% of the French population), Greater Paris (France) is one of the most populated megacity in Europe and among the few located in developed countries. Due to its favorable geographical situation (far from other big European cities and influenced very often by clean oceanic air masses), it may be considered as a good candidate for investigating the build-up of urban air pollution from temperate industrialized countries. Particulate mass of fine aerosols with aerodynamic diameter below 2.5μm (PM2.5) is continuously monitored at several stations from great Paris for almost 8 years by the local air quality network (AIRPARIF), using a conventional on-line automatic system (R&P TEOM; see Patashnik and Rupprecht, 1991). During the period 2000-2006, levels of PM2.5 in the region of Paris have shown rather stable yearly mean values ranging 13 to 16?g/m3 whereas most of the other pollutants monitored by AIRPARIF have shown a net decrease during this period (http:\\www.airparif.asso.fr). Since the year 2007, this situation has becoming worse for particulate pollution with a net increase of the yearly mean concentration of PM2.5 (up to 21?g/m3), which increase is partly due to the use of a new PM2.5 measurement technique (R&P TEOM-FDMS instrument) enabling a proper determination of the semi-volatile fraction of fine aerosols. Although this new method greatly improves the determination of PM2.5, it has also brought PM2.5 levels in the region of Paris closer to the 25?g/m3 yearly mean targeted value recommended by Europe for 2010 (limit value for 2015). Efficient abatement policies aiming at reducing levels of PM2.5 in the region of Paris will have to be fed by preliminary PM2.5 source apportionment studies and exhaustive aerosol chemistry studies (chemical mass balance) allowing a better separation between regional to continental aerosol sources. The objective of the AIRPARIF-AEROSOL project aims to perform a spatially- and

  19. Providing Size-Resolved Mixing State Inputs to Improve Aerosol Optics Models: Comparison of ACE-Asia Aerosol Chemical Measurements for Different Source Regions With Simultaneous Optical Measurements

    NASA Astrophysics Data System (ADS)

    Sullivan, R. C.; Poon, G.; Guazzotti, S.; Sodeman, D.; Holecek, J.; Spencer, M.; Prather, K.

    2005-12-01

    Measurements made of the aerodynamic size and chemical composition of single aerosol particles on board the R/V Ronald H. Brown sailing between Hawaii and the Sea of Japan during ACE-Asia in 2001 revealed a complex mixture of mineral dust, organic carbon, elemental carbon, sulfates, nitrates, chloride, ammonium, and sea salt. The air mass source regions included influences from the Pacific Ocean, Miyakejima volcano, Gobi and Taklimakan Deserts, Shanghai, Japan, and Korea. The particle composition sampled from each of these regions showed unique changes in the aerosol's mixing state. This complexity presents major challenges in accurately modeling the optical properties of the Asian aerosol. The degree of closure between the measured chemical and optical properties of this aerosol and those predicted by models has been presented by Quinn et al. [JGR, 109, D19S01, doi: 10.1029/2003JD004010, 2004]. Differences between measured and calculated aerosol absorption coefficients were partly attributed to the assumption of internally mixed homogeneous spheres for the aerosol population. Good correlations between measured and calculated aerosol mass and light scattering were found but relied on particle shapes not confirmed by measurements. To better our understanding of the relationship between aerosol chemistry and optical measurements, and provide more detailed inputs to improve the predictions of optical models, we present size-resolved single-particle mixing state results obtained by an ATOFMS for the seven air mass source regions described by Quinn et al. (2004). Our results do not support the assumption of a homogeneous internally mixed aerosol population for many of the source regions. Particular focus is given to the mixing state and chemical associations of sulfate, nitrate, chloride, ammonium, OC, EC, dust, and sea salt. We demonstrate the segregation of ammonium, sulfate, and nitrate within individual particles throughout the study and discuss the different

  20. Sources of excess urban carbonaceous aerosol in the Pearl River delta region, China

    EPA Science Inventory

    Carbonaceous aerosol is one of the important constituents of fine particulate matter (PM2.5) in Southern China, including the Pearl River Delta (PRD) region and Hong Kong (HK). During the study period (October and December of 2002, and March and June of 2003), the monthly average...

  1. Marine aerosol source regions to Prince of Wales Icefield, Ellesmere Island, and influence from the tropical Pacific, 1979-2001

    NASA Astrophysics Data System (ADS)

    Criscitiello, Alison S.; Marshall, Shawn J.; Evans, Matthew J.; Kinnard, Christophe; Norman, Ann-Lise; Sharp, Martin J.

    2016-08-01

    Using a coastal ice core collected from Prince of Wales (POW) Icefield on Ellesmere Island, we investigate source regions of sea ice-modulated chemical species (methanesulfonic acid (MSA) and chloride (Cl-)) to POW Icefield and the influence of large-scale atmospheric variability on the transport of these marine aerosols (1979-2001). Our key findings are (1) MSA in the POW Icefield core is derived primarily from productivity in the sea ice zone of Baffin Bay and the Labrador Sea, with influence from waters within the North Water (NOW) polynya, (2) sea ice formation processes within the NOW polynya may be a significant source of sea-salt aerosols to the POW core site, in addition to offshore open water source regions primarily in Hudson Bay, and (3) the tropical Pacific influences the source and transport of marine aerosols to POW Icefield through its remote control on regional winds and sea ice variability. Regression analyses during times of MSA deposition reveal sea level pressure (SLP) anomalies favorable for opening of the NOW polynya and subsequent oceanic dimethyl sulfide production. Regression analyses during times of Cl- deposition reveal SLP anomalies that indicate a broader oceanic region of sea-salt sources to the core site. These results are supported by Scanning Multichannel Microwave Radiometer- and Special Sensor Microwave/Imager-based sea ice reconstructions and air mass transport density analyses and suggest that the marine biogenic record may capture local polynya variability, while sea-salt transport to the site from larger offshore source regions in Baffin Bay is likely. Regression analyses show a link to tropical dynamics via an atmospheric Rossby wave.

  2. Using FLEXPART-WRF to Identify Source Regions Influencing Arctic Trace Gases and Aerosols During the Summer 2014 NETCARE Campaign

    NASA Astrophysics Data System (ADS)

    Thomas, J. L.

    2015-12-01

    In July and August 2014 the Canadian Network on Aerosols and Climate: Addressing Key Uncertainties in Remote Canadian Regions (NETCARE) project conducted aircraft and ship based campaigns with the goal of identifying both emissions and atmospheric processes influencing Arctic trace gas and aerosol concentrations. The aircraft campaign was conducted using the Alfred Wegener Institute's POLAR 6 aircraft (based in Resolute Bay, Canada) and the ship based campaign was conducted onboard the CCGS Amundsen (icebreaker and Arctic Ocean research vessel). Here, we use the Weather Research and Forecasting Model (WRF) to study meteorology and transport patterns that influence airmasses sampled during the aircraft campaign (5-21 July 2012) and research Legs 1a and 1b for Amundsen (1a: 8 - 24 July Quebec City to Resolute and 24 July - 14 August Resolute to Kugluktuk). The FLEXible PARTicle dispersion model driven by WRF meteorology (FLEXPART-WRF) run in backwards mode is used to study source regions that influenced enhanced concentrations in trace gases including DMS and NH3 as well as aerosols. Links between biomass burning in Northern Canada and measurements during the campaign are discussed. Finally FLEXPART-WRF run in forward mode is used to study links between shipping emissions from the Amundsen and enhanced pollution sampled by the POLAR 6 aircraft when both were operating in the same region of Lancaster Sound during the campaigns.

  3. Possible indicators of long-range transport for aerosol emitted from various source regions in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Park, S.; Kim, C.

    2013-12-01

    Air pollutant is affected by both long-range transboundary processes and local air pollution emission. Therefore it is important to identify the origin of air pollutant, for example, by classifying air pollutants into long-range transport (LRT) dominant process and local emission dominant (LED) cases. This study proposed several chemical and physical indicators of LRT process of aerosol concentrations observed at Korean peninsula. In order to identify the source regions and to estimate the contributions of both LRT and LED, we performed Lagrangian particle dispersion model(FLEXPART) and selected high pollution days over the three source regions in China inland and one Korea peninsula defined in this study; LRT-I to III and LED case. Next, we investigated the chemical and physical characteristics of LRT process of aerosol, and contrasted to those in the LED case over the Northeast Asia. We examined the difference of both modeled features simulated by CMAQ and as well measured aerosol optical properties of satellite-based sensor MODIS and AERONET data. Modeling study showed that the most effective indicator is the sulfur conversion ratios such as SO42-/(SO2+ SO42-) and SO42-/ SO2 for high sulfate condition. The ratio of N-containing species such as NOx (or NOy) to CO were the next best alternative indicators. In the meteorological fields, the results showed that pressure pattern and streamline flow are similar on a case by case basis. For observational physical features, we obtained the spatial distributions of the mean AOD, fine mode fraction (FMF), angstrom exponent (AE) by taking the average of MODIS aerosol products for the each analysis period. The highest AOD was found over the industrialized coastal region regardless of cases. AERONET data showed that aerosol size distribution showed significantly higher concentration of fine-mode particle in LED cases in comparison with that of LRT groups, suggesting that the amplitude fine modes of LRT relative to LED could

  4. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    SciTech Connect

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Babu, S. Suresh; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-01-01

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March-May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model-observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average +/- standard deviation (representing spatial and temporal variability) BC mass concentration (1341 +/- 2353 ng m(-3)) in South Asia. BC emissions from residential (61 %) and industrial (23 %) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.

  5. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    SciTech Connect

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Suresh Babu, S.; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-05-19

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inland sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m-3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.

  6. Sources of black carbon aerosols in South Asia and surrounding regions during the Integrated Campaign for Aerosols, Gases and Radiation Budget (ICARB)

    DOE PAGES

    Kumar, R.; Barth, M. C.; Nair, V. S.; Pfister, G. G.; Suresh Babu, S.; Satheesh, S. K.; Moorthy, K. Krishna; Carmichael, G. R.; Lu, Z.; Streets, D. G.

    2015-05-19

    This study examines differences in the surface black carbon (BC) aerosol loading between the Bay of Bengal (BoB) and the Arabian Sea (AS) and identifies dominant sources of BC in South Asia and surrounding regions during March–May 2006 (Integrated Campaign for Aerosols, Gases and Radiation Budget, ICARB) period. A total of 13 BC tracers are introduced in the Weather Research and Forecasting Model coupled with Chemistry to address these objectives. The model reproduced the temporal and spatial variability of BC distribution observed over the AS and the BoB during the ICARB ship cruise and captured spatial variability at the inlandmore » sites. In general, the model underestimates the observed BC mass concentrations. However, the model–observation discrepancy in this study is smaller compared to previous studies. Model results show that ICARB measurements were fairly well representative of the AS and the BoB during the pre-monsoon season. Elevated BC mass concentrations in the BoB are due to 5 times stronger influence of anthropogenic emissions on the BoB compared to the AS. Biomass burning in Burma also affects the BoB much more strongly than the AS. Results show that anthropogenic and biomass burning emissions, respectively, accounted for 60 and 37% of the average ± standard deviation (representing spatial and temporal variability) BC mass concentration (1341 ± 2353 ng m-3) in South Asia. BC emissions from residential (61%) and industrial (23%) sectors are the major anthropogenic sources, except in the Himalayas where vehicular emissions dominate. We find that regional-scale transport of anthropogenic emissions contributes up to 25% of BC mass concentrations in western and eastern India, suggesting that surface BC mass concentrations cannot be linked directly to the local emissions in different regions of South Asia.« less

  7. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model - article no. D24211

    SciTech Connect

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-15

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India, southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Meteorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest of the world) into the INDOEX domain.

  8. Insights into characteristics, sources, and evolution of submicron aerosols during harvest seasons in the Yangtze River delta region, China

    NASA Astrophysics Data System (ADS)

    Zhang, Y. J.; Tang, L. L.; Wang, Z.; Yu, H. X.; Sun, Y. L.; Liu, D.; Qin, W.; Canonaco, F.; Prévôt, A. S. H.; Zhang, H. L.; Zhou, H. C.

    2015-02-01

    Atmospheric submicron particulate matter (PM1) is one of the most significant pollution components in China. Despite its current popularity in the studies of aerosol chemistry, the characteristics, sources and evolution of atmospheric PM1 species are still poorly understood in China, particularly for the two harvest seasons, namely, the summer wheat harvest and autumn rice harvest. An Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was deployed for online monitoring of PM1 components during summer and autumn harvest seasons in urban Nanjing, in the Yangtze River delta (YRD) region of China. PM1 components were shown to be dominated by organic aerosol (OA, 39 and 41%) and nitrate (23 and 20%) during the harvest seasons (the summer and autumn harvest). Positive matrix factorization (PMF) analysis of the ACSM OA mass spectra resolved four OA factors: hydrocarbon-like mixed with cooking-related OA (HOA + COA), fresh biomass-burning OA (BBOA), oxidized biomass-burning-influenced OA (OOA-BB), and highly oxidized OA (OOA); in particular the oxidized BBOA contributes ~80% of the total BBOA loadings. Both fresh and oxidized BBOA exhibited apparent diurnal cycles with peak concentration at night, when the high ambient relative humidity and low temperature facilitated the partitioning of semi-volatile organic species into the particle phase. The fresh BBOA concentrations for the harvests are estimated as BBOA = 15.1 × (m/z 60-0.26% × OA), where m/z (mass-to-charge ratio) 60 is a marker for levoglucosan-like species. The (BBOA + OOA-BB)/ΔCO, (ΔCO is the CO minus background CO), decreases as a function of f44 (fraction of m/z 44 in OA signal), which might indicate that BBOA was oxidized to less volatile OOA, e.g., more aged and low volatility OOA (LV-OOA) during the aging process. Analysis of air mass back trajectories indicates that the high BB pollutant concentrations are linked to the air masses from the western (summer harvest) and southern (autumn harvest) areas.

  9. 14C-Based source assessment of soot aerosols in Stockholm and the Swedish EMEP-Aspvreten regional background site

    NASA Astrophysics Data System (ADS)

    Andersson, August; Sheesley, Rebecca J.; Kruså, Martin; Johansson, Christer; Gustafsson, Örjan

    2011-01-01

    Combustion-derived soot or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In order to propose effective mitigation strategies for BC emissions it is of importance to investigate geographical distributions and seasonal variations of BC emission sources. Here, a radiocarbon methodology is used to distinguish between fossil fuel and biomass burning sources of soot carbon (SC). SC is isolated for subsequent off-line 14C quantification with the chemothermal oxidation method at 375 °C (CTO-375 method), which reflects a recalcitrant portion of the BC continuum known to minimize inadvertent inclusion of any non-pyrogenic organic matter. Monitored wind directions largely excluded impact from the Stockholm metropolitan region at the EMEP-Aspvreten rural station 70 km to the south-west. Nevertheless, the Stockholm city and the rural stations yielded similar relative source contributions with fraction biomass ( fbiomass) for fall and winter periods in the range of one-third to half. Large temporal variations in 14C-based source apportionment was noted for both the 6 week fall and the 4 month winter observations. The fbiomass appeared to be related to the SC concentration suggesting that periods of elevated BC levels may be caused by increased wood fuel combustion. These results for the largest metropolitan area in Scandinavia combine with other recent 14C-based studies of combustion-derived aerosol fractions to suggest that biofuel combustion is contributing a large portion of the BC load to the northern European atmosphere.

  10. Regional atmospheric aerosol composition and sources in the eastern Transvaal, South Africa, and impact of biomass burning

    NASA Astrophysics Data System (ADS)

    Maenhaut, Willy; Salma, Imre; Cafmeyer, Jan; Annegarn, Harold J.; Andreae, Meinrat O.

    1996-10-01

    As part of the Southern Africa Fire-Atmosphere Research Initiative (SAFARI-92), size-fractionated aerosol samples were collected during September-October 1992 at three fixed ground-based sites in the eastern Transvaal, i.e., at two sites within the Kruger National Park (KNP) and at a third site on the Transvaal highveld (about 150 km WSW of the KNP sites), and near a number of prescribed fires in the KNP. The collection devices consisted of stacked filter units, which separate the aerosol into a coarse (2-10 μm equivalent aerodynamic diameter (EAD)) and a fine (<2 μm EAD) size fraction, and of eight-stage cascade impactors, which provide more detailed size fractionation. The samples were analyzed for particulate mass (PM), black carbon (BC), and up to 47 elements. The prescribed fires gave rise to high levels of airborne soil dust, but several species (elements) were particularly enriched in the pyrogenic emissions. This was the case for BC, P, K, Ca, Mn, Zn, Sr, and I in the coarse fraction, and for BC, the halogens (Cl, Br, I), K, Cu, Zn, Rb, Sb, Cs, and Pb (and in the flaming phase also Na and S) in the fine fraction. The aerosol concentrations, compositions, and time trends at the two KNP sites were quite similar, suggesting that regionally representative samples were collected. Receptor modeling calculations, using both absolute principal component analysis and chemical mass balance, indicated that the KNP coarse PM was essentially attributable to mineral dust and sea salt, with average relative apportionments of 75% and 25%, respectively. At the highveld site, mineral dust and sea salt contributed in a 99-to-1 ratio to the coarse PM. In the fine size fraction at all three fixed sites, four components were identified, i.e., mineral dust, sea salt, biomass burning products, and sulfate. The pyrogenic component was the dominant contributor to the atmospheric concentrations of BC, K, Zn, and I, a major source for PM, Cl, Cu, Br, and Cs, but only a minor source

  11. Genesis of elevated aerosol loading over the Indian region

    NASA Astrophysics Data System (ADS)

    Prijith, S. S.; Rao, P. V. N.; Mohan, Mannil

    2016-05-01

    Elevated aerosols assume importance as the diabatic heating due to aerosol absorption is more intense at higher altitudes where the atmosphere becomes thinner. Indian region, especially its central and northern latitudes, experiences significant loading of elevated aerosols during pre-monsoon and summer months. Genesis of elevated aerosol loading over Indian region is investigated in the present study, using multi-year satellite observations from Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) and Moderate Resolution Imaging Spectroradiometer (MODIS) along with reanalysis winds from MERRA. Central India is observed to have prominent aerosols loading at higher altitudes during pre-monsoon season, whereas it is during summer months over north-west India. Further analysis reveals that the elevated aerosols over Indian region in pre-monsoon and summer months are significantly contributed by transported mineral dust from the arid continental regions at west. In addition to the mineral dust advection, aerosols at higher altitudes over Indian region are enriched by strong convection and associated vertical transport of surface level aerosols. Vertical transport of aerosols observed over Indian region during pre-monsoon and summer months is aided by intense convergence at the surface level and divergence at the upper level. Moreover, aerosol source/sink strength estimated using aerosol flux continuity equation show significant aerosol production over central India during pre-monsoon. Strong vertical transport prevails during pre-monsoon uplifts the locally produced aerosols, with considerable anthropogenic fraction, to higher altitudes where their impacts would be more intense.

  12. Seasonal variation, source, and regional representativeness of the background aerosol from two remote sites in western China.

    PubMed

    Qu, Wenjun; Wang, Dan; Wang, Yaqiang; Sheng, Lifang; Fu, Gang

    2010-08-01

    Using observations from two remote sites during July 2004 to March 2005, we show that at Akdala (AKD, 47 degrees 06' N, 87 degrees 58' E, 562 m asl) in northern Xinjiang Province, there were high wintertime loadings of organic carbon (OC), elemental carbon (EC), and water-soluble (WS) SO4(2-), NO3(2-), and NH4+, which is similar to the general pattern in most areas of China and East Asia. However, at Zhuzhang (ZUZ, 28 degrees 00' N, 99 degrees 43' E, 3,583 m asl) in northwestern Yunnan Province, the aerosol concentrations and compositions showed little seasonal variation except for a decreasing trend of OC from August to autumn-winter. Additionally, the OC variations dominated the seasonal variation of PM10 (particlesregionally representative. However, the representative regions and scales of these background sites may vary seasonally as the regional atmospheric transport patterns change. Seasonal variations in the background aerosol levels from these two areas need to be considered when evaluating the regional climate effects of the aerosols.

  13. Aerosol Size Distribution in the marine regions

    NASA Astrophysics Data System (ADS)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends

  14. Reconciliation and interpretation of the Big Bend National Park light extinction source apportionment: results from the Big Bend Regional Aerosol and Visibility Observational Study--part II.

    PubMed

    Pitchford, Marc L; Schichtel, Bret A; Gebhart, Kristi A; Barna, Michael G; Malm, William C; Tombach, Ivar H; Knipping, Eladio M

    2005-11-01

    The recently completed Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study focused on particulate sulfate source attribution for a 4-month period from July through October 1999. A companion paper in this issue by Schichtel et al. describes the methods evaluation and results reconciliation of the BRAVO Study sulfate attribution approaches. This paper summarizes the BRAVO Study extinction budget assessment and interprets the attribution results in the context of annual and multiyear causes of haze by drawing on long-term aerosol monitoring data and regional transport climatology, as well as results from other investigations. Particulate sulfates, organic carbon, and coarse mass are responsible for most of the haze at Big Bend National Park, whereas fine particles composed of light-absorbing carbon, fine soils, and nitrates are relatively minor contributors. Spring and late summer through fall are the two periods of high-haze levels at Big Bend. Particulate sulfate and carbonaceous compounds contribute in a similar magnitude to the spring haze period, whereas sulfates are the primary cause of haze during the late summer and fall period. Atmospheric transport patterns to Big Bend vary throughout the year, resulting in a seasonal cycle of different upwind source regions contributing to its haze levels. Important sources and source regions for haze at Big Bend include biomass smoke from Mexico and Central America in the spring and African dust during the summer. Sources of sulfur dioxide (SO2) emissions in Mexico, Texas, and in the Eastern United States all contribute to Big Bend haze in varying amounts over different times of the year, with a higher contribution from Mexican sources in the spring and early summer, and a higher contribution from U.S. sources during late summer and fall. Some multiple-day haze episodes result from the influence of several source regions, whereas others are primarily because of emissions from a single source region.

  15. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, Tadas; North, Peter; Doerr, Stefan H.

    2015-04-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. A new method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences insize distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland/natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. The implications of this work for improved modeling of aerosol radiative effects, which are relevant to both climate modelling and satellite

  16. Smoke aerosol properties and ageing effects for Northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, T.; North, P. R. J.; Doerr, S. H.

    2015-03-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from MODIS and AATSR. It is applied to AERONET stations located in or near Northern temperate and boreal forests, for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types. Smallest fine mode median radius are attributed to plumes from cropland - natural vegetation mosaic (0.143 μm) and grasslands (0.147 μm) fires. Evergreen needleleaf forest emissions show a significantly smaller fine mode median radius (0.164 μm) than plumes from woody savannas (0.184 μm) and mixed forest (0.193 μm) fires. Smoke plumes are predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0.95 except the cropland emissions which have a SSA(440) value of 0.9. Overall fine mode volume median radius increase rate is 0.0095 μm per day for the first 4 days of ageing and 0.0084 μm per day for seven days of ageing. Changes in size were consistent with a decrease in Angstrom Exponent and increase in Asymmetry parameter. No significant changes in SSA(λ) with ageing were found. These estimates have implications for

  17. Influence of source distribution and geochemical composition of aerosols on children exposure in the large polymetallic mining region of the Bolivian Altiplano.

    PubMed

    Goix, Sylvaine; Point, David; Oliva, Priscia; Polve, Mireille; Duprey, Jean Louis; Mazurek, Hubert; Guislain, Ludivine; Huayta, Carlos; Barbieri, Flavia L; Gardon, Jacques

    2011-12-15

    The Bolivian Altiplano (Highlands) region is subject to intense mining, tailing and smelting activities since centuries because of the presence of large and unique polymetallic ore deposits (Ag, Au, Cu, Pb, Sn, Sb, Zn). A large scale PM(10), PM(2.5) aerosol monitoring survey was conducted during the dry season in one of the largest mining cities of this region (Oruro, 200,000 inhabitants). Aerosol fractions, source distribution and transport were investigated for 23 elements at approximately 1 km(2) scale resolution, and compared to children exposure data obtained within the same geographical space. As, Cd, Pb, Sb, W and Zn in aerosols are present at relatively high concentrations when compared to studies from other mining regions. Arsenic exceeds the European council PM(10) guide value (6 ng/m(3)) for 90% of the samples, topping 200 ng/m(3). Ag, As, Cd, Cu, Pb and Sb are present at significantly higher levels in the district located in the vicinity of the smelter zone. At the city level, principal component analysis combined with the mapping of factor scores allowed the identification and deconvolution of four individual sources: i) a natural magmatic source (Co, Cs, Fe, K, Mn, Na, Rb and U) originating from soil dust, resuspended by the traffic activity; ii) a natural sedimentary source (Mg, Ca, Sr, Ba and Th) resulting from the suspension of evaporative salt deposits located South; iii) an anthropogenic source specifically enriched in mined elements (As, Cd, Cu, Pb, Sb and Zn) mainly in the smelting district of the city; and iv) a Ni-Cr source homogenously distributed between the different city districts. Enrichment factors for As, Cd and Sb clearly show the impact of smelting activities, particularly in the finest PM(2.5) fraction. Comparison to children's hair metal contents collected in five schools from different districts shows a direct exposure to smelting activity fingerprinted by a unique trace elements pattern (Ag, As, Cu, Pb, Sb).

  18. Integrated evaluation of aerosols from regional brown hazes over northern China in winter: Concentrations, sources, transformation, and mixing states

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Zhou, Shengzhen; Wang, Xinfeng; Xu, Zheng; Yuan, Chao; Yu, Yangchun; Zhang, Qingzhu; Wang, Wenxing

    2011-05-01

    To evaluate the wintertime regional brown haze in northern China, trace gases and aerosols were measured at an urban site between 9 and 20 November 2009. Ion chromatography and transmission electron microscopy (TEM) were used to investigate soluble ions in PM2.5 and the mixing state of individual particles. The contrasts between clear and hazy days were examined in detail. Concentrations of the primary gases including NO (55.62 ppbv), NO2 (54.86 ppbv), SO2 (83.03 ppbv), and CO (2.07 ppmv) on hazy days were 2 to 6 times higher than those on clear days. In contrast, concentrations of O3 remained low (5.71 ppbv) on hazy days. Mass concentrations of PM2.5 (135.90 μg m-3) and BC (7.85 μg m-3) were 3 times higher on hazy days than on clear days. Based on the estimations from TEM analysis, fractions of both ammoniated sulfate (AS)-soot (20%) and AS-soot/organic matter/fly ash (20%) were larger on hazy days than on clear days (13% and 12%), implying that coagulation is an important mixing process in the polluted air. The SO2 emissions from coal combustion for power plants, industrial activities, and household heating led to high concentrations. Also, high concentrations of secondary sulfates significantly formed in the haze. Therefore, high concentrations of acidic gases contributed to the increased mass and number of secondary aerosols. Our study indicates that metal-catalyzed oxidation in the aqueous phase is a major pathway of sulfate formation. The mixtures of aerosol particles, together with MODIS images, suggest that the hazes covered not only the industrial cities, but extended into the neighboring rural regions.

  19. Regional background aerosols over the Balearic Islands over the last 3 years: ground-based concentrations, atmospheric deposition and sources

    NASA Astrophysics Data System (ADS)

    Cerro, Jose Carlos; Pey, Jorge; Bujosa, Carles; Caballero, Sandra; Alastuey, Andres; Sicard, Michael; Artiñano, Begoña; Querol, Xavier

    2013-04-01

    In the context of the ChArMEx (The Chemistry-Aerosol Mediterranean Experiment, https://charmex.lsce.ipsl.fr) initiative, a 3-year study over a regional background environment (Can Llompart, CLP) in Mallorca has been conducted. Ground-based PM mass concentrations, gaseous pollutants and meteorological parameters were continuously registered from 2010 to 2012. Since the beginning of the campaign, PM10 daily samples for chemical determinations were obtained every 4 days, and dry and wet deposition samples were collected every week. Moreover, additional instruments (condensation particle counter, multi-angle absorption photometer, airpointer, sequential high and low volume samplers) were deployed during intensive filed campaigns in 2011 and 2012, as well as the sampling frequency was intensified. In the laboratory, PM samples were analyzed for inorganic compounds, and organic and elemental carbon following different approaches. In addition, n-alkanes, iso-alkanes, antiso-alkanes, levoglucosan, alkanoic acids and cholesterol were determined by GC-MS chromatography in a selection of 30 samples. Mean PM10, PM2.5 and PM1 concentrations in the period 2010-2012 reached 17, 11, and 8 µg/m3 respectively. Mass concentrations displayed marked seasonal trends, with much higher background levels in summer due to stagnant conditions over the western Mediterranean and increased frequency of Saharan dust events. Likewise, diverse-intensity peaks of coarse PM due to African dust inputs were observed along the year. On average, African dust in PM10 accounted for 1.0-1.5 µg/m3. Sporadic pollution events, characterized by most of the particles in the fine mode, were related to the transport of anthropogenic polluted air masses from central and eastern Europe. Wet and dry atmospheric deposition samples are being analyzed to quantify the deposition fluxes for different soluble and insoluble compounds. On average, PM10 composition is made up of organic matter (23%), mineral components (17

  20. Smoke aerosol properties and ageing effects for northern temperate and boreal regions derived from AERONET source and age attribution

    NASA Astrophysics Data System (ADS)

    Nikonovas, T.; North, P. R. J.; Doerr, S. H.

    2015-07-01

    Particulate emissions from wildfires impact human health and have a large but uncertain effect on climate. Modelling schemes depend on information about emission factors, emitted particle microphysical and optical properties and ageing effects, while satellite retrieval algorithms make use of characteristic aerosol models to improve retrieval. Ground-based remote sensing provides detailed aerosol characterisation, but does not contain information on source. Here, a method is presented to estimate plume origin land cover type and age for AERONET aerosol observations, employing trajectory modelling using the HYSPLIT model, and satellite active fire and aerosol optical thickness (AOT) observations from Moderate Resolution Imaging Spectroradiometer (MODIS) and Along Track Scanning Radiometer (AATSR). It is applied to AERONET stations located in or near northern temperate and boreal forests for the period 2002-2013. The results from 629 fire attributions indicate significant differences in size distributions and particle optical properties between different land cover types and plume age. Smallest fine mode median radius (Rfv) are attributed to plumes from cropland and/or natural vegetation mosaic (0.143 μm) and grassland (0.157 μm) fires. North American evergreen needleleaf forest emissions show a significantly smaller Rfv (0.164 μm) than plumes from Eurasian mixed forests (0.193 μm) and plumes attributed to the land cover types with sparse tree cover - open shrubland (0.185 μm) and woody savannas (0.184 μm). The differences in size distributions are related to inferred variability in plume concentrations between the land cover types. Significant differences are observed between day and night emissions, with daytime emissions showing larger particle sizes. Smoke is predominantly scattering for all of the classes with median single scattering albedo at 440 nm (SSA(440)) values close to 0

  1. Sources of secondary organic aerosols in the Pearl River Delta region in fall: Contributions from the aqueous reactive uptake of dicarbonyls

    NASA Astrophysics Data System (ADS)

    Li, Nan; Fu, Tzung-May; Cao, Junji; Lee, Shuncheng; Huang, Xiao-Feng; He, Ling-Yan; Ho, Kin-Fai; Fu, Joshua S.; Lam, Yun-Fat

    2013-09-01

    We used the regional air quality model CMAQ to simulate organic aerosol (OA) concentrations over the Pearl River Delta region (PRD) and compared model results to measurements. Our goals were (1) to evaluate the potential contribution of the aqueous reactive uptake of dicarbonyls (glyoxal and methylglyoxal) as a source of secondary organic aerosol (SOA) in an urban environment, and (2) to quantify the sources of SOA in the PRD in fall. We improved the representation of dicarbonyl gas phase chemistry in CMAQ, as well as added SOA formation via the irreversible uptake of dicarbonyls by aqueous aerosols and cloud droplets, characterized by a reactive uptake coefficient γ = 2.9 × 10-3 based on laboratory studies. Our model results were compared to aerosol mass spectrometry (AMS) measurements in Shenzhen during a photochemical smog event in fall 2009. Including the new dicarbonyl SOA source in CMAQ led to an increase in the simulated mean SOA concentration at the sampling site from 4.1 μg m-3 to 9.0 μg m-3 during the smog event, in better agreement with the mean observed oxygenated OA (OOA) concentration (8.0 μg m-3). The simulated SOA reproduced the variability of observed OOA (r = 0.89). Moreover, simulated dicarbonyl SOA was highly correlated with simulated sulfate (r = 0.72), consistent with the observed high correlation between OOA and sulfate (r = 0.84). Including the dicarbonyl SOA source also increased the mean simulated concentrations of total OA from 8.2 μg m-3 to 13.1 μg m-3, closer to the mean observed OA concentration (16.5 μg m-3). The remaining difference between the observed and simulated OA was largely due to impacts from episodic biomass burning emissions, but the model did not capture this variability. We concluded that, for the PRD in fall and outside of major biomass burning events, 75% of the total SOA was biogenic. Isoprene was the most important precursor, accounting for 41% of the total SOA. Aromatics accounted for 13% of the total SOA

  2. Aerosol particles collected on aircraft flights over the northwestern Pacific region during the ACE-Asia campaign: Composition and major sources of the organic compounds

    NASA Astrophysics Data System (ADS)

    Simoneit, Bernd R. T.; Kobayashi, Minoru; Mochida, Michihiro; Kawamura, Kimitaka; Huebert, Barry J.

    2004-10-01

    Atmospheric particulate matter, collected over the polluted east Asia/Pacific region in spring 2001 during research flights with the National Center for Atmospheric Research (NCAR) C-130 aircraft, was analyzed for different types of organic compounds using capillary gas chromatography-mass spectrometry. More than 70 organic species were detected in the aerosols and grouped into different compound classes on the basis of functional groups, including n-alkanes, polycyclic aromatic hydrocarbons, fatty acids, dehydroabietic acid, alkanols, water-soluble sugars (including glucose, sucrose, mycose, and levoglucosan), monocarboxylic and dicarboxylic acids, urea, and phthalates. Interestingly, the water-soluble compounds (72-133 ng m-3) were found to account for 16-50% (average 34%) of the total identified compound mass (TCM). Organic compounds were further categorized into several groups to suggest their sources. Fossil fuel combustion was recognized as the most significant source for the TCM (contributing 33-80% of TCM, average 50%), followed by soil resuspension (5-25%, average 19%) and secondary oxidation products (4-15%, average 9%). In contrast, the contribution of natural sources such as terrestrial plant wax and marine lipids (fatty acids and alkanols) was relatively small (3.4% and 9.4% on average, respectively). Biomass burning was suggested to contribute only a minor portion to the TCM of the Asian aerosols during the spring season (1.4% on average based on levoglucosan). However, levoglucosan may have been hydrolyzed and/or oxidized in part during long-range transport, and therefore this value represents a lower limit. The organic compound compositions of these samples are very different from those reported for aerosol particles of the Atlantic Ocean and from the earlier data for the mid-Pacific in terms of the abundant presence of water-soluble compounds consisting of saccharides, anhydrosaccharides, and the secondary dicarboxylic acids. This study

  3. Sources of Size Segregated Sulfate Aerosols in the Arctic Summer

    NASA Astrophysics Data System (ADS)

    Ghahremaninezhadgharelar, R.; Norman, A. L.; Abbatt, J.; Levasseur, M.

    2015-12-01

    Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor fitted to a high volume sampler was used for this study and was modified to permit collection of SO2 after aerosols were removed from the gas stream. The isotopic composition of sulfate aerosols and SO2 was measured and apportionment calculations have been performed to quantify the contribution of biogenic as well as anthropogenic sources to the growth of different aerosol size fractions in the atmosphere. The presence of sea salt sulfate aerosols was especially high in coarse mode aerosols as expected. The contribution of biogenic sulfate concentration in this study was higher than anthropogenic sulfate. Around 70% of fine aerosols (<0.49 μm) and 86% of SO2 were from biogenic sources. Concentrations of biogenic sulfate for fine aerosols, ranging from 18 to 625 ng/m3, were five times higher than total biogenic sulfate concentrations measured during Fall in the same region (Rempillo et al., 2011). A comparison of the isotope ratio for SO2 and fine aerosols offers a way to determine aerosol growth from local SO2 oxidation. For some samples, the values for SO2 and fine aerosols were close together suggesting the same source for SO2 and aerosol sulfur.Aerosols drive significant radiative forcing and affect Arctic climate. Despite the importance of these particles in Arctic climate change, there are some key uncertainties in the estimation of their effects and sources. Aerosols in six size fractions between <0.49 to 7.0 microns in diameter were collected on board the Canadian Coast Guard Ship (CCGS) Amundsen in the Arctic, during July 2014. A cascade impactor

  4. The Regional Environmental Impacts of Atmospheric Aerosols over Egypt

    NASA Astrophysics Data System (ADS)

    Zakey, Ashraf; Ibrahim, Alaa

    2015-04-01

    Identifying the origin (natural versus anthropogenic) and the dynamics of aerosols over Egypt at varying temporal and spatial scales provide valuable knowledge on the regional climate impacts of aerosols and their ultimate connections to the Earth's regional climate system at the MENA region. At regional scale, Egypt is exposed to air pollution with levels exceeding typical air-quality standards. This is particularly true for the Nile Delta region, being at the crossroads of different aerosol species originating from local urban-industrial and biomass-burning activities, regional dust sources, and European pollution from the north. The Environmental Climate Model (EnvClimA) is used to investigate both of the biogenic and anthropogenic aerosols over Egypt. The dominant natural aerosols over Egypt are due to the sand and dust storms, which frequently occur during the transitional seasons (spring and autumn). In winter, the maximum frequency reaches 2 to 3 per day in the north, which decreases gradually southward with a frequency of 0.5-1 per day. Monitoring one of the most basic aerosol parameters, the aerosol optical depth (AOD), is a main experimental and modeling task in aerosol studies. We used the aerosol optical depth to quantify the amount and variability of aerosol loading in the atmospheric column over a certain areas. The aerosols optical depth from the model is higher in spring season due to the impacts of dust activity over Egypt as results of the westerly wind, which carries more dust particles from the Libyan Desert. The model result shows that the mass load of fine aerosols has a longer life-time than the coarse aerosols. In autumn season, the modelled aerosol optical depth tends to increase due to the biomass burning in the delta of Egypt. Natural aerosol from the model tends to scatter the solar radiation while most of the anthropogenic aerosols tend to absorb the longwave solar radiation. The overall results indicate that the AOD is lowest in winter

  5. Lead Isotopic Composition and Trace Metals in Aerosols for Source Apportionment

    NASA Astrophysics Data System (ADS)

    Chien, C. T.; Paytan, A.

    2014-12-01

    Transported thousands of miles away from their source, aerosols can be dispersed and deposition throughout the Earth's surface. Aerosols from natural and industrial sources have different characteristics and health impacts thus it is important to identify their sources. The lead isotopic composition and trace metals in aerosol samples collected in different regions and periods around the world can help us better understand spatial and seasonal variation of aerosol sources. Aerosol samples collected in California, Bermuda, China and the Red Sea have been analyzed. The trace metal and Pb isotopes in these samples provide information regarding the various sources of aerosols to these sites.

  6. Ion concentrations of PM10-2.5 and PM2.5 aerosols over the eastern Mediterranean region: seasonal variation and source identification

    NASA Astrophysics Data System (ADS)

    Kouyoumdjian, H.; Saliba, N. A.

    2005-12-01

    The annual averages of particulate matters (PM10, PM10-2.5 (coarse) and PM2.5 (fine)) in a densely populated area of Beirut were measured and found to be 84±27, 53±20 and 31±9 μg m-3, respectively. Ion Chromatography (IC) analysis of the collected PM Teflon filters showed that NaCl, CaSO4 and Ca(NO3)2 were predominant in the coarse particles, while (NH4)2SO4 was the main salt in the fine particles. Using the non destructive Fourier Transform Infra Red-Attenuated Total Reflection (FTIR-ATR) technique, CaCO3 was determined in the coarse filter. In addition, ATR measurements showed that inorganic salts present in the coarse particles are mostly water insoluble while salts found in fine particles are soluble. Concentrations of nitrates and calcium higher than the ones reported in neighboring Mediterranean countries were good indication of high traffic density and crustal dust abundance in Beirut, respectively. The study of the seasonal variation showed that long-range transport of SO2 from Eastern and Central Europe, sandy storms coming from Africa and marine aerosols are considered major sources of the determined inorganic ions. Considering the importance of the health and climate impacts of aerosols locally and regionally, this study constitutes a point of reference for eastern Mediterranean transport modeling studies and local regulatory and policy makers.

  7. Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000.

    PubMed

    van Pinxteren, D; Fomba, K W; Spindler, G; Müller, K; Poulain, L; Iinuma, Y; Löschau, G; Hausmann, A; Herrmann, H

    2016-07-18

    A detailed source apportionment of size-resolved aerosol particles in the area of Leipzig, Germany, was performed. Sampling took place at four sites (traffic, traffic/residential, urban background, regional background) in parallel during summer 2013 and the winters 2013/14/15. Twenty-one samples were taken per season with a 5-stage Berner impactor and analysed for particulate mass, inorganic ions, organic and elemental carbon, water-soluble organic carbon, trace metals, and a wide range of organic species. The compositional data were used to estimate source contributions to particulate matter (PM) in quasi-ultrafine (up to 140 nm), accumulation mode, and coarse size ranges using Positive Matrix Factorisation (PMF) receptor modelling. Traffic (exhaust and general traffic emissions), coal combustion, biomass combustion, photochemistry, general secondary formation, cooking, fungal spores, urban dust, fresh sea/road salt, and aged sea salt were all found to contribute to different extents to observed PM concentrations. PMF derived estimates agreed reasonably with estimates from established macrotracer approaches. Quasi-ultrafine PM originated mainly from traffic (20-50%) and photochemistry (30-50%) in summer, while it was dominated by solid fuel (mainly biomass) combustion in winter (50-70%). Tentatively identified cooking aerosol contributed up to 36% on average at the residential site. For accumulation mode particles, two secondary sources typically contributed 40-90% to particle mass. In winter, biomass and coal combustion contributions were up to ca. 25% and 45%, respectively. Main sources of coarse particles were diverse and included nearly all PMF-resolved ones depending on season and air mass origin. For PM10, traffic (typically 20-40% at kerbside sites), secondary formation (30-60%), biomass combustion (10-15% in winter), and coal combustion (30-40% in winter with eastern air mass inflow) were the main quantified sources. At the residential site, contributions

  8. An aerosol climatology for a rapidly growing arid region (southern Arizona): Major aerosol species and remotely sensed aerosol properties

    PubMed Central

    Sorooshian, Armin; Wonaschütz, Anna; Jarjour, Elias G.; Hashimoto, Bryce I.; Schichtel, Bret A.; Betterton, Eric A.

    2014-01-01

    This study reports a comprehensive characterization of atmospheric aerosol particle properties in relation to meteorological and back trajectory data in the southern Arizona region, which includes two of the fastest growing metropolitan areas in the United States (Phoenix and Tucson). Multiple data sets (MODIS, AERONET, OMI/TOMS, MISR, GOCART, ground-based aerosol measurements) are used to examine monthly trends in aerosol composition, aerosol optical depth (AOD), and aerosol size. Fine soil, sulfate, and organics dominate PM2.5 mass in the region. Dust strongly influences the region between March and July owing to the dry and hot meteorological conditions and back trajectory patterns. Because monsoon precipitation begins typically in July, dust levels decrease, while AOD, sulfate, and organic aerosol reach their maximum levels because of summertime photochemistry and monsoon moisture. Evidence points to biogenic volatile organic compounds being a significant source of secondary organic aerosol in this region. Biomass burning also is shown to be a major contributor to the carbonaceous aerosol budget in the region, leading to enhanced organic and elemental carbon levels aloft at a sky-island site north of Tucson (Mt. Lemmon). Phoenix exhibits different monthly trends for aerosol components in comparison with the other sites owing to the strong influence of fossil carbon and anthropogenic dust. Trend analyses between 1988 and 2009 indicate that the strongest statistically significant trends are reductions in sulfate, elemental carbon, and organic carbon, and increases in fine soil during the spring (March–May) at select sites. These results can be explained by population growth, land-use changes, and improved source controls. PMID:24707452

  9. Mass absorption efficiency of light absorbing organic aerosols from source region of paddy-residue burning emissions in the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Srinivas, B.; Rastogi, N.; Sarin, M. M.; Singh, A.; Singh, D.

    2016-01-01

    The mass absorption efficiency (MAE) of light absorbing water-soluble organics, representing a significant fraction of brown carbon (BrC), has been studied in fine mode aerosols (PM2.5) from a source region (Patiala: 30.2 °N, 76.3 °E) of biomass burning emissions (BBEs) in the Indo-Gangetic Plain (IGP). The mass absorption coefficient of BrC at 365 nm (babs-365), assessed from absorption spectra of aqueous extracts, exhibits significant linear relationship with water-soluble organic carbon (WSOC) for day (R2 = 0.37) and night time (R2 = 0.77) samples; and slope of regression lines provides a measure of MAE of BrC (daytime: ˜0.75 m2 g-1 and night time: 1.13 m2 g-1). A close similarity in the temporal variability of babs-365 (for BrC) and K+ in all samples suggests their common source from BBEs. The babs-365 of BrC follows a power law (babs-λ ≈ λ-α; where α = angstrom exponent) and averages around 5.2 ± 2.0 M m-1 (where M = 10-6). A significant decrease in the MAE of BrC from the source region (this study) to the downwind oceanic region (over Bay of Bengal, Srinivas and Sarin, 2013) could be attributed to relative increase in the contribution of non-absorbing WSOC and/or photo-bleaching of BrC during long-range atmospheric transport. The atmospheric radiative forcing due to BrC over the study site accounts for ˜40% of that from elemental carbon (EC).

  10. Urban emission hot spots as sources for remote aerosol deposition

    NASA Astrophysics Data System (ADS)

    Kunkel, D.; Lawrence, M. G.; Tost, H.; Kerkweg, A.; Jöckel, P.; Borrmann, S.

    2012-01-01

    Large point sources such as major population centers (MPCs) emit pollutants which can be deposited nearby or transported over long distances before deposition. We have used tracer simulations of aerosols emitted from MPCs worldwide to assess the fractions which are deposited at various distances away from their source location. Considering only source location, prevailing meteorology, and the aerosol size and solubility, we show that fine aerosol particles have a high potential to pollute remote regions. About half of the emitted mass of aerosol tracers with an ambient diameter ≤1.0 μm is typically deposited in regions more than 1000 km away from the source. Furthermore, using the Köppen-Geiger climate classification to categorize the sources into various climate classes we find substantial differences in the deposition potential between these classes. Tracers originating in arid regions show the largest remote deposition potentials, with values more than doubled compared to the smallest potentials from tracers in tropical regions. Seasonal changes in atmospheric conditions lead to variations in the remote deposition potentials. On average the remote deposition potentials in summer correspond to about 70-80% of the values in winter, with a large spread among the climate classes. For tracers from tropical regions the summer remote deposition values are only about 31% of the winter values, while they are about 95% for tracers from arid regions.

  11. Sources and transformations of atmospheric aerosol particles

    NASA Astrophysics Data System (ADS)

    Cross, Eben Spencer

    transported towards Europe. In this study, particles were highly processed prior to sampling, with residence times of a few days in the atmosphere. The MILAGRO campaign focused on the evolution of the Mexico City plume as it was transported north. During this study, regional and locally emitted particles were measured with residence times varying from minutes to days in the atmosphere. In both studies, the light scattering - AMS system provided detailed information about the density and composition of single particles, leading to important insights into how atmospheric processing transforms the particle properties. In Mexico City, the light scattering-AMS system was used for the first time as a true single particle mass spectrometer and revealed specific details about the atmospheric processing of primary particles from combustion sources. To quantify the radiative effects of the particles on climate, the processing and ultimate fate of primary emissions (often containing black carbon or soot) must be understood. To provide a solid basis for the interpretation of the data obtained during the field studies, experiments were conducted with a well characterized soot generation-sampling system developed by the Boston College research group. The laboratory soot source was combined with the light scattering - AMS system and a Cloud Condensation Nuclei Counter (CCNC) to measure the change in cloud-forming activity of soot particles as they are processed in the atmosphere. Because of the importance of black carbon in the atmosphere, several instruments have been developed to measure black carbon. In July of 2008, an intercomparison study of 18 instruments was conducted in the Boston College laboratory, with soot particles produced and processed to mimic a wide range of atmospherically-relevant conditions. Transformations in the physical, chemical, and optical properties of soot particles were monitored with the combined suite of aerosol instrumentation. Results from the

  12. Intercontinental Transport of Aerosols: Implication for Regional Air Quality

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Ginoux, Paul

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 microns) and PM10 (particle diameter less than 10 microns), is one of the key atmospheric components that determine ambient air quality. Current US air quality standards for PM10 (particles with diameter < 10 microns) and PM2.5 (particles with diameter 2.5 microns) are 50 pg/cu m and 15 pg/cu m, respectively. While local and regional emission sources are the main cause of air pollution problems, aerosols can be transported on a hemispheric or global scale. In this study, we use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model to quantify contributions of long-range transport vs. local/regional pollution sources and from natural vs. anthropogenic sources to PM concentrations different regions. In particular, we estimate the hemispheric impact of anthropogenic sulfate aerosols and dust from major source areas on other regions in the world. The GOCART model results are compared with satellite remote sensing and ground-based network measurements of aerosol optical depth and concentrations.

  13. Season - dependent and source-influenced aerosol in Northern Siberia

    NASA Astrophysics Data System (ADS)

    Popovicheva, Olga; Makshtas, Alexander; Bogorodsky, Peter; Eleftheriadis, Kostantinos; Diapouli, Evangelia; Shonia, Natalia; Uttal, Taneil

    2016-04-01

    Aerosol may serve as a tracer of arctic pollution, allowing a link to climate response if its major characteristics relating to natural and anthropogeneous sources are defined. It has been shown that BC and sulfates are the most important aerosol constituents measured in the Arctic boundary layer; these species demonstrate similar seasonal variations with a peak during winter to early spring and a minimum in summer. Long - time gap in consistent aerosol observations in the Russian Arctic strongly limits the assessment of air pollution and climate impacts. On-line monitoring, sampling, and analyses of atmospheric aerosols were carried out at the Tiksi Hydrometeorological Observatory, Northern Siberia, during one year from September 2014 to 2015. Physico-chemical characterization combining aethalometry, thermo-optical analysis, and analytical chemistry was used in order to identify the seasonal variability of aerosols and to link their composition to possible sources, as well as to characterize the differences in aerosol chemical composition between natural background conditions and BC-pollution episodes. The present study reports the first results from the Tiksi Observatory on season-dependent and source-influenced characteristics of aerosol species, such as carbon fractions (OC, EC), inorganic and organic functionalities of chemical compounds, sulfates, nitrates and other ion components, and elements. In addition, data obtained by individual particles analysis provide insight into micromarkers of combustion sources. Aerosol at the Tiksi Observatory is found to be originated from natural marine, biogenic, and continental sources as well as influenced by local residential activity and regional pollution. Characterization of aerosols during OC and BC-pollution episodes, combined with analysis of the wind direction, atmosphere stability, and air mass trajectories, allows for the identification of the sources which are responsible for the emission of hazardous compounds

  14. Impact of Asia Dust Aerosols on Regional Environment and Climate

    NASA Astrophysics Data System (ADS)

    Huang, J.

    2015-12-01

    East Asia is a major dust source in the world and has great impacts on regional climate in Asia, where the large arid and semi-arid regions are. In this study, the typical transport paths of East Asia dust, which affect regional and global climates, are demonstrated and numerous effects of dust aerosols on clouds and precipitation primarily over East Asian arid and semi-arid regions are discussed. Compared with the dust aerosols of Saharan, those of East Asian are more absorptive of solar radiation, and can influence the cloud properties not only by acting as cloud condensation nuclei and ice nuclei but also through changing the relative humidity and stability of the atmosphere (via semi-direct effect). Converting visible light to thermal energy, dust aerosols can burn clouds to produce a warming effect on climate, which is opposite to the first and second indirect effects of aerosols. Over Asia arid and semi-arid regions, the positive feedback in the aerosol-cloud-precipitation interaction may aggravate drought in its inner land. Impact of Asia dust on regional environment, especially on haze weather, are also presented in this talk.

  15. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Ginoux, Paul; Dubovik, Oleg; Holben, Brent; Kaufman, Yoram; chu, Allen; Anderson, Tad; Quinn, Patricia

    2003-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERONET at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  16. Aerosol Sources, Absorption, and Intercontinental Transport: Synergies Among Models, Remote Sensing, and Atmospheric Measurements

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Chu, Allen; Levy, Robert; Remer, Lorraine; Kaufman, Yoram; Dubovik, Oleg; Holben, Brent; Eck, Tom; Anderson, Tad; Quinn, Patricia

    2004-01-01

    Aerosol climate forcing is one of the largest uncertainties in assessing the anthropogenic impact on the global climate system. This uncertainty arises from the poorly quantified aerosol sources, especially black carbon emissions, our limited knowledge of aerosol mixing state and optical properties, and the consequences of intercontinental transport of aerosols and their precursors. Here we use a global model GOCART to simulate atmospheric aerosols, including sulfate, black carbon, organic carbon, dust, and sea salt, from anthropogenic, .biomass burning, and natural sources. We compare the model calculated aerosol extinction and absorption with those quantities from the ground-based sun photometer measurements from AERON" at several different wavelengths and the field observations from ACE-Asia, and model calculated total aerosol optical depth and fine mode fractions with the MODIS satellite retrieval. We will also estimate the intercontinental transport of pollution and dust aerosols from their source regions to other areas in different seasons.

  17. A large source of low-volatility secondary organic aerosol.

    PubMed

    Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F

    2014-02-27

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  18. A large source of low-volatility secondary organic aerosol.

    PubMed

    Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F

    2014-02-27

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally. PMID:24572423

  19. A large source of low-volatility secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B.; Jørgensen, Solvejg; Kjaergaard, Henrik G.; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R.; Wildt, Jürgen; Mentel, Thomas F.

    2014-02-01

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  20. Aerosol Source Attributions and Source-Receptor Relationships Across the Northern Hemisphere

    NASA Technical Reports Server (NTRS)

    Bian, Huisheng; Chin, Mian; Kucsera, Tom; Pan, Xiaohua; Darmenov, Anton; Colarco, Peter; Torres, Omar; Shults, Michael

    2014-01-01

    Emissions and long-range transport of air pollution pose major concerns on air quality and climate change. To better assess the impact of intercontinental transport of air pollution on regional and global air quality, ecosystems, and near-term climate change, the UN Task Force on Hemispheric Transport of Air Pollution (HTAP) is organizing a phase II activity (HTAP2) that includes global and regional model experiments and data analysis, focusing on ozone and aerosols. This study presents the initial results of HTAP2 global aerosol modeling experiments. We will (a) evaluate the model results with surface and aircraft measurements, (b) examine the relative contributions of regional emission and extra-regional source on surface PM concentrations and column aerosol optical depth (AOD) over several NH pollution and dust source regions and the Arctic, and (c) quantify the source-receptor relationships in the pollution regions that reflect the sensitivity of regional aerosol amount to the regional and extra-regional emission reductions.

  1. Aerosol radiative effects over BIMSTEC regions

    NASA Astrophysics Data System (ADS)

    Kumar, Sumit; Kar, S. C.; Mupparthy, Raghavendra S.

    Aerosols can have variety of shapes, composition, sizes and other properties that influence their optical characteristics and thus the radiative impact. The visible impact of aerosol is the formation of haze, a layer of particles from vehicular, industrial emissions and biomass burning. The characterization of these fine particles is important for regulators and researchers because of their potential impact on human health, their ability to travel thousands of kilometers crossing international borders, and their influence on climate forcing and global warming. The Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) with Member Countries Bangladesh, Bhutan, India, Myanmar, Nepal, Sri Lanka and Thailand has emerged as an important regional group for technical and economic Cooperation. Continuing the quest for a deeper understanding of BIMSTEC countries weather and climate, in this paper we focused on aerosols and their direct radiative effects. Because of various contrasts like geophysical, agricultural practices, heterogeneous land/ocean surface, population etc these regions present an excellent natural laboratory for studying aerosol-meteorology interactions in tropical to sub-tropical environments. We exploited data available on multiple platforms (such as MISR, MODIS etc) and models (OPAC, SBDART etc) to compute the results. Ten regions were selected with different surface characteristics, also having considerable differences in the long-term trends and seasonal distribution of aerosols. In a preliminary analysis pertaining to pre-monsoon (March-April-May) of 2013, AOD _{555nm} is found to be maximum over Bangladesh (>0.52) and minimum over Bhutan (0.22), whereas other regions have intermediate values. Concurrent to these variability of AOD we found a strong reduction in incoming flux at surface of all the regions (> -25 Wm (-2) ), except Bhutan and Sri Lanka (< -18Wm (-2) ). The top of the atmosphere (TOA) forcing values are

  2. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  3. Characteristics and major sources of carbonaceous aerosols in PM2.5 in Emilia Romagna Region (Northern Italy) from four-year observations.

    PubMed

    Pietrogrande, Maria Chiara; Bacco, Dimitri; Ferrari, Silvia; Ricciardelli, Isabella; Scotto, Fabiana; Trentini, Arianna; Visentin, Marco

    2016-05-15

    The concentrations of organic and elemental carbon in PM2.5 aerosol samples were measured in two sites of Emilia Romagna (Po Valley, Northern Italy) in eight campaigns during different seasons from 2011 to 2014. Strong seasonality was observed with the highest OC concentrations during the cold periods (≈ 5.5 μg m(-3)) and the lowest in the warm months (≈ 2.7 μg m(-3)) as well as with higher EC levels in fall/winter (≈ 1.4 μg m(-3)) in comparison with spring/summer (≈ 0.6 μg m(-3)). Concerning spatial variability, there were no statistically significant difference (p<0.05) between OC concentrations at the two sampling sites in each campaign, while the EC values were nearly twofold higher levels at the urban site than those at the rural one. Specific molecular markers were investigated to attempt the basic apportionment of OC by discriminating between the main emission sources of primary OC, such as fossil fuels burning - including traffic vehicle emission - residential wood burning, and bio-aerosol released from plants and microorganisms, and the atmospheric photo-oxidation processes generating OCsec. The investigated markers were low-molecular-weight carboxylic acids - to describe the contribution of secondary organic aerosol - anhydrosugars - to quantify primary emissions from biomass burning - bio-sugars - to qualitatively estimate biogenic sources - and Polycyclic Aromatic Hydrocarbons - to differentiate among different combustion emissions. Using the levoglucosan tracer method, contribution of wood smoke to atmospheric OC concentration was computed. Wood burning accounts for 33% of OC in fall/winter and for 3% in spring/summer. A clear seasonal trend is also observed for the impact of secondary processes with higher contribution in the warm seasons (≈ 63%) in comparison with that in colder months (≈ 33%), that is consistent with enhanced solar radiation in spring/summer. PMID:26925729

  4. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing) derived from the GlobAEROSOL-AATSR satellite aerosol product

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Chalmers, N.; Harris, B.; Grainger, R. G.; Highwood, E. J.

    2013-01-01

    Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region were derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which were combined to produce annual, global mean values of (-6.7 ± 3.9) W m-2 at the top of atmosphere (TOA) and (-12 ± 6) W m-2 at the surface. These results were then used to give estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for the year 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  5. Regional and monthly and clear-sky aerosol direct radiative effect (and forcing) derived from the GlobAEROSOL-AATSR satellite aerosol product

    NASA Astrophysics Data System (ADS)

    Thomas, G. E.; Chalmers, N.; Harris, B.; Grainger, R. G.; Highwood, E. J.

    2012-07-01

    Using the GlobAEROSOL-AATSR dataset, estimates of the instantaneous, clear-sky, direct aerosol radiative effect and radiative forcing have been produced for the year 2006. Aerosol Robotic Network sun-photometer measurements have been used to characterise the random and systematic error in the GlobAEROSOL product for 22 regions covering the globe. Representative aerosol properties for each region have been derived from the results of a wide range of literature sources and, along with the de-biased GlobAEROSOL AODs, were used to drive an offline version of the Met Office unified model radiation scheme. In addition to the mean AOD, best-estimate run of the radiation scheme, a range of additional calculations were done to propagate uncertainty estimates in the AOD, optical properties, surface albedo and errors due to the temporal and spatial averaging of the AOD fields. This analysis produced monthly, regional estimates of the clear-sky aerosol radiative effect and its uncertainty, which produce annual, global mean values of (-6.7 ± 3.9) W m-2 at the top of atmosphere (TOA) and (-12 ± 6) W m-2 at the surface. These results were then used to produce estimates of regional, clear-sky aerosol direct radiative forcing, using modelled pre-industrial AOD fields for 1750 calculated for the AEROCOM PRE experiment. However, as it was not possible to quantify the uncertainty in the pre-industrial aerosol loading, these figures can only be taken as indicative and their uncertainties as lower bounds on the likely errors. Although the uncertainty on aerosol radiative effect presented here is considerably larger than most previous estimates, the explicit inclusion of the major sources of error in the calculations suggest that they are closer to the true constraint on this figure from similar methodologies, and point to the need for more, improved estimates of both global aerosol loading and aerosol optical properties.

  6. Aerosol remote sensing in polar regions

    SciTech Connect

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Mazzola, Mauro; Lanconelli, Christian; Vitale, Vito; Stebel, Kerstin; Aaltonen, Veijo; de Leeuw, Gerrit; Rodriguez, Edith; Herber, Andreas B.; Radionov, Vladimir F.; Zielinski, Tymon; Petelski, Tomasz; Sakerin, Sergey M.; Kabanov, Dmitry M.; Xue, Yong; Mei, Linlu; Istomina, Larysa; Wagener, Richard; McArthur, Bruce; Sobolewski, Piotr S.; Kivi, Rigel; Courcoux, Yann; Larouche, Pierre; Broccardo, Stephen; Piketh, Stuart J.

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i) a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  7. Aerosol remote sensing in polar regions

    DOE PAGES

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph; et al

    2015-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness τ(λ) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent α were calculated. Analysing these data, the monthly mean values of τ(0.50 μm) and α and the relative frequency histograms of the daily mean values of both parameters were determined for winter–spring and summer–autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of α versus τ(0.50 μm) showed: (i)more » a considerable increase in τ(0.50 μm) for the Arctic aerosol from summer to winter–spring, without marked changes in α; and (ii) a marked increase in τ(0.50 μm) passing from the Antarctic Plateau to coastal sites, whereas α decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of τ(λ) and α at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterise vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of τ(λ) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were defined to represent the average features of nuclei

  8. Aerosol Remote Sensing in Polar Regions

    NASA Technical Reports Server (NTRS)

    Tomasi, Claudio; Kokhanovsky, Alexander A.; Lupi, Angelo; Ritter, Christoph; Smirnov, Alexander; O'Neill, Norman T.; Stone, Robert S.; Holben, Brent N.; Nyeki, Stephan; Wehrli, Christoph

    2014-01-01

    Multi-year sets of ground-based sun-photometer measurements conducted at 12 Arctic sites and 9 Antarctic sites were examined to determine daily mean values of aerosol optical thickness tau(lambda) at visible and near-infrared wavelengths, from which best-fit values of Ångström's exponent alpha were calculated. Analyzing these data, the monthly mean values of tau(0.50 micrometers) and alpha and the relative frequency histograms of the daily mean values of both parameters were determined for winter-spring and summer-autumn in the Arctic and for austral summer in Antarctica. The Arctic and Antarctic covariance plots of the seasonal median values of alpha versus tau(0.50 micrometers) showed: (i) a considerable increase in tau(0.50 micrometers) for the Arctic aerosol from summer to winter-spring, without marked changes in alpha; and (ii) a marked increase in tau(0.50 micrometer) passing from the Antarctic Plateau to coastal sites, whereas alpha decreased considerably due to the larger fraction of sea-salt aerosol. Good agreement was found when comparing ground-based sun-photometer measurements of tau(lambda) and alpha at Arctic and Antarctic coastal sites with Microtops measurements conducted during numerous AERONET/MAN cruises from 2006 to 2013 in three Arctic Ocean sectors and in coastal and off-shore regions of the Southern Atlantic, Pacific, and Indian Oceans, and the Antarctic Peninsula. Lidar measurements were also examined to characterize vertical profiles of the aerosol backscattering coefficient measured throughout the year at Ny-Ålesund. Satellite-based MODIS, MISR, and AATSR retrievals of tau(lambda) over large parts of the oceanic polar regions during spring and summer were in close agreement with ship-borne and coastal ground-based sun-photometer measurements. An overview of the chemical composition of mode particles is also presented, based on in-situ measurements at Arctic and Antarctic sites. Fourteen log-normal aerosol number size-distributions were

  9. Marine submicron aerosol gradients, sources and sinks

    NASA Astrophysics Data System (ADS)

    Ceburnis, Darius; Rinaldi, Matteo; Ovadnevaite, Jurgita; Martucci, Giovanni; Giulianelli, Lara; O'Dowd, Colin D.

    2016-10-01

    Aerosol principal sources and sinks over eastern North Atlantic waters were studied through the deployment of an aerosol chemistry gradient sampling system. The chemical gradients of primary and secondary aerosol components - specifically, sea salt (SS), water-insoluble organic matter (WIOM), water-soluble organic matter (WSOM), nitrate, ammonium, oxalate, amines, methanesulfonic acid (MSA) and water-soluble organic nitrogen (WSON) - were examined in great detail. Sea salt fluxes were estimated by the boundary layer box model and ranged from 0.3 to 3.5 ng m-2 s-1 over the wind speed range of 5-12 m s-1 and compared well with the derived fluxes from existing sea salt source parameterisations. The observed seasonal pattern of sea salt gradients was mainly driven by wind stress in addition to the yet unquantified effect of marine OM modifying fractional contributions of SS and OM in sea spray. WIOM gradients were a complex combination of rising and waning biological activity, especially in the flux footprint area, and wind-driven primary sea spray production supporting the coupling of recently developed sea spray and marine OM parameterisations.

  10. Particle size distribution of indoor aerosol sources

    SciTech Connect

    Shah, K.B.

    1990-10-24

    As concern about Indoor Air Quality (IAQ) has grown in recent years, it has become necessary to determine the nature of particles produced by different indoor aerosol sources and the typical concentration that these sources tend to produce. These data are important in predicting the dose of particles to people exposed to these sources and it will also enable us to take effective mitigation procedures. Further, it will also help in designing appropriate air cleaners. A new state of the art technique, DMPS (Differential Mobility Particle Sizer) System is used to determine the particle size distributions of a number of sources. This system employs the electrical mobility characteristics of these particles and is very effective in the 0.01--1.0 {mu}m size range. A modified system that can measure particle sizes in the lower size range down to 3 nm was also used. Experimental results for various aerosol sources is presented in the ensuing chapters. 37 refs., 20 figs., 2 tabs.

  11. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    NASA Astrophysics Data System (ADS)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2014-08-01

    Aerosol particles were characterized by an Aerodyne Aerosol Chemical Speciation Monitor (ACSM) along with various collocated instruments in Beijing, China to investigate the aerosol composition and sources during the Chinese Spring Festival, 2013. Three fireworks (FW) events exerting significant and short-term impacts on fine particles (PM2.5) were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW showed major impacts on non-refractory potassium, chloride, sulfate, and organics in PM1, of which the FW organics appeared to be mainly secondary with its mass spectrum resembling to that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated PM1 accounting for 63-82% during the nine PEs observed. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than that during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impacts of reduced anthropogenic emissions on aerosol chemistry in the city. The primary species showed ubiquitous reductions during the holiday period with the largest reduction for cooking OA (69%), nitrogen monoxide (54%), and coal combustion OA (28%). The secondary sulfate, however, remained minor change, and the SOA and the total PM2.5 even slightly increased. These results have significant implications that controlling local primary source emissions, e.g., cooking and traffic activities, might have limited effects on improving air quality during PEs when SPM that is formed over regional scales dominates aerosol particle composition.

  12. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; Prévôt, A. S. H.; El Haddad, I.

    2015-08-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, PM10) collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  13. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  14. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1990-11-01

    During the current reporting period experimental studies of aerosol deposition in replicate NOPL airways have carried out. A replicate model of a 4 week old infant nasal passage was constructed from MR scans. The model completes the age range from newborn'' to 4 years, there now being one child model for 4 different ages. Deposition studies have been performed with unattached radon progeny aerosols in collaboration with ITRI, Albuquerque, NM and NRPB, Chilton, UK. Overall measurements have been performed in adult and child nasal airways indicating that the child nasal passage was slightly more efficient than the adult in removing 1 nm particles at corresponding flow rates. A similar weak dependence on flow rate was observed. Local deposition studies in an adult nasal model indicated predominant deposition in the anterior region during inspiratory flow, but measurable deposition was found throughout the model. The deposition pattern during expiration was reverse, greater deposition being observed in the posterior region. Local deposition studies of attached progeny aerosol size (100--200 nm) were performed in adult and child nasal models using technigas'' and a gamma scintillation camera. Similar to the unattached size, deposition occurred throughout the models, but was greater in the anterior region.

  15. Natural sources of atmospheric aerosols influencing air quality across Europe.

    PubMed

    Viana, M; Pey, J; Querol, X; Alastuey, A; de Leeuw, F; Lükewille, Anke

    2014-02-15

    Atmospheric aerosols are emitted by natural and anthropogenic sources. Contributions from natural sources to ambient aerosols vary widely with time (inter-annual and seasonal variability) and as a function of the distance to source regions. This work aims to identify the main natural sources of atmospheric aerosols affecting air quality across Europe. The origin, frequency, magnitude, and spatial and temporal variability of natural events were assessed for the years 2008 and 2009. The main natural sources of atmospheric aerosols identified were African dust, sea spray and wildfires. Primary biological particles were not included in the present work. Volcanic eruptions did not affect air quality significantly in Europe during the study period. The impact of natural episodes on air quality was significant in Southern and Western Europe (Cyprus, Spain, France, UK, Greece, Malta, Italy and Portugal), where they contributed to surpass the PM10 daily and annual limit values. In Central and Northern Europe (Germany, Austria and Latvia) the impact of these events was lower, as it resulted in the exceedance of PM daily but not annual limit values. Contributions from natural sources to mean annual PM10 levels in 2008 and 2009 ranged between 1 and 2 μg/m(3) in Italy, France and Portugal, between 1 and 4 μg/m(3) in Spain (10 μg/m(3) when including the Canary Islands), 5 μg/m(3) in UK, between 3 and 8 μg/m(3) in Greece, and reached up to 13 μg/m(3) in Cyprus. The evaluation of the number of monitoring stations per country reporting natural exceedances of the daily limit value (DLV) is suggested as a potential tool for air quality monitoring networks to detect outliers in the assessment of natural contributions. It is strongly suggested that a reference methodology for the identification and quantification of African dust contributions should be adopted across Europe. PMID:24342088

  16. Regional signatures in the organic composition of marine aerosol particles

    NASA Astrophysics Data System (ADS)

    Frossard, Amanda A.; Russell, Lynn M.; Keene, William C.; Kieber, David J.; Quinn, Patricia K.; Bates, Timothy S.

    2013-05-01

    Marine aerosol particles play an important role in the earth's radiative balance, yet the sources and composition of the organic fraction remain largely unconstrained. Recent measurements have been made in order to characterize the sources, composition, and concentration of aerosol particles in the marine boundary layer. The organic composition of submicron particles derived from multiple seawater regions have been measured using Fourier Transform Infrared (FTIR) spectroscopy. Cluster analysis of FTIR organic spectra suggest different spectral signatures based on collection location, seawater composition, and ambient conditions. Measurements including non-refractory aerosol composition from a high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS), seawater composition, and wind speed were used to interpret the cluster results, depending on the availability from each campaign. FTIR spectra of ambient particles are compared to FTIR spectra of primary marine particles generated from model ocean systems to infer the ambient particle production mechanisms and aging processes. Recent measurements used in the comparison include ambient and generated marine aerosol particles measured off the coast of California during CalNex in May and June 2010. Remote ambient marine aerosol particles were collected 100 miles off the coast of Monterey in the eastern Pacific during the EPEACE experiment in July 2011. Ambient and generated marine particles were measured in two different seawater types during WACS 2012 including colder, more productive water off the coast of the northeastern United States and warmer, oligotrophic water in the Sargasso Sea. These particles are also compared with those measured in the southeastern Pacific during VOCALS and the north Atlantic during ICEALOT.

  17. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.

    PubMed

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B; Jaffe, Daniel A; Kleinman, Lawrence; Sedlacek, Arthur J; Briggs, Nicole L; Hee, Jonathan; Fortner, Edward; Shilling, John E; Worsnop, Douglas; Yokelson, Robert J; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K; Pekour, Mikhail S; Springston, Stephen; Zhang, Qi

    2016-08-16

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (∼2700 m a.s.l.) as well as near their sources using an aircraft. The regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (∼1 h old) and emissions sampled after atmospheric transport (6-45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate.

  18. Regional Influence of Aerosol Emissions from Wildfires Driven by Combustion Efficiency: Insights from the BBOP Campaign.

    PubMed

    Collier, Sonya; Zhou, Shan; Onasch, Timothy B; Jaffe, Daniel A; Kleinman, Lawrence; Sedlacek, Arthur J; Briggs, Nicole L; Hee, Jonathan; Fortner, Edward; Shilling, John E; Worsnop, Douglas; Yokelson, Robert J; Parworth, Caroline; Ge, Xinlei; Xu, Jianzhong; Butterfield, Zachary; Chand, Duli; Dubey, Manvendra K; Pekour, Mikhail S; Springston, Stephen; Zhang, Qi

    2016-08-16

    Wildfires are important contributors to atmospheric aerosols and a large source of emissions that impact regional air quality and global climate. In this study, the regional and nearfield influences of wildfire emissions on ambient aerosol concentration and chemical properties in the Pacific Northwest region of the United States were studied using real-time measurements from a fixed ground site located in Central Oregon at the Mt. Bachelor Observatory (∼2700 m a.s.l.) as well as near their sources using an aircraft. The regional characteristics of biomass burning aerosols were found to depend strongly on the modified combustion efficiency (MCE), an index of the combustion processes of a fire. Organic aerosol emissions had negative correlations with MCE, whereas the oxidation state of organic aerosol increased with MCE and plume aging. The relationships between the aerosol properties and MCE were consistent between fresh emissions (∼1 h old) and emissions sampled after atmospheric transport (6-45 h), suggesting that biomass burning organic aerosol concentration and chemical properties were strongly influenced by combustion processes at the source and conserved to a significant extent during regional transport. These results suggest that MCE can be a useful metric for describing aerosol properties of wildfire emissions and their impacts on regional air quality and global climate. PMID:27398804

  19. Sources and source processes of organic nitrogen aerosols in the atmosphere

    NASA Astrophysics Data System (ADS)

    Erupe, Mark E.

    The research in this dissertation explored the sources and chemistry of organic nitrogen aerosols in the atmosphere. Two approaches were employed: field measurements and laboratory experiments. In order to characterize atmospheric aerosol, two ambient studies were conducted in Cache Valley in Northern Utah during strong winter inversions of 2004 and 2005. The economy of this region is heavily dependent on agriculture. There is also a fast growing urban population. Urban and agricultural emissions, aided by the valley geography and meteorology, led to high concentrations of fine particles that often exceeded the national ambient air quality standards. Aerosol composition was dominated by ammonium nitrate and organic species. Mass spectra from an aerosol mass spectrometer revealed that the organic ion peaks were consistent with reduced organic nitrogen compounds, typically associated with animal husbandry practices. Although no direct source characterization studies have been undertaken in Cache Valley with an aerosol mass spectrometer, spectra from a study at a swine facility in Ames, Iowa, did not show any evidence of reduced organic nitrogen species. This, combined with temporal and diurnal characteristics of organic aerosol peaks, was a pointer that the organic nitrogen species in Cache Valley likely formed from secondary chemistry. Application of multivariate statistical analyses to the organic aerosol spectra further supported this hypothesis. To quantify organic nitrogen signals observed in ambient studies as well as understand formation chemistry, three categories of laboratory experiments were performed. These were calibration experiments, smog chamber studies, and an analytical method development. Laboratory calibration experiments using standard calibrants indicated that quantifying the signals from organic nitrogen species was dependent on whether they formed through acid-base chemistry or via secondary organic aerosol pathway. Results from smog chamber

  20. Characterization of aerosol composition and sources in the greater Atlanta area by aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Ng, N. L.; Xu, L.; Suresh, S.; Weber, R. J. J.; Baumann, K.; Edgerton, E. S.

    2014-12-01

    regional nature of aerosols in the Atlanta area. Taken together, results from these extensive field studies provide invaluable insights into the sources and processing of aerosols in the greater Atlanta area. The effects of anthropogenic emissions on biogenic SOA formation at multiple sites in the region and in different seasons will be discussed.

  1. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    NASA Astrophysics Data System (ADS)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  2. Sensitivity of the climate response to regional aerosol emissions

    NASA Astrophysics Data System (ADS)

    Kasoar, Matthew; Voulgarakis, Apostolos; Shindell, Drew; Lamarque, Jean-Francois; Shawki, Dilshad

    2015-04-01

    Short-lived emissions like aerosols and their precursors have inhomogeneous distributions in the atmosphere. As a result, aerosol radiative forcing of the climate is highly uneven, and depends on both the location of emission as well as circulation patterns. Unlike well-mixed greenhouse gases such as CO2, the climate response to aerosol forcing may therefore be very dependent on the source region, and so understanding how the sensitivity of the climate varies with emission and forcing location has implications for the design of policy regarding short-lived climate forcers, as well as for understanding the coupling between radiative forcing and climate response. Using the UK Met Office's HadGEM3 composition-climate model, we have performed a series of experiments to investigate the climate response to aerosol species from different key anthropogenic emission regions, in particular East Asia, South Asia, the USA, and the whole northern mid-latitude band. Recent results from these simulations will be presented, focusing in particular on the patterns of climate forcing due to Asian anthropogenic emissions, and the resulting responses in surface temperature and precipitation. Large-scale circulation changes, driven by regional temperature gradients, are found to play an important role in explaining the observed climate responses, which can be substantial even in in parts of the world far from the location of the forcing. The correct magnitude of aerosol forcing remains, however, one of the greatest uncertainties in our current understanding of anthropogenic influences on climate. Aerosol radiative forcing varies considerably between different composition-climate models, and to explore the implications of this for climate responses we use the GISS Model-E2 and NCAR CESM1 models in addition to HadGEM3. These reveal a remarkable variation in the simulated climate response as a result of differences in the radiative forcing from identical perturbations to regional sulphate

  3. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    SciTech Connect

    Gaffney, Jeffrey

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  4. Characterisation of regional ambient biomass burning organic aerosol mixing ratios

    NASA Astrophysics Data System (ADS)

    Jolleys, M.; Coe, H.; McFiggans, G.; Capes, G.; Allan, J. D.; Crosier, J.; Williams, P.; Allen, G.; Bower, K.; Jimenez, J. L.; Russell, L. M.; Grutter, M.; Baumgardner, D.

    2012-12-01

    No evidence for a regional additional source of secondary organic aerosol (SOA) has been identified in measurements of biomass burning-influenced ambient air masses. Measurements included in this study were obtained from the deployment of an Aerodyne Quadrupole Aerosol Mass Spectrometer during four field campaigns, involving both research aircraft flights and ground-based measurements. OA concentrations normalised to excess CO (OA/dCO) show strong regional and local scale variability, with a difference of almost a factor of five across fresh OA emissions between campaigns. Average OA/dCO is typically higher in the near-field than at a greater distance from source, indicating an absence of significant SOA formation, despite evidence to suggest OA becomes increasingly oxidized with age. This trend is in contrast with observations of anthropogenic OA in urban environments, where OA/dCO is consistently shown to increase with distance from source. There is no such agreement in the case of biomass burning OA (BBOA) amongst the literature base, with conflicting examples relating to the influence of SOA on aerosol loadings. A wide range of average initial emission ratios (ERs) close to source are observed both within the datasets analysed here and within the literature, together with considerable variability in individual OA/dCO values throughout fresh biomass burning plumes. The extent of this variability far outweighs any increase in OA/dCO in the few instances it is observed here, suggesting that source conditions are of greater importance for the propagation of BBOA loadings within the ambient atmosphere. However, the implications of ageing on OA/dCO variability appear to be highly uncertain, with little consistency between observed trends for different locations. Furthermore, the exact effects of the fire conditions influencing emissions from biomass burning events remain poorly constrained. These uncertainties regarding the evolution of biomass burning emissions

  5. Mass and chemical composition of size-segregated aerosols (PM1, PM2.5, PM10) over Athens, Greece: local versus regional sources

    NASA Astrophysics Data System (ADS)

    Theodosi, C.; Grivas, G.; Zarmpas, P.; Chaloulakou, A.; Mihalopoulos, N.

    2011-03-01

    To identify the relative contribution of local versus regional sources of particulate matter (PM) in the Greater Athens Area (GAA), simultaneous mass and chemical composition measurements of size segregated particulate matter (PM: PM1, PM2.5 and PM10) were carried out from September 2005 to August 2006 at three locations: one urban (Goudi, Central Athens) and one suburban (Lykovrissi, Athens) in GAA and the third in a regional background site (Finokalia, Crete). The two stations in GAA exceeded the EU-legislated PM10 limit values, both in terms of annual average (59.0 and 53.6 μg m-3 for Lykovrissi and Goudi, respectively) and of 24-h value, while the concentration levels at the remote site of Finokalia indicated an elevated background. High levels of PM2.5 and PM1 were also found at all locations (23.5 and 18.6 for Lykovrissi, while 29.4 and 20.2 μg m-3 for Goudi, respectively). Significant correlations were observed between same PM fractions at both GAA sites indicating important spatial homogeneity within GAA. During the warm season, the PM1 ratio between the GAA and the background site ranged from 1.1 to 1.3. On the other hand this ratio was significantly higher (1.6-1.7) during the cold season highlighting the role of long-range transport and local sources during the warm and cold seasons respectively. Similar seasonal and geographical patterns were observed for nss-SO42-, a secondary compound characteristic of regional sources, confirming the above hypothesis. Regarding the coarse fraction no such seasonal trend was observed for both GAA sites with their ratio (GAA site/Finokalia) being higher than 2 indicating significant contribution from local sources such as road dust and/or constructions as confirmed by Ca2+ measurements. Chemical speciation data showed that on a yearly basis, ionic and crustal mass represent up to 78% of the gravimetrically determined mass for PM10 samples in GAA. The unidentified mass might be attributed to organic carbon (OC) and

  6. The contribution of anthropogenic sources to the aerosols over East China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Fujiang; Chen, Ying; Meng, Xi; Fu, Jiangping; Wang, Bo

    2016-02-01

    Total suspended particulate (TSP) samples were collected at a pristine island (Huaniao) in northern East China Sea (ECS) between Mar. 2011 and Jan. 2013 and analyzed for the concentrations of major ions and trace elements. Aerosol sources and the distribution of source regions are identified using positive matrix factorization (PMF) and potential source contribution function (PSCF) methods. It is found that aerosols over Huaniao Island are contributed by six main factors including primary industrial emissions (11.3%), secondary aerosol (22%), oxalate-associated aerosol (15.7%), sea salt (36.7%), ship emission (6.3%) and mineral dust (8.1%). Anthropogenic source contribution to the resolved aerosol mass reached the highest (76.6%) and lowest (18%) values in January 2013 and August 2012 respectively, strongly influenced by the prevailing winds of East Asian monsoon. The main source regions of secondary aerosol are southeastern Hebei and Shandong, which is consistent with the most intensive distribution of coal-fired power plants and the largest emission of precursors in this area. Oxalate-associated aerosol is produced primarily along the coastal line. Primary industrial emissions mainly originate from southwestern Shandong and Yangtze River Delta.

  7. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    PubMed

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  8. Source apportionment of absorbing aerosols in the central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Vaishya, Aditya; Singh, Prayagraj; Rastogi, Shantanu; Babu, S. Suresh

    2016-05-01

    Atmospheric aerosols in the Indo-Gangetic Plain (IGP) depicts high spatial and temporal heterogeneity in their radiative properties. Despite the fact that significant advancement in terms of characterizing aerosols radiative and physiochemical properties in the IGP have been made, information regarding the organic content towards total absorbing aerosol budget is lacking. In the present study we have analyzed two years of aerosol spectral light absorption measurements from the central-IGP, Gorakhpur (26.75°N, 83.38°E, 85m amsl), in order to study their seasonal behavior and to quantify their magnitude in terms of absorbing aerosols loading and source speciation. Remote sensing data in the form of 'Cloud corrected Fire Count' from MODIS Terra and 'Absorption Aerosol Index' from OMI satellites platform have been used to identify absorbing aerosol source regions. Spectral absorption analysis reveals a four-fold enhancement in absorption in the winter (W) and the post-monsoon (PoM) seasons at UV wavelengths as compared to 880 nm on account of increased biomass aerosol contribution to total absorbing aerosol load. Despite having higher fire events and absorption aerosol index, both indicating high biomass burning activities, in the pre-monsoon (PM) season, aerosols from the biomass sources contribute ~ 27% during the W and the PoM seasons as against ~17% in the PM season to the total absorbing aerosol content. This is due to near stagnant wind conditions and shallow height of air masses travelling to the central IGP in the W and the PoM seasons.

  9. Regional climate effects of aerosols on precipitation and snowpack in California

    NASA Astrophysics Data System (ADS)

    Wu, L.; Su, H.; Jiang, J. H.; Zhao, C.; Qian, Y.; Painter, T. H.

    2015-12-01

    Water sources in California are derived predominantly from precipitation (mostly during the winter time) and storage in the snowpack in the Sierra Nevada. With California facing one of the most severe droughts on record, it is important to understand the factors influencing precipitation and snowpack for water management and hydropower operation. Recent observational and numerical modeling studies have shown that aerosol pollutants can substantially change precipitation and snowpack in the Sierra Nevada. However, previous studies focused only on one of the aerosol effects or just focus on a single event. A complete view on regional climate effects of aerosol on precipitation and snowpack in California is not delivered yet. In this study, we use a fully coupled aerosol-meteorology-snowpack model (WRF-Chem-SNICAR) to investigate aerosol impacts on regional climate in California, with a focus on precipitation and snowpack. We will evaluate the performance of the WRF-Chem-SNICAR model on simulating regional climate in California. Sensitivity experiments will be conducted to disentangle the relative roles of each aerosol effect, such as aerosol radiation interaction vs. aerosol cloud interaction and aerosol snowpack interaction, local emission vs. long-range transport etc.

  10. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  11. Cloud Nucleating Properties of Aerosols During TexAQS - GoMACCS 2006: Influence of Aerosol Sources, Composition, and Size

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D. J.; Covert, D. S.; Onasch, T. B.; Alllan, J. D.; Worsnop, D.

    2006-12-01

    TexAQS - GoMACCS 2006 was conducted from July to September 2006 in the Gulf of Mexico and Houston Ship Channel to investigate sources and processing of gas and particulate phase species and to determine their impact on regional air quality and climate. As part of the experiment, the NOAA R.V. Ronald H. Brown transited from Charleston, S.C. to the study region. The ship was equipped with a full compliment of gas and aerosol instruments. To determine the cloud nucleating properties of aerosols, measurements were made of the aerosol number size distribution, aerosol chemical composition, and cloud condensation nuclei (CCN) concentration at five supersaturations. During the transit and over the course of the experiment, a wide range of aerosol sources and types was encountered. These included urban and industrial emissions from the S.E. U.S. as the ship left Charleston, a mixture of Saharan dust and marine aerosol during the transit around Florida and across the Gulf of Mexico, urban emissions from Houston, and emissions from the petrochemical industries, oil platforms, and marine vessels in the Gulf coast region. Highest activation ratios (ratio of CCN to total particle number concentration at 0.4 percent supersaturation) were measured in anthropogenic air masses when the aerosol was composed primarily of ammonium sulfate salts and in marine air masses with an aerosol composed of sulfate and sea salt. A strong gradient in activation ratio was measured as the ship moved from the Gulf of Mexico to the end of the Houston Ship Channel (values decreasing from about 0.8 to less than 0.1) and the aerosol changed from marine to industrial. The activation ratio under these different regimes in addition to downwind of marine vessels and oil platforms will be discussed in the context of the aerosol size distribution and chemical composition. The discussion of composition will include the organic mass fraction of the aerosol, the degree of oxidation of the organics, and the water

  12. Source forensics of black carbon aerosols from China.

    PubMed

    Chen, Bing; Andersson, August; Lee, Meehye; Kirillova, Elena N; Xiao, Qianfen; Kruså, Martin; Shi, Meinan; Hu, Ke; Lu, Zifeng; Streets, David G; Du, Ke; Gustafsson, Örjan

    2013-08-20

    The limited understanding of black carbon (BC) aerosol emissions from incomplete combustion causes a poorly constrained anthropogenic climate warming that globally may be second only to CO2 and regionally, such as over East Asia, the dominant driver of climate change. The relative contribution to atmospheric BC from fossil fuel versus biomass combustion is important to constrain as fossil BC is a stronger climate forcer. The source apportionment is the underpinning for targeted mitigation actions. However, technology-based "bottom-up" emission inventories are inconclusive, largely due to uncertain BC emission factors from small-scale/household combustion and open burning. We use "top-down" radiocarbon measurements of atmospheric BC from five sites including three city sites and two regional sites to determine that fossil fuel combustion produces 80 ± 6% of the BC emitted from China. This source-diagnostic radiocarbon signal in the ambient aerosol over East Asia establishes a much larger role for fossil fuel combustion than suggested by all 15 BC emission inventory models, including one with monthly resolution. Our results suggest that current climate modeling should refine both BC emission strength and consider the stronger radiative absorption associated with fossil-fuel-derived BC. To mitigate near-term climate effects and improve air quality in East Asia, activities such as residential coal combustion and city traffic should be targeted. PMID:23844635

  13. Carbon isotope based aerosol source apportionment in Eastern European city Vilnius

    NASA Astrophysics Data System (ADS)

    Garbaras, Andrius; Sapolaite, Justina; Garbariene, Inga; Ezerinskis, Zilvinas; Pocevicius, Matas; Krikscikas, Laurynas; Jacevicius, Sarunas; Plukis, Arturas; Remeikis, Vidmantas

    2016-04-01

    We present carbonaceous aerosol source apportionment results in Eastern European city Vilnius (capital of Lithuania) using stable carbon isotope ratio (δ13C) and radiocarbon (14C) methods. The aerosol sampling campaigns were performed in 2014-2016 winter seasons in Vilnius. PM1 particles were collected on quartz fiber filters using high volume sampler, while PM10 and size segregated aerosol particles were collected using low volume and MOUDI 128 cascade impactor respectively. δ13C values were measured with EA-IRMS system while radiocarbon analysis was performed using Single Stage Accelerator Mass Spectrometer (SSAMS). For the AMS analysis, filters (or aluminium foils from cascade impactor) were graphitized using Automated Graphitization Equipment. It was estimated that dominant carbonaceous aerosol source in Vilnius was of biogenic/biomass origin (60-90 %). Fossil fuel sources accounted for up to 23 % of total carbon fraction. Combining stable carbon and radiocarbon isotope analysis we were able to quantify the amount of coal derived aerosol particles. The contribution of coal burning emissions were up to 14 %. We will present the applicability of dual carbon (13C and 14C) isotope ratio method for the aerosol source apportionment in different regions of Europe, also the perspectives of using MOUDI cascade impactors to make source apportionment in size segregated aerosol particles.

  14. Multi-Satellite Synergy for Aerosol Analysis in the Asian Monsoon Region

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Petrenko, Maksym

    2012-01-01

    Atmospheric aerosols represent one of the greatest uncertainties in environmental and climate research, particularly in tropical monsoon regions such as the Southeast Asian regions, where significant contributions from a variety of aerosol sources and types is complicated by unstable atmospheric dynamics. Although aerosols are now routinely retrieved from multiple satellite Sensors, in trying to answer important science questions about aerosol distribution, properties, and impacts, researchers often rely on retrievals from only one or two sensors, thereby running the risk of incurring biases due to sensor/algorithm peculiarities. We are conducting detailed studies of aerosol retrieval uncertainties from various satellite sensors (including Terra-/ Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, SeaWiFS, and Calipso-CALIOP), based on the collocation of these data products over AERONET and other important ground stations, within the online Multi-sensor Aerosol Products Sampling System (MAPSS) framework that was developed recently. Such analyses are aimed at developing a synthesis of results that can be utilized in building reliable unified aerosol information and climate data records from multiple satellite measurements. In this presentation, we will show preliminary results of. an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors, particularly focused on the Asian Monsoon region, along with some comparisons from the African Monsoon region.

  15. Mixing state and sources of submicron regional background aerosols in the northern Qinghai-Tibet Plateau and the influence of biomass burning

    NASA Astrophysics Data System (ADS)

    Li, W. J.; Chen, S. R.; Xu, Y. S.; Guo, X. C.; Sun, Y. L.; Yang, X. Y.; Wang, Z. F.; Zhao, X. D.; Chen, J. M.; Wang, W. X.

    2015-12-01

    Transmission electron microscopy (TEM) was employed to obtain morphology, size, composition, and mixing state of background aerosols with diameter less than 1 μm in the northern Qinghai-Tibet Plateau (QTP) during 15 September to 15 October 2013. Individual aerosol particles mainly contained secondary inorganic aerosols (SIA - sulfate and nitrate) and organics during clean periods (PM2.5 mass concentration less than 2.5 μg m-3). The presence of K-Na-Cl associated with organics and an increase in soot particles suggest that an intense biomass burning event caused the highest PM2.5 concentrations (> 30 μg m-3) during the study. A large number fraction of the fly-ash-containing particles (21.73 %) suggests that coal combustion emissions in the QTP significantly contributed to air pollutants at the medium pollution level (PM2.5: 10-30 μg m-3). We concluded that emissions from biomass burning and from coal combustion both constantly contribute to anthropogenic particles in the QTP atmosphere. Based on size distributions of individual particles at different pollution levels, we found that gas condensation on existing particles is an important chemical process for the formation of SIA with organic coating. TEM observations show that refractory aerosols (e.g., soot, fly ash, and visible organic particles) likely adhere to the surface of SIA particles larger than 200 nm due to coagulation. Organic coating and soot on surface of the aged particles likely influence their hygroscopic and optical properties, respectively, in the QTP. To our knowledge, this study reports the first microscopic analysis of fine particles in the background QTP air.

  16. Aerosol source plume physical characteristics from space-based multiangle imaging

    NASA Astrophysics Data System (ADS)

    Kahn, Ralph A.; Li, W.-H.; Moroney, Catherine; Diner, David J.; Martonchik, John V.; Fishbein, Evan

    2007-06-01

    Models that assess aerosol effects on regional air quality and global climate parameterize aerosol sources in terms of amount, type, and injection height. The multiangle imaging spectroradiometer (MISR) aboard NASA's Terra satellite retrieves total column aerosol optical thickness (AOT), and aerosol type over cloud-free land and water. A stereo-matching algorithm automatically retrieves reflecting-layer altitude wherever clouds or aerosol plumes have discernable spatial contrast, with about 500-m accuracy, at 1.1-km horizontal resolution. Near-source biomass burning smoke, volcanic effluent, and desert dust plumes are observed routinely, providing information about aerosol amount, particle type, and injection height useful for modeling applications. Compared to background aerosols, the plumes sampled have higher AOT, contain particles having expected differences in Angstrom exponent, size, single-scattering albedo, and for volcanic plume and dust cloud cases, particle shape. As basic thermodynamics predicts, thin aerosol plumes lifted only by regional winds or less intense heat sources are confined to the boundary layer. However, when sources have sufficient buoyancy, the representative plumes studied tend to concentrate within discrete, high-elevation layers of local stability; the aerosol is not uniformly distributed up to a peak altitude, as is sometimes assumed in modeling. MISR-derived plume heights, along with meteorological profile data from other sources, make it possible to relate radiant energy flux observed by the moderate resolution imaging spectroradiometer (MODIS), also aboard the Terra spacecraft, to convective heat flux that plays a major role in buoyant plume dynamics. A MISR climatology of plume behavior based on these results is being developed.

  17. Impact of Black Carbon Aerosols on Regional Climate

    NASA Astrophysics Data System (ADS)

    Menon, S.; Hansen, J.; Nazarenko, L.; Luo, Y.

    2002-12-01

    We have evaluated the effect of anthropogenic aerosols on the regional climates of China and India: regions where aerosol emissions have been increasing at an alarming rate. We use the Goddard Institute for Space Studies (GISS) climate model to perform simulations that investigate recent trends in summer precipitation observed over China - North drought, South flooding - considered to be the largest observed in several decades. We perform several simulations to differentiate between the climate effects of sulfate and black carbon aerosols and use realistic aerosol distributions obtained from measurements over China, India and the Indian Ocean. The trends in precipitation as well as the summer time surface cooling over China and India have been captured by using aerosols that have a low single scatter albedo (0.85), i.e., by assuming that the aerosols are mostly absorbing. Since black carbon aerosols are absorbing aerosols and cause surface cooling with heating at the top of the atmosphere and in the lower troposphere, the change in the vertical temperature profile causes changes in the large-scale vertical velocity fields, latent heating, convective activity and cloud cover. This change in the large-scale circulation may explain some of the changes in the precipitation and temperature trends observed over China and India in recent decades. Our results suggest that black carbon aerosols can have a significant influence on regional climate through changes in the hydrological cycle and large-scale circulation.

  18. Global View of Aerosol Vertical Distributions from CALIPSO Lidar Measurements and GOCART Simulations: Regional and Seasonal Variations

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin; Chin, Mian; Winker, David M.; Omar, Ali H.; Liu, Zhaoyan; Kittaka, Chieko; Diehl, Thomas

    2010-01-01

    This study examines seasonal variations of the vertical distribution of aerosols through a statistical analysis of the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) lidar observations from June 2006 to November 2007. A data-screening scheme is developed to attain good quality data in cloud-free conditions, and the polarization measurement is used to separate dust from non-dust aerosol. The CALIPSO aerosol observations are compared with aerosol simulations from the Goddard Chemistry Aerosol Radiation Transport (GOCART) model and aerosol optical depth (AOD) measurements from the MODerate resolution Imaging Spectroradiometer (MODIS). The CALIPSO observations of geographical patterns and seasonal variations of AOD are generally consistent with GOCART simulations and MODIS retrievals especially near source regions, while the magnitude of AOD shows large discrepancies in most regions. Both the CALIPSO observation and GOCART model show that the aerosol extinction scale heights in major dust and smoke source regions are generally higher than that in industrial pollution source regions. The CALIPSO aerosol lidar ratio also generally agrees with GOCART model within 30% on regional scales. Major differences between satellite observations and GOCART model are identified, including (1) an underestimate of aerosol extinction by GOCART over the Indian sub-continent, (2) much larger aerosol extinction calculated by GOCART than observed by CALIPSO in dust source regions, (3) much weaker in magnitude and more concentrated aerosol in the lower atmosphere in CALIPSO observation than GOCART model over transported areas in midlatitudes, and (4) consistently lower aerosol scale height by CALIPSO observation than GOCART model. Possible factors contributing to these differences are discussed.

  19. Microphysical properties of transported biomass burning aerosols in coastal regions, and application to improving retrievals of aerosol optical depth from SeaWiFS data

    NASA Astrophysics Data System (ADS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.

    2013-05-01

    Due to the limited measurement capabilities of heritage and current spaceborne passive imaging radiometers, algorithms for the retrieval of aerosol optical depth (AOD) and related quantities must make assumptions relating to aerosol microphysical properties and surface reflectance. Over the ocean, surface reflectance can be relatively well-modelled, but knowledge of aerosol properties can remain elusive. Several field campaigns and many studies have examined the microphysical properties of biomass burning (smoke) aerosol. However, these largely focus on properties over land and near to the source regions. In coastal and open-ocean regions the properties of transported smoke may differ, due to factors such as aerosol aging, wet/dry deposition, and mixture with other aerosol sources (e.g. influence of maritime, pollution, or mineral dust aerosols). Hence, models based on near-source aerosol observations may be less representative of such transported smoke aerosols, introducing additional uncertainty into satellite retrievals of aerosol properties. This study examines case studies of transported smoke from select globally-distributed coastal and island Aerosol Robotic Network (AERONET) sites. These are used to inform improved models for over-ocean transported smoke aerosol for AOD retrievals from the Sea-viewing Wide Field-of-view Sensor (SeaWiFS). These models are used in an updated version of the SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm, which has been combined with the Deep Blue algorithm over land to create a 13-year (1997-2010) high-quality record of AOD over land and ocean. Applying these algorithms to other sensors will enable the creation of a long-term global climate data record of spectral AOD.

  20. Anthropogenic Aerosol Dimming Over Oceans: A Regional Analysis

    NASA Astrophysics Data System (ADS)

    Dallafior, T. N.; Folini, D.; Knutti, R.; Wild, M.

    2015-12-01

    The role of anthropogenic aerosols in shaping 20th century SSTs through alteration of surface solar radiation (SSR) is still subject to debate. Identifying and quantifying the relationship between aerosol-induced changes in SSR and the corresponding SST response is difficult due to the masking effect of numerous feedback mechanisms and general variability of the atmosphere-ocean system. We therefore analysed potential anthropogenic aerosol effects on SST with a cascade of experiments of increasing complexity: From atmosphere-only over mixed-layer ocean (MLO) experiments, to fully coupled transient ocean-atmosphere simulations, with and without greenhouse gases and / or aerosols, using the general circulation model ECHAM with explicit aerosol representation. We find anthropogenic aerosols to be crucial to obtain realistic SSR and SST patterns, although co-location of changes in individual variables (aerosol optical depth, SSR, SST) is weak. The effect of greenhouse gases and aerosols in the MLO simulations is essentially additive on global and regional scales, an assumption frequently made in the literature. With atmosphere-only simulations we identified regions most prone to anthropogenic aerosol dimming throughout the 20th century using a strict criterion. From MLO equilibria representative of different decades throughout the 20th century, we identified ocean regions, whose SSTs are most sensitive to changing anthropogenic aerosol emissions. The surface temperature response patterns in our MLO simulations are more sensitive towards the choice of prescribed deep-ocean heat flux if anthropogenic aerosols were included as compared to greenhouse gas only simulations. This implies that ocean dynamics might mask some of the response and cautions against the use of just one set of deep-ocean heat fluxes in MLO studies. Our results corroborate not only the relevance of anthropogenic aerosols for SST responses, but also highlight the complexity and non-locality of the

  1. Aerosol Characterization Data from the Asian Pacific Regional Aerosol Characterization Project (ACE-Asia)

    DOE Data Explorer

    The Aerosol Characterization Experiments (ACE) were designed to increase understanding of how atmospheric aerosol particles affect the Earth's climate system. These experiments integrated in-situ measurements, satellite observations, and models to reduce the uncertainty in calculations of the climate forcing due to aerosol particles and improve the ability of models to predict the influences of aerosols on the Earth's radiation balance. ACE-Asia was the fourth in a series of experiments organized by the International Global Atmospheric Chemistry (IGAC) Program (A Core Project of the International Geosphere Biosphere Program). The Intensive Field Phase for ACE-Asia took place during the spring of 2001 (mid-March through early May) off the coast of China, Japan and Korea. ACE-Asia pursued three specific objectives: 1) Determine the physical, chemical, and radiative properties of the major aerosol types in the Eastern Asia and Northwest Pacific region and investigate the relationships among these properties. 2) Quantify the physical and chemical processes controlling the evolution of the major aerosol types and in particular their physical, chemical, and radiative properties. 3) Develop procedures to extrapolate aerosol properties and processes from local to regional and global scales, and assess the regional direct and indirect radiative forcing by aerosols in the Eastern Asia and Northwest Pacific region [Edited and shortened version of summary at http://data.eol.ucar.edu/codiac/projs?ACE-ASIA]. The Ace-Asia collection contains 174 datasets.

  2. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2013-01-01

    An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  3. Information Content of Aerosol Retrievals in the Sunglint Region

    NASA Technical Reports Server (NTRS)

    Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.

    2013-01-01

    We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.

  4. Experimental evaluation of atmospheric aerosol turbidity in different Atlantic regions

    SciTech Connect

    Plakhina, I.N.; Pyrogov, S.M.

    1994-12-31

    The statistical estimation of the experimental values of atmospheric turbidity are considered over the different Atlantic regions: from clean atmospheric conditions to very turbid conditions influenced by air masses from Africa containing continental Sahara aerosol. The factors influencing the variability of atmospheric turbidity are also analyzed. The contribution of aerosol to atmospheric attenuation of the direct solar radiation is estimated. It is shown that aerosol is the main factor determining the values of the optical thickness and its variability. The single scattering albedo is evaluated. The influence of the Sahara dust on the total solar radiation over the ocean surface is estimated. Based on the found relationship between aerosol optical thickness, total atmosphere, and aerosol turbidity in the surface layer, the height of the homogeneous atmosphere has been estimated. In addition, the aerosol generation by ocean surface in storm conditions has been considered.

  5. Impacts of sources and aging on submicrometer aerosol properties in the marine boundary layer across the Gulf of Maine

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Coffman, D.; Onasch, T. B.; Worsnop, D.; Baynard, T.; de Gouw, J. A.; Goldan, P. D.; Kuster, W. C.; Williams, E.; Roberts, J. M.; Lerner, B.; Stohl, A.; Pettersson, A.; Lovejoy, E. R.

    2006-12-01

    Measurements were made on board the NOAA RV Ronald H. Brown during the second New England Air Quality Study (NEAQS 2004) to determine the source of the aerosol in the region and how sources and aging processes affect submicrometer aerosol chemical composition and optical properties. Using the Lagrangian particle dispersion model FLEXPART in combination with gas phase tracer compounds, local (urban), regional (NE U.S. urban corridor of Washington, D.C.; New York; and Boston), and distant (midwest industries and North American forest fires) sources were identified. Submicrometer aerosol measured near the source region (Boston Harbor) had a molar equivalence ratio near one with respect to NH4+, NO3-, and SO4=, had a large mass fraction of particulate organic matter (POM) relative to SO4=, and had relatively unoxidized POM. As distance from the source region increased, the submicrometer aerosol measured in the marine boundary layer became more acidic and had a lower POM mass fraction, and the POM became more oxidized. The relative humidity dependence of light extinction reflected the change in aerosol composition being lower for the near-source aerosol and higher for the more processed aerosol. A factor analysis performed on a combined data set of aerosol and gas phase parameters showed that the POM measured during the experiment was predominantly of secondary anthropogenic origin.

  6. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    NASA Technical Reports Server (NTRS)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  7. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    PubMed

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data.

  8. Sources and components of organic aerosols in Central Europe

    NASA Astrophysics Data System (ADS)

    Lanz, V. A.; Prévôt, A. S. H.; Alfarra, M. R.; Hüglin, C.; Mohr, C.; Weimer, S.; Baltensperger, U.

    2009-04-01

    The quadrupole version of the Aerodyne Aerosol Mass Spectrometer (q-AMS) was deployed at several places in Switzerland, Austria, and Liechtenstein. The q-AMS provides real-time information on mass concentration and composition of the non-refractory species in particulate matter smaller than 1 µm (NR-PM1) with high time- and size-resolution at unit mass resolution. The combination of factor analysis and ambient AMS data represents a relatively new approach to identify organic aerosol (OA) sources/components (Zhang et al., 2005). In this study, such an approach (PMF - positive matrix factorization; Lanz et al., 2007, 2008) was applied to various OA data sets covering a wide range of pollution levels (mobile measurements on motorways, urban, rural, and even a high-alpine location) as well as all seasons of the year. Dominating aerosol components were representing oxygenated and secondary organic aerosol (OOA-I and OOA-II), primary particles from wood burning (P-BBOA; especially in residential areas in wintertime with abundances of ~50% OA and more) and primary traffic-related aerosols (usually ~10% of OA, but up to 60% on motorways). Close to sources, charbroiling and potentially food cooking aerosols could be distinguished as well. The OOAs' time series were compared to measurements of AMS inorganics (sulphate, nitrate, and ammonium) in order to facilitate their interpretation as secondary OA (SOA). Diurnal cycles of the estimated source strengths, ancillary gas-phase and meteorological data, estimated emission ratios etc. were also used to validate the interpretations of the factor analytical results. Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B., Hueglin, C., and Prévôt, A. S. H.: Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra, Atmos. Chem. Phys., 7, 1503-1522, 2007, http://www.atmos-chem-phys.net/7/1503/2007/. Lanz, V. A., Alfarra, M. R., Baltensperger, U., Buchmann, B

  9. Altitude variations in stratospheric aerosols of a tropical region

    NASA Astrophysics Data System (ADS)

    Goodman, Jindra; Snetsinger, K. G.; Ferry, G. V.; Farlow, N. H.; Lem, H. Y.; Hayes, D. M.

    To investigate the possibility that significant amounts of tropical tropospheric air may be convectively introduced into the stratosphere, aerosol samplings over Panama were made at various altitudes using a wire impactor collector. Percentage of particle sizes less than the mean mode decreases with height above the tropopause, suggesting depletion of small particles, possibly due to coagulation. Larger aerosols (greater than 0.3 µm in diam.) are more abundant farther above the tropopause, indicating growth, mainly by condensation. The total particle concentration decreases with increasing height above the tropopause, and also with increasing temperature. Aerosols containing smaller-size particles are thus found closer to the tropopause, and larger-size, more-evolved aerosols occur at higher altitudes. These data indicate that convective activity at the ITCZ may be a source mechanism for stratospheric aerosols.

  10. Aerosol composition and variability in the Baltimore-Washington, DC region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    in the free troposphere (above 3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed layer aerosol. Aerosol loading was found to be the predominant source accounting for 88 % on average of the measured spatial variability in extinction with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first-order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite/modelling assimilation products that are able to capture these components of the AOD-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day-to-day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015) that determined the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  11. Potential emission flux to aerosol pollutants over Bengal Gangetic plain through combined trajectory clustering and aerosol source fields analysis

    NASA Astrophysics Data System (ADS)

    Kumar, D. Bharath; Verma, S.

    2016-09-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over Bengal Gangetic plain urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol (AOD: 0.77; AE: 1.17) were respectively slightly higher than and nearly equal to that at Kgp (AOD: 0.71; AE: 1.18). Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal and the Arabian sea clusters at Kol and that from the Indo-Gangetic plain (IGP) cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, primarily over upper IGP (e.g. Punjab, Haryana), lower IGP (e.g. Uttarpradesh) and eastern region (e.g. west Bengal, Bihar, northeast India) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp, elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were primarily from upper, lower, upper/lower IGP clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from eastern region and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from northwest India (NWI) was comparable to that from AFR at Kol SL/EL.

  12. Aerosol pollution in the arid and semi-arid regions of southern Russia

    NASA Astrophysics Data System (ADS)

    Artamonova, Maria; Chkhetiani, Otto; Gledzer, Evgeny; Golitsyn, Georgy; Iordansky, Michael; Kadygrov, Evgeny; Khapaev, Alexey; Knyazev, Alexander; Kurgansky, Michael; Lebedev, Vladimir; Maksimenkov, Leonid; Minashkin, Vyacheslav; Obvintsev, Yury; Pogarsky, Fedor

    2014-05-01

    We present the systematized data results from field measurements of submicron aerosol. These measurements were carried out in the steppe regions of Rostov region and in semi-desert areas of Kalmykia Republic (the Caspian lowland) in the summer period of years 2007-2013. These data include the diurnal variation of the counting and mass aerosol concentration in the range of 0.1-15 microns, the diurnal variation of the counting and mass concentrations of the various fractions of submicron aerosol, the elemental composition of aerosol and soil samples, meteorological parameters of the atmosphere, soil temperature and radiation balance. Fine sand fraction (86.6%) is predominant in the soil. It is significantly higher than the percentage of silt fractions, medium and coarse sand. The chemical composition of sand is aluminum-silicon one. Elemental and mineralogical analysis of soil and aerosol particles confirmed the identity of the chemical composition of the soil and the fine fraction of the aerosol, respectively. Obtained data show the presence, in hot and dry weather, of convective lifting and outflow of fine aerosol in the daytime over dry sandy areas and dry loamy soils, in these areas. Studies have shown that the removal of the fine aerosol increases proportionally to the temperature lapse rate in the surface air layer and decreases with increased wind speed. The coarser fraction of aerosol prevails in the airflow for wind speed of 5 m/s and more. Relationship between the aerosol emission and the stability of the atmospheric boundary layer (Monin-Obukhov length-scale) is considered. Aerosol mass concentration at different periods of observations (2007-2013) was from a few dozen to several hundred mg/m3. Calculations of the average annual value of the convective flow of the aerosol into the atmosphere from sand areas in Kalmykia are presented. Distribution of lifted aerosol particles depends on the weather conditions (wind speed, relative humidity air and soil

  13. Distributed Regional Aerosol Gridded Observation Network (DRAGON) - Korea 2012 campaign

    NASA Astrophysics Data System (ADS)

    Kim, J.; Holben, B. N.; Eck, T. F.; Jeong, U.; Kim, W. V.; Choi, M.; Kim, D. S.; Kim, B.; Kim, S.; Ghim, Y.; Kim, Y. J.; Kim, J. H.; Park, R.; Seo, M.; Song, C.; Yum, S.; Woo, J.; Yoon, S.; Lee, K.; Lee, M.; Lim, J.; Chang, I.; Jeong, M. J.; Bae, M.; Sorokin, M.; Giles, D. M.; Schafer, J.; Herman, J. R.

    2013-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. Recently, with the cooperative efforts with NASA (National Aeronautics and Space Administration) / GSFC (Goddard Space Flight Center), Korean University research groups, and KME (Korea Ministry of Environment) / NIER (National Institute of Environmental Research), DRAGON-Korea 2012 campaign was successfully performed from March to May 2012. The campaign sites were divided into two groups, the National scale sites and Seoul metropolitan sites. Thirteen Cimel sunphotometers were distributed at National scale sites including two metropolitan cities and several remote sites. Nine Cimel sunphotometers were distributed at Seoul Metropolitan sites including several residential sites and traffic source areas. The measured datasets are being analyzed in diverse fields of air quality communities including in-situ measurement groups, satellite remote sensing groups, chemical modeling groups, and airplane measurement groups. We will introduce several preliminary results of the analysis and discuss the future planes and corporations in Korea.

  14. Aerosol variability and atmospheric transport in the Himalayan region from CALIOP 2007-2010 observations

    NASA Astrophysics Data System (ADS)

    Bucci, S.; Cagnazzo, C.; Cairo, F.; Di Liberto, L.; Fierli, F.

    2014-05-01

    This work quantifies the spatial distribution of different aerosol types, their seasonal variability and sources.The analysis of four years of CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) vertically resolved aerosol data allows the identification of spatial patterns of desert dust and carbonaceous particles in different atmospheric layers. Clusters of Lagrangian back trajectories highlight the transport pathways from source regions during the dusty spring season. The analysis shows a prevalence of dust; at low heights it occurs frequently (up to 70% of available observations) and is distributed north of the Tibetan Plateau with a main contribution from the Gobi and Taklamakan deserts, and west of the Tibetan Plateau, originating from the deserts of southwest Asia and advected by the Westerlies. Above the Himalayas the dust amount is minor but still not negligible (occurrence around 20%) and mainly affected by the transport from more distant deserts sources (Sahara and Arabian Peninsula). Carbonaceous aerosol, produced mainly in northern India and eastern China, is subject to shorter-range transport and is indeed observed closer to the sources, while there is a limited amount reaching the top of the plateau. Data analysis reveals a clear seasonal variability in the frequencies of occurrence for the main aerosol types; dust is regulated principally by the monsoon dynamics, with maximal occurrence in spring. We also highlight relevant interannual differences, showing a larger presence of aerosol in the region during 2007 and 2008. The characterization of the aerosol spatial and temporal distribution in terms of observational frequency is a key piece of information that can be directly used for the evaluation of global aerosol models.

  15. A study of regional aerosol radiative properties and effects on ultraviolet-B radiation

    NASA Astrophysics Data System (ADS)

    Wenny, B. N.; Schafer, J. S.; Deluisi, J. J.; Saxena, V. K.; Barnard, W. F.; Petropavlovskikh, I. V.; Vergamini, A. J.

    1998-07-01

    A field experiment was conducted in western North Carolina to investigate the relationship between aerosol optical properties and atmospheric transmission. Two research measurement sites in close horizontal proximity but at different altitudes were established to measure the transmission of UV radiation through a slab of atmosphere. An identical set of radiation sensing instruments, including a broadband UV-B radiometer, a direct Sun pyrheliometer, a shadowband radiometer, and a spectral photometer, was placed at both sites, a mountaintop site (Mount Gibbes 35.78°N, 82.29°W, 2004 m elevation) and a valley site (Black Mountain, North Carolina 35.66°N, 82.38°N, 951 m elevation). Aerosol size distribution sampling equipment was located at the valley site. Broadband solar pseudo-optical depth and aerosol optical depths at 415 nm, 500 nm, and 673 nm were measured for the lowest 1-km layer of the troposphere. The measurements exhibited variations based on an air mass source region as determined by back trajectory analysis. Broadband UV-B transmission through the layer also displayed variations relating to air mass source region. Spectral UV transmission revealed a dependence upon wavelength, with decreased transmission in the UV-B region (300-320 nm) versus UV-A region (320-363.5 nm). UV-B transmission was found to be negatively correlated with aerosol optical depth. Empirical relations were developed to allow prediction of solar noon UV-B transmission if aerosol optical depth at two visible wavelengths (415 and 500 nm) is known. A new method was developed for determining aerosol optical properties from the radiation and aerosol size distribution measurements. The aerosol albedo of single scatter was found to range from 0.75 to 0.93 and the asymmetry factor ranged from 0.63 to 0.76 at 312 nm, which is close to the peak response of human skin to UV radiation.

  16. Characterization of selenium in ambient aerosols and primary emission sources.

    PubMed

    De Santiago, Arlette; Longo, Amelia F; Ingall, Ellery D; Diaz, Julia M; King, Laura E; Lai, Barry; Weber, Rodney J; Russell, Armistead G; Oakes, Michelle

    2014-08-19

    Atmospheric selenium (Se) in aerosols was investigated using X-ray absorption near-edge structure (XANES) spectroscopy and X-ray fluorescence (XRF) microscopy. These techniques were used to determine the oxidation state and elemental associations of Se in common primary emission sources and ambient aerosols collected from the greater Atlanta area. In the majority of ambient aerosol and primary emission source samples, the spectroscopic patterns as well as the absence of elemental correlations suggest Se is in an elemental, organic, or oxide form. XRF microscopy revealed numerous Se-rich particles, or hotspots, accounting on average for ∼16% of the total Se in ambient aerosols. Hotspots contained primarily Se(0)/Se(-II). However, larger, bulk spectroscopic characterizations revealed Se(IV) as the dominant oxidation state in ambient aerosol, followed by Se(0)/Se(-II) and Se(VI). Se(IV) was the only observed oxidation state in gasoline, diesel, and coal fly ash, while biomass burning contained a combination of Se(0)/Se(-II) and Se(IV). Although the majority of Se in aerosols was in the most toxic form, the Se concentration is well below the California Environmental Protection Agency chronic exposure limit (∼20000 ng/m(3)). PMID:25075640

  17. First Evaluation of the CCAM Aerosol Simulation over Africa: Implications for Regional Climate Modeling

    NASA Astrophysics Data System (ADS)

    Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.

    2015-12-01

    An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in

  18. Multi-Decadal Variation of Aerosols: Sources, Transport, and Climate Effects

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Streets, David

    2008-01-01

    We present a global model study of multi-decadal changes of atmospheric aerosols and their climate effects using a global chemistry transport model along with the near-term to longterm data records. We focus on a 27-year time period of satellite era from 1980 to 2006, during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. We will use the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model, which involves a time-varying, comprehensive global emission dataset that we put together in our previous investigations and will be improved/extended in this project. This global emission dataset includes emissions of aerosols and their precursors from fuel combustion, biomass burning, volcanic eruptions, and other sources from 1980 to the present. Using the model and satellite data, we will analyze (1) the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions from anthropogenic and natural sources, (2) the intercontinental source-receptor relationships controlled by emission, transport pathway, and climate variability.

  19. Atmospheric aerosols local-regional discrimination for a semi-urban area in India

    NASA Astrophysics Data System (ADS)

    Hooda, R. K.; Hyvärinen, A.-P.; Vestenius, M.; Gilardoni, S.; Sharma, V. P.; Vignati, E.; Kulmala, M.; Lihavainen, H.

    2016-02-01

    In the European Integrated project on Aerosol Cloud Climate and Air Quality interactions (EUCAARI), measurements were carried out with a sequential filter-based aerosol sampler and on-line instruments for aerosol composition and behaviour at Gual Pahari, close to New Delhi. In fine mode (PM2.5), the secondary organic carbon (SOC) to total organic carbon ratio was 46%. This indicated that condensation of SOC on fine size particles could occur rapidly which may be related to the growth of aerosols and the potential to the size of cloud condensation nuclei in the region. Source region discrimination was improved significantly through coupling conditional probability functions with receptor modelling, and validation through volume size distribution. The air masses from industrial and dense populated regions show a mix of local as well as regional emissions to fine mode aerosols. The back-trajectory analysis captured the long-range transport of sea-salt aerosols enriched with mineral dust. The surface wind directions identified the influence of local emission activities.

  20. Characterization of sources for southern African aerosols through fatty acid and trajectory analyses

    NASA Astrophysics Data System (ADS)

    Billmark, Kaycie A.; Swap, Robert J.; Macko, Stephen A.

    2003-07-01

    Biogeochemical cycles in southern Africa are affected by emissions from extensive biomass burning. Emitted trace gases and aerosols frequently accumulate and recirculate in the well-defined synoptic pattern that persists for long time periods over southern Africa. The role of organic aerosols during atmospheric transport and the influence of neighboring air masses on biogeochemical dynamics in this nutrient-limited region are insufficiently studied. The Southern African Regional Science Initiative (SAFARI 2000) was conducted in part to investigate the impacts of this large-scale transport and deposition of increasingly anthropogenic emissions on southern African biogeochemical cycling. This study explores the understanding of regional atmospheric transport through the identification of chemical biomarkers to describe aerosols collected during the SAFARI 2000 dry season research campaign. Total suspended particulate aerosol samples were collected diurnally for a period of two weeks in Mongu, Zambia. Mongu is bordered by the Zambezi River on the west and the Miombo woodland savanna in all other directions. It also lies on the northern extent of the Kalahari Desert. This region is characterized by high biomass burning emissions of river floodplain grasses and woodland savanna during the dry season. Fatty acids were extracted from the collected aerosols and analyzed using gas chromatography. The resultant fatty acid compositions were examined for temporal patterns and trends. Furthermore, these results were compared to both synoptic meteorological patterns over the region, as well as to modeled air parcel trajectories, to gain insight into changes in aerosol composition resulting from changes in atmospheric transports from regions of different vegetation. The results of these analyses confirm that abundances of fatty acids are dependent on local and synoptic meteorology and can thus be used as an additional geochemical tracer to better describe aerosol sources and

  1. Investigating Types and Sources of Organic Aerosol in Rocky Mountain National Park Using Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L.

    2011-12-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS) focuses on identifying pathways and sources of nitrogen deposition in Rocky Mountain National Park (RMNP). Past work has combined measurements from a range of instrumentation such as annular denuders, PILS-IC, Hi-Vol samplers, and trace gas analyzers. Limited information from early RoMANS campaigns is available regarding organic aerosol. While prior measurements have produced a measure of total organic carbon mass, high time resolution measures of organic aerosol concentration and speciation are lacking. One area of particular interest is characterizing the types, sources, and amounts of organic nitrogen aerosol. Organic nitrogen measurements in RMNP wet deposition reveal a substantial contribution to the total reactive nitrogen deposition budget. In this study an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed in summer 2010 at RMNP to investigate organic aerosol composition and its temporal variability. The species timeline and diurnal species variations are combined with meteorological data to investigate local transport events and chemistry; transport from the Colorado Front Range urban corridor appears to be more significant for inorganic species than for the overall organic aerosol mass. Considerable variation in organic aerosol concentration is observed (0.5 to 20 μg/m3), with high concentration episodes lasting between hours and two days. High resolution AMS data are analyzed for organic aerosol, including organic nitrogen species that might be expected from local biogenic emissions, agricultural activities, and secondary reaction products of combustion emissions. Positive matrix factorization reveals that semi-volatile oxidized OA, low-volatility oxidized OA, and biomass burning OA comprise most organic mass; the diurnal profile of biomass burning OA peaks at four and nine pm and may arise from local camp fires, while constant concentrations of

  2. Source apportionment of ambient aerosol applying PMF on AMS mobile and stationary data

    NASA Astrophysics Data System (ADS)

    Mohr, C.; Weimer, S.; Richter, R.; Decarlo, P. F.; Chirico, R.; Heringa, M. F.; Prévôt, A. S. H.; Baltensperger, U.

    2009-04-01

    Ambient aerosols are divided into the categories "primary" and "secondary", referring to particles directly emitted into the air, or formed out of precursor species such as volatile organic compounds, respectively. Main sources for primary urban aerosol and precursor species are traffic emissions, but also wood burning for domestic heating purposes especially in winter time (Alfarra et al., 2007). The quantification of various types of aerosol components is important for source identification which in turn is the basis of all mitigation activities. Positive Matrix Factorization (PMF) is a statistical based source apportionment tool that uses constrained, weighted least squares estimation to determine source profiles and strengths. PMF has been applied recently for the first time on highly time resolved organic mass spectra (Lanz et al., 2007) measured by an Aerodyne aerosol mass spectrometer (AMS) (Canagaratna et al., 2007). For the data presented here, two AMS were deployed together with additional instrumentation in the metropolitan area of Zurich in winter 2007/2008. The high-resolution time-of-flight AMS was stationed at an urban background site in the center, 30 meters from and shielded against direct traffic emissions. The quadrupole-based AMS was deployed in a mobile van allowing for on-road submicron aerosol composition measurements, and investigations into the spatial variability of aerosol concentration and composition. Results indicate that traffic emissions are the main contributor to submicron aerosol concentrations measured on-road. Hydrocarbon-like organic aerosol (HOA), a marker for traffic emissions (Lanz et al. 2007), dominates the primary aerosol mass, together with black carbon (BC). BC was monitored with the MAAP (multi angle absorption photometer). Another significant contributor to primary organic aerosol mass in downtown Zurich is domestic wood burning for heating purposes. Traffic and wood burning emissions make up roughly 50% of the total

  3. Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements

    NASA Astrophysics Data System (ADS)

    Elser, Miriam; Bozzetti, Carlo; El-Haddad, Imad; Maasikmets, Marek; Teinemaa, Erik; Richter, Rene; Wolf, Robert; Slowik, Jay G.; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Air pollution is one of the main environmental concerns in urban areas, where anthropogenic emissions strongly affect air quality. This work presents the first spatially resolved detailed characterization of PM2.5 (particulate matter with aerodynamic equivalent diameter daero ≤ 2.5 µm) in two major Estonian cities, Tallinn and Tartu. The measurements were performed in March 2014 using a mobile platform. In both cities, the non-refractory (NR)-PM2.5 was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) using a recently developed lens which increases the transmission of super-micron particles. Equivalent black carbon (eBC) and several trace gases including carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were also measured. The chemical composition of PM2.5 was found to be very similar in the two cities. Organic aerosol (OA) constituted the largest fraction, explaining on average about 52 to 60 % of the PM2.5 mass. Four sources of OA were identified using positive matrix factorization (PMF): hydrocarbon-like OA (HOA, from traffic emissions), biomass burning OA (BBOA, from biomass combustion), residential influenced OA (RIOA, probably mostly from cooking processes with possible contributions from waste and coal burning), and oxygenated OA (OOA, related to secondary aerosol formation). OOA was the major OA source during nighttime, explaining on average half of the OA mass, while during daytime mobile measurements the OA was affected by point sources and dominated by the primary fraction. A strong increase in the secondary organic and inorganic components was observed during periods with transport of air masses from northern Germany, while the primary local emissions accumulated during periods with temperature inversions. Mobile measurements offered the identification of different source regions within the urban areas and the assessment of the extent to which pollutants concentrations exceeded regional background

  4. Aerosols and contrasting monsoon conditions over the Himalayan region

    NASA Astrophysics Data System (ADS)

    Singh, Charu; Ganguly, Dilip; Dash, S. K.

    2016-05-01

    Impact of aerosols on the Indian summer monsoon (ISM) variability is well documented; however there are limited studies which have quantified the role of aerosols in modifying the amount of rainfall. To address this research problem, we make use of the remotely sensed data set of precipitation and aerosols from different observations. In the present study remotely sensed precipitation data set has been utilised to define contrasting monsoon conditions over the Himalayan region. As per the classical definition, active and break spells are defined over the central part of the Indian land region, and during the break spells over the central Indian region, the Himalayan region receives substantial amount of rainfall. It is found that accumulation of more dust over the Uttarakhand region significantly (negative correlation with rainfall; significant at 5% significance level) suppresses the rainfall during break spells. We propose that the substantial aerosol loading and its associated dynamical feedback over the Himalayan foothills may have considerable impact on the amount of rainfall over the mountainous regions of the Indian subcontinent. Results presented in this paper are supported by the statistically robust significance test and would be useful to develop the understanding of the role of aerosols in modulating the rainfall intensity during the summer monsoon season.

  5. Global Retrieval of Aerosol Properties from Sources to Sinks By MODIS

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina

    2005-01-01

    Mineral dust and smoke aerosols play an important role in both climate forcing and oceanic productivity throughout the entire year. Due to the relatively short lifetime (a few hours to about a week), the distributions of these airborne particles vary extensively in both space and time. Consequently, satellite observations are needed over both source and sink regions for continuous temporal and spatial sampling of dust and smoke properties. However, despite their importance, the high spatial resolution satellite measurements of these aerosols near their sources have been lacking, In this paper, we will demonstrate the capability of a new satellite algorithm to retrieve aerosol optical thickness and single scattering albedo over bright-reflecting surfaces such as urban areas and deserts. Such retrievals have been difficult to perform using previously available algorithms that use wavelengths from the mid-visible to the near IR because they have trouble separating the aerosol signal from the contribution due to the bright surface reflectance. The new algorithm, called Deep Blue, utilizes blue-wavelength measurements from instruments such as MODIS and SeaWiFS to infer the properties of aerosols, since the surface reflectance over land in the blue part of the spectrum is much lower than for longer wavelength channels. We have validated the satellite retrieved aerosol optical thickness with data from AERONET sunphotometers over land, including desert and semi-desert regions. The comparisons show reasonable agreements between these two. Our results show that the dust plumes lifted from the deserts near India/Pakistan border, and over Afghanistan, and the Arabian Peninsula are often observed by MODIS to be transported along the Indo-Gangetic Basin and mixed with the fine mode pollution particles generated by anthropogenic activities in this region, particularly during the pre-monsoon season (April-May). These new satellite products will allow scientists to determine

  6. Comparative analysis of aerosols elemental distribution in some Romanian regions

    NASA Astrophysics Data System (ADS)

    Amemiya, Susumu; Masuda, Toshio; Popa-Simil, Liviu; Mateescu, Liviu

    1996-04-01

    The study's main aim is obtaining aerosols particulate elemental distribution and mapping it for some Romanian regions, in order to obtain preliminary information regarding the concentrations of aerosol particles and networking strategy versus local conditions. For this we used the mobile sampling strategy, but taking care on all local specific conditions and weather. In the summer of 1993, in July we took about 8 samples on a rather large territory of SE Romania which were analysed and mapped. The regions which showed an interesting behaviour or doubts such as Bucharest and Dobrogea were zoomed in near the same period of 1994, for comparing the new details with the global aspect previously obtained. An attempt was made to infer the minimum necessary number of stations in a future monitoring network. A mobile sampler was used, having tow polycarbonate filter posts of 8 and 0.4 μm. PIXE elemental analysis was performed on a 2.5 MV Van de Graaff accelerator, by using a proton beam. More than 15 elements were measured. Suggestive 2D and 3D representations were drawn, as well as histogram charts for the concentrations' distribution in the specific regions at the specified times. In spite of the poor samples from the qualitative point of view the experiment surprised us by the good coincidence (good agreement) with realities in terrain known by other means long time ago, and highlighted the power of PIXE methods in terms of money and time. Conclusions over the link between industry, traffic, vegetation, wether, surface waters, soil composition, power plant exhaust and so on, on the one hand, and surface concentration distribution, on the other, were drawn. But the method's weak points were also highlighted; these are weather dependencies (especially air masses movement and precipitation), local relief, microclimate and vegetation, and of course localisation of the sampling point versus the pollution sources and their regime. The paper contains a synthesis of the whole

  7. Investigating water soluble organic aerosols: Sources and evolution

    NASA Astrophysics Data System (ADS)

    Hecobian, Arsineh N.

    Many studies are being conducted on the different properties of organic aerosols (OA-s) as it is first emitted into the atmosphere and the consequent changes in these characteristics as OA-s age and secondary organic aerosol (SOA) is produced and in turn aged. This thesis attempts to address some of the significant and emerging issues that deal with the formation and transformation of water-soluble organic aerosols in the atmosphere. First, a proven method for the measurement of gaseous sulfuric acid, negative ion chemical ionization mass spectrometry (CIMS), has been modified for fast and sensitive measurements of particulate phase sulfuric acid (i.e. sulfate). The modifications implemented on this system have also been the subject of preliminary verifications for measurements of aerosol phase oxalic acid (an organic acid). Second, chemical and physical characteristics of a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS experiment are presented here. A statistical summary of the emission (or enhancement) ratios relative to carbon monoxide is presented for various gaseous and aerosol species. Extensive investigations of fire plume evolutions were undertaken during the second part of this field campaign. For four distinct Boreal fires, where plumes were intercepted by the aircraft over a wide range of down-wind distances, emissions of various compounds and the effect of aging on them were investigated in detail. No clear evidence of production of secondary compounds (e.g., WSOC and OA) was observed. High variability in emissions between the different plumes may have obscured any clear evidence of changes in the mass of various species with increasing plume age. Also, the lack if tropospheric oxidizing species (e.g., O3 and OH) may have contributed to the lack of SOA formation. Individual intercepts of smoke plumes in this study were segregated by source regions. The normalized excess mixing

  8. Atmospheric Transport of Arid Aerosol from Desert Regions of Central Asia

    NASA Astrophysics Data System (ADS)

    Chen, Boris; Solomon, Paul; Sitnov, Sergei; Grechko, Evgeny; Maximenkov, Leonid; Artamonova, Maria; Pogarski, Fedor

    2010-05-01

    Investigation of atmospheric transport of arid aerosol from Central Asia was held within the ISTC project 3715. Particular attention was paid to the removal of aerosol from the Aral Sea region and its further transport, because aerosol and pollutants emission from Central Asia affect the airspace of the entire Asian continent. At the same time measurements of aerosols in the atmosphere of Central Asia are holding in a small number of stations, and currently available data are insufficient to define the initial conditions and/or verification of models of long-range transport. To identify sources of pollution transported from Central Asia, in Kyrgyzstan measurement and sampling of air were organized: at the station on the northern slope of the Kirgiz Range, 30 km south of Bishkek, at an altitude of 1700 m above sea level (Bishkek Site, 42,683N; 74,694E ), and on permanent alpine Teploklyuchenka lidar station in the Central Tien Shan at an altitude of 2000 m above sea level (Lidar Site, 42,467N; 78,533E). The chemical analysis of collected aerosol and soils samples was carried out. Measurements of aerosol at these stations have been merged with the simulation of the trajectories of air masses in the study region and with the satellite (the Terra and Aqua satellites) observations of aerosol optical thickness in this region. Satellite data for the region 43-47 N, and 58-62 E (Aral Sea) from April 2008 to September 2009 were analyzed. The moments were selected, when the value of aerosol optical thickness (AOT) was greatest (more than 0.5), and the transport from the Aral Sea region to the observation sites took place. For each of these days, the forward trajectories, which started at 6 points within the region, were calculated using the HYSPLIT model. The days, on which the trajectories reached the BISHKEK and LIDAR sites, were determined from the data obtained. Calculations on the basis of the RAMS model were performed for these days. These calculations were performed

  9. Regional aerosol properties: Comparisons of boundary layer measurements from ACE 1, ACE 2, Aerosols99, INDOEX, ACE Asia, TARFOX, and NEAQS

    NASA Astrophysics Data System (ADS)

    Quinn, Patricia K.; Bates, Timothy S.

    2005-07-01

    Means and variability of aerosol chemical composition and optical properties are compared for the first and second Aerosol Characterization Experiments (ACE 1 and ACE 2), a cruise across the Atlantic (Aerosols99), the Indian Ocean Experiment (INDOEX), the Asian Aerosol Characterization Experiment (ACE Asia), the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX), and the New England Air Quality Study (NEAQS). These experiments were focused either on the remote marine atmosphere (ACE 1) or areas downwind of continental aerosol source regions including western Europe, North America, Africa, India, and Asia. Presented here are size-segregated concentrations of aerosol mass, sea salt, non-sea-salt (nss) SO4=, NH4+, NO3-, dust, organic carbon (OC), elemental carbon (EC), and nss K+, as well as mass ratios that are commonly used to identify aerosol sources and to assess aerosol processing (Cl- to Na+, OC to nss SO4=, EC to total carbon (TC), EC to nss SO4=, nss K+ to EC, Fe to Al, and Si to Al). Optical properties that are compared include size-segregated scattering, backscattering, and absorption coefficients, and single-scattering albedo at 550 nm. Size-segregated mass scattering and mass absorption efficiencies for the total aerosol and mass extinction efficiencies for the dominant chemical components also are compared. In addition, we present the contribution to light extinction by the dominant chemical components for each region. All data are based on shipboard measurements performed at a relative humidity of 55 ± 5%. Scattering coefficients and single-scattering albedos also are reported at ambient relative humidity (RH) using published values of f(RH). Finally, aerosol optical depths from each region are compared. Identical sampling protocols were used in all experiments in order to eliminate sampling biases and to make the data directly comparable. Major findings include (1) nss SO4= makes up only 16 to 46% of the submicron aerosol mass

  10. Anthropogenic Aerosol Radiative Forcing in Asia Derived From Regional Models With Atmospheric and Aerosol Data Assimilation

    SciTech Connect

    Chung, Chul Eddy; Ramanathan, V.; Carmichael, Gregory; Kulkarni, S.; Tang, Youhua; Adhikary, Bhupesh; Leung, Lai-Yung R.; Qian, Yun

    2010-07-05

    A high-resolution estimate of monthly 3D aerosol solar heating rates and surface solar fluxes in Asia from 2001 to 2004 is described here. This product stems from an Asian aerosol assimilation project, in which a) the PNNL regional model bounded by the NCEP reanalyses was used to provide meteorology, b) MODIS and AERONET data were integrated for aerosol observations, c) the Iowa aerosol/chemistry model STEM-2K1 used the PNNL meteorology and assimilated aerosol observations, and d) 3D (X-Y-Z) aerosol simulations from the STEM-2K1 were used in the Scripps Monte-Carlo Aerosol Cloud Radiation (MACR) model to produce total and anthropogenic aerosol direct solar forcing for average cloudy skies. The MACR model and STEM both used the PNNL model resolution of 0.45º×0.4º in the horizontal and of 23 layers in the troposphere. The 2001–2004 averaged anthropogenic all-sky aerosol forcing is -1.3 Wm-2 (TOA), +7.3 Wm-2 (atmosphere) and -8.6 Wm-2 (surface) averaged in Asia (60-138°E & Eq. -45°N). In the absence of AERONET SSA assimilation, absorbing aerosol concentration (especially BC aerosol) is much smaller, giving -2.3 Wm-2 (TOA), +4.5 Wm-2 (atmosphere) and -6.8 Wm-2 (surface), averaged in Asia. In the vertical, monthly forcing is mainly concentrated below 600hPa with maxima around 800hPa. Seasonally, low-level forcing is far larger in dry season than in wet season in South Asia, whereas the wet season forcing exceeds the dry season forcing in East Asia. The anthropogenic forcing in the present study is similar to that in Chung et al.’s [2005] in overall magnitude but the former offers fine-scale features and simulated vertical profiles. The interannual variability of the computed anthropogenic forcing is significant and extremely large over major emission outflow areas. In view of this, the present study’s estimate is within the implicated range of the 1999 INDOEX result. However, NCAR/CCSM3

  11. Annual Patterns and Sources of Light-Absorbing Aerosols over Central Greenland

    NASA Astrophysics Data System (ADS)

    Hu, J.; Bergin, M. H.; Dibb, J. E.; Sheridan, P. J.; Ogren, J. A.

    2014-12-01

    The Arctic region has proven to be more responsive to recent changes in climate than other parts of the Earth. A key component of the Arctic climate is the Greenland ice sheet (GIS), which has the potential to dramatically influence sea level, depending on the amount of melting that occurs, as well as climate, through shifts in the regional radiation balance. Light-absorbing aerosols from biomass burning, fossil fuel combustion, and dust sources can potentially have a significant impact on the radiation balance of the GIS; however, in order to better understand their impact, it is important to first understand the annual trends of light-absorbing aerosols and their sources over the ice sheet. With this in mind, aerosol properties including the wavelength dependent aerosol light scattering and absorption coefficients have been continuously measured at Summit, Greenland since the spring of 2011. These measurements will be used to calculate the multi-wavelength single-scattering albedo (ω0) and absorption Ångström exponent, identify annual patterns of aerosols over the GIS and how they vary from year to year, detect events of high absorption, and determine the sources of the aerosols. Preliminary findings indicate that the aerosols have an absorption Ångström exponent of approximately 1, which is characteristic of black carbon (BC). Absorption and scattering coefficients are higher in the spring and summer (March-September) and consequently lower in the fall and winter (September-March). Absorption and single-scattering albedo are averaged over the sunlit months of April-August and are found to be highest and lowest, respectively, in the year of 2012, corresponding to the year of record melt extent over the GIS.

  12. Fossil and modern sources of aerosol carbon in the Netherlands - A year-long radiocarbon study

    NASA Astrophysics Data System (ADS)

    Dusek, Ulrike; Monaco, Mattia; Kappetijn, Arthur; Meijer, Harro A. J.; Szidat, Sönke; Röckmann, Thomas

    2013-04-01

    Measurement of the radioactive carbon isotope 14C in aerosols can provide a direct estimate of the contribution of fossil fuel sources to aerosol carbon. In aerosol science, measurements of 14C/12C ratios are usually reported as fraction modern (fm). The radiocarbon signature gives a clear distinction between 'modern' carbon sources (fm around 1.1-1.2 for biomass burning and around 1.05 for biogenic secondary organic aerosol) and 'fossil' carbon sources (fm =0 for primary and secondary formation from fossil fuel combustion). Due to the high cost of 14C analyses very few long-term studies have been conducted to date. The data that will be presented offer a unique insight into the seasonal variation of source contributions to the carbonaceous aerosol in a highly industrialized region. High volume filter samples have been collected roughly twice per month from February 2011 - July 2012 at Cabauw, a rural location in the Netherlands surrounded by major urban centers and highways. This site provides a regional background aerosol contamination in the Netherlands. We report measurements of fm for total carbon (TC), organic carbon (OC), water insoluble OC (WIOC) and thermally refractory carbon (RC) as a proxy for elemental carbon. The fraction modern of OC lies between 0.65 - 1 and shows only a moderate seasonal variation with highest values in the spring and lowest values in the summer. Elemental carbon is generally dominated by fossil fuel emissions, but shows a distinct seasonal variation with higher contribution of modern sources from November - Mai. This contribution is attributed to wood combustion. It is low when air masses arrive from the ocean and high for air masses with European continental origin, pointing to a main source outside the Netherlands. Water soluble organic carbon is dominated by modern sources throughout the year. For TC concentrations between 1.2 and 8 μg/m3, fm(TC) increases with TC concentration. A Keeling plot implies that synoptic scale

  13. On the source of organic acid aerosol layers above clouds.

    PubMed

    Sorooshian, Armin; Lu, Miao-Ling; Brechtel, Fred J; Jonsson, Haflidi; Feingold, Graham; Flagan, Richard C; Seinfeld, John H

    2007-07-01

    During the July 2005 Marine Stratus/Stratocumulus Experiment (MASE) and the August-September 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter probed aerosols and cumulus clouds in the eastern Pacific Ocean off the coast of northern California and in southeastern Texas, respectively. An on-board particle-into-liquid sampler (PILS) quantified inorganic and organic acid species with < or = 5-min time resolution. Ubiquitous organic aerosol layers above cloud with enhanced organic acid levels were observed in both locations. The data suggest that aqueous-phase reactions to produce organic acids, mainly oxalic acid, followed by droplet evaporation is a source of elevated organic acid aerosol levels above cloud. Oxalic acid is observed to be produced more efficiently relative to sulfate as the cloud liquid water content increases, corresponding to larger and less acidic droplets. As derived from large eddy simulations of stratocumulus underthe conditions of MASE, both Lagrangian trajectory analysis and diurnal cloudtop evolution provide evidence that a significant fraction of the aerosol mass concentration above cloud can be accounted for by evaporated droplet residual particles. Methanesulfonate data suggest that entrainment of free tropospheric aerosol can also be a source of organic acids above boundary layer clouds.

  14. Global and regional aerosol trends from 1980 to 2009: Model analysis of long-term observations

    NASA Astrophysics Data System (ADS)

    Chin, M.; Diehl, T. L.; Tan, Q.; Streets, D. G.; Bian, H.; Remer, L. A.; Levy, R. C.; Hsu, N. C.; Kahn, R. A.; Zhao, X.; Mishchenko, M. I.; Torres, O.; Holben, B. N.; Prospero, J. M.

    2012-12-01

    We present a global model analysis of aerosol trends from 1980 to 2009 in different land and oceanic regions in the world and assessing the anthropogenic and natural emission impact on those trends. The global model GOCART simulated aerosol optical depth are compared with the long-term data from satellite (AVHRR, TOMS, SeaWiFS, MODIS, and MISR) retrievals and ground-based sunphotometer (AERONET) measurements, and surface concentrations with surface measurements from the IMPROVE network in the U.S., the EMEP network in Europe, and the University of Miami managed sites over islands in the oceans. We examine the relationship between emissions, surface concentrations, and column AOD in pollution, dust, and biomass burning dominated source regions and downwind areas and assess the anthropogenic impact on the global and regional aerosol trends.

  15. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    3 km). Routine airborne sampling over six locations was used to evaluate the relative contributions of aerosol loading, composition, and relative humidity (the amount of water available for uptake onto aerosols) to variability in mixed-layer aerosol extinction. Aerosol loading (dry extinction) was found to be the predominant source, accounting for 88 % on average of the measured spatial variability in ambient extinction, with lesser contributions from variability in relative humidity (10 %) and aerosol composition (1.3 %). On average, changes in aerosol loading also caused 82 % of the diurnal variability in ambient aerosol extinction. However on days with relative humidity above 60 %, variability in RH was found to cause up to 62 % of the spatial variability and 95 % of the diurnal variability in ambient extinction. This work shows that extinction is driven to first order by aerosol mass loadings; however, humidity-driven hydration effects play an important secondary role. This motivates combined satellite-modeling assimilation products that are able to capture these components of the aerosol optical depth (AOD)-PM2.5 link. Conversely, aerosol hygroscopicity and SSA play a minor role in driving variations both spatially and throughout the day in aerosol extinction and therefore AOD. However, changes in aerosol hygroscopicity from day to day were large and could cause a bias of up to 27 % if not accounted for. Thus it appears that a single daily measurement of aerosol hygroscopicity can be used for AOD-to-PM2.5 conversions over the study region (on the order of 1400 km2). This is complimentary to the results of Chu et al. (2015), who determined that the aerosol vertical distribution from "a single lidar is feasible to cover the range of 100 km" in the same region.

  16. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1991-11-01

    During the current report experimental studies of upper respiratory deposition of radon progeny aerosols and stimulant aerosols were carried out in replicate casts of nasal and oral passages of adults and children. Additionally, preliminary studies of nasal passage deposition of unattached Po{sup 218} particles was carried out in four human subjects. Data on nasal inspiratory deposition in replicate models of adults and infants from three collaborating laboratories were compared and a best-fit curve of deposition efficiency for both attached and unattached particles was obtained, showing excellent inter-laboratory agreement. This curve demonstrates that nasal inspiratory deposition of radon progeny is weakly dependent upon flow rate over physiologically realistic ranges of flow, does not show a significant age effect, and is relatively independent of nasal passage dimensions for a given age range. Improved replicate models of the human adult oral passage extending to the mid-trachea were constructed for medium and higher flow mouth breathing states; these models were used to assess the deposition of unattached Po{sup 218} particles during oronasal breathing in the oral passage and demonstrated lower deposition efficiency than the nasal passage. Measurements of both Po{sup 218} particle and attached fraction particle size deposition were performed in replicate nasal passage of a four week old infant. 5 refs., 1 fig.

  17. Atmospheric aerosol composition and source apportionments to aerosol in southern Taiwan

    NASA Astrophysics Data System (ADS)

    Tsai, Ying I.; Chen, Chien-Lung

    In this study, the chemical characteristics of winter aerosol at four sites in southern Taiwan were determined and the Gaussian Trajectory transfer coefficient model (GTx) was then used to identify the major air pollutant sources affecting the study sites. Aerosols were found to be acidic at all four sites. The most important constituents of the particulate matter (PM) by mass were SO 42-, organic carbon (OC), NO 3-, elemental carbon (EC) and NH 4+, with SO 42-, NO 3-, and NH 4+ together constituting 86.0-87.9% of the total PM 2.5 soluble inorganic salts and 68.9-78.3% of the total PM 2.5-10 soluble inorganic salts, showing that secondary photochemical solution components such as these were the major contributors to the aerosol water-soluble ions. The coastal site, Linyuan (LY), had the highest PM mass percentage of sea salts, higher in the coarse fraction, and higher sea salts during daytime than during nighttime, indicating that the prevailing daytime sea breeze brought with it more sea-salt aerosol. Other than sea salts, crustal matter, and EC in PM 2.5 at Jenwu (JW) and in PM 2.5-10 at LY, all aerosol components were higher during nighttime, due to relatively low nighttime mixing heights limiting vertical and horizontal dispersion. At JW, a site with heavy traffic loadings, the OC/EC ratio in the nighttime fine and coarse fractions of approximately 2.2 was higher than during daytime, indicating that in addition to primary organic aerosol (POA), secondary organic aerosol (SOA) also contributed to the nighttime PM 2.5. This was also true of the nighttime coarse fraction at LY. The GTx produced correlation coefficients ( r) for simulated and observed daily concentrations of PM 10 at the four sites (receptors) in the range 0.45-0.59 and biases from -6% to -20%. Source apportionment indicated that point sources were the largest PM 10 source at JW, LY and Daliao (DL), while at Meinung (MN), a suburban site with less local PM 10, SO x and NO x emissions, upwind

  18. Vegetation fires, absorbing aerosols and smoke plume characteristics in diverse biomass burning regions of Asia

    NASA Astrophysics Data System (ADS)

    Prasad Vadrevu, Krishna; Lasko, Kristofer; Giglio, Louis; Justice, Chris

    2015-10-01

    In this study, we explored the relationships between the satellite-retrieved fire counts (FC), fire radiative power (FRP) and aerosol indices using multi-satellite datasets at a daily time-step covering ten different biomass burning regions in Asia. We first assessed the variations in MODIS-retrieved aerosol optical depths (AOD’s) in agriculture, forests, plantation and peat land burning regions and then used MODIS FC and FRP (hereafter FC/FRP) to explain the variations in AOD characteristics. Results suggest that tropical broadleaf forests in Laos burn more intensively than the other vegetation fires. FC/FRP-AOD correlations in different agricultural residue burning regions did not exceed 20% whereas in forest regions they reached 40%. To specifically account for absorbing aerosols, we used Ozone Monitoring Instrument-derived aerosol absorption optical depth (AAOD) and UV aerosol index (UVAI). Results suggest relatively high AAOD and UVAI values in forest fires compared with peat and agriculture fires. Further, FC/FRP could explain a maximum of 29% and 53% of AAOD variations, whereas FC/FRP could explain at most 33% and 51% of the variation in agricultural and forest biomass burning regions, respectively. Relatively, UVAI was found to be a better indicator than AOD and AAOD in both agriculture and forest biomass burning plumes. Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations data showed vertically elevated aerosol profiles greater than 3.2-5.3 km altitude in the forest fire plumes compared to 2.2-3.9 km and less than 1 km in agriculture and peat-land fires, respectively. We infer the need to assimilate smoke plume height information for effective characterization of pollutants from different sources.

  19. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    NASA Astrophysics Data System (ADS)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  20. Aerosol variability and atmospheric transport in the Himalayan region from CALIOP 2007-2010 observations

    NASA Astrophysics Data System (ADS)

    Bucci, S.; Cagnazzo, C.; Cairo, F.; Di Liberto, L.; Fierli, F.

    2013-06-01

    Himalayan Plateau is surrounded by regions with high natural and anthropogenic aerosol emissions that have a strong impact on regional climate. This is particularly critical for the Himalayan glaciers whose equilibrium is also largely influenced by radiative direct and indirect effects induced by aerosol burden. This work focuses on the spatial and vertical distribution of different aerosol types, their seasonal variability and sources. The analysis of the 2007-2010 yr of CALIPSO vertically resolved satellite data allows the identification of spatial patterns of desert dust and carbonaceous particles in different atmospheric layers. Clusters of Lagrangian back-trajectories highlight the transport pathways from source regions during the dusty spring season. The analysis shows a prevalence of dust; at low heights they are distributed mainly north (with a main contribution from the Gobi and Taklamakan deserts) and west of the Tibetan Plateau (originating from the deserts of South-West Asia and advected by the westerlies). Above the Himalayas the dust amount is minor but still not negligible (detectable in around 20% of the measurements), and transport from more distant deserts (Sahara and Arabian Peninsula) is important. Smoke aerosol, produced mainly in North India and East China, is subject to shorter range transport and is indeed observed closer to the sources while there is a limited amount reaching the top of the plateau. Data analysis reveals a clear seasonal variability in the frequencies of occurrence for the main aerosol types; dust is regulated principally by the monsoon dynamics, with maxima of occurrence in spring. The study also highlights relevant interannual differences, showing a larger presence of aerosol in the region during 2007 and 2008 yr.

  1. Simulation of South Asian aerosols for regional climate studies

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Solmon, Fabien; Giorgi, Filippo; Mariotti, Laura; Babu, S. Suresh; Moorthy, K. Krishna

    2012-02-01

    Extensive intercomparison of columnar and near-surface aerosols, simulated over the South Asian domain using the aerosol module included in the regional climate model (RegCM4) of the Abdus Salam International Centre for Theoretical Physics (ICTP) have been carried out using ground-based network of Sun/sky Aerosol Robotic Network (AERONET) radiometers, satellite sensors such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR), and ground-based black carbon (BC) measurements made at Aerosol Radiative Forcing over India (ARFI) network stations. In general, RegCM4 simulations reproduced the spatial and seasonal characteristics of aerosol optical depth over South Asia reasonably well, particularly over west Asia, where mineral dust is a major contributor to the total aerosol loading. In contrast, RegCM4 simulations drastically underestimated the BC mass concentrations over most of the stations, by a factor of 2 to 5, with a large spatial variability. Seasonally, the discrepancy between the measured and simulated BC tended to be higher during winter and periods when the atmospheric boundary layer is convectively stable (such as nighttime and early mornings), while during summer season and during periods when the boundary layer is convectively unstable (daytime) the discrepancies were much lower, with the noontime values agreeing very closely with the observations. A detailed analysis revealed that the model does not reproduce the nocturnal high in BC, observed at most of the Indian sites especially during winter, because of the excessive vertical transport of aerosols under stable boundary layer conditions. As far as the vertical distribution was concerned, the simulated vertical profiles of BC agreed well with airborne measurements during daytime. This comprehensive validation exercise reveals the strengths and weaknesses of the model in simulating the spatial and temporal heterogeneities of the aerosol fields over

  2. Modeling the effects of aerosols to increase rainfall in regions with shortage

    NASA Astrophysics Data System (ADS)

    Shukla, J. B.; Sundar, Shyam; Misra, A. K.; Naresh, Ram

    2013-05-01

    It is well known that the emissions of hot gases from various power stations and other industrial sources in the regional atmosphere cause decrease in rainfall around these complexes. To overcome this shortage, one method is to introduce artificially conducive aerosol particles in the atmosphere using aeroplane to increase rainfall. To prove the feasibility of this idea, in this paper, a nonlinear mathematical model is proposed involving five dependent variables, namely, the volume density of water vapour, number densities of cloud droplets and raindrops, and the concentrations of small and large size conducive aerosol particles. It is assumed that two types of aerosol particles are introduced in the regional atmosphere, one of them is of small size CCN type which is conducive to increase cloud droplets from vapour phase, while the other is of large size and is conducive to transform the cloud droplets to raindrops. The model is analyzed using stability theory of differential equations and computer simulation. The model analysis shows that due to the introduction of conducive aerosol particles in the regional atmosphere, the rainfall increases as compared to the case when no aerosols are introduced in the atmosphere of the region under consideration. The computer simulation confirms the analytical results.

  3. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    NASA Astrophysics Data System (ADS)

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-06-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies.

  4. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China.

    PubMed

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M; Jathar, Shantanu H; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  5. Quantifying the effect of organic aerosol aging and intermediate-volatility emissions on regional-scale aerosol pollution in China

    PubMed Central

    Zhao, Bin; Wang, Shuxiao; Donahue, Neil M.; Jathar, Shantanu H.; Huang, Xiaofeng; Wu, Wenjing; Hao, Jiming; Robinson, Allen L.

    2016-01-01

    Secondary organic aerosol (SOA) is one of the least understood constituents of fine particles; current widely-used models cannot predict its loadings or oxidation state. Recent laboratory experiments demonstrated the importance of several new processes, including aging of SOA from traditional precursors, aging of primary organic aerosol (POA), and photo-oxidation of intermediate volatility organic compounds (IVOCs). However, evaluating the effect of these processes in the real atmosphere is challenging. Most models used in previous studies are over-simplified and some key reaction trajectories are not captured, and model parameters are usually phenomenological and lack experimental constraints. Here we comprehensively assess the effect of organic aerosol (OA) aging and intermediate-volatility emissions on regional-scale OA pollution with a state-of-the-art model framework and experimentally constrained parameters. We find that OA aging and intermediate-volatility emissions together increase OA and SOA concentrations in Eastern China by about 40% and a factor of 10, respectively, thereby improving model-measurement agreement significantly. POA and IVOCs both constitute over 40% of OA concentrations, and IVOCs constitute over half of SOA concentrations; this differs significantly from previous apportionment of SOA sources. This study facilitates an improved estimate of aerosol-induced climate and health impacts, and implies a shift from current fine-particle control policies. PMID:27350423

  6. Climatological simulations of ozone and atmospheric aerosols in the Greater Cairo region

    SciTech Connect

    Steiner, A. L.; Tawfik, A. B.; Shalaby, A.; Zakey, A. S.; Abdel Wahab, M. M.; Salah, Z.; Solmon, F.; Sillman, S.; Zaveri, Rahul A.

    2014-04-16

    An integrated chemistry-climate model (RegCM4-CHEM) simulates present-day climate, ozone and tropospheric aerosols over Egypt with a focus on Greater Cairo (GC) region. The densley populated GC region is known for its severe air quality issues driven by high levels of anthropogenic pollution in conjuction with natural sources such as dust and agricultural burning events. We find that current global emission inventories underestimate key pollutants such as nitrogen oxides and anthropogenic aerosol species. In the GC region, average-ground-based NO2 observations of 40-60 ppb are substantially higher than modeled estimates (5-10 ppb), likely due to model grid resolution, improper boundary layer representation, and poor emissions inventories. Observed ozone concentrations range from 35 ppb (winter) to 80 ppb (summer). The model reproduces the seasonal cycle fairly well, but modeled summer ozone is understimated by approximately 15 ppb and exhibits little interannual variability. For aerosols, springtime dust events dominate the seasonal aerosol cycle. The chemistry-climate model captures the springtime peak aerosol optical depth (AOD) of 0.7-1 but is slightly greater than satellite-derived AOD. Observed AOD decreases in the summer and increases again in the fall due to agricultural burning events in the Nile Delta, yet the model underestimates this fall observed AOD peak, as standard emissions inventories underestimate this burning and the resulting aerosol emissions. Our comparison of modeled gas and particulate phase atmospheric chemistry in the GC region indicates that improved emissions inventories of mobile sources and other anthropogenic activities are needed to improve air quality simulations in this region.

  7. Airborne Measurements of Secondary Organic Aerosol Formation in the Oil Sands Region of Alberta

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Hayden, K.; Liu, P.; Leithead, A.; Moussa, S. G.; Staebler, R. M.; Gordon, M.; O'brien, J.; Li, S. M.

    2014-12-01

    The Alberta oil sands (OS) region represents a strategic natural resource and is a key driver of economic development. Its rapid expansion has led to a need for a more comprehensive understanding of the associated potential cumulative environmental impacts. In summer 2013, airborne measurements of various gaseous and particulate substances were made in the Athabasca oil sands region between August 13 and Sept 7, 2013. In particular, organic aerosol mass and composition measurements were performed with a High Resolution Time of flight Aerosol Mass Spectrometer (HR-ToF-AMS) supported by gaseous measurements of organic aerosol precursors with Proton Transfer Reaction (PTR) and Chemical Ionization (CI) mass spectrometers. These measurement data on selected flights were used to estimate the potential for local anthropogenic OS emissions to form secondary organic aerosol (SOA) downwind of precursor sources, and to investigate the importance of the surrounding biogenic emissions to the overall SOA burden in the region. The results of several flights conducted to investigate these transformations demonstrate that multiple distinct plumes were present downwind of OS industrial sources, each with differing abilities to form SOA depending upon factors such as NOx level, precursor VOC composition, and oxidant concentration. The results indicate that approximately 100 km downwind of an OS industrial source most of the measured organic aerosol (OA) was secondary in nature, forming at rates of ~6.4 to 13.6 μgm-3hr-1. Positive matrix factor (PMF) analysis of the HR-ToF-AMS data suggests that the SOA was highly oxidized (O/C~0.6) resulting in a measured ΔOA (difference above regional background OA) of approximately 2.5 - 3 despite being 100 km away from sources. The relative contribution of biogenic SOA to the total SOA and the factors affecting SOA formation during a number of flights in the OS region will be described.

  8. Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China

    NASA Astrophysics Data System (ADS)

    Xin, Jinyuan; Gong, Chongshui; Wang, Shigong; Wang, Yuesi

    2016-05-01

    The optical properties of dust aerosols were measured using narrow-band data from a portable sun photometer at four desert and semi-desert stations in northwestern China from 2004 to 2007. Ground-based and satellite observations indicated absorbing dust aerosol loading over the region surrounded by eight large-scale deserts. Radiation forcing was identified by using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. The ranges of annual mean aerosol optical depth (AOD), Angström exponents, and single-scattering albedo (SSA) were from 0.25 to 0.35, from - 0.73 to 1.18, and from 0.77 to 0.86, respectively. The ranges of annual mean aerosol direct radiative forcing values at the top of the atmosphere (TOA), mid-atmosphere, and on the surface were from 3.9 to 12.0, from 50.0 to 53.1, and from - 39.1 to - 48.1 W/m2, respectively. The aerosols' optical properties and radiative characteristics showed strong seasonal variations in both the desert and semi-desert regions. Strong winds and relatively low humidity will lead dust aerosols in the atmosphere to an increase, which played greatly affected these optical properties during spring and winter in northwestern China. Based on long-term observations and retrieved data, aerosol direct radiative forcing was confirmed to heat the atmosphere (50-53 W/m2) and cool the surface (- 39 to - 48 W/m2) above the analyzed desert. Radiative forcing in the atmosphere in spring and winter was 18 to 21 W/m2 higher than other two seasons. Based on the dust sources around the sites, the greater the AOD, the more negative the forcing. The annual averaged heating rates for aerosols close to the ground (1 km) were approximately 0.80-0.85 K/day.

  9. Speciation and water soluble fraction of iron in aerosols from various sources

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Kurisu, M.; Uematsu, M.

    2015-12-01

    Iron (Fe) is an essential micronutrient and has been identified as a limiting factor for phytoplankton growth in high-nitrate low-chlorophyll (HNLC) regions of the ocean. In the North Pacific, three sources of iron (Fe) transported via. atmosphere can be suggested: (i) mineral dust from East Asia, (ii) anthropogenic Fe, and (iii) aerosols from volcanic origin. Considering these different sources, Fe can be found and transported in a variety of chemical forms, both water-soluble and -insoluble. It is generally believed that only the soluble fraction of Fe can be considered as bioavailable for phytoplankton. To assess the biogeochemical impact of the atmospheric input, attempt was made to determine Fe species by X-ray absorption spectroscopy (XAS) and its water solubility, in particular to compare the three sources. Iron species, chemical composition, and soluble Fe concentration in aerosol collected at Tsukuba (Japan) through a year were investigated to compare the contributions of mineral dust and anthropogenic components. It was found that the concentration of soluble Fe in aerosol is correlated with those of sulfate and oxalate which originate from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. XAS analysis showed that main Fe species in aerosols in Tsukuba were illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, soluble Fe fraction is closely correlated with that of Fe(III) sulfate. In spite of supply of high concentrations of Fe in mineral dust from East Asia, it was found that anthropogenic fraction is important due to its high water solubility by the presence of Fe(III) sulfate. Marine aerosol samples originated from volcanic ash were collected in the western North Pacific during KH-08-2 cruise (August, 2008). XAS analysis suggested that Fe species of volcanic ashes changed during the long-range transport, while dissolution experiment showed that Fe solubility of the marine aerosol is larger than

  10. Climate-aerosol interactions over the Mediterranean region: a regional coupled modelling approach

    NASA Astrophysics Data System (ADS)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc

    2015-04-01

    The Mediterranean basin is affected by numerous and various aerosols which have a high spatio-temporal variability. These aerosols directly interact with solar and thermal radiation, and indirectly with clouds and atmospheric dynamics. Therefore they can have an important impact on the regional climate. This work, located at the boundary between the ChArMEx and HyMeX programs, considers a coupled regional modeling approach in order to address the questions of the aerosol-radiation-cloud interactions with regards to the climate variability over the Mediterranean. In order to improve the characterization of Mediterranean aerosols, a new interannual monthly climatology of aerosol optical depth has been developed from a blended product based on both satellite-derived and model-simulated datasets. This dataset, available for every regional climate model over the Mediterranean for the 1979-2012 period, has been built to obtain the best possible estimate of the atmospheric aerosol content for the five species at stake (sulfate, black carbon, organic matter, desert dust and sea salt particles). Simulation ensembles, which have been carried out over the 2003-2009 period with and without aerosols, show a major impact on the regional climate. The seasonal cycle and the spatial patterns of the Mediterranean climate are significantly modified, as well as some specific situations such as the heat wave in July 2006 strengthened by the presence of desert dust particles. The essential role of the Mediterranean sea surface temperature is highlighted, and enables to understand the induced changes on air-sea fluxes and the consequences on regional climate. Oceanic convection is also strengthened by aerosols. In addition, the decrease in anthropogenic aerosols observed for more than thirty years is shown to significantly contribute to the observed Euro-Mediterranean climatic trends in terms of surface radiation and temperature. Besides, an interactive aerosol scheme has been developed

  11. Aerosol Seasonal Variations over Urban-Industrial Regions in Ukraine According to AERONET and POLDER Measurements

    NASA Technical Reports Server (NTRS)

    Milinevsky, G.; Danylevsky, V.; Bovchaliuk, V.; Bovchaliuk, A.; Goloub, Ph.; Dubovik, O.; Kabashnikov, V.; Chaikovsky, A.; Miatselskaya, N.; Mishchenko, M.; Sosonkin, M.

    2014-01-01

    The paper presents an investigation of aerosol seasonal variations in several urban-industrial regions in Ukraine. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008-2013 data from two urban ground-based AERONET (AErosol RObotic NETwork) sites in Ukraine (Kyiv, Lugansk) as well as on satellite POLDER instrument data for urban-industrial areas in Ukraine. We also analyzed the data from one AERONET site in Belarus (Minsk) in order to compare with the Ukrainian sites. Aerosol amount and optical depth (AOD) values in the atmosphere columns over the large urbanized areas like Kyiv and Minsk have maximum values in the spring (April-May) and late summer (August), whereas minimum values are observed in late autumn. The results show that fine-mode particles are most frequently detected during the spring and late summer seasons. The analysis of the seasonal AOD variations over the urban-industrial areas in the eastern and central parts of Ukraine according to both ground-based and POLDER data exhibits the similar traits. The seasonal variation similarity in the regions denotes the resemblance in basic aerosol sources that are closely related to properties of aerosol particles. The behavior of basic aerosol parameters in the western part of Ukraine is different from eastern and central regions and shows an earlier appearance of the spring and summer AOD maxima. Spectral single-scattering albedo, complex refractive index and size distribution of aerosol particles in the atmosphere column over Kyiv have different behavior for warm (April-October) and cold seasons. The seasonal features of fine and coarse aerosol particle behavior over the Kyiv site were analyzed. A prevailing influence of the fine-mode particles on the optical properties of the aerosol layer over the region has been established. The back-trajectory and cluster analysis techniques were applied to study the seasonal back trajectories and prevailing

  12. Aerosol seasonal variations over urban-industrial regions in Ukraine according to AERONET and POLDER measurements

    NASA Astrophysics Data System (ADS)

    Milinevsky, G.; Danylevsky, V.; Bovchaliuk, V.; Bovchaliuk, A.; Goloub, Ph.; Dubovik, O.; Kabashnikov, V.; Chaikovsky, A.; Miatselskaya, N.; Mishchenko, M.; Sosonkin, M.

    2014-05-01

    The paper presents an investigation of aerosol seasonal variations in several urban-industrial regions in Ukraine. Our analysis of seasonal variations of optical and physical aerosol parameters is based on the sun-photometer 2008-2013 data from two urban ground-based AERONET (AErosol RObotic NETwork) sites in Ukraine (Kyiv, Lugansk) as well as on satellite POLDER instrument data for urban-industrial areas in Ukraine. We also analyzed the data from one AERONET site in Belarus (Minsk) in order to compare with the Ukrainian sites. Aerosol amount and optical depth (AOD) values in the atmosphere columns over the large urbanized areas like Kyiv and Minsk have maximum values in the spring (April-May) and late summer (August), whereas minimum values are observed in late autumn. The results show that fine-mode particles are most frequently detected during the spring and late summer seasons. The analysis of the seasonal AOD variations over the urban-industrial areas in the eastern and central parts of Ukraine according to both ground-based and POLDER data exhibits the similar traits. The seasonal variation similarity in the regions denotes the resemblance in basic aerosol sources that are closely related to properties of aerosol particles. The behavior of basic aerosol parameters in the western part of Ukraine is different from eastern and central regions and shows an earlier appearance of the spring and summer AOD maxima. Spectral single-scattering albedo, complex refractive index and size distribution of aerosol particles in the atmosphere column over Kyiv have different behavior for warm (April-October) and cold seasons. The seasonal features of fine and coarse aerosol particle behavior over the Kyiv site were analyzed. A prevailing influence of the fine-mode particles on the optical properties of the aerosol layer over the region has been established. The back-trajectory and cluster analysis techniques were applied to study the seasonal back trajectories and prevailing

  13. Global Distribution and Sources of Volatile and Nonvolatile Aerosol In the Remote Troposphere

    NASA Technical Reports Server (NTRS)

    Singh, Hanwant B.; Avery, M.; Viezee, W.; Che, Y.; Tabazadeh, A.; Hamill, P.; Pueschel, R.; Hannan, J. R.; Anderson, B.; Fuelberg, H. E.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    Airborne measurements of aerosol (Condensation Nuclei, CN) and selected trace gases made in the areas of the North Atlantic Ocean during SONEX (October/November 1997), and the south tropical Pacific Ocean during PEM-Tropics A (September/October 1996) and PEM-Tropics B (March/April 1999) have been analyzed. Emphasis is on the interpretations of variations in the number densities of the fine (>17 nm) and ultrafine (>8 nm) CN in the upper troposphere (8-12 km). These data suggest that large number densities of highly volatile CN (10(exp 4)-10(exp 5)/cu cm) are present in the clean upper troposphere with highest values over the tropical1subtropical region. Through marine convection and long-distance horizontal transport, volatile CN originating from the tropical/subtropical regions can frequently impact the abundance of aerosol in the middle and upper troposphere at mid to high latitudes. Nonvolatile aerosol particles behave in a manner similar to tracers of combustion (CO) and photochemical pollution (PAN), implying a source from continental pollution of industrial or biomass burning origin. In the upper troposphere, we find that volatile and nonvolatile partials number densities are inversely correlated. An aerosol microphysical model is used to suggest that coagulation of fine volatile particles with fewer larger nonvolatile particles provides one possible mechanism for this relationship. It appears that nonvolatile particles, of principally anthropogenic origin,provide a highly efficient removal process for the fine volatile aerosol.

  14. Identification of sources of Phoenix aerosol by positive matrix factorization.

    PubMed

    Ramadan, Z; Song, X H; Hopke, P K

    2000-08-01

    Chemical composition data for fine and coarse particles collected in Phoenix, AZ, were analyzed using positive matrix factorization (PMF). The objective was to identify the possible aerosol sources at the sampling site. PMF uses estimates of the error in the data to provide optimum data point scaling and permits a better treatment of missing and below-detection-limit values. It also applies nonnegativity constraints to the factors. Two sets of fine particle samples were collected by different samplers. Each of the resulting fine particle data sets was analyzed separately. For each fine particle data set, eight factors were obtained, identified as (1) biomass burning characterized by high concentrations of organic carbon (OC), elemental carbon (EC), and K; (2) wood burning with high concentrations of Na, K, OC, and EC; (3) motor vehicles with high concentrations of OC and EC; (4) nonferrous smelting process characterized by Cu, Zn, As, and Pb; (5) heavy-duty diesel characterized by high EC, OC, and Mn; (6) sea-salt factor dominated by Na and Cl; (7) soil with high values for Al, Si, Ca, Ti, and Fe; and (8) secondary aerosol with SO4(-2) and OC that may represent coal-fired power plant emissions. For the coarse particle samples, a five-factor model gave source profiles that are attributed to be (1) sea salt, (2) soil, (3) Fe source/motor vehicle, (4) construction (high Ca), and (5) coal-fired power plant. Regression of the PM mass against the factor scores was performed to estimate the mass contributions of the resolved sources. The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants. These sources contributed most of the fine aerosol mass by emitting carbonaceous particles, and they have higher contributions in winter. For the coarse particles, the major source contributions were soil and construction (high Ca). These sources also peaked in winter.

  15. Use of multi-element tracers to source apportion mercury in south Florida aerosols

    NASA Astrophysics Data System (ADS)

    Graney, Joseph R.; Dvonch, J. Timothy; Keeler, Gerald J.

    The relative importance of local sources of mercury (Hg) in aerosols from urban areas in south Florida in relation to regional or global sources transported to the Everglades was investigated using a multi-element tracer approach. The sources of metals and Hg within aerosols were determined by integrating the collection of aerosols at seven locations with meteorology, source sampling, and statistical analysis. Sources include sea spray, soil dust from local carbonate bedrock and long range Saharan dust transport, regional scale transport of sulfate aerosols, and local point sources including oil-fired power plants, medical and waste incineration, and cement kilns. Using a principal components analysis-multiple linear regression (PCA-MLR) approach, 80% of the Hg in particulate form at the Thompson Park Everglades receptor site (THP) could be attributed to local sources. The key to the success of the source attribution at THP was collection of samples on a 12-h sampling basis in order to account for diurnal changes in meteorological conditions in south Florida associated with land-sea breeze development. Fifty-six±7% of the particulate Hg at THP was associated with elevated Zn concentrations which source sampling and surface meteorology indicate as emissions from municipal waste incineration located southeast of THP. Another 14±5% of the particulate Hg was associated with elevated Cu and Pb concentrations from sources SSE of THP. Eleven±1% of the particulate Hg originated from medical waste incineration sources and was associated with elevated levels of Cl and rapid SE to NW transport. Elevated concentrations of Si, Al, Fe, Mn, and K occurred on the same days at all sites, following passage of tropical storms over south Florida. PCA grouped these elements within a factor that is likely Saharan dust in origin, only 12±2% of the particulate Hg at THP could be attributed to this non-local source. Because the majority of the particulate Hg at THP can be attributed to

  16. Effects of biomass burning aerosols on CO2 fluxes on Amazon Region

    NASA Astrophysics Data System (ADS)

    Soares Moreira, Demerval; Freitas, Saulo; Longo, Karla; Rosario, Nilton

    2015-04-01

    During the dry season in Central Brazil and Southern Amazon, there is an usually high concentration of aerosol particles associated with intense human activities, with extensive biomass burning. It has been observed through remote sensing that the smoke clouds in these areas often cover an area of about 4 to 5 million km2. Thus, the average aerosol optical depth of these regions at 500 ηm, is usually below 0.1 during the rainy season and can exceed 0.9 in the fire season. Aerosol particles act as condensation nuclei and also increase scattering and absorption of the incident radiation. Therefore, the layer of the aerosol alters the precipitation rate; reduces the amount of solar energy that reaches the surface, producing a cooling; and causes an increase of diffuse radiation. These factors directly and indirectly affect the CO2 fluxes at the surface. In this work, the chemical-atmospheric model CCATT-BRAMS (Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System) coupled to the surface model JULES (Joint UK Land Environment Simulator) was used to simulate the effects of biomass burning aerosols in CO2 fluxes in the Amazon region. Both the total effect of the aerosols and the contribution related only to the increase of the diffuse fraction caused by the their presence were analyzed. The results show that the effect of the scattered fraction is dominant over all other effects. It was also noted that the presence of aerosols from fires can substantially change biophysiological processes of the carbon cycle. In some situations, it can lead to a sign change in the net ecosystem exchange (NEE), turning it from a source of CO2 to the atmosphere, when the aerosol is not considered in the simulations, to a sink, when it is considered. Thus, this work demonstrates the importance of considering the presence of aerosols in numerical simulations of weather and climate, since carbon dioxide is a major

  17. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    The AMS is the only current instrument that provides real-time, quantitative, and size-resolved data on submicron non-refractory aerosol species with a time resolution of a few minutes or better. The AMS field data are multidimensional and massive, containing extremely rich information on aerosol chemistry, microphysics and dynamics—basic information that is required to evaluate and quantify the radiative climate forcing of atmospheric aerosols. The high time resolution of the AMS data also reveals details of aerosol dynamic variations that are vital to understanding the physico-chemical processes of atmospheric aerosols that govern aerosol properties relevant to the climate. There are two primary objectives of this 3-year project. Our first objective is to perform highly integrated analysis of dozens of AMS datasets acquired from various urban, forested, coastal, marine, mountain peak, and rural/remote locations around the world and synthesize and inter-compare results with a focus on the sources and the physico-chemical processes that govern aerosol properties relevant to aerosol climate forcing. Our second objective is to support our collaboration with global aerosol modelers, in which we will supply the size-resolved aerosol composition and temporal variation data (via a public web interface) and our analysis results for use in model testing and validation and for translation of the rich AMS database into model constraints that can improve climate forcing simulations. Several prominent global aerosol modelers have expressed enthusiastic support for this collaboration. The specific tasks that we propose to accomplish include 1) to develop, validate, and apply multivariate analysis techniques for improved characterization and source apportionment of organic aerosols; 2) to evaluate aerosol source regions and relative contributions based on back-trajectory integration (PSCF method); 3) to summarize and synthesize submicron aerosol information, including

  18. Sources of anions in aerosols in northeast Greenland during late winter

    NASA Astrophysics Data System (ADS)

    Fenger, M.; Sørensen, L. L.; Kristensen, K.; Jensen, B.; Nguyen, Q. T.; Nøjgaard, J. K.; Massling, A.; Skov, H.; Becker, T.; Glasius, M.

    2013-02-01

    The knowledge of climate effects of atmospheric aerosols is associated with large uncertainty, and a better understanding of their physical and chemical properties is needed, especially in the Arctic environment. The objective of the present study is to improve our understanding of the processes affecting the composition of aerosols in the high Arctic. Therefore size-segregated aerosols were sampled at a high Arctic site, Station Nord (Northeast Greenland), in March 2009 using a Micro Orifice Uniform Deposit Impactor. The aerosol samples were extracted in order to analyse three water-soluble anions: chloride, nitrate and sulphate. The results are discussed based on possible chemical and physical transformations as well as transport patterns. The total concentrations of the ions at Station Nord were 53-507 ng m-3, 2-298 ng m-3 and 535-1087 ng m-3 for chloride (Cl-), nitrate (NO3-) and sulphate (SO42-), respectively. The aerosols in late winter/early spring, after polar sunrise, are found to be a mixture of long-range transported and regional to local originating aerosols. Fine particles, smaller than 1 μm, containing SO42-, Cl- and NO3-, are hypothesized to originate from long-range transport, where SO42- is by far the dominating anion accounting for 50-85% of the analyzed mass. The analysis suggests that Cl- and NO3- in coarser particles (> 1.5 μm) originate from local/regional sources. Under conditions where the air mass is transported over sea ice at high wind speeds, very coarse particles (> 18 μm) are observed, and it is hypothesized that frost flowers on the sea ice are a source of the very coarse nitrate particles.

  19. Sources of anions in aerosols in northeast Greenland during late winter

    NASA Astrophysics Data System (ADS)

    Fenger, M.; Sørensen, L. L.; Kristensen, K.; Jensen, B.; Nquyen, Q. T.; Nøjgaard, J. K.; Massling, A.; Skov, H.; Glasius, M.

    2012-06-01

    The knowledge of climate effects of atmospheric aerosols is associated with large uncertainty, and a better understanding of their physical and chemical properties is needed, especially in the Arctic environment. The objective of the present study is to improve our understanding of the processes affecting the composition of the aerosols in the high Arctic. Therefore size-segregated aerosols were sampled at a high Arctic site, Station Nord (Northeast Greenland), in March 2009 using a Micro Orifice Uniform Deposit Impactor. The aerosol samples were extracted in order to analyze the three water-soluble anions: chloride, nitrate and sulphate. The results are discussed based on possible chemical and physical transformations as well as transport patterns. The total concentrations of the ions at Station Nord were 53-507 ng m-3, 2-298 ng m-3 and 535-1087 ng m-3 for chloride (Cl-), nitrate (NO3-) and sulphate (SO42-), respectively. The aerosols in late winter/early spring, after polar sunrise, are found to be a mixture of long-range transported and regional to local originating aerosols. Fine particles, smaller than 1 μm, containing SO42-, Cl- and NO3-, are hypothesized to originate from long-range transport, where SO42- is by far the dominating anion accounting for 50-85% of the analyzed mass. The analysis suggests that Cl- and NO3- in coarser particles (>1.5 μm) originate from local/regional sources. Under conditions where the air mass is transported over sea-ice at high wind speeds, very coarse particles (>18 μm) are observed and it is hypothesized that frost flowers on the sea ice is a source of very coarse chloride particles in the Arctic.

  20. Optical properties of urban aerosols in the region Bratislava-Vienna—II: Comparisons and results

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Hrvoľ, J.

    The optical and microphysical properties of aerosols in highly urbanized region Bratislava-Vienna were determined by means of ground-based optical methods during campaign in August and September 2004. Although both cities are close to each other forming a common metropolitan region, the features of their aerosol systems are distinct. While urban and suburban zones around Vienna have mostly a clean air without major influences of emissions from industry, Bratislava itself need to be classified as polluted area—the optical data collected in the measuring site are influenced mainly by Technické Sklo factory (NW positioned), Matador (SSE), Istrochem (ENE) and Slovnaft (ESE). In contrary to an observed smooth evolution of the aerosol system in Vienna, the aerosol environment is quite unstable in Bratislava and usually follows the day changes of the wind directions (as they correspond to the position of individual sources of pollution). The particle sizes in Bratislava are predominately larger compared to Vienna. A subsidiary mode within surface size distribution frequently occurs at radius about 0.7 μm in Bratislava but not in Vienna. The size distribution of airborne particles in Vienna is more dependent on relative humidity than in Bratislava. It suggests the particles in Bratislava are larger whenever, or non-deliquescent to a great extent. The spectral attenuation of solar radiation by aerosol particles shows a typical mode at λ≈0.4μm in Bratislava, which is not observed in the spectral aerosol extinction coefficient in Vienna. In Bratislava, the average aerosol optical thickness grows from morning hours to the evening, while an opposite effect can be observed in Vienna in the same time.

  1. Anthropogenic and natural contributions to regional trends in aerosol optical depth, 1980-2006.

    SciTech Connect

    Streets, D. G.; Yan, F.; Chin, M.; Diehl, T.; Mahowald, N.; Schultz, M.; Wild, M.; Wu, Y.; Yu, C.; Decision and Information Sciences; Univ. of Illinois; NASA; Cornell Univ.; Forschungszentrum; Inst.for Atmospheric and Climate Science; Tsinghua Univ.

    2009-07-28

    Understanding the roles of human and natural sources in contributing to aerosol concentrations around the world is an important step toward developing efficient and effective mitigation measures for local and regional air quality degradation and climate change. In this study we test the hypothesis that changes in aerosol optical depth (AOD) over time are caused by the changing patterns of anthropogenic emissions of aerosols and aerosol precursors. We present estimated trends of contributions to AOD for eight world regions from 1980 to 2006, built upon a full run of the Goddard Chemistry Aerosol Radiation and Transport model for the year 2001, extended in time using trends in emissions of man-made and natural sources. Estimated AOD trends agree well (R > 0.5) with observed trends in surface solar radiation in Russia, the United States, south Asia, southern Africa, and East Asia (before 1992) but less well for Organization for Economic Co-operative Development (OECD) Europe (R < 0.5). The trends do not agree well for southeast Asia and for East Asia (after 1992) where large-scale inter- and intraannual variations in emissions from forest fires, volcanic eruptions, and dust storms confound our approach. Natural contributions to AOD, including forest and grassland fires, show no significant long-term trends (<1%/a), except for a small increasing trend in OECD Europe and a small decreasing trend in South America. Trends in man-made contributions to AOD follow the changing patterns of industrial and economic activity. We quantify the average contributions of key source types to regional AOD over the entire time period.

  2. The contribution of different aerosol sources to the Aerosol Optical Depth in Hong Kong

    NASA Astrophysics Data System (ADS)

    Zhang, Zhenxi; Wenig, Mark; Zhou, Wen; Diehl, Thomas; Chan, Ka-Lok; Wang, Lingna

    2014-02-01

    The contribution of major aerosol components emitted from local and remote regions to Hong Kong's Aerosol Optical Depth (AOD) in 2007 is quantitatively determined using the chemical transport model GOCART (Global Ozone Chemistry Aerosol Radiation and Transport). Of the major aerosol components, sulphur has the largest influence (68%) on Hong Kong, followed by organic carbon (OC, 13%) and dust (11%), and the influences of black carbon (BC, 5%) and sea salt (3%) are the lowest. The highest AOD is seen in September 2007 and is composed mainly of sulphur aerosols (85%). The high AOD values in March and April 2007 are caused by sulphur and OC. OC has a relative contribution of 39% in March and 30% in April. The anthropogenic sulphur, BC, and OC emitted from every continent, as well as from China and South China, are considered respectively. In summer, South China's contribution of sulphur aerosols from anthropogenic SO2 emissions to the total sulphur AOD in Hong Kong is more than 20%. In other seasons, sulphur aerosols from anthropogenic SO2 emissions in Rest China (all of China except South China) accounts for more than 25%. Anthropogenic BC from South China accounts for more than 20% of total BC AOD in Hong Kong in summer. The contribution of anthropogenic BC from Rest China exceeds 40% in autumn and winter. Anthropogenic BC from Rest Asia (all of Asia except China) accounts for more than 30% in summer and autumn. The contribution of anthropogenic OC from Rest China is more than 35% in autumn and winter. The contribution of anthropogenic OC from Rest Asia exceeds 20% in summer. Gobi dust accounts for more than 40% of the total dust AOD in winter, and its impact appears mainly in the Atmospheric Boundary Layer (ABL), where it is responsible for 50% of the dust concentration. The contribution of Sahara dust to the dust AOD in spring exceeds 35%, and its contribution to the dust concentration in the free atmosphere (40%) is larger than that in the ABL (10%). More than 35

  3. Aerosol cloud interactions in southeast Pacific stratocumulus: satellite observations, in situ data and regional modeling

    NASA Astrophysics Data System (ADS)

    George, Rhea

    The influence of anthropogenic aerosols on cloud radiative properties in the persistent southeast Pacific stratocumulus deck is investigated using MODIS satellite observations, in situ data from the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx), and WRF-Chem, a regional model with interactive chemistry and aerosols. An albedo proxy is derived based on the fractional coverage of low cloud (a macrophysical field) and the cloud albedo, with the latter broken down into contributions from microphysics (cloud droplet concentration, Nd and macrophysics (liquid water path). Albedo variability is dominated by low cloud fraction variability, except within 10-15° of the South American coast, where cloud albedo variability contributes significantly. Covariance between cloud fraction and cloud albedo also contributes significantly to the variance in albedo, which highlights how complex and inseparable the factors controlling albedo are. N d variability contributes only weakly, which emphasizes that attributing albedo variability to the indirect effects of aerosols against the backdrop of natural meteorological variability is extremely challenging. Specific cases of aerosol changes can have strong impacts on albedo. We identify a pathway for periodic anthropogenic aerosol transport to the unpolluted marine stratocumulus >1000 km offshore, which strongly enhances Nd and albedo in zonally-elongated 'hook'-shaped arc. Hook development occurs with Nd increasing to polluted levels over the remote ocean primarily due to entrainment of a large number of small aerosols from the free troposphere that contribute a relatively small amount of aerosol mass to the marine boundary layer. Strong, deep offshore flow needed to transport continental aerosols to the remote ocean is favored by a trough approaching the South American coast and a southeastward shift of the climatological subtropical high pressure system. DMS significantly influences the aerosol number and

  4. Source contributions of sulfate aerosol over East Asia estimated by CMAQ-DDM.

    PubMed

    Itahashi, Syuichi; Uno, Itsushi; Kim, Soontae

    2012-06-19

    We applied the decoupled direct method (DDM), a sensitivity analysis technique for computing sensitivities accurately and efficiently, to determine the source-receptor relationships of anthropogenic SO(2) emissions to sulfate aerosol over East Asia. We assessed source contributions from East Asia being transported to Oki Island downwind from China and Korea during two air pollution episodes that occurred in July 2005. The contribution from China, particularly that from central eastern China (CEC), was found to dominate the sulfate aerosols. To study these contributions in more detail, CEC was divided into three regions, and the contributions from each region were examined. Source contributions exhibited both temporal and vertical variability, largely due to transport patterns imposed by the Asian summer monsoon. Our results are consistent with backward trajectory analyses. We found that anthropogenic SO(2) emissions from China produce significant quantities of summertime sulfate aerosols downwind of source areas. We used a parametric scaling method for estimating anthropogenic SO(2) emissions in China. Using column amounts of SO(2) derived from satellite data, and relationships between the column amounts of SO(2) and anthropogenic emissions, 2009 emissions were diagnosed. The results showed that 2009 emissions of SO(2) from China were equivalent to 2004 levels. PMID:22642816

  5. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    NASA Astrophysics Data System (ADS)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2012-07-01

    An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China) was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable C isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  6. Modeling Secondary Organic Aerosol Formation From Emissions of Combustion Sources

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu Hemant

    Atmospheric aerosols exert a large influence on the Earth's climate and cause adverse public health effects, reduced visibility and material degradation. Secondary organic aerosol (SOA), defined as the aerosol mass arising from the oxidation products of gas-phase organic species, accounts for a significant fraction of the submicron atmospheric aerosol mass. Yet, there are large uncertainties surrounding the sources, atmospheric evolution and properties of SOA. This thesis combines laboratory experiments, extensive data analysis and global modeling to investigate the contribution of semi-volatile and intermediate volatility organic compounds (SVOC and IVOC) from combustion sources to SOA formation. The goals are to quantify the contribution of these emissions to ambient PM and to evaluate and improve models to simulate its formation. To create a database for model development and evaluation, a series of smog chamber experiments were conducted on evaporated fuel, which served as surrogates for real-world combustion emissions. Diesel formed the most SOA followed by conventional jet fuel / jet fuel derived from natural gas, gasoline and jet fuel derived from coal. The variability in SOA formation from actual combustion emissions can be partially explained by the composition of the fuel. Several models were developed and tested along with existing models using SOA data from smog chamber experiments conducted using evaporated fuel (this work, gasoline, fischertropschs, jet fuel, diesels) and published data on dilute combustion emissions (aircraft, on- and off-road gasoline, on- and off-road diesel, wood burning, biomass burning). For all of the SOA data, existing models under-predicted SOA formation if SVOC/IVOC were not included. For the evaporated fuel experiments, when SVOC/IVOC were included predictions using the existing SOA model were brought to within a factor of two of measurements with minor adjustments to model parameterizations. Further, a volatility

  7. Regional aerosol deposition in human upper airways. Final report

    SciTech Connect

    Swift, D.L.

    1997-11-01

    During the award period, a number of studies have been carried out related to the overall objective of the project which is to elucidate important factors which influence the upper airway deposition and dose of particles in the size range 0.5 nm - 10 {mu}m, such as particle size, breathing conditions, age, airway geometry, and mode of breathing. These studies are listed below. (1) A high voltage electrospray system was constructed to generate polydispersed 1-10 {mu}m diameter di-ethylhexyl sebacate aerosol for particle deposition studies in nasal casts and in human subjects. (2) The effect of nostril dimensions, nasal passage geometry, and nasal resistance on particle deposition efficiency in forty healthy, nonsmoking adults at a constant flowrate were studied. (3) The effect of nostril dimensions, nasal passage dimensions and nasal resistance on the percentage of particle deposition in the anterior 3 cm of the nasal passage of spontaneously breathing humans were studied. (4) The region of deposition of monodispersed aerosols were studied using replicate casts. (5) Ultrafine aerosol deposition using simulated breath holding path and natural path was compared. (6) An experimental technique was proposed and tested to measure the oral deposition of inhaled ultrafine particles. (7) We have calculated the total deposition fraction of ultrafine aerosols from 5 to 200 n in the extrathoracic airways and in the lung. (8) The deposition fraction of radon progeny in the head airways was studied using several head airway models.

  8. Regional nonpoint source program summary

    SciTech Connect

    Edwards, R.; Partee, G.; Fleming, F.

    1992-11-01

    The Regional Nonpoint Source Program Summary outlines the major components of the strategies for controlling nonpoint source (NPS) water pollution in EPA Region 10. The document was developed from the Clean Water Act Section 319 Nonpoint Source Assessments, NPS Management Programs and related documents for Alaska, Idaho, Oregon, Washington and for the Colville Confederated Tribes. The water resources and associated land uses vary widely both within and between the four states in EPA Region 10. The primary purpose of the NPS Assessments and Management Programs is to provide the states and tribes with a new blueprint for implementing integrated programs to address priority NPS water quality problems. The focus is needed in order to identify innovative funding opportunities and to effectively direct limited resources toward the highest priority issues and waterbodies. A secondary purpose of the Assessments and Management Programs involves the fulfillment of Clean Water Act requirements in order for states and tribes to compete for Section 319 grants for implementing NPS controls. The Regional NPS Program Summary provides a synthesis of these documents in order to improve understanding of the programs and to assist in their implementation.

  9. Comparing Organic Aerosol Composition from Marine Biogenic Sources to Seawater and to Physical Sea Spray Models

    NASA Astrophysics Data System (ADS)

    Russell, L. M.; Frossard, A. A.; Sanchez, K.; Massoli, P.; Elliott, S.; Burrows, S. M.; Bates, T. S.; Quinn, P.

    2015-12-01

    In much of the marine atmosphere, organic components in aerosol particles have many sources other than sea spray that contribute organic constituents. For this reason, physical sea spray models provide an important technique for studying the organic composition of particles from marine biogenic sources. The organic composition of particles produced by two different physical sea spray models were measured in three open ocean seawater types: (i) Coastal California in the northeastern Pacific, which is influenced by wind-driven, large-scale upwelling leading to productive or eutrophic (nutrient-rich) seawater and high chl-a concentrations, (ii) George's Bank in the northwestern Atlantic, which is also influenced by nutrient upwelling and eutrophic seawater with phytoplankton productivity and high chl-a concentrations, and (iii) the Sargasso Sea in the subtropical western Atlantic, which is oligotrophic and nutrient-limited, reflected in low phytoplankton productivity and low chl-a concentrations. Fourier transform infrared spectroscopy provides information about the functional group composition that represents the marine organic fraction more completely than is possible with techniques that measure non-refractory mass (vaporizable at 650°C). After separating biogenic marine particles from those from other sources, the measured compositions of atmospheric marine aerosol particles from three ocean regions is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. The organic composition of atmospheric primary marine (ocean-derived) aerosol particles is nearly identical to model generated primary marine aerosol particles from bubbled seawater. Variability in productive and non-productive seawater may be caused by the presence of surfactants that can stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components without substantial changes in overall group composition

  10. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris

    NASA Astrophysics Data System (ADS)

    Crippa, M.; DeCarlo, P. F.; Slowik, J. G.; Mohr, C.; Heringa, M. F.; Chirico, R.; Poulain, L.; Freutel, F.; Sciare, J.; Cozic, J.; Di Marco, C. F.; Elsasser, M.; Nicolas, J. B.; Marchand, N.; Abidi, E.; Wiedensohler, A.; Drewnick, F.; Schneider, J.; Borrmann, S.; Nemitz, E.; Zimmermann, R.; Jaffrezo, J.-L.; Prévôt, A. S. H.; Baltensperger, U.

    2013-01-01

    The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30-36%) and nitrate (28-29%), with lower contributions from sulfate (14-16%), ammonium (12-14%) and black carbon (7-13%). Organic source apportionment was performed using positive matrix factorization, resulting in a set of organic factors corresponding both to primary emission sources and secondary production. The dominant primary sources are traffic (11-15% of organic mass), biomass burning (13-15%) and cooking (up to 35% during meal hours). Secondary organic aerosol contributes more than 50% to the total organic mass and includes a highly oxidized factor from indeterminate and/or diverse sources and a less oxidized factor related to wood burning emissions. Black carbon was apportioned to traffic and wood burning sources using a model based on wavelength-dependent light absorption of these two combustion sources. The time series of organic and black carbon factors from related sources were strongly correlated. The similarities in aerosol composition, total mass and temporal variation between the three sites suggest that particulate pollution in Paris is dominated by regional factors, and that the emissions from Paris itself have a relatively low impact on its surroundings.

  11. Incoherent scatter radar observations of D-region charged aerosol species

    NASA Astrophysics Data System (ADS)

    Strelnikova, Irina; Rapp, Markus; Li, Qiang

    There is today substantial interest in aerosols in the mesosphere and their interaction with their neutral and charged environment. These aerosols comprise both ice particles in the polar summer mesopause region and smoke particles of meteoric origin that are expected to occur in the entire middle atmosphere and during all seasons. The presence of ice particles in the mesosphere has been known for many decades and is most prominently revealed in the form of noctilucent clouds, also known as polar mesospheric clouds. Smoke particles, on the other hand, have sizes of few nanometers only such that their detection by remote sensing techniques has long been deemed impossible. In consequence, sporadic rocket borne in-situ measurements have long been the only source of experimental evidence regarding the existence and properties of these particles. However, it has recently been realized that charged mesospheric aerosol particles modify the plasma properties of the D-region and thereby influence the characteristics of radar backscatter from these altitudes (i.e., radar reflectivity and/or spectral properties). Hence, it is possible to infer properties of these charged aerosol particles in the D-Region using radar observations. In this paper we present two independent methods yielding particles properties based on such measurements and give an overview of recent results.

  12. Sources and atmospheric transformations of semivolatile organic aerosols

    NASA Astrophysics Data System (ADS)

    Grieshop, Andrew P.

    Fine atmospheric particulate matter (PM2.5) is associated with increased mortality, a fact which led the EPA to promulgate a National Ambient Air Quality Standard (NAAQS) for PM2.5 in 1997. Organic material contributes a substantial portion of the PM2.5 mass; organic aerosols (OA) are either directly emitted (primary OA or POA) or formed via the atmospheric oxidation of volatile precursor compounds as secondary OA (SOA). The relative contributions of POA and SOA to atmospheric OA are uncertain, as are the contributions from various source classes (e.g. motor vehicles, biomass burning). This dissertation first assesses the importance of organic PM within the context of current US air pollution regulations. Most control efforts to date have focused on the inorganic component of PM. Although growing evidence strongly implicates OA, especially which from motor vehicles, in the health effects of PM, uncertain and complex source-receptor relationships for OA discourage its direct control for NAAQS compliance. Analysis of both ambient data and chemical transport modeling results indicate that OA does not play a dominant role in NAAQS violations in most areas of the country under current and likely future regulations. Therefore, new regulatory approaches will likely be required to directly address potential health impacts associated with OA. To help develop the scientific understanding needed to better regulate OA, this dissertation examined the evolution of organic aerosol emitted by combustion systems. The current conceptual model of POA is that it is non-volatile and non-reactive. Both of these assumptions were experimental investigated in this dissertation. Novel dilution measurements were carried out to investigate the gas-particle partitioning of OA at atmospherically-relevant conditions. The results demonstrate that POA from combustion sources is semivolatile. Therefore its gas-particle partitioning depends on temperature and atmospheric concentrations; heating and

  13. Atmospheric aerosol compositions and sources at two national background sites in northern and southern China

    NASA Astrophysics Data System (ADS)

    Zhu, Qiao; He, Ling-Yan; Huang, Xiao-Feng; Cao, Li-Ming; Gong, Zhao-Heng; Wang, Chuan; Zhuang, Xin; Hu, Min

    2016-08-01

    Although China's severe air pollution has become a focus in the field of atmospheric chemistry and the mechanisms of urban air pollution there have been researched extensively, few field sampling campaigns have been conducted at remote background sites in China, where air pollution characteristics on a larger scale are highlighted. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), together with an Aethalometer, was deployed at two of China's national background sites in northern (Lake Hongze site; 33.23° N, 118.33° E; altitude 21 m) and southern (Mount Wuzhi site; 18.84° N, 109.49° E; altitude 958 m) China in the spring seasons in 2011 and 2015, respectively, in order to characterize submicron aerosol composition and sources. The campaign-average PM1 concentration was 36.8 ± 19.8 µg m-3 at the northern China background (NCB) site, which was far higher than that at the southern China background (SCB) site (10.9 ± 7.8 µg m-3). Organic aerosol (OA) (27.2 %), nitrate (26.7 %), and sulfate (22.0 %) contributed the most to the PM1 mass at NCB, while OA (43.5 %) and sulfate (30.5 %) were the most abundant components of the PM1 mass at SCB, where nitrate only constituted a small fraction (4.7 %) and might have contained a significant amount of organic nitrates (5-11 %). The aerosol size distributions and organic aerosol elemental compositions all indicated very aged aerosol particles at both sites. The OA at SCB was more oxidized with a higher average oxygen to carbon (O / C) ratio (0.98) than that at NCB (0.67). Positive matrix factorization (PMF) analysis was used to classify OA into three components, including a hydrocarbon-like component (HOA, attributed to fossil fuel combustion) and two oxygenated components (OOA1 and OOA2, attributed to secondary organic aerosols from different source areas) at NCB. PMF analysis at SCB identified a semi-volatile oxygenated component (SV-OOA) and a low-volatility oxygenated

  14. Chemical composition, sources, and processes of urban aerosols during summertime in Northwest China: insights from High Resolution Aerosol Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-06-01

    coal combustion aerosol, likely contributed by coal combustion activities in Lanzhou during summer. The sources of BC were estimated by a linear decomposition algorithm that uses the time series of the NR-PM1 components. Our results indicate that a main source of BC was local traffic (47%) and that transport of regionally processes air masses also contributed significantly to BC observed in Lanzhou. Finally, the concentration and source of polycyclic aromatic hydrocarbons (PAHs) were evaluated.

  15. Developing a stronger understanding of aerosol sources and the impact of aqueous phase processing on coastal air quality

    NASA Astrophysics Data System (ADS)

    Prather, K. A.

    2014-12-01

    Atmospheric aerosols are produced by a variety of sources including emissions from cars and trucks, wildfires, ships, dust, and sea spray and play a significant role in impacting air pollution and regional climate. The ability of an aerosol to uptake water and undergo aqueous phase processing strongly depends on composition. On-line single particle mass spectrometry can provide insight into how particle composition impacts the degree of photochemical and aging processes atmospheric aerosols undergo. In particular, specific sulfur species including sulfate, hydroxymethanesulfate (HMS), and methanesulfonic acid (MSA) can serve as indicators of when an air mass has undergone aqueous phase processing. This presentation will describe recent field studies conducted at coastal sites to demonstrate how different aerosol sources and secondary processing impact coastal air quality.

  16. Source terms for plutonium aerosolization from nuclear weapon accidents

    SciTech Connect

    Stephens, D.R.

    1995-07-01

    The source term literature was reviewed to estimate aerosolized and respirable release fractions for accidents involving plutonium in high-explosive (HE) detonation and in fuel fires. For HE detonation, all estimates are based on the total amount of Pu. For fuel fires, all estimates are based on the amount of Pu oxidized. I based my estimates for HE detonation primarily upon the results from the Roller Coaster experiment. For hydrocarbon fuel fire oxidation of plutonium, I based lower bound values on laboratory experiments which represent accident scenarios with very little turbulence and updraft of a fire. Expected values for aerosolization were obtained from the Vixen A field tests, which represent a realistic case for modest turbulence and updraft, and for respirable fractions from some laboratory experiments involving large samples of Pu. Upper bound estimates for credible accidents are based on experiments involving combustion of molten plutonium droplets. In May of 1991 the DOE Pilot Safety Study Program established a group of experts to estimate the fractions of plutonium which would be aerosolized and respirable for certain nuclear weapon accident scenarios.

  17. Aerosol optical, microphysical and radiative properties at regional background insular sites in the western Mediterranean

    NASA Astrophysics Data System (ADS)

    Sicard, Michaël; Barragan, Rubén; Dulac, François; Alados-Arboledas, Lucas; Mallet, Marc

    2016-09-01

    In the framework of the ChArMEx (the Chemistry-Aerosol Mediterranean Experiment; http://charmex.lsce.ipsl.fr/) program, the seasonal variability of the aerosol optical, microphysical and radiative properties derived from AERONET (Aerosol Robotic Network; http://aeronet.gsfc.nasa.gov/) is examined in two regional background insular sites in the western Mediterranean Basin: Ersa (Corsica Island, France) and Palma de Mallorca (Mallorca Island, Spain). A third site, Alborán (Alborán Island, Spain), with only a few months of data is considered for examining possible northeast-southwest (NE-SW) gradients of the aforementioned aerosol properties. The AERONET dataset is exclusively composed of level 2.0 inversion products available during the 5-year period 2011-2015. AERONET solar radiative fluxes are compared with ground- and satellite-based flux measurements. To the best of our knowledge this is the first time that AERONET fluxes are compared with measurements at the top of the atmosphere. Strong events (with an aerosol optical depth at 440 nm greater than 0.4) of long-range transport aerosols, one of the main drivers of the observed annual cycles and NE-SW gradients, are (1) mineral dust outbreaks predominant in spring and summer in the north and in summer in the south and (2) European pollution episodes predominant in autumn. A NE-SW gradient exists in the western Mediterranean Basin for the aerosol optical depth and especially its coarse-mode fraction, which all together produces a similar gradient for the aerosol direct radiative forcing. The aerosol fine mode is rather homogeneously distributed. Absorption properties are quite variable because of the many and different sources of anthropogenic particles in and around the western Mediterranean Basin: North African and European urban areas, the Iberian and Italian peninsulas, most forest fires and

  18. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    NASA Astrophysics Data System (ADS)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  19. Chemical composition of emissions from urban sources of fine organic aerosol

    SciTech Connect

    Hildemann, L.M.; Markowski, G.R.; Cass, G.R. )

    1991-04-01

    A dilution source sampling system was used to collect primary fine aerosol emissions from important sources of urban organic aerosol, including a boiler burning No. 2 fuel oil, a home fireplace, a fleet of catalyst-equipped and noncatalyst automobiles, heavy-duty diesel trucks, natural gas home appliances, and meat cooking operations. Alternative dilution sampling techniques were used to collect emissions from cigarette smoking and a roofing tar pot, and grab sample techniques were employed to characterize paved road dust, brake lining wear, and vegetative detritus. Organic aerosol constituted the majority of the fine aerosol mass emitted from many of the sources tested. Fine primary organic aerosol emissions within the heavily urbanized western portion of the Los Angeles Basin were determined to total 29.8 metric ton/day. Over 40% of these organic aerosol emissions are from anthropogenic pollution sources that are expected to emit contemporary (nonfossil) aerosol carbon, in good agreement with the available ambient monitoring data.

  20. Coupling Aerosol-Cloud-Radiative Processes in the WRF-Chem Model: Investigating the Radiative Impact of Elevated Point Sources

    SciTech Connect

    Chapman, Elaine G.; Gustafson, William I.; Easter, Richard C.; Barnard, James C.; Ghan, Steven J.; Pekour, Mikhail S.; Fast, Jerome D.

    2009-02-01

    The local and regional influence of elevated point sources on summertime aerosol forcing and cloud-aerosol interactions in northeastern North America was investigated using the WRF-Chem community model. The direct effects of aerosols on incoming solar radiation were simulated using existing modules to relate aerosol sizes and chemical composition to aerosol optical properties. Indirect effects were simulated by adding a prognostic treatment of cloud droplet number and adding modules that activate aerosol particles to form cloud droplets, simulate aqueous phase chemistry, and tie a two-moment treatment of cloud water (cloud water mass and cloud droplet number) to an existing radiation scheme. Fully interactive feedbacks thus were created within the modified model, with aerosols affecting cloud droplet number and cloud radiative properties, and clouds altering aerosol size and composition via aqueous processes, wet scavenging, and gas-phase-related photolytic processes. Comparisons of a baseline simulation with observations show that the model captured the general temporal cycle of aerosol optical depths (AODs) and produced clouds of comparable thickness to observations at approximately the proper times and places. The model slightly overpredicted SO2 mixing ratios and PM2.5 mass, but reproduced the range of observed SO2 to sulfate aerosol ratios, suggesting that atmospheric oxidation processes leading to aerosol sulfate formation are captured in the model. The baseline simulation was compared to a sensitivity simulation in which all emissions at model levels above the surface layer were set to zero, thus removing stack emissions. Instantaneous, site-specific differences for aerosol and cloud related properties between the two simulations could be quite large, as removing above-surface emission sources influenced when and where clouds formed within the modeling domain. When summed spatially over the finest resolution model domain (the extent of which corresponds to

  1. Process analysis of regional aerosol pollution during spring in the Pearl River Delta region, China

    NASA Astrophysics Data System (ADS)

    Fan, Qi; Lan, Jing; Liu, Yiming; Wang, Xuemei; Chan, Pakwai; Hong, Yingying; Feng, Yerong; Liu, Yexin; Zeng, Yanjun; Liang, Guixiong

    2015-12-01

    A numerical simulation analysis was performed for three air pollution episodes in the Pearl River Delta (PRD) region during March 2012 using the third-generation air quality modeling system Models-3/CMAQ. The results demonstrated that particulate matter was the primary pollutant for all three pollution episodes and was accompanied by relatively low visibility in the first two episodes. Weather maps indicate that the first two episodes occurred under the influence of warm, wet southerly air flow systems that led to high humidity throughout the region. The liquid phase reaction of gaseous pollutants resulted in the generation of fine secondary particles, which were identified as the primary source of pollution in the first two episodes. The third pollution episode occurred during a warming period following a cold front. Relative humidity was lower during this episode, and coarse particles were the major pollution contributor. Results of process analysis indicated that emissions sources, horizontal transport and vertical transport were the primary factors affecting pollutant concentrations within the near-surface layer during all three episodes, while aerosol processes, cloud processes, horizontal transport and vertical transport had greater influence at approximately 900 m above ground. Cloud processes had a greater impact during the first two pollution episodes because of the higher relative humidity. In addition, by comparing pollution processes from different cities (Guangzhou and Zhongshan), the study revealed that the first two pollution episodes were the result of local emissions within the PRD region and transport between surrounding cities, while the third episode exhibited prominent regional pollution characteristics and was the result of regional pollutant transport.

  2. Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates

    NASA Astrophysics Data System (ADS)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-04-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particles (NR-PM1) in the southeastern US. Measurements were performed in both rural and urban sites in the greater Atlanta area, GA and Centreville, AL for approximately one year, as part of Southeastern Center of Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important but not dominant contributions to total OA in urban sites. Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA (Isoprene-OA) is only deconvolved in warmer months and contributes 18-36% of total OA. The presence of Isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79%) of OA in all sites. MO-OOA correlates well with ozone in summer, but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based on the HR-ToF-AMS measurements, we estimate that the nitrate functionality from organic nitrates

  3. Satellite observation of aerosol - cloud interactions over semi-arid and arid land regions

    NASA Astrophysics Data System (ADS)

    Klüser, L.; Holzer-Popp, T.

    2012-04-01

    Satellite observations from three different sources are used to study the interactions between aerosol and ice clouds in five semi-arid and arid land regions over Africa and Asia, reaching from the South-African Kalahari to the Taklimakan and Gobi in Mongolia. (1) Six years of Aqua MODIS cloud and aerosol observations (including "Deep Blue" retrievals) which contain a qualitative separation into coarse and fine mode aerosol are analysed. (2) Five years of APOLLO cloud observations and SYNAER aerosol retrievals which allow discriminating between mineral dust and soot dominated cases from AATSR and SCIAMACHY on ENVISAT are exploited. (3) Moreover IASI provides one year of ice cloud and mineral dust observations over land retrieved with a newly developed method based on singular vector decomposition. Cloud top temperature observations are used to asses the state of convection and to statistically re-project observation distributions of cloud properties to background conditions. Then the difference between observation density distributions of background and re-projected aerosol-contaminated samples can be evaluated. By such way of analysis the influence of different cloud development stages, which also manifest in seasonal cycles of cloud properties, can be minimised. The analysis of the various observation density distributions shows that liquid water and ice effective radius is mainly decreased for increased total aerosol content for both aerosol types, biomass burning aerosols and mineral dust, separately. Two different modes of aerosol impacts on cloud optical depth can be shown. Optical depth is mainly increased, directly following the theory of the so-called "Twomey effect". In the West African Sahel a decrease of cloud water path (for both liquid water and ice) under the influence of absorbing aerosols results also in decreased optical depth. As at the same time the cloud fraction does not decrease under aerosol influence, the statistical decrease of mean

  4. Carbonaceous aerosol characteristics over Delhi in Northern India: Seasonal variability and possible sources

    NASA Astrophysics Data System (ADS)

    Srivastava, Atul Kumar; Bisht, Ds; Tiwari, S.

    Carbonaceous aerosols have been the focus of extensive studies during the last decade due to its significant impacts on human health, visibility and climate change. As per Asian regions are concerned, aerosols in south-Asia are gaining considerable importance because of their potential impacts on regional climate, yet their possible sources are poorly understood. Semi-continuous measurements of organic carbon (OC) and elemental carbon (EC) and continuous measurements of black carbon (BC) aerosols were conducted simultaneously at Delhi during the period from January 2011 to May 2012. Delhi is the capital city of India and one of the densely populated and industrialized urban megacities in Asia, located at the Ganga basin in the northern part of India. Being highly polluted region, mass concentrations of OC, EC and BC over Delhi were found to vary from about 6-92 mug m (-3) (mean: 23±16 mug m (-3) ), 3-38 mug m (-3) (mean: 11±7 mug m (-3) ) and 1-24 mug m (-3) (mean: 7±5 mug m (-3) ), respectively during the entire measurement period, with about two times higher concentration during winter as compared to summer. A significant correlation between OC and EC (R=0.95, n=232) and relatively lower OC/EC ratio (range: 1.0-3.6; mean: 2.2±0.5) suggest fossil fuel emission as a dominant source of carbonaceous aerosols over the station. The average mass concentration of EC was found about 38% higher than BC during the study period, which is interestingly different as reported at other locations over Ganga basin. We also determined the associated optical properties of carbonaceous species (e.g. absorption coefficient and mass absorption efficiency) over the station. Significant loading of carbonaceous species over such regions emphasize an urgent need to focus on air quality management and proper impact assessment on health perspective.

  5. Urban impacts on regional carbonaceous aerosols: case study in central Texas.

    PubMed

    Barrett, Tate E; Sheesley, Rebecca J

    2014-08-01

    Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011-August 2012). BT analysis indicates consistent north-south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (< 2.5 microm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 microg m(-3) and OC = 3.0 microg m(-3)) and elevated EC during the winter (0.22 microg m(-3)). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g(-1) and BRC MAE365 = 0.15 m2 g(-1)). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States. Implications: Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to

  6. Urban impacts on regional carbonaceous aerosols: case study in central Texas.

    PubMed

    Barrett, Tate E; Sheesley, Rebecca J

    2014-08-01

    Rural and background sites provide valuable information on the concentration and optical properties of organic, elemental, and water-soluble organic carbon (OC, EC, and WSOC), which are relevant for understanding the climate forcing potential of regional atmospheric aerosols. To quantify climate- and air quality-relevant characteristics of carbonaceous aerosol in the central United States, a regional background site in central Texas was chosen for long-term measurement. Back trajectory (BT) analysis, ambient OC, EC, and WSOC concentrations and absorption parameters are reported for the first 15 months of a long-term campaign (May 2011-August 2012). BT analysis indicates consistent north-south airflow connecting central Texas to the Central Plains. Central Texas aerosols exhibited seasonal trends with increased fine particulate matter (< 2.5 microm aerodynamic diameter, PM2.5) and OC during the summer (PM2.5 = 10.9 microg m(-3) and OC = 3.0 microg m(-3)) and elevated EC during the winter (0.22 microg m(-3)). When compared to measurements in Dallas and Houston, TX, central Texas OC appears to have mixed urban and rural sources. However central Texas EC appears to be dominated by transport of urban emissions. WSOC averaged 63% of the annual OC, with little seasonal variability in this ratio. To monitor brown carbon (BrC), absorption was measured for the aqueous WSOC extracts. Light absorption coefficients for EC and BrC were highest during summer (EC MAC = 11 m2 g(-1) and BRC MAE365 = 0.15 m2 g(-1)). Results from optical analysis indicate that regional aerosol absorption is mostly due to EC with summertime peaks in BrC attenuation. This study represents the first reported values of WSOC absorption, MAE365, for the central United States. Implications: Background concentration and absorption measurements are essential in determining regional potential radiative forcing due to atmospheric aerosols. Back trajectory, chemical, and optical analysis of PM2.5 was used to

  7. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2015-01-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9% and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/z 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ~10 years of meteorological, particle composition, and fire data.

  8. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Schurman, M. I.; Lee, T.; Sun, Y.; Schichtel, B. A.; Kreidenweis, S. M.; Collett, J. L., Jr.

    2014-07-01

    The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM) concentrations (max = 93.1 μg m-3, avg. = 5.13 ± 2.72 μg m-3) of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average) identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9 and 16.6% of mass, respectively), while semi-volatile OOA (27.6%) is correlated with ammonium nitrate (nitrate: 4.3%); concentrations of these mixtures are enhanced with upslope (SE) surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4%) source is suggested by mass spectral cellulose combustion markers (m/zs 60 and 73) limited to brief, high-concentration, polydisperse events (suggesting fresh combustion), a diurnal maximum at 22:00 local standard time (LST) when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ∼10 years of meteorological, particle composition, and fire data.

  9. Molecular marker characterization and source appointment of particulate matter and its organic aerosols.

    PubMed

    Choi, Jong-Kyu; Ban, Soo-Jin; Kim, Yong-Pyo; Kim, Yong-Hee; Yi, Seung-Muk; Zoh, Kyung-Duk

    2015-09-01

    This study was carried out to identify possible sources and to estimate their contribution to total suspended particle (TSP) organic aerosol (OA) contents. A total of 120 TSP and PM2.5 samples were collected simultaneously every third day over a one-year period in urban area of Incheon, Korea. High concentration in particulate matters (PM) and its components (NO3(-), water soluble organic compounds (WSOCs), and n-alkanoic acids) were observed during the winter season. Among the organics, n-alkanes, n-alkanoic acids, levoglucosan, and phthalates were major components. Positive matrix factorization (PMF) analysis identified seven sources of organic aerosols including combustion 1 (low molecular weight (LMW)-polycyclic aromatic hydrocarbons (PAHs)), combustion 2 (high molecular weight (HMW)-PAHs), biomass burning, vegetative detritus (n-alkane), secondary organic aerosol 1 (SOA1), secondary organic aerosol 2 (SOA2), and motor vehicles. Vegetative detritus increased during the summer season through an increase in biogenic/photochemical activity, while most of the organic sources were prominent in the winter season due to the increases in air pollutant emissions and atmospheric stability. The correlation factors were high among the main components of the organic carbon (OC) in the TSP and PM2.5. The results showed that TSP OAs had very similar characteristics to the PM2.5 OAs. SOA, combustion (PAHs), and motor vehicle were found to be important sources of carbonaceous PM in this region. Our results imply that molecular markers (MMs)-PMF model can provide useful information on the source and characteristics of PM.

  10. Interannual Variations in Aerosol Sources and Their Impact on Orographic Precipitation over California's Central Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Creamean, J.; Ault, A. P.; White, A. B.; Neiman, P. J.; Minnis, P.; Prather, K. A.

    2014-12-01

    Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater I field campaign (2009-2011), the impacts of aerosol sources on precipitation were investigated in the California Sierra Nevada Mountains. In 2009, the precipitation collected on the ground was influenced by both local biomass burning and long-range transported dust and biological particles, while in 2010, by mostly local sources of biomass burning and pollution, and in 2011 by mostly long-range transport of dust and biological particles from distant sources. Although vast differences in the sources of residues were observed from year-to-year, dust and biological residues were omnipresent (on average, 55% of the total residues combined) and were associated with storms consisting of deep convective cloud systems and larger quantities of precipitation initiated in the ice phase. Further, biological residues were dominant during storms with relatively warm cloud temperatures (up to -15°C), suggesting biological components were more efficient IN than mineral dust. On the other hand, when precipitation quantities were lower, local biomass burning and pollution residues were observed (on average 31% and 9%, respectively), suggesting these residues potentially served as CCN at the base of shallow cloud systems and that lower level polluted clouds of storm systems produced less precipitation than non-polluted (i.e., marine) clouds. The direct connection of the sources of aerosols within clouds and precipitation type and quantity can be used in models to better assess how local emissions versus long-range transported dust and biological aerosols play a role in impacting regional weather and climate, ultimately with the goal of more accurate predictive weather forecast models and water resource

  11. Interannual Variations in Aerosol Sources and Their Impact on Orographic Precipitation Over California's Central Sierra Nevada

    NASA Technical Reports Server (NTRS)

    Creamean, J. M.; Ault, A. P.; White, A. B.; Neiman, P. J.; Ralph, F. M.; Minnis, Patrick; Prather, K. A.

    2014-01-01

    Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater I field campaign (2009-2011), the impacts of aerosol sources on precipitation were investigated in the California Sierra Nevada. In 2009, the precipitation collected on the ground was influenced by both local biomass burning (up to 79% of the insoluble residues found in precipitation) and long-range transported dust and biological particles (up to 80% combined), while in 2010, by mostly local sources of biomass burning and pollution (30-79% combined), and in 2011 by mostly long-range transport from distant sources (up to 100% dust and biological). Although vast differences in the source of residues was observed from year-to-year, dust and biological residues were omnipresent (on average, 55% of the total residues combined) and were associated with storms consisting of deep convective cloud systems and larger quantities of precipitation initiated in the ice phase. Further, biological residues were dominant during storms with relatively warm cloud temperatures (up to -15 C), suggesting these particles were more efficient IN compared to mineral dust. On the other hand, lower percentages of residues from local biomass burning and pollution were observed (on average 31% and 9%, respectively), yet these residues potentially served as CCN at the base of shallow cloud systems when precipitation quantities were low. The direct connection of the source of aerosols within clouds and precipitation type and quantity can be used in models to better assess how local emissions versus long-range transported dust and biological aerosols play a role in impacting regional weather and climate, ultimately with the goal of more accurate predictive weather forecast models and water resource management.

  12. Molecular marker characterization and source appointment of particulate matter and its organic aerosols.

    PubMed

    Choi, Jong-Kyu; Ban, Soo-Jin; Kim, Yong-Pyo; Kim, Yong-Hee; Yi, Seung-Muk; Zoh, Kyung-Duk

    2015-09-01

    This study was carried out to identify possible sources and to estimate their contribution to total suspended particle (TSP) organic aerosol (OA) contents. A total of 120 TSP and PM2.5 samples were collected simultaneously every third day over a one-year period in urban area of Incheon, Korea. High concentration in particulate matters (PM) and its components (NO3(-), water soluble organic compounds (WSOCs), and n-alkanoic acids) were observed during the winter season. Among the organics, n-alkanes, n-alkanoic acids, levoglucosan, and phthalates were major components. Positive matrix factorization (PMF) analysis identified seven sources of organic aerosols including combustion 1 (low molecular weight (LMW)-polycyclic aromatic hydrocarbons (PAHs)), combustion 2 (high molecular weight (HMW)-PAHs), biomass burning, vegetative detritus (n-alkane), secondary organic aerosol 1 (SOA1), secondary organic aerosol 2 (SOA2), and motor vehicles. Vegetative detritus increased during the summer season through an increase in biogenic/photochemical activity, while most of the organic sources were prominent in the winter season due to the increases in air pollutant emissions and atmospheric stability. The correlation factors were high among the main components of the organic carbon (OC) in the TSP and PM2.5. The results showed that TSP OAs had very similar characteristics to the PM2.5 OAs. SOA, combustion (PAHs), and motor vehicle were found to be important sources of carbonaceous PM in this region. Our results imply that molecular markers (MMs)-PMF model can provide useful information on the source and characteristics of PM. PMID:26022138

  13. Stratospheric benzene and hydrocarbon aerosols detected in Saturn's auroral regions

    NASA Astrophysics Data System (ADS)

    Guerlet, S.; Fouchet, T.; Vinatier, S.; Simon, A. A.; Dartois, E.; Spiga, A.

    2015-08-01

    Context. Saturn's polar upper atmosphere exhibits significant auroral activity; however, its impact on stratospheric chemistry (i.e. the production of benzene and heavier hydrocarbons) and thermal structure remains poorly documented. Aims: We aim to bring new constraints on the benzene distribution in Saturn's stratosphere, to characterize polar aerosols (their vertical distribution, composition, thermal infrared optical properties), and to quantify the aerosols' radiative impact on the thermal structure. Methods: Infrared spectra acquired by the Composite Infrared Spectrometer (CIRS) on board Cassini in limb viewing geometry are analysed to derive benzene column abundances and aerosol opacity profiles over the 3 to 0.1 mbar pressure range. The spectral dependency of the haze opacity is assessed in the ranges 680-900 and 1360-1440 cm-1. Then, a radiative climate model is used to compute equilibrium temperature profiles, with and without haze, given the haze properties derived from CIRS measurements. Results: On Saturn's auroral region (80°S), benzene is found to be slightly enhanced compared to its equatorial and mid-latitude values. This contrasts with the Moses & Greathouse (2005, J. Geophys. Res., 110, 9007) photochemical model, which predicts a benzene abundance 50 times lower at 80°S than at the equator. This advocates for the inclusion of ion-related reactions in Saturn's chemical models. The polar stratosphere is also enriched in aerosols, with spectral signatures consistent with vibration modes assigned to aromatic and aliphatic hydrocarbons, and presenting similarities with the signatures observed in Titan's stratosphere. The aerosol mass loading at 80°S is estimated to be 1-4 × 10-5 g cm-2, an order of magnitude less than on Jupiter, which is consistent with the order of magnitude weaker auroral power at Saturn. We estimate that this polar haze warms the middle stratosphere by 6 K in summer and cools the upper stratosphere by 5 K in winter. Hence

  14. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-09-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 41%), a sea spray OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated

  15. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    NASA Astrophysics Data System (ADS)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-03-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 40%), a sea salt OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated to sea

  16. Dynamical characteristics of atmospheric aerosols over IG region

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Singh, Ramesh P.; Kumar, Rajesh

    2016-05-01

    The dynamical characteristics of atmospheric aerosols over the Indo-Gangetic (IG) region are primarily dependent on the geographical settings and meteorological conditions. Detailed analysis of multi satellite data and ground observations have been carried out over three different cities i.e. Kanpur, Greater Noida and Amritsar during 2010-2013. Level-3 Moderate Resolution Imaging Spectroradiometer (MODIS) terra daily global grid product with spatial resolution of 1° × 1° shows the mean AOD at 500 nm wavelength value of 0.73, 0.70 and 0.67 with the standard deviation of 0.43, 0.39 and 0.36 respectively over Amritsar, Greater Noida and Kanpur. Our detailed analysis shows characteristic behavior of aerosols from west to east in the IG region depending upon the proximity of desert regions of Arabia. We have observed large influx of dusts from the Thar desert and Arabia peninsula during pre-monsoon season (April-June), highly affecting Amritsar which is close to the desert region.

  17. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An Overview

    SciTech Connect

    Li, Zhanqing; Li, C.; Chen, H.; Tsay, S. C.; Holben, B. N.; Huang, J.; Li, B.; Maring, H.; Qian, Yun; Shi, Guangyu; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

    2011-02-01

    As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas. Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and Impact on Regional Climate (EAST-AIRC). The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF10 China), the East Asian Study of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE). The former two are US-China collaborative projects and the latter is a part of the China’s National Basic Research program (or often referred to as “973 project”). Routine meteorological data of China are also employed in some studies. The wealth of general and specialized measurements lead to extensive and close-up investigations of the optical, physical and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation and transport mechanisms; horizontal, vertical and temporal variations; direct and indirect effects and interactions with the East Asian monsoon system. Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc. In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

  18. East Asian Studies of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC): An overview

    NASA Astrophysics Data System (ADS)

    Li, Zhanqing; Li, C.; Chen, H.; Tsay, S.-C.; Holben, B.; Huang, J.; Li, B.; Maring, H.; Qian, Y.; Shi, G.; Xia, X.; Yin, Y.; Zheng, Y.; Zhuang, G.

    2011-04-01

    As the most populated region of the world, Asia is a major source of aerosols with potential large impact over vast downstream areas. Papers published in this special section describe the variety of aerosols observed in China and their effects and interactions with the regional climate as part of the East Asian Study of Tropospheric Aerosols and their Impact on Regional Climate (EAST-AIRC). The majority of the papers are based on analyses of observations made under three field projects, namely, the Atmospheric Radiation Measurements (ARM) Mobile Facility mission in China (AMF-China), the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE), and the Atmospheric Aerosols of China and their Climate Effects (AACCE). The former two are U.S.-China collaborative projects, and the latter is a part of the China's National Basic Research program (or often referred to as "973 project"). Routine meteorological data of China are also employed in some studies. The wealth of general and specialized measurements lead to extensive and close-up investigations of the optical, physical, and chemical properties of anthropogenic, natural, and mixed aerosols; their sources, formation, and transport mechanisms; horizontal, vertical, and temporal variations; direct and indirect effects; and interactions with the East Asian monsoon system. Particular efforts are made to advance our understanding of the mixing and interaction between dust and anthropogenic pollutants during transport. Several modeling studies were carried out to simulate aerosol impact on radiation budget, temperature, precipitation, wind and atmospheric circulation, fog, etc. In addition, impacts of the Asian monsoon system on aerosol loading are also simulated.

  19. Modeling regional secondary organic aerosol using the Master Chemical Mechanism

    NASA Astrophysics Data System (ADS)

    Li, Jingyi; Cleveland, Meredith; Ziemba, Luke D.; Griffin, Robert J.; Barsanti, Kelley C.; Pankow, James F.; Ying, Qi

    2015-02-01

    A modified near-explicit Master Chemical Mechanism (MCM, version 3.2) with 5727 species and 16,930 reactions and an equilibrium partitioning module was incorporated into the Community Air Quality Model (CMAQ) to predict the regional concentrations of secondary organic aerosol (SOA) from volatile organic compounds (VOCs) in the eastern United States (US). In addition to the semi-volatile SOA from equilibrium partitioning, reactive surface uptake processes were used to simulate SOA formation due to isoprene epoxydiol, glyoxal and methylglyoxal. The CMAQ-MCM-SOA model was applied to simulate SOA formation during a two-week episode from August 28 to September 7, 2006. The southeastern US has the highest SOA, with a maximum episode-averaged concentration of ∼12 μg m-3. Primary organic aerosol (POA) and SOA concentrations predicted by CMAQ-MCM-SOA agree well with AMS-derived hydrocarbon-like organic aerosol (HOA) and oxygenated organic aerosol (OOA) urban concentrations at the Moody Tower at the University of Houston. Predicted molecular properties of SOA (O/C, H/C, N/C and OM/OC ratios) at the site are similar to those reported in other urban areas, and O/C values agree with measured O/C at the same site. Isoprene epoxydiol is predicted to be the largest contributor to total SOA concentration in the southeast US, followed by methylglyoxal and glyoxal. The semi-volatile SOA components are dominated by products from β-caryophyllene oxidation, but the major species and their concentrations are sensitive to errors in saturation vapor pressure estimation. A uniform decrease of saturation vapor pressure by a factor of 100 for all condensable compounds can lead to a 150% increase in total SOA. A sensitivity simulation with UNIFAC-calculated activity coefficients (ignoring phase separation and water molecule partitioning into the organic phase) led to a 10% change in the predicted semi-volatile SOA concentrations.

  20. Regional Warming from Aerosol Removal over the United States: Results from a Transient 2010-2050 Climate Simulation

    NASA Technical Reports Server (NTRS)

    Mickley, L. J.; Leibensperger, E. M.; Jacob, D. J.; Rind, D.

    2012-01-01

    We use a general circulation model (NASA Goddard Institute for Space Studies GCM 3) to investigate the regional climate response to removal of aerosols over the United States. We perform a pair of transient 2010e2050 climate simulations following a scenario of increasing greenhouse gas concentrations, with and without aerosols over the United States and with present-day aerosols elsewhere. We find that removing U.S. aerosol significantly enhances the warming from greenhouse gases in a spatial pattern that strongly correlates with that of the aerosol. Warming is nearly negligible outside the United States, but annual mean surface temperatures increase by 0.4e0.6 K in the eastern United States. Temperatures during summer heat waves in the Northeast rise by as much as 1e2 K due to aerosol removal, driven in part by positive feedbacks involving soil moisture and low cloud cover. Reducing U.S. aerosol sources to achieve air quality objectives could thus have significant unintended regional warming consequences.

  1. Assessment of Aerosol Radiative Impact over Oceanic Regions Adjacent to Indian Subcontinent using Multi-Satellite Analysis

    SciTech Connect

    Satheesh, S. K.; Vinoj, V.; Krishnamoorthy, K.

    2010-10-01

    Using data from Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments, we have retrieved regional distribution of aerosol column single scattering albedo (parameter indicative of the relative dominance of aerosol absorption and scattering effects), a most important, but least understood aerosol property in assessing its climate impact. Consequently we provide improved assessment of short wave aerosol radiative forcing (ARF) (on both regional and seasonal scales) estimates over this region. Large gradients in north-south ARF were observed as a consequence of gradients in single scattering albedo as well as aerosol optical depth. The highest ARF (-37 W m-2 at the surface) was observed over the northern Arabian Sea during June to August period (JJA). In general, ARF was higher over northern Bay of Bengal (NBoB) during winter and pre-monsoon period, whereas the ARF was higher over northern Arabian Sea (NAS) during the monsoon and post- monsoon period. The largest forcing observed over NAS during JJA is the consequence of large amounts of desert dust transported from the west Asian dust sources. High as well as seasonally invariant aerosol single scattering albedos (~0.98) were observed over the southern Indian Ocean region far from continents. The ARF estimates based on direct measurements made at a remote island location, Minicoy (8.3°N, 73°E) in the southern Arabian Sea are in good agreement with the estimates made following multisatellite analysis.

  2. Sensitive glow discharge ion source for aerosol and gas analysis

    DOEpatents

    Reilly, Peter T. A.

    2007-08-14

    A high sensitivity glow discharge ion source system for analyzing particles includes an aerodynamic lens having a plurality of constrictions for receiving an aerosol including at least one analyte particle in a carrier gas and focusing the analyte particles into a collimated particle beam. A separator separates the carrier gas from the analyte particle beam, wherein the analyte particle beam or vapors derived from the analyte particle beam are selectively transmitted out of from the separator. A glow discharge ionization source includes a discharge chamber having an entrance orifice for receiving the analyte particle beam or analyte vapors, and a target electrode and discharge electrode therein. An electric field applied between the target electrode and discharge electrode generates an analyte ion stream from the analyte vapors, which is directed out of the discharge chamber through an exit orifice, such as to a mass spectrometer. High analyte sensitivity is obtained by pumping the discharge chamber exclusively through the exit orifice and the entrance orifice.

  3. Oil sands operations as a large source of secondary organic aerosols.

    PubMed

    Liggio, John; Li, Shao-Meng; Hayden, Katherine; Taha, Youssef M; Stroud, Craig; Darlington, Andrea; Drollette, Brian D; Gordon, Mark; Lee, Patrick; Liu, Peter; Leithead, Amy; Moussa, Samar G; Wang, Danny; O'Brien, Jason; Mittermeier, Richard L; Brook, Jeffrey R; Lu, Gang; Staebler, Ralf M; Han, Yuemei; Tokarek, Travis W; Osthoff, Hans D; Makar, Paul A; Zhang, Junhua; Plata, Desiree L; Gentner, Drew R

    2016-06-01

    Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally. PMID:27251281

  4. Oil sands operations as a large source of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng; Hayden, Katherine; Taha, Youssef M.; Stroud, Craig; Darlington, Andrea; Drollette, Brian D.; Gordon, Mark; Lee, Patrick; Liu, Peter; Leithead, Amy; Moussa, Samar G.; Wang, Danny; O'Brien, Jason; Mittermeier, Richard L.; Brook, Jeffrey R.; Lu, Gang; Staebler, Ralf M.; Han, Yuemei; Tokarek, Travis W.; Osthoff, Hans D.; Makar, Paul A.; Zhang, Junhua; L. Plata, Desiree; Gentner, Drew R.

    2016-06-01

    Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.

  5. Oil sands operations as a large source of secondary organic aerosols.

    PubMed

    Liggio, John; Li, Shao-Meng; Hayden, Katherine; Taha, Youssef M; Stroud, Craig; Darlington, Andrea; Drollette, Brian D; Gordon, Mark; Lee, Patrick; Liu, Peter; Leithead, Amy; Moussa, Samar G; Wang, Danny; O'Brien, Jason; Mittermeier, Richard L; Brook, Jeffrey R; Lu, Gang; Staebler, Ralf M; Han, Yuemei; Tokarek, Travis W; Osthoff, Hans D; Makar, Paul A; Zhang, Junhua; Plata, Desiree L; Gentner, Drew R

    2016-05-25

    Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45-84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.

  6. Oil sands operations as a large source of secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng; Hayden, Katherine; Taha, Youssef M.; Stroud, Craig; Darlington, Andrea; Drollette, Brian D.; Gordon, Mark; Lee, Patrick; Liu, Peter; Leithead, Amy; Moussa, Samar G.; Wang, Danny; O’Brien, Jason; Mittermeier, Richard L.; Brook, Jeffrey R.; Lu, Gang; Staebler, Ralf M.; Han, Yuemei; Tokarek, Travis W.; Osthoff, Hans D.; Makar, Paul A.; Zhang, Junhua; L. Plata, Desiree; Gentner, Drew R.

    2016-06-01

    Worldwide heavy oil and bitumen deposits amount to 9 trillion barrels of oil distributed in over 280 basins around the world, with Canada home to oil sands deposits of 1.7 trillion barrels. The global development of this resource and the increase in oil production from oil sands has caused environmental concerns over the presence of toxic compounds in nearby ecosystems and acid deposition. The contribution of oil sands exploration to secondary organic aerosol formation, an important component of atmospheric particulate matter that affects air quality and climate, remains poorly understood. Here we use data from airborne measurements over the Canadian oil sands, laboratory experiments and a box-model study to provide a quantitative assessment of the magnitude of secondary organic aerosol production from oil sands emissions. We find that the evaporation and atmospheric oxidation of low-volatility organic vapours from the mined oil sands material is directly responsible for the majority of the observed secondary organic aerosol mass. The resultant production rates of 45–84 tonnes per day make the oil sands one of the largest sources of anthropogenic secondary organic aerosols in North America. Heavy oil and bitumen account for over ten per cent of global oil production today, and this figure continues to grow. Our findings suggest that the production of the more viscous crude oils could be a large source of secondary organic aerosols in many production and refining regions worldwide, and that such production should be considered when assessing the environmental impacts of current and planned bitumen and heavy oil extraction projects globally.

  7. Relating aerosol absorption due to soot, organic carbon, and dust to emission sources determined from in-situ chemical measurements

    NASA Astrophysics Data System (ADS)

    Cazorla, A.; Bahadur, R.; Suski, K. J.; Cahill, J. F.; Chand, D.; Schmid, B.; Ramanathan, V.; Prather, K. A.

    2013-09-01

    Estimating the aerosol contribution to the global or regional radiative forcing can take advantage of the relationship between the spectral aerosol optical properties and the size and chemical composition of aerosol. Long term global optical measurements from observational networks or satellites can be used in such studies. Using in-situ chemical mixing state measurements can help us to constrain the limitations of such estimates. In this study, the Absorption Ångström Exponent (AAE) and the Scattering Ångström Exponent (SAE) derived from 10 operational AERONET sites in California are combined for deducing chemical speciation based on wavelength dependence of the optical properties. In addition, in-situ optical properties and single particle chemical composition measured during three aircraft field campaigns in California between 2010 and 2011 are combined in order to validate the methodology used for the estimates of aerosol chemistry using spectral optical properties. Results from this study indicate a dominance of mixed types in the classification leading to an underestimation of the primary sources, however secondary sources are better classified. The distinction between carbonaceous aerosols from fossil fuel and biomass burning origins is not clear, since their optical properties are similar. On the other hand, knowledge of the aerosol sources in California from chemical studies help to identify other misclassification such as the dust contribution.

  8. Direct radiative effect modeled for regional aerosols in central Europe including the effect of relative humidity

    NASA Astrophysics Data System (ADS)

    Iorga, G.; Hitzenberger, R.; Kasper-Giebl, A.; Puxbaum, Hans

    2007-01-01

    In view of both the climatic relevance of aerosols and the fact that aerosol burdens in central Europe are heavily impacted by anthropogenic sources, this study is focused on estimating the regional-scale direct radiative effect of aerosols in Austria. The aerosol data (over 80 samples in total) were collected during measurement campaigns at five sampling sites: the urban areas of Vienna, Linz, and Graz and on Mt. Rax (1644 m, regional background aerosol) and Mt. Sonnblick (3106 m, background aerosol). Aerosol mass size distributions were obtained with eight-stage (size range: 0.06-16 μm diameter) and six-stage (size range 0.1-10 μm) low-pressure cascade impactors. The size-segregated samples were analyzed for total carbon (TC), black carbon (BC), and inorganic ions. The aerosol at these five locations is compared in terms of size distributions, optical properties, and direct forcing. Mie calculations are performed for the dry aerosol at 60 wavelengths in the range 0.3-40 μm. Using mass growth factors determined earlier, the optical properties are also estimated for higher relative humidities (60%, 70%, 80%, and 90%). A box model was used to estimate direct radiative forcing (DRF). The presence of absorbing species (BC) was found to reduce the cooling effect of the aerosols. The water-soluble substances dominate radiative forcing at the urban sites, while on Rax and Sonnblick BC plays the most important role. This result can be explained by the effect of the surface albedo, which is much lower in the urban regions (0.16) than at the ice and snow-covered mountain sites. Shortwave (below 4 μm) and longwave surface albedo values for ice were 0.35 and 0.5, while for snow surface albedo, values of 0.8 (shortwave) and 0.5 (longwave) were used. In the case of dry aerosol, especially for urban sites, the unidentified material may contribute a large part to the forcing. Depending on the sampling site the estimated forcing gets more negative with increasing humidity

  9. Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ancellet, Gerard; Pelon, Jacques; Totems, Julien; Chazette, Patrick; Bazureau, Ariane; Sicard, Michaël; Di Iorio, Tatiana; Dulac, Francois; Mallet, Marc

    2016-04-01

    Long-range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground-based and airborne lidar measurements were deployed in the western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three-dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Minorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agrees very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (i) pure BB layer, (ii) weakly dusty BB, (iii) significant mixture of BB and dust transported from the trade wind region, and (iv) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at an altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS aerosol optical depth horizontal distribution during this episode over the western Mediterranean Sea shows that the Canadian fire contributions were as large as the direct northward dust outflow

  10. Sources, Transport, and Climate Impacts of Biomass Burning Aerosols

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    In this presentation, I will first talk about fundamentals of modeling of biomass burning emissions of aerosols, then show the results of GOCART model simulated biomass burning aerosols. I will compare the model results with observations of satellite and ground-based network in terms of total aerosol optical depth, aerosol absorption optical depth, and vertical distributions. Finally the long-range transport of biomass burning aerosols and the climate effects will be addressed. I will also discuss the uncertainties associated with modeling and observations of biomass burning aerosols

  11. Regional differences of column aerosol parameters in western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Obregón, M. A.; Pereira, S.; Wagner, F.; Serrano, A.; Cancillo, M. L.; Silva, A. M.

    2012-12-01

    This study presents a characterization of aerosols columnar properties measured at three different AERONET sites in the western part of the Iberian Peninsula, namely Évora and Cabo da Roca, in Portugal, and Cáceres, in Spain, during the period from 2005 to 2010. AERONET level 2.0 products have been analyzed. The comparison of these three stations has great interest because it has not been conducted yet and it allows to characterize the aerosols of a wide region in western Iberian Peninsula by a long-term analysis of their aerosol properties. In addition, it allows analyzing the possible differences in these properties between the three sites located at different distances from the coast. The results show differences between the aerosol optical depth at 440 and 1020 nm at the three stations, being the mean values in Cabo da Roca at 1020 and 440 nm (0.08 and 0.16) slightly higher than in the other two stations (Évora: 0.06 and 0.15; Cáceres: 0.05 and 0.14). Greater differences among the three stations are found for the Ångström exponent values. Thus, Cáceres shows the highest mean value (1.33), followed by Évora (1.14) and, finally, by Cabo da Roca (1.00) which exhibits the smallest median α values due to the presence of coarse sea salt particles and high atmospheric humidity. These values are consistent with the values of volume size distribution, exhibiting a greater value of large particles at Cabo da Roca. The mean values of the single scattering albedo (ω) have been also analyzed, obtaining higher results as the coast is approached: Cabo da Roca: ω (440) = 0.95; ω (1020) = 0.96, Évora: ω (440) = 0.93; ω (1020) = 0.95 and Cáceres: ω (440) = 0.88; ω (1020) = 0.83. The differences between the three stations are explained in terms of the distance to the coast and to the occasional arrival of diverse air masses transporting different aerosol types to each station. One classification method proposed for the study region has been applied to multi

  12. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    SciTech Connect

    Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

    2010-03-15

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model

  13. Aerosol optical properties at a coastal site in Hong Kong, South China: temporal features, size dependencies and source analysis

    NASA Astrophysics Data System (ADS)

    Wang, Jiaping; Ding, Aijun; Virkkula, Aki; Lee, Shuncheng; Shen, Yicheng; Chi, Xuguang; Xu, Zheng

    2016-04-01

    Hong Kong is a typical coastal city adjacent to the Pearl River Delta (PRD) region in southern China, which is one of the regions suffering from severe air pollution. Atmospheric aerosols can affect the earth's radiative balance by scattering and absorbing incoming solar radiation. Black Carbon (BC) aerosol is a particularly emphasized component due to its strong light absorption. Aerosol transported from different source areas consists of distinct size distributions, leading to different optical properties. As the byproducts of the incomplete oxidation, BC and CO both have relatively long life time, their relationship is a good indicator for distinguishing different pollutant sources. In this study, temporal variations of aerosol optical properties and concentrations of BC and CO at a coastal background station in Hong Kong were investigated. Transport characteristics and origins of aerosol were elucidated by analyzing backward Lagrangian particle dispersion modeling (LPDM) results, together with related parameters including the relationships between optical properties and particle size, BC-CO correlations, ship location data and meteorological variables. From February 2012 to September 2013 and March 2014 to February 2015, continuous in-situ measurements of light scattering and absorption coefficients, particle size distribution and concentrations of BC and CO were conducted at Hok Tsui (HT), a coastal background station on the southeast tip of Hong Kong Island (22.22°N, 114.25°E, 60 m above the sea level) with few local anthropogenic activities. Affected by the Asian monsoon, this region is dominated by continental outflow in winter and by marine inflow from the South China Sea in summer, which is an ideal station for identifying the transport characteristics of aerosol and their effects on optical properties from different anthropogenic emission sources. 7-day backward Lagrangian particle dispersion modeling was performed for source identification. Three

  14. Regional Haze from Forest Fires and San Joaquin Valley Pollution: Aerosol Properties at Yosemite National Park

    NASA Astrophysics Data System (ADS)

    Carrico, C. M.; Day, D.; Heath, J.; Lee, T.; Herckes, P.; Engling, G.; Kreidenweis, S. M.; Collett, J. L.; Bench, G.; Malm, W.

    2002-12-01

    The impact of forest fire smoke on air quality and visibility in national parks is a growing concern, particularly in light of EPA's new Regional Haze rule. The summer of 2002 proved to be a very active year for wildfires in the western U.S. with double the average acres burned. To improve understanding of smoke aerosols, an intensive campaign to measure aerosol chemical, physical, optical, and in particular hygroscopic properties, was conducted in Yosemite National Park in July-September 2002. High time resolution chemical measurements allowed speciation of major ions and carbon with 15 and 60 minute time resolution, respectively. Preliminary results show a predominant contribution of organic carbon with concentrations ranging from ~5-15 μgm-3 while major ions were dominated by sulfate, nitrate and ammonium and totaled approximately 2 μgm-3. Carbon isotopic analysis showed that during the haziest periods most carbon had a biogenic source. Soluble potassium and UV light absorption were observed to be useful indicators of smoke impact. During smoky periods, dry light scattering coefficients ranged from roughly 50-200 Mm-1, comparable to the most polluted US cities. Measurements using light scattering and diameter growth techniques both showed limited aerosol hygroscopicity. Diameter and light scattering growth factors ranged from roughly 1.05-1.2 and 1.1-1.5, respectively, at RH = 80%. Measurements of the aerosol dry size distribution during hazy periods showed a mode in the optically efficient size of several hundred nm in addition to a typical number concentration mode around 100 nm. In general, the aerosol properties at Yosemite were observed to have strong influences from smoke likely transported from massive regional wildfires as well as pollution likely from agricultural and population centers of Central California.

  15. Determination of the sources and impacts of aerosols on clouds and orographic precipitation during CalWater

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Suski, K.; Cazorla, A.; Cahill, J. F.; Creamean, J.; Collins, D. B.; Ralph, F. M.; Cayan, D. R.; Rosenfeld, D.; DeMott, P. J.; Sullivan, R. C.; Comstock, J. M.; Leung, L.; Tomlinson, J. M.; Roberts, G. C.; Nenes, A.; Lin, J. J.

    2011-12-01

    Climate projections for the remainder of this century for the U.S. Southwest, including parts of California, suggest a drying trend (reductions ~ 10 -15 %). Thus, understanding factors which could potentially influence the amount and type of precipitation is critical to future water resources in California. Previous studies suggest aerosols transported from the Central Valley into the mountains may be reducing the amount of orographic precipitation in the Sierra Nevada mountain range, the key region for water storage in the snowpack. CalWater, which commenced in the Winter of 2009, is an ongoing multi-year, multi-agency field campaign to investigate the primary sources of aerosols influencing clouds and precipitation in this region. Single particle measurements, used in both ground as well as PNNL G1 aircraft measurements, in the recent campaign provide insight into the sources of aerosols impacting the clouds and precipitation. Biomass burning, Central Valley pollution, long range transported Asian dust and pollution, locally generated newly formed particles, and marine aerosols all show strong impacts on the cloud microphysical properties. This presentation will provide a brief overview of the objective and key findings from CalWater measurements of aerosols, precipitation, clouds, and meteorology conducted from 2009-2011 in this region.

  16. Optical, physical and chemical properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Di Biagio, Claudia; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Loisil, Rodrigue; Triquet, Sylvain; Zapf, Pascal; Roberts, Greg; Bourrianne, Thierry; Torres, Benjamin; Blarel, Luc; Sellegri, Karine; Freney, Evelyn; Schwarzenbock, Alfons; Ravetta, François; Laurent, Benoit; Mallet, Marc; Formenti, Paola

    2014-05-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), two intensive airborne campaigns (TRAQA, TRansport and Air QuAlity, 18 June - 11 July 2012, and ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) have been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to

  17. Properties of transported African mineral dust aerosols in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Denjean, Cyrielle; Chevaillier, Servanne; Gaimoz, Cécile; Grand, Noel; Triquet, Sylvain; Zapf, Pascal; Loisil, Rodrigue; Bourrianne, Thierry; Freney, Evelyn; Dupuy, Regis; Sellegri, Karine; Schwarzenbock, Alfons; Torres, Benjamin; Mallet, Marc; Cassola, Federico; Prati, Paolo; Formenti, Paola

    2015-04-01

    The transport of mineral dust aerosols is a global phenomenon with strong climate implications. Depending on the travel distance over source regions, the atmospheric conditions and the residence time in the atmosphere, various transformation processes (size-selective sedimentation, mixing, condensation of gaseous species, and weathering) can modify the physical and chemical properties of mineral dust, which, in turn, can change the dust's optical properties. The model predictions of the radiative effect by mineral dust still suffer of the lack of certainty of these properties, and their temporal evolution with transport time. Within the frame of the ChArMex project (Chemistry-Aerosol Mediterranean experiment, http://charmex.lsce.ipsl.fr/), one intensive airborne campaign (ADRIMED, Aerosol Direct Radiative Impact in the regional climate in the MEDiterranean region, 06 June - 08 July 2013) has been performed over the Central and Western Mediterranean, one of the two major transport pathways of African mineral dust. In this study we have set up a systematic strategy to determine the optical, physical and optical properties of mineral dust to be compared to an equivalent dataset for dust close to source regions in Africa. This study is based on airborne observations onboard the SAFIRE ATR-42 aircraft, equipped with state of the art in situ instrumentation to measure the particle scattering and backscattering coefficients (nephelometer at 450, 550, and 700 nm), the absorption coefficient (PSAP at 467, 530, and 660 nm), the extinction coefficient (CAPS at 530 nm), the aerosol optical depth (PLASMA at 340 to 1640 nm), the size distribution in the extended range 40 nm - 30 µm by the combination of different particle counters (SMPS, USHAS, FSSP, GRIMM) and the chemical composition obtained by filter sampling. The chemistry and transport model CHIMERE-Dust have been used to classify the air masses according to the dust origin and transport. Case studies of dust transport

  18. Measurement of the emission rate of an aerosol source--comparison of aerosol and gas transport coefficients.

    PubMed

    Bémer, D; Callé, S; Godinot, S; Régnier, R; Dessagne, J M

    2000-12-01

    A measuring method of the emission rate of an atmospheric pollutant source, based on the use of a tracer gas (helium) and developed in the case of a gaseous source, was tested for an aerosol source. The influence of both particle sedimentation and wall depositions was studied. The transport coefficients of the tracer gas and of alumina particles of various particle sizes (MMAD from 8 to 36 microns) were measured on a vertical axis close to the source, in a 71 m3 room swept by a piston flow. The measurements clearly demonstrated the predominant influence of sedimentation in the case of particles with aerodynamic diameters greater than 10 microns. Particle wall deposition was determined by measuring the gas and particle concentration decay in the ventilated room. To do this, a new tracing method using a fluorescent aerosol was developed. The measured aerosol deposition rates are much higher than those calculated from the formula of Corner for a cubical volume. Aerosol sedimentation and wall deposition are two phenomena limiting the use of a tracer gas to measure the aerosol emission rate. The chemical substances and materials used in work premises are likely to be released into the atmosphere and lead to the formation of pollutants. These emissions stem from either physical or chemical processes (evaporation of a solvent) or from mechanical processes (dispersion of oil droplets at the source of mists).

  19. Stable carbon isotopic compositions of total carbon, dicarboxylic acids and glyoxylic acid in the tropical Indian aerosols: Implications for sources and photochemical processing of organic aerosols

    NASA Astrophysics Data System (ADS)

    Pavuluri, Chandra Mouli; Kawamura, Kimitaka; Swaminathan, T.; Tachibana, Eri

    2011-09-01

    The tropical Indian aerosols (PM10) collected on day- and nighttime bases in winter and summer, 2007 from Chennai (13.04°N; 80.17°E) were studied for stable carbon isotopic compositions (δ13C) of total carbon (TC), individual dicarboxylic acids (C2-C9) and glyoxylic acid (ωC2). δ13C values of TC ranged from -23.9‰ to -25.9‰ (-25.0 ± 0.6‰; n = 49). Oxalic (C2) (-17.1 ± 2.5‰), malonic (C3) (-20.8 ± 1.8‰), succinic (C4) (-22.5 ± 1.5‰) and adipic (C6) (-20.6 ± 4.1‰) acids and ωC2 acid (-22.4 ± 5.5‰) were found to be more enriched with 13C compared to TC. In contrast, suberic (C8) (-29.4 ± 1.8‰), phthalic (Ph) (-30.1 ± 3.5‰) and azelaic (C9) (-28.4 ± 5.8‰) acids showed smaller δ13C values than TC. Based on comparisons of δ13C values of TC in Chennai aerosols to those (-24.7 ± 2.2‰) found in unburned cow-dung samples collected from Chennai and isotopic signatures of the particles emitted from point sources, we found that biofuel/biomass burning are the major sources of carbonaceous aerosols in South and Southeast Asia. The decrease in δ13C values of C9 diacid by about 5‰ from winter to summer suggests that tropical plant emissions also significantly contribute to organic aerosol in this region. Significant increase in δ13C values from C4 to C2 diacids in Chennai aerosols could be attributed for their photochemical processing in the tropical atmosphere during long-range transport from source regions.

  20. Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study

    NASA Astrophysics Data System (ADS)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-12-01

    degrees during the aging processes were further illustrated in a case study of a severe haze episode. Our results elucidated a complex response of aerosol chemistry to emission controls, which has significant implications that emission controls over regional scales can substantially reduce secondary particulates. However, stricter emission controls for local source emissions are needed for further mitigating air pollution in the megacity of Beijing.

  1. Chemical composition and sources of coastal marine aerosol particles during the 2008 VOCALS-REx campaign

    SciTech Connect

    Lee, Y. -N.; Springston, S.; Jayne, J.; Wang, J.; Hubbe, J.; Senum, G.; Kleinman, L.; Daum, P. H.

    2014-01-01

    The chemical composition of aerosol particles (Dp ≤ 1.5 μm) was measured over the southeast Pacific Ocean during the VAMOS (Variability of the American Monsoon Systems) Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-Rex) between 16 October and 15 November 2008 using the US Department of Energy (DOE) G-1 aircraft. The objective of these flights was to gain an understanding of the sources and evolution of these aerosols, and of how they interact with the marine stratus cloud layer that prevails in this region of the globe. Our measurements showed that the marine boundary layer (MBL) aerosol mass was dominated by non-sea-salt SO42−, followed by Na+, Cl, Org (total organics), NH4+, and NO3, in decreasing order of importance; CH3SO3 (MSA), Ca2+, and K+ rarely exceeded their limits of detection. Aerosols were strongly acidic with a NH4+ to SO42− equivalents ratio typically < 0.3. Sea-salt aerosol (SSA) particles, represented by NaCl, exhibited Cl deficits caused by both HNO3 and H2SO4, but for the most part were externally mixed with particles, mainly SO42−. SSA contributed only a small fraction of the total accumulation mode particle number concentration. It was inferred that all aerosol species (except SSA) were of predominantly continental origin because of their strong land-to-sea concentration gradient. Comparison of relative changes in median values suggests that (1) an oceanic source of NH3 is present between 72° W and 76° W, (2) additional organic aerosols from biomass burns or biogenic precursors were emitted from coastal regions south of 31° S, with possible cloud processing, and (3) free tropospheric (FT) contributions to MBL gas and aerosol

  2. Long range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the Western Mediterranean basin

    NASA Astrophysics Data System (ADS)

    Ancellet, G.; Pelon, J.; Totems, J.; Chazette, P.; Bazureau, A.; Sicard, M.; Di Iorio, T.; Dulac, F.; Mallet, M.

    2015-11-01

    Long range transport of biomass burning (BB) aerosols between North America and the Mediterranean region took place in June 2013. A large number of ground based and airborne lidar measurements were deployed in the Western Mediterranean during the Chemistry-AeRosol Mediterranean EXperiment (ChArMEx) intensive observation period. A detailed analysis of the potential North American aerosol sources is conducted including the assessment of their transport to Europe using forward simulations of the FLEXPART Lagrangian particle dispersion model initialized using satellite observations by MODIS and CALIOP. The three dimensional structure of the aerosol distribution in the ChArMEx domain observed by the ground-based lidars (Menorca, Barcelona and Lampedusa), a Falcon-20 aircraft flight and three CALIOP tracks, agree very well with the model simulation of the three major sources considered in this work: Canadian and Colorado fires, a dust storm from Western US and the contribution of Saharan dust streamers advected from the North Atlantic trade wind region into the Westerlies region. Four aerosol types were identified using the optical properties of the observed aerosol layers (aerosol depolarization ratio, lidar ratio) and the transport model analysis of the contribution of each aerosol source: (I) pure BB layer, (II) weakly dusty BB, (III) significant mixture of BB and dust transported from the trade wind region (IV) the outflow of Saharan dust by the subtropical jet and not mixed with BB aerosol. The contribution of the Canadian fires is the major aerosol source during this episode while mixing of dust and BB is only significant at altitude above 5 km. The mixing corresponds to a 20-30 % dust contribution in the total aerosol backscatter. The comparison with the MODIS AOD horizontal distribution during this episode over the Western Mediterranean sea shows that the Canadian fires contribution were as large as the direct northward dust outflow from Sahara.

  3. Global and Regional Impacts of HONO on the Chemical Composition of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-01-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO / NOx ratio of 0.02 was found to have a significant impact on the global budgets of HOx (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation

  4. Global and Regional Impacts of HONO on the Chemical Composition of Clouds and Aerosols

    NASA Technical Reports Server (NTRS)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-01-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO/NO(sub x) ratio of 0.02 was found to have a significant impact on the global budgets of HO(sub x) (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation.

  5. Modeling South America regional smoke plume: aerosol optical depth variability and shortwave surface forcing

    NASA Astrophysics Data System (ADS)

    Rosário, N. E.; Longo, K. M.; Freitas, S. R.; Yamasoe, M. A.; Fonseca, R. M.

    2012-07-01

    Intra-seasonal variability of smoke aerosol optical depth (AOD) and downwelling solar irradiance at the surface during the 2002 biomass burning season in South America was modeled using the Coupled Chemistry-Aerosol-Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CCATT-BRAMS). Measurements of AOD from the AErosol RObotic NETwork (AERONET) and solar irradiance at the surface from the Solar Radiation Network (SolRad-NET) were used to evaluate model results. In general, the major features associated with AOD evolution over the southern part of the Amazon Basin and cerrado ecosystem are captured by the model. The main discrepancies were found for high aerosol loading events. In the northeastern portion of the Amazon Basin the model systematically underestimated AOD. This is likely due to the cloudy nature of the region, preventing accurate detection of the fire spots used in the emission model. Moreover, measured AOD were very often close to background conditions and emissions other than smoke were not considered in the simulation. Therefore, under the background scenario, one would expect the model to underestimate AOD. The issue of high aerosol loading events in the southern part of the Amazon and cerrado is also discussed in the context of emission shortcomings. The Cuiabá cerrado site was the only one where the highest quality AERONET data were unavailable. Thus, lower quality data were used. Root-mean-square-error (RMSE) between the model and observations decreased from 0.48 to 0.17 when extreme AOD events (AOD550 nm ≥ 1.0) and Cuiabá were excluded from analysis. Downward surface solar irradiance comparisons also followed similar trends when extremes AOD were excluded. This highlights the need to improve the modelling of the regional smoke plume in order to enhance the accuracy of the radiative energy budget. Aerosol optical model based on the mean intensive properties of smoke from the southern part of the

  6. Aerosol analysis for the regional air pollution study. Final report

    SciTech Connect

    Jaklevic, J.M.; Gatti, R.C.; Goulding, F.S.; Loo, B.W.; Thompson, A.C.

    1980-05-01

    The design and operation of an aerosol sampling and analysis program implemented during the 1975 to 1977 St. Louis Regional Air Pollution Study is described. A network of ten samplers were operated at selected sites in the St. Louis area and the total mass and elemental composition of the collected particulates were determined. Sampling periods of 2 to 24 hours were employed. The samplers were capable of collecting aerosol particles in two distinct size ranges corresponding to fine (< 2.4 ..mu..m diameter) and coarse (> 2.4 ..mu..m diameter) particles. This unique feature allowed the separation of the particulate samples into two distinct fractions with differing chemical origins and health effects. The analysis methods were also newly developed for use in the St. Louis RAPS study. Total particulate mass was measured by a beta-particle attenuation method in which a precision of +- 5 ..mu..m/cm/sup 2/ could be obtained in a one minute measurement time. Elemental compositions of the samples were determined using an energy dispersive x-ray fluorescence method in which detectable limits of 5 ng/cm/sup 2/ or less were routinely achieved for elements ranging in atomic number from Al to Pb. The advantages of these analytical methods over more conventional techniques arise from the ability to automate the measurements. During the course of the two year study, a total of more than 35,000 individual samples were processed and a total of 28 concentrations measured for each sample.

  7. Elucidating carbonaceous aerosol sources by the stable carbon δ13CTC ratio in size-segregated particles

    NASA Astrophysics Data System (ADS)

    Masalaite, A.; Remeikis, V.; Garbaras, A.; Dudoitis, V.; Ulevicius, V.; Ceburnis, D.

    2015-05-01

    Carbonaceous aerosol sources were investigated by measuring the stable carbon isotope ratio (δ13CTC) in size-segregated aerosol particles. The samples were collected with a micro-orifice uniform deposit impactor (MOUDI) in 11 size intervals ranging from 0.056 μm to 18 μm. The aerosol particle size distribution obtained from combined measurements with a scanning mobility particle sizer (SMPS; TSI 3936) and an aerosol particle sizer (APS; TSI 3321) is presented for comparison with MOUDI data. The analysis of δ13CTC values revealed that the total carbonaceous matter in size-segregated aerosol particles significantly varied from - 23.4 ± 0.1‰ in a coarse mode to - 30.1 ± 0.5‰ in a fine mode. A wide range of the δ13CTC values of size-segregated aerosol particles suggested various sources of aerosol particles contributing to carbonaceous particulate matter. Therefore, the source mixing equation was applied to verify the idea of mixing of two sources: continental non-fossil and fossil fuel combustion. The obtained δ13CTC value of aerosol particles originating from fossil fuel combustion was - 28.0 to - 28.1‰, while the non-fossil source δ13CTC value was in the range of - 25.0 to - 25.5‰. The two source mixing model applied to the size-segregated samples revealed that the fossil fuel combustion source contributed from 100% to 60% to the carbonaceous particulate matter in the fine mode range (Dp < 1 μm). Meanwhile, the second source, continental non-fossil, was the main contributor in the coarse fraction (Dp > 2 μm). The particle range from 0.5 to 2.0 μm was identified as a transition region where two sources almost equally contributed to carbonaceous particulate matter. The proposed mixing model offers an alternative method for determining major carbonaceous matter sources where radiocarbon analysis may lack the sensitivity (as in size-segregated samples).

  8. A new source of Southern Ocean and Antarctic aerosol from tropospheric polar cell chemistry of sea ice emissions

    NASA Astrophysics Data System (ADS)

    Humphries, R. S.; Klekociuk, A. R.; Schofield, R.; Robinson, A. D.; Harris, N. R. P.; Keywood, M.; Ward, J.; Galbally, I.; Molloy, S.; Thomas, A.; Wilson, S. R.

    2014-12-01

    The Antarctic region is a pristine environment with minimal anthropogenic influence. Aerosol measurements in this environment allow the study of natural aerosols and polar atmospheric dynamics. Measurements in this region have been limited primarily to continental and coastal locations where permanent stations exist, with a handful of measurements in the sea ice region. The MAPS campaign (Measurements of Aerosols and Precursors during SIPEXII) occurred as part of SIPEX II (Sea Ice Physics and Ecosystems eXperiment II) voyage in Spring, 2012, and produced the first Antarctic pack-ice focused aerosol dataset aimed at characterizing new particle formation processes off the coast of East Antarctica (~65°S, 120°E). Numerous atmospheric parameters and species were measured, including the number of aerosol particles in the 3-10 nm size range, the range associated with nucleating particle formation. A latitudinal transect through the sea ice identified the Polar Front from sudden changes in nucleating particle concentrations, averaging 51cm-3 north of the front in the Ferrel cell, and 766 cm-3 south of the front, in the Polar cell region. The Polar Front location was also confirmed by meteorological and back-trajectory data. Background aerosol populations in the Polar cell fluctuated significantly but displayed no growth indicators, suggesting transport. Back-trajectories revealed that air parcels often descended from the free-troposphere within the previous 24-48 hrs. It is proposed that particle formation occurs in the free troposphere from precursors uplifted at the polar front region which, being a sea-ice/ocean region, is a significant precursor source. After tropospheric formation, populations descending at the poles are transported northward and reach the sea ice surface, missing continental stations. Current measurements of Antarctic aerosol suggest very low loading which may be explained by these circulation patterns and may underestimate total regional loading

  9. Water soluble ions in aerosols (TSP) : Characteristics, sources and seasonal variation over the central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Tripathee, Lekhendra; Kang, Shichang; Zhang, Qianggong; Rupakheti, Dipesh

    2016-04-01

    Atmspheric pollutants transported from South Asia could have adverse impact on the Himalayan ecosystems. Investigation of aerosol chemistry in the Himalayan region in Nepal has been limited on a temporal and spatial scale to date. Therefore, the water-soluble ionic composition of aerosol using TSP sampler was investigated for a year period from April 2013 to March 2014 at four sites Bode, Dhunche, Lumbini and Jomsom characterized as an urban, rural, semi-urban and remote sites in Nepal. During the study period, the highest concentration of major cation was Ca2+ with an average concentration of 8.91, 2.17, 7.85 and 6.42 μg m-3 and the highest concentration of major anion was SO42- with an average of 10.96, 4.06, 6.85 and 3.30 μg m-3 at Bode, Dhunche, Lumbini and Jomsom respectively. The soluble ions showed the decrease in concentrations from urban to the rural site. Correlations and PCA analysis suggested that that SO42-, NO3- and NH4+ were derived from the anthropogenic sources where as the Ca2+ and Mg2+ were from crustal sources. Our results also suggest that the largest acid neutralizing agent at our sampling sites in the central Himalayas are Ca2+ followed by NH4+. Seasonal variations of soluble ions in aerosols showed higher concentrations during pre-monsoon and winter (dry-periods) due to limited precipitation amount and lower concentrations during the monsoon which can be explained by the dilution effect, higher the precipitation lower the concentration. K+ which is regarded as the tracer of biomss burning had a significant peaks during pre-monsoon season when the forest fires are active around the regions. In general, the results of this study suggests that the atmospheric chemistry is influenced by natural and anthropogenic sources. Thus, soluble ionic concentrations in aerosols from central Himalayas, Nepal can provide a useful database to assess atmospheric environment and its impacts on human health and ecosystem in the southern side of central

  10. Sea spray aerosol as a unique source of ice nucleating particles

    NASA Astrophysics Data System (ADS)

    DeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.; Prather, Kimberly A.; Collins, Douglas B.; Sullivan, Ryan C.; Ruppel, Matthew J.; Mason, Ryan H.; Irish, Victoria E.; Lee, Taehyoung; Hwang, Chung Yeon; Siek Rhee, Tae; Snider, Jefferson R.; McMeeking, Gavin R.; Dhaniyala, Suresh; Lewis, Ernie R.; Wentzell, Jeremy J. B.; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M.; Ault, Andrew P.; Axson, Jessica L.; Diaz Martinez, Myrelis; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M. Dale; Deane, Grant B.; Mayol-Bracero, Olga L.; Grassian, Vicki H.; Bertram, Timothy H.; Bertram, Allan K.; Moffett, Bruce F.; Franc, Gary D.

    2016-05-01

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using “dry” geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

  11. Sea spray aerosol as a unique source of ice nucleating particles.

    PubMed

    DeMott, Paul J; Hill, Thomas C J; McCluskey, Christina S; Prather, Kimberly A; Collins, Douglas B; Sullivan, Ryan C; Ruppel, Matthew J; Mason, Ryan H; Irish, Victoria E; Lee, Taehyoung; Hwang, Chung Yeon; Rhee, Tae Siek; Snider, Jefferson R; McMeeking, Gavin R; Dhaniyala, Suresh; Lewis, Ernie R; Wentzell, Jeremy J B; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M; Ault, Andrew P; Axson, Jessica L; Diaz Martinez, Myrelis; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M Dale; Deane, Grant B; Mayol-Bracero, Olga L; Grassian, Vicki H; Bertram, Timothy H; Bertram, Allan K; Moffett, Bruce F; Franc, Gary D

    2016-05-24

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean. PMID:26699469

  12. Sea spray aerosol as a unique source of ice nucleating particles

    PubMed Central

    DeMott, Paul J.; Hill, Thomas C. J.; McCluskey, Christina S.; Prather, Kimberly A.; Ruppel, Matthew J.; Mason, Ryan H.; Irish, Victoria E.; Lee, Taehyoung; Hwang, Chung Yeon; Snider, Jefferson R.; McMeeking, Gavin R.; Dhaniyala, Suresh; Lewis, Ernie R.; Wentzell, Jeremy J. B.; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M.; Ault, Andrew P.; Axson, Jessica L.; Diaz Martinez, Myrelis; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M. Dale; Deane, Grant B.; Mayol-Bracero, Olga L.; Grassian, Vicki H.; Bertram, Timothy H.; Bertram, Allan K.; Moffett, Bruce F.; Franc, Gary D.

    2016-01-01

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using “dry” geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean. PMID:26699469

  13. Sea spray aerosol as a unique source of ice nucleating particles.

    PubMed

    DeMott, Paul J; Hill, Thomas C J; McCluskey, Christina S; Prather, Kimberly A; Collins, Douglas B; Sullivan, Ryan C; Ruppel, Matthew J; Mason, Ryan H; Irish, Victoria E; Lee, Taehyoung; Hwang, Chung Yeon; Rhee, Tae Siek; Snider, Jefferson R; McMeeking, Gavin R; Dhaniyala, Suresh; Lewis, Ernie R; Wentzell, Jeremy J B; Abbatt, Jonathan; Lee, Christopher; Sultana, Camille M; Ault, Andrew P; Axson, Jessica L; Diaz Martinez, Myrelis; Venero, Ingrid; Santos-Figueroa, Gilmarie; Stokes, M Dale; Deane, Grant B; Mayol-Bracero, Olga L; Grassian, Vicki H; Bertram, Timothy H; Bertram, Allan K; Moffett, Bruce F; Franc, Gary D

    2016-05-24

    Ice nucleating particles (INPs) are vital for ice initiation in, and precipitation from, mixed-phase clouds. A source of INPs from oceans within sea spray aerosol (SSA) emissions has been suggested in previous studies but remained unconfirmed. Here, we show that INPs are emitted using real wave breaking in a laboratory flume to produce SSA. The number concentrations of INPs from laboratory-generated SSA, when normalized to typical total aerosol number concentrations in the marine boundary layer, agree well with measurements from diverse regions over the oceans. Data in the present study are also in accord with previously published INP measurements made over remote ocean regions. INP number concentrations active within liquid water droplets increase exponentially in number with a decrease in temperature below 0 °C, averaging an order of magnitude increase per 5 °C interval. The plausibility of a strong increase in SSA INP emissions in association with phytoplankton blooms is also shown in laboratory simulations. Nevertheless, INP number concentrations, or active site densities approximated using "dry" geometric SSA surface areas, are a few orders of magnitude lower than corresponding concentrations or site densities in the surface boundary layer over continental regions. These findings have important implications for cloud radiative forcing and precipitation within low-level and midlevel marine clouds unaffected by continental INP sources, such as may occur over the Southern Ocean.

  14. Multi-year investigations of aerosols from an island station, Port Blair, in the Bay of Bengal: climatology and source impacts

    NASA Astrophysics Data System (ADS)

    Naseema Beegum, S.; Krishna Moorthy, K.; Gogoi, Mukunda M.; Babu, S. Suresh; Pandey, S. K.

    2012-08-01

    Long-term measurements of spectral aerosol optical depth (AOD) using multi-wavelength solar radiometer (MWR) for a period of seven years (from 2002 to 2008) from the island location, Port Blair (11.63° N, 92.7° E, PBR) in the Bay of Bengal (BoB), along with the concurrent measurements of the size distribution of near-surface aerosols, have been analyzed to delineate the climatological features of aerosols over eastern BoB. In order to identity the contribution of different aerosol types from distinct sources, concentration weighted trajectory (CWT) analysis has been employed. Climatologically, AODs increase from January to reach peak value of ~0.4 (at 500 nm) in March, followed by a weak decrease towards May. Over this general pattern, significant modulations of intra-seasonal time scales, caused by the changes in the relative strength of distinctively different sources, are noticed. The derivative (α') of the Angstrom wavelength exponent α in the wavelength domain, along with CWT analysis, are used to delineate the different important aerosol types that influence this remote island. Corresponding changes in the aerosol size distributions are inferred from the numerical inversion of the spectral AODs as well from (surface) measurements. The analyses revealed that advection plays a major role in modifying the aerosol properties over the remote island location, the potential sources contributing to the accumulation mode (coarse mode) aerosols over eastern BoB being the East Asia and South China regions (Indian mainland and the oceanic regions).

  15. Impact of natural and anthropogenic aerosols on stratocumulus and precipitation in the Southeast Pacific: a regional modelling study using WRF-Chem

    SciTech Connect

    Yang, Q.; Gustafson, W. I.; Fast, J. D.; Wang, H.; Easter, R. C.; Wang, M.; Ghan, S. J.; Berg, L. K.; Leung, L. R.; Morrison, H.

    2012-09-28

    Cloud-system resolving simulations with the chemistry version of the Weather Research and Forecasting (WRF-Chem) model are used to quantify the relative impacts of regional anthropogenic and oceanic emissions on changes in aerosol properties, cloud macro- and microphysics, and cloud radiative forcing over the Southeast Pacific (SEP) during the VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx) (15 October–16 November 2008). Two distinct regions are identified. The near-coast polluted region is characterized by low surface precipitation rates, the strong suppression of non-sea-salt particle activation due to sea-salt particles, a predominant albedo effect in aerosol indirect effects, and limited impact of aerosols associated with anthropogenic emissions on clouds. Opposite sensitivities to natural marine and anthropogenic aerosol perturbations are seen in cloud properties (e.g., cloud optical depth and cloud-top and cloud-base heights), precipitation, and the top-of-atmosphere and surface shortwave fluxes over this region. The relatively clean remote region is characterized by large contributions of aerosols from non-regional sources (lateral boundaries) and much stronger drizzle at the surface. Under a scenario of five-fold increase in regional anthropogenic emissions, this relatively clean region shows large cloud responses, for example, a 13% increase in cloud-top height and a 9% increase in albedo in response to a moderate increase (25% of the reference case) in cloud condensation nuclei (CCN) concentration. The reduction of precipitation due to this increase in anthropogenic aerosols more than doubles the aerosol lifetime in the clean marine boundary layer. Therefore, the aerosol impacts on precipitation are amplified by the positive feedback of precipitation on aerosol, which ultimately alters the cloud micro- and macro-physical properties, leading to strong aerosol-cloud-precipitation interactions. The high sensitivity is also related

  16. Identification of the sources of primary organic aerosols at urban schools: a molecular marker approach.

    PubMed

    Crilley, Leigh R; Qadir, Raeed M; Ayoko, Godwin A; Schnelle-Kreis, Jürgen; Abbaszade, Gülcin; Orasche, Jürgen; Zimmermann, Ralf; Morawska, Lidia

    2014-08-01

    Children are particularly susceptible to air pollution and schools are examples of urban microenvironments that can account for a large portion of children's exposure to airborne particles. Thus this paper aimed to determine the sources of primary airborne particles that children are exposed to at school by analyzing selected organic molecular markers at 11 urban schools in Brisbane, Australia. Positive matrix factorization analysis identified four sources at the schools: vehicle emissions, biomass burning, meat cooking and plant wax emissions accounting for 45%, 29%, 16% and 7%, of the organic carbon respectively. Biomass burning peaked in winter due to prescribed burning of bushland around Brisbane. Overall, the results indicated that both local (traffic) and regional (biomass burning) sources of primary organic aerosols influence the levels of ambient particles that children are exposed at the schools. These results have implications for potential control strategies for mitigating exposure at schools. PMID:24842381

  17. Oil Sands Operations in Alberta, Canada: A large source of secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S. M.; Hayden, K.; Taha, Y. M.; Stroud, C.; Darlington, A. L.; Drollette, B.; Gordon, M.; Lee, P.; Liu, P.; Leithead, A.; Moussa, S.; Wang, D.; O'Brien, J.; Mittermeier, R. L.; Brook, J.; Lu, G.; Staebler, R. M.; Han, Y.; Tokarek, T. W.; Osthoff, H. D.; Makar, P.; Zhang, J.; Plata, D.; Gentner, D. R.

    2015-12-01

    Little is known of the reaction products of emissions to the atmosphere from extraction of oil from unconventional sources in the oil sands (OS) region of Alberta, Canada. This study examines these reaction products, and in particular, the extent to which they form secondary organic aerosol (SOA), which can significantly contribute to regional particulate matter formation. An aircraft measurement campaign was conducted over the Athabasca oil sands region between August 13 and September 7, 2013. A broad suite of measurements were made during 22 flights, including organic aerosol mass and composition with a High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and organic aerosol gas-phase precursors by Proton Transfer Reaction (PTR) and off-line gas chromatography mass spectrometry. Large concentrations of organic aerosol were measured downwind of the OS region, which we show to be entirely secondary in nature. Laboratory experiments demonstrated that bitumen (the mined product) contains semi-volatile vapours in the C12-C18 range that will be emitted at ambient temperatures. When oxidized, these vapours form SOA with highly similar HR-ToF-AMS spectra to the SOA measured in the flights. Box modelling of the OS plume evolution indicated that the measured levels of traditional volatile organic compounds (VOCs) are not capable of accounting for the amount of SOA formed in OS plumes. This discrepancy is only reconciled in the model by including bitumen vapours along with their oxidation and condensation into the model. The concentration of bitumen vapours required to produce SOA matching observations is similar to that of traditional VOC precursors of SOA. It was further estimated that the cumulative SOA mass formation approximately 100 km downwind of the OS during these flights, and under these meteorological conditions was up to 82 tonnes/day. The combination of airborne measurements, laboratory experiments and box modelling indicated that semi

  18. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    NASA Technical Reports Server (NTRS)

    Gorzelska, K.; Talbot, R. W.; Klemm, K.; Lefer, B.; Klemm, O.; Gregory, G. L.; Anderson, B.; Barrie, L. A.

    1994-01-01

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July - August 1990 joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) 3B/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with 'background' air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper tropospheric/lower stratospheric air. Aerosols in boundary layer background air over the boreal forest region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region.

  19. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    NASA Astrophysics Data System (ADS)

    Gorzelska, K.; Talbot, R. W.; Klemm, K.; Lefer, B.; Klemm, O.; Gregory, G. L.; Anderson, B.; Barrie, L. A.

    1994-01-01

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July-August 1990 joint U.S.-Canadian Arctic Boundary Layer Expedition (ABLE) SB/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with"background"air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper tropospheric/lower stratospheric air. Aerosols in boundary layer background air over the boreal forested region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region.

  20. Characterizing the aging of biomass burning organic aerosol by use of mixing ratios: a meta-analysis of four regions.

    PubMed

    Jolleys, Matthew D; Coe, Hugh; McFiggans, Gordon; Capes, Gerard; Allan, James D; Crosier, Jonathan; Williams, Paul I; Allen, Grant; Bower, Keith N; Jimenez, Jose L; Russell, Lynn M; Grutter, Michel; Baumgardner, Darrel

    2012-12-18

    Characteristic organic aerosol (OA) emission ratios (ERs) and normalized excess mixing ratios (NEMRs) for biomass burning (BB) events have been calculated from ambient measurements recorded during four field campaigns. Normalized OA mass concentrations measured using Aerodyne Research Inc. quadrupole aerosol mass spectrometers (Q-AMS) reveal a systematic variation in average values between different geographical regions. For each region, a consistent, characteristic ratio is seemingly established when measurements are collated from plumes of all ages and origins. However, there is evidence of strong regional and local-scale variability between separate measurement periods throughout the tropical, subtropical, and boreal environments studied. ERs close to source typically exceed NEMRs in the far-field, despite apparent compositional change and increasing oxidation with age. The absence of any significant downwind mass enhancement suggests no regional net source of secondary organic aerosol (SOA) from atmospheric aging of BB sources, in contrast with the substantial levels of net SOA formation associated with urban sources. A consistent trend of moderately reduced ΔOA/ΔCO ratios with aging indicates a small net loss of OA, likely as a result of the evaporation of organic material from initial fire emissions. Variability in ERs close to source is shown to substantially exceed the magnitude of any changes between fresh and aged OA, emphasizing the importance of fuel and combustion conditions in determining OA loadings from biomass burning. PMID:23163290

  1. The Dynamics of Aerosols: Recent Developments In Regional and Global Modelling

    NASA Astrophysics Data System (ADS)

    Vignati, E.

    An efficient and accurate representation of aerosol size distributions and microphysi- cal processes is required to make physically consistent calculations of the direct and indirect radiative effects of aerosols and their impact on climate. Various modelling approaches have been developed to simulate the dynamical evolu- tion of natural and anthropogenic aerosol populations. Among the components of the particulate phase, sulphate, sea salt, black carbon, organic carbon and dust all play an important role. However their contributions vary from region to region. Modal models, in which the aerosol size distribution is represented by a number of modes, present a computational attractive approach for aerosol dynamic modelling in regional and global models. They can describe external as well as internal mixtures of aerosol particles and the full aerosol dynamics. The accuracy of modal models is however dependent on both the suitability of the lognormal approximation to the size distribution and the extent to which processes can be expressed in terms of distribution parameters. Simultaneously, recent developments have been made to treat many aerosol species in global models using discrete size bins. The detailed description allows a more ac- curate calculation of the aerosol water content, an important parameter required for calculations of aerosol optical properties. However, such a fine size resolution is usu- ally time consuming when used in large scale models, therefore sometimes not all the processes modifying aerosol properties are included. Modest requirements for storage and computations is one of the advantages of moment methods. These techniques have the capability of simultaneously represent the aerosol dynamic processes and transport in large scale models. An overview of recent developments of aerosol modelling in global and regional mod- els will be presented outlining the advantages and disadvantages of the various tech- niques for such large scales.

  2. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    NASA Astrophysics Data System (ADS)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  3. Towards Improved MODIS Aerosol Retrieval over the US East Coast Region: Re-examining the Aerosol Model and Surface Assumptions

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Remer, L. A.; Kaufman, Y. J.; Holben, B. N.

    2002-01-01

    The MODerate resolution Imaging Spectrometer (MODIS) aboard the Terra and recently the Aqua platform, produces a set of aerosol products over both ocean and land regions. Previous validation efforts have shown that from a global perspective, aerosol optical depth (AOD) is successfully retrieved from MODIS. Even over coastal regions, the over- land and over-ocean retrievals are consistent with each other, and well matched with ground-based sunphotometer measurements (such as AERONET). However, the East Coast of the United States is one region where there is consistently a discrepancy between land and ocean retrievals. Over the ocean, MODIS AODs are consistent with coastal sunphotometer measurements, but over land, AODs are consistently over- estimated. In this study we use field data from the Chesapeake Lighthouse and Aircraft Measurements for Satellites experiment (CLAMS), (held during summer 2001) to determine the aerosol properties at a number of sites. Using the 6-S radiative transfer package, we compute simulated satellite radiances and compare them with observed MODIS radiances. We believe that the AOD over-estimation is not likely due to an incorrect choice of the urban/industrial aerosol models. Using 6-S to do an atmospheric correction for a very low AOD case, we show rather, that the discrepancies are likely a result of incorrect assumptions about the surface reflectance properties. Understanding and improving MODIS retrievals over the East Coast will not only improve the global quality of MODIS, but also would enable the use of MODIS as a tool for monitoring regional aerosol events.

  4. Identification of source contributions to visibility-reducing organic aerosols in the vicinity of Grand Canyon National Park. Interim final report

    SciTech Connect

    Mazurek, M.A.; Hallock, K.A.; Leach, M.; Mason-Jones, M.; Mason-Jones, H.; Salmon, L.G.; Winner, D.A.; Cass, G.R.

    1993-06-01

    Sulfates and carbonaceous aerosols are the largest contributors to the fine particle burden in the atmosphere near Grand Canyon National Park. While the effects of sulfate particles on visibility at the Grand Canyon has been extensively studied, much less is known about the nature and origin of the carbonaceous aerosols that are present. This disparity in understanding arises from at least two causes: aerosol carbon data for the region are less plentiful and many of the sources that could contribute to that organic aerosol are both diverse and not well characterized. The objective of this present study is to examine the origin of the carbonaceous aerosol at Grand Canyon National Park during the summer season based on molecular tracer techniques applied to source and ambient samples collected specifically for this purpose.

  5. Scattering and absorption properties of near-surface aerosol over Gangetic-Himalayan region: the role of boundary-layer dynamics and long-range transport

    NASA Astrophysics Data System (ADS)

    Dumka, U. C.; Kaskaoutis, D. G.; Srivastava, M. K.; Devara, P. C. S.

    2015-02-01

    Light scattering and absorption properties of atmospheric aerosols are of vital importance for evaluating their types, sources and radiative forcing. This is of particular interest over the Gangetic-Himalayan (GH) region due to uplift of aerosol from the plains to the Himalayan range, causing serious effects on atmospheric heating, glaciology and monsoon circulation. In this respect, the Ganges Valley Aerosol Experiment (GVAX) was initiated in Nainital from June 2011 to March 2012 with the aim of examining the aerosol properties, source regions, uplift mechanisms and aerosol-radiation-cloud interactions. The present study examines the temporal (diurnal, monthly, seasonal) evolution of scattering (σaerosol evolution via the Atmospheric Radiation Measurement Mobile Facility. The analysis is separated for particles <10 μm and <1 μm in diameter in order to examine the influence of particle size on optical properties. The σsp and σap exhibit a pronounced seasonal variation between the monsoon low and post-monsoon (November) high, while the scattering wavelength exponent exhibits higher values during the monsoon, in contrast to the absorption Ångström exponent which maximizes in December-March. The elevated-background measuring site provides the advantage of examining the LRT of natural and anthropogenic aerosols from the IGP and southwest Asia and the role of BLD in the aerosol lifting processes. The results reveal higher aerosol concentrations at noontime along with an increase in mixing height, suggesting influence from IGP. The locally emitted aerosols present higher wavelength dependence of the absorption in October-March compared to the rather well-mixed and aged transported aerosols. Monsoon rainfall and seasonally changing air masses contribute to the alteration of the

  6. Aerosol optical properties and radiative effects in the Yangtze Delta region of China

    NASA Astrophysics Data System (ADS)

    Xia, Xiangao; Li, Zhanqing; Holben, Brent; Wang, Pucai; Eck, Tom; Chen, Hongbin; Cribb, Maureen; Zhao, Yanxia

    2007-11-01

    One year's worth of aerosol and surface irradiance data from September 2005 to August 2006 were obtained at Taihu, the second supersite for the East Asian Study of Tropospheric Aerosols: An International Regional Experiment (EAST-AIRE). Aerosol optical properties derived from measurements by a Sun photometer were analyzed. The aerosol data were used together with surface irradiance data to quantitatively estimate aerosol effects on surface shortwave radiation (SWR) and photosynthetically active radiation (PAR). The annual mean aerosol optical depth at 500 nm is 0.77, and mean Ångstrom wavelength exponent is 1.17. The annual mean aerosol single scattering albedo and mean aerosol asymmetry factor at 440 nm are 0.90 and 0.72, respectively. Both parameters show a weak seasonal variation, with small values occurring during the winter and larger values during the summer. Clear positive relationships between relative humidity and aerosol properties suggest aerosol hygroscopic growth greatly modifies aerosol properties. The annual mean aerosol direct radiative forcing at the surface (ADRF) is -38.4 W m-2 and -17.8 W m-2 for SWR and PAR, respectively. Because of moderate absorption, the instantaneous ADRF at the top of the atmosphere derived from CERES SSF data is close to zero. Heavy aerosol loading in this region leads to -112.6 W m-2 and -45.5 W m-2 reduction in direct and global SWR, but 67.1 W m-2 more diffuse SWR reaching the surface. With regard to PAR, the annual mean differences in global, direct and diffuse irradiance are -23.1 W m-2, -65.2 W m-2 and 42.1 W m-2 with and without the presence of aerosol, respectively.

  7. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    NASA Astrophysics Data System (ADS)

    Li, Yunchun

    compounds in aerosol chemistry and physics. By reference to tracers for the major organic aerosol sources, it is deduced that the oxygenated compounds are mainly of secondary origin and direct/indirect contribution from biomass burning could also be important. The chemical composition of these oxygenated species in PM2.5 samples in Hong Kong provide useful information to further ambient and model study in the aspects of chemical formation pathways and speciated organic mass distribution. (2) Source apportionment of PM2.5 organic aerosols in Hong Kong were carried out in two studies. In the first study, chemical characterization and source analysis involved samples collected on high particulate matter (PM) days (avg. PM 2.5 >84 mug m-3) at six general stations and one roadside station from October to December in 2003. Analysis of synoptic weather conditions identified three types of high PM episodes: local, regional transport (RT) and long-range transport (LRT). Roadside samples were discussed separately. Using chemical mass balance (CMB) model, contributions of major primary sources (vehicle exhaust, cooking, biomass burning, cigarette smoke, vegetative detritus, and coal combustion) were estimated, which indicate that vehicle exhaust was the most important primary source, followed by cooking and biomass burning. All primary sources except vegetative detritus had the highest contributions at roadside station, in line with its site characteristics. Primary sources dominated roadside and local samples (>64% of fine OC), while un-apportioned OC (i.e., the difference between measured OC and apportioned primary OC) dominated RT and LRT episodes (>60% of fine OC) and un-apportioned OC had characteristics of secondary OC. In the second study, cold front episodes during winter 2004 and 2005 were targeted to investigate the effect of cold front-related LRT on chemical characteristics and organic aerosol sources of PM2.5 in Hong Kong. In comparison with days under influences of

  8. Assessing Impact of Aerosol Intercontinental Transport on Regional Air Quality and Climate: What Satellites Can Help

    NASA Technical Reports Server (NTRS)

    Yu, Hongbin

    2011-01-01

    Mounting evidence for intercontinental transport of aerosols suggests that aerosols from a region could significantly affect climate and air quality in downwind regions and continents. Current assessment of these impacts for the most part has been based on global model simulations that show large variability. The aerosol intercontinental transport and its influence on air quality and climate involve many processes at local, regional, and intercontinental scales. There is a pressing need to establish modeling systems that bridge the wide range of scales. The modeling systems need to be evaluated and constrained by observations, including satellite measurements. Columnar loadings of dust and combustion aerosols can be derived from the MODIS and MISR measurements of total aerosol optical depth and particle size and shape information. Characteristic transport heights of dust and combustion aerosols can be determined from the CALIPSO lidar and AIRS measurements. CALIPSO liar and OMI UV technique also have a unique capability of detecting aerosols above clouds, which could offer some insights into aerosol lofting processes and the importance of above-cloud transport pathway. In this presentation, I will discuss our efforts of integrating these satellite measurements and models to assess the significance of intercontinental transport of dust and combustion aerosols on regional air quality and climate.

  9. Synthesizing Scientific Progress: Outcomes from US EPA’s Carbonaceous Aerosols and Source Apportionment STAR Grants

    EPA Science Inventory

    ABSTRACTA number of studies in the past decade have transformed the way we think about atmospheric aerosols. The advances include, but are not limited to, source apportionment of organics using aerosol mass spectrometer data, the volatility basis set approach, quantifying isopre...

  10. “A significant source of isoprene aerosol controlled by acidity”

    EPA Science Inventory

    “A significant source of isoprene aerosol controlled by acidity” by Pye et al.Abstract: Isoprene is a significant contributor to organic aerosol in the southeastern United States where biogenic hydrocarbons mix with anthropogenic emissions. In this work, CMAQ provides explicit p...

  11. Demonstration of a VUV lamp photoionization source for improvedorganic speciation in an aerosol mass spectrometer

    SciTech Connect

    Northway, M.J.; Jayne, J.T.; Toohey, D.W.; Canagaratna, M.R.; Trimborn, A.; Akiyama, K-I.; Shimono, A.; Jimenez, J.L.; DeCarlo, P.F.; Wilson, K.R.; Worsnop, D.R.

    2007-10-03

    In recent years, the Aerodyne AerosolMass Spectrometer(AMS) has become a widely used tool for determining aerosol sizedistributions and chemical composition for non-refractory inorganic andorganic aerosol. The current version of the AMS uses a combination offlash thermal vaporization and 70 eV electron impact (EI) ionization.However, EI causes extensive fragmentation and mass spectra of organicaerosols are difficult to deconvolute because they are composites of theoverlapping fragmentation patterns of all species present. Previous AMSstudies have been limited to classifying organics in broad categoriessuch as oxidized and hydrocarbon-like." In this manuscript we present newefforts to gain more information about organic aerosol composition byemploying the softer technique of vacuum ultraviolet (VUV) ionization ina Time-of-Flight AMS (ToF-AMS). In our novel design a VUV lamp is placedin direct proximity of the ionization region of the AMS, with only awindow separating the lamp and the ionizer. This design allows foralternation of photoionization and electron impact ionization within thesame instrument on the timescale of minutes. Thus, the EI-basedquantification capability of the AMS is retained while improved spectralinterpretation is made possible by combined analysis of the complementaryVUV and EI ionization spectra. Photoionization and electron impactionization spectra are compared for a number of compounds including oleicacid, long chain hydrocarbons, and cigarette smoke. In general, the VUVspectra contain much less fragmentation than the EI spectra and for manycompounds the parent ion is the dominant ion in the VUV spectrum. As anexample of the usefulness of the integration of PI within the fullcapability of the ToF-AMS, size distributions and size-segregated massspectra are examined for the cigarette smoke analysis. As a finalevaluation of the new VUV module, spectra for oleic acid are compared tosimilar experiments conducted using the tunable VUV radiation

  12. Quantitative evaluation of emission controls on primary and secondary organic aerosol sources during Beijing 2008 Olympics

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J. J.; Zhang, R.

    2013-08-01

    To assess the primary and secondary sources of fine organic aerosols after the aggressive implementation of air pollution controls during the 2008 Beijing Olympic Games, 12 h PM2.5 values were measured at an urban site at Peking University (PKU) and an upwind rural site at Yufa during the CAREBEIJING-2008 (Campaigns of Air quality REsearch in BEIJING and surrounding region) summer field campaign. The average PM2.5 concentrations were 72.5 ± 43.6 μg m-3 and 64.3 ± 36.2 μg m-3 (average ± standard deviation, below as the same) at PKU and Yufa, respectively, showing the lowest concentrations in recent years. Combining the results from a CMB (chemical mass balance) model and secondary organic aerosol (SOA) tracer-yield model, five primary and four secondary fine organic aerosol sources were compared with the results from previous studies in Beijing. The relative contribution of mobile sources to PM2.5 concentrations was increased in 2008, with diesel engines contributing 16.2 ± 5.9% and 14.5 ± 4.1% and gasoline vehicles contributing 10.3 ± 8.7% and 7.9 ± 6.2% to organic carbon (OC) at PKU and Yufa, respectively. Due to the implementation of emission controls, the absolute OC concentrations from primary sources were reduced during the Olympics, and the contributions from secondary formation of OC represented a larger relative source of fine organic aerosols. Compared with the non-controlled period prior to the Olympics, primary vehicle contributions were reduced by 30% at the urban site and 24% at the rural site. The reductions in coal combustion contributions were 57% at PKU and 7% at Yufa. Our results demonstrate that the emission control measures implemented in 2008 significantly alleviated the primary organic particle pollution in and around Beijing. However, additional studies are needed to provide a more comprehensive assessment of the emission control effectiveness on SOA formation.

  13. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    NASA Astrophysics Data System (ADS)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  14. Response of California temperature to regional anthropogenic aerosol changes

    SciTech Connect

    Kirchstetter, Thomas; Novakov, T.; Kirchstetter, T.W.; Menon, S.; Aguiar, J.

    2008-05-12

    In this paper, we compare constructed records of concentrations of black carbon (BC)--an indicator of anthropogenic aerosols--with observed surface temperature trends in California. Annual average BC concentrations in major air basins in California significantly decreased after about 1990, coincident with an observed statewide surface temperature increase. Seasonal aerosol concentration trends are consistent with observed seasonal temperature trends. These data suggest that the reduction in anthropogenic aerosol concentrations contributed to the observed surface temperature increase. Conversely, high aerosol concentrations may lower surface temperature and partially offset the temperature increase of greenhouse gases.

  15. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-03-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plume of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI project, an intensive campaign was launched in the Greater Paris Region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind the Paris region. Slopes of the plume OA levels vs. Ox (= O3 + NO2) show secondary OA (SOA) formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. Simulated and observed slopes are in good agreement, when the most realistic "high-NOx" yields are used in the Volatility-Basis-Set scheme implemented into the model. In addition, these slopes are relatively stable from one day to another, which suggest that they are characteristic for the given megacity plume environment. Since OA within the plume is mainly formed from anthropogenic precursors (VOC and primary OA, POA), this work allows a specific evaluation of anthropogenic SOA and SOA formed from primary semi-volatile and intermediate volatile VOCs (SI-SOA) formation scheme in a model. For specific plumes, this anthropogenic OA build-up can reach about 10 μg m-3. For the average of the month of July 2009, maximum increases occur close to the agglomeration for primary OA are noticed at several tens (for POA) to hundred (for SI-SOA) kilometers of distance from the Paris agglomeration.

  16. Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-Fired Power Plants

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2005 through August 2005. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. This report highlights new data on road dust, vegetative detritus and motor vehicle emissions. For example, the results show significant differences in the composition in urban and rural road dust. A comparison of the organic of the fine particulate matter in the tunnel with the ambient provides clear evidence of the significant contribution of vehicle emissions to ambient PM. The source profiles developed from this work are being used by the source-receptor modeling activities. The report presents results on the spatial distribution of PMF-factors. The results can be grouped into three different categories: regional sources, local sources, or potentially both regional and local sources. Examples of the regional sources are the sulfate and selenium PMF-factors which most likely-represent coal fired power plants. Examples of local sources are the specialty steel and lead factors. There is reasonable correspondence between these apportionments and data from the EPA TRI and AIRS emission inventories. Detailed comparisons between PMCAMx predictions and measurements by the STN and IMPROVE measurements in the Eastern US are presented. Comparisons were made for the major aerosol components and PM{sub 2.5} mass in July 2001, October 2001, January 2002, and April 2002. The results are encouraging with average fraction biases for most species less than 0.25. The improvement of the model performance during the last two years was mainly due to the comparison of the model predictions with the continuous measurements in the Pittsburgh Supersite. Major improvements have included the descriptions: of ammonia emissions (CMU inventory), night time nitrate chemistry, EC emissions and their diurnal

  17. Aerosol composition, oxidative properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation Summit study

    NASA Astrophysics Data System (ADS)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-08-01

    processes were further illustrated in a case study of a severe haze episode. Our results elucidated a complex response of aerosol chemistry to emission controls, which has significant implications that emission controls over regional scales can substantially reduce secondary particulates. However, stricter emission controls for local source emissions are needed for further mitigating air pollution in the megacity of Beijing.

  18. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    NASA Astrophysics Data System (ADS)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  19. Large-Scale Covariability Between Aerosol and Precipitation Over the 7-SEAS Region: Observations and Simulations

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Zhang, Chidong; Jeong, Myeong Jae; Gautam, Ritesh; Bettenhausen, Corey; Sayer, Andrew M.; Hansell, Richard A.; Liu, Xiaohong; Jiang, Jonathan H.

    2012-01-01

    One of the seven scientific areas of interests of the 7-SEAS field campaign is to evaluate the impact of aerosol on cloud and precipitation (http://7-seas.gsfc.nasa.gov). However, large-scale covariability between aerosol, cloud and precipitation is complicated not only by ambient environment and a variety of aerosol effects, but also by effects from rain washout and climate factors. This study characterizes large-scale aerosol-cloud-precipitation covariability through synergy of long-term multi ]sensor satellite observations with model simulations over the 7-SEAS region [10S-30N, 95E-130E]. Results show that climate factors such as ENSO significantly modulate aerosol and precipitation over the region simultaneously. After removal of climate factor effects, aerosol and precipitation are significantly anti-correlated over the southern part of the region, where high aerosols loading is associated with overall reduced total precipitation with intensified rain rates and decreased rain frequency, decreased tropospheric latent heating, suppressed cloud top height and increased outgoing longwave radiation, enhanced clear-sky shortwave TOA flux but reduced all-sky shortwave TOA flux in deep convective regimes; but such covariability becomes less notable over the northern counterpart of the region where low ]level stratus are found. Using CO as a proxy of biomass burning aerosols to minimize the washout effect, large-scale covariability between CO and precipitation was also investigated and similar large-scale covariability observed. Model simulations with NCAR CAM5 were found to show similar effects to observations in the spatio-temporal patterns. Results from both observations and simulations are valuable for improving our understanding of this region's meteorological system and the roles of aerosol within it. Key words: aerosol; precipitation; large-scale covariability; aerosol effects; washout; climate factors; 7- SEAS; CO; CAM5

  20. Source quantification of size and season resolved aerosols in a semi-urban area of Indo-Gangetic plain, India

    NASA Astrophysics Data System (ADS)

    Hooda, R. K.; Hyvärinen, A.; Gilardoni, S.; Sharma, V.; Vestenius, M.; Kerminen, V.; Vignati, E.; Kulmala, M. T.; Lihavainen, H.

    2012-12-01

    PMF. For fine aerosols five factors were identified and quantified as biomass combustion (53%), road traffic (tail-pipe emissions and road dust) (7%), mineral dust (7%), secondary aerosols (12%) and external coal combustion (21%). CPF analysis for fine shows that combustion sources and secondary aerosols mainly from Delhi region and other distant urban/rural environments, while re-suspended mineral dust from desert areas. PMF results for coarse aerosols identified four factors and quantified as external coal combustion (7%), fossils fuel combustion (biomass and oil) (22%), dust (re-suspended and natural) (49%), construction activities (22%). Distinct seasonal variation for combustion sources have been seen for Gual Pahari. The peaks for dust aerosols even in monsoon have also been observed and these could be a long-range transport. CPF analysis for coarse shows that combustion sources mainly from Delhi region and other distant urban/rural environments, re-suspended mineral dust from desert areas of Thar and Saharan in west/south-west transported over Gual Pahari while, construction activities mainly from Delhi. This could be due to heavy construction activities during Commonwealth Games (2010) preparations in Delhi.

  1. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    EPA Science Inventory

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  2. Critical reflectance derived from MODIS: Application for the retrieval of aerosol absorption over desert regions

    NASA Astrophysics Data System (ADS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-02-01

    The determination of aerosol direct radiative forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA); however, the brightness of desert surfaces in the visible and near-IR range complicates the retrieval of aerosol optical properties using passive space-based measurements. Here we use the critical reflectance method to retrieve spectral aerosol absorption from space over North Africa, a desert region that is predominantly impacted by absorbing dust and biomass burning aerosol. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties that are representative of the region, and we find that the critical reflectance has low sensitivity to assumptions of aerosol size and refractive index for dust-like particles, except at scattering angles near 180°, which should be avoided with this method. We use our findings to retrieve spectral SSA from critical reflectance derived from Moderate Resolution Imaging Spectroradiometer (MODIS) reflectances in the vicinity of two Aerosol Robotic Network (AERONET) stations: Tamanrasset, in the Algerian Sahara, and Banizoumbou, in the Sahel. We retrieve lower aerosol SSAs at Banizoumbou, which is often impacted by dust-smoke mixtures, and higher SSAs at Tamanrasset, where pure desert dust is the dominant aerosol. Our results generally fall within the AERONET uncertainty envelopes, although at Banizoumbou we retrieve a spectral dependence different from that of AERONET. On the basis of our analysis, we expect to be able to retrieve SSA from critical reflectance for pure dust with an uncertainty of 0.02 and to provide spatial and spectral SSA information that will help reduce current uncertainties in the aerosol radiative forcing over desert regions.

  3. Skin as a potential source of infectious foot and mouth disease aerosols.

    PubMed

    Dillon, Michael B

    2011-06-22

    This review examines whether exfoliated, virus-infected animal skin cells could be an important source of infectious foot and mouth disease virus (FMDV) aerosols. Infectious material rafting on skin cell aerosols is an established means of transmitting other diseases. The evidence for a similar mechanism for FMDV is: (i) FMDV is trophic for animal skin and FMDV epidermis titres are high, even in macroscopically normal skin; (ii) estimates for FMDV skin cell aerosol emissions appear consistent with measured aerosol emission rates and are orders of magnitude larger than the minimum infectious dose; (iii) the timing of infectious FMDV aerosol emissions is consistent with the timing of high FMDV skin concentrations; (iv) measured FMDV aerosol sizes are consistent with skin cell aerosols; and (v) FMDV stability in natural aerosols is consistent with that expected for skin cell aerosols. While these findings support the hypothesis, this review is insufficient, in and of itself, to prove the hypothesis and specific follow-on experiments are proposed. If this hypothesis is validated, (i) new FMDV detection, management and decontamination approaches could be developed and (ii) the relevance of skin cells to the spread of viral disease may need to be reassessed as skin cells may protect viruses against otherwise adverse environmental conditions.

  4. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    It is now well-established that aerosols cause an overall cooling effect at the surface and a warming effect within the atmosphere. At the top of the atmosphere (TOA), both positive and negative forcing can be found, depending on a number of other factors, such as surface albedo and relative position of clouds and aerosols. Whilst aerosol surface cooling is important due to its relation with surface temperature and other bio-environmental reasons, atmospheric heating is of special interest as well having significant impacts on atmospheric dynamics, such as formation of clouds and subsequent precipitation. The actual position of aerosols and their altitude relative to clouds is of major importance as certain types of aerosol, such as black carbon (BC) above clouds can have a significant impact on planetary albedo. The vertical distribution of aerosols and clouds has recently drawn the attention of the aerosol community, because partially can account for the differences between simulated aerosol radiative forcing with various models, and therefore decrease the level of our uncertainty regarding aerosol forcing, which is one of our priorities set by IPCC. The vertical profiles of aerosol optical and physical properties have been studied by various research groups around the world, following different methodologies and using various indices in order to present the impact of aerosols on radiation on different altitudes above the surface. However, there is still variability between the published results as to the actual effect of aerosols on shortwave radiation and on heating rate within the atmosphere. This study uses vertical information on aerosols from the Max Planck Aerosol Climatology (MAC-v1) global dataset, which is a combination of model output with quality ground-based measurements, in order to provide useful insight into the vertical profile of atmospheric heating for the Mediterranean region. MAC-v1 and the science behind this aerosol dataset have already

  5. Premonsoon Aerosol Characterization and Radiative Effects Over the Indo-Gangetic Plains: Implications for Regional Climate Warming

    NASA Technical Reports Server (NTRS)

    Gautam, Ritesh; Hsu, N. Christina; Lau, K.-M.

    2010-01-01

    The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon over the Indo-Gangetic Plains (IGP) and slopes of the Himalayas, may significantly accelerate the seasonal warming of the Hindu Kush-Himalayas-Tibetan Plateau (HKHT) and influence the subsequent evolution of the summer monsoon. This paper presents a detailed characterization of aerosols over the IGP and their radiative effects during the premonsoon season (April-May-June) when dust transport constitutes the bulk of the regional aerosol loading, using ground radiometric and spaceborne observations. During the dust-laden period, there is a strong response of surface shortwave flux to aerosol absorption indicated by the diurnally averaged forcing efficiency of -70 W/sq m per unit optical depth. The simulated aerosol single-scattering albedo, constrained by surface flux and aerosol measurements, is estimated to be 0.89+/- 0.01 (at approx.550 nm) with diurnal mean surface and top-of-atmosphere forcing values ranging from -11 to -79.8 W/sq m and +1.4 to +12 W/sq m, respectively, for the premonsoon period. The model-simulated solar heating rate profile peaks in the lower troposphere with enhanced heating penetrating into the middle troposphere (5-6 km), caused by vertically extended aerosols over the IGP with peak altitude of approx.5 km as indicated by spaceborne Cloud-Aerosol Lidar with Orthogonal Polarization observations. On a long-term climate scale, our analysis, on the basis of microwave satellite measurements of tropospheric temperatures from 1979 to 2007, indicates accelerated annual mean warming rates found over the Himalayan-Hindu Kush region (0.21 C/decade+/-0.08 C

  6. Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current

    NASA Astrophysics Data System (ADS)

    Koike, M.; Takegawa, N.; Moteki, N.; Kondo, Y.; Nakamura, H.; Kita, K.; Matsui, H.; Oshima, N.; Kajino, M.; Nakajima, T. Y.

    2012-09-01

    Cloud microphysical properties and aerosol concentrations were measured aboard an aircraft over the East China Sea and Yellow Sea in April 2009 during the Aerosol Radiative Forcing in East Asia (A-FORCE) experiment. We sampled stratocumulus and shallow cumulus clouds over the ocean in 9 cases during 7 flights 500-900 km off the east coast of Mainland China. In this study we report aerosol impacts on cloud microphysical properties by focusing on regional characteristics of two key parameters, namely updraft velocity and aerosol size distribution. First, we show that the cloud droplet number concentration (highest 5%, Nc_max) correlates well with the accumulation-mode aerosol number concentration (Na) below the clouds. We then show that Nc_maxcorrelates partly with near-surface stratification evaluated as the difference between the sea surface temperature (SST) and 950-hPa temperature (SST - T950). Cold air advection from China to the East China Sea was found to bring not only a large number of aerosols but also a dry and cold air mass that destabilized the atmospheric boundary layer, especially over the warm Kuroshio ocean current. Over this high-SST region, greater updraft velocities and hence greater Nc_maxlikely resulted. We hypothesize that the low-level static stability determined by SST and regional-scale airflow modulates both the cloud microphysics (aerosol impact on clouds) and macro-structure of clouds (cloud base and top altitudes, hence cloud liquid water path). Second, we show that not only higher aerosol loading in terms of total aerosol number concentration (NCN, D > 10 nm) but also larger aerosol mode diameters likely contributed to high Ncduring A-FORCE. The mean Nc of 650 ± 240 cm-3was more than a factor of 2 larger than the global average for clouds influenced by continental sources. A crude estimate of the aerosol-induced cloud albedo radiative forcing is also given.

  7. Fossil and Nonfossil Sources of Organic and Elemental Carbon Aerosols in the Outflow from Northeast China.

    PubMed

    Zhang, Yan-Lin; Kawamura, Kimitaka; Agrios, Konstantinos; Lee, Meehye; Salazar, Gary; Szidat, Sönke

    2016-06-21

    Source quantification of carbonaceous aerosols in the Chinese outflow regions still remains uncertain despite their high mass concentrations. Here, we unambiguously quantified fossil and nonfossil contributions to elemental carbon (EC) and organic carbon (OC) of total suspended particles (TSP) from a regional receptor site in the outflow of Northeast China using radiocarbon measurement. OC and EC concentrations were lower in summer, representing mainly marine air, than in other seasons, when air masses mostly traveled over continental regions in Mongolia and northeast China. The annual-mean contribution from fossil-fuel combustion to EC was 76 ± 11% (0.1-1.3 μg m(-3)). The remaining 24 ± 11% (0.03-0.42 μg m(-3)) was attributed to biomass burning, with slightly higher contribution in the cold period (∼31%) compared to the warm period (∼21%) because of enhanced emissions from regional biomass combustion sources in China. OC was generally dominated by nonfossil sources, with an annual average of 66 ± 11% (0.5-2.8 μg m(-3)), approximately half of which was apportioned to primary biomass-burning sources (34 ± 6%). In winter, OC almost equally originated from primary OC (POC) emissions and secondary OC (SOC) formation from fossil fuel and biomass-burning sources. In contrast, summertime OC was dominated by primary biogenic emissions as well as secondary production from biogenic and biomass-burning sources, but fossil-derived SOC was the smallest contributor. Distinction of POC and SOC was performed using primary POC-to-EC emission ratios separated for fossil and nonfossil emissions. PMID:27203471

  8. Local source impacts on primary and secondary aerosols in the Midwestern United States

    NASA Astrophysics Data System (ADS)

    Jayarathne, Thilina; Rathnayake, Chathurika M.; Stone, Elizabeth A.

    2016-04-01

    Atmospheric particulate matter (PM) exhibits heterogeneity in composition across urban areas, leading to poor representation of outdoor air pollutants in human exposure assessments. To examine heterogeneity in PM composition and sources across an urban area, fine particulate matter samples (PM2.5) were chemically profiled in Iowa City, IA from 25 August to 10 November 2011 at two monitoring stations. The urban site is the federal reference monitoring (FRM) station in the city center and the peri-urban site is located 8.0 km to the west on the city edge. Measurements of PM2.5 carbonaceous aerosol, inorganic ions, molecular markers for primary sources, and secondary organic aerosol (SOA) tracers were used to assess statistical differences in composition and sources across the two sites. PM2.5 mass ranged from 3 to 26 μg m-3 during this period, averaging 11.2 ± 4.9 μg m-3 (n = 71). Major components of PM2.5 at the urban site included organic carbon (OC; 22%), ammonium (14%), sulfate (13%), nitrate (7%), calcium (2.9%), and elemental carbon (EC; 2.2%). Periods of elevated PM were driven by increases in ammonium, sulfate, and SOA tracers that coincided with hot and dry conditions and southerly winds. Chemical mass balance (CMB) modeling was used to apportion OC to primary sources; biomass burning, vegetative detritus, diesel engines, and gasoline engines accounted for 28% of OC at the urban site and 24% of OC at the peri-urban site. Secondary organic carbon from isoprene and monoterpene SOA accounted for an additional 13% and 6% of OC at the urban and peri-urban sites, respectively. Differences in biogenic SOA across the two sites were associated with enhanced combustion activities in the urban area and higher aerosol acidity at the urban site. Major PM constituents (e.g., OC, ammonium, sulfate) were generally well-represented by a single monitoring station, indicating a regional source influence. Meanwhile, nitrate, biomass burning, food cooking, suspended dust, and

  9. Turbulent aerosol fluxes over the Arctic Ocean: 2. Wind-driven sources from the sea

    NASA Astrophysics Data System (ADS)

    Nilsson, E. D.; Rannik, Ü.; Swietlicki, E.; Leck, C.; Aalto, P. P.; Zhou, J.; Norman, M.

    2001-12-01

    An eddy-covariance flux system was successfully applied over open sea, leads and ice floes during the Arctic Ocean Expedition in July-August 1996. Wind-driven upward aerosol number fluxes were observed over open sea and leads in the pack ice. These particles must originate from droplets ejected into the air at the bursting of small air bubbles at the water surface. The source flux F (in 106 m-2 s-1) had a strong dependency on wind speed, log>(F>)=0.20U¯-1.71 and 0.11U¯-1.93, over the open sea and leads, respectively (where U¯ is the local wind speed at about 10 m height). Over the open sea the wind-driven aerosol source flux consisted of a film drop mode centered at ˜100 nm diameter and a jet drop mode centered at ˜1 μm diameter. Over the leads in the pack ice, a jet drop mode at ˜2 μm diameter dominated. The jet drop mode consisted of sea-salt, but oxalate indicated an organic contribution, and bacterias and other biogenic particles were identified by single particle analysis. Particles with diameters less than -100 nm appear to have contributed to the flux, but their chemical composition is unknown. Whitecaps were probably the bubble source at open sea and on the leads at high wind speed, but a different bubble source is needed in the leads owing to their small fetch. Melting of ice in the leads is probably the best candidate. The flux over the open sea was of such a magnitude that it could give a significant contribution to the condensation nuclei (CCN) population. Although the flux from the leads were roughly an order of magnitude smaller and the leads cover only a small fraction of the pack ice, the local source may till be important for the CCN population in Arctic fogs. The primary marine aerosol source will increase both with increased wind speed and with decreased ice fraction and extent. The local CCN production may therefore increase and influence cloud or fog albedo and lifetime in response to greenhouse warming in the Arctic Ocean region.

  10. Evaluating Direct Radiative Effects of Absorbing Aerosols on Atmospheric Dynamics with Aquaplanet and Regional Model Results

    NASA Astrophysics Data System (ADS)

    Can, Ö.; Tegen, I.; Quaas, J.

    2015-12-01

    Effects of absorbing aerosol on atmospheric dynamics are usually investigated with help of general circulation models or also regional models that represent the atmospheric system as realistic as possible. Reducing the complexity of models used to study the effects of absorbing aerosol on atmospheric dynamics helps to understand underlying mechanisms. In this study, by using ECHAM6 General Circulation Model (GCM) in an Aquaplanet setting and using simplified aerosol climatology, an initial idealization step has been taken. The analysis only considers direct radiative effects, furthering the reduction of complex model results. The simulations include cases including aerosol radiative forcing, no aerosol forcing, coarse mode aerosol forcing only (as approximation for mineral dust forcing) and forcing with increased aerosol absorption. The results showed that increased absorption affects cloud cover mainly in subtropics. Hadley circulation is found to be weakened in the increased absorption case. To compare the results of the idealized model with a more realistic model setting, the results of the regional model COSMO-MUSCAT that includes interactive mineral dust aerosol and considers the effects of dust radiative forcing are also analyzed. The regional model computes the atmospheric circulation for the year 2007 twice, including the feedback of dust and excluding the dust aerosol forcing. It is investigated to which extent the atmospheric response to the dust forcing agrees with the simplified Aquaplanet results. As expected, in the regional model mineral dust causes an increase in the temperature right above the dust layer while reducing the temperature close to the surface. In both models the presence of aerosol forcing leads to increased specific humidity, close to ITCZ. Notwithstanding the difference magnitudes, comparisons of the global aquaplanet and the regional model showed similar patterns. Further detailed comparisons will be presented.

  11. Sensitivity studies using Regional Atmospheric Modeling System to analyze the impact of dust and aerosol on precipitation in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jha, V.; Cotton, W. R.; Carrio, G. G.; Pierce, J. R.

    2015-12-01

    A modeling study is performed in the Colorado River Basin by varying the ratio of dust and aerosol pollution. The Colorado State University Regional Atmospheric Modeling system (RAMS) version 6.0 is used for the analyses with the aerosol and dust pollution data being nudged from the GEOS-Chem. RAMS was modified to ingest GEOS-CHEM output data and periodically update aerosol fields. GEOS-CHEM is a chemical transport model which uses assimilated meteorological data from the NASA Goddard Earth Observation System (GEOS). The aerosol data comprise a sum of hydrophobic and hydrophilic black carbon and organic aerosol, hydrophilic SOAs, hydrocarbon oxidation and inorganic aerosols (nitrate, sulfate and ammonium). In addition, a RAMS-based dust source and transport model is used. The sensitivity studies are 5 different kinds. The base study has both the dust and aerosol pollution data ON. The Case 2 has dust OFF with only the aerosol sources ON. The Case 3 has the aerosol sources ON with dust multiplied by a factor of 3. Case 4 has the aerosol sources ON with dust multiplied by a factor of 10. Case 5 and Case 6 are the simulations where dust can act only as CCN and only as IN respectively. It was found that the precipitation increases when dust is increased 3 times. However, the response is non-monotonic when dust is increased 10 times and the response depends on the environmental conditions. Dust acting as CCN acts in opposition to dust acting as IN. In general, dust acting as IN tends to enhance precipitation in wintertime orographic clouds.

  12. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Hapsari Budisulistiorini, Sri; Baumann, Karsten; Edgerton, Eric S.; Bairai, Solomon T.; Mueller, Stephen; Shaw, Stephanie L.; Knipping, Eladio M.; Gold, Avram; Surratt, Jason D.

    2016-04-01

    A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 %) and sulfate (up to 31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (LV-OOA), isoprene-derived epoxydiols (IEPOX) OA (IEPOX-OA) and 91Fac (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ˜ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is well correlated with the m/z 82 ion associated with the aerosol mass spectrum of IEPOX-derived secondary organic aerosol (SOA). The

  13. Source Region Identification Using Kernel Smoothing

    EPA Science Inventory

    As described in this paper, Nonparametric Wind Regression is a source-to-receptor source apportionment model that can be used to identify and quantify the impact of possible source regions of pollutants as defined by wind direction sectors. It is described in detail with an exam...

  14. Variability and Sources of Tropospheric Aerosols Over the North Atlantic in Fall: A Model Analysis in Support of the NASA NAAMES Earth-Venture Suborbital-2 Mission

    NASA Astrophysics Data System (ADS)

    Liu, H.; Moore, R.; Hostetler, C. A.; Ferrare, R. A.; Fairlie, T. D.; Hu, Y.; Chen, G.; Johnson, M. S.; Gantt, B.; Jaegle, L.

    2015-12-01

    The North Atlantic Aerosols and Marine Ecosystems Study (NAAMES) is a five-year Earth-Venture Suborbital-2 Mission to characterize the plankton ecosystems and their influences on remote marine aerosols, boundary layer clouds, and their implications for climate in the North Atlantic, with the first field deployment in November 2015. While marine-sourced aerosols have been shown to make important contributions to surface aerosol loading, cloud condensation nuclei and ice nuclei concentrations over remote marine and coastal regions, it is still a challenge to differentiate the marine biogenic aerosol signal from the strong influence of continental pollution outflow. As a pre-mission analysis, we examine here the spatiotemporal variability and quantify the sources of tropospheric aerosols over the North Atlantic during November 2008 using a state-of-the-art chemical transport model (GEOS-Chem). The model is driven by the Modern-Era Retrospective analysis for Research and Applications (MERRA at 2°×2.5° horizontal resolution) from the NASA Global Modeling Assimilation Office (GMAO). It includes sulfate-nitrate-ammonium aerosol thermodynamics coupled to ozone-NOx-hydrocarbon-aerosol chemistry, mineral dust, sea salt, elemental and organic carbon aerosols, especially a recently implemented parameterization for the marine primary organic aerosol emission. The simulated aerosols over the North Atlantic are evaluated with available satellite (e.g., MODIS) observations of aerosol optical depths (AOD) and surface aerosol measurements. We diagnose transport pathways for continental pollution outflow over the North Atlantic using carbon monoxide, an excellent tracer for anthropogenic pollution transport. Simulations indicate that, along the NAAMES nominal ship and flight tracks (40°W, 40-57°N), episodic pollution transport associated with frontal passages occurs at both the surface and free troposphere, with periods of relatively unperturbed marine air as indicated by

  15. Sugar markers in aerosol particles from an agro-industrial region in Brazil

    NASA Astrophysics Data System (ADS)

    Urban, R. C.; Alves, C. A.; Allen, A. G.; Cardoso, A. A.; Queiroz, M. E. C.; Campos, M. L. A. M.

    2014-06-01

    This work aimed to better understand how aerosol particles from sugar cane burning contribute to the chemical composition of the lower troposphere in an agro-industrial region of São Paulo State (Brazil) affected by sugar and ethanol fuel production. During a period of 21 months, we collected 105 samples and quantified 20 saccharides by GC-MS. The average concentrations of levoglucosan (L), mannosan (M), and galactosan (G) for 24-h sampling were 116, 16, and 11 ng m-3 respectively. The three anhydrosugars had higher and more variable concentrations in the nighttime and during the sugar cane harvest period, due to more intense biomass burning practices. The calculated L/M ratio, which may serve as a signature for sugar cane smoke particles, was 9 ± 5. Although the total concentrations of the anhydrosugars varied greatly among samples, the relative mass size distributions of the saccharides were reasonably constant. Emissions due to biomass burning were estimated to correspond to 69% (mass) of the sugars quantified in the harvest samples, whereas biogenic emissions corresponded to 10%. In the non-harvest period, these values were 44 and 27%, respectively, indicating that biomass burning is an important source of aerosol to the regional atmosphere during the whole year.

  16. Apportionment of urban aerosol sources in Chongqing (China) using synergistic on-line techniques

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Yang, Fumo

    2016-04-01

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Chongqing (southwestern China) have been determined. Aerosol chemical composition analyses were performed using multiple on-line techniques, such as single particle aerosol mass spectrometer (SPAMS) for single particle chemical composition, on-line elemental carbon-organic carbon analyzer (on-line OC-EC), on-line X-ray fluorescence (XRF) for elements, and in-situ Gas and Aerosol Compositions monitor (IGAC) for water-soluble ions in PM2.5. All the datasets from these techniques have been adjusted to a 1-h time resolution for receptor model input. Positive matrix factorization (PMF) has been used for resolving aerosol sources. At least six sources, including domestic coal burning, biomass burning, dust, traffic, industrial and secondary/aged factors have been resolved and interpreted. The synergistic on-line techniques were helpful for identifying aerosol sources more clearly than when only employing the results from the individual techniques. This results are useful for better understanding of aerosol sources and atmospheric processes.

  17. SOURCE APPORTIONMENT OF PHOENIX PM2.5 AEROSOL WITH THE UNMIX RECEPTOR MODEL

    EPA Science Inventory

    The multivariate receptor model Unmix has been used to analyze a 3-yr PM2.5 ambient aerosol data set collected in Phoenix, AZ, beginning in 1995. The analysis generated source profiles and overall percentage source contribution estimates (SCE) for five source categories: ga...

  18. Arctic Sea Salt Aerosol from Blowing Snow and Sea Ice Surfaces - a Missing Natural Source in Winter

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; Norris, S. J.; Brooks, I. M.; Nishimura, K.; Jones, A. E.

    2015-12-01

    Atmospheric particles in the polar regions consist mostly of sea salt aerosol (SSA). SSA plays an important role in regional climate change through influencing the surface energy balance either directly or indirectly via cloud formation. SSA irradiated by sunlight also releases very reactive halogen radicals, which control concentrations of ozone, a pollutant and greenhouse gas. However, models under-predict SSA concentrations in the Arctic during winter pointing to a missing source. It has been recently suggested that salty blowing snow above sea ice, which is evaporating, to be that source as it may produce more SSA than equivalent areas of open ocean. Participation in the 'Norwegian Young Sea Ice Cruise (N-ICE 2015)' on board the research vessel `Lance' allowed to test this hypothesis in the Arctic sea ice zone during winter. Measurements were carried out from the ship frozen into the pack ice North of 80º N during February to March 2015. Observations at ground level (0.1-2 m) and from the ship's crows nest (30 m) included number concentrations and size spectra of SSA (diameter range 0.3-10 μm) as well as snow particles (diameter range 50-500 μm). During and after blowing snow events significant SSA production was observed. In the aerosol and snow phase sulfate is fractionated with respect to sea water, which confirms sea ice surfaces and salty snow, and not the open ocean, to be the dominant source of airborne SSA. Aerosol shows depletion in bromide with respect to sea water, especially after sunrise, indicating photochemically driven release of bromine. We discuss the SSA source strength from blowing snow in light of environmental conditions (wind speed, atmospheric turbulence, temperature and snow salinity) and recommend improved model parameterisations to estimate regional aerosol production. N-ICE 2015 results are then compared to a similar study carried out previously in the Weddell Sea during the Antarctic winter.

  19. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime

    NASA Astrophysics Data System (ADS)

    Zhang, Yunjiang; Tang, Lili; Yu, Hongxia; Wang, Zhuang; Sun, Yele; Qin, Wei; Chen, Wentai; Chen, Changhong; Ding, Aijun; Wu, Jing; Ge, Shun; Chen, Cheng; Zhou, Hong-cang

    2015-12-01

    To investigate the composition, sources and evolution processes of submicron aerosol during wintertime, a field experiment was conducted during December 1-31, 2013 in urban Nanjing, a megacity in Yangtze River Delta of China. Non-refractory submicron aerosol (NR-PM1) species were measured with an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 is dominated by secondary inorganic aerosol (55%) and organic aerosol (OA, 42%) during haze periods. Six OA components were identified by positive matrix factorization of the OA mass spectra. The hydrocarbon-like OA and cooking-related OA represent the local traffic and cooking sources, respectively. A highly oxidized factor related to biomass burning OA accounted for 15% of the total OA mass during haze periods. Three types of oxygenated OA (OOA), i.e., a less-oxidized OOA (LO-OOA), a more-oxidized OOA (MO-OOA), and a low-volatility OOA (LV-OOA), were identified. LO-OOA is likely associated with fresh urban secondary OA. MO-OOA likely represents photochemical products showing a similar diurnal cycle to nitrate with a pronounced noon peak. LV-OOA appears to be a more oxidized factor with a pronounced noon peak. The OA composition is dominated by secondary species, especially during haze events. LO-OOA, MO-OOA and LV-OOA on average account for 11%, (18%), 24% (21%) and 23% (18%) of the total OA mass for the haze (clean) periods respectively. Analysis of meteorological influence suggested that regional transport from the northern and southeastern areas of the city is responsible for large secondary and low-volatility aerosol formation.

  20. Variability of aerosol optical depth and aerosol radiative forcing over Northwest Himalayan region

    NASA Astrophysics Data System (ADS)

    Saheb, Shaik Darga; Kant, Yogesh; Mitra, D.

    2016-05-01

    In recent years, the aerosol loading in India is increasing that has significant impact on the weather/climatic conditions. The present study discusses the analysis of temporal (monthly and seasonal) variation of aerosol optical depth(AOD) by the ground based observations from sun photometer and estimate the aerosol radiative forcing and heating rate over selected station Dehradun in North western Himalayas, India during 2015. The in-situ measurements data illustrate that the maximum seasonal average AOD observed during summer season AOD at 500nm ≍ 0.59+/-0.27 with an average angstrom exponent, α ≍0.86 while minimum during winter season AOD at 500nm ≍ 0.33+/-0.10 with angstrom exponent, α ≍1.18. The MODIS and MISR derived AOD was also compared with the ground measured values and are good to be in good agreement. Analysis of air mass back trajectories using HYSPLIT model reveal that the transportation of desert dust during summer months. The Optical Properties of Aerosols and clouds (OPAC) model was used to compute the aerosol optical properties like single scattering albedo (SSA), Angstrom coefficient (α) and Asymmetry(g) parameter for each day of measurement and they are incorporated in a Discrete Ordinate Radiative Transfer model, i.e Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) to estimate the direct short-wave (0.25 to 4 μm) Aerosol Radiative forcing at the Surface (SUR), the top-of-atmosphere (TOA) and Atmosphere (ATM). The maximum Aerosol Radiative Forcing (ARF) was observed during summer months at SUR ≍ -56.42 w/m2, at TOA ≍-21.62 w/m2 whereas in ATM ≍+34.79 w/m2 with corresponding to heating rate 1.24°C/day with in lower atmosphere.

  1. Quantification of regional radiative impacts and climate effects of tropical fire aerosols

    NASA Astrophysics Data System (ADS)

    Tosca, M. G.; Zender, C. S.; Randerson, J. T.

    2011-12-01

    Regionally expansive smoke clouds originating from deforestation fires in Indonesia can modify local precipitation patterns via direct aerosol scattering and absorption of solar radiation (Tosca et al., 2010). Here we quantify the regional climate impacts of fire aerosols for three tropical burning regions that together account for about 70% of global annual fire emissions. We use the Community Atmosphere Model, version 5 (CAM5) coupled to a slab ocean model (SOM) embedded within the Community Earth System Model (CESM). In addition to direct aerosol radiative effects, CAM5 also quantifies indirect, semi-direct and cloud microphysical aerosol effects. Climate impacts are determined using regionally adjusted emissions data that produce realistic aerosol optical depths in CAM5. We first analyzed a single 12-year transient simulation (1996-2007) forced with unadjusted emissions estimates from the Global Fire Emissions Database, version 3 (GFEDv3) and compared the resulting aerosol optical depths (AODs) for 4 different burning regions (equatorial Asia, southern Africa, South America and boreal North America) to observed MISR and MODIS AODs for the same period. Based on this analysis we adjusted emissions for each burning region between 150 and 300% and forced a second simulation with the regionally adjusted emissions. Improved AODs from this simulation are compared to AERONET observations available at 15 stations throughout the tropics. We present here two transient simulations--one with the adjusted fire emissions and one without fires--to quantify the cumulative fire aerosol climate impact for three major tropical burning regions (equatorial Asia, southern Africa and South America). Specifically, we quantify smoke effects on radiation, precipitation, and temperature. References Tosca, M.G., J.T. Randerson, C.S. Zender, M.G. Flanner and P.J. Rasch (2010), Do biomass burning aerosols intensify drought in equatorial Asia during El Nino?, Atmos. Chem. Phys., 10, 3515

  2. Application of the tracer-aerosol gradient interpretive technique to sulfur attribution for the big bend regional aerosol and visibility observational study.

    PubMed

    Green, Mark; Kuhns, Hampden; Pitchford, Marc; Dietz, Russell; Ashbaugh, Lowell; Watson, Tom

    2003-05-01

    A simple data analysis method called the Tracer-Aerosol Gradient Interpretive Technique (TAGIT) is used to attribute particulate S and SO2 at Big Bend National Park in Texas and nearby areas to local and regional sources. Particulate S at Big Bend is of concern because of its effects on atmospheric visibility. The analysis used particulate S, SO2, and perfluorocarbon tracer data from six 6-hr sampling sites in and near Big Bend National Park. The data were collected in support of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study; the field portion was conducted from July through October 1999. Perfluorocarbon tracer was released continuously from a tower at Eagle Pass, TX, approximately 25 km northeast of two large coal-fired power plants (Carbon I and II) in Coahuila, Mexico, and approximately 270 km east-southeast of Big Bend National Park. The perfluorocarbon tracer did not properly represent the location of the emissions from the Carbon power plants for individual 6-hr sampling periods and attributed only 3% of the particulate S and 27% of the SO2 at the 6-hr sites in and near Big Bend to sources represented by the tracer. An alternative approach using SO2 to tag "local" sources such as the Carbon plants attributed 10% of the particulate S and 75% of the SO2 at the 6-hr sites to local sources. Based on these two approaches, most of the regional (65-86%) and a small fraction (19-31%) of the local SO2 was converted to particulate S. The analysis implies that substantial reductions in particulate S at Big Bend National Park cannot be achieved by only reducing emissions from the Carbon power plants; reduction of emissions from many sources over a regional area would be necessary.

  3. Sources and composition of submicron organic mass in marine aerosol particles

    SciTech Connect

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group peak

  4. Sources and composition of submicron organic mass in marine aerosol particles

    DOE PAGES

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-27

    Recent studies have proposed a variety of interpretations of the sources and composition of atmospheric marine aerosol particles (aMA) based on a range of physical and chemical measurements collected during open-ocean research cruises. To investigate the processes that affect marine organic particles, this study uses the characteristic functional group composition (from Fourier transform infrared (FTIR) spectroscopy) of aMAP from five ocean regions to show that: (i) The organic functional group composition of aMAP that can be identified as atmospheric primary marine (ocean-derived) aerosol (aPMA) is 65±12% hydroxyl, 21±9% alkane, 6±6% amine, and 7±8% carboxylic acid functional groups. Contributions from photochemicalmore » reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal emissions mix in alkane and carboxylic acid groups from coastal pollution sources. (ii) The organic composition of aPMA is nearly identical to model generated primary marine aerosol particles (gPMA) from bubbled seawater (55% hydroxyl, 32% alkane, and 13% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied, the gPMA alkane group fraction increased with chlorophyll-a concentrations (r = 0.79). gPMA from productive seawater had a larger fraction of alkane functional groups (35%) compared to gPMA from non-productive seawater (16%), likely due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of monosaccharides and disaccharides, where the seawater OM hydroxyl group

  5. Source apportionment of aerosol iron in the marine environment using iron isotope analysis

    NASA Astrophysics Data System (ADS)

    Mead, Chris; Herckes, Pierre; Majestic, Brian J.; Anbar, Ariel D.

    2013-11-01

    (Fe) is a critical nutrient for phytoplankton. In the open ocean, this demand coupled with scarce supply often makes Fe the limiting factor in phytoplankton growth. The largest source, by mass, of Fe to the open ocean is windblown soil dust, but this Fe is much less soluble than Fe from other aerosol sources. Therefore, to fully understand how Fe reaches this ecosystem, it is necessary to understand the range of sources of aerosol Fe. To do this, we collected size-segregated aerosol samples from Bermuda and analyzed them to determine their Fe isotope composition. From this analysis, we found clear evidence in the fine size fraction (< 2.5 µm) of an important non-soil-dust Fe source. Our isotope analysis of multiple oil and coal fly ashes shows that those materials cannot explain our finding. We suggest biomass burning as the most likely source.

  6. Potential source identification for aerosol concentrations over a site in Northwestern India

    NASA Astrophysics Data System (ADS)

    Payra, Swagata; Kumar, Pramod; Verma, Sunita; Prakash, Divya; Soni, Manish

    2016-03-01

    The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 μm) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC < 2 μm). Particles smaller than 0.8 μm (at aerodynamic size) constitute ~ 99% of all particles in winter and ~ 90% of particles in summer season. However, particles greater than 2 μm contribute ~ 3% and ~ 0.2% in summer and winter seasons respectively. The aerosols optical thickness shows nearly similar AOT values during summer and winter but corresponding low Angstrom Exponent (AE) values during summer than winter, respectively. In this work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from Thar Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 μm is the key contributor in winter for higher ANC.

  7. Long-term variations in the South Asian monsoon annual cycle: the role of regional anthropogenic aerosol forcing

    NASA Astrophysics Data System (ADS)

    Bollasina, Massimo; Ming, Yi

    2013-04-01

    Detection and attribution of long-term variations of the South Asian monsoon is of extreme importance. Indeed, even small changes in the onset and duration of the monsoon season or in the spatial distribution of the seasonal mean precipitation may severely impact agriculture, health, water availability, ecosystems, and economy for a substantial fraction of the world's population. In the past decades emissions of aerosols have dramatically increased over South Asia due to rapid urbanization and population growth. As a result, the study of the impact of anthropogenic aerosols on the monsoon has recently emerged as one of the topics of highest priority in the scientific community. This study makes use of a state-of-the-art coupled climate model, the GFDL CM3, to investigate two aspects of the aerosol influence on the 20th-century changes in the monsoon. The model has fully-interactive aerosols and a representation of both direct and indirect effects. Aerosols are responsible for the advancement of the monsoon onset over India, leading, in agreement with observations, to enhanced precipitation in June over most parts of the subcontinent. Our experiments show that the earlier onset is preceded in early spring by a strong aerosol forcing over the Bay of Bengal and Indonesia and associated atmospheric circulation anomalies. The latter triggers thermodynamical changes over the northwestern part of the Subcontinent in May and June, including enhanced surface heating, which in turn drive the movement of the monsoon to the west. We also performed historical experiments with time-evolving radiative forcings aimed at isolating the contribution of regional versus remote anthropogenic aerosol emissions on the observed 20th century widespread drying of the Indian monsoon. Indian-only aerosol sources are found to play a predominant role in generating suppressed rainfall over the subcontinent, especially during early summer. Remote aerosols contribute, although in a minor way, to

  8. Sources of volcanic aerosols: Petrologic and volcanological constraints

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Haraldur

    1991-01-01

    Global climatic effects brought about by volcanism are related to the impact of volcanic gases and their derivative aerosols on the atmosphere, rather than the effects of volcanic ash. Evidence from both historic eruptions and polar ice cores indicate that volcanic sulfur gases are the dominant aerosol-forming component, resulting in produciton of a sulfuric acid-rich stratosphere aerosol that can have profound effects on the earth radiation budget over periods of a few years. Due to highly variable sulfur content of different magma types, the climatic effects do not relate simply to total erupted mass. There is a close relationship between volcanic sulfur yield to the atmospheric and hemispheric surface temperature decrease following an eruption, with up to 1 C surface temperature decrease indicated following a major volcanic event such as the 1815 Tambora eruption. While the erupted mass of HCl and HF is equal to or greater than that of sulfur gases in some volcanic events, the halogens do not form known aerosols nor are they abundant in ice core acidity layers. The early removal of halogens from eruption columns occurs by rain flushing and adsorption onto tephra particles, but the fate of halogens in the atmosphere following very large explosive eruptions is unknown. The CO2 flux to the atmosphere from volcanic eruptions is volumetrically one of the most important of the gas species, but owing to the huge size of the atmospheric reservoir of this gas, the volcanic contribution is likely to have negligible effects.

  9. Scattering and absorption properties of near-surface aerosol over Gangetic-Himalayan region: the role of boundary layer dynamics and long-range transport

    NASA Astrophysics Data System (ADS)

    Dumka, U. C.; Kaskaoutis, D. G.; Srivastava, M. K.; Devara, P. C. S.

    2014-08-01

    Knowledge of light scattering and absorption properties of atmospheric aerosols is of vital importance in evaluating their types, sources and radiative forcing. This is of particular interest over the Gangetic-Himalayan (GH) region due to large aerosol loading over the plains and the uplift over the Himalayan range causing serious effects on atmospheric heating, glaciology and monsoon circulation. In this respect, Ganges Valley Aerosol Experiment (GVAX) was initiated over the region aiming to examine the aerosol properties, source regions, uplift mechanisms and aerosol-cloud interactions. The present study examines the temporal (monthly, seasonal) evolution of scattering (σsp) and absorption (σap) coefficients, their wavelength dependence, and the role of the Indo-Gangetic plains (IGP), boundary-layer dynamics (BLD) and long-range transport (LRT) in the aerosol uplift over the Himalayas. The measurements are performed at the elevated site Nainital via the Atmospheric Radiation Measurement Mobile Facility including several instruments (Nephelometer, Particle Soot Absorption Photometer, etc.) during June 2011 to March 2012. The σsp and σap exhibit a pronounced seasonal variation with monsoon low and post-monsoon (November) high, while the scattering wavelength exponent exhibits higher values during monsoon, in contrast to the absorption Ångström exponent which maximizes in December-March. The analysis is performed separately for particles bellow 10 and 1μm in diameter in order to examine the influence of the particle size on optical properties. The elevated-background measuring site provides the advantage of examining the LRT of natural and anthropogenic aerosols from the IGP and southwest Asia and the role of BLD in the aerosol lifting processes, while the aerosols are found to be well-mixed and aged-type dominant.

  10. [Seasonal variations in the vertical distribution of aerosols during dry haze periods in regions around Shanghai].

    PubMed

    Xu, Ting-Ting; Qing, Yan; Geng, Fu-Hai; Chen, Yong-Hang; Zhang, Hua; Liu, Qiong; Ma, Xiao-Jun

    2012-07-01

    Based on the onboard lidar data from CALIPSO satellite of National Aeronautics and Space Administration (NASA) from January 2007 to November 2010, the vertical distribution of optical and micro-physical properties of aerosols around Shanghai during the haze periods when relative humidity less than 80% were revealed by analyzing the parameters of 532 nm total attenuated backscatter coefficient, volume depolarization ratio and total attenuated color ratio. The results showed that during dry haze periods, the scattering ability of lower troposphere (0-2 km) was the highest and the main constituents were regular aerosols. The scattering ability of the upper troposphere (8-10 km) was the lowest and the proportion of irregular aerosols was the highest among the five altitude layers. In addition, the scattering ability of the altitude range (2-8 km) was lower than that of the lower troposphere, and the scattering ability and irregularity of aerosols at different altitude levels within the range were close to each other. Fine particle aerosols were the dominant aerosols in altitude range of 0-10 km. To be noted, the proportion of fine particles decreased with increasing altitude within the altitude range of 2-8 km. The proportion of large and irregular aerosols were higher in spring, whereas the proportion of fine and regular aerosols were higher in summer. According to the analysis of a dry haze episode on May 7th, 2007, it was found that a mass of aerosols mainly distributed within the altitude range of 0-1.5 km and partially within the altitude range of 4.0-5.5 km. The HYSPLIT model was applied to analyze the sources of aerosols in the episode, and the results indicated that the dry haze was mainly caused not only by local emissions but also by the dust aerosols transported from Mongolia, the northwest and north of China by the airflow.

  11. Spatially and Temporally Refined Sources of Black Carbon Aerosols in the Arctic in spring

    NASA Astrophysics Data System (ADS)

    Qi, L.; Li, Q.; Mao, Y.; Chen, Y.; Randerson, J. T.; Wang, Q.; Hao, W. M.

    2014-12-01

    Black carbon (BC) aerosols play a substantial role in the rapid warming of the Arctic. We systematically evaluate the simulation of BC vertical profile (ARCTAS and ARCPAC flights), surface concentrations and concentrations in snow (Doherty et al., 2010) in the Arctic in spring using a global chemical transport model GEOS-Chem. We also provide highly spatially (2° lat ×2.5° lon) and temporally resolved source estimates of surface BC concentrations using GEOS-Chem adjoint. Results showed that the vertical profiles of BC agree with the aircraft observations from surface to 10 km within 50%. The monthly mean regional averaged BC concentrations in snow in Alaska, Arctic Ocean, Canada, Greenland and Russia agree with the observations within 40%, while the mean BC concentrations in snow in Svalbard and Norway agree with the observations within a factor of 3 because of inaccurate simulation of snow precipitation in GEOS5. We found Asian anthropogenic sources contributed 20-50% of BC concentrations through troposphere and in snow in the Arctic and are the major contributors in most regions. Adjoint analysis showed that BC concentrations of about 10 ng/m3 (30-100% of the total Asian contribution) observed at the surface stations are attributed to emissions emitted by Asian anthropogenic sources 30 days before the observation, and these background BC aerosols were transported to the station by circum-polar-vortex. Previous source estimates that repeated identified Europe as the major contributor of BC in the Arctic only trace back for 5 to 10 days and do not capture the background contribution from Asia. Russian biomass burning is important in mid-troposphere and accounts for 60% of total BC at 4-5 km. The relative contribution from different sources estimated by the adjoint of GEOS-Chem agrees with the forward estimate within 10%. Moreover, the adjoint analysis enables us to pinpoint the major sources to grid box level. Results showed that for surface observations

  12. Aerosol and Trace Gas Sources in Northern China: Changes in Concentrations Before and After the Official "Heating Season" Help Characterize Emissions From Coal-Fired Boilers

    NASA Astrophysics Data System (ADS)

    Li, C.; Marufu, L. T.; Dickerson, R. R.; Li, Z.; Stehr, J. W.; Chen, H.; Wang, P.

    2006-05-01

    In March 2005, as a part of the project EAST-AIRE (East Asian Study of Tropospheric Aerosols: An International Regional Experiment), in-situ measurements of trace gases and aerosol optical properties were made at Xianghe, a rural surface site about 70 km east-southeast, generally downwind, of Beijing metropolitan area. CO, SO2, NO/NOy, O3, aerosol absorption coefficient, and aerosol scattering coefficients were determined simultaneously using the University of Maryland light aircraft instrument package. Pollutant ratios have been calculated to characterize the emission sources around the site. A dramatic drop in the NOy/CO ratio found around March 13/14 suggesting a sudden shutoff of a large fraction of the high- temperature combustion sources in the region. This observed change in concentrations occurred simultaneously with the transition from "heating season" to "non-heating season" in Northern China. Over the course of just a few days (around March 15), all boilers used to provide heat for cities and towns in this region are shut down in accordance with a governmental guideline. Most of these boilers operate with coal, and by using ratios of NOy/CO, SO2/CO, aerosol scattering/CO, and aerosol absorption/CO during and after the "heating season", emissions from these small to medium sized coal-fired boilers can be characterized. Results indicate that these residential and small-scale industrial heaters are a major source of NOy and SO2. Besides elevating the regional atmospheric pollutant level, the trace gases and aerosols emitted also have potential effects in other aspects such as the biogeochemical cycle of N and the agricultural production in this region.

  13. Seasonal pattern of source and transport processes of natural and anthropic surfactants in coastal aerosol (Tuscany coast - Italy).

    NASA Astrophysics Data System (ADS)

    Becagli, Silvia; Ghedini, Costanza; Peeters, Stephane; Rottiers, Andre; Traversi, Rita; Udisti, Roberto; Jalba, Adriana; Dayan, Uri; Temara, Ali

    2010-05-01

    the fine and the coarse aerosol fractions indicated different sources and transport processes. MBAS concentrations show a clear maximum during the winter months in the fine fraction (PM 2.5) and summer maxima in the coarse (PM 10-2.5) fraction, and considering the prevailing different synoptic conditions in the different seasons, we suppose that MBAS have different dominant sources in the two seasons: in winter, MBAS likely originated from polluted continental areas, in the summer MBAS probably reflected the production of biogenic surfactants in the water mass during algal blooms or increased activity in the sea grass meadow. Low but detectable LAS concentrations could be measured mainly in the coarse fraction of the collected coastal aerosols. The data indicate a primary source of LAS, probably originating from the sea surface microlayer in coastal regions receiving untreated waste water discharge. Then, MBAS signal was not an appropriate surrogate measurement of LAS in aerosols. MBAS and LAS can have a primary marine source, but MBAS can be considered a marker of biogenic activity while LAS can be used as a marker of anthropogenic activity in areas receiving waste water discharges.

  14. Concentrations and sources of organic carbon aerosols in the free troposphere over North America

    NASA Astrophysics Data System (ADS)

    Heald, Colette L.; Jacob, Daniel J.; Turquety, SolèNe; Hudman, Rynda C.; Weber, Rodney J.; Sullivan, Amy P.; Peltier, Richard E.; Atlas, Eliot L.; de Gouw, Joost A.; Warneke, Carsten; Holloway, John S.; Neuman, J. Andrew; Flocke, Frank M.; Seinfeld, John H.

    2006-12-01

    Aircraft measurements of water-soluble organic carbon (WSOC) aerosol over NE North America during summer 2004 (ITCT-2K4) are simulated with a global chemical transport model (GEOS-Chem) to test our understanding of the sources of organic carbon (OC) aerosol in the free troposphere (FT). Elevated concentrations were observed in plumes from boreal fires in Alaska and Canada. WSOC aerosol concentrations outside of these plumes average 0.9 ± 0.9 μg C m-3 in the FT (2-6 km). The corresponding model value is 0.7 ± 0.6 μg C m-3, including 42% from biomass burning, 36% from biogenic secondary organic aerosol (SOA), and 22% from anthropogenic emissions. Previous OC aerosol observations over the NW Pacific in spring 2001 (ACE-Asia) averaged 3.3 ± 2.8 μg C m-3 in the FT, compared to a model value of 0.3 ± 0.3 μg C m-3. WSOC aerosol concentrations in the boundary layer (BL) during ITCT-2K4 are consistent with OC aerosol observed at the IMPROVE surface network. The model is low in the boundary layer by 30%, which we attribute to secondary formation at a rate comparable to primary anthropogenic emission. Observed WSOC aerosol concentrations decrease by a factor of 2 from the BL to the FT, as compared to a factor of 10 decrease for sulfate, indicating that most of the WSOC aerosol in the FT originates in situ. Despite reproducing mean observed WSOC concentrations in the FT to within 25%, the model cannot account for the variance in the observations (R = 0.21). Covariance analysis of FT WSOC aerosol with other measured chemical variables suggests an aqueous-phase mechanism for SOA generation involving biogenic precursors.

  15. Characterization of Asian Dust Properties Near Source Region During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, N. Christina; King, Michael D.; Kaufman, Yoram J.; Herman, Jay R.

    2004-01-01

    Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia campaign, we have acquired ground- based (temporal) and satellite (spatial) measurements to infer aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over this region. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. In this paper, we will demonstrate new capability of the Deep Blue algorithm to track the evolution of the Asian dust storm from sources to sinks. Although there are large areas often covered by clouds in the dust season in East Asia, this algorithm is able to distinguish heavy dust from clouds over the entire regions. Examination of the retrieved daily maps of dust plumes over East Asia clearly identifies the sources contributing to the dust loading in the atmosphe. We have compared the satellite retrieved aerosol optical thickness to the ground-based measurements and obtained a reasonable agreement between these two. Our results also indicate that there is a large difference in the retrieved value of spectral single scattering albedo of windblown dust between different

  16. Probing the impact of different aerosol sources on cloud microphysics and precipitation through in-situ measurements of chemical mixing state

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Suski, K.; Cazorla, A.; Cahill, J. F.; Creamean, J.; Collins, D. B.; Heymsfield, A.; Roberts, G. C.; DeMott, P. J.; Sullivan, R. C.; Rosenfeld, D.; Comstock, J. M.; Tomlinson, J. M.

    2011-12-01

    Aerosol particles play a crucial role in affecting cloud processes by serving as cloud nuclei. However, our understanding of which particles actually form cloud and ice nuclei limits our ability to treat aerosols properly in climate models. In recent years, it has become possible to measure the chemical composition of individual cloud nuclei within the clouds using on-line mass spectrometry. In-situ high time resolution chemistry can now be compared with cloud physics measurements to directly probe the impact of aerosol chemistry on cloud microphysics. This presentation will describe results from two recent field campaigns, CalWater in northern California and ICE-T in the western Caribbean region. Ground-based and aircraft measurements will be presented of aerosol mixing state, cloud microphysics, and meteorology. Results from single particle mass spectrometry will show the sources of the cloud seeds, including dust, biomass burning, sea spray, and biological particles. Details will be provided on how we are now able to probe the sources and cycling of atmospheric aerosols by measuring individual aerosols, cloud nuclei, and precipitation chemistry. The important role of dust, both Asian and African, and bioparticles in forming ice nuclei will be discussed. Finally, a summary will be provided discussing how these new in-situ measurements are being used to advance our understanding of complex atmospheric processes, and improve our understanding of aerosol impacts on climate.

  17. Collaborative research. Study of aerosol sources and processing at the GVAX Pantnagar Supersite

    SciTech Connect

    Worsnop, Doug; Volkamer, Rainer

    2012-08-13

    The Two Column Aerosol Project (TCAP) investigated uncertainties in the aerosol direct effect in the northern hemisphere mid-latitudes. The University of Colorado 2D-MAX-DOAS and LED-CE-DOAS instruments were collocated with DOE’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) during the TCAP-1 campaign at Cape Cod, MA (1 July to 13 August 2012). We have performed atmospheric radiation closure studies to evaluate the use of a novel parameter, i.e., the Raman Scattering Probability (RSP). We have performed first measurements of RSP almucantar scans, and measure RSP in spectra of scattered solar photons at 350nm and 430nm. Radiative Transfer Modelling of RSP demonstrate that the RSP measurement is maximally sensitive to infer even extremely low aerosol optical depth (AOD < 0.01) reliably by DOAS at low solar relative azimuth angles. We further assess the role of elevated aerosol layers on near surface observations of oxygen collision complexes, O 2-O2. Elevated aerosol layers modify the near surface absorption of O2-O2 and RSP. The combination of RSP and O2-O2 holds largely unexplored potential to better constrain elevated aerosol layers and measure column aerosol optical properties such as aerosol effective radius, extinction, aerosol phase functions and refractive indices. The TCAP deployment also provides a time series of reactive trace gas vertical profiles, i.e., nitrogen dioxide (NO2) and glyoxal (C2H2O2), which are measured simultaneously with the aerosol optical properties by DOAS. NO2 is an important precursor for ozone (O3) that modifies oxidative capacity. Glyoxal modifies oxidative capacity and is a source for brown carbon by forming secondary organic aerosol (SOA) via multiphase reactions in aerosol and cloud water. We have performed field measurements of these gases

  18. Sources and characteristics of sub-micron aerosols in the San Joaquin Valley, CA

    NASA Astrophysics Data System (ADS)

    Bahreini, R.; Middlebrook, A. M.; Brioude, J.; Brock, C. A.; de Gouw, J. A.; Hall, K.; Holloway, J. S.; Neuman, J.; Nowak, J. B.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.; Parrish, D. D.

    2010-12-01

    The NOAA WP-3D aircraft performed several flights in the San Joaquin Valley (SJV), California during the CalNex-2010 (California Research at the Nexus of Air Quality and Climate Change) field project in May-June 2010. SJV is generally a rural valley, with a high concentration of feedlots and agricultural sites as well as urbanized centers such as Fresno and Bakersfield. Preliminary results on size-resolved chemical composition of sub-micron aerosols measured using a compact time-of-flight aerosol mass spectrometer, measurements of trace gases affecting secondary production of aerosols, and FLEXPART back trajectory analyses are presented in order to identify sources of aerosols transported to or produced in the valley. Observed enhancements in various trace gases and aerosol species indicate a mixed influence from urban, industrial, and animal feedlots in the SJV. Three distinct observations suggest a complex transport pattern of pollutants with different origins to and within the valley: 1) CO and NOx mixing ratios were prominent downwind of the urban areas in the valley; 2) SO2, aerosol organics and sulfate were higher closer to the foothills of the Sierra Nevada Mountains on the east of the valley; 3) high concentration of aerosol phase ammonium and nitrate were observed in NH3-rich air masses, directly downwind of the feedlots in the central part of the valley. Aerosol enhancements in each of these air mass categories relative to the background determine the relative contribution and significance of different sources to aerosol loadings in the valley. Differences in VOC measurements and meteorology will be explored to investigate the observed variation in characteristics of organics on different days.

  19. Satellite and in-situ derived aerosol optical properties over the TCAP campaign region

    NASA Astrophysics Data System (ADS)

    Chand, D.; Berg, L. K.; Ferrare, R. A.; Barnard, J.; Berkowitz, C. M.; Chapman, E.; Comstock, J. M.; Fast, J. D.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Kassianov, E.; Kluzek, C. D.; Pekour, M. S.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.

    2012-12-01

    The direct radiative effect of natural and anthropogenic aerosol is one of the largest uncertainties in the prediction of climate change at regional and global scales. The uncertainties in atmospheric radiative forcing are in part a result of limited knowledge of aerosol optical properties. In this presentation we discuss in-situ and satellite derived aerosol optical properties obtained within the Two-Column Aerosol Project (TCAP) campaign region, and explore their links with aerosol chemical and physical properties. The TCAP field campaign is designed to provide observations of the size distribution, chemical properties, and optical properties of aerosol within and between two atmospheric columns along the eastern seaboard of the United States. These columns are separated by 200-300 km and were sampled in July 2012 during a summer intensive operation period (IOP) using the U.S. Department of Energy's Gulfstream-1 (G-1) and NASA's B200 aircraft and the surface-based DOE Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) located at Cape Cod. In contrast to the aircraft IOP, the AMF will be operated continuously until the summer of 2013.The surface observations will test the veracity of cloud and radiative transfer models over a wider range of conditions than can be observed via the short-term aircraft IOPs. In this presentation we will examine the spectral dependence of the aerosol optical properties with a focus on in-situ as well as remote sensing observations during the summer (July) over the TCAP region. We will also use multiple years of observations from MODIS, CALIPSO, and OMI satellite sensors and develop the climatology of aerosol optical depth (AOD), single scattering albedo (SSA) and aerosol layer altitudes to put the TCAP observations into a larger perspective. In addition, in-situ observations of light scattering and absorption coefficients made using the G-1, and AOD and aerosol features derived from the NASA High Spectral Resolution Lidar

  20. Rapid Detection and Identification of Biogenic Aerosol Releases and Sources

    NASA Astrophysics Data System (ADS)

    Wagner, J.; Macher, J.; Ghosal, S.; Ahmed, K.; Hemati, K.; Wall, S.; Kumagai, K.

    2011-12-01

    Biogenic aerosols can be important contributors to aerosol chemistry, cloud droplet and ice nucleation, absorption and scattering of radiation, human health and comfort, and plant, animal, and microbial ecology. Many types of bioaerosols, e.g., fungal spores, are released into the atmosphere in response to specific climatological and meteorological conditions. The rapid identification of bioaerosol releases is thus important for better characterization of the above phenomena, as well as enabling public officials to respond quickly and appropriately to releases of infectious agents or biological toxins. One approach to rapid and accurate bioaerosol detection is to employ sequential, automated samples that can be fed directly into an image acquisition and data analysis device. Raman spectroscopy-based identification of bioaerosols, automated analysis of microscopy images, and automated detection of near-monodisperse peaks in aerosol size-distribution data were investigated as complementary approaches to traditional, manual methods for the identification and counting of fungal and actinomycete spores. Manual light microscopy is a widely used analytical technique that is compatible with a number of air sample formats and requires minimal sample preparation. However, a major drawback is its dependence on a human analyst's ability to distinguish particles and accurately count, size, and identify them. Therefore, automated methods, such as those evaluated in this study, have the potential to provide cost-effective and rapid alternatives if demonstrated to be accurate and reliable. An exploratory examination of individual spores for several macro- and microfungi (those with and without large fruiting bodies) by Raman microspectroscopy found unique spectral features that were used to identify fungi to the genus level. Automated analyses of digital spore images accurately recognized and counted single fungal spores and clusters. An automated procedure to discriminate near

  1. MODELING PHOTOCHEMISTRY AND AEROSOL FORMATION IN POINT SOURCE PLUMES WITH THE CMAQ PLUME-IN-GRID

    EPA Science Inventory

    Emissions of nitrogen oxides and sulfur oxides from the tall stacks of major point sources are important precursors of a variety of photochemical oxidants and secondary aerosol species. Plumes released from point sources exhibit rather limited dimensions and their growth is gradu...

  2. Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Ng, J. Y.; Kodros, J. K.; Atwood, S. A.; Wheeler, M. J.; Macdonald, A. M.; Leaitch, W. R.; Pierce, J. R.

    2015-09-01

    Remote and free tropospheric aerosols represent a large fraction of the climatic influence of aerosols; however, aerosol in these regions is less characterized than those polluted boundary layers. We evaluate aerosol size distributions predicted by the GEOS-Chem-TOMAS global chemical transport model with online aerosol microphysics using measurements from the peak of Whistler Mountain, BC, Canada (2182 m a.s.l.). We evaluate the model for predictions of aerosol number, size and composition during periods of free tropospheric (FT) and boundary-layer (BL) influence at "coarse" 4° × 5° and "nested" 0.5° × 0.667° resolutions by developing simple FT/BL filtering techniques. We find that using temperature as a proxy for upslope flow (BL influence) improved the model measurement comparisons. The best threshold temperature was around 2 °C for the coarse simulations and around 6 °C for the nested simulations, with temperatures warmer than the threshold indicating boundary-layer air. Additionally, the site was increasingly likely to be in-cloud when the measured RH was above 90 %, so we do not compare the modeled and measured size distributions during these periods. With the inclusion of these temperature and RH filtering techniques, the model-measurement comparisons improved significantly. The slope of the regression for N80 (the total number of particles with particle diameter, Dp > 80 nm) in the nested simulations increased from 0.09 to 0.65, R2 increased from 0.04 to 0.46, and log-mean bias improved from 0.95 to 0.07. We also perform simulations at the nested resolution without Asian anthropogenic (AA) emissions and without biomass-burning (BB) emissions to quantify the contribution of these sources to aerosols at Whistler Peak (through comparison with simulations with these emissions on). The long-range transport of AA aerosol was found to be significant throughout all particle number concentrations, and increased the number of particles larger than 80 nm (N80

  3. Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations

    NASA Astrophysics Data System (ADS)

    D'Andrea, S. D.; Ng, J. Y.; Kodros, J. K.; Atwood, S. A.; Wheeler, M. J.; Macdonald, A. M.; Leaitch, W. R.; Pierce, J. R.

    2016-01-01

    Remote and free-tropospheric aerosols represent a large fraction of the climatic influence of aerosols; however, aerosol in these regions is less characterized than those polluted boundary layers. We evaluate aerosol size distributions predicted by the GEOS-Chem-TOMAS global chemical transport model with online aerosol microphysics using measurements from the peak of Whistler Mountain, British Columbia, Canada (2182 m a.s.l., hereafter referred to as Whistler Peak). We evaluate the model for predictions of aerosol number, size, and composition during periods of free-tropospheric (FT) and boundary-layer (BL) influence at "coarse" 4° × 5° and "nested" 0.5° × 0.667° resolutions by developing simple FT/BL filtering techniques. We find that using temperature as a proxy for upslope flow (BL influence) improved the model-measurement comparisons. The best threshold temperature was around 2 °C for the coarse simulations and around 6 °C for the nested simulations, with temperatures warmer than the threshold indicating boundary-layer air. Additionally, the site was increasingly likely to be in cloud when the measured relative humidity (RH) was above 90 %, so we do not compare the modeled and measured size distributions during these periods. With the inclusion of these temperature and RH filtering techniques, the model-measurement comparisons improved significantly. The slope of the regression for N80 (the total number of particles with particle diameter, Dp, > 80 nm) in the nested simulations increased from 0.09 to 0.65, R2 increased from 0.04 to 0.46, and log-mean bias improved from 0.95 to 0.07. We also perform simulations at the nested resolution without Asian anthropogenic emissions and without biomass-burning emissions to quantify the contribution of these sources to aerosols at Whistler Peak (through comparison with simulations with these emissions on). The long-range transport of Asian anthropogenic aerosol was found to be significant throughout all particle

  4. Aerosol and Cloud Microphysical Properties in the Asir region of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Axisa, Duncan; Kucera, Paul; Burger, Roelof; Li, Runjun; Collins, Don; Freney, Evelyn; Posada, Rafael; Buseck, Peter

    2010-05-01

    In recent advertent and inadvertent weather modification studies, a considerable effort has been made to understand the impact of varying aerosol properties and concentration on cloud properties. Significant uncertainties exist with aerosol-cloud interactions for which complex microphysical processes link the aerosol and cloud properties. Under almost all environmental conditions, increased aerosol concentrations within polluted air masses will enhance cloud droplet concentration relative to that in unperturbed regions. The interaction between dust particles and clouds are significant, yet the conditions in which dust particles become cloud condensation nuclei (CCN) are uncertain. In order to quantify this aerosol effect on clouds and precipitation, a field campaign was launched in the Asir region of Saudi Arabia as part of a Precipitation Enhancement Feasibility Study. Ground measurements of aerosol size distributions, hygroscopic growth factor, CCN concentrations as well as aircraft measurements of cloud hydrometeor size distributions were done in the Asir region of Saudi Arabia in August 2009. Research aircraft operations focused primarily on conducting measurements in clouds that are targeted for cloud top-seeding, on their microphysical characterization, especially the preconditions necessary for precipitation; understanding the evolution of droplet coalescence, supercooled liquid water, cloud ice and precipitation hydrometeors is necessary if advances are to be made in the study of cloud modification by cloud seeding. Non-precipitating mixed-phase clouds less than 3km in diameter that developed on top of the stable inversion were characterized by flying at the convective cloud top just above the inversion. Aerosol measurements were also done during the climb to cloud base height. The presentation will include a summary of the analysis and results with a focus on the unique features of the Asir region in producing convective clouds, characterization of the

  5. Organic Composition of Size-Segregated Aerosols Sampled During the 2002 Bay Regional Atmospheric Chemistry Experiment (BRACE), Florida, USA

    NASA Astrophysics Data System (ADS)

    Tremblay, R. T.; Zika, R. G.

    2003-04-01

    Aerosol samples were collected for the analysis of organic source markers using non-rotating Micro Orifice Uniform Deposit Impactors (MOUDI) as part of the Bay Regional Atmospheric Chemistry Experiment (BRACE) in Tampa, FL, USA. Daily samples were collected 12 m above ground at a flow rate of 30 lpm throughout the month of May 2002. Aluminum foil discs were used to sample aerosol size fractions with aerodynamic cut diameter of 18, 10, 5.6, 3.2, 1.8, 1.0, 0.56, 0.32, 0.17 and 0.093 um. Samples were solvent extracted using a mixture of dichloromethane/acetone/hexane, concentrated and then analyzed using gas chromatography-mass spectrometry (GC/MS). Low detection limits were achieved using a HP Programmable Temperature Vaporizing inlet (PTV) and large volume injections (80ul). Excellent chromatographic resolution was obtained using a 60 m long RTX-5MS, 0.25 mm I.D. column. A quantification method was built for over 90 organic compounds chosen as source markers including straight/iso/anteiso alkanes and polycyclic aromatic hydrocarbons (PAH). The investigation of potential aerosol sources for different particle sizes using known organic markers and source profiles will be presented. Size distributions of carbon preference indices (CPI), percent wax n-alkanes (%WNA) and concentration of selected compounds will be discussed. Also, results will be compared with samples acquired in different environments including the 1999 Atlanta SuperSite Experiment, GA, USA.

  6. Source regions of stratospheric VSLS in the Indian Ocean

    NASA Astrophysics Data System (ADS)

    Quack, Birgit; Hepach, Helmke; Atlas, Elliot; Bracher, Astrid; Endres, Sonja; Arevalo-Martinez, Damian; Bange, Hermann; Lennartz, Sinikka; Steinhoff, Tobias; Booge, Dennis; Zarvasky, Alexander; Marandino, Christa; Patey, Matt; Achterberg, Eric; Dengler, Markus; Fiehn, Alina; Tegtmeier, Susann; Krüger, Kirstin

    2016-04-01

    Halogenated very-short-lived substances (VSLS), which are naturally produced in the ocean, play a significant role in present day ozone depletion, in particular in combination with enhanced stratospheric sulfate aerosol, which is also partly derived from oceanic VSLS. The decline of anthropogenic chlorine in the stratosphere within the 21st century will increase the relative importance of the natural emissions on stratospheric ozone destruction. Especially, oceanic sources and source regions of the compounds need to be better constrained, in order to improve the future prediction. During boreal summer the Asian monsoon circulation transports air masses from the Indian Ocean to the stratosphere, while the contribution of VSLS from this ocean to stratospheric halogen and sulfur is unknown. During the research cruises SO 234/2 and SO 235 in July-August 2014 onboard RV SONNE oceanic and atmospheric halogenated VSLS such as bromoform (CHBr3), dibromomethane (CH2Br2) and methyl iodide (CH3I) were measured in the subtropical and tropical West Indian Ocean for the first time. Here we present the oceanic sources of the halogenated compounds and their relation to other biogeochemical parameters (short- and longlived trace gases, phytoplankton and nutrients) along the cruise track, which covered coastal, upwelling and open ocean regimes and the Seychelles-Chagos thermocline ridge as important source region for stratospheric bromine.

  7. A study of regional-scale aerosol assimilation using a Stretch-NICAM

    NASA Astrophysics Data System (ADS)

    Misawa, S.; Dai, T.; Schutgens, N.; Nakajima, T.

    2013-12-01

    Although aerosol is considered to be harmful to human health and it became a social issue, aerosol models and emission inventories include large uncertainties. In recent studies, data assimilation is applied to aerosol simulation to get more accurate aerosol field and emission inventory. Most of these studies, however, are carried out only on global scale, and there are only a few researches about regional scale aerosol assimilation. In this study, we have created and verified an aerosol assimilation system on regional scale, in hopes to reduce an error associated with the aerosol emission inventory. Our aerosol assimilation system has been developed using an atmospheric climate model, NICAM (Non-hydrostaric ICosahedral Atmospheric Model; Satoh et al., 2008) with a stretch grid system and coupled with an aerosol transport model, SPRINTARS (Takemura et al., 2000). Also, this assimilation system is based on local ensemble transform Kalman filter (LETKF). To validate this system, we used a simulated observational data by adding some artificial errors to the surface aerosol fields constructed by Stretch-NICAM-SPRINTARS. We also included a small perturbation in original emission inventory. This assimilation with modified observational data and emission inventory was performed in Kanto-plane region around Tokyo, Japan, and the result indicates the system reducing a relative error of aerosol concentration by 20%. Furthermore, we examined a sensitivity of the aerosol assimilation system by varying the number of total ensemble (5, 10 and 15 ensembles) and local patch (domain) size (radius of 50km, 100km and 200km), both of which are the tuning parameters in LETKF. The result of the assimilation with different ensemble number 5, 10 and 15 shows that the larger the number of ensemble is, the smaller the relative error become. This is consistent with ensemble Kalman filter theory and imply that this assimilation system works properly. Also we found that assimilation system

  8. Aerosol optical properties and types over the tropical urban region of Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Kharol, Shailesh Kumar; Kaskaoutis, D. G.; Rani Sharma, Anu; Kvs, Badarinath; Kambezidis, H. D.

    India is densely populated, industrialized and in the recent years has witnessed an impressive economic development. Aerosols over and around India not only affect the Indian monsoon but also the global climate. The growing population coupled with revolution in industry has resulted in higher demands for energy and transport. With more and more urbanization the usage pattern of fossil and bio-fuels are leading to changes in aerosol properties, which may cause changes in precipitation and can decelerate the hydrological cycle. Over urban areas of India aerosol emissions from fossil fuels such as coal, petrol and diesel oil dominate. Further-more, the Indian subcontinent exhibits different land characteristics ranging from vegetated areas and forests to semiarid and arid environments and tall mountains. India experiences large seasonal climatic variations, which result in extreme temperatures, rainfall and relative humidity. These meteorological and climatic features introduce large variabilities in aerosol op-tical and physico-chemical characteristics at spatial and temporal scales. In the present study, seasonal variations in aerosol properties and types were analysed over tropical urban region of Hyderabad, India during October 2007-September 2008 using MICROTOPS II sun photometer measurements. Higher aerosol optical depth (AOD) values are observed in premonsoon, while the variability of the ˚ngstrüm exponent (α) seems to be more pronounced with higher values A in winter and premonsoon and lower in the monsoon periods. The AOD at 500 nm (AOD500 ) is very large over Hyderabad, varying from 0.46±0.17 in postmonsoon to 0.65±0.22 in premon-soon periods. A discrimination of the different aerosol types over Hyderabad is also attempted using values of AOD500 and α380-870. Such discrimination is rather difficult to interpret since a single aerosol type can partly be identified only under specific conditions (e.g. anthropogenic emissions, biomass burning or dust

  9. Lignin-derived phenols in Houston aerosols: implications for natural background sources.

    PubMed

    Shakya, Kabindra M; Louchouarn, Patrick; Griffin, Robert J

    2011-10-01

    Solvent-extractable monomeric methoxyphenols in aerosol samples conventionally have been used to indicate the influence of biomass combustion. In addition, the presence of lignin oxidation products (LOP), derived from the CuO oxidation of vascular plant organic matter, can help trace the source and inputs of primary biological particles in aerosols. Ambient aerosols (coarse and fine) collected in Houston during summer 2010 were analyzed by gas chromatography-mass spectrometry to characterize monomeric and polymeric sources of LOPs. This is the first time polymeric forms of the LOPs have been characterized in ambient aerosols. The absence or small concentrations of solvent-extractable monomeric LOPs and levoglucosan isomers point to the limited influence of biomass burning during the sampling period. The trace levels of anhydrosugar concentrations most likely result from long-range transport. This observation is supported by the absence of co-occurring lignin monomers that undergo photochemical degradation during transport. The larger concentration (142 ng m(-3)) of lignin polymers in coarse aerosols shows the relative importance of primary biological aerosol particles, even in the urban atmosphere. The LOP parameters suggest a predominant influence from woody tissue of angiosperms, with minor influence from soft tissues, gymnosperms, and soil organic matter.

  10. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    SciTech Connect

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-04-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2003 through February 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include chemical fractionation of the organic fraction to quantify the ratio of organic mass to organic carbon (OM/OC). The average OM/OC ratio for the 31 samples analyzed so far is 1.89, ranging between 1.62 and 2.53, which is consistent with expectations for an atmospherically processed regional aerosol. Analysis of the single particle data reveals that a on a particles in Pittsburgh consist of complex mixture of primary and secondary components. Approximately 79% of all particles measured with the instrument containing some form of carbon, with Carbonaceous Ammonium Nitrate (54.43%) being the dominant particle class. PMCAMx predictions were compared with data from more than 50 sites of the STN network located throughout the Eastern United States for the July 2001 period. OC and sulfate concentrations predicted by PMCAMx are within {+-}30% of the observed concentration at most of these sites. Spherical Aluminum Silicate particle concentrations (SAS) were used to estimate the contribution of primary coal emissions to fine particle levels at the central monitoring site. Primary emissions from coal combustion contribute on average 0.44 {+-} 0.3 {micro}g/m{sup 3} to PM{sub 2.5} at the site or 1.4 {+-} 1.3% of the total PM{sub 2.5} mass. Chemical mass balance analysis was performed to apportion the primary organic aerosol. About 70% of the primary OC emissions are from vehicular sources, with the gasoline contribution being on average three times greater than the diesel emissions in the summer.

  11. A closure study of aerosol optical properties at a regional background mountainous site in Eastern China.

    PubMed

    Yuan, Liang; Yin, Yan; Xiao, Hui; Yu, Xingna; Hao, Jian; Chen, Kui; Liu, Chao

    2016-04-15

    There is a large uncertainty in evaluating the radiative forcing from aerosol-radiation and aerosol-cloud interactions due to the limited knowledge on aerosol properties. In-situ measurements of aerosol physical and chemical properties were carried out in 2012 at Mt. Huang (the Yellow Mountain), a continental background mountainous site in eastern China. An aerosol optical closure study was performed to verify the model outputs by using the measured aerosol optical properties, in which a spherical Mie model with assumptions of external and core-shell mixtures on the basis of a two-component optical aerosol model and high size-segregated element carbon (EC) ratio was applied. Although the spherical Mie model would underestimate the real scattering with increasing particle diameters, excellent agreement between the calculated and measured values was achieved with correlation coefficients above 0.98. Sensitivity experiments showed that the EC ratio had a negligible effect on the calculated scattering coefficient, but largely influenced the calculated absorption coefficient. The high size-segregated EC ratio averaged over the study period in the closure was enough to reconstruct the aerosol absorption coefficient in the Mie model, indicating EC size resolution was more important than time resolution in retrieving the absorption coefficient in the model. The uncertainties of calculated scattering and absorption coefficients due to the uncertainties of measurements and model assumptions yielded by a Monte Carlo simulation were ±6% and ±14% for external mixture and ±9% and ±31% for core-shell mixture, respectively. This study provided an insight into the inherent relationship between aerosol optical properties and physicochemical characteristics in eastern China, which could supplement the database of aerosol optical properties for background sites in eastern China and provide a method for regions with similar climate.

  12. Heavy Ion Formation in Titan's Ionosphere: Magnetospheric Introduction of Free Oxygen and Source of Titan's Aerosols?

    NASA Technical Reports Server (NTRS)

    Sittler, E. C., Jr.; Hartle, R. E.; Cooper, J. F.; Johnson, R. E.; Coates, A.; dePater, imke; Strom, Daphne; Simoes, F.; Steele, A.; Robb, F.

    2007-01-01

    With the recent discovery of heavy ions, positive and negative, by the Cassini Plasma Spectrometer (CAPS) instrument in Titan's ionosphere, it reveals new possibilities for aerosol formation at Titan and the introduction of free oxygen to the aerosol chemistry from Saturn's magnetosphere with Enceladus as the primary oxygen source. One can estimate whether the heavy ions in the ionosphere are of sufficient number to account for all the aerosols, under what conditions are favorable for heavy ion formation and how they are introduced as seed particles deeper in Titan's atmosphere where the aerosols form and eventually find themselves on Titan's surface where unknown chemical processes can take place. Finally, what are the possibilities with regard to their chemistry on the surface with some free oxygen present in their seed particles?

  13. Source, significance, and control of indoor microbial aerosols: human health aspects.

    PubMed Central

    Spendlove, J C; Fannin, K F

    1983-01-01

    The usual profile of indoor microbial aerosols probably has little meaning to healthy people. However, hazardous microbial aerosols can penetrate buildings or be generated within them; in either case, they can have significant adverse effects on human health. These aerosols can be controlled to some extent by eliminating or reducing their sources. In this regard, careful consideration should be given in building construction to the design of ventilation and air-conditioning systems and to the flooring material, so that these systems and the flooring material will not act as microbial reservoirs. It is evident that in spite of the considerable body of data available on indoor microbial aerosols, little is known of their true significance to human health except in terms of overt epidemic disease. Continued research is needed in this area, particularly in respect to situations of high risk in such locations as hospitals and schools for young children. PMID:6867255

  14. A European aerosol phenomenology -4: Harmonized concentrations of carbonaceous aerosol at 10 regional background sites across Europe

    NASA Astrophysics Data System (ADS)

    Cavalli, F.; Alastuey, A.; Areskoug, H.; Ceburnis, D.; Čech, J.; Genberg, J.; Harrison, R. M.; Jaffrezo, J. L.; Kiss, G.; Laj, P.; Mihalopoulos, N.; Perez, N.; Quincey, P.; Schwarz, J.; Sellegri, K.; Spindler, G.; Swietlicki, E.; Theodosi, C.; Yttri, K. E.; Aas, W.; Putaud, J. P.

    2016-11-01

    Although particulate organic and elemental carbon (OC and EC) are important constituents of the suspended atmospheric particulate matter (PM), measurements of OC and EC are much less common and more uncertain than measurements of e.g. the ionic components of PM. In the framework of atmospheric research infrastructures supported by the European Union, actions have been undertaken to determine and mitigate sampling artefacts, and assess the comparability of OC and EC data obtained in a network of 10 atmospheric observatories across Europe. Positive sampling artefacts (from 0.4 to 2.8 μg C/m3) and analytical discrepancies (between -50% and +40% for the EC/TC ratio) have been taken into account to generate a robust data set, from which we established the phenomenology of carbonaceous aerosols at regional background sites in Europe. Across the network, TC and EC annual average concentrations range from 0.4 to 9 μg C/m3, and from 0.1 to 2 μg C/m3, respectively. TC/PM10 annual mean ratios range from 0.11 at a Mediterranean site to 0.34 at the most polluted continental site, and TC/PM2.5 ratios are slightly greater at all sites (0.15-0.42). EC/TC annual mean ratios range from 0.10 to 0.22, and do not depend much on PM concentration levels, especially in winter. Seasonal variations in PM and TC concentrations, and in TC/PM and EC/TC ratios, differ across the network, which can be explained by seasonal changes in PM source contributions at some sites.

  15. COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite

    SciTech Connect

    Worsnop, Douglas R.

    2014-07-28

    This project funded the participation of scientists from seven research groups, running more than thirty instruments, in the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign at a rural site in Detling, UK, 45 km southeast of central London. The primary science questions for the ClearfLo Winter IOP were, 1) what is the urban increment of particulate matter (PM) and other pollutants in the greater London area, and, 2) what is the contribution of solid fuel use for home heating to wintertime PM? An additional motivation for the Detling measurements was the question of whether coatings on black carbon particles enhance absorption. The following four key accomplishments have been identified so far: 1) Chemical, physical and optical characterization of PM from local and regional sources (Figures 2, 4, 5 and 6). 2) Measurement of urban increment in particulate matter and gases in London (Figure 3). 3) Measurement of optical properties and chemical composition of coatings on black carbon containing particles indicates absorption enhancement. 4) First deployment of chemical ionization instrument (MOVI-CI-TOFMS) to measure both particle-phase and gas-phase organic acids. (See final report from Joel Thornton, University of Washington, for details.) Analysis of the large dataset acquired in Detling is ongoing and will yield further key accomplishments. These measurements of urban and rural aerosol properties will contribute to improved modeling of regional aerosol emissions, and of atmospheric aging and removal. The measurement of absorption enhancement by coatings on black carbon will contribute to improved modeling of the direct radiative properties of PM.

  16. Sources of black carbon in aerosols: fossil fuel burning vs. biomass burning

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.

    2013-12-01

    The uncertainty in black carbon (BC) analysis and our inability to directly quantify the BC sources in the atmosphere has led to the uncertainty in compiling a regional or global BC emission inventory attributed to biomass burnings. We initiate this study to demonstrate a new approach, which quantifies the source of BC in the atmosphere between biomass and fossil fuel burnings. We applied the newly developed multi-element scanning thermal analysis (MESTA) technology to quantify BC and organic carbon (OC), respectively, in aerosol samples. MESTA can also separate BC from OC for subsequent radiocarbon analyses. Because fossil fuel has been depleted of radiocarbon and biomass has radiocarbon of the modern atmospheric level, we can quantify the sources of BC between fossil fuel and biomass burnings. We sampled the PM2.5 in the ambient air of central Tallahassee and its rural areas during the May-June (prescribed burning) and Nov-Dec (non-burning) periods. The results indicate that biomass burning contributed 89×1% and 67×2% of BC, respectively, during May-June and Nov.-Dec. periods. The rest of PM2.5 BC was contributed from fossil fuel burning. The radiocarbon contents of the OC was 103.42×0.55 percent modern carbon (pmC), which is consistent with the current atmospheric level with a trace of the bomb radiocarbon remained from the open atmosphere nuclear testing.

  17. Chemical composition of the atmospheric aerosol in the troposphere over the Hudson Bay lowlands and Quebec-Labrador regions of Canada

    SciTech Connect

    Gorzelska, K.; Talbot, R.W.; Lefer, B.; Klemm, K.; Klemm, O.; Gregory, G.L.; Anderson, B.; Barrie, L.A.

    1994-01-20

    Atmospheric aerosols were collected in the boundary layer and free troposphere over continental and coastal subarctic regions of Canada during the July-August 1990 joint US-Canadian Arctic Boundary Layer Expedition (ABLE) 3B/Northern Wetlands Study (NOWES). The samples were analyzed for the following water soluble species: sulfate, nitrate, ammonium, potassium, sodium, chloride, oxalate, methylsulfonate, and total amine nitrogen. Ammonium and sulfate were the major water soluble components of these aerosols. The nearly neutral (overall) chemical composition of summertime aerosol particles contrasts their strongly acidic wintertime composition. Aerosol samples were separated into several air mass categories and characterized in terms of chemical composition, associated mixing ratios of gaseous compounds, and meteorological parameters. The fundamental category represented particles associated with {open_quotes}background{close_quotes} air masses. The summertime atmospheric aerosols in background air over the North American subarctic and Arctic regions were characterized by relatively small and spatially uniform mixing ratios of the measured species. These aerosol particles were aged to the extent that they had lost their primary source signature. The chemical profile of the background air aerosols was frequently modified by additions from biomass fire plumes, aged tropical marine air, and intrusions of upper troposphere/lower stratospheric air. Aerosols in boundary layer background air over the boreal forested region of Quebec-Labrador had significantly larger mixing ratios of ammonium and sulfate relative to the Hudson Bay region. This may reflect infiltration of anthropogenic pollution or be due to natural emissions from this region. 71 refs., 5 figs., 5 tabs.

  18. Aerosol characteristics in the UTLS region: A satellite-based study over north India

    NASA Astrophysics Data System (ADS)

    Srivastava, A. K.; Misra, A.; Kanawade, Vijay P.; Devara, P. C. S.

    2016-01-01

    Vertical profiles of aerosol backscatter coefficient and depolarization ratio, obtained from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite, were studied in the upper troposphere and lower stratosphere (UTLS) region over North India (21-30° N and 72-90° E), covering the highly polluted Indo-Gangetic Plain (IGP) for one-year period from December 2011 to November 2012. An enhanced aerosol layer was observed between 15 and 18 km altitude, in the vicinity of tropopause, with a broad layer depth of about 2 km. The aerosol layer showed strong seasonal, monthly as well as day and night time variability, with a peak value of backscatter coefficient during monsoon season (˜5.54 × 10-3 sr-1 in September). The corresponding depolarization ratio indicates anisotropic (non-spherical) nature of particles. The aerosol layer was found to be highly linked with the variability in tropopause height, showing a positive correlation between tropopause height and the height of maximum backscatter coefficient (correlation coefficient of 0.8). However, it was found to be negatively correlated with the integrated backscatter coefficient (IBC), with a correlation coefficient of 0.3. We further analyzed outgoing long-wave radiation (OLR) data during the study period to investigate the link between the observed enhanced aerosol layer in the UTLS region and prevailing deep convective activities over the study region. Low values of OLR during monsoon (about 214 W m-2) indicate the occurrence of deep convection over this region, which may cause a large-scale circulation-driven vertical transport of boundary-layer pollution into the atmosphere of UTLS region. Results may have potential implications for better understanding and assessing the chemical and radiative impacts of these aerosols in the tropical UTLS region.

  19. Chemical composition, sources, and processes of urban aerosols during summertime in northwest China: insights from high-resolution aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-12-01

    similar to that of coal combustion aerosol and likely influenced by coal combustion activities in Lanzhou during summer. The sources of BC were estimated by a linear decomposition algorithm that uses the time series of the NR-PM1 components. Our results indicate that a main source of BC was local traffic (47%) and that transport of regionally processed air masses also contributed significantly to BC observed in Lanzhou. Finally, the concentration and source of polycyclic aromatic hydrocarbons (PAHs) were evaluated.

  20. Intra and inter-continental aerosol transport and local and regional impacts

    NASA Astrophysics Data System (ADS)

    Charles, Leona Ann Marie

    Under the Clean Air Act, the Environmental Protection Agency (EPA) is required to establish a nationally uniform air quality index for the reporting of air quality. In 1976, the EPA established this index, then called the Pollutant Standards Index, for use by state and local communities across the country. The Index provides information on pollutant concentrations for ground-level ozone, particulate matter, carbon monoxide, sulfur dioxide, and nitrogen dioxide. On July 18, 1997, the EPA revised the ozone and particulate matter standards, in light of a comprehensive review of new scientific evidence including refined fine particulate matter standards.* Any program which is designed to improve air quality must devise tools in which emissions, meteorology, air chemistry and transport are understood. Clearly, the complexity of this task requires measurements at both regional and mesoscale ranges, as well as on a continental scale to investigate long range transport. Unfortunately, determination of fine particulate matter (PM) concentrations is particularly difficult since an accurate measurement of PM2.5 relies on costly equipment which cannot provide the complete transport story and the mixing and dispersion of particulate matter is much more complex than that for trace gases. Besides the need for accurate measurements as a way of documenting air quality standards, the EPA is required in the near future to implement a 24 hour Air Quality Forecast. Current forecast tools are usually based on emission inventories and meteorological forecasts, but significant work is being done in trying to assimilate both ground measurements as well as satellite measurements into these schemes. Clearly, the 'Holy Grail' would be the capability of assimilating full 3D (+ time) measurements. However, since satellite measurements are primarily passive, only total air column properties such as aerosol optical depth can be retrieved. In particular, it is not possible to determine the

  1. Source term experiments project (STEP): aerosol characterization system

    SciTech Connect

    Schlenger, B.J.; Dunn, P.F.

    1985-01-01

    A series of four experiments is being conducted at Argonne National Laboratory's TREAT Reactor. They have been designed to provide some of the necessary data regarding magnitude and release rates of fission products from degraded fuel pins, physical and chemical characteristics of released fission products, and aerosol formation and transport phenomena. These are in-pile experiments, whereby the test fuel is heated by neutron induced fission and subsequent clad oxidation in steam environments that simulate as closely as practical predicted reactor accident conditions. The test sequences cover a range of pressure and fuel heatup rate, and include the effect of Ag/In/Cd control rod material.

  2. Formation of secondary organic aerosol in the Paris pollution plume and its impact on surrounding regions

    NASA Astrophysics Data System (ADS)

    Zhang, Q. J.; Beekmann, M.; Freney, E.; Sellegri, K.; Pichon, J. M.; Schwarzenboeck, A.; Colomb, A.; Bourrianne, T.; Michoud, V.; Borbon, A.

    2015-12-01

    Secondary pollutants such as ozone, secondary inorganic aerosol, and secondary organic aerosol formed in the plumes of megacities can affect regional air quality. In the framework of the FP7/EU MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) project, an intensive campaign was launched in the greater Paris region in July 2009. The major objective was to quantify different sources of organic aerosol (OA) within a megacity and in its plume. In this study, we use airborne measurements aboard the French ATR-42 aircraft to evaluate the regional chemistry-transport model CHIMERE within and downwind of the Paris region. Two mechanisms of secondary OA (SOA) formation are used, both including SOA formation from oxidation and chemical aging of primary semivolatile and intermediate volatility organic compounds (SI-SOA) in the volatility basis set (VBS) framework. As for SOA formed from traditional VOC (volatile organic compound) precursors (traditional SOA), one applies chemical aging in the VBS framework adopting different SOA yields for high- and low-NOx environments, while another applies a single-step oxidation scheme without chemical aging. Two emission inventories are used for discussion of emission uncertainties. The slopes of the airborne OA levels versus Ox (i.e., O3 + NO2) show SOA formation normalized with respect to photochemical activity and are used for specific evaluation of the OA scheme in the model. The simulated slopes were overestimated slightly by factors of 1.1, 1.7 and 1.3 with respect to those observed for the three airborne measurements, when the most realistic "high-NOx" yields for traditional SOA formation in the VBS scheme are used in the model. In addition, these slopes are relatively stable from one day to another, which suggests that they are characteristic for the given megacity plume environment. The configuration with increased primary

  3. Insights into Submicron Aerosol Composition and Sources from the WINTER Aircraft Campaign Over the Eastern US.

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Campuzano Jost, P.; Day, D. A.; Fibiger, D. L.; McDuffie, E. E.; Blake, N. J.; Hills, A. J.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    The WINTER aircraft campaign was a recent field experiment to probe the sources and evolution of gas pollutants and aerosols in Northeast US urban and industrial plumes during the winter. A highly customized Aerodyne aerosol mass spectrometer (AMS) was flown on the NCAR C-130 to characterize submicron aerosol composition and evolution. Thirteen research flights were conducted covering a wide range of conditions, including rural, urban, and marine environments during day and night. Organic aerosol (OA) was a large component of the submicron aerosol in the boundary layer. The fraction of OA (fOA) was smaller (35-40%) than in recent US summer campaigns (~60-70%). Biomass burning was observed to be an important source of OA in the boundary layer, which is consistent with recent wintertime studies that show a substantial contribution of residential wood burning to the OA loadings. OA oxygenation (O/C ratio) shows a broad distribution with a substantial fraction of smaller O/C ratios when compared to previous summertime campaigns. Since measurements were rarely made very close to primary sources (i.e. directly above urban areas), this is consistent with oxidative chemistry being slower during winter. SOA formation and aging in the NYC plume was observed during several flights and compared with summertime results from LA (CalNex) and Mexico City (MILAGRO). Additionally, an oxidation flow reactor (OFR) capable of oxidizing ambient air up to several equivalent days of oxidation was deployed for the first time in an aircraft platform. The aerosol outflow of the OFR was sampled with the AMS to provide real-time snapshots of the potential for aerosol formation and aging. For example, a case study of a flight through the Ohio River valley showed evidence of oxidation of SO2 to sulfate. The measured sulfate enhancements were in good agreement with our OFR chemical model. OFR results for SOA will be discussed.

  4. Global and Regional Decreases in Tropospheric Oxidants from Photochemical Effects of Aerosols

    NASA Technical Reports Server (NTRS)

    Martin, Randall V.; Jacob, Daniel J.; Yantosca, Robert M.; Chin, Mian; Ginoux, Paul

    2003-01-01

    We evaluate the sensitivity of tropospheric OH, O3, and O3 precursors to photochemical effects of aerosols not usually included in global models: (1) aerosol scattering and absorption of ultraviolet radiation and (2) reactive uptake of HO', NO2, and NO3. Our approach is to couple a global 3-D model of tropospheric chemistry (GEOS- CHEM) with aerosol fields from a global 3-D aerosol model (GOCART). Reactive uptake by aerosols is computed using reaction probabilities from a recent review (gamma(sub HO2) = 0.2, gamma(sub NO2) = 10(exp -4), gamma(sub NO3) = l0(exp -3). Aerosols decrease the O3 - O((sup 1)D) photolysis frequency by 5-20% at the surface throughout the Northern Hemisphere (largely due to mineral dust) and by a factor of 2 in biomass burning regions (largely due to black carbon). Aerosol uptake of HO2 accounts for 10-40% of total HOx radical ((triple bonds)OH + peroxy) loss in the boundary layer over polluted continental regions (largely due to sulfate and organic carbon) and for more than 70% over tropical biomass burning regions (largely due to organic carbon). Uptake of NO2 and NO3 accounts for 10-20% of total HNO3 production over biomass burning regions and less elsewhere. Annual mean OH concentrations decrease by 9% globally and by 5-35% in the boundary layer over the Northern Hemisphere. Simulated CO increases by 5- 15 ppbv in the remote Northern Hemisphere, improving agreement with observations. Simulated boundary layer O3 decreases by 15- 45 ppbv over India during the biomass burning season in March and by 5-9 ppbv over northern Europe in August, again improving comparison with observations. We find that particulate matter controls would increase surface O3 over Europe and other industrial regions.

  5. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Dunne, E. M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; de Leeuw, G.; Korhonen, H.

    2014-11-01

    Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol-climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr-1 (uncertainty range 378-1233 Tg yr-1) was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias -13% for particles with vacuum aerodynamic diameter Dva < 1 μm), Point Reyes (-29% for particles with aerodynamic diameter Da < 2.5 μm) and Amsterdam Island (-52% for particles with Da < 1 μm) but the larger sizes were overestimated (899% for particles with 2.5 μm < Da < 10 μm) at Amsterdam Island. This suggests that at least the high end of the previous estimates of sea spray mass emissions is unrealistic. On the other hand, the model clearly underestimated the observed concentrations of organic or total carbonaceous aerosol at Mace Head (-82%) and Amsterdam Island (-68%). The large overestimation (212%) of organic matter at Point Reyes was due to the contribution of continental sources. At the remote Amsterdam Island site, the organic concentration was underestimated especially in the biologically active months, suggesting a need to improve the parameterization of the organic sea spray fraction. Globally, the satellite-retrieved AOD over the oceans, using PARASOL data, was underestimated by the model (means over ocean 0.16 and 0.10, respectively); however, in the pristine region around Amsterdam Island the measured AOD fell well within the simulated uncertainty range. The simulated sea spray aerosol contribution to the indirect radiative effect was positive (0.3 W m-2), in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to

  6. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Dunne, E. M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; de Leeuw, G.; Korhonen, H.

    2014-02-01

    Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol-climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global sea salt emission of 805 Tg yr-1 (uncertainty range 378-1233 Tg yr-1) was much lower than typically found in previous studies. Modelled sea salt and sodium ion concentrations agreed relatively well with measurements in the smaller size ranges at Mace Head (annual normalized mean model bias -13% for particles with vacuum aerodynamic diameter Dva < 1 μm), Point Reyes (-29% for particles with aerodynamic diameter Da < 2.5 μm) and Amsterdam Island (-52% for particles with Da < 1 μm) but the larger sizes were overestimated (899% for particles with 2.5 μm aerosol at Mace Head (-82%) and Amsterdam Island (-68%). The large overestimation (212%) of organic matter at Point Reyes was due to the contribution of continental sources. At the remote Amsterdam Island site, the organic concentration was underestimated especially in the biologically active months, suggesting a need to improve the parameterization of the organic sea spray fraction. Globally, the satellite-retrieved AOD over the oceans, using PARASOL data, was underestimated by the model (means over ocean 0.16 and 0.10, respectively); however, in the pristine region around Amsterdam Island the measured AOD fell well within the simulated uncertainty range. The simulated sea spray aerosol contribution to the indirect radiative effect was positive (0.3 W m-2), in contrast to previous studies. This positive effect was ascribed to the tendency of sea salt aerosol to

  7. Response of different regional online coupled models to aerosol-radiation interactions

    NASA Astrophysics Data System (ADS)

    Forkel, Renate; Balzarini, Alessandra; Brunner, Dominik; Baró, Rocio; Curci, Gabriele; Hirtl, Marcus; Honzak, Luka; Jiménez-Guerrero, Pedro; Jorba, Oriol; Pérez, Juan L.; Pirovano, Guido; San José, Roberto; Schröder, Wolfram; Tuccella, Paolo; Werhahn, Johannes; Wolke, Ralf; Žabkar, Rahela

    2016-04-01

    The importance of aerosol-meteorology interactions and their representation in online coupled regional atmospheric chemistry-meteorology models was investigated in COST Action ES1004 (EuMetChem, http://eumetchem.info/). Case study results from different models (COSMO-Muscat, COSMO-ART, and different configurations of WRF-Chem), which were applied for Europe as a coordinated exercise for the year 2010, are analyzed with respect to inter-model variability and the response of the different models to direct and indirect aerosol-radiation interactions. The main focus was on two episodes - the Russian heat wave and wildfires episode in July/August 2010 and a period in October 2010 with enhanced cloud cover and rain and including an of Saharan dust transport to Europe. Looking at physical plausibility the decrease in downward solar radiation and daytime temperature due to the direct aerosol effect is robust for all model configurations. The same holds for the pronounced decrease in cloud water content and increase in solar radiation for cloudy conditions and very low aerosol concentrations that was found for WRF-Chem when aerosol cloud interactions were considered. However, when the differences were tested for statistical significance no significant differences in mean solar radiation and mean temperature between the baseline case and the simulations including the direct and indirect effect from simulated aerosol concentrations were found over Europe for the October episode. Also for the fire episode differences between mean temperature and radiation from the simulations with and without the direct aerosol effect were not significant for the major part of the modelling domain. Only for the region with high fire emissions in Russia, the differences in mean solar radiation and temperature due to the direct effect were found to be significant during the second half of the fire episode - however only for a significance level of 0.1. The few observational data indicate that

  8. Hydroclimate feedback induced by aerosols over the Asian monsoon regions - the elevated-heat-pump hypothesis

    NASA Astrophysics Data System (ADS)

    Lau, W.; Kim, M.; Kim, K.

    2006-05-01

    In this paper we present results of a numerical study using the NASA finite-volume GCM to elucidate a plausible mechanism for aerosol impact on the Asian summer monsoon involving interaction with physical processes over the Tibetan Plateau. During the pre-monsoon season of March-April, dusts from the deserts of western China, Afghanistan/Pakistan, and the Middle East are transported into and stacked up against the northern and southern slopes of the Tibetan Plateau. The absorption of solar radiation by dust heats up the elevated surface air over the slopes. On the southern slopes, the atmospheric heating is reinforced by black carbon from local emission. The heated air rises via dry convection, creating a positive temperature anomaly in the mid-to-upper troposphere over the Tibetan Plateau relative to the region to the south. The warm air in turn heat the land surface through turbulent heat flux. In May through early June in a manner akin to an "elevated heat pump", the rising hot air forced by the increasing heating in the upper troposphere and elevated land mass, draws in warm and moist air over the Indian subcontinent, initiating deep convection over the southern edge of the Plateau, and setting the stage for the onset of the South Asia summer monsoon. Our results suggest that increased dust loading coupled with black carbon emission from local sources in northern India during late spring may lead to an advance of the rainy periods and subsequently an intensification of the Indian summer monsoon. The enhanced rainfall over India is associated with the development of an aerosol-induced large-scale sea level pressure anomaly pattern, which causes the East Asia (Mei-yu) rain belt to shift northwestward, suppressing rainfall over East Asia and the adjacent oceanic regions.

  9. Optical properties of urban aerosols in the region Bratislava-Vienna I. Methods and tests

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Jovanović, O.; Gangl, M.

    Aerosol optical data obtained by means of ground-based methods are applied to determine microphysical properties of aerosols in the atmosphere of Vienna-city. The measured aerosol extinction coefficient σA serves as a source of information on the ambient aerosols. A large database of extinction efficiency factors for a set of irregularly shaped as well as the spherical particles of various sizes is pre-calculated and employed in the inversion procedure. The assumed particle models differ in chemical composition and are representative for most typical aerosol systems in the urban atmospheres. All database records are taken into a regularization scheme to solve the inverse problem for aerosol size distribution using measured extinction data. In addition, subsidiary data on spectral sky radiance are successfully incorporated into the mathematical model to retrieve the information on aerosol effective refractive index in the visible. As for Vienna, the aerosol extinction is a decreasing function of wavelength in visible spectrum—it indicates the predominance of sub-micrometer-sized particles in the atmosphere. The surface distribution function s( r)=d S/d r of aerosol particles customarily peaks at radii r≈0.2-0.3 μm, while the volume distribution function v( r)=d V/d r˜ rs( r) has a mode at radii about 0.3-0.4 μm. Analysing size distributions d V/d log( r) for irregularly shaped particles it is shown that the daily profile of this function is smoothly evolving and almost typically accounts for a first mode at radii between 0.8 and 0.9 μm.

  10. Sources, seasonality, and trends of Southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-07-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the Southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 km × 25 km resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the Southeast US. GEOS-Chem simulation of sulfate requires a missing oxidant, taken here to be stabilized Criegee intermediates, but which could alternatively reflect an unaccounted for heterogeneous process. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 20 % in the cloud convective layer at 1.5-3 km, and 20 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-])) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by organic aerosol. This would explain the long-term decline of ammonium aerosol in the Southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the Southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the Southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 21 %. The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from

  11. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly. PMID:27295588

  12. Simulation of the radiative effect of black carbon aerosols and the regional climate responses over China

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Jiang, Weimei; Fu, Congbin; Su, Bingkai; Liu, Hongnian; Tang, Jianping

    2004-08-01

    As part of the development work of the Chinese new regional climate model (RIEMS), the radiative process of black carbon (BC) aerosols has been introduced into the original radiative procedures of RIEMS, and the transport model of BC aerosols has also been established and combined with the RIEMS model. Using the new model system, the distribution of black carbon aerosols and their radiative effect over the China region are investigated. The influences of BC aerosole on the atmospheric radiative transfer and on the air temperature, land surface temperature, and total rainfall are analyzed. It is found that BC aerosols induce a positive radiative forcing at the top of the atmosphere (TOA), which is dominated by shortwave radiative forcing. The maximum radiative forcing occurs in North China in July and in South China in April. At the same time, negative radiative forcing is observed on the surface. Based on the radiative forcing comparison between clear sky and cloudy sky, it is found that cloud can enforce the TOA positive radiative forcing and decrease the negative surface radiative forcing. The responses of the climate system in July to the radiative forcing due to BC aerosols are the decrease in the air temperature in the middle and lower reaches of the Changjiang River and Huaihe area and most areas of South China, and the weak increase or decrease in air temperature over North China. The total rainfall in the middle and lower reaches of the Changjiang River area is increased, but it decreased in North China in July.

  13. Study on aerosol optical properties and radiative effect in cloudy weather in the Guangzhou region.

    PubMed

    Deng, Tao; Deng, XueJiao; Li, Fei; Wang, ShiQiang; Wang, Gang

    2016-10-15

    Currently, Guangzhou region was facing the problem of severe air pollution. Large amount of aerosols in the polluted air dramatically attenuated solar radiation. This study investigated the vertical optical properties of aerosols and inverted the height of boundary layer in the Guangzhou region using the lidar. Simultaneously, evaluated the impact of different types of clouds on aerosol radiation effects using the SBDART. The results showed that the height of the boundary layer and the surface visibility changed consistently, the average height of the boundary layer on the hazy days was only 61% of that on clear days. At the height of 2km or lower, the aerosol extinction coefficient profile distribution decreased linearly along with height on clear days, but the haze days saw an exponential decrease. When there was haze, the changing of heating rate of atmosphere caused by the aerosol decreased from 3.72K/d to 0.9K/d below the height of 2km, and the attenuation of net radiation flux at the ground surface was 97.7W/m(2), and the attenuation amplitude was 11.4%; when there were high clouds, the attenuation was 125.2W/m(2) and the attenuation amplitude was 14.6%; where there were medium cloud, the attenuation was 286.4W/m(2) and the attenuation amplitude was 33.4%. Aerosol affected mainly shortwave radiation, and affected long wave radiation very slightly.

  14. Airborne LIDAR Measurements of Aerosol and Ozone Above the Alberta Oil Sands Region

    NASA Astrophysics Data System (ADS)

    Aggarwal, M.; Whiteway, J. A.; Seabrook, J.; Gray, L. H.

    2014-12-01

    Lidar measurements of ozone and aerosol were conducted from a Twin Otter aircraft above the oil sands region of northern Alberta. The field campaign was carried out with a total of five flights out of Fort McMurray, Alberta during the period between August 22 and August 26, 2013. Significant amounts of aerosol were observed within the boundary layer, up to a height of 1.6 km, but the ozone concentration remained at or below background levels. On August 24th the lidar observed a separated layer of aerosol above the boundary layer, at a height of 1.8 km, in which the ozone mixing ratio increased to 70 ppbv. Backward trajectory calculations revealed that the air containing this separated aerosol layer had passed over an area of forest fires. Directly below the layer of forest fire smoke, in the pollution from the oil sands industry, the measured ozone mixing ratio was lower than the background levels (≤35 ppbv).

  15. Source Attribution of Light-absorbing Aerosols in Arctic Snow (Invited)

    NASA Astrophysics Data System (ADS)

    Hegg, D.; Warren, S. G.; Grenfell, T. C.; Doherty, S. J.; Larson, T. V.; Clarke, A. D.

    2010-12-01

    Light-absorbing aerosols (LAA) deposited on the arctic snow pack, in particular black carbon (BC), contribute appreciably to the arctic radiation budget and their reduction has been suggested as a means to attenuate warming in the arctic. Effective prediction and mitigation of Arctic snow LAA requires that the sources of the LAA be elucidated. To this end, receptor modeling in the form of Positive Matrix Factorization (PMF) has been exercised on a data set of chemical concentrations in snow of various species (including inorganic and organic acids, carbohydrates and selected other organics as well as LAA) derived from an extensive set of snow samples from locations in Russia (including Siberia), Canada, Greenland, the Arctic Ocean and Svalbard. The data were obtained in three distinct periods: spring of 2007, spring of 2008, and spring of 2009. Data from each period were analyzed separately (note that the Svalbard data were analyzed only recently and were not included in the published 2007 analysis). Aerosol light absorption was determined spectrophotometrically at multiple wavelengths on filters through which melted snow was filtered. Based on the Angstrom exponent of the light absorption, partitioning of the absorption between BC and other LAA species was estimated. Statistics of the LAA concentrations for the Arctic as a whole and the geographic distribution of BC and other LAA species are presented. PMF analysis of the filtrate and filters from the 2007 data set from western Siberia, the Canadian lower arctic and Greenland revealed four factors or sources: two distinct biomass burning sources, a pollution source and a marine source. The first three of these were responsible for essentially all of the black carbon, with the two biomass sources together accounting for > 90% of the black carbon. Geographically, the biomass sources were dominant for all regions except the Arctic Ocean near the North Pole. For the 2008 and 2009 data sets, from eastern Siberia and

  16. The ambient organic aerosol soluble in water: Measurements, chemical characterization, and an investigation of sources

    NASA Astrophysics Data System (ADS)

    Sullivan, Amy P.

    VOCs (Volatile Organic Compounds) expected from mobile source emissions such as isopentane (R2 = 0.67) and acetylene (R2 = 0.61). Biomass burning samples, however, were dominated by the hydrophilic and recovered hydrophobic neutral compounds. In the winter, when the WSOC is much lower, the samples tended to be a combination of the other two sample types. Combining the results of these various WSOC measurements over Atlanta and its surrounding regions, the data indicate that the source of WSOC is indirectly linked to vehicle emissions. Aircraft measurements show that WSOC is correlated with CO over large regions, and that the ratio of the metropolitan Atlanta DeltaWSOC/DeltaCO is similar to that in urban plumes in the northeastern U.S. Over a wide geographical region (˜100 km) WSOC is comprised of three major chemical groups (> 70%) that increase in concentration under more polluted conditions, and appear to be linked to a similar source. The fraction of the organic aerosol that is water-soluble varies between roughly 0.40 and 0.75 depending on the location, with higher ratios in regions further from mobile source emissions.

  17. Wave like signatures in aerosol optical depth and associated radiative impacts over the central Himalayan region

    SciTech Connect

    Shukla, K. K.; Phanikumar, D. V.; Kumar, K.  Niranjan; Reddy, Kishore; Kotamarthi, V. R.; Newsom, Rob K.; Ouarda, Taha B. M. J.

    2015-10-01

    In this study, we present a case study on 16 October 2011 to show the first observational evidence of the influence of short period gravity waves in aerosol transport during daytime over the central Himalayan region. The Doppler lidar data has been utilized to address the daytime boundary layer evolution and related aerosol dynamics over the site. Mixing layer height is estimated by wavelet covariance transform method and found to be ~ 0.7 km, AGL. Aerosol optical depth observations during daytime revealed an asymmetry showing clear enhancement during afternoon hours as compared to forenoon. Interestingly, Fourier and wavelet analysis of vertical velocity and attenuated backscatter showed similar 50-90 min short period gravity wave signatures during afternoon hours. Moreover, our observations showed that gravity waves are dominant within the boundary layer implying that the daytime boundary layer dynamics is playing a vital role in transporting the aerosols from surface to the top of the boundary layer. Similar modulations are also evident in surface parameters like temperature, relative humidity and wind speed indicating these waves are associated with the dynamical aspects over Himalayan region. Finally, time evolution of range-23 height indicator snapshots during daytime showed strong upward velocities especially during afternoon hours implying that convective processes through short period gravity waves plays a significant role in transporting aerosols from the nearby valley region to boundary layer top over the site. These observations also establish the importance of wave induced daytime convective boundary layer dynamics in the lower Himalayan region.

  18. MODIS 3 Km Aerosol Product: Applications over Land in an Urban/suburban Region

    NASA Technical Reports Server (NTRS)

    Munchak, L. A.; Levy, R. C.; Mattoo, S.; Remer, L. A.; Holben, B. N.; Schafer, J. S.; Hostetler, C. A.; Ferrare, R. A.

    2013-01-01

    MODerate resolution Imaging Spectroradiometer (MODIS) instruments aboard the Terra and Aqua satellites have provided a rich dataset of aerosol information at a 10 km spatial scale. Although originally intended for climate applications, the air quality community quickly became interested in using the MODIS aerosol data. However, 10 km resolution is not sufficient to resolve local scale aerosol features. With this in mind, MODIS Collection 6 is including a global aerosol product with a 3 km resolution. Here, we evaluate the 3 km product over the Baltimore/Washington D.C., USA, corridor during the summer of 2011, by comparing with spatially dense data collected as part of the DISCOVER-AQ campaign these data were measured by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and a network of 44 sun photometers (SP) spaced approximately 10 km apart. The HSRL instrument shows that AOD can vary by up to 0.2 within a single 10 km MODIS pixel, meaning that higher resolution satellite retrievals may help to characterize aerosol spatial distributions in this region. Different techniques for validating a high-resolution aerosol product against SP measurements are considered. Although the 10 km product is more statistically reliable than the 3 km product, the 3 km product still performs acceptably, with more than two-thirds of MODIS/SP collocations falling within the expected error envelope with high correlation (R > 0.90). The 3 km product can better resolve aerosol gradients and retrieve closer to clouds and shorelines than the 10 km product, but tends to show more significant noise especially in urban areas. This urban degradation is quantified using ancillary land cover data. Overall, we show that the MODIS 3 km product adds new information to the existing set of satellite derived aerosol products and validates well over the region, but due to noise and problems in urban areas, should be treated with some degree of caution.

  19. Sources, Sinks, and Transatlantic Transport of North African Dust Aerosol: A Multimodel Analysis and Comparison With Remote Sensing Data

    NASA Technical Reports Server (NTRS)

    Kim, Dongchul; Chin, Mian; Yu, Hongbin; Diehl, Thomas; Tan, Qian; Kahn, Ralph A.; Tsigaridis, Kostas; Bauer, Susanne E.; Takemura, Toshihiko; Pozzoli, Luca; Bellouin, Nicolas; Schulz, Michael; Peyridieu, Sophie; Chedin, Alain; Koffi, Brigitte

    2014-01-01

    This study evaluates model-simulated dust aerosols over North Africa and the North Atlantic from five global models that participated in the Aerosol Comparison between Observations and Models phase II model experiments. The model results are compared with satellite aerosol optical depth (AOD) data from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Sea-viewing Wide Field-of-view Sensor, dust optical depth (DOD) derived from MODIS and MISR, AOD and coarse-mode AOD (as a proxy of DOD) from ground-based Aerosol Robotic Network Sun photometer measurements, and dust vertical distributions/centroid height from Cloud Aerosol Lidar with Orthogonal Polarization and Atmospheric Infrared Sounder satellite AOD retrievals. We examine the following quantities of AOD and DOD: (1) the magnitudes over land and over ocean in our study domain, (2) the longitudinal gradient from the dust source region over North Africa to the western North Atlantic, (3) seasonal variations at different locations, and (4) the dust vertical profile shape and the AOD centroid height (altitude above or below which half of the AOD is located). The different satellite data show consistent features in most of these aspects; however, the models display large diversity in all of them, with significant differences among the models and between models and observations. By examining dust emission, removal, and mass extinction efficiency in the five models, we also find remarkable differences among the models that all contribute to the discrepancies of model-simulated dust amount and distribution. This study highlights the challenges in simulating the dust physical and optical processes, even in the best known dust environment, and stresses the need for observable quantities to constrain the model processes.

  20. Investigation of the relative fine and coarse mode aerosol loadings and properties in the Southern Arabian Gulf region

    NASA Astrophysics Data System (ADS)

    Kaku, Kathleen C.; Reid, Jeffrey S.; Reid, Elizabeth A.; Ross-Langerman, Kristy; Piketh, Stuart; Cliff, Steven; Al Mandoos, Abdulla; Broccardo, Stephen; Zhao, Yongjing; Zhang, Jianglong; Perry, Kevin D.

    2016-03-01

    The aerosol chemistry environment of the Arabian Gulf region is extraordinarily complex, with high concentrations of dust aerosols from surrounding deserts mixed with anthropogenic aerosols originating from a large petrochemical industry and pockets of highly urbanized areas. Despite the high levels of aerosols experienced by this region, little research has been done to explore the chemical composition of both the anthropogenic and mineral dust portion of the aerosol burden. The intensive portion of the United Arab Emirates Unified Aerosol Experiment (UAE2), conducted during August and September 2004 was designed in part to resolve the aerosol chemistry through the use of multiple size-segregated aerosol samplers. The coarse mode mass (derived by subtracting the PM2.5 aerosol mass from the PM10 mass) is largely dust at 76% ± 7% of the total coarse mode mass, but is significantly impacted by anthropogenic pollution, primarily sulfate and nitrate. The PM2.5 aerosol mass also contains a large dust burden, at 38% ± 26%, but the anthropogenic component dominates. The total aerosol burden has significant impact not only on the atmosphere, but also the local population, as the air quality levels for both the PM10 and PM2.5 aerosol masses reached unhealthy levels for 24% of the days sampled.

  1. Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands

    NASA Astrophysics Data System (ADS)

    Schlag, Patrick; Kiendler-Scharr, Astrid; Blom, Marcus Johannes; Canonaco, Francesco; Sebastiaan Henzing, Jeroen; Moerman, Marcel; Prévôt, André Stephan Henry; Holzinger, Rupert

    2016-07-01

    Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, the Netherlands, sampling at 5 m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network). Including equivalent black carbon an average particulate mass concentration of 9.50 µg m-3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). There were 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 µg m-3) observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by positive matrix factorization (PMF) using the multilinear engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8-16 % contribution to total OA, averaged season-wise) and biomass burning (0-23 %). Secondary organic aerosols (SOAs, 61-84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  2. Primary and secondary aerosols in Beijing in winter: sources, variations and processes

    NASA Astrophysics Data System (ADS)

    Sun, Yele; Du, Wei; Fu, Pingqing; Wang, Qingqing; Li, Jie; Ge, Xinlei; Zhang, Qi; Zhu, Chunmao; Ren, Lujie; Xu, Weiqi; Zhao, Jian; Han, Tingting; Worsnop, Douglas R.; Wang, Zifa

    2016-07-01

    Winter has the worst air pollution of the year in the megacity of Beijing. Despite extensive winter studies in recent years, our knowledge of the sources, formation mechanisms and evolution of aerosol particles is not complete. Here we have a comprehensive characterization of the sources, variations and processes of submicron aerosols that were measured by an Aerodyne high-resolution aerosol mass spectrometer from 17 December 2013 to 17 January 2014 along with offline filter analysis by gas chromatography/mass spectrometry. Our results suggest that submicron aerosols composition was generally similar across the winter of different years and was mainly composed of organics (60 %), sulfate (15 %) and nitrate (11 %). Positive matrix factorization of high- and unit-mass resolution spectra identified four primary organic aerosol (POA) factors from traffic, cooking, biomass burning (BBOA) and coal combustion (CCOA) emissions as well as two secondary OA (SOA) factors. POA dominated OA, on average accounting for 56 %, with CCOA being the largest contributor (20 %). Both CCOA and BBOA showed distinct polycyclic aromatic hydrocarbons (PAHs) spectral signatures, indicating that PAHs in winter were mainly from coal combustion (66 %) and biomass burning emissions (18 %). BBOA was highly correlated with levoglucosan, a tracer compound for biomass burning (r2 = 0.93), and made a considerable contribution to OA in winter (9 %). An aqueous-phase-processed SOA (aq-OOA) that was strongly correlated with particle liquid water content, sulfate and S-containing ions (e.g. CH2SO2+) was identified. On average aq-OOA contributed 12 % to the total OA and played a dominant role in increasing oxidation degrees of OA at high RH levels (> 50 %). Our results illustrate that aqueous-phase processing can enhance SOA production and oxidation states of OA as well in winter. Further episode analyses highlighted the significant impacts of meteorological parameters on aerosol composition, size

  3. Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method

    NASA Astrophysics Data System (ADS)

    Zencak, Zdenek; Elmquist, Marie; Gustafsson, Örjan

    To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal-optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BC CTO-375 concentration and the reported elemental carbon (EC) concentration measured by the "Speciation Trends Network—National Institute of Occupational Safety and Health" method (EC NIOSH) with BC CTO-375 of 0.054±0.002 g g -1 and EC NIOSH of 0.067±0.008 g g -1. In contrast, there was an average factor of ca. 20 difference between BC CTO-375 and EC NIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BC CTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the EC NIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BC CTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BC CTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BC CTO-375 in Stockholm was 70% and in the background area 88%.

  4. Evaluation of New and Proposed Organic Aerosol Sources and Mechanisms using the Aerosol Modeling Testbed. MILAGRO, CARES, CalNex, BEACHON, and GVAX

    SciTech Connect

    Hodzic, Alma; Jimenez, Jose L.

    2015-04-09

    This work investigated the formation and evolution of organic aerosols (OA) arising from anthropogenic and biogenic sources in a framework that combined state-of-the-science process and regional modeling, and their evaluation against advanced and emerging field measurements. Although OA are the dominant constituents of submicron particles, our understanding of their atmospheric lifecycle is limited, and current models fail to describe the observed amounts and properties of chemically formed secondary organic aerosols (SOA), leaving large uncertainties on the effects of SOA on climate. Our work has provided novel modeling constraints on sources, formation, aging and removal of SOA by investigating in particular (i) the contribution of trash burning emissions to OA levels in a megacity, (ii) the contribution of glyoxal to SOA formation in aqueous particles in California during CARES/CalNex and over the continental U.S., (iii) SOA formation and regional growth over a pine forest in Colorado and its sensitivity to anthropogenic NOx levels during BEACHON, and the sensitivity of SOA to (iv) the sunlight exposure during its atmospheric lifetime, and to (v) changes in solubility and removal of organic vapors in the urban plume (MILAGRO, Mexico City), and over the continental U.S.. We have also developed a parameterization of water solubility for condensable organic gases produced from major anthropogenic and biogenic precursors based on explicit chemical modeling, and made it available to the wider community. This work used for the first time constraints from the explicit model GECKO-A to improve SOA representation in 3D regional models such as WRF-Chem.

  5. Long-term aerosol measurements in Gran Canaria, Canary Islands: Particle concentration, sources and elemental composition

    NASA Astrophysics Data System (ADS)

    Gelado-Caballero, MaríA. D.; López-GarcíA, Patricia; Prieto, Sandra; Patey, Matthew D.; Collado, Cayetano; HéRnáNdez-Brito, José J.

    2012-02-01

    There are very few sets of long-term measurements of aerosol concentrations over the North Atlantic Ocean, yet such data is invaluable in quantifying atmospheric dust inputs to this ocean region. We present an 8-year record of total suspended particles (TSP) collected at three stations on Gran Canaria Island, Spain (Taliarte at sea level, Tafira 269 m above sea level (a.s.l.) and Pico de la Gorra 1930 m a.s.l.). Using wet and dry deposition measurements, the mean dust flux was calculated at 42.3 mg m-2 d-1. Air mass back trajectories (HYSPLIT, NOAA) suggested that the Sahara desert is the major source of African dust (dominant during 32-50% of days), while the Sahel desert was the major source only 2-10% of the time (maximum in summer). Elemental composition ratios of African samples indicate that, despite the homogeneity of the dust in collected samples, some signatures of the bedrocks can still be detected. Differences were found for the Sahel, Central Sahara and North of Sahara regions in Ti/Al, Mg/Al and Ca/Al ratios, respectively. Elements often associated with pollution (Pb, Cd, Ni, Zn) appeared to share a common origin, while Cu may have a predominantly local source, as suggested by a decrease in the enrichment factor (EF) of Cu during dust events. The inter-annual variability of dust concentrations is investigated in this work. During winter, African dust concentration measurements at the Pico de la Gorra station were found to correlate with the North Atlantic Oscillation (NAO) index.

  6. Quantitative evaluation of emission control of primary and secondary organic aerosol sources during Beijing 2008 Olympics

    NASA Astrophysics Data System (ADS)

    Guo, S.; Hu, M.; Guo, Q.; Zhang, X.; Schauer, J. J.; Zhang, R.

    2012-12-01

    To explore the primary and secondary sources of fine organic particles after the aggressive implementation of air pollution controls during 2008 Beijing Olympic Games, 12-h PM2.5 concentrations were measured at one urban and one upwind rural site during the CAREBeijing-2008 (Campaigns of Air quality REsearch in Beijing and surrounding region) summer field campaign. The PM2.5 concentrations were 72.5±43.6μg m3 and 64.3±36.2μg m-3 at the urban site and rural site, respectively, which were the lowest in recent years due to the implementation of drastic control measures and favorable weather conditions. Five primary and four secondary fine organic particle sources were quantified using a CMB (chemical mass balance) model and tracer-yield method. Compared with previous studies in Beijing, the contribution of vehicle emission increased, with diesel engines contributing 16.2±5.9% and 14.5±4.1% to the total organic carbon (OC) concentrations and gasoline vehicles accounting for 10.3±8.7% and 7.9±6.2% of the OC concentrations at two sites. Due to the implementation of emission control measures, the OC concentrations from important primary sources have been reduced, and secondary formation has become an important contributor to fine organic aerosols. Compared with the non-controlled period, primary vehicle contributions were reduced by 30% and 24% in the urban and regional area, and reductions in the contribution from coal combustion were 57% and 7%, respectively. These results demonstrate the emission control measures significantly alleviated the primary organic particle pollution in and around Beijing. However, the control effectiveness of secondary organic particles was not significant.

  7. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  8. Contributions of local sources, long-range and mountain wind transport for aerosols over an eastern Himalayan high-altitude station in India

    NASA Astrophysics Data System (ADS)

    Chatterjee, Abhijit; Sarkar, Chirantan; Singh, Ajay; Ghosh, Sanjay; Raha, Sibaji; Das, Sanat

    A long-term study (2010-2013) on aerosols mass concentrations (PM2.5), number concentrations of size segregated aerosols and mass concentration of total suspended black carbon aerosols has been made over Darjeeling (27.01 N, 88.15 E), a high altitude (2200 m asl) station at eastern Himalaya in India. Seasonal and diurnal variation of all types of aerosols, their chemical composition and source apportionment revealed that aerosols over this part of Himalaya are mainly of two types; locally generated and long-range transported aerosols. The diurnal variation of aerosols including black carbon showed distinct feature of up-slope mountain wind transport mainly during premonsoon (Mar-May) which brings aerosol particles from low land regions. This present study focuses on the estimation of the individual contributions from local emissions (LE), long-range transport (LRT) and mountain wind transport (MWT) towards the total aerosol loading over Darjeeling. Several strike events (called by local political party) were observed at Darjeeling over the entire period of study (2008-2013) when all the local activities (schools, colleges, offices, vehicular, industrial etc) were stopped fully. Most of the strike events occurred during premonsoon. We have observed three types of events during premonsoon over the entire study period; 1) strike events with the contribution of LRT+MWT with zero local emissions (LE=0), 2) normal days with the contribution of LE+LRT+MWT, 3) normal days with the contribution of LE+MWT with zero long-range contribution (LRT=0). On normal days, the diurnal variation of aerosols during premonsoon showed sharp morning and evening peaks associated to local anthropogenic activities with the effect of up-slope mountain wind during afternoon. During strike events, the morning and evening peaks were absent but a broad peak was observed during afternoon associated to up-slope mountain wind. The increase in aerosol concentrations during afternoon on strike days

  9. Application of Aerosol Assimilation System of MODIS Radiances to Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    D'Allura, A.; Charmichael, G. R.; Tang, Y.; Chai, T.; Chung, C. E.; Anderson, T. L.

    2006-12-01

    We present results from an assimilation system of radiances from the MODIS channels that sense atmospheric aerosols over land and ocean on the chemical transport model STEM. A test case is designed to simulate transport of aerosols tracers over the area of interest which includes India, east and south Asia at 50km horizontal resolution. A detailed treatment of the source, transport and deposition of the aerosol species are included. The model simulates five aerosol components: sulfate, organic carbon, black carbon, dust and sea salt. Total AODs at 550nm wavelength over land and ocean and fine mode AODs at 550nm wavelength over ocean are the level 2 aerosol products from Terra MODIS channel four used in this application. The intent of the study is to verify the improvement in the model performances while the initial conditions are corrected using an Optimum Interpolation technique to assimilate the MODIS data. The model results are compared with ground-based measurements of aerosol optical depth (AOD) from the AERONET network. Sensitivity analyses are provided in order to describe the effect of changing in assimilation technique's free parameters. The method is designed to optimize the use of the information provided by fine mode AODs, which are available over ocean, coupled with the total AODs available also over land. Improvements on the model results using this approach are highlighted during specific event where the model has experienced low agreement with observed data. Results are also compared to other assimilations methods.

  10. Aerosol Size Distribution in a City Influenced by Both Rural and Urban Regions

    NASA Astrophysics Data System (ADS)

    Fitzgerald, R. M.; Polanco, J.; Lozano, A.

    2006-12-01

    Most atmospheric studies have focused on sites located in either rural or urban areas. However, there are regions affected by air from both, such as the city of El Paso. Adjacent to the neighboring city of Juarez, Mexico, and in close proximity to rural areas, it is affected by desert particles and both biogenic, anthropogenic emissions. Aerosol properties largely depend upon particle size and this makes it the most important parameter for characterizing the aerosol. We focus on studies using inverse reconstruction models for particle size distribution using aerosol optical depth data. Our methodology uses Twomey's regularization technique that suppresses ill-posedness by imposing smoothing and non-negativity constraints on the desired size distributions. We have also applied T-matrix codes to study the scattering from irregularly shaped particles that exhibit rotational symmetry. Furthermore, our studies include analysis of aerosol size distributions using optic probes and soot photometers, sampled from aircraft at different heights. This work will lead to better characterization of aerosols and their impact in our rural-urban interface region. In addition, it will provide a more accurate assessment of regional transport and better boundary conditions for air quality models.

  11. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a.

  12. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    PubMed

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a. PMID:25766014

  13. Regional Aerosol Optical Properties and Radiative Impact of the Extreme Smoke Event in the European Arctic in Spring 2006

    NASA Technical Reports Server (NTRS)

    Lund Myhre, C.; Toledano, C.; Myhre, G.; Stebel, K.; Yttri, K.; Aaltonen, V.; Johnsrud, M.; Frioud, M.; Cachorro, V.; deFrutos, A.; Lihavainen, H.; Campbell, J.; Chaikovsky, A.; Shiobara, M.; Welton, E.; Torseth, K.

    2007-01-01

    In spring 2006 a special meteorological situation occurred in the European Arctic region giving record high levels of air pollution. The synoptic situation resulted in extensive transport of pollution predominantly from agricultural fires in Eastern Europe into the Arctic region and record high air-pollution levels were measured at the Zeppelin observatory at Ni-Alesun(78deg 54'N, 11deg 53'E) in the period from 25 April to 12 May. In the present study we investigate the optical properties of the aerosols from this extreme event and we estimate the radiative forcing of this episode. We examine the aerosol optical properties from the source region and into the European Arctic and explore the evolution of the episode and the changes in the optical properties. A number of sites in Eastern Europe, Northern Scandinavia and Svalbard are included in the study. In addition to AOD measurements, we explored lidar measurements from Minsk, ALOMAR (Arctic Lidar Observatory for Middle Atmosphere Research at Andenes) and Ny-Alesund. For the AERONET sites included (Minsk, Toravere, Hornsund) we have further studied the evolution of the aerosol size. Importantly, at Svalbard it is consistency between the AERONET measurements and calculations of single scattering albedo based on aerosol chemical composition. We have found strong agreement between the satellite dally MODIS AOD and the ground-based AOD observations. This agreement is crucial for the radiative forcing calculations. We calculate a strong negative radiative forcing for the most polluted days employing the analysed ground based data, MODIS AOD and a multi-stream model for radiative transfer of solar radiation.

  14. Characterization of aerosols over oceanic regions around India during pre-monsoon 2006

    NASA Astrophysics Data System (ADS)

    Kalapureddy, M. C. R.; Devara, P. C. S.

    Ship cruise observations of aerosol optical properties have been carried out over oceanic areas around India during pre-monsoon season of 2006. The results reveal rather significant day-to-day variability in aerosol optical thickness (AOT). Aerosol loading is found to be relatively high over the Bay of Bengal (BoB) i.e., AOT at 500 nm is 0.36 ± 0.12 which is higher than those over Arabian Sea (AS) i.e., 0.23 ± 0.09 and North Indian Ocean (NIO) i.e., 0.26 ± 0.10. Dominance of fine-mode ( α = 1.21 ± 0.11) and coarse-mode ( α = 0.86 ± 0.20) aerosol particles has been observed, respectively, over the BoB and AS regions. Second order Angstrom exponent shows predominant positive and negative curvatures over BoB and AS, respectively. High fine-mode aerosol loading over BoB is found to be associated with air masses originating from northeastern Indo-Gangetic plains and southeastern Myanmar. The observed short wave solar flux decrease due to aerosol extinction is found to be 24, 19 and 21 W m -2 for the BoB, AS and NIO, respectively.

  15. Development of a United States - Mexico emissions inventory for the Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study

    SciTech Connect

    Hampden Kuhns; Eladio M. Knipping; Jeffrey M. Vukovich,

    2005-05-01

    The Big Bend Regional Aerosol and Visibility Observational (BRAVO) Study investigated the sources of haze at Big Bend National Park in southwest Texas. The modeling domain includes most of the continental United States and Mexico. The BRAVO emissions inventory was constructed from the 1999 National Emission Inventory for the United States, modified to include finer-resolution data for Texas and 13 U.S. states in close proximity. The inventory includes emissions for CO, nitrogen oxides, sulfur dioxide, volatile organic compounds (VOCs), ammonia, particulate matter (PM) {lt}10 {mu}m in aerodynamic diameter, and PM {lt}2.5 {mu}m in aerodynamic diameter. The SMOKE modeling system was used to generate gridded emissions fields for use with the Regional Modeling System for Aerosols and Deposition (REMSAD) and the Community Multiscale Air Quality model modified with the Model of Aerosol Dynamics, Reaction, Ionization and Dissolution (CMAQ-MADRID). The compilation of the inventory, supporting model input data, and issues encountered during the development of the inventory are documented. A comparison of the BRAVO emissions inventory for Mexico with other emerging Mexican emission inventories illustrates their uncertainty. 65 refs., 4 figs., 9 tabs.

  16. Chasing the Black Smoke: Building Software for CALIPSO Satellite Data to Aid in Tracking and Identifying Sources of Aerosols and their Impact on the Earth's Climate

    NASA Astrophysics Data System (ADS)

    Mercer, G. A.

    2015-12-01

    The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is a NASA Earth observation that analyzes aerosol particles suspended in the Earth's atmosphere. Researchers use visualized CALIPSO data to track the global distribution, dispersion, and source of aerosols. There currently exists a tool for displaying CALIPSO data, but this tool does not support needed features for tracking aerosols such as selecting regions of data and sharing those selected regions, making tracking specific airborne objects difficult for researchers. Adding these necessary features to the current CALIPSO visualization tool is difficult, as the tool is written in Interactive Data Language (IDL), a proprietary and obscure language and writing additional features for the tool would require a specialized development team. This topic will focus on release of a new tool for visualization CALIPSO's atmospheric data, or the Visualization of CALIPSO (VOCAL) open source Python program. The talk will explain why VOCAL will serve as the successor to the current visualization tool for CALIPSO data, what new features VOCAL brings to the table for researchers, and how this new tool can further support the tracking and identification of aerosols in the Earth's atmosphere.

  17. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia and Look Rock, Tennessee

    NASA Astrophysics Data System (ADS)

    Budisulistiorini, S. H.; Baumann, K.; Edgerton, E. S.; Bairai, S. T.; Mueller, S.; Shaw, S. L.; Knipping, E. M.; Gold, A.; Surratt, J. D.

    2015-08-01

    A yearlong near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia) and rural (Look Rock, Tennessee) site in the southeastern US using the Aerodyne aerosol chemical speciation monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (50-76 %) and inorganic sulfate (12-31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the one year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (OOA), isoprene-derived epoxydiol (IEPOX) OA (IEPOX-OA), and 91Fac OA (a factor dominated by a distinct ion at m/z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed 30-66 % of total OA mass. HOA was also observed during the entire year only at the urban site (15-24 % of OA mass). BBOA (15-33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly (∼ 27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27-41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m/z 75 is proposed as an additional marker for IEPOX-OA, as it is shown to correlate well with the m/z 82 ion shown to be associated with the aerosol mass spectrum of

  18. The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Xu, Chao; Ma, Yaoming; You, Chao; Zhu, Zhikun

    2016-04-01

    The Tibetan Plateau (TP) is representative of typical clean atmospheric conditions. Aerosol optical depth (AOD) retrieved by Multi-angle Imaging SpectroRadiometer (MISR) is higher over Qaidam Basin than the rest of the TP all the year. Different monthly variation patterns of AOD are observed over the southern and northern TP, whereby the aerosol load is usually higher in the northern TP than in the southern part. The aerosol load over the northern part increases from April to June, peaking in May. The maximum concentration of aerosols over the southern TP occurs in July. Aerosols appear to be more easily transported to the main body of the TP across the northern edge rather than the southern edge. This is may be partly because the altitude is lower at the northern edge than that of the Himalayas located along the southern edge of the TP. Three-dimensional distributions of dust, polluted dust, polluted continental and smoke are also investigated based on Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Dust is found to be the most prominent aerosol type on the TP, and other types of aerosols affect the atmospheric environment slightly. A dividing line of higher dust occurrence in the northern TP and lower dust occurrence in the southern TP can be observed clearly at altitude of 6-8 km above sea level, especially in spring and summer. This demarcation appears around 33-35°N in the middle of the plateau, and it is possibly associated with the high altitude terrain in the same geographic location. Comparisons of CALIPSO and MISR data show that the vertical dust occurrences are consistent with the spatial patterns of AOD. The different seasonal variation patterns between the northern and southern TP are primarily driven by atmospheric circulation, and are also related to the emission characteristics over the surrounding regions.

  19. Stable carbon and nitrogen isotopic compositions of ambient aerosols collected from Okinawa Island in the western North Pacific Rim, an outflow region of Asian dusts and pollutants

    NASA Astrophysics Data System (ADS)

    Kunwar, Bhagawati; Kawamura, Kimitaka; Zhu, Chunmao

    2016-04-01

    Stable carbon (δ13C) and nitrogen (δ15N) isotope ratios were measured for total carbon (TC) and nitrogen (TN), respectively, in aerosol (TSP) samples collected at Cape Hedo, Okinawa, an outflow region of Asian pollutants, during 2009-2010. The averaged δ13C and δ15N ratios are -22.2‰ and +12.5‰, respectively. The δ13C values are similar in both spring (-22.5‰) and winter (-22.5‰), suggesting the similar sources and/or source regions. We found that δ13C from Okinawa aerosols are ca. 2‰ higher than those reported from Chinese megacities probably due to photochemical aging of organic aerosols. A strong correlation (r = 0.81) was found between nss-Ca and TSP, suggesting that springtime aerosols are influenced from Asian dusts. However, carbonates in the Asian dusts were titrated with acidic species such as sulfuric acid and oxalic acid during atmospheric transport although two samples suggested the presence of remaining carbonate. No correlations were found between δ13C and tracer compounds (levoglucosan, elemental carbon, oxalic acid, and Na+). During winter and spring, coal burning is significant source in China. Based on isotopic mass balance, contribution of coal burning origin particles to total aerosol carbon was estimated as ca. 97% in winter, which is probably associated with the high emissions in China. Contribution of NO3- to TN was on average 45% whereas that of NH4+ was 18%. These results suggest that vehicular exhaust is an important source of TN in Okinawa aerosols. Concentration of water-soluble organic nitrogen (WSON) is higher in summer, suggesting that WSON is more emitted from the ocean in warmer season whereas inorganic nitrogen is more emitted in winter and spring from pollution sources in the Asian continent.

  20. Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-09-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5-3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-]) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8-28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines

  1. Evidence for a Significant Source of Sea Salt Aerosol from Blowing Snow Above Sea Ice in the Southern Ocean

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; Brooks, I. M.; Anderson, P. A.; Nishimura, K.; Yang, X.; Jones, A. E.; Wolff, E. W.

    2014-12-01

    Over most of the Earth, sea salt aerosol (SSA) derives from sea spray and bubble bursting at the open ocean surface. SSA as the major component of marine aerosol contributes directly to the radiative balance and can act as cloud condensation nuclei. SSA can also significantly impact the lifetime of methane, ozone or mercury through the photochemical release of reactive halogens. A recent model study suggested that the sublimation of saline blowing snow above sea ice can generate more SSA than is produced from a similar area of open ocean. A winter cruise through the Weddell Sea during June - August 2013 provided unique access to a potential SSA source region in the Antarctic sea ice zone to test this hypothesis.Reported are first measurements of snow particle as well as aerosol concentrations, size distributions and chemical composition, during blowing snow events above sea ice. Snow particle spectra are found to be similar to those observed on the continent. Even though the salinity of surface and blowing snow was very low (<0.1 psu) a significant increase of aerosol in the SSA size range was observed during and after blowing snow events. This is consistent with model runs including a blowing snow parameterisation which suggest low sensitivity of SSA number densities to snow salinity within the observed range. First estimates of SSA flux from blowing snow using eddy correlation are significant, although falling below published values of the sea spray source function. We discuss the dependance of observed SSA production rates on ambient conditions as well as the significance to the Southern Ocean environment.

  2. Mexico City aerosol analysis during MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) - Part 1: Fine particle composition and organic source apportionment

    SciTech Connect

    Aiken, A.C.; Wang, J.; Salcedo, D.; Cubison, M. J.; Huffman, J. A.; DeCarlo, P. F.; Ulbrich, I. M.; Docherty, K. S.; Sueper, D.; Kimmel, J. R.; Worsnop, D. R.; Trimborn, A.; Northway, M.; Stone, E. A.; Schauer, J. J.; Volkamer, R. M.; Fortner, E.; de Foy, B.; Laskin, A.; Shutthanandan, V.; Zheng, J.; Zhang, R.; Gaffney, J.; Marley, N. A.; Paredes-Miranda, G.; Arnott, W. P.; Molina, L. T.; Sosa, G.; Jimenez, J. L.

    2009-09-01

    Submicron aerosol was analyzed during the MILAGRO field campaign in March 2006 at the T0 urban supersite in Mexico City with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and complementary instrumentation. Mass concentrations, diurnal cycles, and size distributions of inorganic and organic species are similar to results from the CENICA supersite in April 2003 with organic aerosol (OA) comprising about half of the fine PM mass. Positive Matrix Factorization (PMF) analysis of the high resolution OA spectra identified three major components: chemically-reduced urban primary emissions (hydrocarbon-like OA, HOA), oxygenated OA (OOA, mostly secondary OA or SOA), and biomass burning OA (BBOA) that correlates with levoglucosan and acetonitrile. BBOA includes several very large plumes from regional fires and likely also some refuse burning. A fourth OA component is a small local nitrogen-containing reduced OA component (LOA) which accounts for 9% of the OA mass but one third of the organic nitrogen, likely as amines. OOA accounts for almost half of the OA on average, consistent with previous observations. OA apportionment results from PMF-AMS are compared to the PM{sub 2.5} chemical mass balance of organic molecular markers (CMB-OMM, from GC/MS analysis of filters). Results from both methods are overall consistent. Both assign the major components of OA to primary urban, biomass burning/woodsmoke, and secondary sources at similar magnitudes. The 2006 Mexico City emissions inventory underestimates the urban primary PM{sub 2.5} emissions by a factor of {approx}4, and it is {approx}16 times lower than afternoon concentrations when secondary species are included. Additionally, the forest fire contribution is at least an order-of-magnitude larger than in the inventory.

  3. Composition and major sources of organic compounds in urban aerosols

    NASA Astrophysics Data System (ADS)

    Bi, Xinhui; Simoneit, Bernd R. T.; Sheng, Guoying; Ma, Shexia; Fu, Jiamo

    Total suspended particles (TSP), collected during June 2002 to July 2003 in Guangzhou, a typical economically developed city in South China, were analyzed for the organic compound compositions using gas chromatography-mass spectrometry (GC/MS). Over 140 organic compounds were detected in the aerosols and grouped into different classes including n-alkanes, hopanoids, polycyclic aromatic hydrocarbons, alkanols, fatty acids, dicarboxylic acids excluding oxalic acid, polyols/polyacids, lignin products, phytosterols, phthalates and water-soluble sugars. The total amounts of the identified organic compounds including unresolved complex mixture (UCM) ranged from 3112 ng/m 3 in spring to 5116 ng/m 3 in winter, comprising on seasonal average 2.8% of TSP. Primary organic compounds peaked in winter although there are no heating systems burning fuels in Guangzhou. The highest saccharide levels occurred in fall due to agricultural activities. This study demonstrated that utilization of fossil fuels, biomass burning, soil resuspension and plastic/refuse burning are the major contributors to the identified organic compounds in the urban atmosphere of South China.

  4. Source strength of fungal spore aerosolization from moldy building material

    NASA Astrophysics Data System (ADS)

    Górny, Rafał L.; Reponen, Tiina; Grinshpun, Sergey A.; Willeke, Klaus

    The release of Aspergillus versicolor, Cladosporium cladosporioides, and Penicillium melinii spores from agar and ceiling tile surfaces was tested under different controlled environmental conditions using a newly designed and constructed aerosolization chamber. This study revealed that all the investigated parameters, such as fungal species, air velocity above the surface, texture of the surface, and vibration of contaminated material, affected the fungal spore release. It was found that typical indoor air currents can release up to 200 spores cm -2 from surfaces with fungal spores during 30-min experiments. The release of fungal spores from smooth agar surfaces was found to be inadequate for accurately predicting the emission from rough ceiling tile surfaces because the air turbulence increases the spore release from a rough surface. A vibration at a frequency of 1 Hz at a power level of 14 W resulted in a significant increase in the spore release rate. The release appears to depend on the morphology of the fungal colonies grown on ceiling tile surfaces including the thickness of conidiophores, the length of spore chains, and the shape of spores. The spores were found to be released continuously during each 30-min experiment. However, the release rate was usually highest during the first few minutes of exposure to air currents and mechanical vibration. About 71-88% of the spores released during a 30-min interval became airborne during the first 10 min.

  5. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  6. Relative Contributions of Fossil and Contemporary Carbon sources to PM 2.5 Aerosols at Nine IMPROVE Network Sites

    SciTech Connect

    Bench, G; Fallon, S; Schichtel, B; Malm, W; McDade, C

    2006-06-26

    Particulate matter aerosols contribute to haze diminishing vistas and scenery at National Parks and Wilderness Areas within the United States. To increase understanding of the sources of carbonaceous aerosols at these settings, the total carbon loading and {sup 14}C/C ratio of PM 2.5 aerosols at nine IMPROVE (Interagency Monitoring for Protection Of Visual Environments) network sites were measured. Aerosols were collected weekly in the summer and winter at one rural site, two urban sites, five sites located in National Parks and one site located in a Wildlife Preserve. The carbon measurements together with the absence of {sup 14}C in fossil carbon materials and the known {sup 14}C/C levels in contemporary carbon materials were used to derive contemporary and fossil carbon contents of the particulate matter. Contemporary and fossil carbon aerosol loadings varied across the sites and suggest different percentages of carbon source inputs. The urban sites had the highest fossil carbon loadings that comprised around 50% of the total carbon aerosol loading. The Wildlife Preserve and National Park sites together with the rural site had much lower fossil carbon loading components. At these sites, variations in the total carbon aerosol loading were dominated by non-fossil carbon sources. This suggests that reduction of anthroprogenic sources of fossil carbon aerosols may result in little decrease in carbonaceous aerosol loading at many National Parks and rural areas.

  7. Developing a broad spectrum atmospheric aerosol characterization for remote sensing platforms over desert regions

    NASA Astrophysics Data System (ADS)

    Strong, Shadrian B.; Brown, Andrea M.

    2014-05-01

    Remotely sensed imagery of targets embedded in Earth's atmosphere requires characterization of aerosols between the space-borne sensor and ground to accurately analyze observed target signatures. The impact of aerosol microphysical properties on retrieved atmospheric radiances has been shown to negatively affect the accuracy of remotely sensed data collects. Temporally and regionally specific meteorological conditions require exact site atmospheric characterization, involving extensive and timely observations. We present a novel methodology which fuses White Sands New Mexico regional aerosol micro pulse lidar (MPL) observations with sun photometer direct and diffuse products for broad-wavelength (visible - longwave infrared) input into the radiative transfer model MODTRAN5. Resulting radiances are compared with those retreived from the NASA Aqua MODIS instrument.

  8. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  9. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, V.; Byčenkienė, S.; Bozzetti, C.; Vlachou, A.; Plauškaitė, K.; Mordas, G.; Dudoitis, V.; Abbaszade, G.; Remeikis, V.; Garbaras, A.; Masalaite, A.; Blees, J.; Fröhlich, R.; Dällenbach, K. R.; Canonaco, F.; Slowik, J. G.; Dommen, J.; Zimmermann, R.; Schnelle-Kreis, J.; Salazar, G. A.; Agrios, K.; Szidat, S.; El Haddad, I.; Prévôt, A. S. H.

    2015-09-01

    In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 μg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the TC, respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 % and 7-12 %, respectively. Isotope ratio of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  10. Characterizing the impact of urban emissions on regional aerosol particles; airborne measurements during the MEGAPOLI experiment

    NASA Astrophysics Data System (ADS)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouch, N.; Pichon, J.-M.; Prévôt, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2013-09-01

    , and have an impact on aerosol composition on a regional scale. They provide a quantitative measure of this impact in terms of urban plume composition and evolution relative to background aerosol composition.

  11. Environmental radiation safety: source term modification by soil aerosols. Interim report

    SciTech Connect

    Moss, O.R.; Allen, M.D.; Rossignol, E.J.; Cannon, W.C.

    1980-08-01

    The goal of this project is to provide information useful in estimating hazards related to the use of a pure refractory oxide of /sup 238/Pu as a power source in some of the space vehicles to be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere, and to impact with the earth's surface without releasing any plutonium, the possibility that such an event might produce aerosols composed of soil and /sup 238/PuO/sub 2/ cannot be absolutely excluded. This report presents the results of our most recent efforts to measure the degree to which the plutonium aerosol source term might be modified in a terrestrial environment. The five experiments described represent our best effort to use the original experimental design to study the change in the size distribution and concentration of a /sup 238/PuO/sub 2/ aerosol due to coagulation with an aerosol of clay or sandy loam soil.

  12. Aerosols and Convection: Global scale, MJO Scale and Regional Scale Analyses

    NASA Astrophysics Data System (ADS)

    Rutledge, S. A.

    2014-12-01

    We have investigated interactions between atmospheric thermodynamics, boundary layer aerosol (CCN) concentrations, convective intensity and lightning flash rates (from the TRMM LIS and the Vaisala GLD 360 global network) on three distinct scales, including the global tropical ocean and land masses, the Madden Julian Oscillation genesis region over the central Indian Ocean (CIO) region, and four regions in the U.S., Washington D.C., northern Alabama, central Oklahoma and eastern Colorado. The U.S. locations are each supported by VHF Lightning Mapping Arrays. Total lightning density is shown to increase by a factor of 2-3 as a function of CCN concentration over tropical land and ocean regions. The greatest sensitivity in the lightning vs. aerosol relationship was found in more unstable environments and where warm-cloud depth was intermediate (deep) over land (ocean). The maximum height of 30 dBZ echo tops in lightning producing convective features was found to be insensitive to changes in CCN concentration. However, the vertical profile of radar reflectivity (VPRR) showed a consistent increase of 2-4 dBZ for convective features that developed in more polluted environments, suggesting that aerosols may act to intensify the convection, but not necessarily make the convection deeper. These findings are consistent with the hypothesis that aerosols act to invigorate convection by influencing the evolution of a cloud's hydrometeor populations. For the regional scale analysis, storms in Colorado have favorable thermodynamics (high cloud bases, shallow warm cloud depths and large CAPE's) that aerosols (CCN) appear to have little effect in a bulk sense. For the three remaining regions, storms forming in environments with CCN concentrations between 700 and 1200 cm-3 have notably stronger VPRR and larger flash rates. For aerosol concentrations below and above this range, storms have less vigor and reduced flash rates, consistent with the Rosenfeld et al. (2008) study. Finally

  13. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2011-10-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12-250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA) observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25-0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions containing up to 3 carbon atoms accounted for 66%, 68%, 72% and 76% of the organic spectrum of the SOA produced by the diesel car, wood burner, α-pinene and

  14. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    NASA Astrophysics Data System (ADS)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate

  15. Light absorption of brown carbon aerosol in the PRD region of China

    NASA Astrophysics Data System (ADS)

    Yuan, J.-F.; Huang, X.-F.; Cao, L.-M.; Cui, J.; Zhu, Q.; Huang, C.-N.; Lan, Z.-J.; He, L.-Y.

    2015-10-01

    The strong spectral dependence of light absorption of brown carbon (BrC) aerosol is regarded to influence aerosol's radiative forcing significantly. The Absorption Angstrom Exponent (AAE) method was widely used in previous studies to attribute light absorption of BrC at shorter wavelengths for ambient aerosol, with a theoretical assumption that the AAE of "pure" black carbon (BC) aerosol equals to 1.0. In this study, the previous AAE method was improved by statistical analysis and applied in both urban and rural environments in the Pearl River Delta (PRD) region of China. A three-wavelength photo-acoustic soot spectrometer (PASS-3) and aerosol mass spectrometers (AMS) were used to explore the relationship between the measured AAE and the relative abundance of organic aerosol to BC. The regression and extrapolation analysis revealed that the more realistic AAE values for "pure" BC aerosol were 0.86, 0.82, and 1.02 at 405 nm, and 0.70, 0.71, and 0.86 at 532 nm, in the campaigns of urban_winter, urban_fall, and rural_fall, respectively. Roadway tunnel experiments were also conducted, and the results further supported the representativeness of the obtained AAE values for "pure" BC aerosol in the urban environments. Finally, the average aerosol light absorption contribution of BrC was quantified to be 11.7, 6.3, and 12.1 % (with relative uncertainties of 4, 4, and 7 %) at 405 nm, and 10.0, 4.1, and 5.5 % (with relative uncertainties of 2, 2, and 5 %) at 532 nm, in the campaigns of urban_winter, urban_fall, and rural_fall, respectively. The relatively higher BrC absorption contribution at 405 nm in the rural_fall campaign was likely a result of the biomass burning events nearby, which was supported by the biomass burning simulation experiments performed in this study. The results of this paper indicate that the brown carbon contribution to aerosol light absorption at shorter wavelengths is not negligible in the highly urbanized and industrialized PRD region.

  16. Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions

    NASA Technical Reports Server (NTRS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-01-01

    Aerosols are tiny suspended particles in the atmosphere that scatter and absorb sunlight. Smoke particles are aerosols, as are sea salt, particulate pollution and airborne dust. When you look down at the earth from space sometimes you can see vast palls of whitish smoke or brownish dust being transported by winds. The reason that you can see these aerosols is because they are reflecting incoming sunlight back to the view in space. The reason for the difference in color between the different types of aerosol is that the particles arc also absorbing sunlight at different wavelengths. Dust appears brownish or reddish because it absorbs light in the blue wavelengths and scatters more reddish light to space, Knowing how much light is scattered versus how much is absorbed, and knowin that as a function of wavelength is essential to being able to quantify the role aerosols play in the energy balance of the earth and in climate change. It is not easy measuring the absorption properties of aerosols when they are suspended in the atmosphere. People have been doing this one substance at a time in the laboratory, but substances mix when they are in the atmosphere and the net absorption effect of all the particles in a column of air is a goal of remote sensing that has not yet been completely successful. In this paper we use a technique based on observing the point at which aerosols change from brightening the surface beneath to darkening it. If aerosols brighten a surface. they must scatter more light to space. If they darken the surface. they must be absorbing more. That cross over point is called the critical reflectance and in this paper we show that critical reflectance is a monotonic function of the intrinsic absorption properties of the particles. This parameter we call the single scattering albedo. We apply the technique to MODIS imagery over the Sahara and Sahel regions to retrieve the single scattering albedo in seven wavelengths, compare these retrievals to ground

  17. Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2015-12-01

    X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the

  18. Regional Biases in Droplet Activation Parameterizations: Strong Influence on Aerosol Second Indirect Effect in the Community Atmosphere Model v5.

    NASA Astrophysics Data System (ADS)

    Morales, R.; Nenes, A.

    2014-12-01

    Aerosol-cloud interactions constitute one of the most uncertain aspects of anthropogenic climate change estimates. The magnitude of these interactions as represented in climate models strongly depends on the process of aerosol activation. This process is the most direct physical link between aerosols and cloud microphysical properties. Calculation of droplet number in GCMs requires the computation of new droplet formation (i.e., droplet activation), through physically based activation parameterizations. Considerable effort has been placed in ensuring that droplet activation parameterizations have a physically consistent response to changes in aerosol number concentration. However, recent analyses using an adjoint sensitivity approach showed that parameterizations can exhibit considerable biases in their response to other aerosol properties, such as aerosol modal diameter or to the aerosol chemical composition. This is a potentially important factor in estimating aerosol indirect effects since changes in aerosol properties from pre-industrial times to present day exhibit a very strong regional signature. In this work we use the Community Atmosphere Model (CAM5) to show that the regional imprint of the changes in aerosol properties during the last century interacts with the droplet activation parameterization in a way that these biases are amplified over climatically relevant regions. Two commonly used activation routines, the CAM5 default, Abdul-Razzak and Ghan parameterization, as well as the Fountoukis and Nenes parameterization are used in this study. We further explored the impacts of Nd parameterization biases in the first and second aerosol indirect effects separately, by performing simulations were droplet number was not allowed to intervene in the precipitation initiation process. The simulations performed show that an unphysical response to changes in the diameter of accumulation mode aerosol translates into extremely high Nd concentrations over South

  19. Improving the simulation of organic aerosols from anthropogenic and burning sources: a simplified SOA formation mechanism and the impact of trash burning

    NASA Astrophysics Data System (ADS)

    Hodzic, A.; Wiedinmyer, C.; Jimenez, J. L.

    2011-12-01

    Organic aerosols (OA) are an major component of fine aerosols, but their sources are poorly understood. We present results of two methods to improve OA predictions in anthropogenic pollution and biomass-burning impacted regions. (1) An empirical parameterization for secondary organic aerosol (SOA) formation in polluted air and biomass burning smoke is implemented into community chemistry-transport models (WRF/Chem and CHIMERE) and tested in this work, towards the goal of a computationally inexpensive method to calculate pollution and biomass burning SOA. This approach is based on the observed proportionality of SOA concentrations to excess CO and photochemical age of the airmass, as described in Hodzic and Jimenez (GMDD, 2011). The oxygen to carbon ratio in organic aerosols is also parameterizated vs. photochemical aged based on the ambient observations, and is used to estimate the aerosol hygroscopicity and CCN activity. The predicted SOA is assessed against observations from the Mexico City metropolitan area during the MILAGRO 2006 field experiment, and compared to previous model results using the more complex volatility basis approach (VBS) of Robinson et al.. The results suggest that the simplified approach reproduces the observed average SOA mass within 30% in the urban area and downwind, and gives better results than the original VBS. In addition to being much less computationally expensive than VBS-type methods, the empirical approach can also be used in regions where the emissions of SOA precursors are not yet available. (2) The contribution of trash burning emissions to primary and secondary organic aerosols in Mexico City are estimated, using a recently-developed emission inventory. Submicron antimony (Sb) is used as a garbage-burning tracer following the results of Christian et al. (ACP 2010), which allows evaluation of the emissions inventory. Results suggests that trash burning may be an appreciable source of organic aerosols in the Mexico City

  20. HETEROGENEOUS SOOT NANOSTRUCTURE IN ATMOSPHERIC AND COMBUSTION SOURCE AEROSOLS

    EPA Science Inventory

    Microscopic images of soot emissions from wildfire and a wide range of anthropogenic combustion sources show that the nanostructures of individual particles in these emissions are predominantly heterogeneous, decidedly influenced by the fuel composition and by the particular comb...

  1. Spatial distribution of carbonaceous aerosol in the southeastern Baltic Sea region (event of grass fires)

    NASA Astrophysics Data System (ADS)

    Dudoitis, Vadimas; Byčenkienė, Steigvilė; Plauškaitė, Kristina; Bozzetti, Carlo; Fröhlich, Roman; Mordas, Genrik; Ulevičius, Vidmantas

    2016-05-01

    The aerosol chemical composition in air masses affected by large vegetation fires transported from the Kaliningrad region (Russia) and southeast regions (Belarus and Ukraine) during early spring (March 2014) was characterized at the remote background site of Preila, Lithuania. In this study, the chemical composition of the particulate matter was studied by high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalometer. Air masses were transported from twenty to several hundred kilometres, arriving at the measurement station after approximately half a day of transport. The concentration-weighted trajectory analysis suggests that organic aerosol particles are mainly transported over the Baltic Sea and the continent (southeast of Belarus). Results show that a significant fraction of the vegetation burning organic aerosol is transformed into oxidised forms in less than a half-day. Biomass burning aerosol (BBOA) was quantified from the ACSM data using a positive matrix factorization (PMF) analysis, while its spatial distribution was evaluated using air mass clustering approach.

  2. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia

    SciTech Connect

    Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela; Lee, H-J; Segev, Lior; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Brown, Steven; Rudich, Yinon

    2014-05-14

    Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited

  3. Sources of carbonaceous aerosol in the free troposphere

    NASA Astrophysics Data System (ADS)

    Timonen, H.; Jaffe, D. A.; Wigder, N.; Hee, J.; Gao, H.; Pitzman, L.; Cary, R. A.

    2014-08-01

    In this study concentrations of organic (OC) and elemental carbon (EC) from free tropospheric (FT) fine particulate matter (PM) were measured from March to September, 2012 with a Semi-Continuous OC/EC carbon aerosol analyzer at the top of Mt. Bachelor (2.8 km a.s.l) in Central Oregon, U.S. The average concentrations of OC and EC in the FT were low (OC: 1.87 ± 6.10, EC: 0.07 ± 0.26 μg m-3; average ± SD) but much higher during specific pollution episodes. During springtime the highest OC and EC concentrations were measured for dry free tropospheric air masses, whereas during summertime the highest OC and EC concentrations were typically measured for more humid air masses that were uplifted from the boundary layer (BL). The highest OC and EC concentrations were measured during biomass burning episodes (3 h average OC: up to 146.0 μg m-3, EC up to 5.5 μg m-3). Elevated OC and EC concentrations were also measured during Asian Long Range Transport (LRT) episodes (OC: up to 3.6 μg m-3, EC up to 1.1 μg m-3). In addition, between episodes, an increase in OC was seen in the afternoon, possibly due to SOA formation. This SOA can then be exported to the FT via diurnal ventilation of the BL. For Asian LRT episodes the OC/EC ratios varied between 8 and 34, with an average of 17.9. For local biomass burning emissions OC/EC ratios were between 25 and 30. Higher OC/EC ratios (30-40) were observed for the biomass burning plumes originating from longer distances, possibly due to SOA formation.

  4. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Gómez-González, Y.; Wang, W.; Vermeylen, R.; Chi, X.; Neirynck, J.; Janssens, I. A.; Maenhaut, W.; Claeys, M.

    2012-01-01

    Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium) during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL)" project. The measured organic species included (i) low-molecular weight (MW) dicarboxylic acids (LMW DCAs), (ii) methanesulfonate (MSA), (iii) terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv) organosulfates related to secondary organic aerosol from the oxidation of isoprene and α-pinene. The organic tracers explained, on average, 5.3 % of the organic carbon (OC), of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, 0.6 % to organosulfates, and 0.6 % to terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their local photochemical origin. High concentrations of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA) and low concentrations of cis-pinonic acid were noted during the first five days of the campaign, indicative of an aged biogenic aerosol. Several correlations between organic species were very high (r>0.85), high (0.70.7) and showed an Arrhenius-type relationship, consistent with their formation through OH radical chemistry.

  5. Sources of primary and secondary organic aerosol and their diurnal variations.

    PubMed

    Zheng, Mei; Zhao, Xiuying; Cheng, Yuan; Yan, Caiqing; Shi, Wenyan; Zhang, Xiaolu; Weber, Rodney J; Schauer, James J; Wang, Xinming; Edgerton, Eric S

    2014-01-15

    PM(2.5), as one of the criteria pollutants regulated in the U.S. and other countries due to its adverse health impacts, contains more than hundreds of organic pollutants with different sources and formation mechanisms. Daytime and nighttime PM2.5 samples from the August Mini-Intensive Gas and Aerosol Campaign (AMIGAS) in the southeastern U.S. were collected during summer 2008 at one urban site and one rural site, and were analyzed for organic carbon (OC), elemental carbon (EC), water soluble organic carbon (WSOC), and various individual organic compounds including some important tracers for carbonaceous aerosol sources by gas chromatography-mass spectrometry. Most samples exhibited higher daytime OC concentration, while higher nighttime OC was found in a few events at the urban site. Sources, formation mechanisms and composition of organic aerosol are complicated and results of this study showed that it exhibited distinct diurnal variations. With detailed organic tracer information, sources contribu