Science.gov

Sample records for aerosol spectral absorption

  1. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  2. Spectral Measurements of Aerosol Absorption from UV to VISIBLE

    NASA Astrophysics Data System (ADS)

    Krotkov, N. A.; Labow, G.; Herman, J.; Bhartia, P. K.; Slusser, J.; Durham, B.; Janson, G.; Wilson, C.; Disterhoft, P.; Cede, A.; Abuhassan, N.; Eck, T. F.; Holben, B.; Bais, A.; Rapsomanikis, S.

    2007-05-01

    Amount of solar radiation reaching the Earth's surface can be strongly influenced by aerosol absorption. The aerosol absorption optical thickness (AAOT) in the visible and near IR (440 nm- 1020nm) is routinely produced from almucantar measurements made by the CIMEL instruments in the AERONET network. AAOT in the UV (300nm- 368nm) have been derived from the total and diffuse hemispherical flux measurements made by UV- Multifilter Rotating Shadowband Radiometer (UV-MFRSR, Yankee Environmental Systems, Inc.) instruments. However, no direct comparisons between these two methods exist because the CIMEL wavelengths (used in almucantar retrievals) do not overlap with the UV-MFRSR wavelengths. To enable direct comparisons between the two techniques, we have modified our UV-MFRSR, part of USDA UVB Monitoring and Research Network, by replacing standard 300nm filter with 440nm filter used in AERONET network. The instrument has been deployed at Mauna Loa Observatory, at NASA GSFC in Greenbelt, MD (July 2005 - June 2006) and during SCOUT-03 field campaign in Thessaloniki, Greece in July 2006. During these deployments the instrument's calibration was monitored daily using co-located AERONET and BREWER direct sun measurements of aerosol extinction optical thickness (AOT). Between the deployments the instrument was thoroughly calibrated at the NOAA Central UV Calibration Facility in Boulder, Colorado. We find that the UV-MSFRSR instrument is highly susceptible to calibration drifts. However, these drifts can be accurately assessed using AERONET and BREWER direct sun data. After correcting for these calibration changes, the AAOT was inferred by fitting the measurements of global and diffuse atmospheric transmittances with the forward RT model independently at each spectral channel. The AOT data and ancillary measurements of aerosol column particle size distribution and refractive index in the visible wavelengths (by CIMEL sun-sky almucantar inversions), direct -sun column NO2 and

  3. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption in Xianghe, SE of Beijing, China

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2005-12-01

    China's rapid industrialization over the last few decades has affected air quality in many regions of China, and even the regional climate. As a part of the EAST-AIRE (East Asian Study of Tropospheric Aerosols: an International Regional Experiment) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals since January 2005 at Xianghe, about 70 km southeast of Beijing. Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations during the winter months (January-March) ranged from 9 to 459 μg/m3 in the coarse mode with an average concentration of 122 μg/m3, and from 11 to 203 μg/m3 in the fine mode with an average concentration of 45 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Absorption efficiency measurements at 550 nm show very high values compared to measurements performed in the United States during the CLAMS experiment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in refractive indices from the several collected species and particle size effects. The absorption properties from aerosols measured in China show large absorption efficiencies, compared to aerosols measured in the US, possibly linked to different technology practices used in these countries. For organic plus black carbon aerosols, where the refractive index seems to be relatively constant, the absorption efficiency spectral dependence for fine mode aerosols falls between 1/λ and 1/λ2. The coarse mode absorption shows much less spectral dependence.

  4. Spectral Absorption of Solar Radiation by Aerosols during ACE-Asia

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Pilewskie, P.; Pommier, J.; Rabbette, M.; Russell, P. B.; Schmid, B.; Redermann, J.; Higurashi, A.; Nakajima, T.; Quinn, P. K.

    2004-01-01

    As part of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the upward and downward spectral solar radiant fluxes were measured with the Spectral Solar Flux Radiometer (SSFR), and the aerosol optical depth was measured with the Ames Airborne Tracking Sunphotometer (AATS-14) aboard the Center for INterdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter aircraft. IN this paper, we examine the data obtained for two cases: a moderately thick aerosol layer, 12 April, and a relatively thin aerosol case, 16 April 2001. ON both days, the Twin Otter flew vertical profiles in the Korean Strait southeast of Gosan Island. For both days we determine the aerosol spectral absorption of the layer and estimate the spectral aerosol absorption optical depth and single-scattering albedo. The results for 12 April show that the single-scattering albedo increases with wavelength from 0.8 at 400 nm to 0.95 at 900 nm and remains essentially constant from 950 to 1700 nm. On 16 April the amount of aerosol absorption was very low; however, the aerosol single-scattering albedo appears to decrease slightly with wavelength in the visible region. We interpret these results in light of the two absorbing aerosol species observed during the ACE-asia study: mineral dust and black carbon. The results for 12 April are indicative of a mineral dust-black carbon mixture. The 16 April results are possibly caused by black carbon mixed with nonabsorbing pollution aerosols. For the 12 April case we attempt to estimate the relative contributions of the black carbon particles and the mineral dust particles. We compare our results with other estimates of the aerosol properties from a Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) satellite analysis and aerosol measurements made aboard the Twin Otter, aboard the National Oceanic and Atmospheric Administration Ronald H Brown ship, and at ground sites in Gosan and Japan. The results indicate a relatively complicated aerosol

  5. Mixing state and spectral absorption of atmospheric aerosols observed at a marine background site

    NASA Astrophysics Data System (ADS)

    Cayetano, M. G.; Lee, K. Y.; Kim, Y. J.

    2011-12-01

    Mineral dust and sea salt particles are portions of atmospheric aerosols in Korea due to the periodic transport of loess dust particles from Gobi and Taklimakan deserts in west China, as well as the sea salt enrichment of atmospheric particles from the seas surrounding the Korean peninsula [Kim et al., 2009; Sahu et al., 2009]. Carbonaceous particles and secondary inorganic aerosols (sulphates and nitrates) are ubiquitous due to the proliferating biomass burning [Ryu et al., 2004], as well as the increasing use of fossil fuels locally and by regional transport from neighbouring countries. Collectively, when these aerosols are transported, their compositions are further modified due to the aging process, impacting their physico-chemical properties including spectral absorption. In order to investigate the spectral response of the absorption under different ambient aerosol conditions, measurements have been conducted at a marine background site in Korea (Deokjeok Island. 37° 13' 33" N, 126° 8' 51" E) during the spring (13 days) and fall (8 days) seasons of 2009 using an aethalometer (Magee AE31), a nephelometer (Optec NGN2a) and other supporting instruments (PILS-IC, PM2.5 cyclone samplers for off-line OC/EC measurements). It has been found that spring aerosols were dominated by sulphate-rich and carbonaceous-rich fractions (21.4%±8.0% and 28.8%±7.9%, respectively), with an Angström exponent of absorption, αabs = 1.3±0.1 at 370-950 nm. The fall season aerosols were grouped based on their chemical composition as acidic aerosols, dust-enriched, and seasalt-enriched aerosols. Angström exponent of absorption, αabs for acidic aerosols was obtained to be 1.3±0.2 at 370-950 nm. However, dust enriched aerosols showed increased absorption in the short UV-Vis range (370-590 nm), which can be attributed to their mixing with light absorbing aerosols. Different types of aerosols exhibit different spectral absorption characteristics depending on their composition and

  6. Spectral Light Absorption and Scattering by Aerosol Particles in Central Amazonia

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Holanda, B. A.; Ferreira De Brito, J.; Carbone, S.; Barbosa, H. M.; Rizzo, L. V.; Cirino, G. G.; Andreae, M. O.; Saturno, J.; Pöhlker, C.; Martin, S. T.; Holben, B. N.; Schafer, J.

    2015-12-01

    As part of the GoAmazon2014/5, a detailed characterization of spectral light absorption and light scattering was performed at four research sites located in the central Amazon forest at different distances upwind and downwind of Manaus. The sites ATTO (T0a) and Embrapa (T0e) are located upwind of Manaus where it is possible to observe very pristine atmospheric conditions in wet season. The site Tiwa (T2) is being operated under the direct influence of the Manaus plume at 5 km downwind of Manaus and, finally, the Manacapuru (T3) site is located at about 60 km downwind of Manaus. The spectral dependence of light absorption and light scattering were measured using Aethalometers (7-wavelengths) and Nephelometers (3-wavelengths), respectively. By calculating the Absorption Angstrom Exponent (AAE), it was possible to get information about the source of the aerosol whereas the Scattering Angstrom Exponent (SAE) gives information about its size distribution. Sunphotometers from the AERONET network were set up at T3 and T0e sites to measure column Aerosol Optical Depth (AOD). For all the stations, much higher absorption and scattering coefficients were observed during the dry season in comparison to the wet season, as a result of the larger concentration of BC and OC present in the biomass burning events. Additionally, we also observed Manaus plume pollution that alters the BC signal. There is also an increase of the AAE during the dry season due to the larger amount of aerosols from biomass burning compared with urban pollution. High values of AAE are also observed during the wet season, attributed to the presence of long-range transport of aerosols from Africa. The SAE for all the sites are lower during the wet season, with the dominance of large biological particles, and increases during the dry season as a consequence of fine particles emitted from both biomass and fossil fuel burning. The AOD at T0e and T3 (Jan-Jun/2014) showed very similar values ranging from 0.05 to

  7. In Situ Measurements of Aerosol Mass Concentration and Spectral Absorption at Three Location in and Around Mexico City

    NASA Astrophysics Data System (ADS)

    Chaudhry, Z.; Martins, V.; Li, Z.

    2006-12-01

    As a result of population growth and increasing industrialization, air pollution in heavily populated urban areas is one of the central environmental problems of the century. As a part of the MILAGRO (Megacity Initiative: Local and Global Research Observations) study, Nuclepore filters were collected in two size ranges (PM10 and PM2.5) at 12 hour intervals at three location in Mexico during March, 2006. Sampling stations were located at the Instituto Mexicano del Petroleo (T0), at the Rancho La Bisnago in the State of Hidalgo (T2) and along the Gulf Coast in Tampico (Tam). Each filter was analyzed for mass concentration, aerosol scattering and absorption efficiencies. Mass concentrations at T0 ranged from 47 to 179 μg/m3 for PM10 with an average concentration of 96 μg/m3, and from 20 to 93 μg/m3 for PM2.5 with an average concentration of 41 μg/m3. Mass concentrations at T2 ranged from 12 to 154 μg/m3 for PM10 with an average concentration of 51 μg/m3, and from 7 to 50 μg/m3 for PM2.5 with an average concentration of 25 μg/m3. Mass concentrations at Tam ranged from 34 to 80 μg/m3 for PM10 with an average concentration of 52 μg/m3, and from 8 to 23 μg/m3 for PM2.5 with an average concentration of 13 μg/m3. While some of the extreme values are likely linked to local emissions, regional air pollution episodes also played important roles. Each of the sampling stations experienced a unique atmospheric condition. The site at T0 was influenced by urban air pollution and dust storms, the site at T2 was significantly less affected by air pollution but more affected by regional dust storms and local dust devils while Tam was influenced by air pollution, dust storms and the natural marine environment. The spectral mass absorption efficiency was measured from 350 to 2500 nm and shows large differences between the absorption properties of soil dust, black carbon, and organic aerosols. The strong spectral differences observed can be related to differences in

  8. Aerosol Absorption Measurements in MILAGRO.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  9. Remote Sensing of Aerosol and Non-Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Kaufman, Y. J.; Dubovik, O.; Holben, B. N.; Remer, L. A.; Tanre, D.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    Remote sensing of aerosol from the new satellite instruments (e.g. MODIS from Terra) and ground based radiometers (e.g. the AERONET) provides the opportunity to measure the absorption characteristics of the ambient undisturbed aerosol in the entire atmospheric column. For example Landsat and AERONET data are used to measure spectral absorption of sunlight by dust from West Africa. Both Application of the Landsat and AERONET data demonstrate that Saharan dust absorption of solar radiation is several times smaller than the current international standards. This is due to difficulties of measuring dust absorption in situ, and due to the often contamination of dust properties by the presence of air pollution or smoke. We use the remotely sensed aerosol absorption properties described by the spectral sin le scattering albedo, together with statistics of the monthly optical thickness for the fine and coarse aerosol derived from the MODIS data. The result is an estimate of the flux of solar radiation absorbed by the aerosol layer in different regions around the globe where aerosol is prevalent. If this aerosol forcing through absorption is not included in global circulation models, it may be interpreted as anomalous absorption in these regions. In a preliminary exercise we also use the absorption measurements by AERONET, to derive the non-aerosol absorption of the atmosphere in cloud free conditions. The results are obtained for the atmospheric windows: 0.44 microns, 0.66 microns, 0.86 microns and 1.05 microns. In all the locations over the land and ocean that were tested no anomalous absorption in these wavelengths, was found within absorption optical thickness of +/- 0.005.

  10. Scattering and absorption by thin flat aerosols.

    PubMed

    Weil, H; Chu, C M

    1980-06-15

    An integral equation method is used to study spectral and polarization effects for the scattering and absorption of electromagnetic radiation incident on arbitrarily oriented flat disk aerosols of major dimension comparable to the wavelength of the radiation. Numerical results for flat plate ice crystals are presented.

  11. Inferring Aerosol Angstrom Absorption Exponent using satellite observations

    NASA Astrophysics Data System (ADS)

    Torres, O.; Bhartia, P. K.; Jethva, H. T.; Ahn, C.

    2013-12-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellite-based method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols are present above clouds. The upwelling reflectance at the cloud top is attenuated by the absorption effects of the overlying aerosol layer. This attenuation effect can be described using an approximations of Beer's Law. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, the spectral AAOD is derived by an inversion of the measured spectral reflectance. The proposed technique will be discussed and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  12. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    aerosol Angstrom absorption exponents by linear regression over the entire UV-visible spectral range. These results are compared to results obtained from the absorbance measurements obtained in the field. The differences in calculated Angstrom absorption exponents between the field and laboratory measurements are attributed partly to the differences in time resolution of the sample collection resulting in heavier particle pileup on the filter surface of the 12-hour samples. Some differences in calculated results can also be attributed to the presence of narrow band absorbers below 400 nm that do not fall in the wavelengths covered by the 7 wavelengths of the aethalometer. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, "The determination of scattering and absorption coefficients of size-fractionated aerosols for radiative transfer calculations." Aerosol Sci. Technol., 34, 535-549, (2001). This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  13. Retrieval of Aerosol Absorption Properties from Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, Pawan K.; Jethva, H.; Ahn, Chang-Woo

    2012-01-01

    The Angstrom Absorption Exponent (AAE) is a parameter commonly used to characterize the wavelength-dependence of aerosol absorption optical depth (AAOD). It is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses multi-spectral measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measurement can be explained, using an approximations of Beer's Law (BL), as the upwelling reflectance at the cloud top attenuated by the absorption effects of the overlying aerosol layer. The upwelling reflectance at the cloud-top in an aerosol-free atmospheric column is mainly a function of cloud optical depth (COD). In the proposed method of AAE derivation, the first step is determining COD which is retrieved using a previously developed color-ratio based approach. In the second step, corrections for molecular scattering effects are applied to both the observed ad the calculated cloud reflectance terms, and the spectral AAOD is then derived by an inversion of the BL approximation. The proposed technique will be discussed in detail and application results making use of OMI multi-spectral measurements in the UV-Vis. will be presented.

  14. Optical Absorption Characteristics of Aerosols.

    DTIC Science & Technology

    1985-09-11

    properties of the powder as well as the thickness of the layer. For a layer that is thick enough so that no light is transmitted, the Kubelka -- Munk theory...which is a two stream radiative transfer model, relates the reflectance to the ratio of the absorption to the scattering. The Kubelka - Munk theory has...of the aerosol material is known. Under the assumptions of the Kubelka - Munk . theory, the imaginary component of the refractive index is deter- mined

  15. Using Retrieved Aerosol Spectral Properties to Characterize Aerosol Composition and Mixing

    NASA Astrophysics Data System (ADS)

    Li, J.

    2015-12-01

    The spectral dependence of aerosol properties, such as aerosol absorption optical depth (AAOD) and single scattering albedo (SSA), can be used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, spectral AAOD and SSA measured in reality may differ from these extreme cases, due to the complicated composition and mixing states. In this study, we use spectral SSA and AAOD retrieved from AERONET measurements, assisted by CALIPSO aerosol type product and Mie calculations, to characterize aerosol mixtures over representative regions. Moreover, in addition to the monotonically increasing or decreasing AAOD and SSA spectra, we find the spectral dependence of these two parameters are frequently peaked (at 675 nm or 870 nm) over several places including East Asia, India, West Africa and South America. We thus suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Further analysis indicates that moderate mixing of black carbon with dust or organic carbon is mainly responsible for producing the SSA curvature. An optimization scheme was developed to match the observed AAOD and SSA spectra with Mie calculations assuming different aerosol composition and mixing states. Results suggest that while external mixing can explain most of the observed AAOD and SSA spectral dependence, internal mixing or core-shell mode is also likely under many circumstances, such as East Asia during winter and post-monsoon and winter seasons over India. This method offers the potential to quantitatively infer aerosol composition from these spectral measurements of aerosol optical properties.

  16. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  17. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    NASA Technical Reports Server (NTRS)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 < delta omega (sub 0) <= 0.02 decrease) than in previous work and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  18. An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Smirnov, A.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-09-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (τ) and single scattering albedo (ωo) from Aerosol Robotic Network (AERONET) measurements are used to form absorption (i.e., ωo and absorption Ångström exponent (αabs)) and size (i.e., extinction Ångström exponent (αext) and fine mode fraction of τ) relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to (1) determine the averageωo and αabs at each site (expanding upon previous work), (2) perform a sensitivity study on αabs by varying the spectral ωo, and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral ωo averages indicate slightly more aerosol absorption (i.e., a 0.0 < δωo ≤ 0.02 decrease) than in previous work, and optical mixtures of pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of αabs show significant overlap among aerosol type categories, and at least 10% of the αabs retrievals in each category are below 1.0. Perturbing the spectral ωo by ±0.03 induces significant αabs changes from the unperturbed value by at least ˜±0.6 for Dust, ˜±0.2 for Mixed, and ˜±0.1 for Urban/Industrial and Biomass Burning. The ωo440nm and αext440-870nmrelationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  19. Remote sensing of ocean color and aerosol properties: resolving the issue of aerosol absorption.

    PubMed

    Gordon, H R; Du, T; Zhang, T

    1997-11-20

    Current atmospheric correction and aerosol retrieval algorithms for ocean color sensors use measurements of the top-of-the-atmosphere reflectance in the near infrared, where the contribution from the ocean is known for case 1 waters, to assess the aerosol optical properties. Such measurements are incapable of distinguishing between weakly and strongly absorbing aerosols, and the atmospheric correction and aerosol retrieval algorithms fail if the incorrect absorption properties of the aerosol are assumed. We present an algorithm that appears promising for the retrieval of in-water biophysical properties and aerosol optical properties in atmospheres containing both weakly and strongly absorbing aerosols. By using the entire spectrum available to most ocean color instruments (412-865 nm), we simultaneously recover the ocean's bio-optical properties and a set of aerosol models that best describes the aerosol optical properties. The algorithm is applied to simulated situations that are likely to occur off the U.S. East Coast in summer when the aerosols could be of the locally generated weakly absorbing Maritime type or of the pollution-generated strongly absorbing urban-type transported over the ocean by the winds. The simulations show that the algorithm behaves well in an atmosphere with either weakly or strongly absorbing aerosol. The algorithm successfully identifies absorbing aerosols and provides close values for the aerosol optical thickness. It also provides excellent retrievals of the ocean bio-optical properties. The algorithm uses a bio-optical model of case 1 waters and a set of aerosol models for its operation. The relevant parameters of both the ocean and atmosphere are systematically varied to find the best (in a rms sense) fit to the measured top-of-the-atmosphere spectral reflectance. Examples are provided that show the algorithm's performance in the presence of errors, e.g., error in the contribution from whitecaps and error in radiometric calibration.

  20. Using Single-Scattering Albedo Spectral Curvature to Characterize East Asian Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2015-01-01

    Spectral dependence of aerosol single-scattering albedo (SSA) has been used to infer aerosol composition. In particular, aerosol mixtures dominated by dust absorption will have monotonically increasing SSA with wavelength while that dominated by black carbon absorption has monotonically decreasing SSA spectra. However, by analyzing SSA measured at four wavelengths, 440, 675, 870, and 1020 nm from the Aerosol Robotic Network data set, we find that the SSA spectra over East Asia are frequently peaked at 675 nm. In these cases, we suggest that SSA spectral curvature, defined as the negative of the second derivative of SSA as a function of wavelength, can provide additional information on the composition of these aerosol mixtures. Aerosol SSA spectral curvatures for East Asia during fall and winter are considerably larger than those found in places primarily dominated by biomass burning or dust aerosols. SSA curvature is found to increase as the SSA magnitude decreases. The curvature increases with coarse mode fraction (CMF) to a CMF value of about 0.4, then slightly decreases or remains constant at larger CMF. Mie calculations further verify that the strongest SSA curvature occurs at approx. 40% dust fraction, with 10% scattering aerosol fraction. The nonmonotonic SSA spectral dependence is likely associated with enhanced absorption in the shortwave by dust, absorption by black carbon at longer wavelengths, and also the flattened absorption optical depth spectral dependence due to the increased particle size.

  1. Light absorption of organic aerosol from pyrolysis of corn stalk

    NASA Astrophysics Data System (ADS)

    Li, Xinghua; Chen, Yanju; Bond, Tami C.

    2016-11-01

    Organic aerosol (OA) can absorb solar radiation in the low-visible and ultra-violet wavelengths thereby modifying radiative forcing. Agricultural waste burning emits a large quantity of organic carbon in many developing countries. In this work, we improved the extraction and analysis method developed by Chen and Bond, and extended the spectral range of OC absorption. We examined light absorbing properties of primary OA from pyrolysis of corn stalk, which is a major type of agricultural wastes. Light absorption of bulk liquid extracts of OA was measured using a UV-vis recording spectrophotometer. OA can be extracted by methanol at 95%, close to full extent, and shows polar character. Light absorption of organic aerosol has strong spectral dependence (Absorption Ångström exponent = 7.7) and is not negligible at ultra-violet and low-visible regions. Higher pyrolysis temperature produced OA with higher absorption. Imaginary refractive index of organic aerosol (kOA) is 0.041 at 400 nm wavelength and 0.005 at 550 nm wavelength, respectively.

  2. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and Aerosol Absorption Optical Depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of Aerosol Optical Depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the South African and South American biomass burning regions indicates that revising the spectrally-dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  3. Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Colarco, P. R.; Darmenov, A.; Randles, C. A.; Govindaraju, R.; Torres, O.; Campbell, J.; Spurr, R.

    2015-05-01

    A radiative transfer interface has been developed to simulate the UV aerosol index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI and aerosol absorption optical depth (AAOD) derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR), aerosol retrievals from the AErosol RObotic NETwork (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain potential misplacement of plume height by the model. By sampling dust, biomass burning and pollution events in 2007 we have compared model-produced AI and AAOD with the corresponding OMI products, identifying regions where the model representation of absorbing aerosols was deficient. As a result of this study over the Saharan dust region, we have obtained a new set of dust aerosol optical properties that retains consistency with the MODIS AOD data that were assimilated, while resulting in better agreement with aerosol absorption measurements from OMI. The analysis conducted over the southern African and South American biomass burning regions indicates that revising the spectrally dependent aerosol absorption properties in the near-UV region improves the modeled-observed AI comparisons

  4. Infrared Absorption by Atmospheric Aerosols in Mexico City during MILAGRO.

    NASA Astrophysics Data System (ADS)

    Kelley, K. L.; Mangu, A.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    Past research in our group using cylindrical internal reflectance spectroscopy has indicated that aqueous aerosols could contribute to the radiative warming as greenhouse species (1,2). Although aerosol radiative effects have been known for sometime and are considered one of the major uncertainties in climate change modeling, most of the studies have focused on the forcing due to scattering and absorption of radiation in the uv- visible region (3). Infrared spectral information also allows the confirmation of key functional groups that are responsible for enhanced absorption observations from secondary organics in the uv-visible region. This work extends our efforts to evaluate the infrared absorption by aerosols, particularly organics, that are now found to be a major fraction of urban and regional aerosols in the 0.1 to 1.0 micron size range and to help identify key types of organics that can contribute to aerosol absorption. During the MILAGRO campaign, quartz filter samples were taken at 12-hour intervals from 5 am to 5 pm (day) and from 5 pm to 5 am (night) during the month of March 2006. These samples were taken at the two super-sites, T-0 (Instituto Mexicano de Petroleo in Mexico City) and T-1 (Universidad Technologica de Tecamac, State of Mexico). The samples have been characterized for total carbon content (stable isotope mass spectroscopy) and natural radionuclide tracers, as well as for their UV-visible spectroscopic properties by using integrating sphere diffuse reflectance spectroscopy (Beckman DU with a Labsphere accessory). These same samples have been characterized in the mid and near infrared spectral ranges using diffuse reflection spectroscopy (Nicolet 6700 FTIR with a Smart Collector accessory). Aerosol samples were removed from the surfaces of the aerosol filters by using Si-Carb sampler. The samples clearly indicate the presence of carbonyl organic constituents and the spectra are quite similar to those observed for humic and fulvic acids

  5. Spectrally-resolved measurements of aerosol extinction at ultraviolet and visible wavelengths

    NASA Astrophysics Data System (ADS)

    Flores, M.; Washenfelder, R. A.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2012-12-01

    Aerosols play an important role in the Earth's radiative budget. Aerosol extinction includes both the scattering and absorption of light, and these vary with wavelength, aerosol diameter, and aerosol composition. Historically, aerosol absorption has been measured using filter-based or extraction methods that are prone to artifacts. There have been few investigations of ambient aerosol optical properties at the blue end of the visible spectrum and into the ultraviolet. Brown carbon is particularly important in this spectral region, because it both absorbs and scatters light, and encompasses a large and variable group of organic compounds from biomass burning and secondary organic aerosol. We have developed a laboratory instrument that combines new, high-power LED light sources with high-finesse optical cavities to achieve sensitive measurements of aerosol optical extinction. This instrument contains two broadband channels, with spectral coverage from 360 - 390 nm and 385 - 420 nm. Using this instrument, we report aerosol extinction in the ultraviolet and near-visible spectral region as a function of chemical composition and structure. We have measured the extinction cross-sections between 360 - 420 nm with 0.5 nm resolution using different sizes and concentrations of polystyrene latex spheres, ammonium sulfate, and Suwannee River fulvic acid. Fitting the real and imaginary part of the refractive index allows the absorption and scattering to be determined.

  6. New spectral methods in cloud and aerosol remote sensing applications

    NASA Astrophysics Data System (ADS)

    Schmidt, K. Sebastian; McBride, Patrick; Pilewskie, Peter; Feingold, Graham; Jiang, Hongli

    2010-05-01

    We present new remote sensing techniques that rely on spectral observations of clouds and aerosols in the solar wavelength range. As a first example, we show how the effects of heterogeneous clouds, aerosols of changing optical properties, and the surface within one pixel can be distinguished by means of their spectral signatures. This example is based on data from the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS, Houston, Texas, 2006), Large Eddy Simulations (LES) of polluted boundary layer clouds, and 3-dimensional radiative transfer calculations. In a second example, we show that the uncertainty of cloud retrievals can be improved considerably by exploiting the spectral information around liquid water absorption features in the near-infrared wavelength range. This is illustrated with spectral transmittance data from the NOAA International Chemistry Experiment in the Arctic LOwer Troposphere (ICEALOT, 2008). In contrast to reflected radiance, transmitted radiance is only weakly sensitive to cloud effective drop radius, and only cloud optical thickness can be obtained from the standard dual-channel technique. We show that effective radius and liquid water path can also be retrieved with the new spectral approach, and validate our results with microwave liquid water path measurements.

  7. Numerical simulation of infrared radiation absorption for diagnostics of gas-aerosol medium by remote sensing data

    NASA Astrophysics Data System (ADS)

    Voitsekhovskaya, O. K.; Egorov, O. V.; Kashirskii, D. E.; Shefer, O. V.

    2015-11-01

    Calculated absorption spectra of the mixture of gases (H2O, CO, CO2, NO, NO2, and SO2) and aerosol (soot and Al2O3), contained in the exhausts of aircraft and rocket engines are demonstrated. Based on the model of gas-aerosol medium, a numerical study of the spectral dependence of the absorptance for different ratios of gas and aerosol components was carried out. The influence of microphysical and optical properties of the components of the mixture on the spectral features of absorption of gas-aerosol medium was established.

  8. A High Spectral Resolution Lidar Based on Absorption Filter

    NASA Technical Reports Server (NTRS)

    Piironen, Paivi

    1996-01-01

    A High Spectral Resolution Lidar (HSRL) that uses an iodine absorption filter and a tunable, narrow bandwidth Nd:YAG laser is demonstrated. The iodine absorption filter provides better performance than the Fabry-Perot etalon that it replaces. This study presents an instrument design that can be used a the basis for a design of a simple and robust lidar for the measurement of the optical properties of the atmosphere. The HSRL provides calibrated measurements of the optical properties of the atmospheric aerosols. These observations include measurements of aerosol backscatter cross sections, optical depth, backscatter phase function depolarization, and multiple scattering. The errors in the HSRL data are discussed and the effects of different errors on the measured optical parameters are shown.

  9. Retrieval of Aerosol Absorption over Ocean using AATSR/MERIS

    NASA Astrophysics Data System (ADS)

    Filipitsch, Florian; Preusker, Rene; Fischer, Juergen

    2013-04-01

    Aerosols have a significant influence on the earth climate but are still one of the least understood variables in the earth radiation budget. On average aerosol particles scatter solar radiation back to space which leads to an offset in the global warming process to due greenhouse gases. Some types of atmospheric aerosols like black carbon or dessert dust absorb solar radiation and lead to local atmospheric warming. Even if this warming effect is overwhelmed by the cooling effect is it necessary to improve our knowledge on the global distribution of absorbing aerosols if we want to understand and predict local climate variations. Within the ESA CCI-Aerosol project we developed an innovative retrieval method to quantify aerosol absorption quantified by the Single Scattering Albedo (SSA) over the ocean in the sun glint contaminated region of a wind roughed sea surface. From satellite measurement commonly retrieved Aerosol Optical Depth (AOD), which is the vertical integrated aerosol volume extinction, gives no information on the absorbing or scattering quantities of the observed aerosol. To distinct absorption from scattering independent measurements at different viewing geometries are needed. Furthermore the reflection properties of the underlying surface has to be known and therewith distinct absorption from scattering. The dual view sensor Advanced Along-Track Scanning Radiometer (AATSR) provides such information in regions where either of the two views is sun glint effected the other is not. Hence, the sun glint is used as a lower boundary condition in the presented method an accurate determination of the ocean surface is needed. Therefore we use the 3 thermal channels from to estimate the amount of reflected sunlight to due glint in measured signal at 3.7 micrometer. The determined sun glint at the 3.7 micrometer channel is further used to derive an effective wind speed based on full radiative transfer calculations where optical properties for a wind roughed sea

  10. Aerosol Absorption Retrieval at Ultraviolet Wavelengths in a Complex Environment

    NASA Technical Reports Server (NTRS)

    Kazadzis, Stelios; Raptis, Panagiotis; Kouremeti, Natalia; Amirdis, Vassilis; Arola, Antti; Gerasopoulos, Evangelos; Schuster, Gregory L.

    2016-01-01

    We have used total and diffuse UV irradiance measurements from a multi-filter rotating shadow-band radiometer (UVMFR) in order to investigate aerosol absorption in the UV range for a 5-year period in Athens, Greece. This dataset was used as input to a radiative transfer model and the single scattering albedo (SSA) at 368 and 332 nm was calculated. Retrievals from a collocated CIMEL sun photometer were used to evaluate the products and study the absorption spectral behavior of retrieved SSA values. The UVMFR SSA, together with synchronous, CIMEL-derived retrievals of SSA at 440 nm, had a mean of 0.90, 0.87 and 0.83, with lowest values (higher absorption) encountered at the shorter wavelengths. In addition, noticeable diurnal variation of the SSA in all wavelengths is shown, with amplitudes up to 0.05. Strong SSA wavelength dependence is revealed for cases of low Angstrom exponents, accompanied by a SSA decrease with decreasing extinction optical depth, suggesting varying influence under different aerosol composition. However, part of this dependence for low aerosol optical depths is masked by the enhanced SSA retrieval uncertainty. Dust and brown carbon UV absorbing properties were also investigated to explain seasonal patterns.

  11. Aerosol absorption retrieval at ultraviolet wavelengths in a complex environment

    NASA Astrophysics Data System (ADS)

    Kazadzis, Stelios; Raptis, Panagiotis; Kouremeti, Natalia; Amiridis, Vassilis; Arola, Antti; Gerasopoulos, Evangelos; Schuster, Gregory L.

    2016-12-01

    We have used total and diffuse UV irradiance measurements from a multi-filter rotating shadow-band radiometer (UVMFR) in order to investigate aerosol absorption in the UV range for a 5-year period in Athens, Greece. This dataset was used as input to a radiative transfer model and the single scattering albedo (SSA) at 368 and 332 nm was calculated. Retrievals from a collocated CIMEL sun photometer were used to evaluate the products and study the absorption spectral behavior of retrieved SSA values. The UVMFR SSA, together with synchronous, CIMEL-derived retrievals of SSA at 440 nm, had a mean of 0.90, 0.87 and 0.83, with lowest values (higher absorption) encountered at the shorter wavelengths. In addition, noticeable diurnal variation of the SSA in all wavelengths is shown, with amplitudes up to 0.05. Strong SSA wavelength dependence is revealed for cases of low Ångström exponents, accompanied by a SSA decrease with decreasing extinction optical depth, suggesting varying influence under different aerosol composition. However, part of this dependence for low aerosol optical depths is masked by the enhanced SSA retrieval uncertainty. Dust and brown carbon UV absorbing properties were also investigated to explain seasonal patterns.

  12. SPECTRAL RELATIVE ABSORPTION DIFFERENCE METHOD

    SciTech Connect

    Salaymeh, S.

    2010-06-17

    When analyzing field data, the uncertainty in the background continuum emission produces the majority of error in the final gamma-source analysis. The background emission typically dominates an observed spectrum in terms of counts and is highly variable spatially and temporally. The majority of the spectral shape of the background continuum is produced by combinations of cosmic rays, {sup 40}K, {sup 235}U, and {sup 220}Rn, and the continuum is similar in shape to the 15%-20% level for most field observations. However, the goal of spectroscopy analysis is to pick up subtle peaks (<%5) upon this large background. Because the continuum is falling off as energy increases, peak detection algorithms must first define the background surrounding the peak. This definition is difficult when the range of background shapes is considered. The full spectral template matching algorithms are heavily weighted to solving for the background continuum as it produces significant counts over much of the energy range. The most appropriate background mitigation technique is to take a separate background observation without the source of interest. But, it is frequently not possible to record a background observation in the exact location before (or after) a source has been detected. Thus, one uses approximate backgrounds that rely on spatially nearby locations or similar environments. Since the error in many field observations is dominated by the background, a technique that is less sensitive to the background would be quite beneficial. We report the result of an initial investigation into a novel observation scheme for gamma-emission detection in high background environments. Employing low resolution, NaI, detectors, we examine the different between the direct emission and the 'spectral-shadow' that the gamma emission produces when passed through a thin absorber. For this detection scheme to be competitive, it is required to count and analyze individual gamma-events. We describe the

  13. [Spectral calibration of hyperspectral imager based on spectral absorption target].

    PubMed

    Gou, Zhi-Yang; Yan, Lei; Chen, Wei; Zhao, Hong-Ying; Yin, Zhong-Yi; Duan, Yi-Ni

    2013-02-01

    Retrieval of center wavelength and bandwidth is a key step for quantitative analysis of hyperspectral data. The present paper proposes a spectral calibration method of hyperspectral imager, whose spectrum covers visible and near-infrared band, using spectral absorption target. Ground calibration experiment was designed for a hyperspectral imager with a bandwidth of 6 nm. Hyperspectral imager and ASD spectrometer measured the same spectral absorption target synchronously. Reflectance spectrum was derived from the different data set. Center wavelength and bandwidth were retrieved by matching the reflectance data from hyperspectral imager and ASD spectrometer. The experiment result shows that this method can be applied in spectral calibration of hyperspectral imagers to improve the quantitative studies on hyperspectral imagery.

  14. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    SciTech Connect

    Song, Chen; Gyawali, Madhu; Zaveri, Rahul A.; Shilling, John E.; Arnott, W. Patrick

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  15. Ultraviolet Absorption by Secondary Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Madronich, S.; Lee-Taylor, J. M.; Hodzic, A.; Aumont, B.

    2014-12-01

    Secondary organic aerosols (SOA) are typically formed in the atmosphere by the condensation of a myriad of intermediates from the photo-oxidation of volatile organic compounds (VOCs). Many of these partly oxidized molecules have functional groups (chromophores) that absorb at the ultraviolet (UV) wavelengths available in the troposphere (λ ≳ 290 nm). We used the explicit chemical model GECKO-A (Generator of Explicit Chemistry and Kinetics for Organics in the Atmosphere) to estimate UV absorption cross sections for the gaseous and particulate components of SOA from different precursors (biogenic and anthropogenic) and formed in different environments (low and high NOx, day and night). Model predictions are evaluated with laboratory and field measurements of SOA UV optical properties (esp. mass absorption coefficients and single scattering albedo), and implications are presented for surface UV radiation trends, urban actinic flux modification, and SOA lifetimes.

  16. Encapsulation effects on carbonaceous aerosol light absorption

    SciTech Connect

    Sedlacek, A.J.; Onasch, T.; Davidovits, P.; Cross, E.; Mazzoleni, C.

    2010-03-15

    The contribution of aerosol absorption on direct radiative forcing is still an active area of research, in part, because aerosol extinction is dominated by light scattering and, in part, because the primary absorbing aerosol of interest, soot, exhibits complex aging behavior that alters its optical properties. The consequences of this can be evidenced by the work of Ramanathan and Carmichael (2008) who suggest that incorporating the atmospheric heating due to brown clouds (plumes containing soot byproducts from automobiles, biomass burning, wood-burning kitchen stoves, and coal-fired power plants) will increase black carbon (BC) radiative forcing from the Intergovernmental Panel on Climate Change best estimate of 0.34 Wm-2 (±0.25 Wm-2) (IPCC 2007) to 0.9 Wm-2. This noteworthy degree of uncertainty is due largely to the interdependence of BC optical properties on particle mixing state and aggregate morphology, each of which changes as the particle ages in the atmosphere and becomes encapsulated within a coating of inorganic and/or organic substances. In July 2008, a laboratory-based measurement campaign, led by Boston College and Aerodyne, was initiated to begin addressing this interdependence. To achieve insights into the interdependence of BC optical properties on particle mixing state and aggregate morphology, measurements of both the optical and physical properties of flame-generated soot under nascent, coated, and denuded conditions were conducted. This poster presents data on black carbon (BC) light absorption measured by Photothermal Interferometry (Sedlacek and Lee 2007). In addition to examining nascent BC—to provide a baseline measurement—encapsulation with varying thicknesses of either dioctyl sebacate (DOS) or sulfuric acid was conducted to glean insights into the interplay between particle mixing state and optical properties. Additionally, some experiments were carried out where BC was coated and then denuded. In the case of DOS-coated soot, a

  17. Aerosol Classification using Airborne High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R.; Butler, C. F.; Cook, A.; Harper, D.; Froyd, K. D.

    2011-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical thickness (AOT) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of aerosol optical thickness and inferences of aerosol types are used to apportion aerosol optical thickness to aerosol type; results of this analysis are shown for several experiments.

  18. Aerosol Scattering and Absorption Properties Over the Central Himalayan Location Nainital: Results from Gvax

    NASA Astrophysics Data System (ADS)

    Gogoi, M. M.; Babu, S.; Nair, V. S.; Satheesh, S.; Naja, M.; Kotamarthi, V. R.

    2012-12-01

    Extensive characterization of aerosols over a central Himalayan location, Nainital (29.4° N, 79.5° E, 1958 m amsl) were carried out during June 2011 to March 2012 under the Ganges Valley Aerosol Experiment (GVAX). Owing to the highly turbid, persistent and increasing aerosol concentration over the Ganges Valley in northern India, their influence on surface dimming, mid-tropospheric warming and monsoon circulations, the experimental site Nainital is best suited for studying the regional distribution of complex aerosol sources, their transport and direct and indirect radiative forcing mechanisms. During the study period, aerosol scattering (absorption) coefficients showed values as high as > 500 Mm-1 (> 50 Mm-1) in local noon time during the onset of winter and early spring and as low as < 300 Mm-1 (< 40 Mm-1) during the summer months. Consequently, aerosol single scattering albedo (SSA) decreased in winter (< 0.9, for 45% of occurrences) with large day-to-day modulations and higher values (> 0.9, for 81% of occurrences) during summer. Based on the spectral distribution of scattering coefficients, fine mode aerosols dominate the summer compared to winter season. The strong absorption during the winter and early spring is associated with the prevalence of biomass burning aerosols and/or dust as reveal by the steep spectral dependence of absorption coefficients (αabs >2.0). These observed seasonal variations are attributed to the dynamics of the atmospheric boundary layer as well as the influence of long range transport over the Himalayan location.

  19. Absorption characteristics of aerosols over the northwestern region of India: Distinct seasonal signatures of biomass burning aerosols and mineral dust

    NASA Astrophysics Data System (ADS)

    Gogoi, Mukunda M.; Suresh Babu, S.; Krishna Moorthy, K.; Manoj, M. R.; Chaubey, Jai Prakash

    2013-07-01

    Continuous measurements of aerosol black carbon (BC) mass concentrations made over a period of 3 years from a semi-arid, near-coastal, remote and sparsely inhabited location along with satellite-based data of aerosol absorption index, optical depth and extinction profiles in western India are used to characterize the distinct nature of aerosols near the surface and in the free troposphere and their seasonality. Despite being far remote and sparsely inhabited, significant levels of BC are observed in the ambient during winter (1.45 ± 0.71 μg m-3) attributed to biomass burning aerosols, advected to the site from the north and west; while during summer the concentrations are far reduced (0.23 ± 0.11 μg m-3) and represent the apparent background concentrations. The spectral absorption coefficients suggest the BC during summer be mostly of fossil fuel combustions. The strong convective boundary layer dynamics produces significant diurnal variation during winter and modulates to a lesser extent the seasonal variation. Examination of aerosol (absorption) index from OMI data for the study period showed a seasonal pattern that is almost opposite to that seen at the surface; with high aerosol index in summer, showing a significant difference between the surface and columnar aerosol types in summer. MISR and MODIS-derived columnar AOD follow the OMI pattern. Analysis of the vertical profiles of aerosol extinction and volume depolarization ratio (VDR), derived from CALIPSO data indicates the presence of strong dust layers with VDR ˜ 0.3 in the altitude region 4-6 km, contributing to the high aerosol index in the OMI data, while the surface measurements show absorptive properties representing fossil fuel BC aerosols.

  20. Atmospheric Optical Properties and Spectral Analysis of Desert Aerosols

    NASA Astrophysics Data System (ADS)

    Yvgeni, D.; Karnieli, A.; Kaufman, Y. J.; Andreae, M. O.; Holben, B. N.; Maenhaut, W.

    2002-05-01

    Scientific background Aerosols can interact directly with solar and terrestrial radiation by scattering as well as absorption. In addition, they can indirectly alter the planetary albedo by modifying the properties of clouds. Objectives Investigations have been devoted to two main areas: (1) Aerosol climatology situation in the Negev desert, investigations of physical and chemical characteristics of aerosols, and study of the local and long-range transport trajectory of polluted air masses over the Negev desert; and (2) An estimation of the optical properties throughout the atmospheric column by surface measurements via performance of spectral and statistical analysis of the data received from two measurement systems. Results and conclusions Analyzed data from the Sede Boker site, in the Negev Desert of Israel, shows an increase in aerosol optical depth during the summer seasons and a decrease during winter. One of the possible reasons for this characteristic is an increase of the precipitable water (reaches 3.0-3.5 cm) due to a constant wind stream from the Mediterranean Sea in same time. The highest probability distribution of the aerosol optical depth is in the range of 0.15-0.20; and of the Angstrom parameter is in range of 0.83 - 1.07. During dust storm events, the scattering coefficient range at 670 nm and 440 nm wavelengths were inverted. It was discovered that the dust particles in this case had non-spherical character. Comparison between optical depth, measured through all atmospheric column, and scattering coefficient from surface measurements provides correlation coefficient (r) equal to 0.64. The Angstrom parameter, calculated via optical depth and via scattering coefficient, provides a correlation coefficient of 0.66. Thus we can obtain an estimate of the influence of the surface aerosol situation on column optical properties. The combined analysis of dust cloud altitude and optical depth as a function of the time indicates long-term transport and

  1. Field Studies of Broadband Aerosol Optical Extinction in the Ultraviolet Spectral Region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A.; Brock, C. A.; Brown, S. S.

    2013-12-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. In the case of brown carbon, its wavelength-dependent absorption in the ultraviolet spectral region has been suggested as an important component of aerosol radiative forcing. We describe a new field instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We deployed this instrument during the Fire Lab at Missoula Experiment during Fall 2012 to measure biomass burning aerosol, and again during the Southern Oxidant and Aerosol Study in summer 2013 to measure organic aerosol in the Southeastern U.S. In both field experiments, we determined aerosol optical extinction as a function of wavelength and can interpret this together with size distribution and composition measurements to characterize the aerosol optical properties and radiative forcing.

  2. Satellite-Based Evidence of Wavelength-Dependent Aerosol Absorption in Biomass Burning Smoke Inferred from Ozone Monitoring Instrument

    NASA Technical Reports Server (NTRS)

    Jethva, H.; Torres, O.

    2012-01-01

    We provide satellite-based evidence of the spectral dependence of absorption in biomass burning aerosols over South America using near-UV measurements made by the Ozone Monitoring Instrument (OMI) during 2005-2007. In the current near-UV OMI aerosol algorithm (OMAERUV), it is implicitly assumed that the only absorbing component in carbonaceous aerosols is black carbon whose imaginary component of the refractive index is wavelength independent. With this assumption, OMI-derived aerosol optical depth (AOD) is found to be significantly over-estimated compared to that of AERONET at several sites during intense biomass burning events (August-September). Other well-known sources of error affecting the near-UV method of aerosol retrieval do not explain the large observed AOD discrepancies between the satellite and the ground-based observations. A number of studies have revealed strong spectral dependence in carbonaceous aerosol absorption in the near-UV region suggesting the presence of organic carbon in biomass burning generated aerosols. A sensitivity analysis examining the importance of accounting for the presence of wavelength-dependent aerosol absorption in carbonaceous particles in satellite-based remote sensing was carried out in this work. The results convincingly show that the inclusion of spectrally-dependent aerosol absorption in the radiative transfer calculations leads to a more accurate characterization of the atmospheric load of carbonaceous aerosols.

  3. Martian aerosols: Near-infrared spectral properties and effects on the observation of the surface

    NASA Technical Reports Server (NTRS)

    Erard, Stephane; Mustard, John; Murchie, Scott; Bibring, Jean-Pierre; Cerroni, Priscilla; Caradini, Angioletta

    1994-01-01

    Imaging sprectroscopic measurements (ISM) of Mars acquired by the ISM instrument on Phobos-2 are used to investigate the NIR spectral properties of aerosols and the effects of atmospheric scattering on inferred mineralogy of the surface. Estimates of aerosols spectra between 0.77 and 2.6 micrometers are derived above Tharsis and Ophir Planum. The spectral continua are consistent with the particle size distribution derived using data from the solar occultation experiment on-board the spacecraft (effective radius approximately = 1.2 micrometers, with an effective variance approximately = 0.2). The aerosols spectra contain water-ice absorption features and possibly absorptions due to clay and/or sulfates. The largest effect of the aerosols on surface spectra is in dark regions, where the continuum spectral slope becomes more negative and the 1-micrometers absorption due to Fe in pyroxene is shifted toward longer wavelengths. The effects of aerosols on spectra of bright regions are insufficiently large to change mineralogic interpretations based on ISM data, i.e., that bright regions in Tharsis are dominated spectrally by hematite, but that additional ferric minerals are probably present in other areas including Arabia.

  4. Sensitivity of the atmospheric temperature profile to the aerosol absorption in the presence of dust

    NASA Astrophysics Data System (ADS)

    Gómez-Amo, J. L.; di Sarra, A.; Meloni, D.

    2014-12-01

    Radiative transfer simulations in the shortwave (SW) and longwave (LW) spectral regions have been carried out to investigate the time evolution of the atmospheric heating/cooling rates and their influence on the temperature profiles under different vertical distributions of the aerosol absorption. The case study is based on measurements made at Rome, Italy, on 20 June 2007, when a dust layer was present above the urban boundary layer (BL) and the column aerosol optical depth at 550 nm was about 0.37. Column-integrated aerosol optical depth and single scattering albedo, as well as vertical profiles of aerosol extinction and meteorological variables have been derived from observations and used in the simulations. Different profiles of the aerosol absorption are considered by varying the absorption of the BL aerosols and of the desert dust, without changing the overall columnar properties. Three scenarios have been considered, with absorbing (ABL) or scattering (SBL) particles in the BL, and with a vertically homogeneous case (HL), which is taken as the reference. Calculations show that, for the selected case, about 25% of the SW heating is offset by the LW cooling within the dust layer. Different longwave/all-wave contributions are observed in the BL, depending on the BL aerosol absorption. Changes of atmospheric temperature induced by aerosol-radiation interactions only, have been investigated, while interactions with the surface through changes of the latent and sensible heat flux have been neglected. The evolution of temperature is similar for the three scenarios within the dust layer, with a daytime increase and a smaller nighttime decrease. After 24 h, the increase of the atmospheric temperature due to the aerosol radiative processes is about 1 K. In the BL, the increase of temperature is strongly dependent on the aerosol absorption capability. The oscillatory behaviour of the temperature with time in the dust layer, and the different evolution in the BL are

  5. Water absorption by secondary organic aerosol and its effect on inorganic aerosol behavior

    SciTech Connect

    Ansari, A.S.; Pandis, S.N.

    2000-01-01

    The hygroscopic nature of atmospheric aerosol has generally been associated with its inorganic fraction. In this study, a group contribution method is used to predict the water absorption of secondary organic aerosol (SOA). Compared against growth measurements of mixed inorganic-organic particles, this method appears to provide a first-order approximation in predicting SOA water absorption. The growth of common SOA species is predicted to be significantly less than common atmospheric inorganic salts such as (NH{sub 4}){sub 2}SO{sub 4} and NaCl. Using this group contribution method as a tool in predicting SOA water absorption, an integrated modeling approach is developed combining available SOA and inorganic aerosol models to predict overall aerosol behavior. The effect of SOA on water absorption and nitrate partitioning between the gas and aerosol phases is determined. On average, it appears that SOA accounts for approximately 7% of total aerosol water and increases aerosol nitrate concentrations by approximately 10%. At high relative humidity and low SOA mass fractions, the role of SOA in nitrate partitioning and its contribution to total aerosol water is negligible. However, the water absorption of SOA appears to be less sensitive to changes in relative humidity than that of inorganic species, and thus at low relative humidity and high SOA mass fraction concentrations, SOA is predicted to account for approximately 20% of total aerosol water and a 50% increase in aerosol nitrate concentrations. These findings could improve the results of modeling studies where aerosol nitrate has often been underpredicted.

  6. Aerosol Absorption Retrievals from the PACE Broad Spectrum Ocean Color Instrument (OCI)

    NASA Technical Reports Server (NTRS)

    Mattoo, Shana; Remer, Lorraine A.; Levy, Robert C.; Gupta, Pawan; Ahmad, Ziauddin; Martins, J. Vanderlei; Lima, Adriana Rocha; Torres, Omar

    2016-01-01

    The PACE (Pre-­Aerosol, Clouds and ocean Ecosystem) mission, anticipated for launch in the early 2020s, is designed to characterize oceanic and atmospheric properties. The primary instrument on-­-board will be a moderate resolution (approximately 1 km nadir) radiometer, called the Ocean Color Instrument (OCI). OCI will provide high spectral resolution (5 nm) from the UV to NIR (350 - 800 nm), with additional spectral bands in the NIR and SWIR. The OCI itself is an excellent instrument for atmospheric objectives, providing measurements across a broad spectral range that in essence combines the capabilities of MODIS and OMI, but with the UV channels from OMI to be available at moderate resolution. (Image credit: PACE Science Definition Team Report). Objective: Can we make use of the UV-­SWIR measurements to derive information about aerosol absorption when aerosol loading is high?

  7. Molecular absorption in transition region spectral lines

    NASA Astrophysics Data System (ADS)

    Schmit, D. J.; Innes, D.; Ayres, T.; Peter, H.; Curdt, W.; Jaeggli, S.

    2014-09-01

    Aims: We present observations from the Interface Region Imaging Spectrograph (IRIS) of absorption features from a multitude of cool atomic and molecular lines within the profiles of Si IV transition region lines. Many of these spectral lines have not previously been detected in solar spectra. Methods: We examined spectra taken from deep exposures of plage on 12 October 2013. We observed unique absorption spectra over a magnetic element which is bright in transition region line emission and the ultraviolet continuum. We compared the absorption spectra with emission spectra that is likely related to fluorescence. Results: The absorption features require a population of sub-5000 K plasma to exist above the transition region. This peculiar stratification is an extreme deviation from the canonical structure of the chromosphere-corona boundary. The cool material is not associated with a filament or discernible coronal rain. This suggests that molecules may form in the upper solar atmosphere on small spatial scales and introduces a new complexity into our understanding of solar thermal structure. It lends credence to previous numerical studies that found evidence for elevated pockets of cool gas in the chromosphere. Movies associated to Figs. 1 and 2 are available in electronic form at http://www.aanda.org

  8. Aerosol Classification from High Spectral Resolution Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Hair, J. W.; Ferrare, R. A.; Hostetler, C. A.; Kahnert, M.; Vaughan, M. A.; Cook, A. L.; Harper, D. B.; Berkoff, T.; Seaman, S. T.; Collins, J. E., Jr.; Fenn, M. A.; Rogers, R. R.

    2015-12-01

    The NASA Langley airborne High Spectral Resolution Lidars, HSRL-1 and HSRL-2, have acquired large datasets of vertically resolved aerosol extinction, backscatter, and depolarization during >30 airborne field missions since 2006. The lidar measurements of aerosol intensive parameters like lidar ratio and color ratio embed information about intrinsic aerosol properties, and are combined to qualitatively classify HSRL aerosol measurements into aerosol types. Knowledge of aerosol type is important for assessing aerosol radiative forcing, and can provide useful information for source attribution studies. However, atmospheric aerosol is frequently not a single pure type, but instead is a mixture, which affects the optical and radiative properties of the aerosol. We show that aerosol intensive parameters measured by lidar can be understood using mixing rules for cases of external mixing. Beyond coarse classification and mixing between classes, variations in the lidar aerosol intensive parameters provide additional insight into aerosol processes and composition. This is illustrated by depolarization measurements at three wavelengths, 355 nm, 532 nm, and 1064 nm, made by HSRL-2. Particle depolarization ratio is an indicator of non-spherical particles. Three cases each have a significantly different spectral dependence of the depolarization ratio, related to the size of the depolarizing particles. For two dust cases, large non-spherical particles account for the depolarization of the lidar light. The spectral dependence reflects the size distribution of these particles and reveals differences in the transport histories of the two plumes. For a smoke case, the depolarization is inferred to be due to the presence of small coated soot aggregates. Interestingly, the depolarization at 355 nm is similar for this smoke case compared to the dust cases, having potential implications for the upcoming EarthCARE satellite, which will measure particle depolarization ratio only at 355 nm.

  9. Remote Sensing of Spectral Aerosol Properties: A Classroom Experience

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Pinker, Rachel T.

    2006-01-01

    Bridging the gap between current research and the classroom is a major challenge to today s instructor, especially in the sciences where progress happens quickly. NASA Goddard Space Flight Center and the University of Maryland teamed up in designing a graduate class project intended to provide a hands-on introduction to the physical basis for the retrieval of aerosol properties from state-of-the-art MODIS observations. Students learned to recognize spectral signatures of atmospheric aerosols and to perform spectral inversions. They became acquainted with the operational MODIS aerosol retrieval algorithm over oceans, and methods for its evaluation, including comparisons with groundbased AERONET sun-photometer data.

  10. Light Absorption of Brown Carbon Aerosol in the Pearl River Delta Region of China

    NASA Astrophysics Data System (ADS)

    Huang, X.

    2015-12-01

    X.F. Huang, J.F. Yuan, L.M. Cao, J. Cui, C.N. Huang, Z.J. Lan and L.Y. He Key Laboratory for Urban Habitat Environmental Science and Technology, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, ChinaCorresponding author. Tel.: +86 755 26032532; fax: +86 755 26035332. E-mail address: huangxf@pku.edu.cn (X. F. Huang). Abstract: The strong spectral dependence of light absorption of brown carbon (BrC) aerosol has been recognized in recent decades. The Absorption Angstrom Exponent (AAE) of ambient aerosol was widely used in previous studies to attribute light absorption of brown carbon at shorter wavelengths, with a theoretical assumption that the AAE of black carbon (BC) aerosol equals to unit. In this study, the AAE method was improved by statistical extrapolation based on ambient measurements in the polluted seasons in typical urban and rural areas in the Pearl River Delta (PRD) region of China. A three-wavelength photoacoustic soot spectrometer (PASS-3) and an aerosol mass spectrometer (AMS) were used to explore the relationship between the ambient measured AAE and the ratio of organic aerosol to BC aerosol, in order to extract the more realistic AAE by pure BC aerosol, which were found to be 0.86, 0.82 and 1.02 at 405nm and 0.70, 0.71, and 0.86 at 532nm in the campaigns of urban-winter, urban-fall, and rural-fall, respectively. Roadway tunnel experiment results further supported the effectiveness of the obtained AAE for pure BC aerosol. In addition, biomass burning experiments proved higher spectral dependence of more-BrC environment and further verified the reliability of the instruments' response. Then, the average light absorption contribution of BrC aerosol was calculated to be 11.7, 6.3 and 12.1% (with total relative uncertainty of 7.5, 6.9 and 10.0%) at 405nm and 10.0, 4.1 and 5.5% (with total relative uncertainty of 6.5, 8.6 and 15.4%) at 532nm of the three campaigns, respectively. These results indicate that the

  11. Airborne High Spectral Resolution Lidar Measurements of Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Ferrare, R.; Hostetler, C.; Hair, J.; Cook, A.; Harper, D.; Kleinman, L.; Clarke, A.; Russell, P.; Redemann, J.; Livingston, J.; Szykman, J.; Al-Saadi, J.

    2007-05-01

    NASA Langley Research Center (LaRC) recently developed an airborne High Spectral Resolution Lidar (HSRL) to measure aerosol distributions and optical properties. The HSRL technique takes advantage of the spectral distribution of the lidar return signal to discriminate aerosol and molecular signals and thereby measure aerosol extinction and backscatter independently. The LaRC instrument employs the HSRL technique to measure aerosol backscatter and extinction profiles at 532 nm and the standard backscatter lidar technique to measure aerosol backscatter profiles at 1064 nm. Depolarization profiles are measured at both wavelengths. Since March 2006, the airborne HSRL has acquired over 215 flight hours of data deployed on the NASA King Air B200 aircraft during several field experiments. Most of the flights were conducted during two major field experiments. The first major experiment was the joint Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX B) experiment that was conducted during March 2006 to investigate the evolution and transport of pollution from Mexico City. The second major experiment was the Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) that was conducted during August and September 2006 to investigate climate and air quality in the Houston/Gulf of Mexico region. Several flights were also conducted to help validate the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) lidar on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite (CALIPSO) satellite. In February 2007, several flights were carried out as part of an Environmental Protection Agency (EPA) experiment to assess air quality in central California. Airborne HSRL data acquired during these missions were used to quantify aerosol extinction and optical thickness contributed by various aerosol types

  12. Biomass Burning Aerosol Absorption Measurements with MODIS Using the Critical Reflectance Method

    NASA Technical Reports Server (NTRS)

    Zhu, Li; Martins, Vanderlei J.; Remer, Lorraine A.

    2010-01-01

    This research uses the critical reflectance technique, a space-based remote sensing method, to measure the spatial distribution of aerosol absorption properties over land. Choosing two regions dominated by biomass burning aerosols, a series of sensitivity studies were undertaken to analyze the potential limitations of this method for the type of aerosol to be encountered in the selected study areas, and to show that the retrieved results are relatively insensitive to uncertainties in the assumptions used in the retrieval of smoke aerosol. The critical reflectance technique is then applied to Moderate Resolution Imaging Spectrometer (MODIS) data to retrieve the spectral aerosol single scattering albedo (SSA) in South African and South American 35 biomass burning events. The retrieved results were validated with collocated Aerosol Robotic Network (AERONET) retrievals. One standard deviation of mean MODIS retrievals match AERONET products to within 0.03, the magnitude of the AERONET uncertainty. The overlap of the two retrievals increases to 88%, allowing for measurement variance in the MODIS retrievals as well. The ensemble average of MODIS-derived SSA for the Amazon forest station is 0.92 at 670 nm, and 0.84-0.89 for the southern African savanna stations. The critical reflectance technique allows evaluation of the spatial variability of SSA, and shows that SSA in South America exhibits higher spatial variation than in South Africa. The accuracy of the retrieved aerosol SSA from MODIS data indicates that this product can help to better understand 44 how aerosols affect the regional and global climate.

  13. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    SciTech Connect

    Massie, S.T.; Bailey, P.L.; Gille, J.C.; Lee, E.C.; Mergenthaler, J.L.; Roche, A.E.; Kumer, J.B.; Fishbein, E.F.; Waters, J.W.; Lahoz, W.A.

    1994-10-15

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605 cm{sup {minus}1} (10.8, 8.0, and 6.2 {mu}m) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheroidal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculation and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles. 47 refs., 22 figs., 3 tabs.

  14. Spectral signatures of polar stratospheric clouds and sulfate aerosol

    NASA Technical Reports Server (NTRS)

    Massie, S. T.; Bailey, P. L.; Gille, J. C.; Lee, E. C.; Mergenthaler, J. L.; Roche, A. E.; Kumer, J. B.; Fishbein, E. F.; Waters, J. W.; Lahoz, W. A.

    1994-01-01

    Multiwavelength observations of Antarctic and midlatitude aerosol by the Cryogenic Limb Array Etalon Spectrometer (CLAES) experiment on the Upper Atmosphere Research Satellite (UARS) are used to demonstrate a technique that identifies the location of polar stratospheric clouds. The technique discussed uses the normalized area of the triangle formed by the aerosol extinctions at 925, 1257, and 1605/cm (10.8, 8.0, and 6.2 micrometers) to derive a spectral aerosol measure M of the aerosol spectrum. Mie calculations for spherical particles and T-matrix calculations for spheriodal particles are used to generate theoretical spectral extinction curves for sulfate and polar stratospheric cloud particles. The values of the spectral aerosol measure M for the sulfate and polar stratospheric cloud particles are shown to be different. Aerosol extinction data, corresponding to temperatures between 180 and 220 K at a pressure of 46 hPa (near 21-km altitude) for 18 August 1992, are used to demonstrate the technique. Thermodynamic calculations, based upon frost-point calculations and laboratory phase-equilibrium studies of nitric acid trihydrate, are used to predict the location of nitric acid trihydrate cloud particles.

  15. Aerosol particle microphotography and glare-spot absorption spectroscopy.

    PubMed

    Arnold, S; Holler, S; Li, J H; Serpengüzel, A; Auffermann, W F; Hill, S C

    1995-04-01

    The relative intensities of glare spots in the image of an electrodynamically trapped aerosol droplet are measured experimentally with an aerosol particle microscope and calculated theoretically. The theoretical calculations are in good agreement with these experiments and indicate that the intensities of these spots are extremely sensitive to the imaginary part of the refractive index. Experimentally, we obtain the molecular absorption spectrum of an impurity within a droplet by recording the spectrum of an individual glare spot produced by broadband illumination.

  16. Spectrophotometer spectral bandwidth calibration with absorption bands crystal standard.

    PubMed

    Soares, O D; Costa, J L

    1999-04-01

    A procedure for calibration of a spectral bandwidth standard for high-resolution spectrophotometers is described. Symmetrical absorption bands for a crystal standard are adopted. The method relies on spectral band shape fitting followed by a convolution with the slit function of the spectrophotometer. A reference spectrophotometer is used to calibrate the spectral bandwidth standard. Bandwidth calibration curves for a minimum spectral transmission factor relative to the spectral bandwidth of the reference spectrophotometer are derived for the absorption bands at the wavelength of the band absorption maximum. The family of these calibration curves characterizes the spectral bandwidth standard. We calibrate the spectral bandwidth of a spectrophotometer with respect to the reference spectrophotometer by determining the spectral transmission factor minimum at every calibrated absorption band of the bandwidth standard for the nominal instrument values of the spectral bandwidth. With reference to the standard spectral bandwidth calibration curves, the relation of the spectral bandwidth to the reference spectrophotometer is determined. We determine the discrepancy in the spectrophotometers' spectral bandwidths by averaging the spectral bandwidth discrepancies relative to the standard calibrated values found at the absorption bands considered. A weighted average of the uncertainties is taken.

  17. Aerosol Forcing of Climate Change and "Anomalous" Atmospheric Absorption

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    1999-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change. Anthropogenic greenhouse gases (GHGs), which are well-measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. We will focus on the role of aerosols as a climate forcing mechanism and the contribution that aerosols might make to the so- called "anomalous" atmospheric absorption that has been inferred from some atmospheric measurements.

  18. Aerosol Forcing of Climate Change and Anomalous Atmospheric Absorption

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    The forcings that drive long-term climate change are not known with an accuracy sufficient to define future climate change, Anthropogenic greenhouse gases (GHGs), which are well-measured, cause a strong positive (warming) forcing. But other, poorly measured, anthropogenic forcings, especially changes of atmospheric aerosols, clouds, and land-use patterns, cause a negative forcing that tends to offset greenhouse warming. We will focus on the role of aerosols as a climate forcing mechanism and the contribution that aerosols might make to the so-called "anomalous" atmospheric absorption that has been inferred from some atmospheric measurements.

  19. Development of a high-spectral-resolution lidar for continuous observation of aerosols in South America

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Sugimoto, Nobuo; Nishizawa, Tomoaki; Ristori, Pablo; Papandrea, Sebastian; Otero, Lidia; Quel, Eduardo; Mizuno, Akira

    2016-05-01

    Continuous monitoring of aerosol profiles using lidar is helpful for a quasi-real-time indication of aerosol concentration. For instance, volcanic ash concentration and its height distribution are essential information for plane flights. Depolarization ratio and multi-wavelength measurements are useful for characterizing aerosol types such as volcanic ash, smoke, dust, sea-salt, and air pollution aerosols. High spectral resolution lidar (HSRL) and Raman scattering lidar can contribute to such aerosol characterization significantly since extinction coefficients can be measured independently from backscattering coefficients. In particular, HSRL can measure aerosol extinction during daytime and nighttime with a high sensitivity. We developed an HSRL with the iodine filter method for continuous observation of aerosols at 532nm in the northern region of Argentina in the framework of the South American Environmental Atmospheric Risk Management Network (SAVER.Net)/SATREPS project. The laser wavelength of the HSRL was controlled by a feedback system to tune the laser wavelength to the center of an iodine absorption line. The stability of the laser wavelength with the system satisfied the requirement showing very small systematic errors in the retrieval of extinction and backscatter.

  20. Using OMI Observations to Measure Aerosol Absorption of Biomass Burning Aerosols Above Clouds

    NASA Technical Reports Server (NTRS)

    Torres, Omar; Bhartia, P. K.; Jethva, Hiren

    2011-01-01

    The presence of absorbing aerosol layers above clouds is unambiguously detected by the TOMS/OMI UV Aerosol Index (AI) that uses satellite observations at two near-UV channels. A sensitivity study using radiative transfer calculations shows that the AI signal of resulting from the presence of aerosols above clouds is mainly driven by the aerosol absorption optical depth and the optical depth of the underlying cloud. Based on these results, an inversion algorithm has been developed to retrieve the aerosol optical depth (AOD) of aerosol layers above clouds. In this presentation we will discuss the sensitivity analysis, describe the retrieval approach, and present results of applications of the retrieval method to OMI observations over the South Atlantic Ocean. Preliminary error analyses, to be discussed, indicate that the AOD can be underestimated (up to -30%) or overestimated (up to 60%) depending on algorithmic assumptions.

  1. Radiative properties of the background aerosol: absorption component of extinction.

    PubMed

    Clarke, A D; Charlson, R J

    1985-07-19

    The light-scattering and light-absorption coefficients of the global background aerosol define its single-scatter albedo. Continuous, simultaneous measurements of these optical coefficients were made on a daily basis for the remote marine mid-troposphere; such measurements are essential for assessment of the effects of aerosol on atmospheric radiative transfer. Measurements of light-absorption coefficients made at the Mauna Loa Observatory in Hawaii were higher than expected, and the single-scatter albedo was lower than the value often used in radiative transfer models. Soot appears to be the most likely primary absorber, and hemispheric dispersal of this combustion-derived material is suggested.

  2. Aerosol properties derived from spectral actinic flux measurements

    NASA Astrophysics Data System (ADS)

    Stark, H.; Schmidt, K. S.; Pilewskie, P.; Cozic, J.; Wollny, A. G.; Brock, C. A.; Baynard, T.; Lack, D.; Parrish, D. D.; Fehsenfeld, F. C.

    2008-12-01

    Measurement of aerosol properties is very important for understanding climate change. Aerosol optical properties influence solar radiation throughout the troposphere. According to the Working Group I report of the intergovernmental panel for climate change [IPCC, 2007], aerosols have a direct radiative forcing of - 0.5±0.4 W/m2 with a medium to low level of scientific understanding. This relatively large uncertainty indicates the need for more frequent and precise measurements of aerosol properties. We will show how actinic flux measurements can be used to derive important optical aerosol parameters such as aerosol optical thickness and depth, surface albedo, angstrom exponent, radiative forcing by clouds and aerosols, aerosol extinction, and others. The instrument used for this study is a combination of two spectroradiometers measuring actinic flux in the ultraviolet and visible radiation range from 280 to 690 nm with a resolution of 1 nm. Actinic flux is measured as the radiation incident on a spherical surface with sensitivity independent of direction. In contrast, irradiance is measured as the radiation incident on a plane surface, which depends on the cosine of the incident angle. Our goal is to assess the capabilities of using spectral actinic flux measurements to derive various aerosol properties. Here we will compare 1) actinic flux measurements to irradiance measurements from the spectral solar flux radiometer (SSFR), 2) derived aerosol size distributions with measurements from a white light optical particle counter (WLOPC) and ultra high sensitivity aerosol size spectrometer (UHSAS), and 3) derived aerosol optical extinction with measurements from a cavity ringdown aerosol extinction spectrometer (CRD-AES). These comparisons will utilize data from three recent field campaigns over New England and the Atlantic Ocean (ICARTT 2004), Texas and the Gulf of Mexico during (TexAQS/GoMACCS 2006), and Alaska and the Arctic Ocean (ARCPAC 2008) when the instruments

  3. Equilibrium absorptive partitioning theory between multiple aerosol particle modes

    NASA Astrophysics Data System (ADS)

    Crooks, Matthew; Connolly, Paul; Topping, David; McFiggans, Gordon

    2016-10-01

    An existing equilibrium absorptive partitioning model for calculating the equilibrium gas and particle concentrations of multiple semi-volatile organics within a bulk aerosol is extended to allow for multiple involatile aerosol modes of different sizes and chemical compositions. In the bulk aerosol problem, the partitioning coefficient determines the fraction of the total concentration of semi-volatile material that is in the condensed phase of the aerosol. This work modifies this definition for multiple polydisperse aerosol modes to account for multiple condensed concentrations, one for each semi-volatile on each involatile aerosol mode. The pivotal assumption in this work is that each aerosol mode contains an involatile constituent, thus overcoming the potential problem of smaller particles evaporating completely and then condensing on the larger particles to create a monodisperse aerosol at equilibrium. A parameterisation is proposed in which the coupled non-linear system of equations is approximated by a simpler set of equations obtained by setting the organic mole fraction in the partitioning coefficient to be the same across all modes. By perturbing the condensed masses about this approximate solution a correction term is derived that accounts for many of the removed complexities. This method offers a greatly increased efficiency in calculating the solution without significant loss in accuracy, thus making it suitable for inclusion in large-scale models.

  4. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-01-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross-sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross-sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross-sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (±0.03) + 0.19 (±0.08) i at 360 nm and 1.53 (±0.03) + 0.21 (±0.05) i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (±0.02) + 0.07 (±0.06) i at 360 nm and 1.66 (±0.02) + 0.06 (±0.04) i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross-section, and complex refractive index as a function of wavelength.

  5. Broadband measurements of aerosol extinction in the ultraviolet spectral region

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Flores, J. M.; Brock, C. A.; Brown, S. S.; Rudich, Y.

    2013-04-01

    Aerosols influence the Earth's radiative budget by scattering and absorbing incoming solar radiation. The optical properties of aerosols vary as a function of wavelength, but few measurements have reported the wavelength dependence of aerosol extinction cross sections and complex refractive indices. We describe a new laboratory instrument to measure aerosol optical extinction as a function of wavelength, using cavity enhanced spectroscopy with a broadband light source. The instrument consists of two broadband channels which span the 360-390 and 385-420 nm spectral regions using two light emitting diodes (LED) and a grating spectrometer with charge-coupled device (CCD) detector. We determined aerosol extinction cross sections and directly observed Mie scattering resonances for aerosols that are purely scattering (polystyrene latex spheres and ammonium sulfate), slightly absorbing (Suwannee River fulvic acid), and strongly absorbing (nigrosin dye). We describe an approach for retrieving refractive indices as a function of wavelength from the measured extinction cross sections over the 360-420 nm wavelength region. The retrieved refractive indices for PSL and ammonium sulfate agree within uncertainty with the literature values for this spectral region. The refractive index determined for nigrosin is 1.78 (± 0.03) + 0.19 (± 0.08)i at 360 nm and 1.63 (± 0.03) + 0.21 (± 0.05)i at 420 nm. The refractive index determined for Suwannee River fulvic acid is 1.71 (± 0.02) + 0.07 (± 0.06)i at 360 nm and 1.66 (± 0.02) + 0.06 (± 0.04)i at 420 nm. These laboratory results support the potential for a field instrument capable of determining ambient aerosol optical extinction, average aerosol extinction cross section, and complex refractive index as a function of wavelength.

  6. Application of AERONET Single Scattering Albedo and Absorption Angstrom Exponent to Classify Dominant Aerosol Types during DRAGON Campaigns

    NASA Astrophysics Data System (ADS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Schafer, J.; Crawford, J. H.; Kim, J.; Sano, I.; Liew, S.; Salinas Cortijo, S. V.; Chew, B. N.; Lim, H.; Smirnov, A.; Sorokin, M.; Kenny, P.; Slutsker, I.

    2013-12-01

    Aerosols can have major implications on human health by inducing respiratory diseases due to inhalation of fine particles from biomass burning smoke or industrial pollution and on radiative forcing whereby the presence of absorbing aerosol particles (e.g., black carbon) increases atmospheric heating. Aerosol classification techniques have utilized aerosol loading and aerosol properties derived from multi-spectral and multi-angle observations by ground-based (e.g., AERONET) and satellite instrumentation (e.g., MISR). Aerosol Robotic Network (AERONET) data have been utilized to determine aerosol types by implementing various combinations of measured aerosol optical depth or retrieved size and absorption aerosol properties (e.g., Gobbi et al., 2007; Russell et al., 2010). Giles et al. [2012] showed single scattering albedo (SSA) relationship with extinction Angstrom exponent (EAE) can provide an estimate of the general classification of dominant aerosol types (i.e., desert dust, urban/industrial pollution, biomass burning smoke, and mixtures) based on data from ~20 AERONET sites located in known aerosol source regions. In addition, the absorption Angstrom exponent relationship with EAE can provide an indication of the dominant absorbing aerosol type such as dust, black carbon, brown carbon, or mixtures of them. These classification techniques are applied to the AERONET Level 2.0 quality assured data sets collected during Distributed Regional Aerosol Gridded Observational Network (DRAGON) campaigns in Maryland (USA), Japan, South Korea, Singapore, Penang (Malaysia), and California (USA). An analysis of aerosol type classification for DRAGON sites is performed as well as an assessment of the spatial variability of the aerosol types for selected DRAGON campaigns. Giles, D. M., B. N. Holben, T. F. Eck, A. Sinyuk, A. Smirnov, I. Slutsker, R. R. Dickerson, A. M. Thompson, and J. S. Schafer (2012), An analysis of AERONET aerosol absorption properties and classifications

  7. Using the OMI Aerosol Index and Absorption Aerosol Optical Depth to Evaluate the NASA MERRA Aerosol Reanalysis.

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Govindaraju, R.

    2014-12-01

    A radiative transfer interface has been developed to simulate the UV Aerosol Index (AI) from the NASA Goddard Earth Observing System version 5 (GEOS-5) aerosol assimilated fields. The purpose of this work is to use the AI derived from the Ozone Monitoring Instrument (OMI) measurements as independent validation for the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero). In this presentation we show comparisons of model produced AI with the corresponding OMI measurements during several months of 2007 characterized by a good sampling of dust and biomass burning events. In parallel, model produced Absorption Aerosol Optical Depth (AAOD) were compared to OMI AAOD for the same period, identifying regions where the model representation of absorbing aerosols were deficient. Since AI is dependent on aerosol concentration, optical properties and altitude of the aerosol layer, we make use of complementary observations to fully diagnose the model, including AOD from the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, aerosol retrievals from the Aerosol Robotic Network (AERONET) and attenuated backscatter coefficients from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission to ascertain misplacement of plume height by the model.

  8. Measurements of the absorption coefficient of stratospheric aerosols

    NASA Technical Reports Server (NTRS)

    Ogren, J. A.; Ahlquist, N. C.; Clarke, A. D.; Charlson, R. J.

    1981-01-01

    The absorption coefficients of stratospheric aerosols are measured using a variation on the integrating plate method. The technique is based on the decrease in the transparency of a substrate when an absorbing aerosol is deposited on it. A Lambert scatterer is placed behind the substrate to integrate forward scattered light and minimize the effect of scattering on the measurement. The low pressure in the stratosphere is used for the direct impaction of particles onto a narrow strip of opal glass. The eight samples collected had a median value of 4 x 10 to the -9th m with an uncertainty of + or - 5 x 10 to the -9th m. If this absorption is due to graphitic carbon, then its concentration is estimated at about 0.4 ng/cu m, or about 0.25% of the total aerosol mass concentration. Estimates of the aerosol scattering coefficients based on satellite extinction inversions result in an aerosol single-scattering albedo in the range of 0.96-1.0.

  9. Aerosol forcing efficiency in the UVA region from spectral solar irradiance measurements at an urban environment

    NASA Astrophysics Data System (ADS)

    Kazadzis, S.; Kouremeti, N.; Bais, A.; Kazantzidis, A.; Meleti, C.

    2009-06-01

    Spectral Ultraviolet (UV) measurements using a Brewer MKIII double spectroradiometer were used for the determination of the aerosol forcing efficiency (RFE) under cloud free conditions at Thessaloniki, Greece for the period 1998-2006. Using measured spectral UVA irradiance in combination with synchronous aerosol optical depth (AOD) measurements at 340 nm, we calculated the seasonal and the percent RFE changes with the help of radiative transfer model calculations used for cloud and aerosol free conditions reference. The calculated RFE for the 325-340 nm wavelength integral was found to be -0.71±0.30 W m-2/τs340 nm and corresponds to a mean calculated RFE% value of -15.2%±3.8% (2 σ) per unit of τs340 nm, for the whole period. This indicates a mean reduction of 15.2% of the 325-340 nm irradiance for a unit of aerosol optical depth slant column increase. Lower RFE% was found during summertime, which is a possible indication of lower absorbing aerosols. Mean AOD slant at 340 nm for the city of Thessaloniki were processed in combination with RFE% and a mean monthly UVA attenuation of ~10% for the whole period was revealed. The nine years' analysis results showed a reduction in RFE%, which provides a possible indication of the changes in the optical properties over the city area. If such changes are only due to changes in the aerosol absorbing properties, the above finding suggests a 2% per decade increase in UVA due to changes in the aerosol absorption properties, in addition to the calculated increase by 4.2%, which is attributed only to AOD decrease at Thessaloniki area over the 1998-2006 period.

  10. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur

    NASA Astrophysics Data System (ADS)

    Shamjad, P. M.; Tripathi, S. N.; Thamban, Navaneeth M.; Vreeland, Heidi

    2016-11-01

    Atmospheric aerosols influence Earth’s radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.

  11. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur.

    PubMed

    Shamjad, P M; Tripathi, S N; Thamban, Navaneeth M; Vreeland, Heidi

    2016-11-24

    Atmospheric aerosols influence Earth's radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species.

  12. Refractive Index and Absorption Attribution of Highly Absorbing Brown Carbon Aerosols from an Urban Indian City-Kanpur

    PubMed Central

    Shamjad, P. M.; Tripathi, S. N.; Thamban, Navaneeth M.; Vreeland, Heidi

    2016-01-01

    Atmospheric aerosols influence Earth’s radiative balance, having both warming and cooling effects. Though many aerosols reflect radiation, carbonaceous aerosols such as black carbon and certain organic carbon species known as brown carbon have the potential to warm the atmosphere by absorbing light. Black carbon absorbs light over the entire solar spectrum whereas brown carbon absorbs near-UV wavelengths and, to a lesser extent, visible light. In developing countries, such as India, where combustion sources are prolific, the influence of brown carbon on absorption may be significant. In order to better characterize brown carbon, we present experimental and modeled absorption properties of submicron aerosols measured in an urban Indian city (Kanpur). Brown carbon here is found to be fivefold more absorbing at 365 nm wavelength compared to previous studies. Results suggest ~30% of total absorption in Kanpur is attributed to brown carbon, with primary organic aerosols contributing more than secondary organics. We report the spectral brown carbon refractive indices along with an experimentally constrained estimate of the influence of aerosol mixing state on absorption. We conclude that brown carbon in Kanpur is highly absorbing in nature and that the mixing state plays an important role in light absorption from volatile species. PMID:27883083

  13. Synergic use of TOMS and Aeronet Observations for Characterization of Aerosol Absorption

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.; Dubovik, O.; Holben, B.; Siniuk, A.

    2003-01-01

    The role of aerosol absorption on the radiative transfer balance of the earth-atmosphere system is one of the largest sources of uncertainty in the analysis of global climate change. Global measurements of aerosol single scattering albedo are, therefore, necessary to properly assess the radiative forcing effect of aerosols. Remote sensing of aerosol absorption is currently carried out using both ground (Aerosol Robotic Network) and space (Total Ozone Mapping Spectrometer) based observations. The satellite technique uses measurements of backscattered near ultraviolet radiation. Carbonaceous aerosols, resulting from the combustion of biomass, are one of the most predominant absorbing aerosol types in the atmosphere. In this presentation, TOMS and AERONET retrievals of single scattering albedo of carbonaceous aerosols, are compared for different environmental conditions: agriculture related biomass burning in South America and Africa and peat fires in Eastern Europe. The AERONET and TOMS derived aerosol absorption information are in good quantitative agreement. The most absorbing smoke is detected over the African Savanna. Aerosol absorption over the Brazilian rain forest is less absorbing. Absorption by aerosol particles resulting from peat fires in Eastern Europe is weaker than the absorption measured in Africa and South America. This analysis shows that the near UV satellite method of aerosol absorption characterization has the sensitivity to distinguish different levels of aerosol absorption. The analysis of the combined AERONET-TOMS observations shows a high degree of synergy between satellite and ground based observations.

  14. Environmental temperature effect on the far-infrared absorption features of aromatic-based Titan's aerosol analogs

    NASA Astrophysics Data System (ADS)

    Gautier, Thomas; Trainer, Melissa G.; Loeffler, Mark J.; Sebree, Joshua A.; Anderson, Carrie M.

    2017-01-01

    Benzene detection has been reported in Titan's atmosphere both in the stratosphere at ppb levels by remote sensing (Coustenis et al., 2007; Vinatier et al., 2007) and in the thermosphere at ppm levels by the Cassini's Ion and Neutral Mass Spectrometer (Waite et al., 2007). This detection supports the idea that aromatic and heteroaromatic reaction pathways may play an important role in Titan's atmospheric chemistry, especially in the formation of aerosols. Indeed, aromatic molecules are easily dissociated by ultraviolet radiation and can therefore contribute significantly to aerosol formation. It has been shown recently that aerosol analogs produced from a gas mixture containing a low concentration of aromatic and/or heteroaromatic molecules (benzene, naphthalene, pyridine, quinoline and isoquinoline) have spectral signatures below 500 cm-1, a first step towards reproducing the aerosol spectral features observed by Cassini's Composite InfraRed Spectrometer (CIRS) in the far infrared (Anderson and Samuelson 2011, and references therein). In this work we investigate the influence of environmental temperature on the absorption spectra of such aerosol samples, simulating the temperature range to which aerosols, once formed, are exposed during their transport through Titan's stratosphere. Our results show that environmental temperature does not have any major effect on the spectral shape of these aerosol analogs in the far-infrared, which is consistent with the CIRS observations.

  15. Enhanced UV Absorption in Carbonaceous Aerosols during MILAGRO and Identification of Potential Organic Contributors.

    NASA Astrophysics Data System (ADS)

    Mangu, A.; Kelley, K. L.; Marchany-Rivera, A.; Kilaparty, S.; Gunawan, G.; Gaffney, J. S.; Marley, N. A.

    2007-12-01

    ), and nitrated PAH compounds for comparison. Potential organic aerosol components are identified which contribute to the enhanced absorption observed in the field. The wavelength dependence of the mass specific absorption is obtained from these spectra and total carbon measurements. The wavelength dependence of the aerosol complex refractive index (m = n +ik) in the UV-visible spectral region is determined by application of the Kramers Kronig function. The importance of the aerosol absorption in the infrared spectral region to radiative forcing will be discussed. 1. Marley, N.A., J.S. Gaffney, J.C. Baird, C.A. Blazer, P.J. Drayton, and J.E. Frederick, Aerosol Sci. Technol., 34, 535-549, (2001). 2. N.A. Marley, J.S. Gaffney, and K.A. Orlandini, Chapter 7 in Humic/Fulvic Acids and Organic Colloidal Materials in the Environment, ACS Symposium Series 651, American Chemical Society, Washington, D.C., pp. 96-107, 1996. This work was conducted as part of the Department of Energy's Atmospheric Science Program as part of the Megacity Aerosol Experiment - Mexico City during MILAGRO. This research was supported by the Office of Science (BER), U.S. Department of Energy Grant No. DE-FG02-07ER64329. We also wish to thank Mexican Scientists and students for their assistance from the Instituto Mexicano de Petroleo (IMP) and CENICA.

  16. Black carbon and wavelength-dependent aerosol absorption in the North China Plain based on two-year aethalometer measurements

    NASA Astrophysics Data System (ADS)

    Ran, L.; Deng, Z. Z.; Wang, P. C.; Xia, X. A.

    2016-10-01

    Light-absorbing components of atmospheric aerosols have gained particular attention in recent years due to their climatic and environmental effects. Based on two-year measurements of aerosol absorption at seven wavelengths, aerosol absorption properties and black carbon (BC) were investigated in the North China Plain (NCP), one of the most densely populated and polluted regions in the world. Aerosol absorption was stronger in fall and the heating season (from November to March) than in spring and summer at all seven wavelengths. Similar spectral dependence of aerosol absorption was observed in non-heating seasons despite substantially strong absorption in fall. With an average absorption Angström exponent (α) of 1.36 in non-heating seasons, freshly emitted BC from local fossil fuel burning was thought to be the major component of light-absorbing aerosols. In the heating season, strong ultraviolet absorption led to an average α of 1.81, clearly indicating the importance of non-BC light-absorbing components, which were possibly from coal burning for domestic heating and aging processes on a regional scale. Diurnally, the variation of BC mass concentrations experienced a double-peak pattern with a higher level at night throughout the year. However, the diurnal cycle of α in the heating season was distinctly different from that in non-heating seasons. α peaked in the late afternoon in non-heating seasons with concomitantly observed low valley in BC mass concentrations. In contrast, α peaked around the midnight in the heating season and lowered down during the daytime. The relationship of aerosol absorption and winds in non-heating seasons also differed from that in the heating season. BC mass concentrations declined while α increased with increasing wind speed in non-heating seasons, which suggested elevated non-BC light absorbers in transported aged aerosols. No apparent dependence of α on wind speed was found in the heating season, probably due to well mixed

  17. Wavelength Dependence of the Absorption of Black Carbon Particles: Predictions and Results from the TARFOX Experiment and Implications for the Aerosol Single Scattering Albedo

    NASA Technical Reports Server (NTRS)

    Bergstrom, Robert W.; Russell, Philip B.; Hignett, Phillip

    2002-01-01

    Measurements are presented of the wavelength dependence of the aerosol absorption coefficient taken during the Tropical Aerosol Radiative Forcing Observational Experiment (TARFOX) over the northern Atlantic. The data show an approximate lamda(exp -1) variation between 0.40 and 1.0 micrometers. The theoretical basis of the wavelength variation of the absorption of solar radiation by elemental carbon [or black carbon (BC)] is explored. For a wavelength independent refractive index the small particle absorption limit simplifies to a lambda(exp -1) variation in relatively good agreement with the data. This result implies that the refractive indices of BC were relatively constant in this wavelength region, in agreement with much of the data on refractive indices of BC. However, the result does not indicate the magnitude of the refractive indices. The implications of the wavelength dependence of BC absorption for the spectral behavior of the aerosol single scattering albedo are discussed. It is shown that the single scattering albedo for a mixture of BC and nonabsorbing material decreases with wavelength in the solar spectrum (i.e., the percentage amount of absorption increases). This decease in the single scattering albedo with wavelength for black carbon mixtures is different from the increase in single scattering allied for most mineral aerosols (dusts). This indicates that, if generally true, the spectral variation of the single- scattering albedo can be used to distinguish aerosol types. It also highlights the importance of measurements of the spectral variation of the aerosol absorption coefficient and single scattering albedo.

  18. Asian Aerosols: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Ramaswamy, V.

    2007-12-01

    Atmospheric absorption by black carbon (BC) aerosol heats the atmosphere while simultaneously cooling the surface and reducing latent and sensible heat fluxes from the land. Recent studies have shown that absorbing BC aerosol can have a large impact on regional climates, including modification of the hydrological cycle. However, significant uncertainties remain with regards to (a) the total amount of all aerosol species and (b) the amount of aerosol absorption. Here we present a GCM sensitivity study focusing on the influences due to total aerosol amount and aerosol absorption in the south and east Asian regions. Six experiments are conducted to test the equilibrium response of the GFDL AM2 GCM (under conditions of prescribed, observed sea surface temperatures) to (i) changes in aerosol absorption caused by changes in BC aerosol amount, and (ii) aerosol extinction optical depth increases corresponding to the year 1990 relative to a control case of 1950. In order to systematically explore the uncertainties in aerosol loading and absorption, the sensitivity experiments are classified into four regimes: low extinction optical depth, low absorption; low extinction optical depth, high absorption; high extinction optical depth, low absorption; and high extinction optical depth, high absorption. Changes in surface temperature and changes in the hydrological cycle are generally insignificant when lower aerosol extinction optical depths are considered. For higher extinction optical depths, the change in the modeled regional circulation relative to the control circulation over south and east Asia is affected by the amount of aerosol absorption and contrasts sharply to the regional circulation change associated with increasing only scattering aerosols. When increasing absorbing aerosols over the region, low-level convergence and increases in vertical velocity overcome the stabilizing effects of the absorbing aerosol and enhance the monsoonal circulation and precipitation rate

  19. Using artificial neural networks to retrieve the aerosol type from multi-spectral lidar data

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Vasilescu, Jeni

    2015-04-01

    Aerosols can influence the microphysical and macrophysical properties of clouds and hence impact the energy balance, precipitation and the hydrological cycle. They have different scattering and absorption properties depending on their origin, therefore measured optical properties can be used to retrieve their physical properties, as well as to estimate their chemical composition. Due to the measurement limitations (spectral, uncertainties, range) and high variability of the aerosol properties with environmental conditions (including mixing during transport), the identification of the aerosol type from lidar data is still not solved. However, ground, airborne and space-based lidars provide more and more observations to be exploited. Since 2000, EARLINET collected more than 20,000 aerosol vertical profiles under various meteorological conditions, concerning local or long-range transport of aerosols in the free troposphere. This paper describes the basic algorithm for aerosol typing from optical data using the benefits of artificial neural networks. A relevant database was built to provide sufficient training cases for the neural network, consisting of synthetic and measured aerosol properties. Synthetic aerosols were simulated starting from the microphysical properties of basic components, internally mixed in various proportions. The algorithm combines the GADS database (Global Aerosol DataSet) to OPAC model (Optical Properties of Aerosol and Clouds) and T-Matrix code in order to compute, in an iterative way, the intensive optical properties of each aerosol type. Both pure and mixed aerosol types were considered, as well as their particular non-sphericity and hygroscopicity. Real aerosol cases were picked up from the ESA-CALIPSO database, as well as EARLINET datasets. Specific selection criteria were applied to identify cases with accurate optical data and validated sources. Cross-check of the synthetic versus measured aerosol intensive parameters was performed in

  20. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    NASA Astrophysics Data System (ADS)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  1. Infrared absorption by volcanic stratospheric aerosols observed by ISAMS

    SciTech Connect

    Grainger, R.G.; Lambert, A.; Taylor, F.W.; Remedios, J.J.; Rodgers, C.D.; Corney, M. ); Kerridge, B.J. )

    1993-06-18

    The upper atmosphere research satellite was lofted shortly after the Mt. Pinatubo volcano erupted, and is estimated to have injected 20 million metric tons of sulphur dioxide into the stratosphere. This gas typically is converted to sulphuric acid by interactions with water droplets in the stratosphere. These droplets are typically not saturated in acid density, so the sticking fraction is very high. The improved stratospheric and mesospheric sounder makes measurements in 14 infrared channels from 4 to 17 [mu]m. The authors have used the available infrared data channels to model the distribution and density of sulfuric acid aerosols in the stratospheric band about the equator as a result of this volcanic eruption. Knowing the spectral properties of the aerosol load will aid in modeling the radiative and climatic impacts of this volcanic ejecta.

  2. Mass absorption indices of various types of natural aerosol particles in the infrared.

    PubMed

    Fischer, K

    1975-12-01

    The mass absorption index of aerosol particles has been measured in the 2-17-microm wavelength region. The measurements were performed on films of aerosol particles that were collected by an automatic jet impactor at polluted and various uncontaminated remote sites. All but marine aerosols possess strong absorption bands in the transparent part of the atmospheric long-wave spectrum, indicating marked influence of aerosol particles on the radiation budget of the atmosphere.

  3. Absorbing aerosols over Asia: A Geophysical Fluid Dynamics Laboratory general circulation model sensitivity study of model response to aerosol optical depth and aerosol absorption

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; Ramaswamy, V.

    2008-11-01

    Forcing by absorbing atmospheric black carbon (BC) tends to heat the atmosphere, cool the surface, and reduce the surface latent and sensible heat fluxes. BC aerosol can have a large impact on regional climates and the hydrologic cycle. However, significant uncertainties remain concerning the increases in (1) the total amount of all aerosol species and (2) the amount of aerosol absorption that may have occurred over the 1950-1990 period. Focusing on south and east Asia, the sensitivity of a general circulation model's climate response (with prescribed sea surface temperatures and aerosol distributions) to such changes is investigated by considering a range of both aerosol absorption and aerosol extinction optical depth increases. We include direct and semidirect aerosol effects only. Precipitation changes are less sensitive to changes in aerosol absorption optical depth at lower aerosol loadings. At higher-extinction optical depths, low-level convergence and increases in vertical velocity overcome the stabilizing effects of absorbing aerosols and enhance the monsoonal circulation and precipitation in northwestern India. In contrast, the presence of increases in only scattering aerosols weakens the monsoonal circulation and inhibits precipitation here. Cloud amount changes can enhance or counteract surface solar flux reduction depending on the aerosol loading and absorption, with the changes also influencing the surface temperature and the surface energy balance. The results have implications for aerosol reduction strategies in the future that seek to mitigate air pollution concerns. At higher optical depths, if absorbing aerosol is present, reduction of scattering aerosol alone has a reduced effect on precipitation changes, implying that reductions in BC aerosols should be undertaken at the same time as reductions in sulfate aerosols.

  4. Analyte-induced spectral filtering in femtosecond transient absorption spectroscopy

    DOE PAGES

    Abraham, Baxter; Nieto-Pescador, Jesus; Gundlach, Lars

    2017-03-06

    Here, we discuss the influence of spectral filtering by samples in femtosecond transient absorption measurements. Commercial instruments for transient absorption spectroscopy (TA) have become increasingly available to scientists in recent years and TA is becoming an established technique to measure the dynamics of photoexcited systems. Furthermore, we show that absorption of the excitation pulse by the sample can severely alter the spectrum and consequently the temporal pulse shape. This “spectral self-filtering” effect can lead to systematic errors and misinterpretation of data, most notably in concentration dependent measurements. Finally, the combination of narrow absorption peaks in the sample with ultrafast broadbandmore » excitation pulses is especially prone to this effect.« less

  5. High Spectral Resolution Lidar Measurements Using an I2 Absorption Filter

    NASA Technical Reports Server (NTRS)

    Eloranta, E. W.; Piironen, P.

    1996-01-01

    The University of Wisconsin high spectral resolution lidar (HSRL) measures optical properties of the atmosphere by separating the Doppler-broadened molecular backscatter return from the unbroadened aerosol return. The HSRL was modified to use an I2 absorption cell The modified HSRL transmitter uses a continuously pumped, Q-switched, injection seeded, frequency doubled Nd:YAG laser operating at a 4 kHz pulse repetition rate. This laser is tunable over a 124 GHz frequency range by temperature tuning the seed laser under computer control.

  6. Method and apparatus for aerosol particle absorption spectroscopy

    DOEpatents

    Campillo, Anthony J.; Lin, Horn-Bond

    1983-11-15

    A method and apparatus for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  7. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  8. Aerosol, surface, and cloud optical parameters derived from airborne spectral actinic flux: measurement comparison with other methods

    NASA Astrophysics Data System (ADS)

    Stark, H.; Bierwirth, E.; Schmidt, S.; Kindel, B. C.; Pilewskie, P.; Lack, D. A.; Madronich, S.; Parrish, D. D.

    2009-12-01

    Optical parameters of aerosols, surfaces, and clouds are essential for an accurate description of Earth’s radiative balance. We will present values for such parameters derived from spectral actinic flux measured on board the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in April 2008. We will compare these measurements to results obtained from other instruments on board the same aircraft, such as the Solar Spectral Flux Radiometer (SSFR) for irradiance measurements and aerosol extinction and absorption measurements by cavity ring-down and Particle Soot Absorption Photometer (PSAP). Actinic flux is sensitive to these parameters and can be used to measure them directly in the atmosphere without in-situ sampling methods required. We will describe the specifics of the actinic flux measurements, show advantages and disadvantages of this measurement technique, and compare results with other techniques. Furthermore, we will compare our measurements with model calculations from radiative transfer models such as the Tropospheric Ultraviolet and Visible (TUV) radiation model, the widely used library of radiative transfer (libradtran) model, and a Monte-Carlo radiation model (GRIMALDI). Also, we will investigate satellite measurements to constrain the radiation measurements to general radiation conditions in the arctic and to compare the results to aerosol optical depth retrievals. In particular, we will show results for surface albedo of the Arctic Ocean ice surface, extinction and absorption of Arctic haze layers, and optical thickness and albedo measurements of clouds.

  9. Dependence of the spectral diffuse-direct irradiance ratio on aerosol spectral distribution and single scattering albedo

    NASA Astrophysics Data System (ADS)

    Kaskaoutis, D. G.; Kambezidis, H. D.; Dumka, U. C.; Psiloglou, B. E.

    2016-09-01

    This study investigates the modification of the clear-sky spectral diffuse-direct irradiance ratio (DDR) as a function of solar zenith angle (SZA), spectral aerosol optical depth (AOD) and single scattering albedo (SSA). The solar spectrum under various atmospheric conditions is derived with Simple Model of the Atmospheric Radiative Transfer of Sunshine (SMARTS) radiative transfer code, using the urban and continental aerosol models as inputs. The spectral DDR can be simulated with great accuracy by an exponentially decreasing curve, while the aerosol optical properties strongly affect the scattering processes in the atmosphere, thus modifying the DDR especially in the ultraviolet (UV) spectrum. Furthermore, the correlation between spectral DDR and spectral AOD can be represented precisely by an exponential function and can give valuable information about the dominance of specific aerosol types. The influence of aerosols on spectral DDR increases with increasing SZA, while the simulations using the urban aerosol model as input in SMARTS are closer to the measurements taken in the Athens urban environment. The SMARTS simulations are interrelated with spectral measurements and can be used for indirect estimations of SSA. Overall, the current work provides some theoretical approximations and functions that help in understanding the dependence of DDR on astronomical and atmospheric parameters.

  10. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique for estimating aerosol radiative forcing from spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, R. R.

    2015-12-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is

  11. Spectral Classification of Heavily Reddened Stars by CO Absorption Strength

    NASA Astrophysics Data System (ADS)

    Garling, Christopher; Bary, Jeffrey S.; Huard, Tracy L.

    2017-01-01

    The nature of dust grains in dense molecular clouds can be explored by obtaining spectra of giant stars located behind the clouds and examining the wavelength-dependent attentuation of their light. This approach requires the intrinsic spectra of the background stars to be known, which can be achieved by determining their spectral types. In the K-band spectra of cool giant stars, several temperature-sensitive CO absorption bands serve as good spectral type indicators. Taking advantage of the SpeX Infrared Telescope Facility Spectral Library, near-infrared spectra collected with TripleSpec and the 3.5-meter ARC Telescope at Apache Point Observatory, and a previously constructed CO spectral index, we make precise spectral determinations of 20 giant stars located behind two dense cloud cores: CB188 and L429C. With spectral types in hand, we then utilize Markov Chain Monte Carlo techniques to constrain extinctions along these lines of sight. The spectral typing method will be described and assessed as well as its success at finding a couple of incorrectly spectral typed stars in the SpeX Library. Funding for this program was provided by a NSF REU grant to the Keck Northeast Astronomy Consortium and a grant from the NASA Astrophysics Data Analysis Program.

  12. Aerosol absorption measurement with a sinusoidal phase modulating fiber optic photo thermal interferometer

    NASA Astrophysics Data System (ADS)

    Li, Shuwang; Shao, Shiyong; Mei, Haiping; Rao, Ruizhong

    2016-10-01

    Aerosol light absorption plays an important role in the earth's atmosphere direct and semi-direct radiate forcing, simultaneously, it also has a huge influence on the visibility impairment and laser engineering application. Although various methods have been developed for measuring aerosol light absorption, huge challenge still remains in precision, accuracy and temporal resolution. The main reason is that, as a part of aerosol light extinction, aerosol light absorption always generates synchronously with aerosol light scattering, and unfortunately aerosol light scattering is much stronger in most cases. Here, a novel photo-thermal interferometry is proposed only for aerosol absorption measurement without disturbance from aerosol scattering. The photo-thermal interferometry consists of a sinusoidal phase-modulating single mode fiber-optic interferometer. The thermal dissipation, caused by aerosol energy from photo-thermal conversion when irritated by pump laser through interferometer, is detected. This approach is completely insensitive to aerosol scattering, and the single mode fiber-optic interferometer is compact, low-cost and insensitive to the polarization shading. The theory of this technique is illustrated, followed by the basic structure of the sinusoidal phase-modulating fiber-optic interferometer and demodulation algorithms. Qualitative and quantitative analysis results show that the new photo-thermal interference is a potential approach for aerosol absorption detection and environmental pollution detection.

  13. Inferring brown carbon content from UV aerosol absorption measurements during biomass burning season

    NASA Astrophysics Data System (ADS)

    Mok, J.; Krotkov, N. A.; Arola, A. T.; Torres, O.; Jethva, H. T.; Andrade, M.; Labow, G. J.; Eck, T. F.; Li, Z.; Dickerson, R. R.; Stenchikov, G. L.; Osipov, S.

    2015-12-01

    Measuring spectral dependence of light absorption by colored organic or "brown" carbon (BrC) is important, because of its effects on photolysis rates of ozone and surface ultraviolet (UV) radiation. Enhanced UV spectral absorption by BrC can in turn be exploited for simultaneous retrievals of BrC and black carbon (BC) column amounts in field campaigns. We present an innovative ground-based retrieval of BC and BrC volume fractions and their mass absorption efficiencies during the biomass burning season in Santa Cruz, Bolivia in September-October 2007. Our method combines retrieval of BC volume fraction using AERONET inversion in visible wavelengths with the inversion of total BC+BrC absorption (i.e., column effective imaginary refractive index, kmeas) using Diffuse/Direct irradiance measurements in UV wavelengths. First, we retrieve BrC volume fraction by fitting kmeas at 368nm using Maxwell-Garnett (MG) mixing rules assuming: (1) flat spectral dependence of kBC, (2) known value of kBrC at 368nm from laboratory absorption measurements or smoke chamber experiments, and (3) known BC volume fraction from AERONET inversion. Next, we derive kBrC in short UVB wavelengths by fitting kmeas at 305nm, 311nm, 317nm, 325nm, and 332nm using MG mixing rules and fixed volume fractions of BC and BrC. Our retrievals show larger than expected spectral dependence of kBrC in UVB wavelengths, implying reduced surface UVB irradiance and inhibited photolysis rates of surface ozone destruction. We use a one-dimensional chemical box model to show that the observed strong wavelength dependence of BrC absorption leads to inhibited photolysis of ozone to O(1D), a loss mechanism, while having little impact or even accelerating photolysis of NO2, an ozone production mechanism. Although BC only absorption in biomass burning aerosols is important for climate radiative forcing in the visible wavelengths, additional absorption by BrC is important because of its impact on surface UVB radiation

  14. Aerosol absorption over Bay of Bengal during winter: Variability and sources

    NASA Astrophysics Data System (ADS)

    Kedia, Sumita; Ramachandran, S.; Rajesh, T. A.; Srivastava, Rohit

    2012-07-01

    Measurements of black carbon (BC) mass concentration were made over the Bay of Bengal (BoB) during the period of 27 December 2008-29 January 2009. BC mass concentration is highest over the Coastal-BoB (5.1 ± 3.0 μg m-3) and is more than a factor of two higher than the South-BoB (2.5 ± 1.4 μg m-3). The source regions of BC over the study region is identified using the Total Potential Source Contribution Function (TPSCF) analysis. The probable source regions over the Coastal-BoB and North-BoB (India, Indo-Gangetic plain, Pakistan, Afghanistan) are found to be distinctly different than that over the East-BoB and South-BoB (mostly from southeast Asia). The spectral distribution of absorption coefficients suggested similar source types of BC present over the entire BoB, with significant contribution of absorbing aerosols from the sources other than fossil fuel burning. Our results suggest that the entire BoB remains dominantly influenced by aerosols emitted from biomass/biofuel burning during winter. Single scattering albedo (SSA) is found to vary in the range of 0.63-0.70 over different parts of BoB with the lowest value over Coastal-BoB and the highest value over South-BoB. SSA values observed in the present study are the lowest ever reported over the BoB in the last decade indicating highest concentration of absorbing aerosols over the BoB during winter. The present work and the results obtained will have strong implications while investigating the effect of anthropogenic aerosols over marine environment, and in estimating the spatiotemporal variation of aerosol radiative impact.

  15. Light Absorption in the Stratosphere: Trend, Soot Aerosol Concentration and Contribution by...

    NASA Technical Reports Server (NTRS)

    Pueschel, R. F.; Verma, S.; Strwwa, A. W.; Ferry, G. V.; Hamill, P.; Vay, S.; Gore, Warren J. Y. (Technical Monitor)

    1997-01-01

    The light absorption coefficient, Beta(a) of the stratospheric aerosol is an important quantity that determines its radiative effects. When combined with the aerosol scattering coefficient, Beta(a) it becomes possible to evaluate the aerosol single scatter albedo, omega = Beta(s)/(Beta(s) + Beta(a)) which is essential for modeling the overall radiative effects of the stratospheric aerosol. Pollack1 determined that omega = 0.98 is a critical value that separates stratospheric cooling from warming.

  16. Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.

    2012-01-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical depth (AOD) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOD and inferences of aerosol types are used to apportion AOD to aerosol type; results of this analysis are shown for several experiments.

  17. Aerosol classification using airborne High Spectral Resolution Lidar measurements - methodology and examples

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.

    2011-09-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm), aerosol optical thickness (AOT) (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio) are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOT and inferences of aerosol types are used to apportion AOT to aerosol type; results of this analysis are shown for several experiments.

  18. Plasma absorption evidence via chirped pulse spectral transmission measurements

    SciTech Connect

    Jedrkiewicz, Ottavia; Minardi, Stefano; Couairon, Arnaud; Jukna, Vytautas; Selva, Marco; Di Trapani, Paolo

    2015-06-08

    This work aims at highlighting the plasma generation dynamics and absorption when a Bessel beam propagates in glass. We developed a simple diagnostics allowing us to retrieve clear indications of the formation of the plasma in the material, thanks to transmission measurements in the angular and wavelength domains. This technique featured by the use of a single chirped pulse having the role of pump and probe simultaneously leads to results showing the plasma nonlinear absorption effect on the trailing part of the pulse, thanks to the spectral-temporal correspondence in the measured signal, which is also confirmed by numerical simulations.

  19. Spectral absorption of visual pigments in stomatopod larval photoreceptors.

    PubMed

    Feller, Kathryn D; Cronin, Thomas W

    2016-03-01

    Larval stomatopod eyes appear to be much simpler versions of adult compound eyes, lacking most of the visual pigment diversity and photoreceptor specializations. Our understanding of the visual pigment diversity of larval stomatopods, however, is based on four species, which severely limits our understanding of stomatopod eye ontogeny. To investigate several poorly understood aspects of stomatopod larval eye function, we tested two hypotheses surrounding the spectral absorption of larval visual pigments. First, we examined a broad range of species to determine if stomatopod larvae generally express a single, spectral class of photoreceptor. Using microspectrophotometry (MSP) on larvae captured in the field, we found data which further support this long-standing hypothesis. MSP was also used to test whether larval species from the same geographical region express visual pigments with similar absorption spectra. Interestingly, despite occupation of the same geographical location, we did not find evidence to support our second hypothesis. Rather, there was significant variation in visual pigment absorption spectra among sympatric species. These data are important to further our understanding of larval photoreceptor spectral diversity, which is beneficial to ongoing investigations into the ontogeny, physiology, and molecular evolution of stomatopod eyes.

  20. Absorption Properties of Mediterranean Aerosols Obtained from Multi-year Ground-based and Satellite Remote Sensing Observations

    NASA Technical Reports Server (NTRS)

    Mallet, M.; Dubovik, O.; Nabat, P.; Dulac, F.; Kahn, R.; Sciare, J.; Paronis, D.; Leon, J. F.

    2013-01-01

    Aerosol absorption properties are of high importance to assess aerosol impact on regional climate. This study presents an analysis of aerosol absorption products obtained over the Mediterranean Basin or land stations in the region from multi-year ground-based AERONET and satellite observations with a focus on the Absorbing Aerosol Optical Depth (AAOD), Single Scattering Albedo (SSA) and their spectral dependence. The AAOD and Absorption Angstrom Exponent (AAE) data set is composed of daily averaged AERONET level 2 data from a total of 22 Mediterranean stations having long time series, mainly under the influence of urban-industrial aerosols and/or soil dust. This data set covers the 17 yr period 1996-2012 with most data being from 2003-2011 (approximately 89 percent of level-2 AAOD data). Since AERONET level-2 absorption products require a high aerosol load (AOD at 440 nm greater than 0.4), which is most often related to the presence of desert dust, we also consider level-1.5 SSA data, despite their higher uncertainty, and filter out data with an Angstrom exponent less than 1.0 in order to study absorption by carbonaceous aerosols. The SSA data set includes both AERONET level-2 and satellite level-3 products. Satellite-derived SSA data considered are monthly level 3 products mapped at the regional scale for the spring and summer seasons that exhibit the largest aerosol loads. The satellite SSA dataset includes the following products: (i) Multi-angle Imaging SpectroRadiometer (MISR) over 2000-2011, (ii) Ozone Monitoring Instrument (OMI) near-UV algorithm over 2004-2010, and (iii) MODerate resolution Imaging Spectroradiometer (MODIS) Deep-Blue algorithm over 2005-2011, derived only over land in dusty conditions. Sun-photometer observations show that values of AAOD at 440 nm vary between 0.024 +/- 0.01 (resp. 0.040 +/- 0.01) and 0.050 +/- 0.01 (0.055 +/- 0.01) for urban (dusty) sites. Analysis shows that the Mediterranean urban-industrial aerosols appear "moderately

  1. Simulation model of absorption and scattering properties of laser light applied to urban aerosols over the city of Popayan, Colombia

    NASA Astrophysics Data System (ADS)

    Bastidas, Alvaro E.; Rodriguez, Edith; Jaramillo, Mauricio; Solarte, Efrain

    2004-11-01

    Aerosols are among the most spatially variable components of the atmosphere, and thus their study requires their monitoring over a broad geographic range. The backscattering of light from suspended solid and liquid particles in the atmosphere obeys Mie scattering theory. Light attenuation in the spectral region from 300 to 4000 nm due to Mie scattering exceeds that due to molecular (Rayleigh) scattering and ozone absorption combined. This occurs despite the fact that aerosol particle concentrations in the atmosphere are many orders of magnitude smaller than molecular concentrations. Starting from the characteristics of urban aerosols measured over the city of Popayan, Colombia), 2° 27" N; 76° 37' W, with a PM10 particle selector, we present the results of a study of light attenuation properties generated using Matlab computer code, to simulate and predict measurements with a Lidar system operating at 514.5 nm.

  2. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols.

    PubMed

    Higdon, N S; Browell, E V; Ponsardin, P; Grossmann, B E; Butler, C F; Chyba, T H; Mayo, M N; Allen, R J; Heuser, A W; Grant, W B; Ismail, S; Mayor, S D; Carter, A F

    1994-09-20

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H(2)O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and > 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H(2)O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H(2)O absorption-line parameters were perfo med to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H(2)O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H(2)O radiosondes. The H(2)O distributions measured with the DIAL system differed by ≤ 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  3. Airborne differential absorption lidar system for measurements of atmospheric water vapor and aerosols

    NASA Technical Reports Server (NTRS)

    Carter, Arlen F.; Allen, Robert J.; Mayo, M. Neale; Butler, Carolyn F.; Grossman, Benoist E.; Ismail, Syed; Grant, William B.; Browell, Edward V.; Higdon, Noah S.; Mayor, Shane D.; Ponsardin, Patrick; Hueser, Alene W.

    1994-01-01

    An airborne differential absorption lidar (DIAL) system has been developed at the NASA Langley Research Center for remote measurements of atmospheric water vapor (H2O) and aerosols. A solid-state alexandrite laser with a 1-pm linewidth and greater than 99.85% spectral purity was used as the on-line transmitter. Solid-state avalanche photodiode detector technology has replaced photomultiplier tubes in the receiver system, providing an average increase by a factor of 1.5-2.5 in the signal-to-noise ratio of the H2O measurement. By incorporating advanced diagnostic and data-acquisition instrumentation into other subsystems, we achieved additional improvements in system operational reliability and measurement accuracy. Laboratory spectroscopic measurements of H2O absorption-line parameters were performed to reduce the uncertainties in our knowledge of the absorption cross sections. Line-center H2O absorption cross sections were determined, with errors of 3-6%, for more than 120 lines in the 720-nm region. Flight tests of the system were conducted during 1989-1991 on the NASA Wallops Flight Facility Electra aircraft, and extensive intercomparison measurements were performed with dew-point hygrometers and H2O radiosondes. The H2O distributions measured with the DIAL system differed by less than 10% from the profiles determined with the in situ probes in a variety of atmospheric conditions.

  4. Impact of Tropospheric Aerosol Absorption on Ozone Retrieval from buv Measurements

    NASA Technical Reports Server (NTRS)

    Torres, O.; Bhartia, P. K.

    1998-01-01

    The impact of tropospheric aerosols on the retrieval of column ozone amounts using spaceborne measurements of backscattered ultraviolet radiation is examined. Using radiative transfer calculations, we show that uv-absorbing desert dust may introduce errors as large as 10% in ozone column amount, depending on the aerosol layer height and optical depth. Smaller errors are produced by carbonaceous aerosols that result from biomass burning. Though the error is produced by complex interactions between ozone absorption (both stratospheric and tropospheric), aerosol scattering, and aerosol absorption, a surprisingly simple correction procedure reduces the error to about 1%, for a variety of aerosols and for a wide range of aerosol loading. Comparison of the corrected TOMS data with operational data indicates that though the zonal mean total ozone derived from TOMS are not significantly affected by these errors, localized affects in the tropics can be large enough to seriously affect the studies of tropospheric ozone that are currently undergoing using the TOMS data.

  5. Simulations of the Aerosol Index and the Absorption Aerosol Optical Depth and Comparisons with OMI Retrievals During ARCTAS-2008 Campaign

    NASA Technical Reports Server (NTRS)

    2010-01-01

    We have computed the Aerosol Index (AI) at 354 nm, useful for observing the presence of absorbing aerosols in the atmosphere, from aerosol simulations conducted with the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) module running online the GEOS-5 Atmospheric GCM. The model simulates five aerosol types: dust, sea salt, black carbon, organic carbon and sulfate aerosol and can be run in replay or data assimilation modes. In the assimilation mode, information's provided by the space-based MODIS and MISR sensors constrains the model aerosol state. Aerosol optical properties are then derived from the simulated mass concentration and the Al is determined at the OMI footprint using the radiative transfer code VLIDORT. In parallel, model derived Absorption Aerosol Optical Depth (AAOD) is compared with OMI retrievals. We have focused our study during ARCTAS (June - July 2008), a period with a good sampling of dust and biomass burning events. Our ultimate goal is to use OMI measurements as independent validation for our MODIS/MISR assimilation. Towards this goal we document the limitation of OMI aerosol absorption measurements on a global scale, in particular sensitivity to aerosol vertical profile and cloud contamination effects, deriving the appropriate averaging kernels. More specifically, model simulated (full) column integrated AAOD is compared with model derived Al, this way identifying those regions and conditions under which OMI cannot detect absorbing aerosols. Making use of ATrain cloud measurements from MODIS, C1oudSat and CALIPSO we also investigate the global impact on clouds on OMI derived Al, and the extent to which GEOS-5 clouds can offer a first order representation of these effects.

  6. Solar Spectral Radiative Forcing Due to Dust Aerosol During the Puerto Rico Dust Experiment

    NASA Technical Reports Server (NTRS)

    Pilewskie, P.; Bergstrom, R.; Rabbette, M.; Livingston, J.; Russell, P.; Gore, Warren J. (Technical Monitor)

    2000-01-01

    During the Puerto Rico Dust Experiment (PRIDE) upwelling and downwelling solar spectral irradiance was measured on board the SPAWAR Navajo and downwelling solar spectral flux was measured at a surface site using the NASA Ames Solar Spectral Flux Radiometer. These data will be used to determine the net solar radiative forcing of dust aerosol and to quantify the solar spectral radiative energy budget in the presence of elevated aerosol loading. We will assess the variability in spectral irradiance using formal principal component analysis procedures and relate the radiative variability to aerosol microphysical properties. Finally, we will characterize the sea surface reflectance to improve aerosol optical depth retrievals from the AVHRR satellite and to validate SeaWiFS ocean color products.

  7. Strong Wavelength Dependence of Aerosol Light Absorption from Peat Combustion

    NASA Astrophysics Data System (ADS)

    Gyawali, M. S.; Chakrabarty, R. K.; Yatavelli, R. L. N.; Chen, L. W. A. A.; Knue, J.; Samburova, V.; Watts, A.; Moosmüller, H.; Arnott, W. P.; Wang, X.; Zielinska, B.; Chow, J. C.; Watson, J. G.; Tsibart, A.

    2014-12-01

    Globally, organic soils and peats may store as much as 600 Gt of terrestrial carbon, representing 20 - 30% of the planet's terrestrial organic carbon mass. This is approximately the same carbon mass as that contained in Earth's atmosphere, despite peatlands occupying only 3% of its surface. Effects of fires in these ecosystems are of global concern due to their potential for enormous carbon release into the atmosphere. The implications for contributions of peat fires to the global carbon cycle and radiative forcing scenarios are significant. Combustion of peat mostly takes place in the low temperature, smoldering phase of a fire. It consumes carbon that may have accumulated over a period of hundreds to thousands of years. In comparison, combustion of aboveground biomass fuels releases carbon that has accumulated much more recently, generally over a period of years or decades. Here, we report our findings on characterization of emissions from laboratory combustion of peat soils from three locations representing the biomes in which these soils occur. Peat samples from Alaska and Florida (USA) and Siberia (Russia) were burned at two different fuel moisture levels. Burns were conducted in an 8-m3 volume combustion chamber located at the Desert Research Institute, Reno, NV, USA. We report significant brown carbon production from combustion of all three peat soils. We used a multispectral (405, 532, 781 nm) photoacoustic instrument equipped with integrating nephelometer to measure the wavelength-dependent aerosol light absorption and scattering. Absorption Ångström exponents (between 405 and 532 nm) as high as ten were observed, revealing strongly enhanced aerosol light absorption in the violet and blue wavelengths. Single scattering albedos (SSA) of 0.94 and 0.99 were observed at 405 and 532 nm, respectively, for the same sample. Variability of these optical parameters will be discussed as a function of fuel and combustion conditions. Other real-time measurements

  8. Spectral absorption coefficients of argon and silicon and spectral reflectivity of aluminum

    NASA Technical Reports Server (NTRS)

    Krascella, N. L.

    1972-01-01

    A theoretical investigation was conducted to estimate the spectral properties of argon as a function of pressure, temperature, and wave number. The spectral characteristics of the argon buffer gas exert a strong influence on radiative energy transfer in the in-reactor test configuration of the nuclear light bulb engine. An existing computer program was modified and used to calculate the spectral absorption coefficients of argon at total pressures of 50, 100, 250, 500, 750 and 1000 atm in the temperature interval between 1000 and 30,000 K. At each pressure and temperature, spectral properties were calculated for forty-seven wave numbers in the interval between 1000 and 1,000,000 cm/1. Estimates of the spectral absorption coefficients of silicon were made as part of an evaluation of silicon vapor as a possible buffer-gas seeding agent for the reference nuclear light bulb engine. Existing cross-section data were used to calculate the spectral characteristics of silicon at twenty-four temperatures in the interval between 2000 and 10,000 K.

  9. A new high spectral resolution lidar technique for direct retrievals of cloud and aerosol extinction

    NASA Astrophysics Data System (ADS)

    Yorks, J. E.; McGill, M. J.; Hlavka, D. L.

    2014-12-01

    The Airborne Cloud-Aerosol Transport System (ACATS) is a Doppler lidar system and high spectral resolution lidar (HSRL) recently developed at NASA Goddard Space Flight Center (GSFC). ACATS passes the returned atmospheric backscatter through a single etalon and divides the transmitted signal into several channels (wavelength intervals), which are measured simultaneously and independently (Figure 1). Both the particulate and molecular scattered signal can be directly and unambiguously measured, allowing for direct retrievals of particle extinction. The broad Rayleigh-scattered spectrum is imaged as a nearly flat background, illustrated in Figure 1c. The integral of the particulate backscattered spectrum is analogous to the aerosol measurement from the typical absorption filter HSRL technique in that the molecular and particulate backscatter components can be separated (Figure 1c and 1d). The main difference between HSRL systems that use the iodine filter technique and the multichannel etalon technique used in the ACATS instrument is that the latter directly measures the spectral broadening of the particulate backscatter using the etalon to filter out all backscattered light with the exception of a narrow wavelength interval (1.5 picometers for ACATS) that contains the particulate spectrum (grey, Figure 1a). This study outlines the method and retrieval algorithms for ACATS data products, focusing on the HSRL derived cloud and aerosol properties. While previous ground-based multi-channel etalon systems have been built and operated for wind retrievals, there has been no airborne demonstration of the technique and the method has not been used to derive HSRL cloud and aerosol properties. ACATS has flown on the NASA ER-2 during flights over Alaska in July 2014 and as part of the Wallops Airborne Vegetation Experiment (WAVE) in September 2012. This study will focus on the HSRL aspect of the ACATS instrument, since the method and retrieval algorithms have direct application

  10. Comparison of Aerosol Classification from Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Omar, A. H.; Hostetler, C. A.; Hair, J. W.; Rogers, R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.

    2012-12-01

    The NASA Langley Research Center (LaRC) airborne High Spectral Resolution Lidar (HSRL-1) on the NASA B200 aircraft has acquired large datasets of aerosol extinction (532nm), backscatter (532 and 1064nm), and depolarization (532 and 1064nm) profiles during 349 science flights in 19 field missions across North America since 2006. The extinction-to-backscatter ratio ("lidar ratio"), aerosol depolarization ratios, and backscatter color ratio measurements from HSRL-1 are scale-invariant parameters that depend on aerosol type but not concentration. These four aerosol intensive parameters are combined to qualitatively classify HSRL aerosol measurements into eight separate composition types. The classification methodology uses models formed from "training cases" with known aerosol type. The remaining measurements are then compared with these models using the Mahalanobis distance. Aerosol products from the CALIPSO satellite include aerosol type information as well, which is used as input to the CALIPSO aerosol retrieval. CALIPSO aerosol types are inferred using a mix of aerosol loading-dependent parameters, estimated aerosol depolarization, and location, altitude, and surface type information. The HSRL instrument flies beneath the CALIPSO satellite orbit track, presenting the opportunity for comparisons between the HSRL aerosol typing and the CALIPSO Vertical Feature Mask Aerosol Subtype product, giving insight into the performance of the CALIPSO aerosol type algorithm. We find that the aerosol classification from the two instruments frequently agree for marine aerosols and pure dust, and somewhat less frequently for pollution and smoke. In addition, the comparison suggests that the CALIPSO polluted dust type is overly inclusive, encompassing cases of dust combined with marine aerosol as well as cases without much evidence of dust. Qualitative classification of aerosol type combined with quantitative profile measurements of aerosol backscatter and extinction has many useful

  11. Evaluating model parameterizations of submicron aerosol scattering and absorption with in situ data from ARCTAS 2008

    NASA Astrophysics Data System (ADS)

    Alvarado, Matthew J.; Lonsdale, Chantelle R.; Macintyre, Helen L.; Bian, Huisheng; Chin, Mian; Ridley, David A.; Heald, Colette L.; Thornhill, Kenneth L.; Anderson, Bruce E.; Cubison, Michael J.; Jimenez, Jose L.; Kondo, Yutaka; Sahu, Lokesh K.; Dibb, Jack E.; Wang, Chien

    2016-07-01

    Accurate modeling of the scattering and absorption of ultraviolet and visible radiation by aerosols is essential for accurate simulations of atmospheric chemistry and climate. Closure studies using in situ measurements of aerosol scattering and absorption can be used to evaluate and improve models of aerosol optical properties without interference from model errors in aerosol emissions, transport, chemistry, or deposition rates. Here we evaluate the ability of four externally mixed, fixed size distribution parameterizations used in global models to simulate submicron aerosol scattering and absorption at three wavelengths using in situ data gathered during the 2008 Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) campaign. The four models are the NASA Global Modeling Initiative (GMI) Combo model, GEOS-Chem v9-02, the baseline configuration of a version of GEOS-Chem with online radiative transfer calculations (called GC-RT), and the Optical Properties of Aerosol and Clouds (OPAC v3.1) package. We also use the ARCTAS data to perform the first evaluation of the ability of the Aerosol Simulation Program (ASP v2.1) to simulate submicron aerosol scattering and absorption when in situ data on the aerosol size distribution are used, and examine the impact of different mixing rules for black carbon (BC) on the results. We find that the GMI model tends to overestimate submicron scattering and absorption at shorter wavelengths by 10-23 %, and that GMI has smaller absolute mean biases for submicron absorption than OPAC v3.1, GEOS-Chem v9-02, or GC-RT. However, the changes to the density and refractive index of BC in GC-RT improve the simulation of submicron aerosol absorption at all wavelengths relative to GEOS-Chem v9-02. Adding a variable size distribution, as in ASP v2.1, improves model performance for scattering but not for absorption, likely due to the assumption in ASP v2.1 that BC is present at a constant mass fraction

  12. Aerosol Spectral Radiative Forcing Efficiency from Airborne Measurements During Multiple Field Missions

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Leblanc, S. E.; Pilewskie, P.; Redemann, J.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.

    2012-12-01

    Measurements of shortwave spectral irradiance in conjunction with measurements of aerosol optical depth are used to determine the direct aerosol radiative forcing for various different regions and missions. To better compare cases with different air masses and solar geometry, we use the concept of top-of-layer and bottom-of-layer relative forcing efficiency. The aerosol layers were sampled from aircraft during several field campaigns, including the Megacity Initiative: Local and Global Research Observations (MILAGRO, Mexico, 2006); the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, Alaska and Alberta, 2008), Research at the Nexus of Air Quality and Climate Change (CalNex, California, 2010); and the Deep Convective Clouds and Chemistry Experiment (DC3, central US, 2012). We show that the spectral shape of the relative forcing efficiency is similar for these aerosol layers regardless of the aerosol type. The spectral relative forcing efficiency at any one wavelength for the majority of the cases is constrained within a span of 20% per unit of midvisible aerosol optical depth. Single scattering albedo, asymmetry parameter, and surface albedo are secondary products for the various methods used to determine aerosol radiative forcing. Using these, we determine the diurnally averaged spectral and broadband top-of-atmosphere and surface radiative forcing efficiency for the various different aerosol types and surface conditions.

  13. Effective absorption cross sections and photolysis rates of anthropogenic and biogenic secondary organic aerosols

    NASA Astrophysics Data System (ADS)

    Romonosky, Dian E.; Ali, Nujhat N.; Saiduddin, Mariyah N.; Wu, Michael; Lee, Hyun Ji (Julie); Aiona, Paige K.; Nizkorodov, Sergey A.

    2016-04-01

    Mass absorption coefficient (MAC) values were measured for secondary organic aerosol (SOA) samples produced by flow tube ozonolysis and smog chamber photooxidation of a wide range of volatile organic compounds (VOC), specifically: α-pinene, β-pinene, β-myrcene, d-limonene, farnesene, guaiacol, imidazole, isoprene, linalool, ocimene, p-xylene, 1-methylpyrrole, and 2-methylpyrrole. Both low-NOx and high-NOx conditions were employed during the chamber photooxidation experiments. MAC values were converted into effective molecular absorption cross sections assuming an average molecular weight of 300 g/mol for SOA compounds. The upper limits for the effective photolysis rates of SOA compounds were calculated by assuming unity photolysis quantum yields and convoluting the absorption cross sections with a time-dependent solar spectral flux. A more realistic estimate for the photolysis rates relying on the quantum yield of acetone was also obtained. The results show that condensed-phase photolysis of SOA compounds can potentially occur with effective lifetimes ranging from minutes to days, suggesting that photolysis is an efficient and largely overlooked mechanism of SOA aging.

  14. Spectral broadening of interacting pigments: polarized absorption by photosynthetic proteins.

    PubMed

    Somsen, O J; van Grondelle, R; van Amerongen, H

    1996-10-01

    Excitonic interaction between pigment molecules is largely responsible for the static and dynamic spectroscopic properties of photosynthetic pigment-proteins. This paper provides a new description of its effect on polarized absorption spectroscopy, in particular on circular dichroism (CD). We investigate excitonic spectra of finite width and use "spectral moments" to compare 1) inhomogeneously broadened excitonic spectra, 2) spectra that are (homogeneously broadened by vibrations or electron-phonon interaction, and 3) spectra that are simulated by applying convolution after the interaction has been evaluated. Two cases are distinguished. If the excitonic splitting is smaller than the width of the interacting absorption bands, the broadening of the excitonic spectrum can be approximated by a convolution approach, although a correction is necessary for CD spectra. If the excitonic splitting exceeds the bandwidth, the well-known exchange narrowing occurs. We demonstrate that this is accompanied by redistribution of dipole strength and spectral shifts. The magnitude of a CD spectrum is conveniently expressed by its first spectral moment. As will be shown, this is independent of spectral broadening as well as dispersive shifts induced by pigment-protein interactions. Consequently, it provides a simple tool to relate the experimental CD spectrum of a pigment complex to the excitonic interactions from which it originates. To illustrate the potential of the presented framework, the spectroscopy of the LH2 pigment-protein complex from purple bacteria is analyzed and compared for dimer-like and ring-like structures. Furthermore, it is demonstrated that the variability of the CD of chlorosomes from green bacteria can be explained by small changes in the structure of their cylindrical bacteriochlorophyll c subunits.

  15. Aerosol particle absorption spectroscopy by photothermal modulation of Mie scattered light

    SciTech Connect

    Campillo, A.J.; Dodge, C.J.; Lin, H.B.

    1981-09-15

    Absorption spectroscopy of suspended submicron-sized aqueous ammonium-sulfate aerosol droplets has been performed by employing a CO/sub 2/ laser to photothermally modulate visible Mie scattered light. (AIP)

  16. Spectral radiometry and tropospheric aerosols: Report of panel

    NASA Technical Reports Server (NTRS)

    Fraser, Robert S.; Griggs, Michael; Lacis, Andrew A.; Mcmaster, L. R.

    1987-01-01

    The term aerosols, as used here, refers to the haze, smoke, and dust that appear in the troposphere. The term does not refer to the hydrometeors in cumulus and stratus clouds but does include the sulfuric acid-water droplets which are assumed to predominate in the stratospheric aerosol layer. The aerosol properties that were measured from satellites and those which can be made in the near term (up to 1992) will be reviewed. The capabilities that will exist in the years 1992 to 2000, with implementation of EOS, are then discussed. Finally, a few words will be said concerning the potential for aerosol measurements for the decade after 2000.

  17. Effect of Spectrally Varying Albedo of Vegetation Surfaces on Shortwave Radiation Fluxes and Aerosol Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-01-01

    This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the

  18. The impact of biogenic carbon emissions on aerosol absorption inMexico City

    SciTech Connect

    Marley, N; Gaffney, J; Tackett, M J; Sturchio, N; Hearty, L; Martinez, N; Hardy, K D; Machany-Rivera, A; Guilderson, T P; MacMillan, A; Steelman, K

    2009-02-24

    In order to determine the wavelength dependence of atmospheric aerosol absorption in the Mexico City area, the absorption angstrom exponents (AAEs) were calculated from aerosol absorption measurements at seven wavelengths obtained with a seven-channel aethalometer during two field campaigns, the Mexico City Metropolitan Area study in April 2003 (MCMA 2003) and the Megacity Initiative: Local and Global Research Observations in March 2006 (MILAGRO). The AAEs varied from 0.76 to 1.56 in 2003 and from 0.54 to 1.52 in 2006. The AAE values determined in the afternoon were consistently higher than the corresponding morning values, suggesting the photochemical formation of absorbing secondary organic aerosols (SOA) in the afternoon. The AAE values were compared to stable and radiocarbon isotopic measurements of aerosol samples collected at the same time to determine the sources of the aerosol carbon. The fraction of modern carbon (fM) in the aerosol samples, as determined from {sup 14}C analysis, showed that 70% of the carbonaceous aerosols in Mexico City were from modern sources, indicating a significant impact from biomass burning during both field campaigns. The {sup 13}C/{sup 12}C ratios of the aerosol samples illustrate the significant impact of Yucatan forest fires (C-3 plants) in 2003 and local grass fires (C-4 plants) at site T1 in 2006. A direct comparison of the fM values, stable carbon isotope ratios, and calculated aerosol AAEs suggested that the wavelength dependence of the aerosol absorption was controlled by the biogenically derived aerosol components.

  19. Aerosol Profile Measurements from the NASA Langley Research Center Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Obland, Michael D.; Hostetler, Chris A.; Ferrare, Richard A.; Hair, John W.; Roers, Raymond R.; Burton, Sharon P.; Cook, Anthony L.; Harper, David B.

    2008-01-01

    Since achieving first light in December of 2005, the NASA Langley Research Center (LaRC) Airborne High Spectral Resolution Lidar (HSRL) has been involved in seven field campaigns, accumulating over 450 hours of science data across more than 120 flights. Data from the instrument have been used in a variety of studies including validation and comparison with the Cloud- Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite mission, aerosol property retrievals combining passive and active instrument measurements, aerosol type identification, aerosol-cloud interactions, and cloud top and planetary boundary layer (PBL) height determinations. Measurements and lessons learned from the HSRL are leading towards next-generation HSRL instrument designs that will enable even further studies of aerosol intensive and extensive parameters and the effects of aerosols on the climate system. This paper will highlight several of the areas in which the NASA Airborne HSRL is making contributions to climate science.

  20. Elevated aerosol layers modify the O2–O2 absorption measured by ground-based MAX-DOAS

    SciTech Connect

    Ortega, Ivan; Berg, Larry K.; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-06-01

    The oxygen collisional complex (O2-O2, or O4) is a greenhouse gas, and a calibration trace gas used to infer aerosol and cloud properties by Differential Optical Absorption Spectroscopy (DOAS). Recent reports suggest the need for an O4 correction factor (CFO4) when comparing simulated and measured O4 differential slant column densities (dSCD) by passive DOAS. We investigate the sensitivity of O4 dSCD simulations at ultraviolet (360 nm) and visible (477 nm) wavelengths towards separately measured aerosol extinction profiles. Measurements were conducted by the University of Colorado 2D-MAX-DOAS instrument and NASA’s multispectral High Spectral Resolution Lidar (HSRL-2) during the Two Column Aerosol Project (TCAP) at Cape Cod, MA in July 2012. During two case study days with (1) high aerosol load (17 July, AOD ~ 0.35 at 477 nm), and (2) near molecular scattering conditions (22 July, AOD < 0.10 at 477 nm) the measured and calculated O4 dSCDs agreed within 6.4±0.4% (360 nm) and 4.7±0.6% (477 nm) if the HSRL-2 profiles were used as input to the calculations. However, if in the calculations the aerosol is confined to the surface layer (while keeping AOD constant) we find 0.53aerosol layers, unless accounted for, can cause negative bias in the simulated O4 dSCDs that can explain CFO4. The air density and aerosol profile aloft needs to be taken into account when interpreting the O4 from ground-based MAX-DOAS. Opportunities to identify and better characterize these layers are also discussed.

  1. Measurements and Modeling of Aerosol Absorption and Single Scattering Albedo at Ambient Relative Hum

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Russell, P. B.; Hamill, P.

    2000-01-01

    Uncertainties in the aerosol single scattering albedo have been identified to be an important source of errors in current large-scale model estimates of the direct aerosol radiative forcing of climate. A number of investigators have obtained estimates of the single scattering albedo from a variety of remote sensing and in situ measurements during aerosol field experiments. During the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX, 1996) for example, estimates of the aerosol single scattering albedo were obtained (1) as a best-fit parameter in comparing radiative flux changes measured by airborne pyranometer to those computed from independently measured aerosol properties; (2) from estimates of the aerosol complex index of refraction derived using a combination of airborne sunphotometer, lidar backscatter and in situ size distribution measurements; and (3) from airborne measurements of aerosol scattering and absorption using nephelometers and absorption photometers. In this paper, we briefly compare the results of the latter two methods for two TARFOX case studies, since those techniques provide height-resolved information about the aerosol single scattering albedo. Estimates of the aerosol single scattering albedo from nephelometer and absorption photometer measurements require knowledge of the scattering and absorption humidification (i.e., the increase in these properties in response to an increase in ambient relative humidity), since both measurements are usually carried out at a relative humidity different from the ambient atmosphere. In principle, the scattering humidification factor can be measured, but there is currently no technique widely available to measure the absorption of an aerosol sample as a function of relative humidity. Frequently, for lack of better knowledge, the absorption humidification is assumed to be unity (meaning that there is no change in aerosol absorption due to an increase in ambient relative humidity). This

  2. Airborne High Spectral Resolution Lidar Aerosol Measurements during MILAGRO and TEXAQS/GOMACCS

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Hostetler, Chris; Hair, John; Cook Anthony; Harper, David; Burton, Sharon; Clayton, Marian; Clarke, Antony; Russell, Phil; Redemann, Jens

    2007-01-01

    Two1 field experiments conducted during 2006 provided opportunities to investigate the variability of aerosol properties near cities and the impacts of these aerosols on air quality and radiative transfer. The Megacity Initiative: Local and Global Research Observations (MILAGRO) /Megacity Aerosol Experiment in Mexico City (MAX-MEX)/Intercontinental Chemical Transport Experiment-B (INTEX-B) joint experiment conducted during March 2006 investigated the evolution and transport of pollution from Mexico City. The Texas Air Quality Study (TEXAQS)/Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) (http://www.al.noaa.gov/2006/) conducted during August and September 2006 investigated climate and air quality in the Houston/Gulf of Mexico region. During both missions, the new NASA Langley airborne High Spectral Resolution Lidar (HSRL) was deployed on the NASA Langley B200 King Air aircraft and measured profiles of aerosol extinction, backscattering, and depolarization to: 1) characterize the spatial and vertical distributions of aerosols, 2) quantify aerosol extinction and optical thickness contributed by various aerosol types, 3) investigate aerosol variability near clouds, 4) evaluate model simulations of aerosol transport, and 5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

  3. Impact of Nonabsorbing Anthropogenic Aerosols on Clear-Sky Atmospheric Absorption

    NASA Technical Reports Server (NTRS)

    Stier, Philip; Seinfeld, John H.; Kinne, Stefan; Feichter,Johann; Boucher, Olivier

    2006-01-01

    Absorption of solar radiation by atmospheric aerosol has become recognized as important in regional and global climate. Nonabsorbing, hydrophilic aerosols, such as sulfate, potentially affect atmospheric absorption in opposing ways: first, decreasing absorption through aging initially hydrophobic black carbon (BC) to a hydrophilic state, enhancing its removal by wet scavenging, and consequently decreasing BC lifetime and abundance, and second, increasing absorption through enhancement of the BC absorption efficiency by internal mixing as well as through increasing the amount of diffuse solar radiation in the atmosphere. On the basis of General Circulation Model studies with an embedded microphysical aerosol module we systematically demonstrate the significance of these mechanisms both on the global and regional scales. In remote transport regions, the first mechanism prevails, reducing atmospheric absorption, whereas in the vicinity of source regions, despite enhanced wet scavenging, absorption is enhanced owing to the prevalence of the second mechanisms. Our findings imply that the sulfur to BC emission ratio plays a key role in aerosol absorption.

  4. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    NASA Technical Reports Server (NTRS)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  5. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-07

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment.

  6. Aerosol Retrieval from Multiangle Multispectral Photopolarimetric Measurements: Importance of Spectral Range and Angular Resolution

    NASA Technical Reports Server (NTRS)

    Wu, L.; Hasekamp, O.; Van Diedenhoven, B.; Cairns, B.

    2015-01-01

    We investigated the importance of spectral range and angular resolution for aerosol retrieval from multiangle photopolarimetric measurements over land. For this purpose, we use an extensive set of simulated measurements for different spectral ranges and angular resolutions and subsets of real measurements of the airborne Research Scanning Polarimeter (RSP) carried out during the PODEX and SEAC4RS campaigns over the continental USA. Aerosol retrievals performed from RSP measurements show good agreement with ground-based AERONET measurements for aerosol optical depth (AOD), single scattering albedo (SSA) and refractive index. Furthermore, we found that inclusion of shortwave infrared bands (1590 and/or 2250 nm) significantly improves the retrieval of AOD, SSA and coarse mode microphysical properties. However, accuracies of the retrieved aerosol properties do not improve significantly when more than five viewing angles are used in the retrieval.

  7. Spectral solar attenuation due to aerosol loading over an urban area in India

    NASA Astrophysics Data System (ADS)

    Latha, K. Madhavi; Badarinath, K. V. S.

    2005-06-01

    Anthropogenic activities in urban areas are sources for atmospheric aerosols and are increasing due to population explosion and migration. Many large cities in the developing world are presently plagued by high levels of atmospheric pollution and long-term effect of urban aerosol on climate is an important topic. In the present study, ground-based measurements of solar irradiance, aerosol loading and black carbon (BC) aerosol concentration have been analyzed during different aerosol loading conditions during 2003 over an urban environment. BC aerosols concentration has been observed to be enhanced during high aerosol optical depth day suggesting influence of local anthropogenic activities. The analysis of wind fields over the study area during the measurement period is from north with continental air mass prevailing over the region. Spectral measurements of solar irradiance exhibited variations based on aerosol loading in urban atmosphere. Relative attenuations caused by aerosols have been found to be of the order of 21% and 17% on the irradiance on visible and near infrared respectively.

  8. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  9. Strong enhancement in light absorption by black carbon due to aerosol water uptake

    NASA Astrophysics Data System (ADS)

    Fierce, Laura; Mena, Francisco; Riemer, Nicole; Bond, Tami C.; Bauer, Susanne E.

    2015-04-01

    Black carbon exerts a strong, yet highly uncertain, warming effect on the climate. One source of uncertainty in predicting black carbon's radiative effects is the absorption per black carbon mass. Although models suggest that light absorption is strongly enhanced if black carbon is coated with non-absorbing aerosol material, recent ambient observations find only weak absorption enhancement from aerosol coatings. In this study, we use a particle-resolved aerosol model to evaluate how oversimplified representations of particle composition impact modeled light absorption by black carbon. We show that oversimplifying the representation of particle composition leads to overestimation of modeled absorption enhancement. In order to improve global model representations of BC absorption, we performed a nonparametric regression on particle-reolved model data from a series of simulations. Through this nonparametric analysis we derived a relationship for absorption enhancement as a function of variables that global models already track, the population-averaged composition and the environmental relative humidity. Finally, we show how this nonparametric relationship can be exploited for use in global models to improve predictions of absorption by black carbon. In order to quantify the global-scale impact of water uptake on light absorption by black carbon, we applied the relationship for absorption enhancement to output of the climate model GISS-MATRIX. We find weak absorption enhancement in locations with low relative humidity, but light absorption is strongly enhanced in humid regions. This enhancement in light absorption by particles taking up water strongly impacts black carbon's radiative effects at the global scale, enhancing light absorption by black carbon by 20% relative to dry conditions.

  10. Light Absorption of Stratospheric Aerosols: Long-Term Trend and Contribution by Aircraft

    NASA Technical Reports Server (NTRS)

    Pueschel , R. F.; Gore, Waren J. Y. (Technical Monitor)

    1997-01-01

    Measurements of aerosol light-absorption coefficients are useful for studies of radiative transfer and heating rates. Ogren appears to have published the first light- absorption coefficients in the stratosphere in 1981, followed by Clarke in 1983 and Pueschel in 1992. Because most stratospheric soot appears to be due to aircraft operations, application of an aircraft soot aerosol emission index to projected fuel consumption suggests a threefold increase of soot loading and light absorption by 2025. Together, those four data sets indicate an increase in mid-visible light extinction at a rate of 6 % per year. This trend is similar to the increase per year of sulfuric acid aerosol and of commercial fleet size. The proportionality between stepped-up aircraft operations above the tropopause and increases in stratospheric soot and sulfuric acid aerosol implicate aircraft as a source of stratospheric pollution. Because the strongly light-absorbing soot and the predominantly light-scattering sulfuric acid aerosol increase at similar rates, however, the mid-visible stratospheric aerosol single scatter albedo is expected to remain constant and not approach a critical value of 0.98 at which stratospheric cooling could change to warming.

  11. [Development of a photoacoustic spectroscopy system for the measurement of absorption coefficient of atmospheric aerosols].

    PubMed

    Liu, Qiang; Niu, Ming-Sheng; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2013-07-01

    In the present paper, the authors focus on the effect of the resonance frequency shift due to the changes in temperature and humidity on the PA signal, present several methods to control the noise derived form gas flow and vibration from the sampling pump. Based on the efforts mentioned above, a detection limit of 1.4 x 10(-8) W x cm(-1) x Hz(-1/2) was achieved for the measurement of atmospheric aerosols absorption coefficient. During the experiments, the PA cell was calibrated with the absorption of standard NO2 gas at 532 nm and the atmospheric aerosols were measured continuously. The measurement results show that the PAS is suitable for the real-time measurement of the absorption coefficient of atmospheric aerosols in their natural suspended state.

  12. Photo-acoustic measurements of gas and aerosol absorption with diode lasers.

    PubMed

    Ponomarev, Yu N

    2004-12-01

    The results of designing multipurpose high-sensitive photo-acoustic (PA) detectors and their application to high-resolution diode laser spectroscopy of molecular gases, gas analysis, and aerosol absorption measurements are summarized in this paper. The hardware and software of the diode laser spectrometer with a Helmholtz resonant PA detector providing an absorption sensitivity limit of better than 10(-7)Wm(-1)Hz(-1/2) are described. A procedure is proposed for an experiment involving the measurements of the rotational structure of hot vibrational bands of molecules. The results of the application of the nonresonant PA cell with temporal resolution of signals to measurements of weak nonresonant absorption of gases and soot aerosols are presented, and the possibility of creating a broad-band PA laser diode aerosol-meter is discussed.

  13. Aerosol Absorption by Black Carbon and Dust: Implications of Climate Change and Air Quality in Asia

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2010-01-01

    Atmospheric aerosol distributions from 2000 to 2007 are simulated with the global model GOCART to attribute light absorption by aerosol to its composition and sources. We show the seasonal and interannual variations of absorbing aerosols in the atmosphere over Asia, mainly black carbon and dust. and their linkage to the changes of anthropogenic and dust emissions in the region. We compare our results with observations from satellite and ground-based networks, and estimate the importance of black carbon and dust on regional climate forcing and air quality.

  14. Complex refractive indices in the near-ultraviolet spectral region of biogenic secondary organic aerosol aged with ammonia

    SciTech Connect

    Flores, J. M.; Washenfelder, Rebecca; Adler, Gabriela; Lee, H-J; Segev, Lior; Laskin, Julia; Laskin, Alexander; Nizkorodov, Sergey; Brown, Steven; Rudich, Yinon

    2014-05-14

    Atmospheric absorption by brown carbon aerosol may play an important role in global radiative forcing. Brown carbon arises from both primary and secondary sources, but the mechanisms and reactions for the latter are highly uncertain. One proposed mechanism is the reaction of ammonia or amino acids with carbonyl products in secondary organic aerosol (SOA). We generated SOA in situ by reacting biogenic alkenes (α-pinene, limonene, and α-humulene) with excess ozone, humidifying the resulting aerosol, and reacting the humidified aerosol with gaseous ammonia. We determined the complex refractive indices (RI) in the 360 – 420 nm range for these aerosols using broadband cavity enhanced spectroscopy (BBCES). The average real part (n) of the measured spectral range of the NH3-aged α-pinene SOA increased from n = 1.50 (±0.01) for the unreacted SOA to n = 1.57 (± 0.01) after a 1.5h exposure to 1.9 ppm NH3; whereas,the imaginary component (k) remained below k < 0.001 (± 0.002). For the limonene and α-humulene SOA the real part did not change significantly, and we observed a small change in the imaginary component of the RI. The imaginary component increased from k = 0.0 to an average k= 0.029 (± 0.021) for α-humulene SOA, and from k < 0.001 (± 0.002) to an average k = 0.032 (±0.019) for limonene SOA after a 1.5 h exposure to 1.3 and 1.9 ppm of NH3, respectively. Collected filter samples of the aged and unreacted α-pinene SOA and limonene SOA were analyzed off-line with nanospray desorption electrospray ionization high resolution mass spectrometry (nano-DESI/HR-MS), and in-situ with a Time-of-Fligh Aerosol Mass Spectrometer, confirming that the SOA reacted and that various nitrogen-containing reaction products formed. If we assume that NH3 aging reactions scale linearly with time and concentration, then a 1.5 h reaction with 1 ppm NH3 in the laboratory is equivalent to 24 h reaction with 63 ppbv NH3, indicating that the observed aerosol absorption will be limited

  15. Vertical profiles of aerosol volume from high-spectral-resolution infrared transmission measurements. I. Methodology.

    PubMed

    Eldering, A; Irion, F W; Chang, A Y; Gunson, M R; Mills, F P; Steele, H M

    2001-06-20

    The wavelength-dependent aerosol extinction in the 800-1250-cm(-1) region has been derived from ATMOS (atmospheric trace molecule spectroscopy) high-spectral-resolution IR transmission measurements. Using models of aerosol and cloud extinction, we have performed weighted nonlinear least-squares fitting to determine the aerosol-volume columns and vertical profiles of stratospheric sulfate aerosol and cirrus cloud volume. Modeled extinction by use of cold-temperature aerosol optical constants for a 70-80% sulfuric-acid-water solution shows good agreement with the measurements, and the derived aerosol volumes for a 1992 occultation are consistent with data from other experiments after the eruption of Mt. Pinatubo. The retrieved sulfuric acid aerosol-volume profiles are insensitive to the aerosol-size distribution and somewhat sensitive to the set of optical constants used. Data from the nonspherical cirrus extinction model agree well with a 1994 mid-latitude measurement indicating the presence of cirrus clouds at the tropopause.

  16. Guided-wave approaches to spectrally selective energy absorption

    NASA Technical Reports Server (NTRS)

    Stegeman, G. I.; Burke, J. J.

    1987-01-01

    Results of experiments designed to demonstrate spectrally selective absorption in dielectric waveguides on semiconductor substrates are reported. These experiments were conducted with three waveguides formed by sputtering films of PSK2 glass onto silicon-oxide layers grown on silicon substrates. The three waveguide samples were studied at 633 and 532 nm. The samples differed only in the thickness of the silicon-oxide layer, specifically 256 nm, 506 nm, and 740 nm. Agreement between theoretical predictions and measurements of propagation constants (mode angles) of the six or seven modes supported by these samples was excellent. However, the loss measurements were inconclusive because of high scattering losses in the structures fabricated (in excess of 10 dB/cm). Theoretical calculations indicated that the power distribution among all the modes supported by these structures will reach its steady state value after a propagation length of only 1 mm. Accordingly, the measured loss rates were found to be almost independent of which mode was initially excited. The excellent agreement between theory and experiment leads to the conclusion that low loss waveguides confirm the predicted loss rates.

  17. A photophonic instrument concept to measure atmospheric aerosol absorption. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Engle, C. D.

    1982-01-01

    A laboratory model of an instrument to measure the absorption of atmospheric aerosols was designed, built, and tested. The design was based on the photophonic phenomenon discovered by Bell and an acoustic resonator developed by Helmholtz. Experiments were done to show ways the signal amplitude could be improved and the noise reduced and to confirm the instrument was sensitive enough to be practical. The research was undertaken to develop concepts which show promise of being improvements on the instruments that are presently used to measure the absorption of the Sun's radiation by the Earth's atmospheric aerosols.

  18. Generalized high-spectral-resolution lidar technique with a multimode laser for aerosol remote sensing.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Zhang, Yupeng; Liu, Chong; Bai, Jian; Wang, Dan; Wang, Nanchao; Zhou, Yudi; Luo, Jing; Yang, Yongying; Shen, Yibing; Su, Lin; Yang, Liming

    2017-01-23

    High-spectral-resolution lidar (HSRL) is a powerful tool for atmospheric aerosol remote sensing. The current HSRL technique often requires a single longitudinal mode laser as the transmitter to accomplish the spectral discrimination of the aerosol and molecular scattering conveniently. However, single-mode laser is cumbersome and has very strict requirements for ambient stability, making the HSRL instrument not so robust in many cases. In this paper, a new HSRL concept, called generalized HSRL technique with a multimode laser (MML-gHSRL), is proposed, which can work using a multimode laser. The MML-gHSRL takes advantage of the period characteristic of the spectral function of the interferometric spectral discrimination filter (ISDF) thoroughly. By matching the free spectral range of the ISDF with the mode interval of the multimode laser, fine spectral discrimination for the lidar return from each longitudinal mode can be realized. Two common ISDFs, i.e., the Fabry-Perot interferometer (FPI) and field-widened Michelson interferometer (FWMI), are introduced to develop the MML-gHSRL, and their performance is quantitatively analyzed and compared. The MML-gHSRL is a natural but significant generalization for the current HSRL technique based on the IDSF. It is potential that this technique would be a good entrance to future HSRL developments, especially in airborne and satellite-borne aerosol remote sensing applications.

  19. Spectral Signature of Column Solar Radiation Absorption During the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE). Revision

    SciTech Connect

    O'Hirok, William; Gautier, Catherine; Ricchiazzi, Paul

    1999-11-01

    Spectral and broadband shortwave radiative flux data obtained from the Atmospheric Radiation Measurement Enhanced Shortwave Experiment (ARESE) are compared with 3-D radiative transfer computations for the cloud field of October 30, 1995. Because the absorption of broadband solar radiation in the cloudy atmosphere deduced from observations and modeled differ by 135 Wm{sup -2}, we performed a consistency analysis using spectral observations and the model to integrate for wavelengths between the spectral observations. To match spectral measurements, aerosols need a reduction in both single scattering albedo (from 0.938 to 0.82) and asymmetry factor (from 0.67 to 0.61), and cloud droplets require a three-fold increase in co-albedo. Even after modifying the model inputs and microphysics the difference in total broadband absorption is still of the order of 75Wm{sup -2}. Finally, an unexplained absorber centered around 1.06 {micro}m appears in the comparison that is much too large to be explained by dimers.

  20. Importance of the green color, absorption gradient, and spectral absorption of chloroplasts for the radiative energy balance of leaves.

    PubMed

    Kume, Atsushi

    2017-03-14

    Terrestrial green plants absorb photosynthetically active radiation (PAR; 400-700 nm) but do not absorb photons evenly across the PAR waveband. The spectral absorbance of photosystems and chloroplasts is lowest for green light, which occurs within the highest irradiance waveband of direct solar radiation. We demonstrate a close relationship between this phenomenon and the safe and efficient utilization of direct solar radiation in simple biophysiological models. The effects of spectral absorptance on the photon and irradiance absorption processes are evaluated using the spectra of direct and diffuse solar radiation. The radiation absorption of a leaf arises as a consequence of the absorption of chloroplasts. The photon absorption of chloroplasts is strongly dependent on the distribution of pigment concentrations and their absorbance spectra. While chloroplast movements in response to light are important mechanisms controlling PAR absorption, they are not effective for green light because chloroplasts have the lowest spectral absorptance in the waveband. With the development of palisade tissue, the incident photons per total palisade cell surface area and the absorbed photons per chloroplast decrease. The spectral absorbance of carotenoids is effective in eliminating shortwave PAR (<520 nm), which contains much of the surplus energy that is not used for photosynthesis and is dissipated as heat. The PAR absorptance of a whole leaf shows no substantial difference based on the spectra of direct or diffuse solar radiation. However, most of the near infrared radiation is unabsorbed and heat stress is greatly reduced. The incident solar radiation is too strong to be utilized for photosynthesis under the current CO2 concentration in the terrestrial environment. Therefore, the photon absorption of a whole leaf is efficiently regulated by photosynthetic pigments with low spectral absorptance in the highest irradiance waveband and through a combination of pigment density

  1. Improved Cloud and Snow Screening in MAIAC Aerosol Retrievals Using Spectral and Spatial Analysis

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Kokrkin, S.

    2012-01-01

    An improved cloud/snow screening technique in the Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is described. It is implemented as part of MAIAC aerosol retrievals based on analysis of spectral residuals and spatial variability. Comparisons with AERONET aerosol observations and a large-scale MODIS data analysis show strong suppression of aerosol optical thickness outliers due to unresolved clouds and snow. At the same time, the developed filter does not reduce the aerosol retrieval capability at high 1 km resolution in strongly inhomogeneous environments, such as near centers of the active fires. Despite significant improvement, the optical depth outliers in high spatial resolution data are and will remain the problem to be addressed by the application-dependent specialized filtering techniques.

  2. Modeling the spectral optical properties of ammonium sulfate and biomass burning aerosols

    SciTech Connect

    Grant, K.E.; Chuang, C.C.; Grossman, A.S.; Penner, J.E.

    1997-09-01

    The importance of including the global and regional radiative effects of aerosols in climate models has increasingly been realized. Accurate modeling of solar radiative forcing due to aerosols from anthropogenic sulfate and biomass burning emissions requires adequate spectral resolution and treatment of spatial and temporal variability. The variation of aerosol spectral optical properties with local relative humidity and dry aerosol composition must be considered. Because the cost of directly including Mie calculations within a climate model is prohibitive, parameterizations from offline calculations must be used. Starting from a log-normal size distribution of dry ammonium sulfate, we developed optical properties for tropospheric sulfate aerosol at 15 relative humidities up to 99 percent. The resulting aerosol size distributions were then used to calculate bulk optical properties at wavelengths between 0.175 {micro}m and 4 {micro}m. Finally, functional fits of optical properties were made for each of 12 wavelength bands as a function of relative humidity. Significant variations in optical properties occurred across the total solar spectrum. Relative increases in specific extinction and asymmetry factor with increasing relative humidity became larger at longer wavelengths. Significant variation in single-scattering albedo was found only in the longest near-IR band. This is also the band with the lowest albedo. A similar treatment was done for aerosols from biomass burning. In this case, size distributions were taken as having two carbonaceous size modes and a larger dust mode. The two carbonaceous modes were considered to be humidity dependent. Equilibrium size distributions and compositions were calculated for 15 relative humidities and five black carbon fractions. Mie calculations and Chandrasekhar averages of optical properties were done for each of the resulting 75 cases. Finally, fits were made for each of 12 spectral bands as functions of relative humidity

  3. Retrieval of high-spectral-resolution lidar for atmospheric aerosol optical properties profiling

    NASA Astrophysics Data System (ADS)

    Liu, Dong; Luo, Jing; Yang, Yongying; Cheng, Zhongtao; Zhang, Yupeng; Zhou, Yudi; Duan, Lulin; Su, Lin

    2015-10-01

    High-spectral-resolution lidars (HSRLs) are increasingly being developed for atmospheric aerosol remote sensing applications due to the straightforward and independent retrieval of aerosol optical properties without reliance on assumptions about lidar ratio. In HSRL technique, spectral discrimination between scattering from molecules and aerosol particles is one of the most critical processes, which needs to be accomplished by means of a narrowband spectroscopic filter. To ensure a high retrieval accuracy of an HSRL system, the high-quality design of its spectral discrimination filter should be made. This paper reviews the available algorithms that were proposed for HSRLs and makes a general accuracy analysis of the HSRL technique focused on the spectral discrimination, in order to provide heuristic guidelines for the reasonable design of the spectral discrimination filter. We introduce a theoretical model for retrieval error evaluation of an HSRL instrument with general three-channel configuration. Monte Carlo (MC) simulations are performed to validate the correctness of the theoretical model. Results from both the model and MC simulations agree very well, and they illustrate one important, although not well realized fact: a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial t o promote the retrieval accuracy. The application of the conclusions obtained in this paper in the designing of a new type of spectroscopic filter, that is, the field-widened Michelson interferometer, is illustrated in detail. These works are with certain universality and expected to be useful guidelines for HSRL community, especially when choosing or designing the spectral discrimination filter.

  4. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J. L.; Ducos, F.; Sinyuk, A.; Lopatin, A.

    2010-11-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board of the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of the all available angular observations of total and polarized radiances obtained by POLDER sensor in the window spectral channels where absorption by gaseous is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed on retrieval of extended set of parameters affecting measured radiation. The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index). In order to achieve reliable retrieval from PARASOL

  5. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J. L.; Ducos, F.; Sinyuk, A.; Lopatin, A.

    2011-05-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation. The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index). In order to achieve reliable retrieval from PARASOL observations even over very reflective

  6. Vertical Profiles of Aerosol Volume from High Spectral Resolution Infrared Transmission Measurements: Results

    NASA Technical Reports Server (NTRS)

    Eldering, Annmarie; Kahn, Brian H.; Mills, Franklin P.; Irion, Fredrick W.; Steele, Helen M.; Gunson, Michael R.

    2004-01-01

    The high-resolution infrared absorption spectra of the Atmospheric Trace Molecule Spectroscopy (ATMOS) experiment are utilized to derive vertical profiles of sulfate aerosol volume density and extinction coefficient. Following the eruption of Mt. Pinatubo in June 1991, the ATMOS spectra obtained on three Space Shuttle missions (1992, 1993, and 1994) provide a unique opportunity to study the global stratospheric sulfate aerosol layer shortly after a major volcanic eruption and periodically during the decay phase. Synthetic sulfate aerosol spectra are fit to the observed spectra, and a global fitting inversion routine is used to derive vertical profiles of sulfate aerosol volume density. Vertical profiles of sulfate aerosol volume density for the three missions over portions of the globe are presented, with the peak in aerosol volume density occurring from as low as 10 km (polar latitudes) to as high as 20 km (subtropical latitudes). Derived aerosol volume density is as high as 2-3.5 (mu)m(exp 3) per cubic centimeter +/-10% in 1992, decreasing to 0.2-0.5 (mu)m(exp 3) per cubic centimeter +/-20% in 1994, in agreement with other experiments. Vertical extinction profiles derived from ATMOS are compared with profiles from Improved Stratospheric And Mesospheric Sounder (ISAMS) and Cryogenic Limb Array Etalon Spectrometer (CLAES) that coincide in space and time and show good general agreement. The uncertainty of the ATMOS vertical profiles is similar to CLAES and consistently smaller than ISAMS at similar altitudes.

  7. Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions

    NASA Technical Reports Server (NTRS)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-01-01

    Aerosols are tiny suspended particles in the atmosphere that scatter and absorb sunlight. Smoke particles are aerosols, as are sea salt, particulate pollution and airborne dust. When you look down at the earth from space sometimes you can see vast palls of whitish smoke or brownish dust being transported by winds. The reason that you can see these aerosols is because they are reflecting incoming sunlight back to the view in space. The reason for the difference in color between the different types of aerosol is that the particles arc also absorbing sunlight at different wavelengths. Dust appears brownish or reddish because it absorbs light in the blue wavelengths and scatters more reddish light to space, Knowing how much light is scattered versus how much is absorbed, and knowin that as a function of wavelength is essential to being able to quantify the role aerosols play in the energy balance of the earth and in climate change. It is not easy measuring the absorption properties of aerosols when they are suspended in the atmosphere. People have been doing this one substance at a time in the laboratory, but substances mix when they are in the atmosphere and the net absorption effect of all the particles in a column of air is a goal of remote sensing that has not yet been completely successful. In this paper we use a technique based on observing the point at which aerosols change from brightening the surface beneath to darkening it. If aerosols brighten a surface. they must scatter more light to space. If they darken the surface. they must be absorbing more. That cross over point is called the critical reflectance and in this paper we show that critical reflectance is a monotonic function of the intrinsic absorption properties of the particles. This parameter we call the single scattering albedo. We apply the technique to MODIS imagery over the Sahara and Sahel regions to retrieve the single scattering albedo in seven wavelengths, compare these retrievals to ground

  8. Is There a Common Correction for Biases in Historic Filter-Based Aerosol Absorption Measurements?

    NASA Astrophysics Data System (ADS)

    McComiskey, A. C.; Jefferson, A.; Dubey, M. K.; Aiken, A. C.; Fast, J. D.; Flynn, C. J.; Kassianov, E.

    2014-12-01

    Improved characterization of aerosol absorption is a pressing need for improving estimates of climate forcing by aerosols. Measurements of aerosol absorption are difficult to make with the accuracy and precision demanded by climate science. While several different approaches have been employed and new techniques have emerged, none can yet be considered a true 'gold standard'. Instruments that use filter-based methods have been the most widely used and are the basis of historic records. However, several studies using direct photoacoustic techniques have shown that filter-based measurements can be biased relative to these direct measurements. It has been demonstrated that this bias depends strongly on aerosol chemical composition, specifically concentration of organic mass. The wealth of information in the extensive set of historical filter-based data demands that this bias be diagnosed and corrected. A correction is critical for proper evaluation and development of chemical transport models, improved retrievals from remote sensing measurements, and integrating aerosol absorption surface and sub-orbital in situ measurements with knowledge gained from these other approaches. We have performed an intercomparison of absorption coefficients from a photoacoustic and two filter-based instruments with co-located organic mass concentrations from continuous, half-hourly averaged measurements over six months at a remote, continental site in the US (ARM SGP). The results show a bias in the filter-based measurements with organic concentration that is consistent with previous studies. Previous results come from controlled lab studies or field campaigns where absorption coefficients and organic concentrations are high and may represent aerosol close to the source. The current study is important in that these quantities are much lower and the aerosol likely more aged, representing a larger portion of the global conditions, yet shows a similar bias. This site provides other measures

  9. In situ measurement of the infrared absorption and extinction of chemical and biologically derived aerosols using flow-through photoacoustics

    NASA Astrophysics Data System (ADS)

    Gurton, Kristan P.; Dahmani, Rachid; Ligon, David; Bronk, Burt V.

    2005-07-01

    In an effort to establish a more reliable set of optical cross sections for a variety of chemical and biological aerosol simulants, we have developed a flow-through photoacoustic system that is capable of measuring absolute, mass-normalized extinction and absorption cross sections. By employing a flow-through design we avoid issues associated with closed aerosol photoacoustic systems and improve sensitivity. Although the results shown here were obtained for the tunable CO2 laser waveband region, i.e., 9.20-10.80 μm, application to other wavelengths is easily achievable. The aerosols considered are categorized as biological, chemical, and inorganic in origin, i.e., Bacillus atrophaeus endospores, dimethicone silicone oil (SF-96 grade 50), and kaolin clay powder (alumina and silicate), respectively. Results compare well with spectral extinction measured previously by Fourier-transform infrared spectroscopy. Comparisons with Mie theory calculations based on previously published complex indices of refraction and measured size distributions are also presented.

  10. Light Absorption Properties and Radiative Effects of Primary Organic Aerosol Emissions

    EPA Science Inventory

    Organic aerosols (OA) in the atmosphere affect Earth’s energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called “brown carbon” (BrC) component. However, the absorptivities of OA are not or poorly represented in current climate m...

  11. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  12. Spectral Apparatus with a Cryogenic, High-Throughput, Multipass Gas Cell for Studies of Absorption of Radiation by Gaseous Media

    NASA Astrophysics Data System (ADS)

    Moskalenko, N. I.; Mirumyants, S. O.; Parzhin, S. N.; Dodov, I. R.

    2016-11-01

    Spectral systems with an MKhK-6 cryogenic, high-throughput, multipass gas cell for studying the absorption spectra of gaseous media with high spectral resolution in the 0.1-6 μm range at pressures of 100 to 5·106 Pa and temperatures of 180-300 K are discussed. Their use in measurements of spectral absorption coefficients, temperature dependences of the spectral transmission function, and parameters of spectral absorption lines is examined.

  13. Composition and spectral characteristics of ambient aerosol at Mauna Loa Observatory

    SciTech Connect

    Johnson, S.A.; Kumar, R. )

    1991-03-20

    Ambient aerosol particles were sampled continuously with a time resolution of {approximately}4 hours for a period of 8 days at the Mauna Loa Observatory, Hawaii, in August 1986. The samples were analyzed on-site for their chemical composition by attenuated total internal reflection infrared spectroscopy. The infrared absorption spectra of the samples also provided data on aerosol light absorbance characteristics at 9.1 and 10.6 {mu}m - wavelengths of interest in determining aerosol backscatter coefficients for CO{sub 2} lidars. The chemical species in the ambient aerosol varied considerably during this 8-day period. The aerosol was acidic ((NH{sub 4}){sub 3}H(SO{sub 4}){sub 2},NH{sub 4}HSO{sub 4}, or H{sub 2}SO{sub 4}) rather than neutral ((NH{sub 4}){sub 2}SO{sub 4}) for a major fraction of the sampling time. The samples generally showed much higher absorbance at 9.1 {mu}m than at 10.6 {mu}m. Changes in the chemical composition between (NH{sub 4}){sub 2}SO{sub 4} and the more acidic forms were accompanied by substantial changes in the sample's absorbance at 9.1 {mu}m but lesser changes in the absorbance at 10.6 {mu}m. These variations could have a profound effect on backscatter coefficients of atmospheric aerosol particles at CO{sub 2} wavelengths.

  14. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  15. Spectral aerosol direct radiative forcing from airborne radiative measurements during CalNex and ARCTAS

    NASA Astrophysics Data System (ADS)

    Leblanc, Samuel E.; Schmidt, K. S.; Pilewskie, P.; Redemann, J.; Hostetler, C.; Ferrare, R.; Hair, J.; Langridge, J. M.; Lack, D. A.

    2012-09-01

    This study presents the aerosol radiative forcing derived from airborne measurements of shortwave spectral irradiance during the 2010 Research at the Nexus of Air Quality and Climate Change (CalNex). Relative forcing efficiency, the radiative forcing normalized by aerosol optical thickness and incident irradiance, is a means of comparing the aerosol radiative forcing for different conditions. In this study, it is used to put the aerosol radiative effects of an air mass in the Los Angeles basin in context with case studies from three field missions that targeted other regions and aerosol types, including a case study from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS). For CalNex, we relied on irradiance measurements onboard the NOAA P-3 aircraft during a flight on 19 May 2010 over a ground station. CalNex presented a difficulty for determining forcing efficiency since one of the input parameters, optical thickness, was not available from the same aircraft. However, extinction profiles were available from a nearby aircraft. An existing retrieval algorithm was modified to use those measurements as initial estimate for the missing optical thickness. In addition, single scattering albedo and asymmetry parameter (secondary products of the method), were compared with CalNex in situ measurements. The CalNex relative forcing efficiency spectra agreed with earlier studies that found this parameter to be constrained at each wavelength within 20% per unit of aerosol optical thickness at 500 nm regardless of aerosol type and experiment, except for highly absorbing aerosols sampled near Mexico City. The diurnally averaged below-layer forcing efficiency integrated over the wavelength range of 350-700 nm for CalNex is estimated to be -58.6 ± 13.8 W/m2, whereas for the ARCTAS case it is -48.7 ± 11.5 W/m2.

  16. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde

    NASA Astrophysics Data System (ADS)

    Washenfelder, R. A.; Attwood, A. R.; Flores, J. M.; Zarzana, K. J.; Rudich, Y.; Brown, S. S.

    2016-01-01

    -absolute detection methods. In addition to trace gases, this approach will be appropriate for measurements of aerosol extinction in ambient air, and this spectral region is important for characterizing the strong ultraviolet absorption by brown carbon aerosol.

  17. Retrieval of Aerosol Profiles using Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, Selami; Frieß, Udo; Apituley, Arnoud; Henzing, Bas; Baars, Holger; Heese, Birgit; Althausen, Dietrich; Adam, Mariana; Putaud, Jean-Philippe; Zieger, Paul; Platt, Ulrich

    2010-05-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities and relative intensities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties such as single scattering albedo, phase function and Angström exponent. In 2008 and 2009 several intercomparison campaigns with established aerosol measurement techniques took place in Cabauw/Netherlands, Melpitz/Germany, Ispra/Italy and Leipzig/Germany, where simultaneous DOAS, lidar, Sun photometer and Nephelometer measurements were performed. Here we present results of the intercomparisons for cloud free conditions. The correlation of the aerosol optical thickness retrieved by the DOAS technique and the Sun photometer shows coefficients of determination from 0.96 to 0.98 and slopes from 0.94 to 1.07. The vertical structure of the DOAS retrieved aerosol extinction profiles compare favourably with the structures seen by the backscatter lidar. However, the vertical spatial development of the boundary layer is reproduced with a lower resolution by the DOAS technique. Strategies for the near real-time retrieval of trace gas profiles, aerosol profiles and optical properties will be discussed as well.

  18. Interpreting the ultraviolet aerosol index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, Melanie S.; Martin, Randall V.; van Donkelaar, Aaron; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-03-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Ångström exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30 % over South America in September, up to 20 % over southern Africa in July, and up to 15 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years

  19. Interpreting the Ultraviolet Aerosol Index observed with the OMI satellite instrument to understand absorption by organic aerosols: implications for atmospheric oxidation and direct radiative effects

    NASA Astrophysics Data System (ADS)

    Hammer, M. S.; Martin, R. V.; van Donkelaar, A.; Buchard, V.; Torres, O.; Ridley, D. A.; Spurr, R. J. D.

    2015-10-01

    Satellite observations of the Ultraviolet Aerosol Index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOS-Chem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The addition of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after adding BrC to the model is broadly consistent with reported observations for biomass burning aerosol, with Absorbing Angstrom Exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 35 % over South America in September, up to 25 % over southern Africa in July, and up to 20 % over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  20. Interpreting the Ultraviolet Aerosol Index Observed with the OMI Satellite Instrument to Understand Absorption by Organic Aerosols: Implications for Atmospheric Oxidation and Direct Radiative Effects

    NASA Technical Reports Server (NTRS)

    Hammer, Melanie S.; Martin, Randall V.; Donkelaar, Aaron van; Buchard, Virginie; Torres, Omar; Ridley, David A.; Spurr, Robert J. D.

    2016-01-01

    Satellite observations of the ultraviolet aerosol index (UVAI) are sensitive to absorption of solar radiation by aerosols; this absorption affects photolysis frequencies and radiative forcing. We develop a global simulation of the UVAI using the 3-D chemical transport model GEOSChem coupled with the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT). The simulation is applied to interpret UVAI observations from the Ozone Monitoring Instrument (OMI) for the year 2007. Simulated and observed values are highly consistent in regions where mineral dust dominates the UVAI, but a large negative bias (-0.32 to -0.97) exists between simulated and observed values in biomass burning regions. We determine effective optical properties for absorbing organic aerosol, known as brown carbon (BrC), and implement them into GEOS-Chem to better represent observed UVAI values over biomass burning regions. The inclusion of absorbing BrC decreases the mean bias between simulated and OMI UVAI values from -0.57 to -0.09 over West Africa in January, from -0.32 to +0.0002 over South Asia in April, from -0.97 to -0.22 over southern Africa in July, and from -0.50 to +0.33 over South America in September. The spectral dependence of absorption after including BrC in the model is broadly consistent with reported observations for biomass burning aerosol, with absorbing Angstrom exponent (AAE) values ranging from 2.9 in the ultraviolet (UV) to 1.3 across the UV-Near IR spectrum. We assess the effect of the additional UV absorption by BrC on atmospheric photochemistry by examining tropospheric hydroxyl radical (OH) concentrations in GEOS-Chem. The inclusion of BrC decreases OH by up to 30% over South America in September, up to 20% over southern Africa in July, and up to 15% over other biomass burning regions. Global annual mean OH concentrations in GEOS-Chem decrease due to the presence of absorbing BrC, increasing the methyl chloroform lifetime from 5.62 to 5.68 years, thus

  1. Absorption of Visible and Long-wave Radiation by Primary and Secondary Biogenic Aerosols.

    NASA Astrophysics Data System (ADS)

    Gaffney, J. S.; Marley, N. A.

    2008-12-01

    Field results for the 14C content of carbonaceous aerosols are presented that indicate significant biogenic sources of both primary and secondary aerosols in urban and regional environments. Samples collected in Mexico City and downwind of the urban area during the MILAGRO field study are compared with results reported previously in the literature indicating a significant amount of biogenic aerosols from both biomass burning and secondary photochemical production (e.g. terpene oxidations) are contributing to the overall carbonaceous aerosols in the optically active region of 0.1 to 1.0 micron. Samples in this size range collected on quartz fiber filters were also examined using an integrating sphere and FTIR diffuse reflectance techniques to obtain absorption spectra from 280 to the mid-IR. These data clearly indicate that the biogenic derived primary aerosols from agricultural and trash-burning, as well as secondary organic aerosols from isoprene and terpene oxidations will produce both UV-Visible (short-wave) absorbing substances as well as IR (long-wave) absorbing compounds including humic-like-substances (HULIS). With the anticipated increases in growing seasons (i.e. earlier springs and longer summers) the likely hood of increased fires (forest and grassland) as well as the continuing growth in agricultural burning activities, these primary sources are expected to increase and may play a role in heating of the atmosphere. The compound effects of these primary and secondary biogenic sources of absorbing aerosols to the total aerosol loading and regional climate will be discussed. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64328 as part of the Atmospheric Science Program.

  2. Spectral absorption index in hyperspectral image analysis for predicting moisture contents in pork longissimus dorsi muscles.

    PubMed

    Ma, Ji; Sun, Da-Wen; Pu, Hongbin

    2016-04-15

    Spectral absorption index was proposed to extract the morphological features of the spectral curves in pork meat samples (longissimus dorsi) under the conditions including fresh, frozen-thawed, heated-dehydrated and brined-dehydrated. Savitzky-Golay (SG) smoothing and multiplicative scatter correction (MSC) were used for calibrating both the spectral reflectance and absorbance values. The absorption values were better than the reflectance values and the calibrated spectra by MSC were better than the raw and SG smoothing corrected spectra in building moisture content predictive models. The optimized partial least square regression (PLSR) model attained good results with the MSC calibrated spectral absorption values based on the spectral absorption index features (R(2)P=0.952, RMSEP=1.396) and the optimal wavelengths selected by regression coefficients (R(2)P=0.966, RMSEP=0.855), respectively. The models proved spectral absorption index was promising in spectral analysis to predict moisture content in pork samples using HSI techniques for the first time.

  3. Aerosol spectral optical depths: Jet fuel and forest fire smokes

    NASA Astrophysics Data System (ADS)

    Pueschel, R. F.; Livingston, J. M.

    1990-12-01

    The Ames autotracking airborne sun photometer was used to investigate the spectral optical depth between 380 and 1020 nm of smokes from a jet fuel pool fire and a forest fire in May and August 1988, respectively. Results show that the forest fire smoke exhibited a stronger wavelength dependence of optical depths than did the jet fuel fire smoke at optical depths less than unity. At optical depths greater than or equal to 1, both smokes showed neutral wavelength dependence, similar to that of an optically thin stratus deck. These results verify findings of earlier investigations and have implications both on the climatic impact of large-scale smokes and on the wavelength-dependent transmission of electromagnetic signals.

  4. Determination of the in-flight spectral calibration of AVIRIS using atmospheric absorption features

    NASA Astrophysics Data System (ADS)

    Green, Robert O.

    1995-01-01

    Spectral calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) as data are acquired in flight is essential to quantitative analysis of the measured upwelling spectral radiance. In each spectrum measured by AVIRIS in flight, there are numerous atmospheric gas absorption bands that drive this requirement for accurate spectral calibration. If the surface and atmospheric properties are measured independently, these atmospheric absorption bands may be used to deduce the in-flight spectral calibration of an imaging spectrometer. Both the surface and atmospheric characteristics were measured for a calibration target during an in-flight calibration experiment held at Lunar Lake, Nevada on April 5, 1994. This paper uses upwelling spectral radiance predicted for the calibration target with the MODTRAN radiative transfer code to validate the spectral calibration of AVIRIS in flight.

  5. Aerosol and Cloud Properties at the Huygens Entry Site as Derived from the Descent Imager/Spectral

    NASA Technical Reports Server (NTRS)

    Doose, L. R.; Engel, S.; Tomasko, M. G.; Dafoe, L. E.; West, R.; Lemmon, M.

    2005-01-01

    The Huygens Probe descended through Titan s atmosphere on January 14, 2005. The Descent Imager/Spectral Radiometer (DISR) instrument made optical measurements which constrain the nature and vertical distribution and of the aerosols in the atmosphere.

  6. Absorption, scattering and single scattering albedo of aerosols obtained from in situ measurements in the subarctic coastal region of Norway

    NASA Astrophysics Data System (ADS)

    Montilla, E.; Mogo, S.; Cachorro, V.; Lopez, J.; de Frutos, A.

    2011-01-01

    In situ measurements of aerosol optical properties were made in summer 2008 at the ALOMAR station facility (69°16 N, 16°00 E), located at a rural site in the North of the island of Andøya (Vesterålen archipelago), about 300 km north of the Arctic Circle. The extended three months campaign was part of the POLAR-CAT Project of the International Polar Year (IPY-2007-2008), and its goal was to characterize the aerosols of this sub-Arctic area which frequently transporte to the Arctic region. The ambient light-scattering coefficient, σs(550 nm), at ALOMAR had a hourly mean value of 5.412 Mm-1 (StD = 3.545 Mm-1) and the light-absorption coefficient, σa(550 nm), had an hourly mean value of 0.400 Mm-1 (StD = 0.273 Mm-1). The scattering/absorption Ångström exponents, αs,a, are used for detailed analysis of the variations of the spectral shape of σs,a. The single scattering albedo, &omega0, ranges from 0.622 to 0.985 (mean = 0.913, StD = 0.052) and the relation of this property to the absorption/scattering coefficients and the Ångström exponents is presented. The relationships between all the parameters analyzed, mainly those related to the single scattering albedo, allow us to describe the local atmosphere as extremely clean.

  7. Retrieval of Aerosol Profiles using Multi Axis Differential Absorption Spectroscopy (MAX-DOAS)

    NASA Astrophysics Data System (ADS)

    Yilmaz, S.; Friess, U.; Apituley, A.; de Leeuw, G.; Platt, U.

    2009-04-01

    Multi Axis Differential Absorption Spectroscopy (MAX-DOAS) is a well established measurement technique to derive atmospheric trace gas profiles. Using MAX-DOAS measurements of trace gases with a known vertical profile, like the oxygen-dimer O4, it is possible to retrieve information on atmospheric aerosols. Based on the optimal estimation method, we have developed an algorithm which fits simultaneously measured O4 optical densities at several wavelengths and elevation angles to values simulated by a radiative transfer model. Retrieval parameters are aerosol extinction profile and optical properties like single scattering albedo, phase function and Angström exponent. In the scope of a joint research activity of the EU funded project EUSAAR (European Supersites for Atmospheric Aerosol Research) we have developed a new kind of DOAS instrument, which uses three miniature spectrometers to cover the near-ultraviolet to visible wavelength range (290-790nm), enabling to capture all absorption bands of the oxygen-dimer O4. Additionally, it is possible to point to any direction in the sky with a 2D telescope unit which is connected to the spectrometers via fiber optics. In May 2008, an intercomparison campaign with established aerosol measurement techniques took place in Cabauw/Netherlands, where simultaneous DOAS, LIDAR, Sun photometer and Nephelometer measurements were performed. We present first results of selected days from this period. The optical properties of aerosols retrieved by the DOAS measurement technique show very promising qualitative agreement with the established measurement techniques demonstrating the progress towards our goal of establishing the MAX-DOAS technique for retrieving optical properties of atmospheric aerosols. Quantitative comparison is ongoing.

  8. Evaluation of the effects of Mount Pinatubo aerosol on differential absorption lidar measurements of stratospheric ozone

    SciTech Connect

    Steinbrecht, W.; Carswell, A.I.

    1995-01-01

    Substantially increased aerosol backscattering and extinction after a major volcanic eruption can lead to errors in differential absorption lidar (DIAL) measurements of stratospheric ozone. Mie calculations, performed for the wavelengths 308 and 353 nm and based on size distributions measured over Laramie, Wyoming (41 deg), were used to assess size and temporal evolution of these errors. In many situations, neglecting the different aerosol backscattering at the absorption and reference wavelengths can lead to relative errors in the ozone concentration larger than 100% for the 308-, 353-nm pair. The error due to neglecting the differential aerosol extinction, however, will rarely exceed 2%. A correction for this differential extinction should only be attempted when high concentrations (greater than 100/cu cm) of small aerosol particles with radii below 0.1 micrometers are present, e.g., shortly after an eruption. A correction for the differential backscatter can be made by using additional lidar measurements at a second reference wavelength or by having general size distribution information on the aerosol. Possible corrections were tested and will usually reduce the error in the ozone concentration considerably. For the 308-, 353-nm pair, both Mie calculations and a comparison with ozone profiles from electrochemical cell sondes show, however, that even after the correction the uncertainty in the ozone concentration within some regions of the strongly enhanced Mt. Pinatubo aerosol layer can still be substantial, of the order of 10-50%. Wavelength separation smaller than 40 nm or use of wavelengths shorter than 300 nm will reduce the error. The best solution seems to be the addition of Raman channels. It avoids the large error due to the differential backscatter term.

  9. [Absorption spectra of nucleic acids and related compounds in the spectral region 120--280 nm].

    PubMed

    Kiseleva, M N; Zarochentseva, E P; Dodonova, N Ia

    1975-01-01

    The absorption spectra of thin films of nucleic acids, nucleosides, nucleotides, D-ribose, Na3PO4 in vacuum ultraviolet region are measured. In the spectral region 280--160 nm the absorption spectra consist of the bands of nucleic acid bases. In the range shorter than 160 nm the absorption is determined by phosphate and D-ribose groups. The methods of thin films preparation are discussed.

  10. Spectral dependences of extrinsic optical absorption in sillenite crystals

    SciTech Connect

    Kisteneva, M G; Khudyakova, E S; Shandarov, S M; Akrestina, A S; Dyu, V G; Kargin, Yu F

    2015-07-31

    The influence of laser irradiation at wavelengths of 532 and 655 nm and annealing in air at temperatures from 200 to 370 °C on optical absorption spectra of undoped bismuth silicon oxide and bismuth germanium oxide and aluminium-doped bismuth titanium oxide crystals has been studied experimentally. The experimental data have been interpreted in terms of a model for extrinsic absorption that takes into account not only the contribution of the photoexcitation of electrons from deep donor centres with a normal distribution of their concentration with respect to ionisation energy but also that of intracentre transitions. (laser applications and other topics in quantum electronics)

  11. An exploratory study on the aerosol height retrieval from OMI measurements of the 477 nm O2 - O2 spectral band using a neural network approach

    NASA Astrophysics Data System (ADS)

    Chimot, Julien; Pepijn Veefkind, J.; Vlemmix, Tim; de Haan, Johan F.; Amiridis, Vassilis; Proestakis, Emmanouil; Marinou, Eleni; Levelt, Pieternel F.

    2017-03-01

    . 24, depending on the season. Improvements may be obtained from a better knowledge of the surface albedo and higher accuracy of the aerosol model. Following the previous work over ocean of Park et al.(2016), our study shows the first encouraging aerosol layer height retrieval results over land from satellite observations of the 477 nm O2 - O2 absorption spectral band.

  12. Spectral properties of molecular iodine in absorption cells filled to specified saturation pressure.

    PubMed

    Hrabina, Jan; Šarbort, Martin; Acef, Ouali; Burck, Frédéric Du; Chiodo, Nicola; Holá, Miroslava; Číp, Ondřej; Lazar, Josef

    2014-11-01

    We present the results of measurement and evaluation of spectral properties of iodine absorption cells filled at certain saturation pressure. A set of cells made of borosilicate glass instead of common fused silica was tested for their spectral properties in greater detail with special care for the long-term development of the absorption media purity. The results were compared with standard fused silica cells and the high quality of iodine was verified. A measurement method based on an approach relying on measurement of linewidth of the hyperfine transitions is proposed as a novel technique for iodine cell absorption media purity evaluation. A potential application in laser metrology of length is also discussed.

  13. Verification and application of the extended spectral deconvolution algorithm (SDA+) methodology to estimate aerosol fine and coarse mode extinction coefficients in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Kaku, K. C.; Reid, J. S.; O'Neill, N. T.; Quinn, P. K.; Coffman, D. J.; Eck, T. F.

    2014-10-01

    The spectral deconvolution algorithm (SDA) and SDA+ (extended SDA) methodologies can be employed to separate the fine and coarse mode extinction coefficients from measured total aerosol extinction coefficients, but their common use is currently limited to AERONET (AErosol RObotic NETwork) aerosol optical depth (AOD). Here we provide the verification of the SDA+ methodology on a non-AERONET aerosol product, by applying it to fine and coarse mode nephelometer and particle soot absorption photometer (PSAP) data sets collected in the marine boundary layer. Using data sets collected on research vessels by NOAA-PMEL(National Oceanic and Atmospheric Administration - Pacific Marine Environmental Laboratory), we demonstrate that with accurate input, SDA+ is able to predict the fine and coarse mode scattering and extinction coefficient partition in global data sets representing a range of aerosol regimes. However, in low-extinction regimes commonly found in the clean marine boundary layer, SDA+ output accuracy is sensitive to instrumental calibration errors. This work was extended to the calculation of coarse and fine mode scattering coefficients with similar success. This effort not only verifies the application of the SDA+ method to in situ data, but by inference verifies the method as a whole for a host of applications, including AERONET. Study results open the door to much more extensive use of nephelometers and PSAPs, with the ability to calculate fine and coarse mode scattering and extinction coefficients in field campaigns that do not have the resources to explicitly measure these values.

  14. Light absorption properties and radiative effects of primary organic aerosol emissions.

    PubMed

    Lu, Zifeng; Streets, David G; Winijkul, Ekbordin; Yan, Fang; Chen, Yanju; Bond, Tami C; Feng, Yan; Dubey, Manvendra K; Liu, Shang; Pinto, Joseph P; Carmichael, Gregory R

    2015-04-21

    Organic aerosols (OAs) in the atmosphere affect Earth's energy budget by not only scattering but also absorbing solar radiation due to the presence of the so-called "brown carbon" (BrC) component. However, the absorptivities of OAs are not represented or are poorly represented in current climate and chemical transport models. In this study, we provide a method to constrain the BrC absorptivity at the emission inventory level using recent laboratory and field observations. We review available measurements of the light-absorbing primary OA (POA), and quantify the wavelength-dependent imaginary refractive indices (kOA, the fundamental optical parameter determining the particle's absorptivity) and their uncertainties for the bulk POA emitted from biomass/biofuel, lignite, propane, and oil combustion sources. In particular, we parametrize the kOA of biomass/biofuel combustion sources as a function of the black carbon (BC)-to-OA ratio, indicating that the absorptive properties of POA depend strongly on burning conditions. The derived fuel-type-based kOA profiles are incorporated into a global carbonaceous aerosol emission inventory, and the integrated kOA values of sectoral and total POA emissions are presented. Results of a simple radiative transfer model show that the POA absorptivity warms the atmosphere significantly and leads to ∼27% reduction in the amount of the net global average POA cooling compared to results from the nonabsorbing assumption.

  15. Dependence of Aerosol Light Absorption and Single-Scattering Albedo On Ambient Relative Humidity for Sulfate Aerosols with Black Carbon Cores

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Russell, Philip B.; Hamill, Patrick

    2001-01-01

    Atmospheric aerosols frequently contain hygroscopic sulfate species and black carbon (soot) inclusions. In this paper we report results of a modeling study to determine the change in aerosol absorption due to increases in ambient relative humidity (RH), for three common sulfate species, assuming that the soot mass fraction is present as a single concentric core within each particle. Because of the lack of detailed knowledge about various input parameters to models describing internally mixed aerosol particle optics, we focus on results that were aimed at determining the maximum effect that particle humidification may have on aerosol light absorption. In the wavelength range from 450 to 750 nm, maximum absorption humidification factors (ratio of wet to 'dry=30% RH' absorption) for single aerosol particles are found to be as large as 1.75 when the RH changes from 30 to 99.5%. Upon lesser humidification from 30 to 80% RH, absorption humidification for single particles is only as much as 1.2, even for the most favorable combination of initial ('dry') soot mass fraction and particle size. Integrated over monomodal lognormal particle size distributions, maximum absorption humidification factors range between 1.07 and 1.15 for humidification from 30 to 80% and between 1.1 and 1.35 for humidification from 30 to 95% RH for all species considered. The largest humidification factors at a wavelength of 450 nm are obtained for 'dry' particle size distributions that peak at a radius of 0.05 microns, while the absorption humidification factors at 700 nm are largest for 'dry' size distributions that are dominated by particles in the radius range of 0.06 to 0.08 microns. Single-scattering albedo estimates at ambient conditions are often based on absorption measurements at low RH (approx. 30%) and the assumption that aerosol absorption does not change upon humidification (i.e., absorption humidification equal to unity). Our modeling study suggests that this assumption alone can

  16. Characterizing Aerosol Distributions and Optical Properties Using the NASA Langley High Spectral Resolution Lidar

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2013-02-14

    The objective of this project was to provide vertically and horizontally resolved data on aerosol optical properties to assess and ultimately improve how models represent these aerosol properties and their impacts on atmospheric radiation. The approach was to deploy the NASA Langley Airborne High Spectral Resolution Lidar (HSRL) and other synergistic remote sensors on DOE Atmospheric Science Research (ASR) sponsored airborne field campaigns and synergistic field campaigns sponsored by other agencies to remotely measure aerosol backscattering, extinction, and optical thickness profiles. Synergistic sensors included a nadir-viewing digital camera for context imagery, and, later in the project, the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). The information from the remote sensing instruments was used to map the horizontal and vertical distribution of aerosol properties and type. The retrieved lidar parameters include profiles of aerosol extinction, backscatter, depolarization, and optical depth. Products produced in subsequent analyses included aerosol mixed layer height, aerosol type, and the partition of aerosol optical depth by type. The lidar products provided vertical context for in situ and remote sensing measurements from other airborne and ground-based platforms employed in the field campaigns and was used to assess the predictions of transport models. Also, the measurements provide a data base for future evaluation of techniques to combine active (lidar) and passive (polarimeter) measurements in advanced retrieval schemes to remotely characterize aerosol microphysical properties. The project was initiated as a 3-year project starting 1 January 2005. It was later awarded continuation funding for another 3 years (i.e., through 31 December 2010) followed by a 1-year no-cost extension (through 31 December 2011). This project supported logistical and flight costs of the NASA sensors on a dedicated aircraft, the subsequent

  17. Aerosol Light Absorption and Scattering Assessments and the Impact of City Size on Air Pollution

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, Guadalupe

    The general problem of urban pollution and its relation to the city population is examined in this dissertation. A simple model suggests that pollutant concentrations should scale approximately with the square root of city population. This model and its experimental evaluation presented here serve as important guidelines for urban planning and attainment of air quality standards including the limits that air pollution places on city population. The model was evaluated using measurements of air pollution. Optical properties of aerosol pollutants such as light absorption and scattering plus chemical species mass concentrations were measured with a photoacoustic spectrometer, a reciprocal nephelometer, and an aerosol mass spectrometer in Mexico City in the context of the multinational project "Megacity Initiative: Local And Global Research Observations (MILAGRO)" in March 2006. Aerosol light absorption and scattering measurements were also obtained for Reno and Las Vegas, NV USA in December 2008-March 2009 and January-February 2003, respectively. In all three cities, the morning scattering peak occurs a few hours later than the absorption peak due to the formation of secondary photochemically produced aerosols. In particular, for Mexico City we determined the fraction of photochemically generated secondary aerosols to be about 75% of total aerosol mass concentration at its peak near midday. The simple 2-d box model suggests that commonly emitted primary air pollutant (e.g., black carbon) mass concentrations scale approximately as the square root of the urban population. This argument extends to the absorption coefficient, as it is approximately proportional to the black carbon mass concentration. Since urban secondary pollutants form through photochemical reactions involving primary precursors, in linear approximation their mass concentration also should scale with the square root of population. Therefore, the scattering coefficient, a proxy for particulate matter

  18. Decadal changes in aerosol absorption across Brazil resulting from changes in biomass burning practices

    NASA Astrophysics Data System (ADS)

    Coe, H.; Morgan, W.; Darbyshire, E.; Allan, J. D.; Flynn, M.; Liu, D.; Langridge, J.; Johnson, B. T.; Haywood, J. M.; Longo, K.; Artaxo, P.; Highwood, E.; Mollard, J.

    2015-12-01

    Open biomass burning makes a substantial contribution to the global budget of black carbon, yet models significantly underestimate absorption aerosol optical depth compared to observations by approximately a factor of two over South America. These large differences need to be addressed. Recent work has shown that the number of deforestation fires has decreased across Amazonia over the last decade, giving rise to a decrease in the abundance of biomass burning aerosol across the region. At the same time there has been an increase in the frequency of agricultural burning across regions that have previously been deforested, as well as increased burning in the east of Brazil in the Cerrado regions. We sampled both of these types of open burning extensively during a recent aircraft experiment. Significant concentrations of organic carbon as well as black carbon were observed, with this ratio providing the main control on the single scattering albedo (SSA).Deforestation fires and wild forest fires are prevalent across the south west of the Amazon Basin, where smouldering burning dominates. In the east of Brazil, agricultural burning proceeds via a much more efficient form of combustion and as a result, black carbon is a much larger fraction of the aerosol mass and SSAs are much lower than in the west. We have analysed MISR data across the region to show that whilst aerosol optical depths have decreased during the dry season over the last decade, with greater rates of reduction occurring over the south western margins of Amazonia, absorption aerosol optical depths have significantly increased over the Cerrado and remained constant over south western Amazonia. This has led to a decline in SSA across the whole of the region with greater reductions occurring over the eastern states. This finding is consistent with our aircraft measurements. We will discuss the implications of these changes for air quality and climate across the region.

  19. UV spectral irradiance measurements in New Zealand: Effects of Pinatubo volcanic aerosol

    NASA Technical Reports Server (NTRS)

    Mckenzie, Richard L.

    1994-01-01

    Since late 1989, regular UV spectral irradiance measurements have been made at Lauder, New Zealand (45 deg S, 170 deg E), whenever weather permits. Here, the instrumentation and measurement strategy are outlined, and early results are discussed. Following the eruption of Mt Pinatubo in June 1991, large amounts of volcanic aerosol were injected into the stratosphere and were subsequently transported to New Zealand's latitudes in the latter half of 1991. This provides an opportunity to investigate the effects of volcanic aerosols on UV irradiances measured at this clean-air site. Although changes in global (sum of diffuse plus direct) irradiances were below the detection threshold, there were significant changes in the partitioning of radiation between the direct beam and diffuse skylight. Decreases by nearly a factor of two in the direct/diffuse ratio were observed at longer wavelengths, and at smaller solar zenith angles (sza's). The aerosol optical depth due to volcanic aerosol over Lauder in December 1991 was 0.15 plus or minus 0.02 at 450 nm, with lower values at shorter wavelengths. Although effects were relatively small in the UVB region, an implication of the changes is that the contrast between shade and direct sun is reduced, so that shaded areas received relatively more radiation in the summer of 1991/92 in New Zealand.

  20. Light Absorption of Black Carbon Aerosol and Its Radiative Forcing Effect in an Megacity Atmosphere in South China

    NASA Astrophysics Data System (ADS)

    Lan, Zijuan

    2013-04-01

    The effects of black carbon (BC) aerosol on climate warming have been the study focus in the recent decade, the regional effect of BC light absorption is more significant. The reduction of BC is now expected to have significant near-term climate change mitigation. Mass absorption efficient (MAE) was one of the important optical properties of BC aerosol for evaluating the BC on its radiative forcing effect, while BC mixing state is one main influencing factor for MAE. Models have estimated that BC radiative forcing can be increased by a factor of ~2 for internally versus externally mixed BC. On the other hand, some organic carbon had been found to significantly absorb light at UV or shorter wavelengths in the most recent studies, with strong spectral dependence. But large uncertainties still remain in determining the positive forcing effect of BC on global clime change due to the technical limitations. In this study, advanced instrumentation (a three-wavelength photoacoustic soot spectrometer (PASS-3) and a single particle soot photometer (SP2)) were used to measure black carbon aerosol and analyze its optical properties in a megacity in South China, Shenzhen, during the summer of 2011. It is in the southeast corner of the Pearl River Delta (PRD) region, neighboring Hong Kong to the south. During the campaign, the average BC mass concentration was 4.0±3.1 μg m-3, accounting for about 11% of PM2.5 mass concentration, which mainly came from fossil fuel combustion rather than biomass burning. The MAE of BC ranged from 5.0 to 8.5 m2 g-1, with an average value of 6.5±0.5 m2 g-1. The percentage of internally mixed BC was averagely 24.3±7.9% and positively correlated with the MAE. It is estimated that the internally mixed BC amplified MAE by about 7% during the campaign, suggesting that the BC absorption enhancement due to internal mixing in the real atmosphere is relatively low in comparison with the predictions by theoretical models, which stands in accordance with

  1. Atmospheric correction of ocean color imagery: use of the junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption.

    PubMed

    Chomko, R M; Gordon, H R

    1998-08-20

    When strongly absorbing aerosols are present in the atmosphere, the usual two-step procedure of processing ocean color data-(1) atmospheric correction to provide the water-leaving reflectance (rho(w)), followed by (2) relating rho(w) to the water constituents-fails and simultaneous estimation of the ocean and aerosol optical properties is necessary. We explore the efficacy of using a simple model of the aerosol-a Junge power-law size distribution consisting of homogeneous spheres with arbitrary refractive index-in a nonlinear optimization procedure for estimating the relevant oceanic and atmospheric parameters for case 1 waters. Using simulated test data generated from more realistic aerosol size distributions (sums of log-normally distributed components with different compositions), we show that the ocean's pigment concentration (C) can be retrieved with good accuracy in the presence of weakly or strongly absorbing aerosols. However, because of significant differences in the scattering phase functions for the test and power-law distributions, large error is possible in the estimate of the aerosol optical thickness. The positive result for C suggests that the detailed shape of the aerosol-scattering phase function is not relevant to the atmospheric correction of ocean color sensors. The relevant parameters are the aerosol single-scattering albedo and the spectral variation of the aerosol optical depth. We argue that the assumption of aerosol sphericity should not restrict the validity of the algorithm and suggest an avenue for including colored aerosols, e.g., wind-blown dust, in the procedure. A significant advantage of the new approach is that realistic multicomponent aerosol models are not required for the retrieval of C.

  2. Analysis of aerosol absorption properties and transport over North Africa and the Middle East using AERONET data

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf; El-Askary, Hesham; Adetokunbo, Peter; Fuad, Abu-Tharr

    2016-11-01

    In this paper particle categorization and absorption properties were discussed to understand transport mechanisms at different geographic locations and possible radiative impacts on climate. The long-term Aerosol Robotic Network (AERONET) data set (1999-2015) is used to estimate aerosol optical depth (AOD), single scattering albedo (SSA), and the absorption Ångström exponent (αabs) at eight locations in North Africa and the Middle East. Average variation in SSA is calculated at four wavelengths (440, 675, 870, and 1020 nm), and the relationship between aerosol absorption and physical properties is used to infer dominant aerosol types at different locations. It was found that seasonality and geographic location play a major role in identifying dominant aerosol types at each location. Analyzing aerosol characteristics among different sites using AERONET Version 2, Level 2.0 data retrievals and the Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) backward trajectories shows possible aerosol particle transport among different locations indicating the importance of understanding transport mechanisms in identifying aerosol sources.

  3. Measurements of scattering and absorption properties of surface aerosols at a semi-arid site, Anantapur

    NASA Astrophysics Data System (ADS)

    Rama Gopal, K.; Balakrishnaiah, G.; Arafath, S. Md.; Raja Obul Reddy, K.; Siva Kumar Reddy, N.; Pavan Kumari, S.; Raghavendra Kumar, K.; Chakradhar Rao, T.; Lokeswara Reddy, T.; Reddy, R. R.; Nazeer Hussain, S.; Vasudeva Reddy, M.; Suresh Babu, S.; Mallikarjuna Reddy, P.

    2017-01-01

    Aerosol optical properties are continuously measured at a semi-arid station, Anantapur from June 2012 to May 2013 which describes the impact of surface aerosols on climate change over the region. Scattering coefficient (σsct) and absorption coefficient (σabs) are obtained from integrating Nephelometer and Aethalometer, respectively. Also, the single scattering albedo (ω0), Scattering/absorption Ångström exponents were examined during the period of study. Diurnal variations of σsct and σabs show a bi-peak pattern with two maxima and one minimum in a day. The largest values of σsct and σabs are obtained in winter while the lowest values are measured in monsoon. From the measurements σsct550 and σabs550 are found to be 110 ± 12.23 Mm- 1 and 33 ± 5.2 Mm- 1, respectively during the study period. An analysis of the ω0 suggests that there is a more absorbing fraction in the particle composition over the measurement site. The ω0 obtained in the surface boundary layer of Anantapur is below the critical value of 0.86 that determines the shift from cooling to warming. A relationship between scattering/absorption coefficients and scattering/absorption Ångström exponent and single scattering albedo is further examined. In order to understand the origins of the air masses in the study region, we performed seven-day back trajectory analyses based on the NOAA HYSPLIT model. These trajectories were computed at several altitudes (3000 m, 1500 m, and 500 m) for June 2012 and May 2013. These results put in evidence the need of efforts to reduce absorbing particles (black carbon) emissions to avoid the possible warming that would result from the reductions of the cooling aerosol only.

  4. Measurements of the absorption and scattering coefficients of aerosol particles in suburb of Nanjing (China)

    NASA Astrophysics Data System (ADS)

    Yin, Yan; Chen, Yu; Wang, Weiwei; Yan, Jiade; Qian, Ling; Tong, Yaoqing; Lin, Zhenyi

    2008-08-01

    The absorption and scattering coefficients of atmospheric aerosols were continuously measured with a Photoacoustic Soot Spectrometer (PASS, DMT Inc. USA) at a suburb site of Nanjing, one of the regions experiencing rapid industrialization in China. The measurements were carried out during autumn and winter 2007. A preliminary analysis of the data shows that, the scattering coefficient, Bscat, is two to ten times larger than the absorption coefficient, Babs, implying that the aerosols formed/emitted in this area are more scattering than previous assumed, and can be more important in cooling the Earth-atmosphere system. The results also indicate that the absolute values of both parameters are very much dependent on the meteorological conditions, such as wind speed and direction, fog, rain, etc. as well as the time of the day. Higher values often appear at nighttimes when wind is weak, especially when a temperature inverse layer is present near the surface. Higher values of Bscat and Babs were also observed under hazy and foggy weather conditions or when wind is blown from east, where a large industrial zone is located. Simultaneous measurements of the number concentrations, chemical compositions, and size distributions of aerosol particles are used to explain the characteristics of the changes in Bscat and Babs.

  5. Total ozone and aerosol optical depths inferred from radiometric measurements in the Chappuis absorption band

    SciTech Connect

    Flittner, D.E.; Herman, B.M.; Thome, K.J.; Simpson, J.M.; Reagan, J.A. )

    1993-04-15

    A second-derivative smoothing technique, commonly used in inversion work, is applied to the problem of inferring total columnar ozone amounts and aerosol optical depths. The application is unique in that the unknowns (i.e., total columnar ozone and aerosol optical depth) may be solved for directly without employing standard inversion methods. It is shown, however, that by employing inversion constraints, better solutions are normally obtained. The current method requires radiometric measurements of total optical depth through the Chappuis ozone band. It assumes no a priori shape for the aerosol optical depth versus wavelength profile and makes no assumptions about the ozone amount. Thus, the method is quite versatile and able to deal with varying total ozone and various aerosol size distributions. The technique is applied first in simulation, then to 119 days of measurements taken in Tucson, Arizona, that are compared to TOMS values for the same dates. The technique is also applied to two measurements taken at Mauna Loa, Hawaii, for which Dobson ozone values are available in addition to the TOMS values, and the results agree to within 15%. It is also shown through simulations that additional information can be obtained from measurements outside the Chappuis band. This approach reduces the bias and spread of the estimates total ozone and is unique in that it uses measurements from both the Chappuis and Huggins absorption bands. 12 refs., 6 figs., 2 tabs.

  6. Aerosol distributions and radiative forcing over the Asian Pacific region simulated by Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS)

    NASA Astrophysics Data System (ADS)

    Takemura, Toshihiko; Nakajima, Teruyuki; Higurashi, Akiko; Ohta, Sachio; Sugimoto, Nobuo

    2003-12-01

    A three-dimensional aerosol transport-radiation model coupled with a general circulation model, Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS), simulates atmospheric aerosol distributions and optical properties. The simulated results are compared with aerosol sampling and optical observations from ground, aircraft, and satellite acquired by intensive observation campaigns over east Asia in spring 2001. Temporal variations of the aerosol concentrations, optical thickness, and Ångström exponent are in good agreement between the simulation and observations. The midrange values of the Ångström exponent, even at the Asian dust storm events over the outflow regions, suggest that the contribution of the anthropogenic aerosol, such as carbonaceous and sulfate, to the total optical thickness is of an order comparable to that of the Asian dust. The radiative forcing by the aerosol direct and indirect effects is also calculated. The negative direct radiative forcing is simulated to be over -10 W m-2 at the tropopause in the air mass during the large-scale dust storm, to which both anthropogenic aerosols and Asian dust contribute almost equivalently. The direct radiative forcing, however, largely depends on the cloud water content and the vertical profiles of aerosol and cloud. The simulation shows that not only sulfate and sea salt aerosols but also black carbon and soil dust aerosols, which absorb solar and thermal radiation, make strong negative radiative forcing by the direct effect at the surface, which may exceed the positive forcing by anthropogenic greenhouse gases over the east Asian region.

  7. Broadband optical extinction measurements and complex refractive indices in the ultraviolet spectral region for biogenic secondary organic aerosol exposed to ammonia

    NASA Astrophysics Data System (ADS)

    Flores, J.; Washenfelder, R. A.; Lee, H.; Segev, L.; Nizkorodov, S.; Brown, S. S.; Rudich, Y.

    2013-12-01

    The interaction between aerosols and sunlight plays an important role in the radiative balance of Earth's atmosphere. Aerosols can both scatter and absorb solar radiation causing surface cooling and heating of the atmosphere. These interactions depend on the optical properties of the aerosols (i.e., complex refractive index). Secondary organic aerosol (SOA) account for a significant fraction of the tropospheric aerosol. However, their chemical, physical, and optical properties, especially as they are processed in the atmosphere (aging), are still poorly understood. In this study, SOA formed by the ozonolysis of various biogenic volatile organic compound (BVOC) precursors (α-pinene, limonene, and α-humulene) were exposed to humid air containing various concentrations of gaseous ammonia which has been shown to cause the biogenic SOA to ';brown' on filters. The extent of absorption of the SOA in the aerosol phase cause by the exposure to gaseous ammonia was measured by a newly developed instrument to measure aerosol extinction as a function of wavelength using Broadband Cavity Enhanced Spectroscopy (BBCES) with a broadband light source. Size-selected measurements of the humid SOA exposed to NH3 for about 1.5 hours were used to derive complex refractive indices (RI) as a function of wavelength in the UV spectral region (from 360 - 420nm). The imaginary part of the refractive index did not exceed 0.05 in the 360 - 420 nm range for SOA formed from the three BVOCs even at high concentrations of NH3 (>1ppm), allowing to place an upper limit of k = 0.05. Furthermore, the small k values are consistent with bulk UV-VIS measurements. However, for the α-pinene SOA, the real part of the RI slightly increased from n = 1.49 to n = 1.55 with negligible spectral dependence. For limonene and α-humulene the real part remind constant within error calculations. Based on these observations, reactive uptake of gaseous ammonia is not expected to significantly affect absorption and

  8. Absorption and fluorescent spectral studies of imidazophenazine derivatives

    NASA Astrophysics Data System (ADS)

    Ryazanova, O. A.; Zozulya, V. N.; Voloshin, I. M.; Karachevtsev, V. A.; Makitruk, V. L.; Stepanian, S. G.

    2004-07-01

    Absorption and fluorescent spectra as well as fluorescence polarization degree of imidazo-[4,5-d]-phenazine (F1) and its two modified derivatives, 2-trifluoridemethylimidazo-[4,5-d]-phenazine (F2) and 1,2,3-triazole-[4,5-d]-phenazine (F3), were investigated in organic solvents of various polarities and hydrogen bonding abilities. Extinction coefficients of F2 and F3 are increased, their fluorescence Stokes shifts are reduced in comparison with those for unmodified imidazophenazine. For F3 a red shift of the longwave absorption band is observed by 15-20 nm. Modifications of imidazophenazine have led to a sufficient increase of fluorescence polarization degrees that enables to use F2 and F3 as promising fluorescent probes with polarization method application. The configuration, atomic charge distribution and dipole moments of the isolated dye molecules in the ground state were calculated by the DFT method. The computation has revealed that ground state dipole moments of F1, F2, and F3 differ slightly and are equal to 3.5, 3.2, and 3.7 D, respectively. The changes in dipole moments upon the optical excitation for all derivatives estimated using Lippert equation were found to be Δ μ=9 D. The energies of the electronic S 1←S 0 transition in solvents of different proton donor abilities were determined, and energetic diagram illustrating the substituent effect was plotted. For nucleoside analogs of these compounds, covalently incorporated into a nucleotide chain, we have considered a possibility to use them as fluorescent reporters of hybridization of antisense oligonucleotides, as well as molecular anchors for its stabilization.

  9. Simple aerosol correction technique based on the spectral relationships of the aerosol multiple-scattering reflectances for atmospheric correction over the oceans.

    PubMed

    Ahn, Jae-Hyun; Park, Young-Je; Kim, Wonkook; Lee, Boram

    2016-12-26

    An estimation of the aerosol multiple-scattering reflectance is an important part of the atmospheric correction procedure in satellite ocean color data processing. Most commonly, the utilization of two near-infrared (NIR) bands to estimate the aerosol optical properties has been adopted for the estimation of the effects of aerosols. Previously, the operational Geostationary Color Ocean Imager (GOCI) atmospheric correction scheme relies on a single-scattering reflectance ratio (SSE), which was developed for the processing of the Sea-viewing Wide Field-of-view Sensor (SeaWiFS) data to determine the appropriate aerosol models and their aerosol optical thicknesses. The scheme computes reflectance contributions (weighting factor) of candidate aerosol models in a single scattering domain then spectrally extrapolates the single-scattering aerosol reflectance from NIR to visible (VIS) bands using the SSE. However, it directly applies the weight value to all wavelengths in a multiple-scattering domain although the multiple-scattering aerosol reflectance has a non-linear relationship with the single-scattering reflectance and inter-band relationship of multiple scattering aerosol reflectances is non-linear. To avoid these issues, we propose an alternative scheme for estimating the aerosol reflectance that uses the spectral relationships in the aerosol multiple-scattering reflectance between different wavelengths (called SRAMS). The process directly calculates the multiple-scattering reflectance contributions in NIR with no residual errors for selected aerosol models. Then it spectrally extrapolates the reflectance contribution from NIR to visible bands for each selected model using the SRAMS. To assess the performance of the algorithm regarding the errors in the water reflectance at the surface or remote-sensing reflectance retrieval, we compared the SRAMS atmospheric correction results with the SSE atmospheric correction using both simulations and in situ match-ups with the

  10. Multi-spectral optical absorption in substrate-free nanowire arrays

    SciTech Connect

    Zhang, Junpeng; Chia, Andrew; Boulanger, Jonathan; LaPierre, Ray; Dhindsa, Navneet; Khodadad, Iman; Saini, Simarjeet

    2014-09-22

    A method is presented of fabricating gallium arsenide (GaAs) nanowire arrays of controlled diameter and period by reactive ion etching of a GaAs substrate containing an indium gallium arsenide (InGaP) etch stop layer, allowing the precise nanowire length to be controlled. The substrate is subsequently removed by selective etching, using the same InGaP etch stop layer, to create a substrate-free GaAs nanowire array. The optical absorptance of the nanowire array was then directly measured without absorption from a substrate. We directly observe absorptance spectra that can be tuned by the nanowire diameter, as explained with rigorous coupled wave analysis. These results illustrate strong optical absorption suitable for nanowire-based solar cells and multi-spectral absorption for wavelength discriminating photodetectors. The solar-weighted absorptance above the bandgap of GaAs was 94% for a nanowire surface coverage of only 15%.

  11. Spectral effects on direct-insolation absorptance of five collector coatings

    NASA Technical Reports Server (NTRS)

    Hotchkiss, G. B.; Simon, F. F.; Burmeister, L. C.

    1979-01-01

    Absorptances for direct insolation of black chrome, black nickel, copper oxide, and two black zinc conversion selective coatings were calculated for a number of typical solar spectrums. Measured spectral reflectances were used while the effects of atmospheric ozone density, turbidity, and air mass were incorporated in calculated direct solar spectrums. Absorptance variation for direct insolation was found to be of the order of 1 percent for a typical range of clear-sky atmospheric conditions.

  12. Electrically Tunable Absorption Enhancement with Spectral and Polarization Selectivity through Graphene Plasmonic Light Trapping

    PubMed Central

    Liu, Wenbin; Zhang, Jianfa; Zhu, Zhihong; Yuan, Xiaodong; Qin, Shiqiao

    2016-01-01

    In this paper, anisotropic graphene plasmonic structures are explored for light trapping and absorption enhancement in surrounding media. It is shown that electrically tunable and versatile spectral and polarization selectivity can be realized. Particularly, it is possible to control absorption of the incident light’s polarization component at a specific wavelength by varying the Fermi energy with suitable geometric designs. It may find applications for new types of infrared and THz photodetectors and will promote the research of other novel polarization devices.

  13. Aerosol characteristics in north-east India using ARFINET spectral optical depth measurements

    NASA Astrophysics Data System (ADS)

    Pathak, B.; Subba, T.; Dahutia, P.; Bhuyan, P. K.; Moorthy, K. Krishna; Gogoi, M. M.; Babu, S. Suresh; Chutia, L.; Ajay, P.; Biswas, J.; Bharali, C.; Borgohain, A.; Dhar, P.; Guha, A.; De, B. K.; Banik, T.; Chakraborty, M.; Kundu, S. S.; Sudhakar, S.; Singh, S. B.

    2016-01-01

    Four years (2010-2014) of spectral aerosol optical depth (AOD) data from 4 Indian Space Research Organisation's ARFINET (Aerosol Radiative Forcing over India) stations (Shillong, Agartala, Imphal and Dibrugarh) in the North-Eastern Region (NER) of India (lying between 22-30°N and 89-98°E) are synthesized to evolve a regional aerosol representation, for the first time. Results show that the columnar AOD (an indicator of the column abundance of aerosols) is highest at Agartala (0.80 ± 0.24) in the west and lowest at Imphal (0.59 ± 0.23) in the east in the pre-monsoon season due to intense anthropogenic bio-mass burning in this region aided by long-range transport from the high aerosol laden regions of the Indo-Gangetic Plains (IGP), polluted Bangladesh and Bay of Bengal. In addition to local biogenic aerosols and pollutants emitted from brick kilns, oil/gas fields, household bio-fuel/fossil-fuel, vehicles, industries. Aerosol distribution and climatic impacts show a west to east gradient within the NER. For example, the climatological mean AODs are 0.67 ± 0.26, 0.52 ± 0.14, 0.40 ± 0.17 and 0.41 ± 0.23 respectively in Agartala, Shillong, Imphal and Dibrugarh which are geographically located from west to east within the NER. The average aerosol burden in NER ranks second highest with climatological mean AOD 0.49 ± 0.2 next to the Indo-Gangetic Plains where the climatological mean AOD is 0.64 ± 0.2 followed by the South and South-East Asia region. Elevated aerosol layers are observed over the eastern most stations Dibrugarh and Imphal, while at the western stations the concentrations are high near the surface. The climate implications of aerosols are evaluated in terms of aerosol radiative forcing (ARF) and consequent heating of the atmosphere in the region which follows AOD and exhibit high values in pre-monsoon season at all the locations except in Agartala. The highest ARF in the atmosphere occurs in the pre-monsoon season ranging from 48.6 Wm-2 in Agartala

  14. Is It Possible to Distinguish Between Dust and Salt Aerosol Over Waters with Unknown Chlorophyll Concentrations Using Spectral Remote Sensing?

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Kaufman, Y. J.

    1999-01-01

    Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.

  15. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol.

    PubMed

    Martinsson, J; Eriksson, A C; Nielsen, I Elbæk; Malmborg, V Berg; Ahlberg, E; Andersen, C; Lindgren, R; Nyström, R; Nordin, E Z; Brune, W H; Svenningsson, B; Swietlicki, E; Boman, C; Pagels, J H

    2015-12-15

    The aim was to identify relationships between combustion conditions, particle characteristics, and optical properties of fresh and photochemically processed emissions from biomass combustion. The combustion conditions included nominal and high burn rate operation and individual combustion phases from a conventional wood stove. Low temperature pyrolysis upon fuel addition resulted in "tar-ball" type particles dominated by organic aerosol with an absorption Ångström exponent (AAE) of 2.5-2.7 and estimated Brown Carbon contributions of 50-70% to absorption at the climate relevant aethalometer-wavelength (520 nm). High temperature combustion during the intermediate (flaming) phase was dominated by soot agglomerates with AAE 1.0-1.2 and 85-100% of absorption at 520 nm attributed to Black Carbon. Intense photochemical processing of high burn rate flaming combustion emissions in an oxidation flow reactor led to strong formation of Secondary Organic Aerosol, with no or weak absorption. PM1 mass emission factors (mg/kg) of fresh emissions were about an order of magnitude higher for low temperature pyrolysis compared to high temperature combustion. However, emission factors describing the absorption cross section emitted per kg of fuel consumed (m(2)/kg) were of similar magnitude at 520 nm for the diverse combustion conditions investigated in this study. These results provide a link between biomass combustion conditions, emitted particle types, and their optical properties in fresh and processed plumes which can be of value for source apportionment and balanced mitigation of biomass combustion emissions from a climate and health perspective.

  16. Absorption Coefficient, Molecular Composition, and Photodegradation of Different Types of Brown Carbon Aerosols

    NASA Astrophysics Data System (ADS)

    Lee, H. J.; Aiona, P. K.; Nizkorodov, S.; Laskin, J.; Laskin, A.

    2014-12-01

    Atmospheric aerosols that absorb solar radiation have a direct effect on climate. Brown carbon (BrC) represents the type of carbonaceous aerosols characterized by large absorption coefficients in the near-UV range of the spectrum. BrC can be either directly emitted into the atmosphere from combustion sources, or be formed in the atmosphere through multi-phase reactions, such as aging of secondary organic aerosols (SOA) mediated by ammonium sulfate (AS). Under the conditions of exposure to solar radiation, both primary and secondary BrC can potentially change their molecular composition and optical properties as a result of photodegradation of chromophoric compounds. This presentation will discuss the molecular level composition, the absorption and fluorescence spectra, and the mechanism of photodegradation among several representative types of BrC. The primary BrC samples include aerosol produced by smoldering wood combustion. The secondary BrC samples include AS aged products of chamber-generated SOA, products of reaction between methylglyoxal and AS, and SOA produced by the hogh-NOx photooxdiation of aromatic compounds, such as naphthalene. This presentation will also include preliminary data on the absorption and fluorescence spectra of photo-degraded bioaerosols. In all cases, absorption spectra of extracted bulk samples are measured during irradiation by a known flux of UV or visible light. The molecular level composition of the fresh and photobleached samples are characterized by high-resolution electrospray ionization mass spectrometry (HR-ESI-MS). Photobleaching of BrC is found to occur over a range of atmospherically relevant time scales. In many cases, the molecular level composition of photobleached BrC exhibits only subtle changes suggesting that the optical and fluorescence properties of BrC are controlled by a few compounds present in low quantities. The observed fluorescence from non-biological BrC indicates potential issues in using fluorescence

  17. MAX-DOAS measurements in southern China: 1. automated aerosol profile retrieval using oxygen dimers absorptions

    NASA Astrophysics Data System (ADS)

    Li, X.; Brauers, T.; Shao, M.; Garland, R. M.; Wagner, T.; Deutschmann, T.; Wahner, A.

    2008-09-01

    We performed MAX-DOAS measurements during the PRiDe-PRD2006 campaign in the Pearl River Delta region 50 km north of Guangzhou, China, for 4 weeks in June 2006. We used an instrument which simultaneously sampled the wavelength range from 292 nm to 443 nm at 7 different elevation angles between 3° and 90°. Here we show that the O4 (O2 dimer) absorption at 360 nm can be used to retrieve the aerosol extinction and the height of the boundary layer. A comparison with simultaneously recorded, ground based nephelometer data shows an excellent agreement.

  18. Method and apparatus for aerosol-particle absorption spectroscopy. [DOE patent application

    SciTech Connect

    Campillo, A.J.; Lin, H.B.

    1981-06-25

    A method and apparatus are described for determining the absorption spectra, and other properties, of aerosol particles. A heating beam source provides a beam of electromagnetic energy which is scanned through the region of the spectrum which is of interest. Particles exposed to the heating beam which have absorption bands within the band width of the heating beam absorb energy from the beam. The particles are also illuminated by light of a wave length such that the light is scattered by the particles. The absorption spectra of the particles can thus be determined from an analysis of the scattered light since the absorption of energy by the particles will affect the way the light is scattered. Preferably the heating beam is modulated to simplify the analysis of the scattered light. In one embodiment the heating beam is intensity modulated so that the scattered light will also be intensity modulated when the particles absorb energy. In another embodiment the heating beam passes through an interferometer and the scattered light reflects the Fourier Transform of the absorption spectra.

  19. Comparison of Aerosol Classification From Airborne High Spectral Resolution Lidar and the CALIPSO Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, Sharon P.; Ferrare, Rich A.; Omar, Ali H.; Vaughan, Mark A.; Rogers, Raymond R.; Hostetler, Chris a.; Hair, Johnathan W.; Obland, Michael D.; Butler, Carolyn F.; Cook, Anthony L.; Harper, David B.

    2012-01-01

    Knowledge of aerosol composition and vertical distribution is crucial for assessing the impact of aerosols on climate. In addition, aerosol classification is a key input to CALIOP aerosol retrievals, since CALIOP requires an inference of the lidar ratio in order to estimate the effects of aerosol extinction and backscattering. In contrast, the NASA airborne HSRL-1 directly measures both aerosol extinction and backscatter, and therefore the lidar ratio (extinction-to-backscatter ratio). Four aerosol intensive properties from HSRL-1 are combined to infer aerosol type. Aerosol classification results from HSRL-1 are used here to validate the CALIOP aerosol type inferences.

  20. Assessing multiple quality attributes of peaches using spectral absorption and scattering properties

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this research was to measure the spectral absorption and reduced scattering coefficients of peaches, using a hyperspectral imaging-based spatially-resolved method, for maturity/quality assessment. A newly developed optical property measuring instrument was used for acquiring hypersp...

  1. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Kittaka, C.; Hostetler, C. A.; Hair, J. W.; Obland, M. D.; Rogers, R. R.; Cook, A. L.; Haper, D. B.

    2008-01-01

    Aerosol extinction profiles are derived from backscatter data by constraining the retrieval with column aerosol optical thickness (AOT), for example from coincident MODIS observations and without reliance on a priori assumptions about aerosol type or optical properties. The backscatter data were acquired with the NASA Langley High Spectral Resolution Lidar (HSRL). The HSRL also simultaneously measures extinction independently, thereby providing an ideal data set for evaluating the constrained retrieval of extinction from backscatter. We will show constrained extinction retrievals using various sources of column AOT, and examine comparisons with the HSRL extinction measurements and with a similar retrieval using data from the CALIOP lidar on the CALIPSO satellite.

  2. A New Algorithm for Retrieving Aerosol Properties Over Land from MODIS Spectral Reflectance

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Mattoo, Shana; Vermote, Eric F.; Kaufman, Yoram J.

    2006-01-01

    Since first light in early 2000, operational global quantitative retrievals of aerosol properties over land have been made from MODIS observed spectral reflectance. These products have been continuously evaluated and validated, and opportunities for improvements have been noted. We have replaced the original algorithm by improving surface reflectance assumptions, the aerosol model optical properties and the radiative transfer code used to create the lookup tables. The new algorithm (known as Version 5.2 or V5.2) performs a simultaneous inversion of two visible (0.47 and 0.66 micron) and one shortwave-IR (2.12 micron) channel, making use of the coarse aerosol information content contained in the 2.12 micron channel. Inversion of the three channels yields three nearly independent parameters, the aerosol optical depth (tau) at 0.55 micron, the non-dust or fine weighting (eta) and the surface reflectance at 2.12 micron. Finally, retrievals of small magnitude negative tau values (down to -0.05) are considered valid, thus normalizing the statistics of tau in near zero tau conditions. On a 'test bed' of 6300 granules from Terra and Aqua, the products from V5.2 show marked improvement over those from the previous versions, including much improved retrievals of tau, where the MODIS/AERONET tau (at 0.55 micron) regression has an equation of: y = 1.01+0.03, R = 0.90. Mean tau for the test bed is reduced from 0.28 to 0.21.

  3. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  4. Quantifying the effect of finite spectral bandwidth on extinction coefficient of species in laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Singh, Manjeet; Singh, Jaswant; Singh, Baljit; Ghanshyam, C.

    2016-11-01

    The aim of this study is to quantify the finite spectral bandwidth effect on laser absorption spectroscopy for a wide-band laser source. Experimental analysis reveals that the extinction coefficient of an analyte is affected by the bandwidth of the spectral source, which may result in the erroneous conclusions. An approximate mathematical model has been developed for optical intensities having Gaussian line shape, which includes the impact of source's spectral bandwidth in the equation for spectroscopic absorption. This is done by introducing a suitable first order and second order bandwidth approximation in the Beer-Lambert law equation for finite bandwidth case. The derived expressions were validated using spectroscopic analysis with higher SBW on a test sample, Rhodamine B. The concentrations calculated using proposed approximation, were in significant agreement with the true values when compared with those calculated with conventional approach.

  5. Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.; Tanre, D.; Dubovik, O.; Goloub, P.; Chen, H.-B.; Sinyuk, A.; Wang, Y.; Korkin, S.

    2011-01-01

    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid- 2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by 0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.

  6. Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET

    NASA Technical Reports Server (NTRS)

    Lyapustin, A.; Smirnov, A.; Holben, B.; Chin, M.; Streets, D. G.; Lu, Z.; Kahn, R.; Slutsker, I.; Laszlo, I.; Kondragunta, S.; Tanre, D.; Dubovik, O.; Goloub, P.; Chen, H.-B.; Sinyuk, A.; Wang, Y.; Korkin, S.

    2011-01-01

    An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by approx.0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008.

  7. Relationship between carbonaceous components and aerosol light absorption during winter at an urban site of Gwangju, Korea

    NASA Astrophysics Data System (ADS)

    Park, Seung Shik; Son, Se-Chang

    2017-03-01

    To examine the relationship between the chemical composition of light-absorbing organic aerosols and the absorption properties of the aerosols, daily PM2.5 samples were collected during winter at an urban site of Gwangju, Korea, and analyzed for organic carbon and elemental carbon (OC and EC), water-soluble organic carbon (WSOC), humic-like substances (HULIS), and water-soluble inorganic substances. The real-time black carbon (BC) concentration in PM2.5 was also measured using a dual-spot aethalometer. During the study period, average WSOC/OC and HULIS-C/WSOC ratios were 0.53 and 0.52, respectively. K+/EC and K+/OC ratios indicate that biomass burning (BB) emissions are a possible source of the observed carbonaceous aerosols and K+. Moderate-to-strong correlations of HULIS with NO3-, oxalate, SO42 -, K+, CO, and ΔBC (= BC@370 nm - BC@880 nm) suggest that in addition to the primary BB emissions, secondary processing is another important contributor to the formation of HULIS in winter at the site. The average absorption Ångstrӧm exponent (α) of fine aerosols for the wavelengths of 370-950 nm and 590-950 nm was 1.29 and 1.18, respectively, but the aerosol α value was higher in the near UV wavelength range (370-520 nm), with an average of 1.51 (0.76-2.36), indicating that aerosol absorption characteristics during winter were influenced by BB aerosol sources, as well as by traffic emissions. Over the study period, the α370-520 nm value during the highest EC, highest OC, and Asian dust events was 1.42 ± 0.10 (1.26-1.59), 1.44 ± 0.15 (1.16-1.68), and 1.90 ± 0.28 (1.54-2.36), respectively. Higher α370-520 nm values during the Asian dust event were attributed to the influence of dust particles. In addition, the light absorption coefficients of aerosols at 370 nm were strongly correlated with OC (R2 = 0.76), water-insoluble OC (R2 = 0.70), and water-soluble HULIS (R2 = 0.64). These tight correlations suggest that water-insoluble fractions of OC, as well as the

  8. Atmospheric aerosols: Their Optical Properties and Effects (supplement)

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A digest of technical papers is presented. Topics include aerosol size distribution from spectral attenuation with scattering measurements; comparison of extinction and backscattering coefficients for measured and analytic stratospheric aerosol size distributions; using hybrid methods to solve problems in radiative transfer and in multiple scattering; blue moon phenomena; absorption refractive index of aerosols in the Denver pollution cloud; a two dimensional stratospheric model of the dispersion of aerosols from the Fuego volcanic eruption; the variation of the aerosol volume to light scattering coefficient; spectrophone in situ measurements of the absorption of visible light by aerosols; a reassessment of the Krakatoa volcanic turbidity, and multiple scattering in the sky radiance.

  9. Airborne measurements of spectral direct aerosol radiative forcing in INTEX/ICARTT (2004) and comparisons to previous campaigns

    NASA Astrophysics Data System (ADS)

    Redemann, J.; Pilewskie, P.; Russell, P.; Livingston, J.; Howard, S.; Schmid, B.; Pommier, J.; Gore, W.; Eilers, J.; Wendisch, M.; Bush, B.; Valero, F.

    2005-12-01

    As part of the INTEX-NA (INtercontinental chemical Transport EXperiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies, the NASA Ames 14-channel Airborne Tracking Sunphotometer (AATS-14) and a pair of Solar Spectral Flux Radiometers (SSFR) took measurements from aboard a Jetstream 31 (J31) aircraft during 19 science flights (~ 53 flight hours) over the Gulf of Maine between 12 July and 8 August 2004. AATS-14 measures the direct solar beam transmission at 14 discrete wavelengths (354-2138 nm), yielding aerosol optical depth (AOD) spectra, while the SSFR system yields down- and upwelling solar irradiance at a spectral resolution of ~ 8-12 nm over the wavelength range 300-1700 nm. The combination of simultaneous AATS and SSFR measurements yields plots of net spectral irradiance as a function of aerosol optical depth as measured along horizontal flight legs. From the slope of these plots we determine the instantaneous aerosol-induced change in net radiative flux per change in AOD. By normalization to an aerosol optical depth change of unity we derive the spectral aerosol radiative forcing efficiency [W m-2 nm-1]. Numerical integration of the irradiance measurements over a given spectral range yields the broadband aerosol radiative forcing efficiency [W m-2]. In INTEX/ITCT, we observed a total of 16 horizontal AOD gradients, with 10 gradients well suited for our analysis because of the small changes in solar zenith angle. Within the 10 case studies we found a high variability in the derived instantaneous aerosol forcing efficiencies for the visible wavelength range (350-700 nm), with a mean of -79.6 W m-2 and a standard deviation of 21.8 W m-2 (27%). The mean instantaneous forcing efficiency for the visible plus near-IR wavelength range (350-1670 nm) was derived to be 135.3 W m-2 with a standard deviation of 36.0 W m-2 (27%). An analytical conversion of the instantaneous forcing efficiencies to

  10. Large-scale enhancement in aerosol absorption in the lower free troposphere over continental India during spring

    NASA Astrophysics Data System (ADS)

    Nair, Vijayakumar S.; Babu, S. Suresh; Gogoi, Mukunda M.; Moorthy, K. Krishna

    2016-11-01

    Aerosol absorption in the lower troposphere over continental India was assessed using extensive measurements of the vertical distribution of absorption coefficients aboard an instrumented aircraft. Measurements were made from seven base stations during winter (November-December 2012) and spring (April-May 2013), supplemented by the data from the networks of surface observatories. A definite enhancement in aerosol absorption has been observed in the lower free troposphere over the Indo-Gangetic Plain (IGP) during spring, along with a reduction near the surface. The regional mean aerosol absorption optical depth (AAOD) over IGP, which was derived from aircraft observations (integrated from the ground to 3 km), increased from 0.020 ± 0.009 in winter to 0.048 ± 0.01 in spring. The columnar AAOD depicted weak and distinctly different seasonal variations than that of surface level black carbon mass concentrations. This contrasting difference in the seasonality indicates the presence of elevated layers of absorbing aerosols during spring in association with the long-range transport and vertical convective lofting of aerosols.

  11. Evolution of the complex refractive index in the UV spectral region in ageing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Flores, J. M.; Zhao, D. F.; Segev, L.; Schlag, P.; Kiendler-Scharr, A.; Fuchs, H.; Watne, Å. K.; Bluvshtein, N.; Mentel, Th. F.; Hallquist, M.; Rudich, Y.

    2014-06-01

    The chemical and physical properties of secondary organic aerosol (SOA) formed by the photochemical degradation of biogenic and anthropogenic volatile organic compounds (VOC) are as yet still poorly constrained. The evolution of the complex refractive index (RI) of SOA, formed from purely biogenic VOC and mixtures of biogenic and anthropogenic VOC, was studied over a diurnal cycle in the SAPHIR photochemical outdoor chamber in Jülich, Germany. The correlation of RI with SOA chemical and physical properties such as oxidation level and volatility was examined. The RI was retrieved by a newly developed broadband cavity-enhanced spectrometer for aerosol optical extinction measurements in the UV spectral region (360 to 420 nm). Chemical composition and volatility of the particles were monitored by a high-resolution time-of-flight aerosol mass spectrometer, and a volatility tandem differential mobility analyzer. SOA was formed by ozonolysis of either (i) a mixture of biogenic VOC (α-pinene and limonene), (ii) biogenic VOC mixture with subsequent addition of an anthropogenic VOC (p-xylene-d10), or (iii) a mixture of biogenic and anthropogenic VOC. The SOA aged by ozone/OH reactions up to 29.5 h was found to be non-absorbing in all cases. The SOA with p-xylene-d10 showed an increase of the scattering component of the RI correlated with an increase of the O / C ratio and with an increase in the SOA density. There was a greater increase in the scattering component of the RI when the SOA was produced from the mixture of biogenic VOCs and anthropogenic VOC than from the sequential addition of the VOCs after approximately the same ageing time. The increase of the scattering component was inversely correlated with the SOA volatility. Two RI retrievals determined for the pure biogenic SOA showed a constant RI for up to 5 h of ageing. Mass spectral characterization shows the three types of the SOA formed in this study have a significant amount of semivolatile components. The

  12. Ground-level spectral distribution of solar direct-normal irradiance and marine aerosol attenuation coefficients at Reunion Island

    SciTech Connect

    Vaxelaire, P.; Leveau, J.; Baldy, S. ); Menguy, G. )

    1991-01-01

    The ground-level spectral distribution of direct solar irradiance at Reunion Island was measured for six bands covering the spectrum of solar radiation. The measurements, distributed over one year, were made under clear sky conditions with a pyrheliometer (Eppley, NIP) and six large pass-band flat filters. Good stability of spectral irradiances as a function of solar height allows us to propose approximate relationships which significantly characterize the irradiance into each spectral band. Measurements at Reunion vary significantly from data obtained with the same apparatus in a northern hemisphere continental area (Lyon). The determination of aerosol attenuation coefficients, for different spectral bands, allows the establish of a mean curve, for these coefficients as a function of wavelength, characteristic for marine aerosols.

  13. [Laser induced breakdown spectra of coal sample and self-absorption of the spectral line].

    PubMed

    Zhang, Gui-yin; Ji, Hui; Jin, Yi-dong

    2014-12-01

    The LIBS of one kind of household fuel coal was obtained with the first harmonic output 532 nm of an Nd·YAG laser as radiation source. With the assignment of the spectral lines, it was found that besides the elements C, Si, Mg, Fe, Al, Ca, Ti, Na and K, which are reported to be contained in coal, the presented sample also contains trace elements, such as Cd, Co, Hf, Ir, Li, Mn, Ni, Rb, Sr, V, W, Zn, Zr etc, but the spectral lines corresponding to O and H elements did not appear in the spectra. This is owing to the facts that the transition probability of H and O atoms is small and the energy of the upper level for transition is higher. The results of measurement also show that the intensity of spectral line increases with the laser pulse energy and self-absorption of the spectral lines K766.493 nm and K769.921 nm will appear to some extent. Increasing laser energy further will make self-absorption more obvious. The presence of self-absorption can be attributed to two factors. One is the higher transition rate of K atoms, and the other is that the increase in laser intensity induces the enhancement of the particle number density in the plasma.

  14. Light fluence correction for quantitative determination of tissue absorption coefficient using multi-spectral optoacoustic tomography

    NASA Astrophysics Data System (ADS)

    Brochu, Frederic M.; Joseph, James; Tomaszewski, Michal; Bohndiek, Sarah E.

    2015-07-01

    MultiSpectral Optoacoustic Tomography (MSOT) is a fast developing imaging modality, combining the high resolution and penetration depth of ultrasound with the excellent contrast from optical imaging of tissue. Absorption and scattering of the near infrared excitation light modulates the spectral profile of light as it propagates deep into biological tissue, meaning the images obtained provide only qualitative insight into the distribution of tissue chromophores. The goal of this work is to accurately recover the spectral profile of excitation light by modelling light fluence in the data reconstruction, to enable quantitative imaging. We worked with a commercial small animal MSOT scanner and developed our light fluence correction for its' cylindrical geometry. Optoacoustic image reconstruction pinpoints the sources of acoustic waves detected by the transducers and returns the initial pressure amplitude at these points. This pressure is the product of the dimensionless Grüneisen parameter, the absorption coefficient and the light fluence. Under the condition of constant Grüneisen parameter and well modelled light fluence, there is a linear relationship between the initial pressure amplitude measured in the optoacoustic image and the absorption coefficient. We were able to reproduce this linear relationship in different physical regions of an agarose gel phantom containing targets of known optical absorption coefficient, demonstrating that our light fluence model was working. We also demonstrate promising results of light fluence correction effects on in vivo data.

  15. Using high spectral resolution spectrophotometry to study broad mineral absorption features on Mars

    NASA Technical Reports Server (NTRS)

    Blaney, D. L.; Crisp, D.

    1993-01-01

    Traditionally telescopic measurements of mineralogic absorption features have been made using relatively low to moderate (R=30-300) spectral resolution. Mineralogic absorption features tend to be broad so high resolution spectroscopy (R greater than 10,000) does not provide significant additional compositional information. Low to moderate resolution spectroscopy allows an observer to obtain data over a wide wavelength range (hundreds to thousands of wavenumbers) compared to the several wavenumber intervals that are collected using high resolution spectrometers. However, spectrophotometry at high resolution has major advantages over lower resolution spectroscopy in situations that are applicable to studies of the Martian surface, i.e., at wavelengths where relatively weak surface absorption features and atmospheric gas absorption features both occur.

  16. Aerosol Light Absorption and Scattering in Mexico City: Comparison With Las Vegas, NV, and Los Angeles, CA.

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.; Campbell, D.; Fujita, E.

    2007-12-01

    Aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The primary site in Mexico City was an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP). Similar campaigns were held in Las Vegas, NV in January-February, 2003; and Los Angeles, CA at numerous sites during all seasons from 2003 through 2007. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions. The photoacoustic instrument (PAS) used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In Mexico City the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of Mexico City resulted in more direct solar radiation. Further insight on the meteorological connections and population dynamics will be discussed.

  17. Multiwavelength In-Situ Aerosol Scattering and Absorption During the NEAQS-ITCT 2004 Field Campaign: Aerosol Classification, Case Studies, and Data Interpretation

    NASA Astrophysics Data System (ADS)

    Sierau, B.; Covert, D.; Coffman, D.; Quinn, P.; Bates, T.

    2005-12-01

    In-situ, three wavelength measurements of aerosol scattering and absorption of the New York and Boston urban pollution outflow were carried out aboard the NOAA research vessel Ronald H. Brown during the NEAQS-ITCT 2004 (New England Air Quality Study-Intercontinental Transport and Chemical Transformation Study) field campaign during July 2004 in the Gulf of Maine. Aerosol scattering, backscattering and absorption-coefficients were measured using integrating nephelometers and multiwavelength, filter-based absorption photometers (PSAPs) at ~55-60% RH (nephelometers). Two data sets were collected, one for particles with diameters dp<10μm and one for particles <1μm. The purpose of the latter was to focus on the largely pollution related accumulation mode and to minimize the uncertainty due to highly variable near-surface sea salt aerosol. Combining the aerosol scattering and absorption coefficients σsp and σap yields the derived, intensive parameters, single-scattering albedo, ω=σsp/(σsp+σap), Ångström exponents, å, for σsp, and σap, the hemispheric backscattering ratio, and the fine mode fraction of the aerosol, FMF =σsp(dp<1μm)/σsp(dp<10μm). These are key parameters in estimating aerosol direct radiative forcing and they provide constraints on model building and closure studies with physical and chemical aerosol properties. They are important for relating in-situ optical properties to those sensed remotely, e.g., optical depth from ground- or aircraft-based sun photometry or optical depth from satellite, and to the FMF retrieved from satellite data. The measured and derived data will be classified based on a trajectory analysis of the sampled air masses to identify distinct aerosol populations and sources. Case studies describing the aging of pollution plumes are calculated and analyzed in context of other measurements and the prevailing meteorology and the upwind sources. The obtained relationship between in-situ Ångström and FMF will be compared

  18. Spectral control of an alexandrite laser for an airborne water-vapor differential absorption lidar system

    NASA Technical Reports Server (NTRS)

    Ponsardin, Patrick; Grossmann, Benoist E.; Browell, Edward V.

    1994-01-01

    A narrow-linewidth pulsed alexandrite laser has been greatly modified for improved spectral stability in an aircraft environment, and its operation has been evaluated in the laboratory for making water-vapor differential absorption lidar measurements. An alignment technique is described to achieve the optimum free spectral range ratio for the two etalons inserted in the alexandrite laser cavity, and the sensitivity of this ratio is analyzed. This technique drastically decreases the occurrence of mode hopping, which is commonly observed in a tunable, two-intracavity-etalon laser system. High spectral purity (greater than 99.85%) at 730 nm is demonstrated by the use of a water-vapor absorption line as a notch filter. The effective cross sections of 760-nm oxygen and 730-nm water-vapor absorption lines are measured at different pressures by using this laser, which has a finite linewidth of 0.02 cm(exp -1) (FWHM). It is found that for water-vapor absorption linewidths greater than 0.04 cm(exp -1) (HWHM), or for altitudes below 10 km, the laser line can be considered monochromatic because the measured effective absorption cross section is within 1% of the calculated monochromatic cross section. An analysis of the environmental sensitivity of the two intracavity etalons is presented, and a closed-loop computer control for active stabilization of the two intracavity etalons in the alexandrite laser is described. Using a water-vapor absorption line as a wavelength reference, we measure a long-term frequency drift (approximately 1.5 h) of less than 0.7 pm in the laboratory.

  19. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2009-06-01

    A photoacoustic spectrometer, a nephelometer, an aethalometer, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in North East Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethalometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 07:00 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the photochemical production of secondary aerosol (inorganic and organic) is approximately 75% of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  20. Primary and secondary contributions to aerosol light scattering and absorption in Mexico City during the MILAGRO 2006 campaign

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Jimenez, J. L.; Aiken, A. C.; Gaffney, J. S.; Marley, N. A.

    2008-09-01

    A photoacoustic spectrometer, a nephelometer, an aetholemeter, and an aerosol mass spectrometer were used to measure at ground level real-time aerosol light absorption, scattering, and chemistry at an urban site located in north east Mexico City (Instituto Mexicano del Petroleo, Mexican Petroleum Institute, denoted by IMP), as part of the Megacity Impact on Regional and Global Environments field experiment, MILAGRO, in March 2006. Photoacoustic and reciprocal nephelometer measurements at 532 nm accomplished with a single instrument compare favorably with conventional measurements made with an aethelometer and a TSI nephelometer. The diurnally averaged single scattering albedo at 532 nm was found to vary from 0.60 to 0.85 with the peak value at midday and the minimum value at 7 a.m. local time, indicating that the Mexico City plume is likely to have a net warming effect on local climate. The peak value is associated with strong photochemical generation of secondary aerosol. It is estimated that the same-day photochemical production of secondary aerosol (inorganic and organic) is approximately 40 percent of the aerosol mass concentration and light scattering in association with the peak single scattering albedo. A strong correlation of aerosol scattering at 532 nm and total aerosol mass concentration was found, and an average mass scattering efficiency factor of 3.8 m2/g was determined. Comparisons of photoacoustic and aethalometer light absorption with oxygenated organic aerosol concentration (OOA) indicate a very small systematic bias of the filter based measurement associated with OOA and the peak aerosol single scattering albedo.

  1. New method for simultaneous gas and aerosol retrievals from space limb-scanning spectral observation of the atmosphere.

    PubMed

    Oshchepkov, Sergey; Sasano, Yasuhiro; Yokota, Tatsuya

    2002-07-20

    This study concerns the development of a new inversion method for simultaneous gas and aerosol retrievals in the upper layers of the atmosphere from limb-viewing multiwavelength-transmission infrared measurements. In this method, concentrations of gas species such as O3, NO2, HNO3, N2O, CH4, and H2O, and spectral dependences of the aerosol extinction coefficient are retrieved simultaneously. When this is done, smoothness constraints on the desired spectral dependencies of the aerosol extinction coefficient are used as an a priori assumption. The method is used in the treating of synthetic transmission spectra of the Improved Limb Atmospheric Spectrometer, which is based on the solar occultation technique and was on board the Advanced Earth Observing Satellite. A set of numerical tests shows the efficiency of the method.

  2. Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmüller, H.; Sheridan, P. J.; Ogren, J. A.; Raspet, R.; Slaton, W. V.; Hand, J. L.; Kreidenweis, S. M.; Collett, J. L.

    2003-01-01

    Ambient measurements are reported of aerosol light absorption from photoacoustic and filter-based instruments (aethalometer and a particle soot absorption photometer (PSAP)) to provide insight on the measurement science. Measurements were obtained during the Big Bend Regional Aerosol and Visibility Observational Study at the Big Bend National Park in South Texas. The aethalometer measurements of black carbon concentration at this site correlate reasonably well with photoacoustic measurements of aerosol light absorption, with a slope of 8.1 m2/g and a small offset. Light absorption at this site never exceeded 2.1 Mm-1 during the month of collocated measurements. Measurements were also obtained, as a function of controlled relative humidity between 40% and 90%, during the Photoacoustic IOP in 2000 at the Department of Energy Southern Great Plains Cloud and Radiation Testbed site (SGP). PSAP measurements of aerosol light absorption correlated very well with photoacoustic measurements, but the slope of the correlation indicated the PSAP values were larger by a factor of 1.61. The photoacoustic measurements of light absorption exhibited a systematic decrease when the RH increased beyond 70%. This apparent decrease in light absorption with RH may be due to the contribution of mass transfer to the photoacoustic signal. Model results for the limiting case of full water saturation are used to evaluate this hypothesis. A second PSAP measured the light absorption for the same humidified samples, and indicated very erratic response as the RH changed, suggesting caution when interpreting PSAP data under conditions of rapid relative humidity change.

  3. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  4. Spectral Aerosol Extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-06-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström Exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  5. Spectral Aerosol Extinction (SpEx): A New Instrument for In situ Ambient Aerosol Extinction Measurements Across the UV/Visible Wavelength Range

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, Edward L.; Ziemba, L. D.

    2015-01-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the Spectral Aerosol Extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including non-absorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx can more accurately distinguish the presence of brown carbon from other absorbing aerosol due to its 300 nm lower wavelength limit compared to measurements limited to visible wavelengths. In addition, the spectra obtained by SpEx carry more information than can be conveyed by a simple power law fit that is typically defined by the use of Angstrom Exponents. Future improvements aim at lowering detection limits and ruggedizing the instrument for mobile operation.

  6. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China

    NASA Astrophysics Data System (ADS)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2014-02-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). However, this effect corresponds to only 2-10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.

  7. Light absorption, optical and microphysical properties of trajectory-clustered aerosols at two AERONET sites in West Africa

    NASA Astrophysics Data System (ADS)

    Fawole, O. G.; Cai, X.; MacKenzie, A. R.

    2015-12-01

    Aerosol remote sensing techniques and back-trajectory modeling can be combined to identify aerosol types. We have clustered 7 years of AERONET aerosol signals using trajectory analysis to identify dominant aerosol sources at two AERONET sites in West Africa: Ilorin (4.34 oE, 8.32 oN) and Djougou (1.60 oE, 9.76 oN). Of particular interest are air masses that have passed through the gas flaring region in the Niger Delta area, of Nigeria, en-route the AERONET sites. 7-day back trajectories were calculated using the UK UGAMP trajectory model driven by ECMWF wind analyses data. Dominant sources identified, using literature classifications, are desert dust (DD), Biomass burning (BB) and Urban-Industrial (UI). Below, we use a combination of synoptic trajectories and aerosol optical properties to distinguish a fourth source: that due to gas flaring. Gas flaring, (GF) the disposal of gas through stack in an open-air flame, is believed to be a prominent source of black carbon (BC) and greenhouse gases. For these different aerosol source signatures, single scattering albedo (SSA), refractive index , extinction Angstrom exponent (EEA) and absorption Angstrom exponent (AAE) were used to classify the light absorption characteristics of the aerosols for λ = 440, 675, 870 and1020 nm. A total of 1625 daily averages of aerosol data were collected for the two sites. Of which 245 make up the GF cluster for both sites. For GF cluster, the range of fine-mode fraction is 0.4 - 0.7. Average values SSA(λ), for the total and GF clusters are 0.90(440), 0.93(675), 0.95(870) and 0.96(1020), and 0.93(440), 0.92(675), 0.9(870) and 0.9(1020), respectively. Values of for the GF clusters for both sites are 0.62 - 1.11, compared to 1.28 - 1.66 for the remainder of the clusters, which strongly indicates the dominance of carbonaceous particles (BC), typical of a highly industrial area. An average value of 1.58 for the real part of the refractive index at low SSA for aerosol in the GF cluster is also

  8. Water vapor absorption coefficients in the 8-13-micron spectral region - A critical review

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1990-01-01

    Measurements of water vapor absorption coefficients in the thermal IR atmospheric window (8-13 microns) during the past 20 years obtained by a variety of techniques are reviewed for consistency and compared with computed values based on the AFGL spectral data tapes. The methods of data collection considered were atmospheric long path absorption with a CO2 laser or a broadband source and filters, a White cell and a CO2 laser or a broadband source and a spectrometer, and a spectrophone with a CO2 laser. Advantages and disadvantages of each measurement approach are given as a guide to further research. Continuum absorption has apparently been measured accurately to about the 5-10 percent level in five of the measurements reported.

  9. Absorption spectroscopy setup for determination of whole human blood and blood-derived materials spectral characteristics

    NASA Astrophysics Data System (ADS)

    Wróbel, M. S.; Gnyba, M.; Milewska, D.; Mitura, K.; Karpienko, K.

    2015-09-01

    A dedicated absorption spectroscopy system was set up using tungsten-halogen broadband source, optical fibers, sample holder, and a commercial spectrometer with CCD array. Analysis of noise present in the setup was carried out. Data processing was applied to the absorption spectra to reduce spectral noise, and improve the quality of the spectra and to remove the baseline level. The absorption spectra were measured for whole blood samples, separated components: plasma, saline, washed erythrocytes in saline and human whole blood with biomarkers - biocompatible nanodiamonds (ND). Blood samples had been derived from a number of healthy donors. The results prove a correct setup arrangement, with adequate preprocessing of the data. The results of blood-ND mixtures measurements show no toxic effect on blood cells, which proves the NDs as a potential biocompatible biomarkers.

  10. Aerosol light absorption measurements during the Reno Aerosol Optics Experiment: Photoacoustic measurements and a multiple-scattering model for the aethalometer response.

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Moosmueller, H.; Sheridan, P. J.; Ogren, J. A.

    2002-12-01

    The filter used on the aethalometer is a multiple scattering substrate, yet the current parameterization of the instrument simply uses Beer's law for its analysis when obtaining black carbon concentration. Specific characterizations of the instrument response, where filter attenuation was obtained as a function of wavelength, gave the following impressions. 1. Filter attenuation generally increases inversely with wavelength for all aerosol types. 2. When subjected to a constant flow of low single scattering albedo aerosol, the instrument shows a non-constant response. The response is highest when the filter single scattering albdeo is highest, and it decreases as the filter blackens. 3. When subjected to a constant flow of essentially unity single scattering albedo aerosol, the instrument shows a non-zero response, even though it should do so. A few percent of scattering is converted to absorption, because the addition of purely scattering aerosol is analogous to a simple thickening of the filter. The effect is more pronounced at shorter wavelengths, and is related to item 1. The multiple scattering model reproduces these behaviors. The photoacoustic instrument light absorption calibration with nitrogen dioxide gas will be presented along with closure data from extinction minus scattering as evaluations of its measurement accuracy.

  11. Synthetic absorption lines for a clumpy medium: a spectral signature for cloud acceleration in AGN?

    NASA Astrophysics Data System (ADS)

    Waters, Tim; Proga, Daniel; Dannen, Randall; Kallman, Timothy R.

    2017-01-01

    There is increasing evidence that the highly ionised multiphase components of AGN disc winds may be due to thermal instability. The ions responsible for forming the observed X-ray absorption lines may only exist in relatively cool clumps that can be identified with the so-called `warm absorbers'. Here we calculate synthetic absorption lines for such warm absorbers from first principles by combining 2D hydrodynamic solutions of a two-phase medium with a dense grid of photoionization models to determine the detailed ionization structure of the gas. Our calculations reveal that cloud disruption, which leads to a highly complicated velocity field (i.e. a clumpy flow), will only mildly affect line shapes and strengths when the warm gas becomes highly mixed but not depleted. Prior to complete disruption, clouds which are optically thin to the driving UV resonance lines will cause absorption at an increasingly blueshifted line of sight velocity as they are accelerated. This behavior will imprint an identifiable signature on the line profile if warm absorbers are enshrouded in an even broader absorption line produced by a high column of intercloud gas. Interestingly, we show that it is possible to develop a spectral diagnostic for cloud acceleration by differencing the absorption components of a doublet line, a result which can be qualitatively understood using a simple partial covering model. Our calculations also permit us to comment on the spectral differences between cloud disruption and ionization changes driven by flux variability. Notably, cloud disruption offers another possibility for explaining absorption line variability.

  12. Synergistic angular and spectral estimation of aerosol properties using CHRIS/PROBA-1 and simulated Sentinel-3 data

    NASA Astrophysics Data System (ADS)

    Davies, W. H.; North, P. R. J.

    2015-04-01

    We develop a method to derive aerosol properties over land surfaces using combined spectral and angular information, such as available from ESA Sentinel-3 mission, to be launched in 2015. A method of estimating aerosol optical depth (AOD) using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3. The method aims to improve the estimation of AOD, and to explore the estimation of fine mode fraction (FMF) and single scattering albedo (SSA) over land surfaces by inversion of a coupled surface/atmosphere radiative transfer model. The surface model includes a general physical model of angular and spectral surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values to the physical model. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground-based sun photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.

  13. Experimental validation of light scattering and absorption theories of fractal-like carbonaceous aerosol agglomerates

    NASA Astrophysics Data System (ADS)

    Chakrabarty, R.; Moosmuller, H.; Arnott, W. P.; Garro, M.; Slowik, J.; Cross, E.; Han, J.; Davidovits, P.; Onasch, T.; Worsnop, D.

    2007-12-01

    The optical coefficients of size-selected carbonaceous aerosol agglomerates measured at a wavelength of 870 nm are compared with those predicted by three theories, namely Rayleigh-Debye-Gans (RDG) approximation, volume-equivalent Mie theory, and integral equation formulation for scattering (IEFS). Carbonaceous agglomerates, produced via flame synthesis, were size-selected using two differential mobility analyzers (DMAs) in series, and their scattering and absorption coefficients were measured with nephelometry and photoacoustic spectroscopy. Scanning electron microscopy, along with image processing techniques, were used for the parameterization of the structural properties of the fractal-like agglomerates. The agglomerate structural parameters were used to evaluate the predictions of the optical coefficients based on the three light scattering and absorption theories. The results indicate that the RDG approximation agrees within 10% of the experimental results and the exact electromagnetic calculations of the IEFS theory. The experimental scattering coefficient is over predicted by the volume-equivalent Mie theory by a factor of ~3.2. Also, the RDG approximation-predicted optical coefficients showed pronounced sensitivity to changes in monomer mean diameter, the count median diameter of the agglomerates, and the geometric standard deviation of the agglomerate number size distribution.

  14. Aerosol Properties from Multi-spectral and Multi-angular Aircraft 4STAR Observations: Expected Advantages and Challenges

    SciTech Connect

    Kassianov, Evgueni I.; Flynn, Connor J.; Redemann, Jens; Schmid, Beat; Russell, P. B.; Sinyuk, Alexander

    2012-11-01

    The airborne Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) is developed to retrieve aerosol microphysical and optical properties from multi-angular and multi-spectral measurements of sky radiance and direct-beam sun transmittance. The necessarily compact design of the 4STAR may cause noticeable apparent enhancement of sky radiance at small scattering angles. We assess the sensitivity of expected 4STAR-based aerosol retrieval to such enhancement by applying the operational AERONET retrieval code and constructed synthetic 4STARlike data. Also, we assess the sensitivity of the broadband fluxes and the direct aerosol radiative forcing to uncertainties in aerosol retrievals associated with the sky radiance enhancement. Our sensitivity study results suggest that the 4STARbased aerosol retrieval has limitations in obtaining detailed information on particle size distribution and scattering phase function. However, these limitations have small impact on the retrieved bulk optical parameters, such as the asymmetry factor (up to 4%, or ±0.02) and single-scattering albedo (up to 2%, or ±0.02), and the calculated direct aerosol radiative forcing (up to 6%, or 2 Wm-2).

  15. Boundary Layer Observations of Water Vapor and Aerosol Profiles with an Eye-Safe Micro-Pulse Differential Absorption Lidar (DIAL)

    NASA Astrophysics Data System (ADS)

    Nehrir, A. R.; Repasky, K. S.; Carlsten, J.; Ismail, S.

    2011-12-01

    Measurements of real-time high spatial and temporal resolution profiles of combined water vapor and aerosols in the boundary layer have been a long standing observational challenge to the meteorological, weather forecasting, and climate science communities. To overcome the high reoccurring costs associated with radiosondes as well as the lack of sufficient water vapor measurements over the continental united states, a compact and low cost eye-safe all semiconductor-based micro-pulse differential absorption lidar (DIAL) has been developed for water vapor and aerosol profiling in the lower troposphere. The laser transmitter utilizes two continuous wave external cavity diode lasers operating in the 830 nm absorption band as the online and offline seed laser sources. An optical switch is used to sequentially injection seed a tapered semiconductor optical amplifier (TSOA) with the two seed laser sources in a master oscillator power amplifier (MOPA) configuration. The TSOA is actively current pulsed to produce up to 7 μJ of output energy over a 1 μs pulse duration (150 m vertical resolution) at a 10 kHz pulse repetition frequency. The measured laser transmitter spectral linewidth is less than 500 kHz while the long term frequency stability of the stabilized on-line wavelength is ± 55 MHz. The laser transmitter spectral purity was measured to be greater than 0.9996, allowing for simultaneous measurements of water vapor in the lower and upper troposphere. The DIAL receiver utilizes a commercially available full sky-scanning capable 35 cm Schmidt-Cassegrain telescope to collect the scattered light from the laser transmitter. Light collected by the telescope is spectrally filtered to suppress background noise and is coupled into a fiber optic cable which acts as the system field stop and limits the full angle field of view to 140 μrad. The light is sampled by a fiber coupled APD operated in a Geiger mode. The DIAL instrument is operated autonomously where water vapor and

  16. Shortwave Radiative Fluxes, Solar-Beam Transmissions, and Aerosol Properties: TARFOX and ACE-2 Find More Absorption from Flux Radiometry than from Other Measurements

    NASA Technical Reports Server (NTRS)

    Russell, Philip B.; Redemann, J.; Schmid, B.; Livingston, J. M.; Bergstrom, R. W.; Ramirez, S. A.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    The Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX) and the Second Aerosol Characterization Experiment (ACE-2) made simultaneous measurements of shortwave radiative fluxes, solar-beam transmissions, and the aerosols affecting those fluxes and transmissions. Besides the measured fluxes and transmissions, other obtained properties include aerosol scattering and absorption measured in situ at the surface and aloft; aerosol single scattering albedo retrieved from skylight radiances; and aerosol complex refractive index derived by combining profiles of backscatter, extinction, and size distribution. These measurements of North Atlantic boundary layer aerosols impacted by anthropogenic pollution revealed the following characteristic results: (1) Better agreement among different types of remote measurements of aerosols (e.g., optical depth, extinction, and backscattering from sunphotometers, satellites, and lidars) than between remote and in situ measurements; 2) More extinction derived from transmission measurements than from in situ measurements; (3) Larger aerosol absorption inferred from flux radiometry than from other measurements. When the measured relationships between downwelling flux and optical depth (or beam transmission) are used to derive best-fit single scattering albedos for the polluted boundary layer aerosol, both TARFOX and ACE-2 yield midvisible values of 0.90 +/- 0.04. The other techniques give larger single scattering albedos (i.e. less absorption) for the polluted boundary layer, with a typical result of 0.95 +/- 0.04. Although the flux-based results have the virtue of describing the column aerosol unperturbed by sampling, they are subject to questions about representativeness and other uncertainties (e.g., unknown gas absorption). Current uncertainties in aerosol single scattering albedo are large in terms of climate effects. They also have an important influence on aerosol optical depths retrieved from satellite radiances

  17. Separating Hazardous Aerosols from Ambient Aerosols: Role of Fluorescence-Spectral Determination, Aerodynamic Deflector and Pulse Aerodynamic Localizer (PAL)

    SciTech Connect

    Pan, Yong-Le; Cobler, Patrick J.; Rhodes, Scott A.; Halverson, Justin; Chang, Richard K.

    2005-08-22

    An aerosol deflection technique based on the single-shot UV-laser-induced fluorescence spectrum from a flowing particle is presented as a possible front-end bio-aerosol/hazardous-aerosol sensor/identifier. Cued by the fluorescence spectra, individual flowing bio-aerosol particles (1-10 {micro}m in diameter) have been successfully deflected from a stream of ambient aerosols. The electronics needed to compare the fluorescence spectrum of a particular particle with that of a pre-determined fluorescence spectrum are presented in some detail. The deflected particles, with and without going through a funnel for pulse aerodynamic localization (PAL), were collected onto a substrate for further analyses. To demonstrate how hazardous materials can be deflected, TbCl{sub 3} {center_dot} 6H{sub 2}O (a simulant material for some chemical forms of Uranium Oxide) aerosol particles (2 {micro}m in diameter) mixed with Arizona road dust was separated and deflected with our system.

  18. Constraining Black Carbon Aerosol over Asia using OMI Aerosol Absorption Optical Depth and the Adjoint of GEOS-Chem

    NASA Technical Reports Server (NTRS)

    Zhang, Li; Henze, David K.; Grell, Georg A.; Carmichael. Gregory R.; Bousserez, Nicolas; Zhang, Qiang; Torres, Omar; Ahn, Changwoo; Lu, Zifeng; Cao, Junji; Mao, Yuhao

    2015-01-01

    Accurate estimates of the emissions and distribution of black carbon (BC) in the region referred to here as Southeastern Asia (70degE-l50degE, 11degS-55degN) are critical to studies of the atmospheric environment and climate change. Analysis of modeled BC concentrations compared to in situ observations indicates levels are underestimated over most of Southeast Asia when using any of four different emission inventories. We thus attempt to reduce uncertainties in BC emissions and improve BC model simulations by developing top-down, spatially resolved, estimates of BC emissions through assimilation of OMI observations of aerosol absorption optical depth (AAOD) with the GEOS-Chem model and its adjoint for April and October of 2006. Overwhelming enhancements, up to 500%, in anthropogenic BC emissions are shown after optimization over broad areas of Southeast Asia in April. In October, the optimization of anthropogenic emissions yields a slight reduction (1-5%) over India and parts of southern China, while emissions increase by 10-50% over eastern China. Observational data from in situ measurements and AERONET observations are used to evaluate the BC inversions and assess the bias between OMI and AERONET AAOD. Low biases in BC concentrations are improved or corrected in most eastern and central sites over China after optimization, while the constrained model still underestimates concentrations in Indian sites in both April and October, possibly as a. consequence of low prior emissions. Model resolution errors may contribute up to a factor of 2.5 to the underestimate of surface BC concentrations over northern India. We also compare the optimized results using different anthropogenic emission inventories and discuss the sensitivity of top-down constraints on anthropogenic emissions with respect to biomass burning emissions. In addition, the impacts of brown carbon, the formulation of the observation operator, and different a priori constraints on the optimization are

  19. Spectral dependence of absorption sensitivity on concentration of oxygenated hemoglobin: pulse oximetry implications.

    PubMed

    Strojnik, Marija; Paez, Gonzalo

    2013-10-01

    The sensitivity analysis indicates that the effective absorption coefficient is most sensitive to the concentration of oxygenated hemoglobin in spectral bands centered at 700 and 960 nm. We find that the highest temporal modulation due to heart function for a thick sample, like an arm, is at 940 nm, a significant shift from 710 nm measured for a finger. The most favorable spectral region for a thick transmission sample, such as a forearm, is the domain defined by intervals [900  nm ≤ λ₁ ≤ 1000  nm] and [650 nm ≤ λ₂ ≤ 720  nm]. We evaluated five near-infrared light-emitting diodes (LEDs) for their potential applications in oximetry. The LED with peak emission at 930 nm emits well in this spectral region. Here the temporal noise is low, and the effective absorption coefficient is strongly dependent on the concentration of the oxygenated hemoglobin. High-quality saturation results are obtained through the forearm during a short measurement (30 s).

  20. ON NEUTRAL ABSORPTION AND SPECTRAL EVOLUTION IN X-RAY BINARIES

    SciTech Connect

    Miller, J. M.; Cackett, E. M.; Reis, R. C.

    2009-12-10

    Current X-ray observatories make it possible to follow the evolution of transient and variable X-ray binaries across a broad range in luminosity and source behavior. In such studies, it can be unclear whether evolution in the low-energy portion of the spectrum should be attributed to evolution in the source, or instead to evolution in neutral photoelectric absorption. Dispersive spectrometers make it possible to address this problem. We have analyzed a small but diverse set of X-ray binaries observed with the Chandra High Energy Transmission Grating Spectrometer across a range in luminosity and different spectral states. The column density in individual photoelectric absorption edges remains constant with luminosity, both within and across source spectral states. This finding suggests that absorption in the interstellar medium strongly dominates the neutral column density observed in spectra of X-ray binaries. Consequently, evolution in the low-energy spectrum of X-ray binaries should properly be attributed to evolution in the source spectrum. We discuss our results in the context of X-ray binary spectroscopy with current and future X-ray missions.

  1. Collisional Induced Absorption (CIA) bands measured in the IR spectral range .

    NASA Astrophysics Data System (ADS)

    Stefani, S.; Piccioni, G.; Snels, M.; Adriani, A.; Grassi, D.

    In this work we present two experimental setup able to characterize the optical properties of gases, in particular CO_2 and H_2, at typically planetary conditions. The apparatus consists of a Fourier Transform InfraRed (FT-IT) interferometer able to work in a wide spectral range, from 350 to 25000 cm-1 (0.4 to 29 mu m ) with a relatively high spectral resolution, from 10 to 0.07 cm-1. Two dedicated gas cells have been integrated with the FT-IR. The first, called High Pressure High Temperature (HP-HT), can support pressures up to 300 bar, temperatures up to 300oC and is characterized by an optical path of 2 cm. The second one, a Multi Pass (MP) absorption gas cell, is designed to have a variable optical path, from 2.5 to 30 m, can be heated up to 200o and operate at pressures up to 10 bar. In this paper, measurements of Collision-Induced Absorption (CIA) bands in carbon dioxide and hydrogen recorded in the InfraRed spectral range will be presented. In principle, linear symmetric molecules such as CO_2 and H_2 possess no dipole moment, but, even when the pressure is only a few bar, we have observed the Collisional Induced Absorption (CIA) bands. This absorption results from a short-time collisional interaction between molecules. The band integrated intensity shows a quadratic dependence versus density opposed to the absorption by isolated molecules, which follows Beer's law \\citep{Beer's}. This behaviour suggests an absorption by pairs rather than by individual molecules. The bands integrated intensities show a linear dependence vs square density according to \\citep {CIA Shape} and \\citep{CIA posi}. For what concerns the H_2 CIA bands, a preliminary comparison between simulated data obtained with the model described in \\citep{CIA H2}and measured, shows a good agreement. These processes are very relevant in the dense atmospheres of planets, such as those of Venus and Jupiter and also in extrasolar planets. A detailed knowledge of these contributions is very

  2. Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: sparse methods for statistical selection of relevant absorption bands

    NASA Astrophysics Data System (ADS)

    Takahama, Satoshi; Ruggeri, Giulia; Dillner, Ann M.

    2016-07-01

    Various vibrational modes present in molecular mixtures of laboratory and atmospheric aerosols give rise to complex Fourier transform infrared (FT-IR) absorption spectra. Such spectra can be chemically informative, but they often require sophisticated algorithms for quantitative characterization of aerosol composition. Naïve statistical calibration models developed for quantification employ the full suite of wavenumbers available from a set of spectra, leading to loss of mechanistic interpretation between chemical composition and the resulting changes in absorption patterns that underpin their predictive capability. Using sparse representations of the same set of spectra, alternative calibration models can be built in which only a select group of absorption bands are used to make quantitative prediction of various aerosol properties. Such models are desirable as they allow us to relate predicted properties to their underlying molecular structure. In this work, we present an evaluation of four algorithms for achieving sparsity in FT-IR spectroscopy calibration models. Sparse calibration models exclude unnecessary wavenumbers from infrared spectra during the model building process, permitting identification and evaluation of the most relevant vibrational modes of molecules in complex aerosol mixtures required to make quantitative predictions of various measures of aerosol composition. We study two types of models: one which predicts alcohol COH, carboxylic COH, alkane CH, and carbonyl CO functional group (FG) abundances in ambient samples based on laboratory calibration standards and another which predicts thermal optical reflectance (TOR) organic carbon (OC) and elemental carbon (EC) mass in new ambient samples by direct calibration of infrared spectra to a set of ambient samples reserved for calibration. We describe the development and selection of each calibration model and evaluate the effect of sparsity on prediction performance. Finally, we ascribe

  3. Influence of the vertical absorption profile of mixed Asian dust plumes on aerosol direct radiative forcing over East Asia

    NASA Astrophysics Data System (ADS)

    Noh, Young Min; Lee, Kwonho; Kim, Kwanchul; Shin, Sung-Kyun; Müller, Detlef; Shin, Dong Ho

    2016-08-01

    We estimate the aerosol direct radiative forcing (ADRF) and heating rate profiles of mixed East Asian dust plumes in the solar wavelength region ranging from 0.25 to 4.0 μm using the Santa Barbara Discrete Ordinate Atmospheric Radiative Transfer (SBDART) code. Vertical profiles of aerosol extinction coefficients and single-scattering albedos (SSA) were derived from measurements with a multi-wavelength Raman lidar system. The data are used as input parameters for our radiative transfer calculations. We considered four cases of radiative forcing in SBDART: 1. dust, 2. pollution, 3. mixed dust plume and the use of vertical profiles of SSA, and 4. mixed dust plumes and the use of column-averaged values of SSA. In our sensitivity study we examined the influence of SSA and aerosol layer height on our results. The ADRF at the surface and in the atmosphere shows a small dependence on the specific shape of the aerosol extinction vertical profile and its light-absorption property for all four cases. In contrast, at the top of the atmosphere (TOA), the ADRF is largely affected by the vertical distribution of the aerosols extinction. This effect increases if the light-absorption capacity (decrease of SSA) of the aerosols increases. We find different radiative effects in situations in which two layers of aerosols had different light-absorption properties. The largest difference was observed at the TOA for an absorbing aerosol layer at high altitude in which we considered in one case the vertical profile of SSA and in another case the column-averaged SSA only. The ADRF at the TOA increases when the light-absorbing aerosol layer is located above 3 km altitude. The differences between height-resolved SSA, which can be obtained from lidar data, and total layer-mean SSA indicates that the use of a layer-mean SSA can be rather misleading as it can induce a large error in the calculation of the ADRF at the TOA, which in turn may cause errors in the vertical profiles of heating rates.

  4. Spectral aerosol extinction (SpEx): a new instrument for in situ ambient aerosol extinction measurements across the UV/visible wavelength range

    NASA Astrophysics Data System (ADS)

    Jordan, C. E.; Anderson, B. E.; Beyersdorf, A. J.; Corr, C. A.; Dibb, J. E.; Greenslade, M. E.; Martin, R. F.; Moore, R. H.; Scheuer, E.; Shook, M. A.; Thornhill, K. L.; Troop, D.; Winstead, E. L.; Ziemba, L. D.

    2015-11-01

    We introduce a new instrument for the measurement of in situ ambient aerosol extinction over the 300-700 nm wavelength range, the spectral aerosol extinction (SpEx) instrument. This measurement capability is envisioned to complement existing in situ instrumentation, allowing for simultaneous measurement of the evolution of aerosol optical, chemical, and physical characteristics in the ambient environment. In this work, a detailed description of the instrument is provided along with characterization tests performed in the laboratory. Measured spectra of NO2 and polystyrene latex spheres (PSLs) agreed well with theoretical calculations. Good agreement was also found with simultaneous aerosol extinction measurements at 450, 530, and 630 nm using CAPS PMex instruments in a series of 22 tests including nonabsorbing compounds, dusts, soot, and black and brown carbon analogs. SpEx measurements are expected to help identify the presence of ambient brown carbon due to its 300 nm lower wavelength limit compared to measurements limited to longer UV and visible wavelengths. Extinction spectra obtained with SpEx contain more information than can be conveyed by a simple power law fit (typically represented by Ångström exponents). Planned future improvements aim to lower detection limits and ruggedize the instrument for mobile operation.

  5. Reconfiguration of spectral absorption features using a frequency-chirped laser pulse.

    PubMed

    Tian, Mingzhen; Chang, Tiejun; Merkel, Kristian D; Babbitt, W Randall

    2011-12-20

    A technique is proposed to manipulate atomic population in an inhomogeneously broadened medium, which can set an arbitrary absorption spectrum to a uniform transparency (erasure) or to a nearly complete inversion. These reconfigurations of atomic spectral distribution are achieved through excitation of electronic transitions using a laser pulse with chirped frequency, which precisely affects selected spectral regions while leaving the rest of the spectrum unperturbed. An erasure operation sets the final atomic population inversion to zero and the inversion operation flips the population between the ground and the excited states, regardless of the previously existing population distribution. This technique finds important applications both in optical signal processing, where fast, recursive processing and high dynamic range are desirable and in quantum memory and quantum computing, which both require high efficiency and high fidelity in quantum state preparation of atomic ensembles. Proof-of-concept demonstrations were performed in a rare-earth doped crystal.

  6. Analysis Of Spectrally Selective Liquid Absorption Filters For Hybrid Solar Energy Conversion

    NASA Astrophysics Data System (ADS)

    Chendo, M. A. C.; Osborn, D. E.; Swenson, Rick

    1985-12-01

    Various techniques have been proposed to convert solar energy to both electric power and heat in hybrid systems. Many of these approaches are designed to utilize spectral selectivity to improve the overall conversion efficiency. Examples include spectrally selective beamsplitters and arrangements of long-wave or short-wave-pass glass filters that divide the spectrum so that photon energies are roughly matched to the energies corresponding to the solar-cell bandgaps or to efficient photothermal convertors. This paper describes the analysis of liquid optical filters that have high transmittance in the visible spectrum and high absorptance in the infrared. These qualities make it possible to capture that portion of the spectrum useful to a quantum convertor, such as a photovoltaic cell, while channeling the "excess heat" of the photons with energies below the bandgap to a thermal convertor, thereby enhancing the overall conversion efficiency of the system. The preliminary studies show that spectral responses of the tested solutions (salts in water) are primarily influenced by the cation component of the salt solution. By changing the solutions and concentrations, a variety of spectrally selective filters can be tailored to match system requirements.

  7. Sensitivity of high-spectral resolution and broadband thermal infrared nadir instruments to the chemical and microphysical properties of secondary sulfate aerosols in the upper-troposphere/lower-stratosphere

    NASA Astrophysics Data System (ADS)

    Sellitto, Pasquale; Legras, Bernard

    2016-04-01

    The observation of upper-tropospheric/lower-stratospheric (UTLS) secondary sulfate aerosols (SSA) and their chemical and microphysical properties from satellite nadir observations (with better spatial resolution than limb observations) is a fundamental tool to better understand their formation and evolution processes and then to estimate their impact on UTLS chemistry, and on regional and global radiative balance. Thermal infrared (TIR) observations are sensitive to the chemical composition of the aerosols due to the strong spectral variations of the imaginary part of the refractive index in this band and, correspondingly, of the absorption, as a function of the composition Then, these observations are, in principle, well adapted to detect and characterize UTLS SSA. Unfortunately, the exploitation of nadir TIR observations for sulfate aerosol layer monitoring is today very limited. Here we present a study aimed at the evaluation of the sensitivity of TIR satellite nadir observations to the chemical composition and the size distribution of idealised UTLS SSA layers. The sulfate aerosol particles are assumed as binary systems of sulfuric acid/water solution droplets, with varying sulphuric acid mixing ratios. The extinction properties of the SSA, for different sulfuric acid mixing ratios and temperatures, are systematically analysed. The extinction coefficients are derived by means of a Mie code, using refractive indices taken from the GEISA (Gestion et Étude des Informations Spectroscopiques Atmosphériques: Management and Study of Spectroscopic Information) spectroscopic database and log-normal size distributions with different effective radii and number concentrations. High-spectral resolution pseudo-observations are generated using forward radiative transfer calculations performed with the 4A (Automatized Atmospheric Absorption Atlas) radiative transfer model, to estimate the impact of the extinction of idealised aerosol layers, at typical UTLS conditions, on

  8. View From a Megacity: Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City.

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, G.; Arnott, W. P.; Gaffney, J. S.; Marley, N. A.

    2006-12-01

    As part of the Megacity Impacts on Regional and Global Environments, MIRAGE-Mex deployment to Mexico City in the period of 30 days, March 2006, a suite of photoacoustic spectrometers (PAS) were installed to measure at ground level the light absorption and scattering by aerosols at four sites: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP), a suburban site at the Technological University of Tecamac, a rural site at "La Biznaga" ranch, and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 40 and 250 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed. Comparisons with TSI nephelometer scattering and Aetholemeter absorption measurements at the T0 site will be presented. We will present a broad overview of the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site. Insight on the dynamical connections will be discussed.

  9. Propagation of ultrashort laser pulses in water: linear absorption and onset of nonlinear spectral transformation.

    PubMed

    Sokolov, Alexei V; Naveira, Lucas M; Poudel, Milan P; Strohaber, James; Trendafilova, Cynthia S; Buck, William C; Wang, Jieyu; Strycker, Benjamin D; Wang, Chao; Schuessler, Hans; Kolomenskii, Alexandre; Kattawar, George W

    2010-01-20

    We study propagation of short laser pulses through water and use a spectral hole filling technique to essentially perform a sensitive balanced comparison of absorption coefficients for pulses of different duration. This study is motivated by an alleged violation of the Bouguer-Lambert-Beer law at low light intensities, where the pulse propagation is expected to be linear, and by a possible observation of femtosecond optical precursors in water. We find that at low intensities, absorption of laser light is determined solely by its spectrum and does not directly depend on the pulse duration, in agreement with our earlier work and in contradiction to some work of others. However, as the laser fluence is increased, interaction of light with water becomes nonlinear, causing energy exchange among the pulse's spectral components and resulting in peak-intensity dependent (and therefore pulse-duration dependent) transmission. For 30 fs pulses at 800 nm center wavelength, we determine the onset of nonlinear propagation effects to occur at a peak value of about 0.12 mJ/cm(2) of input laser energy fluence.

  10. Light Absorption Properties of Brown Carbon from Fresh and Aged Biomass Burning Aerosols Characterized in a Smog Chamber

    NASA Astrophysics Data System (ADS)

    Saleh, R.; Chuang, W.; Hennigan, C.; McMeeking, G. R.; Coe, H.; Donahue, N. M.; Robinson, A. L.

    2011-12-01

    Black carbon is an important particulate phase light absorber in the atmosphere. Recent studies have shown that some organic matter also absorb visible light, especially at short wavelengths. These organic compounds are referred to as "brown carbon". Biomass burning is a major contributor to brown carbon in atmospheric particulate matter; however, its optical properties are poorly characterized. We have conducted smog chamber experiments to investigate light absorption properties of brown carbon in primary and aged biomass burning emissions, namely the imaginary refractive index. The aging was performed in a smog chamber, where dilute emissions were exposed to UV lights to initiate photo-oxidation, which often produced substantial secondary organic aerosol. The experiments took place at Carnegie Mellon University (CMU) and at the US Fire Science Laboratory in Missoula, MT as part of the Fire Lab at Missoula field campaign (FLAME 2009). The CMU experiments simulated household wood burning (oak), and the FLAME experiments simulated wildland fires with fuels including gallberry, lodgepole pine, black spruce and ponderosa pine. Absorption coefficients were measured using an Aethalometer (Magee Scientific) at 7 different wavelengths ranging between 370 nm and 950 nm. The black carbon size distributions were measured using a Single Particle Soot Photometer (SP2, DMT), and total aerosol size distributions were measured using a Scanning Mobility Particle Sizer (SMPS, TSI). The absorption coefficients of both the fresh and aged aerosol were significantly larger, and had stronger wavelength dependence than what would be expected for black carbon alone, and for a black carbon core with a non-absorbing shell. This indicates that biomass burning organic aerosol should be classified as brown carbon. A (black carbon) core - (brown carbon) shell absorption model based on Mie theory was optimized to determine the shell imaginary refractive index which produces model outputs that

  11. The SOA formation model combined with semiempirical quantum chemistry for predicting UV-Vis absorption of secondary organic aerosols.

    PubMed

    Zhong, Min; Jang, Myoseon; Oliferenko, Alexander; Pillai, Girinath G; Katritzky, Alan R

    2012-07-07

    A new model for predicting the UV-visible absorption spectra of secondary organic aerosols (SOA) has been developed. The model consists of two primary parts: a SOA formation model and a semiempirical quantum chemistry method. The mass of SOA is predicted using the PHRCSOA (Partitioning Heterogeneous Reaction Consortium Secondary Organic Aerosol) model developed by Cao and Jang [Environ. Sci. Technol., 2010, 44, 727]. The chemical composition is estimated using a combination of the kinetic model (MCM) and the PHRCSOA model. The absorption spectrum is obtained by taking the sum of the spectrum of each SOA product calculated using a semiempirical NDDO (Neglect of Diatomic Differential Overlap)-based method. SOA was generated from the photochemical reaction of toluene or α-pinene at different NO(x) levels (low NO(x): 24-26 ppm, middle NO(x): 49 ppb, high NO(x): 104-105 ppb) using a 2 m(3) indoor Teflon film chamber. The model simulation reasonably agrees with the measured absorption spectra of α-pinene SOA but underestimates toluene SOA under high and middle NO(x) conditions. The absorption spectrum of toluene SOA is moderately enhanced with increasing NO(x) concentrations, while that of α-pinene SOA is not affected. Both measured and calculated UV-visible spectra show that the light absorption of toluene SOA is much stronger than that of α-pinene SOA.

  12. Polarization control efficiency manipulation in resonance-mediated two-photon absorption by femtosecond spectral frequency modulation

    NASA Astrophysics Data System (ADS)

    Yao, Yunhua; Cheng, Wenjing; Zheng, Ye; Xu, Cheng; Liu, Pei; Jia, Tianqing; Qiu, Jianrong; Sun, Zhenrong; Zhang, Shian

    2017-04-01

    The femtosecond laser polarization modulation is considered as a very simple and efficient method to control the multi-photon absorption process. In this work, we theoretically and experimentally show that the polarization control efficiency in the resonance-mediated two-photon absorption can be artificially manipulated by modulating the femtosecond spectral frequency components. We theoretically demonstrate that the on- and near-resonant parts in the resonance-mediated two-photon absorption process depend on the different femtosecond spectral frequency components, and therefore their contributions in the whole excitation process can be controlled by properly designing the femtosecond spectral frequency components. The near-resonant two-photon absorption is correlated with the femtosecond laser polarization while the on-resonant two-photon absorption is independent of it, and thus the polarization control efficiency in the resonance-mediated two-photon absorption can be manipulated by the femtosecond spectral frequency modulation. We experimentally verify these theoretical results by performing the laser polarization control experiment in the Dy3+-doped glass sample under the modulated femtosecond spectral frequency components, and the experimental results show that the polarization control efficiency can be increased when the central spectral frequency components are cut off, while it is decreased when both the low and high spectral frequency components are cut off, which is in good agreement with the theoretical predictions. Our works can provide a feasible pathway to understand and control the resonance-mediated multi-photon absorption process under the femtosecond laser field excitation, and also may open a new opportunity to the related application areas.

  13. Nitrogen dioxide and kerosene-flame soot calibration of photoacoustic instruments for measurement of light absorption by aerosols

    SciTech Connect

    Arnott, W. Patrick; Moosmu''ller, Hans; Walker, John W.

    2000-12-01

    A nitrogen dioxide calibration method is developed to evaluate the theoretical calibration for a photoacoustic instrument used to measure light absorption by atmospheric aerosols at a laser wavelength of 532.0 nm. This method uses high concentrations of nitrogen dioxide so that both a simple extinction and the photoacoustically obtained absorption measurement may be performed simultaneously. Since Rayleigh scattering is much less than absorption for the gas, the agreement between the extinction and absorption coefficients can be used to evaluate the theoretical calibration, so that the laser gas spectra are not needed. Photoacoustic theory is developed to account for strong absorption of the laser beam power in passage through the resonator. Findings are that the photoacoustic absorption based on heat-balance theory for the instrument compares well with absorption inferred from the extinction measurement, and that both are well within values represented by published spectra of nitrogen dioxide. Photodissociation of nitrogen dioxide limits the calibration method to wavelengths longer than 398 nm. Extinction and absorption at 532 and 1047 nm were measured for kerosene-flame soot to evaluate the calibration method, and the single scattering albedo was found to be 0.31 and 0.20 at these wavelengths, respectively.

  14. SimBAL: A Spectral Synthesis Approach to Analyzing Broad Absorption Line Quasar Spectra

    NASA Astrophysics Data System (ADS)

    Terndrup, Donald M.; Leighly, Karen; Gallagher, Sarah; Richards, Gordon T.

    2017-01-01

    Broad Absorption Line quasars (BALQSOs) show blueshifted absorption lines in their rest-UV spectra, indicating powerful winds emerging from the central engine. These winds are essential part of quasars: they can carry away angular momentum and thus facilitate accretion through a disk, they can distribute chemically-enriched gas through the intergalactic medium, and they may inject kinetic energy to the host galaxy, influencing its evolution. The traditional method of analyzing BALQSO spectra involves measuring myriad absorption lines, computing the inferred ionic column densities in each feature, and comparing with the output of photonionization models. This method is inefficient and does not handle line blending well. We introduce SimBAL, a spectral synthesis fitting method for BALQSOs, which compares synthetic spectra created from photoionization model results with continuum-normalized observed spectra using Bayesian model calibration. We find that we can obtain an excellent fit to the UV to near-IR spectrum of the low-redshift BALQSO SDSS J0850+4451, including lines from diverse ionization states such as PV, CIII*, SIII, Lyalpha, NV, SiIV, CIV, MgII, and HeI*.

  15. Aerosol scattering and absorption Angström exponents as indicators of dust and dust-free days over Granada (Spain)

    NASA Astrophysics Data System (ADS)

    Valenzuela, A.; Olmo, F. J.; Lyamani, H.; Antón, M.; Titos, G.; Cazorla, A.; Alados-Arboledas, L.

    2015-03-01

    This paper focuses on the assessment of atmospheric aerosol optical properties at the surface and in atmospheric column during both desert dust and dust-free conditions over Granada, South-eastern Iberian Peninsula. Indeed, the spectral dependence of aerosol absorption and scattering properties is analyzed in detail. The analyzed period ranges from June 2008 to December 2010. On dusty days, the mean scattering Angström exponent value obtained in the atmospheric column (SAEcol) (0.5 ± 0.3) was lower than the observed at the surface level (SAEis) (1.3 ± 0.6), indicating higher contribution of coarse particles at high atmospheric level than at ground level during the analyzed dust events. In addition, it is noticed that the absorption Angström exponent in the atmospheric column (AAEcol) with mean value of 1.5 ± 0.2 and at the surface (AAEis) with mean value of 1.3 ± 0.2 obtained during dusty situations are indicative of mixture of desert dust and black carbon particles as dominant absorbers both in the atmospheric column and at the surface during dust intrusions over Granada. On the other hand, a non-parametric test (Kolmogorov-Smirnov) revealed that no significant statistical difference was found for AAEis between desert dust and free-dust conditions. This result may be due to the important contribution of urban absorbing aerosol (e.g. Black carbon) at ground level in the study location. Therefore, these parameters (AAEcol and AAEis) are not very useful to detect desert dust events without the use of other information (e.g., aerosol size) over urban area like Granada. A dust extreme event was analyzed in order to retrieve optical parameters during situation dominated by desert dust. The values of SAEcol and SAEis obtained during this extreme event were in agreement with the values showed above for the period 2008-2010, although the differences between dust-free and dust conditions are more noticeable in this special event.

  16. Theoretical Basis for the Surface Spectral Reflectance Relationships Used in the MODIS Aerosol Algorithm

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Gobron, Nadine; Pinty, Bernard; Widlowski, Jean-Luc; Verstraete, Michel M.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The analysis of data from the MODIS instrument on the Terra platform to derive global distribution of aerosols assumes a set of relationships between the blue, rho (sub blue), the red, rho (sub red), and 2.1 micrometers, rho (sub 2.1), spectral channels. These relations have been established from a series of measurements indicating that rho (sub blue) approximately 0.5 rho (sub red) approximately 0.25 rho (sub 2.1). Here we use a model to describe the transfer of radiation through a vegetation canopy composed of randomly oriented leaves to assess the theoretical foundations for these relationships. The influence of varying fractional vegetation coverage is simulated simply as a linear combination of pure soil and pure vegetation conditions, also known as Independent Pixel Approximation (IPA). Calculations for a wide range of leaf area indices and vegetation fractions show that rho (sub blue) is consistently about 1/4 of rho (sub 2.1) as used by MODIS for the whole range of analyzed cases, except for very dark soils, such as those found in burn scars. For its part, the ratio rho (sub red)/rho (sub 2.1) varies from less than the empirically derived value of 1/2 for dense and dark vegetation (rho (sub 2.1) less than 0.1), to more than 1/2 for bright mixture of soil and vegetation. This is in agreement with measurements over uniform dense vegetation, but not with measurements over mixed dark scenes. In the later case, the discrepancy is probably mitigated by shadows due to uneven canopy and terrain on a large scale. It is concluded that the value of this ratio should ideally be made dependent on the land cover type in the operational processing of MODIS data, especially over dense forests.

  17. Characterization of bottom ice algal and detrital spectral absorption properties in first-year sea ice of an Arctic polynya

    NASA Astrophysics Data System (ADS)

    Mundy, C.; Gosselin, M.; Nozais, C.; Simard, M.

    2009-12-01

    Little information exists on the spectral absorption properties of algal and detrital matter in sea ice. During the International North Water polynya study, we collected a large dataset on ice algal spectral absorption characteristics within the bottom 2 to 4 cm of first-year sea ice from April to June 1998. The data compared surprisingly well with select phytoplankton models, given that the models were extrapolated well beyond their limits to ice algal chlorophyll a (Chl a) concentrations that ranged up to 2000 mg m-3. However, a strong packaging effect was apparent at Chl a concentrations >500 mg m-3, which tended to decrease the Chl a specific algal absorption coefficient relative to model predictions. Diatoms dominated the ice algae community for most of the period and subsequently, controlled absorption characteristics. Although not conclusive, an outlier dominated by nanoflagellates did show an increase in the Chl a specific algal absorption coefficient, demonstrating the decrease in packaging effect associated with the smaller cell size. Seasonal progression in ice algal spectral absorption revealed a change in pigment composition from strong absorption >500 nm, indicative of photosynthetic accessory pigments, to strong absorption between 450 nm to 500 nm, indicative of photoprotective pigments. Furthermore, the ratio of phytoplankton absorption at 490:470 nm regressed significantly with time (positive) and ice thickness (negative) throughout the study period, suggesting a continual photoacclimation of the ice algal community to increasing transmitted irradiance. The results of our study show that measurements of ice algal spectral absorption properties will not only improve their parameterization in sea ice bio-optical models, but can provide information on both taxonomic composition and physiological state.

  18. Spectral characterisation of mineralogical components of dust, HULIS and winter time aerosol using multi-wavelength photoacoustic spectrometer. A laboratory and a field study

    NASA Astrophysics Data System (ADS)

    Ajtai, Tibor; Utry, Noémi; Filep, Ágnes; Tátrai, Dávid; Bozóki, Zoltán; Szabó, Gábor

    2013-04-01

    Aerosol can interact with solar radiation via scattering and absorption. The back scattering fraction of incoming solar irradiation has cooling effect, while the forward scattering redistributes electromagnetic energy into the atmosphere. The photon energy transformed into thermal energy via the light absorption, therefore the absorption process heating absorbing particles and also their surroundings While scattering can be measured fairly accurately, the assessment of the radiative effect of light absorption by aerosol can only be determined with limited accuracy, in part, because of the lack of reliable instrument for absorption measurement. The photoacoustic (PA) spectroscopy is the only method that can measure light absorption by aerosol in-situ (without sampling artifacts) with high sensitivity and temporal resolution, but not widespread in its application yet. Recently, multi-wavelength photoacoustic instruments including excitation at UVs have become available and open up a new perspective on in-situ investigation of light absorption by aerosol as well as its wavelength dependency. In this study we present novel results of an in-situ study of aerosol light absorption measurement of re-dispersed mineralogical composition of dust such as illit, caolinite, quartz, rutile, limestone, hematite and HULIS aerosols using state-of-the-art multi-wavelength photoacoustic instrument (4λ-PAS). We experimentally demonstrated that the absorption feature of MAC (mass specific aerosol absorption) could be used as chemically selective parameter. We also demonstrated the results of an in-situ winter time ambient aerosol measurement. The hourly concentration of trace elements(i.e. K, Ca, Fe, and Si), gaseous pollutants (CO and NOx), as well as the size distribution of ambient aerosol were also analyzed during the measurement campaign. The levoglucosan measurement was made to confirm that the daily fluctuation of ambient AAE (absorption Angstrom Exponent) governed by the

  19. Development of a sensitive long path absorption photometer to quantify peroxides in aerosol particles (Peroxide-LOPAP)

    NASA Astrophysics Data System (ADS)

    Mertes, P.; Pfaffenberger, L.; Dommen, J.; Kalberer, M.; Baltensperger, U.

    2012-10-01

    A new off-line instrument to quantify peroxides in aerosol particles using iodometry in long path absorption spectroscopy has been developed and is called peroxide long path absorption photometer (Peroxide-LOPAP). The new analytical setup features important technical innovations compared to hitherto published iodometric peroxide measurements. Firstly, the extraction, chemical conversion and measurement of the aerosol samples are performed in a closed oxygen-free (~ 1 ppb) environment. Secondly, a 50-cm optical detection cell is used for an increased photometric sensitivity. The limit of detection was 0.1 μM peroxide in solution or 0.25 nmol m-3 with respect to an aerosol sample volume of 1 m3. The test reaction was done at a constant elevated temperature of 40 °C and the reaction time was 60 min. Calibration experiments showed that the test reaction with all reactive peroxides, i.e. hydrogen peroxide (H2O2), peracids and peroxides with vicinal carbonyl groups (e.g. lauroyl peroxide) goes to completion and their sensitivity (slope of calibration curve) varies by only ±5%. However, very inert peroxides have a lower sensitivity. For example, tert-butyl hydroperoxide shows only 37% sensitivity compared to H2O2 after 1 h. A kinetic study revealed that even after 5 h only 85% of this inert compound had reacted. The time trends of the peroxide content in secondary organic aerosol (SOA) from the ozonolysis and photo-oxidation of α-pinene in smog chamber experiments were measured. The highest mass fraction of peroxides with 34% (assuming a molecular weight of 300 g mol-1) was found in freshly generated SOA from α-pinene ozonolysis. Mass fractions decreased with increasing NO levels in the photo-oxidation experiments. A decrease of the peroxide content was also observed with aging of the aerosol, indicating a decomposition of peroxides in the particles.

  20. Atmospheric-water absorption features near 2.2 micrometers and their importance in high spectral resolution remote sensing

    NASA Technical Reports Server (NTRS)

    Kruse, F. A.; Clark, R. N.

    1986-01-01

    Selective absorption of electromagnetic radiation by atmospheric gases and water vapor is an accepted fact in terrestrial remote sensing. Until recently, only a general knowledge of atmospheric effects was required for analysis of remote sensing data; however, with the advent of high spectral resolution imaging devices, detailed knowledge of atmospheric absorption bands has become increasingly important for accurate analysis. Detailed study of high spectral resolution aircraft data at the U.S. Geological Survey has disclosed narrow absorption features centered at approximately 2.17 and 2.20 micrometers not caused by surface mineralogy. Published atmospheric transmission spectra and atmospheric spectra derived using the LOWTRAN-5 computer model indicate that these absorption features are probably water vapor. Spectral modeling indicates that the effects of atmospheric absorption in this region are most pronounced in spectrally flat materials with only weak absorption bands. Without correction and detailed knowledge of the atmospheric effects, accurate mapping of surface mineralogy (particularly at low mineral concentrations) is not possible.

  1. Synergistic angular and spectral estimation of aerosol properties using CHRIS/PROBA-1 and simulated Sentinel-3~data

    NASA Astrophysics Data System (ADS)

    Davies, W. H.; North, P. R. J.

    2014-06-01

    A method has been developed to estimate Aerosol Optical Depth (AOD), Fine Mode Fraction (FMF) and Single Scattering Albedo (SSA) over land surfaces using simulated Sentinel-3 data. The method uses inversion of a coupled surface/atmosphere radiative transfer model, and includes a general physical model of angular surface reflectance. An iterative process is used to determine the optimum value of the aerosol properties providing the best fit of the corrected reflectance values for a number of view angles and wavelengths with those provided by the physical model. A method of estimating AOD using only angular retrieval has previously been demonstrated on data from the ENVISAT and PROBA-1 satellite instruments, and is extended here to the synergistic spectral and angular sampling of Sentinel-3 and the additional aerosol properties. The method is tested using hyperspectral, multi-angle Compact High Resolution Imaging Spectrometer (CHRIS) images. The values obtained from these CHRIS observations are validated using ground based sun-photometer measurements. Results from 22 image sets using the synergistic retrieval and improved aerosol models show an RMSE of 0.06 in AOD, reduced to 0.03 over vegetated targets.

  2. Global detection of absorbing aerosols over the ocean in the red and near-infrared spectral region

    NASA Astrophysics Data System (ADS)

    Waquet, F.; Péré, J.-C.; Peers, F.; Goloub, P.; Ducos, F.; Thieuleux, F.; Tanré, D.

    2016-09-01

    The spatial and temporal variability of the aerosol single scattering albedo (SSA at 865 nm) has been estimated over clear-sky ocean for 2006 by using measurements acquired by POLDER (Polarization and Directionality of Earth Reflectances). Our estimates are correlated with Sun photometer retrievals (R = 0.63). Differences in SSA are generally around 0.05 and systematically fall below 0.055 for optical thicknesses ≥0.3 (at 865 nm) and modeling errors ≤3.0%. Fine absorbing aerosols (radius ≤ 0.16 μm) are detected in many coastal regions. The lowest SSAs are retrieved over the southeast Atlantic during summer (0.80), whereas nonabsorbing fine particles (≥0.98) are observed over the North Pacific. During winter, fine absorbing aerosols are detected together with mineral dust near the coasts of western Africa (0.90), over the tropical Atlantic (0.88), and around India (0.88). Long-range transport of absorbing species is also detected, as for instance over the Arctic. This study could help to constrain aerosol absorption and radiative forcing in models.

  3. Numerical calculations of spectral turnover and synchrotron self-absorption in CSS and GPS radio sources

    NASA Astrophysics Data System (ADS)

    Jeyakumar, S.

    2016-06-01

    The dependence of the turnover frequency on the linear size is presented for a sample of Giga-hertz Peaked Spectrum and Compact Steep Spectrum radio sources derived from complete samples. The dependence of the luminosity of the emission at the peak frequency with the linear size and the peak frequency is also presented for the galaxies in the sample. The luminosity of the smaller sources evolve strongly with the linear size. Optical depth effects have been included to the 3D model for the radio source of Kaiser to study the spectral turnover. Using this model, the observed trend can be explained by synchrotron self-absorption. The observed trend in the peak-frequency-linear-size plane is not affected by the luminosity evolution of the sources.

  4. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2012-06-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.

  5. Infrared differential-absorption Mueller matrix spectroscopy and neural network-based data fusion for biological aerosol standoff detection.

    PubMed

    Carrieri, Arthur H; Copper, Jack; Owens, David J; Roese, Erik S; Bottiger, Jerold R; Everly, Robert D; Hung, Kevin C

    2010-01-20

    An active spectrophotopolarimeter sensor and support system were developed for a military/civilian defense feasibility study concerning the identification and standoff detection of biological aerosols. Plumes of warfare agent surrogates gamma-irradiated Bacillus subtilis and chicken egg white albumen (analytes), Arizona road dust (terrestrial interferent), water mist (atmospheric interferent), and talcum powders (experiment controls) were dispersed inside windowless chambers and interrogated by multiple CO(2) laser beams spanning 9.1-12.0 microm wavelengths (lambda). Molecular vibration and vibration-rotation activities by the subject analyte are fundamentally strong within this "fingerprint" middle infrared spectral region. Distinct polarization-modulations of incident irradiance and backscatter radiance of tuned beams generate the Mueller matrix (M) of subject aerosol. Strings of all 15 normalized elements {M(ij)(lambda)/M(11)(lambda)}, which completely describe physical and geometric attributes of the aerosol particles, are input fields for training hybrid Kohonen self-organizing map feed-forward artificial neural networks (ANNs). The properly trained and validated ANN model performs pattern recognition and type-classification tasks via internal mappings. A typical ANN that mathematically clusters analyte, interferent, and control aerosols with nil overlap of species is illustrated, including sensitivity analysis of performance.

  6. Aerosol Profile Retrievals from Integrated Dual Wavelengths Space Lidar ESSP3-CENA and Spectral Radiance MODIS Data

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram; Mattoo, Shana; Tanre, Didier; Kleidman, Richard; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The ESSP3-CENA space mission (formally PICASSO-CENA) will provide continues global observations with a two wavelength lidar. The attenuated backscattering coefficients measured by the lidar, have valuable information about the vertical distribution of aerosol particles and their sizes. However the information cannot be mapped into unique aerosol physical properties. Infinite number of physical solutions with different attenuations through the atmosphere can reconstruct the same two wavelength backscattered profile measured from space. Spectral radiance measured by MODIS simultaneously with the ESSP3 data can constrain the problem and resolve this ambiguity to a large extent. Sensitivity study shows that inversion of the integrated MODIS+ESSP3 data can derive the vertical profiles of the fine and coarse modes mixed in the same atmospheric column in the presence of moderate calibration uncertainties and electronic noise (approx. 10%). We shall present the sensitivity study and results from application of the technique to measurements in the SAFARI-2000 and SHADE experiments.

  7. Spectral fluorescence signature techniques and absorption measurements for continuous monitoring of biofuel-producing microalgae cultures

    NASA Astrophysics Data System (ADS)

    Martín de la Cruz, M. C.; Gonzalez Vilas, L.; Yarovenko, N.; Spyrakos, E.; Torres Palenzuela, J. M.

    2013-08-01

    Biofuel production from microalgae can be both sustainable and economically viable. Particularly in the case of algal growth in wastewater an extra benefit is the removal or biotransformation of pollutants from these types of waters. A continuous monitoring system of the microalgae status and the concentration of different wastewater contaminants could be of great help in the biomass production and the water characterisation. In this study we present a system where spectral fluorescence signature (SFS) techniques are used along with absorption measurements to monitor microalgae cultures in wastewater and other mediums. This system aims to optimise the microalgae production for biofuel applications or other uses and was developed and tested in prototype indoor photo-bioreactors at the University of Vigo. SFS techniques were applied using the fluorescence analyser INSTAND-SCREENER developed by Laser Diagnostic Instruments AS. INSTAND-SCREENER permits wavelength scanning in two modes, one in UV and another in VIS. In parallel, it permits the on-line monitoring and rapid analysis of both water quality and phytoplankton status without prior treatment of the sample. Considering that different contaminants and microalgae features (density, status etc.) have different spectral signatures of fluorescence and absorption properties, it is possible to characterise them developing classification libraries. Several algorithms were used for the classification. The implementation of this system in an outdoor raceway reactor in a Spanish wastewater treatment plant is also discussed. This study was part of the Project EnerBioAlgae (http://www.enerbioalgae.com/), which was funded by the Interreg SUDOE and led by the University of Vigo.

  8. Sources and light absorption of water-soluble brown carbon aerosols in the outflow from northern China

    NASA Astrophysics Data System (ADS)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2013-07-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over 1 billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble brown carbon (WS-BrC) and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual-carbon-isotope with light absorption measurements of WS-BrC for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from N. China. The mass absorption cross-section (MAC) of WS-BrC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). We estimate that this effect corresponds to 13-49% of the radiative forcing caused by light absorption by black carbon. Radiocarbon constraints show that the WS-BrC in Chinese outflow had significantly higher amounts of fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements indicated influence of aging during air mass transport. These results indicate the importance of incorporating WS-BrC in climate models and the need to constrain climate effects by emission source sector.

  9. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing.

    PubMed

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-26

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match.

  10. Spectral Similarity Assessment Based on a Spectrum Reflectance-Absorption Index and Simplified Curve Patterns for Hyperspectral Remote Sensing

    PubMed Central

    Ma, Dan; Liu, Jun; Huang, Junyi; Li, Huali; Liu, Ping; Chen, Huijuan; Qian, Jing

    2016-01-01

    Hyperspectral images possess properties such as rich spectral information, narrow bandwidth, and large numbers of bands. Finding effective methods to retrieve land features from an image by using similarity assessment indices with specific spectral characteristics is an important research question. This paper reports a novel hyperspectral image similarity assessment index based on spectral curve patterns and a reflection-absorption index. First, some spectral reflection-absorption features are extracted to restrict the subsequent curve simplification. Then, the improved Douglas-Peucker algorithm is employed to simplify all spectral curves without setting the thresholds. Finally, the simplified curves with the feature points are matched, and the similarities among the spectral curves are calculated using the matched points. The Airborne Visible Infrared Imaging Spectrometer (AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS) hyperspectral image datasets are then selected to test the effect of the proposed index. The practical experiments indicate that the proposed index can achieve higher precision and fewer points than the traditional spectral information divergence and spectral angle match. PMID:26821030

  11. Molar absorptivity (ε) and spectral characteristics of cyanidin-based anthocyanins from red cabbage.

    PubMed

    Ahmadiani, Neda; Robbins, Rebecca J; Collins, Thomas M; Giusti, M Monica

    2016-04-15

    Red cabbage extract contains mono and di-acylated cyanidin (Cy) anthocyanins and is often used as food colorants. Our objectives were to determine the molar absorptivity (ε) of different red cabbage Cy-derivatives and to evaluate their spectral behaviors in acidified methanol (MeOH) and buffers pH 1-9. Major red cabbage anthocyanins were isolated using a semi-preparatory HPLC, dried and weighed. Pigments were dissolved in MeOH and diluted with either MeOH (0.1% HCl) or buffers to obtain final concentrations between 5×10(-5) and 1×10(-3) mol/L. Spectra were recorded and ε calculated using Lambert-Beer's law. The ε in acidified MeOH and buffer pH 1 ranged between ~16,000-30,000 and ~13,000-26,000 L/mol cm, respectively. Most pigments showed higher ε in pH 8 than pH 2, and lowest ε between pH 4 and 6. There were bathochromic shifts (81-105 nm) from pH 1 to 8 and hypsochromic shifts from pH 8 to 9 (2-19 nm). Anthocyanins molecular structures and the media were important variables which greatly influenced their ε and spectral behaviors.

  12. Experimental investigation of X-ray spectral absorption coefficients in heated Al and Ge on the Iskra-5 laser facility

    SciTech Connect

    Bondarenko, S V; Garanin, Sergey G; Zhidkov, N V; Pinegin, A V; Suslov, N A

    2012-01-31

    We set forth the data of experimental investigation of X-ray spectral absorption coefficients in the 1.1 - 1.6 keV photon energy range for Al and Ge specimens bulk heated by soft X-ray radiation. Two experimental techniques are described: with the use of one facility channel and the heating of specimens by the X-ray radiation from a plane burnthrough target, as well as with the use of four channels and the heating by the radiation from two cylindrical targets with internal input of laser radiation. The X-ray radiation absorption coefficients were studied by way of transmission absorption spectroscopy using backlighting X-ray radiation from a point source. The results of investigation of X-ray spectral absorption coefficients on the 1s - 2p transitions in Al atoms and the 2p - 3d transitions in Ge atoms are presented.

  13. Temperature dependence of aggregated structure of β-carotene by absorption spectral experiment and simulation

    NASA Astrophysics Data System (ADS)

    Lu, Liping; Wu, Jie; Wei, Liangshu; Wu, Fang

    2016-12-01

    β-carotene can self-assemble to form J- or H-type aggregate in hydrophilic environments, which is crucial for the proper functioning of biological system. Although several ways controlling the formation of the two types of aggregate in hydrated ethanol have been investigated in recent years, our study provided another way to control whether J- or H- β-carotene was formed and presented a method to investigate the aggregated structure. For this purpose, the aggregates of β-carotene formed at different temperatures were studied by UV-Vis spectra and a computational method based on Frenkel exciton was applied to simulate the absorption spectra to obtain the aggregated structure of the β-carotene. The analysis showed that β-carotene formed weakly coupled H-aggregate at 15 °C in 1:1 ethanol-water solvent, and with the increase of temperature it tended to form J-type of aggregate. The absorption spectral simulation based on one-dimensional Frenkel exciton model revealed that good fit with the experiment was obtained with distance between neighbor molecules r = 0.82 nm, disorder of the system D = 1500 cm- 1 for H-type and r = 1.04 nm, D = 1800 cm- 1 for J-type.

  14. [Application in methane extraction of fiber methane monitoring system based on spectral absorption].

    PubMed

    Zhao, Yan-jie; Wang, Chang; Liu, Tong-yu; Wang, Zhe; Wei, Yu-bin; Li, Yan-fang; Shang, Ying; Wang, Qian

    2010-10-01

    An optical fiber distributed multi-point methane real-time monitoring system based on the methane spectral absorption characteristic is researched, and it's application in methane extraction is presented. An 1665 nm distributed feedback (DFB) laser is used as the light source by taking the triangular signal to modulate the light frequency of the DFB laser. Using the combination of single-chip computer C8051F410, A/D transform circuit, communication circuit, display circuit, etc, the concentration of methane can be monitored and displayed on the screen. And the function of sounding the alarm bell and communication are achieved. The laser wavelength shift is carried out with adaptive adjustment by the built-in gas calibration pond so as to realize the locking of a methane absorption line. Several field tests have been founded at home and abroad. The results show that the system has good performance in stability and sensitivity. The distributed multi-point methane concentration monitoring is realized in the range of 0%-100%. A sensitivity of ppm order of magnitude has been achieved. It possesses of wide application in methane extraction.

  15. Aerosol Light Absorption and Scattering at Four Sites in and Near Mexico City: Comparison with Las Vegas, Nevada, USA

    NASA Astrophysics Data System (ADS)

    Arnott, W. P.; Miranda, G. P.; Gaffney, J. S.; Marley, N. A.

    2007-05-01

    Four photoacoustic spectrometers (PAS) for aerosol light scattering and absorption measurements were deployed in and near Mexico City in March 2006 as part of the Megacity Impacts on Regional and Global Environments (MIRAGE). The four sites included: an urban site at Instituto Mexicano del Petroleo (Mexican Oil Institute, denoted by IMP); a suburban site at the Technological University of Tecamac; a rural site at "La Biznaga" ranch; and a site at the Paseo de Cortes (altitude 3,810 meters ASL) in the rural area above Amecameca in the State of Mexico, on the saddle between the volcanoes Popocatepetl and Iztaccihuatl. A similar campaign was held in Las Vegas, Nevada, USA in January-February, 2003. The IMP site gave in-situ characterization of the Mexico City plume under favorable wind conditions while the other sites provided characterization of the plume, mixed in with any local sources. The second and third sites are north of Mexico City, and the fourth site is south. The PAS used at IMP operates at 532 nm, and conveniently allowed for characterization of gaseous absorption at this wavelength as well. Instruments at the second and third sites operate at 870 nm, and the one at the fourth site at 780 nm. Light scattering measurements are accomplished within the PAS by the reciprocal nephelometery method. In the urban site the aerosol absorption coefficient typically varies between 20 and 180 Mm-1 during the course of the day and significant diurnal variation of the aerosol single scattering albedo was observed probably as a consequence of secondary aerosol formation. Comparisons with TSI nephelometer scattering at the T0 site will be presented. We will present the diurnal variation of the scattering and absorption as well as the single scattering albedo and fraction of absorption due to gases at the IMP site and compare with Las Vegas diurnal variation. Mexico City 'breaths' more during the course of the day than Las Vegas, Nevada in part because the latitude of

  16. A new method to retrieve spectral absorption coefficient of highly-scattering and weakly-absorbing materials

    NASA Astrophysics Data System (ADS)

    Dombrovsky, Leonid A.

    2016-03-01

    A significant uncertainty in the absorption coefficient of highly scattering dispersed materials is typical in the spectral ranges of very weak absorption. The traditional way to identify the main absorption and scattering characteristics of semi-transparent materials is based on spectral measurements of normal-hemispherical reflectance and transmittance for the material sample. Unfortunately this way cannot be used in the case of in vivo measurements of optical properties of biological tissues. A method suggested in the present paper is based on thermal response to the periodic radiative heating of the open surface of a semi-transparent material. It is shown that the period of a variation of the surface temperature is sensitive to the value of an average absorption coefficient in the surface layer. As a result, the monochromatic external irradiation combined with the surface temperature measurements can be used to retrieve the spectral values of absorption coefficient. Possible application of this method to porous semi-transparent ceramics is considered. An example problem is also solved to illustrate the applicability of this method to human skin. The approach suggested enables one to estimate an average absorption coefficient of human skin of a patient just before the thermal processing.

  17. Titan's Aerosol and Stratospheric Ice Opacities Between 18 and 500 Micrometers: Vertical and Spectral Characteristics from Cassini CIRS

    NASA Technical Reports Server (NTRS)

    Anderson, Carrie M.; Samuelson, Robert E.

    2011-01-01

    Vertical distributions and spectral characteristics of Titan's photochemical aerosol and stratospheric ices are determined between 20 and 560 per centimeter (500-18 micrometers) from the Cassini Composite Infrared Spectrometer (CIRS). Results are obtained for latitudes of 15 N, 15 S, and 58 S, where accurate temperature profiles can be independently determined. In addition, estimates of aerosol and ice abundances at 62 N relative to those at 15 S are derived. Aerosol abundances are comparable at the two latitudes, but stratospheric ices are approximately 3 times more abundant at 62 N than at 15 S. Generally, nitrile ice clouds (probably HCN and HC3N), as inferred from a composite emission feature at approximately 160 per centimeter, appear to be located over a narrow altitude range in the stratosphere centered at approximately 90 km. Although most abundant at high northern latitudes, these nitrile ice clouds extend down through low latitudes and into mid southern latitudes, at least as far as 58 S. There is some evidence of a second ice cloud layer at approximately 60 km altitude at 58 S associated with an emission feature at approximately 80 per centimeter. We speculate that the identify of this cloud may be due to C2H6 ice, which in the vapor phase is the most abundant hydrocarbon (next to CH4) in the stratosphere of Titan. Unlike the highly restricted range of altitudes (50-100 km) associated with organic condensate clouds, Titan's photochemical aerosol appears to be well-mixed from the surface to the top of the stratosphere near an altitude of 300 km, and the spectral shape does not appear to change between 15 N and 58 S latitude. The ratio of aerosol-to-gas scale heights range from 1.3-2.4 at about 160 km to 1.1-1.4 at 300 km, although there is considerable variability with latitude, The aerosol exhibits a very broad emission feature peaking at approximately 140 per centimeter. Due to its extreme breadth and low wavenumber, we speculate that this feature may

  18. Field calibration of multi-scattering correction factor for aethalometer aerosol absorption coefficient during CAPMEX Campaign, 2008

    NASA Astrophysics Data System (ADS)

    Kim, J. H.; Kim, S. W.; Yoon, S. C.; Park, R.; Ogren, J. A.

    2014-12-01

    Filter-based instrument, such as aethalometer, is being widely used to measure equivalent black carbon(EBC) mass concentration and aerosol absorption coefficient(AAC). However, many other previous studies have poited that AAC and its aerosol absorption angstrom exponent(AAE) are strongly affected by the multi-scattering correction factor(C) when we retrieve AAC from aethalometer EBC mass concentration measurement(Weingartner et al., 2003; Arnott et al., 2005; Schmid et al., 2006; Coen et al., 2010). We determined the C value using the method given in Weingartner et al. (2003) by comparing 7-wavelngth aethalometer (AE-31, Magee sci.) to 3-wavelength Photo-Acoustic Soot Spectrometer (PASS-3, DMT) at Gosan climate observatory, Korea(GCO) during Cheju ABC plume-asian monsoon experiment(CAPMEX) campaign(August and September, 2008). In this study, C was estimated to be 4.04 ± 1.68 at 532 nm and AAC retrieved with this value was decreased as approximately 100% as than that retrieved with soot case value from Weingartner et al (2003). We compared the AAC determined from aethalomter measurements to that from collocated Continuous Light Absorption Photometer (CLAP) measurements from January 2012 to December 2013 at GCO and found good agreement in both AAC and AAE. This result suggests the determination of site-specific C is crucially needed when we calculate AAC from aethalometer measurements.

  19. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering

    NASA Astrophysics Data System (ADS)

    Zhang, Jianfa; Zhu, Zhihong; Liu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-08-01

    Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the use of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding medium including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of photodetectors with high efficiency and tunable spectral selectivity in the mid-infrared and THz ranges.Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the use of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding medium including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of photodetectors with high efficiency and tunable spectral selectivity in the mid-infrared and THz ranges. Electronic supplementary information (ESI) available: Spectral tuning of absorption by changing the diameter of graphene nanodisks. Perfect light absorption in the whole structure and further enhancement of absorption in the underlying absorptive layer with a back mirror. Light trapping and enhancement of

  20. Spectral absorption properties of colored dissolved organic matter (CDOM) and total suspended matter (TSM) of inland waters

    NASA Astrophysics Data System (ADS)

    Song, Kaishan; Liu, Dianwei; Li, Lin; Wang, Zongming; Wang, Yuandong; Jiang, Guangjia

    2010-08-01

    Spectral absorption properties of total suspended matter (TSM) and colored dissolved organic matter (CDOM) are important for the use of the bio-optical model to estimate water quality parameters. This study aims to investigate the variation in the absorption coefficients of TSM and CDOM of inland waters. A total of 92 water samples were collected from Shitoukoumen Reservoir and Songhua Lake in Northeast China, analyzed for TSM and Chl-a, and measured for the absorption coefficient of TSM, CDOM and total pigments using a laboratory spectrophotometer. The absorption coefficient of TSM has been decomposed for phytoplankton and inorganic sediments. The results show that for Shitoukoumen Reservoir, CDOM has strong absorptions with shallow absorption slopes (i.e., the coefficient S in a(λ)=a(λ0)exp[-S(λ- λ0)]) and large absorption at 355 nm; and for Songhua Lake, CDOM follows similar spectral absorption curves but less variation in the S value. The results also show TSM has the average absorption coefficient 5.7 m-1 at 440 nm and 0.93 m-1 at 675 nm, and their concentration is well correlated to TSM with R2 larger than 0.85 at 440 nm over both Songhu Lake and Shitoukoumen Reservoir. In summer, CDOM was mainly terrigenous and had a high proportion of humic acid derived from the decomposition of phytoplankton and there were no obvious difference of S value. The results indicate that inorganic sediments contributed much more absorption than phytoplankton pigments in Shitoukoumen Reservoir than that in Songhua Lake, and there is strong association of TSM concentration to absorption coefficient at 440 nm.

  1. Study on the Relationship between the Depth of Spectral Absorption and the Content of the Mineral Composition of Biotite.

    PubMed

    Yang, Chang-bao; Zhang, Chen-xi; Liu, Fang; Jiang, Qi-gang

    2015-09-01

    The mineral composition of rock is one of the main factors affecting the spectral reflectance characteristics, and it's an important reason for generating various rock characteristic spectra. This study choose the rock samples provided by Jet Propulsion Laboratory (JPL) (including all kinds of mineral percentage of rocks, and spectral reflectances range from 0.35 to 2.50 μm wavelength measured by ASD spectrometer), and the various types of mineral spectral reflectances contained within the rocks are the essential data. Using the spectral linear mixture model of rocks and their minerals, firstly, a simulation study on the mixture of rock and mineral composition is achieved, the experimental results indicate that rock spectral curves using the model which based on the theory of the linear mixture are able to simulate better and preserve the absorption characteristics of various mineral components well. Then, 8 samples which contain biotite mineral are picked from the rock spectra of igneous, biotite contents and the absorption depth characteristics of spectral reflection at 2.332 μm, furthermore, a variety of linear and nonlinear normal statistical models are used to fit the relationship between the depth of absorption spectra and the content of the mineral composition of biotite, finally, a new simulation model is build up with the Growth and the Exponential curve model, and a statistical response relationship between the spectral absorption depth and the rock mineral contents is simulated by using the new model, the fitting results show that the correlation coefficient reaches 0.9984 and the standard deviation is 0.572, although the standard deviation using Growth and Exponential model is less than the two model combined with the new model fitting the standard deviation, the correlation coefficient of the new model had significantly increased, which suggesting that the, new model fitting effect is closer to the measured values of samples, it proves that the

  2. Comparison of experimental and modeled absorption enhancement by black carbon (BC) cored polydisperse aerosols under hygroscopic conditions.

    PubMed

    Shamjad, P M; Tripathi, S N; Aggarwal, S G; Mishra, S K; Joshi, Manish; Khan, Arshad; Sapra, B K; Ram, Kirpa

    2012-08-07

    The quantification of the radiative impacts of light absorbing ambient black carbon (BC) particles strongly depends on accurate measurements of BC mass concentration and absorption coefficient (β(abs)). In this study, an experiment has been conducted to quantify the influence of hygroscopic growth of ambient particles on light absorption. Using the hygroscopic growth factor (i.e., Zdanovskii-Stokes-Robinson (ZSR) approach), a model has been developed to predict the chemical composition of particles based on measurements, and the absorption and scattering coefficients are derived using a core-shell assumption with light extinction estimates based on Mie theory. The estimated optical properties agree within 7% for absorption coefficient and 30% for scattering coefficient with that of measured values. The enhancement of absorption is found to vary according to the thickness of the shell and BC mass, with a maximum of 2.3 for a shell thickness of 18 nm for the particles. The findings of this study underline the importance of considering aerosol-mixing states while calculating their radiative forcing.

  3. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    NASA Astrophysics Data System (ADS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ≫1 and |m-1|≪1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  4. Generation and UV-VIS-NIR spectral responses of organo-mineral aerosol for modelling soil derived dust

    NASA Astrophysics Data System (ADS)

    Utry, N.; Ajtai, T.; Pintér, M.; Illés, E.; Tombácz, E.; Szabó, G.; Bozóki, Z.

    2017-03-01

    Various optical properties of laboratory constructed clay minerals coated by humic acid were determined in this study. For the preparation of organo-clay complexes, an adsorption method was conducted in Ca2+ dominated aquaeous solutions, which provides the opportunity to generate solely internally mixed aerosol particles with complete surface covering. The wavelength dependent optical absorption and scattering coefficients of the syntetised organo-clay complexes and the single clay components were measured in-situ in aerosol phase, using multi-wavelength photoacoustic and scattering instruments. Other climate relevant optical properties such as mass absorption and scattering coefficients, absorption enhancement factor, the imaginary part of complex refractive index, single scattering albedo and coating thickness were also deduced from the measured data. The estimated thickness of humic acid coating was about 10-20 nm. Even such relatively thin shell substantially enhanced the measured absorption of the clay particles with an enhancement factor of about 3-7 in the visible-near ultraviolet range, while caused smaller changes in the mass scattering values. As a cumulative effect, the coating decreased the single scattering albedo of the clay particles; from 0.99 ± 0.04 to 0.93 ± 0.04 in case of illite and from 0.99 ± 0.04 to 0.90 ± 0.03 in case of kaolin at 525 nm. The HA coating slightly modified the shape, the particles became less excentric. We presented a new method capable of generating solely internally mixed particles. Applying this method we experimentally demonstrated the strong effect of a light absorbing coating on the optical properties of dust particle.

  5. [Gastric cancer detection using kubelka-Munk spectral function of DNA and protein absorption bands].

    PubMed

    Li, Lan-quan; Wei, Hua-jiang; Guo, Zhou-yi; Yang, Hong-qin; Xie, Shu-sen; Chen, Xue-mei; Li, Li-bo; He, Bol-hua; Wu, Guo-yong; Lu, Jian-jun

    2009-09-01

    Differential diagnosis for epithelial tissues of normal human gastric, undifferentiation gastric adenocarcinoma, gastric squamous cell carcinomas, and poorly differentiated gastric adenocarcinoma were studied using the Kubelka-Munk spectral function of the DNA and protein absorption bands at 260 and 280 nm in vitro. Diffuse reflectance spectra of tissue were measured using a spectrophotometer with an integrating sphere attachment. The results of measurement showed that for the spectral range from 250 to 650 nm, pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the DNA absorption bands at 260 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 68.5% (p < 0.05), 146.5% (p < 0.05), 282.4% (p < 0.05), 32.4% (p < 0.05), 56.00 (p < 0.05) and 83.0% (p < 0.05) respectively. And pathological changes of gastric epithelial tissues induced that there were significant differences in the averaged value of the Kubelka-Munk function f(r infinity) and logarithmic Kubelka-Munk function log[f(r infinity)] of the protein absorption bands at 280 nm between epithelial tissues of normal human stomach and human undifferentiation gastric cancer, between epithelial tissues of normal human stomach and human gastric squamous cell carcinomas, and between epithelial tissues of normal human stomach and human poorly differentiated cancer. Their differences were 86.8% (p < 0.05), 262.9% (p < 0.05), 660.1% (p < 0.05) and 34% (p < 0.05), 72. 2% (p < 0.05), 113.5% (p < 0.05) respectively. And pathological changes of gastric epithelial tissues induced that there were

  6. Airborne measurements of spectral direct aerosol radiative forcing in the Intercontinental chemical Transport Experiment/Intercontinental Transport and Chemical Transformation of anthropogenic pollution, 2004

    NASA Astrophysics Data System (ADS)

    Redemann, Jens; Pilewskie, Peter; Russell, Philip B.; Livingston, John M.; Howard, Steve; Schmid, Beat; Pommier, John; Gore, Warren; Eilers, James; Wendisch, Manfred

    2006-07-01

    As part of the INTEX-NA (Intercontinental chemical Transport Experiment-North America) and ITCT (Intercontinental Transport and Chemical Transformation of anthropogenic pollution) field studies, the NASA Ames 14-channel Airborne Tracking Sunphotometer (AATS-14) and a pair of Solar Spectral Flux Radiometers (SSFR) took measurements from aboard a Sky Research Jet stream 31 (J31) aircraft during 19 science flights over the Gulf of Maine during 12 July to 8 August 2004. The combination of coincident AATS-14 and SSFR measurements yields plots of net (downwelling minus upwelling) spectral irradiance as a function of aerosol optical depth (AOD) as measured along horizontal flight legs. By definition, the slope of these plots yields the instantaneous change in net irradiance per unit AOD change and is referred to as the instantaneous spectral aerosol radiative forcing efficiency, Ei (W m-2 nm-1). Numerical integration over a given spectral range yields the instantaneous broadband aerosol radiative forcing efficiency (W m-2). This technique for deriving Ei is called the aerosol gradient method. Within 10 case studies considered suitable for our analysis we found a high variability in the derived instantaneous aerosol forcing efficiencies for the visible wavelength range (350-700 nm), with a mean of -79.6 W m-2 and a standard deviation of 21.8 W m-2 (27%). An analytical conversion of the instantaneous forcing efficiencies to 24-hour-average values yielded -45.8 ± 13.1 W m-2 (mean ± std). We present spectrally resolved aerosol forcing efficiencies between 350 and 1670 nm, estimates of the midvisible aerosol single scattering albedo and a comparison of observed broadband forcing efficiencies to previously reported values.

  7. A high spectral resolution VLA search for H I absorption towards A496, A1795, and A2584

    NASA Technical Reports Server (NTRS)

    O'Dea, Christopher P.; Gallimore, Jack F.; Baum, Stefi A.

    1995-01-01

    In this paper, we present the results of a Very Large Array (VLA) search for H I absorption with high spectral resolution (1.6 km/s) towards A496, A1795, A2584, and A2597. These observations are well matched to the properties of cold, optically thick H I clouds, where the line width is given by the width of an individual cloud rather than the dispersion in an ensemble of clouds. We do not detect any H I absorption with narrow linewidths in these clusters. Our limits mainly apply to clouds which are larger than a few tenths parsec-i.e., if the clouds are much smaller than the background radio source and have a low covering factor in velocity space, they could still escape detection. The estimated limits on column density (for clouds in this regime of parameter space) are 2-3 orders of magnitude less than the 10(exp 21)/sq cm required to explain the x-ray absorption seen in some cooling flow clusters. The combination of our high spectral resolution H I absorption searches with the existing lower spectral resolution H I absorption searches and the searches for H I emission makes it unlikely that atomic hydrogen is the dominant component of the cold x-ray absorbing gas in the inter-cloud medium (ICM).

  8. Development of a High Spectral Resolution Lidar (HSRL) Based on a Confocal Optical Filter for Aerosol Studies

    NASA Astrophysics Data System (ADS)

    Repasky, K. S.; Hoffman, D. S.; Reagan, J. A.; Carlsten, J.

    2010-12-01

    Aerosols are an important constituent in atmospheric composition affecting climate, weather, and air quality. Active remote sensing instruments provide tools for in-situ studies of atmospheric aerosols that can help understand the role of aerosols on the radiative forcing of the climate system. In this paper, the design and initial performance of a high spectral resolution lidar (HSRL) based on a unique confocal cavity for optically filtering the aerosol and molecular returns is presented. An injection seeded pulsed Nd:YAG laser with a fundamental and frequency doubled output is used as the laser transmitter for the HSRL. A small portion of fiber coupled injection seeded signal at 1064 nm is split before the laser oscillator and, after modulation using an acousto-optic modulator, is used to produce a discriminating signal for locking a confocal cavity that is resonant at the 1064 and 532 nm wavelengths to the injection seeded source. Light scattered in the atmosphere is collected using a commercial telescope. After the telescope, the 1064 nm light is split from the 532 nm light using a dielectric mirror with the 1064 nm light monitored using a PMT. The 532 nm light is launched into a multimode fiber. The output from the fiber is next incident on a beamsplitter with part of the light sent to a PMT to monitor the total return for the 532 nm channel. The light that passes through the beamsplitter is mode matched into a confocal optical cavity that allows the light scattered by the atmospheric aerosols to be transmitted while the light scattered from the atmospheric molecules is reflected. The transmitted light from the aerosol scattering is incident on a PMT while the reflected molecular signal is incident on a PMT. The transmission of the confocal cavity is monitored before and after the data collection using a continuous wave frequency doubled Nd:YAG laser that is fiber coupled. Data is collected and processed in the following manner. Each of the four voltage

  9. Coupling Spectral-bin Cloud Microphysics with the MOSAIC Aerosol Model in WRF-Chem: Methodology and Results for Marine Stratocumulus Clouds

    SciTech Connect

    Gao, Wenhua; Fan, Jiwen; Easter, Richard C.; Yang, Qing; Zhao, Chun; Ghan, Steven J.

    2016-08-23

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces the treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly-coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.

  10. Coupling spectral-bin cloud microphysics with the MOSAIC aerosol model in WRF-Chem: Methodology and results for marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Gao, Wenhua; Fan, Jiwen; Easter, R. C.; Yang, Qing; Zhao, Chun; Ghan, Steven J.

    2016-09-01

    Aerosol-cloud interaction processes can be represented more physically with bin cloud microphysics relative to bulk microphysical parameterizations. However, due to computational power limitations in the past, bin cloud microphysics was often run with very simple aerosol treatments. The purpose of this study is to represent better aerosol-cloud interaction processes in the Chemistry version of Weather Research and Forecast model (WRF-Chem) at convection-permitting scales by coupling spectral-bin cloud microphysics (SBM) with the MOSAIC sectional aerosol model. A flexible interface is built that exchanges cloud and aerosol information between them. The interface contains a new bin aerosol activation approach, which replaces the treatments in the original SBM. It also includes the modified aerosol resuspension and in-cloud wet removal processes with the droplet loss tendencies and precipitation fluxes from SBM. The newly coupled system is evaluated for two marine stratocumulus cases over the Southeast Pacific Ocean with either a simplified aerosol setup or full-chemistry. We compare the aerosol activation process in the newly coupled SBM-MOSAIC against the SBM simulation without chemistry using a simplified aerosol setup, and the results show consistent activation rates. A longer time simulation reinforces that aerosol resuspension through cloud drop evaporation plays an important role in replenishing aerosols and impacts cloud and precipitation in marine stratocumulus clouds. Evaluation of the coupled SBM-MOSAIC with full-chemistry using aircraft measurements suggests that the new model works realistically for the marine stratocumulus clouds, and improves the simulation of cloud microphysical properties compared to a simulation using MOSAIC coupled with the Morrison two-moment microphysics.

  11. Confirmation of uncontrolled flow dynamics in clinical simulated multi-infusion setups using absorption spectral photometry

    NASA Astrophysics Data System (ADS)

    Timmerman, Anna M.; Riphagen, Brechtje; Klaessens, John H.; Verdaasdonk, Rudolf M.

    2010-02-01

    Multi-infusion systems are used frequently at intensive care units to administer several liquid therapeutic agents to patients simultaneously. By passively combining the separate infusion lines in one central line, the number of punctures needed to access the patient's body, is reduced. So far, the mutual influence between the different infusion lines is unknown. Although the flow properties of single infusion systems have been investigated extensively, only a few research groups have investigated the flow properties of multi-infusion systems. We showed in a previous study that applying multi-infusion can lead to fluctuations in syringe pump infusions, resulting in uncontrolled and inaccurate drug administration. This study presents a performance analysis of multi-infusion systems as used in the Neonatology Intensive Care Unit. The dynamics between multiple infusion lines in multi-infusion systems were investigated by simulation experiments of clinical conditions. A newly developed real-time spectral-photometric method was used for the quantitative determination of concentration and outflow volume using a deconvolution method of absorption spectra of mixed fluids. The effects for common clinical interventions were studied in detail. Results showed mutual influence between the different infusion lines following these interventions. This mutual influence led to significant volume fluctuations up to 50%. These deviations could result in clinically dangerous situations. A complete analysis of the multiinfusion system characteristics is recommended in further research to estimate both the presence and severity of potential risks in clinical use.

  12. Measurement of the Spectral Absorption of Liquid Water in Melting Snow With an Imaging Spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the Earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. In this paper we present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation. the air temperature did not drop below freezing the night of the May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  13. Measurement of the spectral absorption of liquid water in melting snow with an imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Dozier, Jeff

    1995-01-01

    Melting of the snowpack is a critical parameter that drives aspects of the hydrology in regions of the earth where snow accumulates seasonally. New techniques for measurement of snow melt over regional scales offer the potential to improve monitoring and modeling of snow-driven hydrological processes. We present the results of measuring the spectral absorption of liquid water in a melting snowpack with the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). AVIRIS data were acquired over Mammoth Mountain, in east central California on 21 May 1994 at 18:35 UTC. The air temperature at 2926 m on Mammoth Mountain at site A was measured at 15-minute intervals during the day preceding the AVIRIS data acquisition. At this elevation, the air temperature did not drop below freezing the night of May 20 and had risen to 6 degrees Celsius by the time of the overflight on May 21. These temperature conditions support the presence of melting snow at the surface as the AVIRIS data were acquired.

  14. Level-crossing absorption with narrow spectral width in Rb vapor with buffer gas

    SciTech Connect

    Yu, Ye Jin; Lee, Hyun Jun; Bae, In-Ho; Moon, Han Seb; Noh, Heung-Ryoul

    2010-02-15

    We present the transformation in the Hanle configuration of the transmission that results from coherent population trapping (CPT) into the level-crossing absorption (LCA) that results from the single-photon optical pumping in the {sup 87}Rb D{sub 1} line of a Rb vapor cell with a Ne buffer gas when the polarization of the laser field is changed from linear to circular. The LCA spectrum, with a narrow spectral width of 2.4 mG (1.7 kHz), was observed in the F{sub g{yields}}F{sub e{<=}}F{sub g} transition with the circularly polarized laser. This may be because the LCA is both related to the transverse magnetic field and the atom-laser interaction time resulting from diffusive atomic motion in the cell with the buffer gas. The CPT and LCA spectra were calculated numerically using the full density matrix equations for the relevant magnetic sublevels of the hyperfine levels, considering the residual magnetic fields perpendicular to laser propagation and the collision effects resulting from the buffer gas. There was good qualitative agreement between theoretical and experimental results.

  15. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass Aerosol Extinction Differential Optical Absorption Spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2012-04-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  16. Initial investigation of the wavelength dependence of optical properties measured with a new multi-pass aerosol extinction differential optical absorption spectrometer (AE-DOAS)

    NASA Astrophysics Data System (ADS)

    Chartier, R. T.; Greenslade, M. E.

    2011-10-01

    Atmospheric aerosols directly affect climate by scattering and absorbing radiation. The magnitude of the impact is dependent upon the wavelength of light, but is often estimated near 550 nm. When light scattering and absorption by aerosols is approximated, the wavelength dependence of the refractive index for specific components is lost. As a result, climate models would have inherent uncertainties for aerosol contributions to radiative forcing when considering the entire solar spectrum. An aerosol extinction differential optical absorption spectrometer has been developed to directly measure aerosol extinction at mid-ultraviolet to near infrared wavelengths. The instrument consists of a spectrometer coupled to a closed White-type multi-pass gas cell with an adjustable path length of up to approximately 20 m. Laboratory measurements of various gases are compared with known absorption cross sections. Additionally, the extinction of monodisperse samples of polystyrene latex spheres are measured and compared to Mie theory generated with refractive index values from the literature to validate the new instrument. The polystyrene experiments also emphasize the ability of the new instrument to retrieve the wavelength dependent refractive index, especially in the ultraviolet wavelength regions where variability is expected. The spectrometer will be a significant advancement for determining wavelength dependent complex refractive indices in future laboratory studies as well as provide the ability to monitor ambient aerosol light extinction.

  17. Adhesion of Mineral and Soot Aerosols can Strongly Affect their Scattering and Absorption Properties

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Dlugach, Jana M.

    2012-01-01

    We use the numerically exact superposition T-matrix method to compute the optical cross sections and the Stokes scattering matrix for polydisperse mineral aerosols (modeled as homogeneous spheres) covered with a large number of much smaller soot particles. These results are compared with the Lorenz-Mie results for a uniform external mixture of mineral and soot aerosols. We show that the effect of soot particles adhering to large mineral particles can be to change the extinction and scattering cross sections and the asymmetry parameter quite substantially. The effect on the phase function and degree of linear polarization can be equally significant.

  18. Recovery of x-ray absorption spectral profile in etched TiO{sub 2} thin films

    SciTech Connect

    Sano, Keiji; Niibe, Masahito; Kawakami, Retsuo; Nakano, Yoshitaka

    2015-05-15

    Near edge x-ray absorption fine structure (NEXAFS) spectra of plasma-etched TiO{sub 2} thin films were observed using the total fluorescence yield method involving visible emission. The disrupted spectrum recovered its as-grown (nonetched) profile, upon soft x-ray (SX) irradiation. This recovery was investigated by ultraviolet (UV) irradiation, spatial distribution measurements, exposing recovered samples to air, and NEXAFS measurements of ultrafine TiO{sub 2} particles. The spectral profile recovered upon UV irradiation, and at sample positions outside of the SX irradiation site. The recovered spectral profiles were disrupted again, upon exposure to air. Nonetched ultrafine TiO{sub 2} particles also exhibited a disrupted spectral profile, which was recovered upon SX irradiation. The spectral recovery is explained by a model involving electrons trapped in oxygen vacancies generated by etching.

  19. Light absorption and morphological properties of soot-containing aerosols observed at an East Asian outflow site, Noto Peninsula, Japan

    NASA Astrophysics Data System (ADS)

    Ueda, Sayako; Nakayama, Tomoki; Taketani, Fumikazu; Adachi, Kouji; Matsuki, Atsushi; Iwamoto, Yoko; Sadanaga, Yasuhiro; Matsumi, Yutaka

    2016-03-01

    The coating of black carbon (BC) with inorganic salts and organic compounds can enhance the magnitude of light absorption by BC. To elucidate the enhancement of light absorption of aged BC particles and its relation to the mixing state and morphology of individual particles, we conducted observations of particles at an Asian outflow site in Noto Peninsula, Japan, in the spring of 2013. Absorption and scattering coefficients at 405, 532, and 781 nm and mass concentrations/mixing states of refractory BC in PM2.5 were measured using a three-wavelength photoacoustic soot spectrometer and a single-particle soot photometer (SP2), respectively, after passage through a thermodenuder (TD) maintained at 300 or 400 °C or a bypass line maintained at room temperature (25 °C). The average enhancement factor of BC light absorption due to coating was estimated by comparing absorption coefficients at 781 nm for particles that with and without passing through the TD at 300 °C and was found to be 1.22. The largest enhancements (> 1.30) were observed under high absorption coefficient periods when the air mass was long-range transported from urban areas in China. Aerosol samples were also analyzed using a transmission electron microscope (TEM) equipped with an energy dispersive X-ray analyzer. The morphological features and mixing states of soot-containing particles of four samples collected during the high absorption events were analyzed by comparing microphotographs before and after the evaporation of beam-sensitive materials by irradiation with a high-density electron beam. The majority of the soot in all samples was found as mixed particles with sulfate-containing spherules or as clusters of such spherules. For samples showing high enhancement (> 1.30) of BC light absorption, the TEM showed that the internally mixed soot-containing particles tended to have a more spherical shape and to be thickly coated. The SP2 measurements also suggested that the proportion of thickly coated

  20. Trend analysis of the Aerosol Optical Thickness and Ångström Exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2011-08-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. Aerosol Optical Thickness (AOT) and Ångström Exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) spectral observations. Additionally, temporal trends of Coarse- and Fine-mode dominant AOTs (CAOT and FAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström Exponent Difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation and (2) Number of Observations (NO) per month. Temporal increase of FAOTs prevails over regions dominated by emerging economy or slash-burn agriculture in East Asia and South Africa. On the other hand, insignificant or negative trends for FAOTs are detected over Western Europe and North America. Over desert regions, both increase and decrease of CAOTs are observed depending on meteorological conditions.

  1. Reduction in biomass burning aerosol light absorption upon humidification: Roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    SciTech Connect

    lewis, Kristen A.; Arnott, W. P.; Moosmuller, H.; Chakrabarti, Raj; Carrico, Christian M.; Kreidenweis, Sonia M.; Day, Derek E.; Malm, William C.; Laskin, Alexander; Jimenez, Jose L.; Ulbrich, Ingrid M.; Huffman, John A.; Onasch, Timothy B.; Trimborn, Achim; Liu, Li; Mishchenko, M.

    2009-11-27

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  2. Revealing spectral features in two-photon absorption spectrum of Hoechst 33342: a combined experimental and quantum-chemical study.

    PubMed

    Olesiak-Banska, Joanna; Matczyszyn, Katarzyna; Zaleśny, Robert; Murugan, N Arul; Kongsted, Jacob; Ågren, Hans; Bartkowiak, Wojciech; Samoc, Marek

    2013-10-10

    We present the results of wide spectral range Z-scan measurements of the two-photon absorption (2PA) spectrum of the Hoechst 33342 dye. The strongest 2PA of the dye in aqueous solution is found at 575 nm, and the associated two-photon absorption cross section is 245 GM. A weak but clearly visible 2PA band at ∼850 nm is also observed, a feature that could not be anticipated from the one-photon absorption spectrum. On the basis of the results of hybrid quantum mechanics/molecular mechanics calculations, we put forward a notion that the long-wavelength feature observed in the two-photon absorption spectrum of Hoechst 33342 is due to the formation of dye aggregates.

  3. Evolution of the complex refractive index in the near UV spectral region in ageing secondary organic aerosol

    NASA Astrophysics Data System (ADS)

    Flores, J. M.; Zhao, D. F.; Segev, L.; Schlag, P.; Kiendler-Scharr, A.; Fuchs, H.; Watne, Å. K.; Bluvshtein, N.; Mentel, Th. F.; Hallquist, M.; Rudich, Y.

    2014-02-01

    The chemical and physical properties of secondary organic aerosol (SOA) formed by the photochemical degradation of biogenic and anthropogenic volatile organic compounds (VOC) are yet poorly constrained. The evolution of the complex refractive index (RI) of SOA, formed from purely biogenic VOC and mixtures of biogenic and anthropogenic VOC was studied over a diurnal cycle in the SAPHIR photochemical outdoor chamber in Jülich, Germany. The correlation of RI with SOA chemical and physical properties such as oxidation level and volatility was examined. The RI was retrieved by a newly developed broadband cavity enhanced spectrometer for aerosol optical extinction measurements in the near UV spectral region (360 to 420 nm). Chemical composition and volatility of the particles were monitored by a high resolution time of flight aerosol mass spectrometer, and a volatility tandem differential mobility analyzer. SOA was formed by ozonolysis of either (i) a mixture of biogenic VOC (α-pinene and limonene), (ii) biogenic VOC mixture with subsequent addition of an anthropogenic VOC (p-xylene-d10), or (iii) a mixture of biogenic and anthropogenic VOC. The SOA aged by ozone / OH reactions up to 29.5 h was found to be non-absorbing in all cases. The SOA with p-xylene-d10 showed an increase of the scattering component of the RI correlated with an increase of the O / C ratio and with an increase in the SOA density. There was a greater increase in the scattering component of the RI when the SOA was produced from the mixture of biogenic VOCs and anthropogenic VOC than from the sequential addition of the VOCs after the approximate same ageing time. The increase of the scattering component was inversely correlated with the SOA volatility. Two RI retrievals determined for the pure biogenic SOA showed a constant RI for up to 5 h of ageing. Mass spectral characterization shows the three types of the SOA formed in this study have significant amount of semivolatile components. The influence

  4. Temporal and spectral characteristics of aerosol optical depths in a semi-arid region of southern India.

    PubMed

    Kumar, K Raghavendra; Narasimhulu, K; Reddy, R R; Gopal, K Rama; Reddy, L Siva Sankara; Balakrishnaiah, G; Moorthy, K Krishna; Babu, S Suresh

    2009-04-01

    The spectral and temporal variations of aerosol optical depths (AOD) observed over Anantapur (a semi-arid region) located in the Southern part of India are investigated by analyzing the data obtained from a Multiwavelength Solar Radiometer (MWR) during January 2005-December 2006 (a total of 404 clear-sky observations) using the Langley technique. In this paper, we highlighted the studies on monthly, seasonal and spectral variations of aerosol optical depth and their implications. The results showed seasonal variation with higher values during pre-monsoon (March-May) and lower in the monsoon (June-November) season at all wavelengths. The pre-monsoon increase is found to be due to the high wind speed producing larger amounts of wind-driven dust particles. The post-monsoon (December-February) AOD values decrease more at higher wavelengths, indicating a general reduction in the number of bigger particles. Also during the post-monsoon, direction of winds in association with high or low pressure weather systems and the air brings more aerosol content to the region which is surrounded by a number of cement plants, lime kilns, slab polishing and brick making units. The quantity of AOD values in pre-monsoon is higher (low during post-monsoon) for wavelength, such as shortwave infrared (SWIR) or near infrared (NIR), which shows that coarse particles contribute more compare with the sub-micron particles. The composite aerosols near the surface follow suit with the share of the accumulation mode to the total mass concentration decreasing from approximately 70% to 30% from post-monsoon to pre-monsoon. Coarse mode particle loading observed to be high during pre-monsoon and accumulation mode particles observed to be high during post-monsoon. The backward trajectories at three representative altitudes with source point at the observing site indicate a possible transport from the outflow regions into Bay of Bengal, southern peninsular India and Arabian Sea. The temporal variations

  5. Absorption cross-sections of ozone in the ultraviolet and visible spectral regions: Status report 2015

    NASA Astrophysics Data System (ADS)

    Orphal, Johannes; Staehelin, Johannes; Tamminen, Johanna; Braathen, Geir; De Backer, Marie-Renée; Bais, Alkiviadis; Balis, Dimitris; Barbe, Alain; Bhartia, Pawan K.; Birk, Manfred; Burkholder, James B.; Chance, Kelly; von Clarmann, Thomas; Cox, Anthony; Degenstein, Doug; Evans, Robert; Flaud, Jean-Marie; Flittner, David; Godin-Beekmann, Sophie; Gorshelev, Viktor; Gratien, Aline; Hare, Edward; Janssen, Christof; Kyrölä, Erkki; McElroy, Thomas; McPeters, Richard; Pastel, Maud; Petersen, Michael; Petropavlovskikh, Irina; Picquet-Varrault, Benedicte; Pitts, Michael; Labow, Gordon; Rotger-Languereau, Maud; Leblanc, Thierry; Lerot, Christophe; Liu, Xiong; Moussay, Philippe; Redondas, Alberto; Van Roozendael, Michel; Sander, Stanley P.; Schneider, Matthias; Serdyuchenko, Anna; Veefkind, Pepijn; Viallon, Joële; Viatte, Camille; Wagner, Georg; Weber, Mark; Wielgosz, Robert I.; Zehner, Claus

    2016-09-01

    The activity "Absorption Cross-Sections of Ozone" (ACSO) started in 2008 as a joint initiative of the International Ozone Commission (IO3C), the World Meteorological Organization (WMO) and the IGACO ("Integrated Global Atmospheric Chemistry Observations") O3/UV subgroup to study, evaluate, and recommend the most suitable ozone absorption cross-section laboratory data to be used in atmospheric ozone measurements. The evaluation was basically restricted to ozone absorption cross-sections in the UV range with particular focus on the Huggins band. Up until now, the data of Bass and Paur published in 1985 (BP, 1985) are still officially recommended for such measurements. During the last decade it became obvious that BP (1985) cross-section data have deficits for use in advanced space-borne ozone measurements. At the same time, it was recognized that the origin of systematic differences in ground-based measurements of ozone required further investigation, in particular whether the BP (1985) cross-section data might contribute to these differences. In ACSO, different sets of laboratory ozone absorption cross-section data (including their dependence on temperature) of the group of Reims (France) (Brion et al., 1993, 1998, 1992, 1995, abbreviated as BDM, 1995) and those of Serdyuchenko et al. (2014), and Gorshelev et al. (2014), (abbreviated as SER, 2014) were examined for use in atmospheric ozone measurements in the Huggins band. In conclusion, ACSO recommends: The spectroscopic data of BP (1985) should no longer be used for retrieval of atmospheric ozone measurements. For retrieval of ground-based instruments of total ozone and ozone profile measurements by the Umkehr method performed by Brewer and Dobson instruments data of SER (2014) are recommended to be used. When SER (2014) is used, the difference between total ozone measurements of Brewer and Dobson instruments are very small and the difference between Dobson measurements at AD and CD wavelength pairs are diminished

  6. Two cyanobacterial strains can be distinguished from each other and other eukaryotic algae by spectral absorption method.

    PubMed

    Lokuhewage, Asha U M; Fujino, T

    2011-01-01

    Spectral absorption method based on two step linear regression analyses (TSLR) was applied for detection of two strains of cyanobacterium, Microcystis (blue-green algae) from eukaryotic algae. Both blue-green algae, algae and dissolved organic carbon (DOC) were considered from freshwater bodies in Kanto region, Japan. The results show that blue-green species can be detected from other algal species using absorption spectra of water samples. In this study statistical analysis was done by TSLR method, which determined the gradient vectors of single algal species and DOC. We believe that this method might be useful in environmental monitoring of freshwater algae.

  7. Global and Regional Evaluation of Over-Land Spectral Aerosol Optical Depth Retrievals from SeaWiFS

    NASA Technical Reports Server (NTRS)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Jeong, M. J.; Holben, B. N.; Zhang, J.

    2012-01-01

    This study evaluates a new spectral aerosol optical depth (AOD) dataset derived from Sea-viewing Wide Field-of-view Sensor (Sea WiFS) measurements over land. First, the data are validated against Aerosol Robotic Network (AERONET) direct-sun AOD measurements, and found to compare well on a global basis. If only data with the highest quality flag are used, the correlation is 0.86 and 72% of matchups fall within an expected absolute uncertainty of 0.05 + 20% (for the wavelength of 550 nm). The quality is similar at other wavelengths and stable over the 13-year (1997-2010) mission length. Performance tends to be better over vegetated, low-lying terrain with typical AOD of 0.3 or less, such as found over much of North America and Eurasia. Performance tends to be poorer for low-AOD conditions near backscattering geometries, where Sea WiFS overestimates AOD, or optically-thick cases of absorbing aerosol, where SeaWiFS tends to underestimate AOD. Second, the SeaWiFS data are compared with midvisible AOD derived from the Moderate Resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectroradiometer (MISR). All instruments show similar spatial and seasonal distributions of AOD, although there are regional and seasonal offsets between them. At locations where AERONET data are available, these offsets are largely consistent with the known validation characteristics of each dataset. With the results of this study in mind, the SeaWiFS over-land AOD record should be suitable for quantitative scientific use.

  8. Mass spectral analysis of organic aerosol formed downwind of the Deepwater Horizon oil spill: field studies and laboratory confirmations.

    PubMed

    Bahreini, R; Middlebrook, A M; Brock, C A; de Gouw, J A; McKeen, S A; Williams, L R; Daumit, K E; Lambe, A T; Massoli, P; Canagaratna, M R; Ahmadov, R; Carrasquillo, A J; Cross, E S; Ervens, B; Holloway, J S; Hunter, J F; Onasch, T B; Pollack, I B; Roberts, J M; Ryerson, T B; Warneke, C; Davidovits, P; Worsnop, D R; Kroll, J H

    2012-08-07

    In June 2010, the NOAA WP-3D aircraft conducted two survey flights around the Deepwater Horizon (DWH) oil spill. The Gulf oil spill resulted in an isolated source of secondary organic aerosol (SOA) precursors in a relatively clean environment. Measurements of aerosol composition and volatile organic species (VOCs) indicated formation of SOA from intermediate-volatility organic compounds (IVOCs) downwind of the oil spill (Science2011, 331, doi 10.1126/science.1200320). In an effort to better understand formation of SOA in this environment, we present mass spectral characteristics of SOA in the Gulf and of SOA formed in the laboratory from evaporated light crude oil. Compared to urban primary organic aerosol, high-mass-resolution analysis of the background-subtracted SOA spectra in the Gulf (for short, "Gulf SOA") showed higher contribution of C(x)H(y)O(+) relative to C(x)H(y)(+) fragments at the same nominal mass. In each transect downwind of the DWH spill site, a gradient in the degree of oxidation of the Gulf SOA was observed: more oxidized SOA (oxygen/carbon = O/C ∼0.4) was observed in the area impacted by fresher oil; less oxidized SOA (O/C ∼0.3), with contribution from fragments with a hydrocarbon backbone, was found in a broader region of more-aged surface oil. Furthermore, in the plumes originating from the more-aged oil, contribution of oxygenated fragments to SOA decreased with downwind distance. Despite differences between experimental conditions in the laboratory and the ambient environment, mass spectra of SOA formed from gas-phase oxidation of crude oil by OH radicals in a smog chamber and a flow tube reactor strongly resembled the mass spectra of Gulf SOA (r(2) > 0.94). Processes that led to the observed Gulf SOA characteristics are also likely to occur in polluted regions where VOCs and IVOCs are coemitted.

  9. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: • Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. • Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. • Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  10. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  11. Absorption spectral change of peripheral-light harvesting complexes 2 induced by magnesium protoporphyrin IX monomethyl ester association

    NASA Astrophysics Data System (ADS)

    Yue, Huiying; Zhao, Chungui; Li, Kai; Yang, Suping

    2015-02-01

    Several spectrally different types of peripheral light harvesting complexes (LH) have been reported in anoxygenic phototrophic bacteria in response to environmental changes. In this study, two spectral forms of LH2 (T-LH2 and U-LH2) were isolated from Rhodobacter azotoformans. The absorption of T-LH2 was extremely similar to the LH2 isolated from Rhodobacter sphaeroides. U-LH2 showed an extra peak at ∼423 nm in the carotenoid region. To explore the spectral origin of this absorption peak, the difference in pigment compositions of two LH2 was analyzed. Spheroidene and bacteriochlorophyll aP were both contained in the two LH2. And magnesium protoporphyrin IX monomethyl ester (MPE) was only contained in U-LH2. It is known that spheroidene and bacteriochlorophyll aP do not produce ∼423 nm absorption peak either in vivo or in vitro. Whether MPE accumulation was mainly responsible for the formation of the ∼423 nm peak? The interactions between MPE and different proteins were further studied. The results showed that the maximum absorption of MPE was red-shifted from ∼415 nm to ∼423 nm when it was mixed with T-LH2 and its apoproteins, nevertheless, the Qy transitions of the bound bacteriochlorophylls in LH2 were almost unaffected, which indicated that the formation of the ∼423 nm peak was related to MPE-LH2 protein interaction. MPE did not bind to sites involved in the spectral tuning of BChls, but the conformation of integral LH2 was affected by MPE association, the alkaline stability of U-LH2 was lower than T-LH2, and the fluorescence intensity at 860 nm was decreased after MPE combination.

  12. Scattering and Absorption of E&M radiation by small particles-applications to study impact of biomass aerosols on climate

    NASA Astrophysics Data System (ADS)

    Bililign, Solomon; Singh, Sujeeta; Fiddler, Marc; Smith, Damon

    2015-03-01

    The phenomena of scattering, absorption, and emission of light and other electromagnetic radiation by small particles are central to many science and engineering disciplines. Absorption of solar radiation by black carbon aerosols has a significant impact on the atmospheric energy distribution and hydrologic processes. By intercepting incoming solar radiation before it reaches the surface, aerosols heat the atmosphere and, in turn, cool the surface. The magnitude of the atmospheric forcing induced by anthropogenic absorbing aerosols, mainly black carbon (BC) emitted from biomass burning and combustion processes has been suggested to be comparable to the atmospheric forcing by all greenhouse gases (GHGs). Despite the global abundance of biomass burning for cooking, forests clearing for agriculture and wild fires, the optical properties of these aerosols have not been characterized at wide range of wavelengths. Our laboratory uses a combination of Cavity ring down spectroscopy and integrating nephelometry to measure optical properties of (extinction, absorption and scattering coefficients) of biomass aerosols. Preliminary results will be presented. Supported by the Department of Defense under Grant #W911NF-11-1-0188.

  13. Far-IR Absorption Features of Titan Aerosol Analogs Produced from Aromatic Precursors

    NASA Astrophysics Data System (ADS)

    Sebree, Joshua; Trainer, M. G.; Anderson, C. M.; Loeffler, M. J.

    2012-10-01

    The arrival of the Cassini spacecraft in orbit around Saturn has led to the discovery of benzene (C6H6) at ppm levels, as well as large positive ions in Titan’s atmosphere, tentatively identified as polycyclic aromatic hydrocarbons (PAHs).[1] The presence of aromatic molecules, which are photolytically active in the ultraviolet, may be an important part of the formation of aerosol particles in Titan’s haze layers, even at these low concentrations. To date, there have been no laboratory experiments in the literature exploring this area of study. The analysis of data from the Composite Infrared Spectrometer (CIRS) on-board Cassini has recently uncovered a broad emission feature centered at 140 cm-1 in the far-IR that is unique to the aerosol layers of Titan’s atmosphere.[2] Current optical constants from laboratory-generated aerosol analogs have been unable to reproduce this feature.[3,4] From the broadness of this feature, we speculate that the emission is a blended composite of low-energy vibrations of large molecules such as PAHs and their nitrogen containing counterparts, polycyclic aromatic nitrogen heterocycles (PANHs). We hypothesize that the inclusion of trace amounts of aromatic precursors will aid in the production of these large structures in the laboratory-generated aerosols. In this study, we perform UV irradiation of several aromatic precursors, both with and without nitrogen heteroatoms, to understand their influence on the observable characteristics of the aerosol. Measured optical and chemical properties will be compared to those formed from CH4/N2 mixtures [5,6] as well as to those from Cassini observations. [1] Waite, J. H., et al. (2007) Science 316 870-875. [2] Anderson, C.M, et al. (2011) Icarus 212 762-778. [3] Khare, B.N., et al. (1984) Icarus 60 127-137. [4] Imanaka, H., et al. (2012) Icarus 218 247-261. [5] Trainer, M.G., et al. (2006) PNAS 103 18035-18042. [6] Trainer, M.G., et al. (2012) Astrobiology 12 315-326.

  14. Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database data

    NASA Astrophysics Data System (ADS)

    Lee, J.; Kim, J.; Yang, P.

    2011-12-01

    New over-ocean aerosol models are developed by integrating extensive AERONET inversion data and a database of the optical properties of tri-axial ellipsoidal dust particles. These models allow more accurate retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) for high AOD cases. Spectral AOD, single scattering albedo (SSA), and phase function, which are used to calculate a lookup table (LUT), are archived by combining inversion data from Aerosol Robotic Network (AERONET) Sun/sky radiometers and single-scattering properties from the tri-axial ellipsoidal dust database. The aerosol models are categorized from the AERONET data using the fine-mode fraction (FMF) at 550 nm and the SSA at 440 nm to resolve a variety of aerosol types throughout the globe. For each aerosol model, the changes in aerosol optical properties (AOP) are included as functions of AOD. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the new aerosol models improve correlation compared to the MODIS Collection 5 products with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85, respectively, for the MODIS operational algorithm. Moreover, use of the new algorithms increases the percentage of data within an expected error of ± (0.03 + 0.05 × AOD) from 62 to 64% overall and from 39 to 51% for high AOD cases (AOD > 0.3). Errors in the retrieved AOD are characterized further with respect to the Ångström exponent (AE), scattering angle (Θ), and air mass factor (AMF). Overall, the new aerosol models reduce systematic errors in AOD retrieval compared with the Collection 5 data due to realistic AOP assumptions. In particular, the scattering angle dependence of the retrieved AOD for dust cases is significantly mitigated due to improved treatment of the nonsphericity of dust particles by the new algorithm.

  15. A full spectral cumulus cloud parameterisation including aerosol effects: The Convective Cloud Field Model (CCFM)

    NASA Astrophysics Data System (ADS)

    Wagner, T. M.; Graf, H. F.; Yano, J. I.

    2009-04-01

    The convective cloud field model is a convection parameterisation based on the representation of a full cumulus cloud spectrum using a dynamical quasi-equilibrium closure. It employs a one dimensional entraining parcel model whose properties are simulated on a refined vertical resolution (~100 m) in order to capture the complex cloud microphysical processes in convective clouds. We introduced an enhanced microphysics compared to those currently used in convection parameterisations, containing warm and mixed phase cloud microphysics processes and incorporates aerosol effects by linking the cloud droplet number concentration to the aerosol amount. Similar to the Arakawa and Schubert (1974) quasi-equilibrium closure we allow for the mutual influence of clouds via the environment. Instead of assuming instantaneous stabilisation of the environment though, the clouds are dynamically interacting for the length of the large scale model time step without necessarily adopting an equilibrium situation. The model is evaluated in single column mode (SCM) for continental and tropical convection using the ARM SGP and TWP-ICE cases. Moreover it is evaluated in global mode using the global atmospheric circulation model ECHAM5. For the SCM cases the precipitation, heating and moistening rates for the simulated period is better represented than with the Tiedtke massflux scheme which is the usual convection parameterisation within ECHAM5. Moreover, we find a clear response to an enhanced aerosol loading which generally leads to a reduction of convective precipitation. Globally, the CCFM produces slightly higher convective precipitation rates and especially responds better to convective instability over lower latitudes and the storm track regions.

  16. The Features of the Frequency-Modulation Method When Studying the Shapes of the Spectral Lines of Nonlinear Absorption

    NASA Astrophysics Data System (ADS)

    Golubiatnikov, G. Yu.; Belov, S. P.; Lapinov, A. V.

    2017-01-01

    We briefly consider the method of the frequency (phase) modulation and signal detection at the second harmonic of the modulation frequency for recording and analyzing the spectral-line shapes. The precision sub-Doppler spectrometer in the millimeter- and submillimeter-wave ranges, which operated in the regime of nonlinear saturation of the spectral transitions in a standing wave (the Lamb-dip method), was used during the measurements. The influence of the saturation degree on the value and shape of the recorded frequency-modulated signals in the quadrature channels during the synchronous detection is demonstrated. Variation in the relationships among the signals determined by dispersion and absorption was observed. The necessity of allowance for the influence of the group-velocity dispersion and coherent effects on the shape of the recorded spectral lines is experimentally shown.

  17. Observation of Individual Particle Morphology, Mineralogy in tandem with Columnar Spectral Aerosol Optics: A Summertime Study over North western India

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Saha, N.; Singh, S.; Agnihotri, R.; Sharma, C.; Prasad, M. V. S. N.; Arya, B. C.; Naaraayanan, T.; Gautam, S.; Rathore, J. S.; Soni, V. K.; Tawale, J. S.

    2014-12-01

    Limitation over region specific data on dust morphology (particle shape, size) and mineralogy gives rise to uncertainty in estimation of optical and radiative properties of mineral dust (Mishra and Tripathi, 2008; Mishra et al., 2008). To address this issue over Indian arid zone (local source of mineral dust), a short field campaign was organized in Jodhpur, located in Rajasthan, a north western state of India, over seven sites (four in city and three far from city) with varying altitudes in June 2013. Jodhpur lies in vicinity of the Thar Desert of Rajasthan. Particles were collected on pure Tin substrates for individual particle morphological and elemental composition analysis using Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS). The morphological parameters (e.g. Aspect ratio; AR, Circulatory parameter; CIR.) were retrieved following Okada et al. (2001) using Image J software. Columnar spectral aerosol optical thickness has been measured by Microtops-II sun photometer for a set of five wavelengths (380 to 1020 nm) over all the sites in tandem with regional aerosol collection. SEM analysis reveals that the particles close to spherical shape (AR range 1.0-1.2) were found to be ~ 18% whereas particles with AR range 1.2-1.4 were found to be abundant (25%) followed with that of AR range 1.4-1.6 and 1.6-1.8 (each ~ 17%) and 1.8-2.0 (~ 14%) while the particles with AR >2 (highly non-spherical) were found to be ~ 8%. Here, it is noteworthy to mention that AR=1 for spherical particle while increasing AR (>1) exhibit increasing non-sphericity of particles. The EDS analysis reveals that 43% particles were observed with low hematite (H ≤ 1%; volume percentage), 24% (H 1-2 %), 14% (H 2-3%), 5% (H 3-4%) and 14% (H >4%). The aforementioned proportions will be extremely useful for simulating the optical and radiative properties of regional aerosols. From the Microtops-II observations, Ångström exponent for spectral interval of 380 to

  18. Absorption of visible radiation by aerosols in the volcanic plume of mount st. Helens.

    PubMed

    Ogren, J A; Charlson, R J; Radke, L F; Domonkos, S K

    1981-02-20

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposphere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10(-7) per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.

  19. Absorption of visible radiation by aerosols in the volcanic plume of Mount St. Helens

    SciTech Connect

    Ogren, J.A.; Charlson, R.J.; Radke, L.F.; Domonkos, S.K.

    1981-01-01

    Samples of particles from Mount St. Helens were collected in both the stratosphere and troposhere for measurement of the light absorption coefficient. Results indicate that the stratospheric dust had a small but finite absorption coefficient ranging up to 2 x 10-7 per meter at a wavelength of 0.55 micrometer, which is estimated to yield an albedo for single scatter of 0.98 or greater. Tropospheric results showed similar high values of an albedo for single scatter.

  20. Light absorption properties of water soluble organic aerosol from Residential Wood Burning in Fresno, CA: Results from 2013 NASA DISCOVER-AQ Campaign

    NASA Astrophysics Data System (ADS)

    Kim, H.; Zhang, Q.; Young, D. E.; Parworth, C.

    2015-12-01

    Light absorption properties of water soluble organic aerosol were investigated at Fresno, CA from 13 January to 11 February, 2013 as part of the NASA DISCOVER-AQ campaign. The light absorption spectra of water soluble organic aerosol in PM2.5 was measured using a UV/vis diode array detector (DAD) coupled with a particle into liquid sampler (PILS) that sampled downstream of a PM2.5 cyclone (URG). The PILS was also coupled with two ion chromatographs (IC) to measure inorganic and organic ionic species in PM2.5. In addition, an Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed at the same site to measure size-resolved chemical composition of submicrometer aerosol (PM1) in real time during this study. Light absorption at 365 nm (Abs365), which is typically used as a proxy of water-soluble brown carbon (BrC), showed strong enhancement during night time and appeared to correlate well (r = 0.71) with biomass burning organic aerosol (BBOA) from residential wood burning for heating in the Fresno area. The tight correlations between Abs365 and biomass burning relevant tracers such as acetonitrile (r = 0.69), AMS-signature ions for phenolic compounds (r = 0.52-0.71), PAH (r = 0.74), and potassium (r = 0.67) further confirm that biomass burning contributed significantly to water soluble brown carbon during this study. The absorption angstrom exponent (Åa) values fitted between 300 and 700 nm wavelength were 3.3 ± 1.1, 2.0 ± 0.9 and 4.0 ± 0.8, respectively, in the morning, afternoon and nighttime, indicating that BrC is prevalent at night in Fresno during wintertime. However, there are also indications that small amount of BrC existed during the daytime as well, likely due to daytime wood burning and other sources such as the formation of light-absorbing secondary organic aerosol (SOA). Finally, light absorption at 300 nm, 330 nm, and 390 nm were found to correlate tightly with BBOA, which indicate that biomass burning also emits

  1. Cr(CO)6 photochemistry: semi-classical study of UV absorption spectral intensities and dynamics of photodissociation.

    PubMed

    Crespo-Otero, Rachel; Barbatti, Mario

    2011-04-28

    The UV absorption spectrum of Cr(CO)(6) (chromium hexacarbonyl) in gas phase is investigated by theoretical methods with focus on the absorption intensities. It is shown that in spite of good predictions for the excitation energies, the most frequently employed methods for excited-state calculations produce poor predictions for oscillator strengths and absorption cross sections. In particular, time-dependent DFT predicts relative intensities for the two main spectral bands to be up to five times larger than the experimental results depending on the functional. The best results are obtained by a multireference configuration interaction method based on DFT (DFT/MRCI). Spectral shoulders caused by vibronic-coupling absorption are assigned based on symmetry-restricted spectrum simulations. The dynamics of Cr(CO)(6) photodissociation was also considered at TDDFT/B3LYP level. The estimated time constants for the Cr(CO)(6) relaxation and dissociation are in excellent agreement with experimental values. The time constant for internal conversion, however, is longer than the experimentally observed by factor 2, presumably due to an underestimation of the experimental analysis.

  2. Satellite monitoring of different vegetation types by differential optical absorption spectroscopy (DOAS) in the red spectral range

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Grzegorski, M.; Platt, U.

    2007-01-01

    A new method for the satellite remote sensing of different types of vegetation and ocean colour is presented. In contrast to existing algorithms relying on the strong change of the reflectivity in the red and near infrared spectral region, our method analyses weak narrow-band (few nm) reflectance structures (i.e. "fingerprint" structures) of vegetation in the red spectral range. It is based on differential optical absorption spectroscopy (DOAS), which is usually applied for the analysis of atmospheric trace gas absorptions. Since the spectra of atmospheric absorption and vegetation reflectance are simultaneously included in the analysis, the effects of atmospheric absorptions are automatically corrected (in contrast to other algorithms). The inclusion of the vegetation spectra also significantly improves the results of the trace gas retrieval. The global maps of the results illustrate the seasonal cycles of different vegetation types. In addition to the vegetation distribution on land, they also show patterns of biological activity in the oceans. Our results indicate that improved sets of vegetation spectra might lead to more accurate and more specific identification of vegetation type in the future.

  3. Quantification of aerosol type, and sources of aerosols over the Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Kedia, Sumita; Ramachandran, S.; Holben, B. N.; Tripathi, S. N.

    2014-12-01

    Differences and similarities in aerosol characteristics, for the first time, over two environmentally distinct locations in Indo-Gangetic plain (IGP) - Kanpur (KPR) (urban location) and Gandhi College (GC) (rural site) are examined. Aerosol optical depths (AODs) exhibit pronounced seasonal variability with higher values during winter and premonsoon. Aerosol fine mode fraction (FMF) and Ångström exponent (α) are higher over GC than KPR indicating relatively higher fine mode aerosol concentration over GC. Higher FMF over GC is attributed to local biomass burning activities. Analysis of AOD spectra revealed that aerosol size distribution is dominated by wide range of fine mode fractions or mixture of modes during winter and postmonsoon, while during premonsoon and monsoon coarse mode aerosols are more abundant. Single scattering albedo (SSA) is lower over GC than KPR. SSA spectra reveals the abundance of fine mode (coarse mode) absorbing (scattering) aerosols during winter and postmonsoon (premonsoon and monsoon). Spectral SSA features reveal that OC contribution to enhanced absorption is negligible. Analysis shows that absorbing aerosols can be classified as Mostly Black Carbon (BC), and Mixed BC and Dust over IGP. Mixed BC and dust is always higher over KPR, while Mostly BC is higher over GC throughout the year. The amount of long range transported dust exhibits a gradient between KPR (higher) and GC (lower). Results on seasonally varying aerosol types, and absorbing aerosol types and their gradients over an aerosol hotspot are important to tune models and to reduce the uncertainty in radiative and climate impact of aerosols.

  4. The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles

    NASA Astrophysics Data System (ADS)

    Drinovec, Luka; Gregorič, Asta; Zotter, Peter; Wolf, Robert; Bruns, Emily Anne; Prévôt, André S. H.; Petit, Jean-Eudes; Favez, Olivier; Sciare, Jean; Arnold, Ian J.; Chakrabarty, Rajan K.; Moosmüller, Hans; Filep, Agnes; Močnik, Griša

    2017-03-01

    Black carbon is a primary aerosol tracer for high-temperature combustion emissions and can be used to characterize the time evolution of its sources. It is correlated with a decrease in public health and contributes to atmospheric warming. Black carbon measurements are usually conducted with absorption filter photometers, which are prone to several artifacts, including the filter-loading effect - a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the black carbon particle coating. We conducted field campaigns in contrasting environments to determine the influence of source characteristics, particle age and coating on the magnitude of the filter-loading effect. High-time-resolution measurements of the filter-loading parameter in filter absorption photometers show daily and seasonal variations of the effect. The variation is most pronounced in the near-infrared region, where the black carbon mass concentration is determined. During winter, the filter-loading parameter value increases with the absorption Ångström exponent. It is suggested that this effect is related to the size of the black carbon particle core as the wood burning (with higher values of the absorption Ångström exponent) produces soot particles with larger diameters. A reduction of the filter-loading effect is correlated with the availability of the coating material. As the coating of ambient aerosols is reduced or removed, the filter-loading parameter increases. Coatings composed of ammonium sulfate and secondary organics seem to be responsible for the variation of the loading effect. The potential source contribution function analysis shows that high values of the filter-loading parameter in the infrared are indicative of local pollution, whereas low values of the filter

  5. Mapping vegetation types with the multiple spectral feature mapping algorithm in both emission and absorption

    NASA Technical Reports Server (NTRS)

    Clark, Roger N.; Swayze, Gregg A.; Koch, Christopher; Ager, Cathy

    1992-01-01

    Vegetation covers a large portion of the Earth's land surface. Remotely sensing quantitative information from vegetation has proven difficult because in a broad sense, all vegetation is similar from a chemical viewpoint, and most healthy plants are green. Plant species are generally characterized by the leaf and flower or fruit morphology, not by remote sensing spectral signatures. But to the human eye, many plants show varying shades of green, so there is direct evidence for spectral differences between plant types. Quantifying these changes in a predictable manner has not been easy. The Clark spectral features mapping algorithm was applied to mapping spectral features in vegetation species.

  6. Spectral Fingerprinting of Individual Cells Visualized by Cavity-Reflection-Enhanced Light-Absorption Microscopy

    PubMed Central

    Arai, Yoshiyuki; Yamamoto, Takayuki; Minamikawa, Takeo; Takamatsu, Tetsuro; Nagai, Takeharu

    2015-01-01

    The absorption spectrum of light is known to be a “molecular fingerprint” that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 μm, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells. PMID:25950513

  7. Spectral fingerprinting of individual cells visualized by cavity-reflection-enhanced light-absorption microscopy.

    PubMed

    Arai, Yoshiyuki; Yamamoto, Takayuki; Minamikawa, Takeo; Takamatsu, Tetsuro; Nagai, Takeharu

    2015-01-01

    The absorption spectrum of light is known to be a "molecular fingerprint" that enables analysis of the molecular type and its amount. It would be useful to measure the absorption spectrum in single cell in order to investigate the cellular status. However, cells are too thin for their absorption spectrum to be measured. In this study, we developed an optical-cavity-enhanced absorption spectroscopic microscopy method for two-dimensional absorption imaging. The light absorption is enhanced by an optical cavity system, which allows the detection of the absorption spectrum with samples having an optical path length as small as 10 μm, at a subcellular spatial resolution. Principal component analysis of various types of cultured mammalian cells indicates absorption-based cellular diversity. Interestingly, this diversity is observed among not only different species but also identical cell types. Furthermore, this microscopy technique allows us to observe frozen sections of tissue samples without any staining and is capable of label-free biopsy. Thus, our microscopy method opens the door for imaging the absorption spectra of biological samples and thereby detecting the individuality of cells.

  8. Measurements of Absorbing Aerosols Using in Situ and Remote Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Martins, J. V.; Martins, J. V.; Kaufman, Y.; Artaxo, P.; Andrea, C.; Yamasoe, M.; Remer, L.

    2001-12-01

    Reliable measurements of light absorption by aerosol particles are essential for an accurate assessment of the climate radiative forcing by aerosol particles. Depending on the absorption properties, the radiative forcing of the aerosols may change from a cooling to a heating effect. New techniques for the remote sensing of aerosol absorption over land and ocean are developed and applied in combination with in situ measurements for validation and addition of complementary information. Spectral measurements show the effects of aerosols on absorption of light from the UV to the near infrared. Depending on particle size and structure, there is a significant absorption component that must be accounted for the radiative forcing in the near infrared. Remote sensing results from MODIS and from the CLAMS field experiment, as well as in situ validation data will be discussed.

  9. Estimation of mineral dust direct radiative forcing at the European Aerosol Research Lidar NETwork site of Lecce, Italy, during the ChArMEx/ADRIMED summer 2013 campaign: Impact of radiative transfer model spectral resolutions

    NASA Astrophysics Data System (ADS)

    Barragan, Ruben; Romano, Salvatore; Sicard, Michaël.; Burlizzi, Pasquale; Perrone, Maria Rita; Comeron, Adolfo

    2016-09-01

    resolution of the real (n) and imaginary (k) refractive index values was mainly responsible for the LW-DRF overestimates of the TS model. However, we found that the "optimization" of the n and k values at 8.75 and 11.5 µm was sufficient in this study to obtain a satisfactory agreement between the LW-DRFs from the two models, both at the TOA and at the surface. The impact of the spectral dependence of the water vapor absorption coefficients on the estimation of the flux without aerosol has also been addressed. Paper results did not reveal any significant impact due to the different numerical methods used by the two models to solve the RT equations.

  10. Optical inhomogeneity of dust-like aerosols and its effects on scattering and absorption

    NASA Astrophysics Data System (ADS)

    Mishchenko, M. I.; Dlugach, Z.; Liu, L.

    2015-12-01

    The use of the very concept of effective refractive index has been implicit in virtually all computations of electromagnetic scattering by dust-like aerosols since the nanometer-scale heterogeneity of such particles has been essentially ignored. Therefore, the failure of this concept in application to dust-like aerosols would create a highly problematic situation. It is thus imperative to perform a comprehensive analysis of the actual physical origin of the heuristic effective-medium approximations (EMAs) and the range and conditions of their practical applicability. In this talk, we will identify the true place of the EMAs in the framework of statistical electrodynamics. We will validate the outcome of this analysis by superposition T-matrix computer calculations and will perform a detailed quantitative assessment of the actual accuracy of the EMAs when they are applied to less-than-ideal types of heterogeneity encountered in nature. It is expected that the accuracy of an EMA will depend on many factors: on type of mixing; on refractive indices and size parameters of the host and the inclusions; on number, spatial distribution, and packing density of the inclusions; on whether one computes monodisperse or polydisperse optical characteristics; on whether one computes only integral radiometric characteristics or also the elements of the scattering matrix; etc. If so, the actual practical suitability of an EMA will vary widely depending on the specific type of application, e.g., lidar remote sensing, polarimetric remote sensing, radiometric remote sensing, or integral radiation-budget computations.

  11. Using NASA EOS in the Arabian and Saharan Deserts to Examine Dust Particle Size and Spectral Signature of Aerosols

    NASA Astrophysics Data System (ADS)

    Brenton, J. C.; Keeton, T.; Barrick, B.; Cowart, K.; Cooksey, K.; Florence, V.; Herdy, C.; Luvall, J. C.; Vasquez, S.

    2012-12-01

    Exposure to high concentrations of airborne particulate matter can have adverse effects on the human respiratory system. Ground-based studies conducted in Iraq have revealed the presence of potential human pathogens in airborne dust. According to the Environmental Protection Agency (EPA), airborne particulate matter below 2.5μm (PM2.5) can cause long-term damage to the human respiratory system. Given the relatively high incidence of new-onset respiratory disorders experienced by US service members deployed to Iraq, this research offers a new glimpse into how satellite remote sensing can be applied to questions related to human health. NASA's Earth Observing System (EOS) can be used to determine spectral characteristics of dust particles, the depth of dust plumes, as well as dust particle sizes. Comparing dust particle size from the Sahara and Arabian Deserts gives insight into the composition and atmospheric transport characteristics of dust from each desert. With the use of NASA SeaWiFS DeepBlue Aerosol, dust particle sizes were estimated using Angström exponent. Brightness Temperature Difference (BTD) equation was used to determine the distribution of particle sizes, the area of the dust storm, and whether silicate minerals were present in the dust. The Moderate-resolution Imaging Spectroradiometer (MODIS) on Terra satellite was utilized in calculating BTD. Minimal research has been conducted on the spectral characteristics of airborne dust in the Arabian and Sahara Deserts. Mineral composition of a dust storm that occurred 17 April 2008 near Baghdad was determined using imaging spectrometer data from the Jet Propulsion Laboratory Spectral Library and EO-1 Hyperion data. Mineralogy of this dust storm was subsequently compared to that of a dust storm that occurred over the Bodélé Depression in the Sahara Desert on 7 June 2003.

  12. Analysis of the excited-state absorption spectral bandshape of oligofluorenes

    NASA Astrophysics Data System (ADS)

    Hayes, Sophia C.; Silva, Carlos

    2010-06-01

    We present ultrafast transient absorption spectra of two oligofluorene derivatives in dilute solution. These spectra display a photoinduced absorption band with clear vibronic structure, which we analyze rigorously using a time-dependent formalism of absorption to extract the principal excited-state vibrational normal-mode frequencies that couple to the electronic transition, the configurational displacement of the higher-lying excited state, and the reorganization energies. We can model the excited-state absorption spectrum using two totally symmetric vibrational modes with frequencies 450 (dimer) or 400 cm-1 (trimer), and 1666 cm-1. The reorganization energy of the ground-state absorption is rather insensitive to the oligomer length at 230 meV. However, that of the excited-state absorption evolves from 58 to 166 meV between the oligofluorene dimer and trimer. Based on previous theoretical work [A. Shukla et al., Phys. Rev. B 67, 245203 (2003)], we assign the absorption spectra to a transition from the 1Bu excited state to a higher-lying mAg state, and find that the energy of the excited-state transition with respect to the ground-state transition energy is in excellent agreement with the theoretical predictions for both oligomers studied here. These results and analysis permit profound understanding of the nature of excited-state absorption in π-conjugated polymers, which are the subject of general interest as organic semiconductors in the solid state.

  13. Effect of radiometric errors on accuracy of temperature-profile measurement by spectral scanning using absorption-emission pyrometry

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1972-01-01

    The spectral-scanning method may be used to determine the temperature profile of a jet- or rocket-engine exhaust stream by measurements of gas radiation and transmittance, at two or more wavelengths. A single, fixed line of sight is used, using immobile radiators outside of the gas stream, and there is no interference with the flow. At least two sets of measurements are made, each set consisting of the conventional three radiometric measurements of absorption-emission pyrometry, but each set is taken over a different spectral interval that gives different weight to the radiation from a different portion of the optical path. Thereby, discrimination is obtained with respect to location along the path. A given radiometric error causes an error in computed temperatures. The ratio between temperature error and radiometric error depends on profile shape, path length, temperature level, and strength of line absorption, and the absorption coefficient and its temperature dependency. These influence the choice of wavelengths, for any given gas. Conditions for minimum temperature error are derived. Numerical results are presented for a two-wavelength measurement on a family of profiles that may be expected in a practical case of hydrogen-oxygen combustion. Under favorable conditions, the fractional error in temperature approximates the fractional error in radiant-flux measurement.

  14. Electrothermal atomic absorption spectrometric determination of total and hexavalent chromium in atmospheric aerosols.

    PubMed

    Mandiwana, Khakhathi L; Panichev, Nikolay; Resane, Tabby

    2006-08-21

    A method was developed which allow separate determination of Cr(VI) and total Cr from the same minute sample of atmospheric aerosols. Cr(VI) was leached was with 0.1M Na(2)CO(3) and the total Cr concentrations were determined after acid digestion. The method was validated by the analysis of certified reference materials, CRM 545, Mess-3 and Pacs-2 with good agreement between certified and found values. Cr concentrations in air samples taken around the chromium smelter show concentrations that exceed the maximum allowed levels in 8h with higher values closer to the smelter. The limit of detection (LOD) of the method for Cr(VI) determination in air samples was found to be 0.2 ng m(-3), i.e. lower than offered by the commonly preferred spectrophotometric and colorimetric techniques.

  15. Investigation of the spectral responses of laser generated aerosol from household coals using a state-of-the-art multi-wavelength photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Ajtai, Tibor; Utry, Noemi; Pinter, Mate; Kiss-Albert, Gergely; Smausz, Tomi; Konya, Zoltan; Hopp, Bela; Szabo, Gabor; Bozoki, Zoltan

    2016-04-01

    We present the investigation of the inherent, spectral features of laser generated and chemically characterized residential coal aerosols generated in our recently introduced laser ablation based LAC generator. The optical absorption and the scattering features of the generated aerosol were investigated by our state-of-the-art multi wavelength PAS instrument (4λ-PAS) and a multi wavelength cosinus sensor (Aurora 3000). The quantified wavelength dependency (AAE and SAE) are deduced from the measured data. Finally, relationship between the optical and the thermochemical characteristics is revealed. Atmospheric light absorbing carbonaceous particulate matter (LAC) is in the middle of scientific interest especially because of its climatic and adverse health relevance. The latest scientific assessments identified atmospheric soot as the second most important anthropogenic emission regarding its climatic effect and as one of the most harmful atmospheric constituents based on its health aspects. LAC dominantly originates from anthropogenic sources, so its real time and selective identification is also essential for the means of its legal regulation. Despite of its significance the inherent properties of LAC are rarely described and the available data is widely spread even in the case of the most intensively studied black or elementary carbon. Therefore, the investigation of the inherent climate and health relevant properties of atmospheric soot is a highly actual issue. Moreover investigation of the optical and toxic properties of LAC originating from the combustion of household coals is almost completely missing from literature. There are two major reasons for that. Firstly, the characteristic parameters of soot are complex and vary in a wide range and depend not only on the initial burning conditions and the type of fuels but also the ambient factors. The other is the lack of a soot standard material and a generator which are suitable for modelling the real atmospheric

  16. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.

    2009-11-01

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used were Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients revealed a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: (1) shielding of inner monomers after particle consolidation or collapse with water uptake; (2) the lower case contribution of mass transfer through evaporation and condensation at high relative humidity (RH) to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  17. Reduction in biomass burning aerosol light absorption upon humidification: roles of inorganically-induced hygroscopicity, particle collapse, and photoacoustic heat and mass transfer

    NASA Astrophysics Data System (ADS)

    Lewis, K. A.; Arnott, W. P.; Moosmüller, H.; Chakrabarty, R. K.; Carrico, C. M.; Kreidenweis, S. M.; Day, D. E.; Malm, W. C.; Laskin, A.; Jimenez, J. L.; Ulbrich, I. M.; Huffman, J. A.; Onasch, T. B.; Trimborn, A.; Liu, L.; Mishchenko, M. I.

    2009-07-01

    Smoke particle emissions from the combustion of biomass fuels typical for the western and southeastern United States were studied and compared under high humidity and ambient conditions in the laboratory. The fuels used are Montana ponderosa pine (Pinus ponderosa), southern California chamise (Adenostoma fasciculatum), and Florida saw palmetto (Serenoa repens). Information on the non-refractory chemical composition of biomass burning aerosol from each fuel was obtained with an aerosol mass spectrometer and through estimation of the black carbon concentration from light absorption measurements at 870 nm. Changes in the optical and physical particle properties under high humidity conditions were observed for hygroscopic smoke particles containing substantial inorganic mass fractions that were emitted from combustion of chamise and palmetto fuels. Light scattering cross sections increased under high humidity for these particles, consistent with the hygroscopic growth measured for 100 nm particles in HTDMA measurements. Photoacoustic measurements of aerosol light absorption coefficients reveal a 20% reduction with increasing relative humidity, contrary to the expectation of light absorption enhancement by the liquid coating taken up by hygroscopic particles. This reduction is hypothesized to arise from two mechanisms: 1. Shielding of inner monomers after particle consolidation or collapse with water uptake; 2. The contribution of mass transfer through evaporation and condensation at high relative humidity to the usual heat transfer pathway for energy release by laser-heated particles in the photoacoustic measurement of aerosol light absorption. The mass transfer contribution is used to evaluate the fraction of aerosol surface covered with liquid water solution as a function of RH.

  18. Far-infrared permanent and induced dipole absorption of diatomic molecules in rare-gas fluids. I. Spectral theory

    NASA Astrophysics Data System (ADS)

    Roco, J. M. M.; Hernández, A. Calvo; Velasco, S.

    1995-12-01

    We present a spectral theory for the far-infrared absorption spectrum of a very diluted solution of diatomic molecules in a rare-gas fluid, that includes permanent and induced contributions. The absorption coefficient is given as the convolution of a translational spectrum and a rotational spectrum. The former is described in terms of time correlation functions associated to the induced dipole moment. The latter is discussed on the basis of a model consisting of a quantum rigid rotor interacting with a thermal bath, making use of time correlation functions associated to the different anisotropic orders of the solute-solvent intermolecular potential. Non-Markovian and line mixing effects are taken into account. Explicit expressions for the five leading contributions of the induced dipole moment are given.

  19. Towards photodetection with high efficiency and tunable spectral selectivity: graphene plasmonics for light trapping and absorption engineering.

    PubMed

    Zhang, Jianfa; Zhu, Zhihong; Liu, Wei; Yuan, Xiaodong; Qin, Shiqiao

    2015-08-28

    Plasmonics can be used to improve absorption in optoelectronic devices and has been intensively studied for solar cells and photodetectors. Graphene has recently emerged as a powerful plasmonic material. It shows significantly less loss compared to traditional plasmonic materials such as gold and silver and its plasmons can be tuned by changing the Fermi energy with chemical or electrical doping. Here we propose the use of graphene plasmonics for light trapping in optoelectronic devices and show that the excitation of localized plasmons in doped, nanostructured graphene can enhance optical absorption in its surrounding medium including both bulky and two-dimensional materials by tens of times, which may lead to a new generation of photodetectors with high efficiency and tunable spectral selectivity in the mid-infrared and THz ranges.

  20. Comparison of Aerosol Classification Results from Airborne High Spectral Resolution Lidar (HSRL) Measurements and the Calipso Vertical Feature Mask

    NASA Technical Reports Server (NTRS)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Obland, M. D.; Butler, C. F.; Cook, A. L.; Harper, D. B.; Froyd, K. D.; Omar, A.

    2012-01-01

    Knowledge of the vertical profile, composition, concentration, and size of aerosols is required for assessing the direct impact of aerosols on radiation, the indirect effects of aerosols on clouds and precipitation, and attributing these effects to natural and anthropogenic aerosols. Because anthropogenic aerosols are predominantly submicrometer, fine mode fraction (FMF) retrievals from satellite have been used as a tool for deriving anthropogenic aerosols. Although column and profile satellite retrievals of FMF have been performed over the ocean, such retrievals have not yet been been done over land. Consequently, uncertainty in satellite estimates of the anthropogenic component of the aerosol direct radiative forcing is greatest over land, due in large part to uncertainties in the FMF. Satellite measurements have been used to detect and evaluate aerosol impacts on clouds; however, such efforts have been hampered by the difficulty in retrieving vertically-resolved cloud condensation nuclei (CCN) concentration, which is the most direct parameter linking aerosol and clouds. Recent studies have shown correlations between average satellite derived column aerosol optical thickness (AOT) and in situ measured CCN. However, these same studies, as well as others that use detailed airborne in situ measurements have noted that vertical variability of the aerosol distribution, impacts of relative humidity, and the presence of coarse mode aerosols such as dust introduce large uncertainties in such relations.

  1. Gravity-induced absorption changes in Phycomyces blakesleeanus during parabolic flights: first spectral approach in the visible.

    PubMed

    Schmidt, Werner

    2006-12-01

    Gravity-induced absorption changes as experienced during a series of parabolas on the Airbus 300 Zero-G have been measured previously pointwise on the basis of dual-wavelength spectroscopy. Only the two wavelengths of 460 and 665 nm as generated by light-emitting diodes have been utilised during our first two parabolic-flight campaigns. In order to gain complete spectral information throughout the wavelength range from 400 to 900 nm, a miniaturized rapid scan spectrophotometer was designed. The difference of spectra taken at 0 g and 1.8 g presents the first gravity-induced absorption change spectrum measured on wild-type Phycomyces blakesleeanus sporangiophores, exhibiting a broad positive hump in the visible range and negative values in the near infrared with an isosbestic point near 735 nm. The control experiment performed with the stiff mutant A909 of Phycomyces blakesleeanus does not show this structure. These results are in agreement with those obtained with an array spectrophotometer. In analogy to the more thoroughly understood so-called light-induced absorption changes, we assume that gravity-induced absorption changes reflect redox changes of electron transport components such as flavins and cytochromes localised within the plasma membrane.

  2. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission.

    PubMed

    Delahaye, T; Maxwell, S E; Reed, Z D; Lin, H; Hodges, J T; Sung, K; Devi, V M; Warneke, T; Spietz, P; Tran, H

    2016-06-27

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of (12)CH4. Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa - 1013 hPa with methane molar fractions between 1 μmol mol(-1) and 12 μmol mol(-1). All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

  3. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Maxwell, S. E.; Reed, Z. D.; Lin, H.; Hodges, J. T.; Sung, K.; Devi, V. M.; Warneke, T.; Spietz, P.; Tran, H.

    2016-06-01

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of 12CH4. High-fidelity modeling of this absorption spectrum for atmospheric temperature and pressure conditions will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise ratio absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa-1013 hPa with methane molar fractions between 1 µmol mol-1 and 12 µmol mol-1. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room temperature, methane absorption coefficient to better than 0.1% at the online position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

  4. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data. Part II: Using Maximum Covariance Analysis to Effectively Compare Spatiotemporal Variability of Satellite and AERONET Measured Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.

  5. Direct Aerosol Radiative Forcing Based on Combined A-Train Observations: Towards All-sky Estimates and Attribution to Aerosol Type

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; Burton, S.; Livingston, J.; Torres, O.; Remer, L.

    2014-01-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) measurements for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). We discuss some of the challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed. We also discuss a methodology for using the multi-sensor aerosol retrievals for aerosol type classification based on advanced clustering techniques. The combination of research results permits conclusions regarding the attribution of aerosol radiative forcing to aerosol type.

  6. Light absorption efficiencies of photosynthetic pigments: the dependence on spectral types of central stars

    NASA Astrophysics Data System (ADS)

    Komatsu, Yu; Umemura, Masayuki; Shoji, Mitsuo; Kayanuma, Megumi; Yabana, Kazuhiro; Shiraishi, Kenji

    2015-07-01

    For detecting life from reflection spectra on extrasolar planets, trace of photosynthesis is one of the indicators. However, it is not yet clear what kind of radiation environments is acceptable for photosynthesis. Light absorption in photosystems on the Earth occurs using limited photosynthetic pigments such as chlorophylls (Chls) and bacteriochlorophylls (BChls). Efficiencies of light absorption for the pigments were evaluated by calculating the specific molecular absorption spectra at the high accuracy-quantum mechanical level. We used realistic stellar radiation spectra such as F, G, K and M-type stars to investigate the efficiencies. We found that the efficiencies are increased with the temperature of stars, from M to F star. Photosynthetic pigments have two types of absorption bands, the Q y and Soret. In higher temperature stars like F star, contributions from the Soret region of the pigments are dominant for the efficiency. On the other hand, in lower temperature stars like M stars, the Q y band is crucial. Therefore, differences on the absorption intensity and the wavelength between the Q y and Soret band are the most important to characterize the photosynthetic pigments. Among photosynthetic pigments, Chls tend to be efficient in higher temperature stars, while BChls are efficient for M stars. Blueward of the 4000 Å break, the efficiencies of BChls are smaller than Chls in the higher temperature stars.

  7. Polycyclic aromatic hydrocarbons in biomass-burning emissions and their contribution to light absorption and aerosol toxicity.

    PubMed

    Samburova, Vera; Connolly, Jessica; Gyawali, Madhu; Yatavelli, Reddy L N; Watts, Adam C; Chakrabarty, Rajan K; Zielinska, Barbara; Moosmüller, Hans; Khlystov, Andrey

    2016-10-15

    In recent years, brown carbon (BrC) has been shown to be an important contributor to light absorption by biomass-burning atmospheric aerosols in the blue and near-ultraviolet (UV) part of the solar spectrum. Emission factors and optical properties of 113 polycyclic aromatic hydrocarbons (PAHs) were determined for combustion of five globally important fuels: Alaskan, Siberian, and Florida swamp peat, cheatgrass (Bromus tectorum), and ponderosa pine (Pinus ponderosa) needles. The emission factors of total analyzed PAHs were between 1.9±0.43.0±0.6 and 9.6±1.2-42.2±5.4mgPAHkg(-1)fuel for particle- and gas phase, respectively. Spectrophotometric analysis of the identified PAHs showed that perinaphthenone, methylpyrenes, and pyrene contributed the most to the total PAH light absorption with 17.2%, 3.3 to 10.5%, and 7.6% of the total particle-phase PAH absorptivity averaged over analyzed emissions from the fuels. In the gas phase, the top three PAH contributors to BrC were acenaphthylene (32.6%), anthracene (8.2%), and 2,4,5-trimethylnaphthalene (8.0%). Overall, the identified PAHs were responsible for 0.087-0.16% (0.13% on average) and 0.033-0.15% (0.11% on average) of the total light absorption by dichloromethane-acetone extracts of particle and gas emissions, respectively. Toxic equivalency factor (TEF) analysis of 16 PAHs prioritized by the United States Environmental Protection Agency (EPA) showed that benzo(a)pyrene contributed the most to the PAH carcinogenic potency of particle phase emissions (61.8-67.4% to the total carcinogenic potency of Σ16EPA PAHs), while naphthalene played the major role in carcinogenicity of the gas phase PAHs in the biomass-burning emission analyzed here (35.4-46.0% to the total carcinogenic potency of Σ16EPA PAHs). The 16 EPA-prioritized PAHs contributed only 22.1±6.2% to total particle and 23.4±11% to total gas phase PAH mass, thus toxic properties of biomass-burning PAH emissions are most likely underestimated.

  8. Test of spectral emission and absorption characteristics of active optical fibers by direct side pumping.

    PubMed

    Zhang, Jianzhong; Luo, Yanhua; Sathi, Zinat M; Azadpeyma, Nilram; Peng, Gang-Ding

    2012-08-27

    Emission and absorption are two main properties of active optical fibers that are important for fiber amplifiers and lasers. We propose a direct side pumping scheme for non-deconstructive evaluation of active optical fibers. This scheme enables a simple in situ test of both emission and absorption characteristics without cutting fiber and produces good accuracy with very low pumping background. A commercial Er-doped fiber and a home-made Bi/Er co-doped optical fiber have been tested to demonstrate that the scheme is a useful alternative technique for characterizing active optical fiber or waveguides.

  9. Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign

    NASA Astrophysics Data System (ADS)

    de Foy, B.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Wiedinmyer, C.; Molina, L. T.

    2011-04-01

    The Mexico City Metropolitan Area (MCMA) experiences high loadings of atmospheric aerosols from anthropogenic sources, biomass burning and wind-blown dust. This paper uses a combination of measurements and numerical simulations to identify different plumes affecting the basin and to characterize transformation inside the plumes. The High Spectral Resolution Lidar on board the NASA LaRC B-200 King Air aircraft measured extinction coefficients and extinction to backscatter ratio at 532 nm, and backscatter coefficients and depolarization ratios at 532 and 1064 nm. These can be used to identify aerosol types. The measurement curtains are compared with particle trajectory simulations using WRF-Flexpart for different source groups. The good correspondence between measurements and simulations suggests that the aerosol transport is sufficiently well characterized by the models to estimate aerosol types and ages. Plumes in the basin undergo complex transport, and are frequently mixed together. Urban aerosols are readily identifiable by their low depolarization ratios and high lidar ratios, and dust by the opposite properties. Fresh biomass burning plumes have very low depolarization ratios which increase rapidly with age. This rapid transformation is consistent with the presence of atmospheric tar balls in the fresh plumes.

  10. Aerosol plume transport and transformation in high spectral resolution lidar measurements and WRF-Flexpart simulations during the MILAGRO Field Campaign

    NASA Astrophysics Data System (ADS)

    de Foy, B.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Wiedinmyer, C.; Molina, L. T.

    2010-11-01

    The Mexico City Metropolitan Area (MCMA) experiences high loadings of atmospheric aerosols from anthropogenic sources, biomass burning and wind-blown dust. This paper uses a combination of measurements and numerical simulations to identify different plumes affecting the basin and to characterize transformation inside the plumes. The airborne High Spectral Resolution Lidar measures extinction coefficients and extinction to backscatter ratio at 532 nm, and backscatter coefficients and depolarization ratios at 532 and 1064 nm. These can be used to identify aerosol types. The measurement curtains are compared with particle trajectory simulations using WRF-Flexpart for different source groups. The good correspondence between measurements and simulations suggests that the aerosol transport is sufficiently well characterized by the models to estimate aerosol types and ages. Plumes in the basin undergo complex transport, and are frequently mixed together. Urban aerosols are readily identifiable by their low depolarization ratios and high lidar ratios, and dust by the opposite properties. Fresh biomass burning plumes have very low depolarization ratios which increase rapidly with age. This rapid transformation is consistent with the presence of atmospheric tar balls in the fresh plumes.

  11. Experimental and Ab Initio Studies of the HDO Absorption Spectrum in the 13165-13500 1/cm Spectral Region

    NASA Technical Reports Server (NTRS)

    Schwenke, David; Naumenko, Olga; Bertseva, Elena; Campargue, Alain; Arnold, James O. (Technical Monitor)

    2000-01-01

    The HDO absorption spectrum has been recorded in the 13165 - 13500 cm(exp-1) spectral region by Intracavity Laser Absorption Spectroscopy. The spectrum (615 lines), dominated by the 2n2 + 3n3 and n1+3n3 bands was assigned and modeled leading to the derivation of 196 accurate energy levels of the (103) and (023) vibrational states. Finally, 150 of these levels have been reproduced by an effective Hamiltonian involving two vibrational dark states interacting with the (023) and ( 103) bright states. The rms deviation achieved by variation of 28 parameters is 0.05-1 cm, compared to an averaged experimental uncertainty of 0.007-1 cm, indicating the limit of validity of the effective Hamiltonian approach for HDO at high vibrational excitation. The predictions of previous ab initio calculations of the HDO spectrum were extensively used in the assignment process. The particular spectral region under consideration has been used to test and discuss the improvements of new ab initio calculations recently performed on the basis of the same potential energy surface but with an improved dipole moment surface. The improvements concern both the energy levels and the line intensities. In particular, the strong hybrid character of the n1+3n3 band is very well accounted for by the the new ab initio calculations.

  12. X-ray absorption spectral studies of copper (II) mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Soni, B.; Dar, Davood Ah; Shrivastava, B. D.; Prasad, J.; Srivastava, K.

    2014-09-01

    X-ray absorption spectra at the K-edge of copper have been studied in two copper mixed ligand complexes, one having tetramethyethylenediamine (tmen) and the other having tetraethyethylenediamine (teen) as one of the ligands. The spectra have been recorded at BL-8 dispersive extended X-ray absorption fine structure (EXAFS) beamline at the 2.5 GeV INDUS- 2 synchrotron, RRCAT, Indore, India. The data obtained has been processed using the data analysis program Athena. The energy of the K-absorption edge, chemical shift, edge-width and shift of the principal absorption maximum in the complexes have been determined and discussed. The values of these parameters have been found to be approximately the same in both the complexes indicating that the two complexes possess similar chemical environment around the copper metal atom. The chemical shift has been utilized to estimate effective nuclear charge on the absorbing atom. The normalized EXAFS spectra have been Fourier transformed. The position of the first peak in the Fourier transform gives the value of first shell bond length, which is shorter than the actual bond length because of energy dependence of the phase factors in the sine function of the EXAFS equation. This distance is thus the phase- uncorrected bond length. Bond length has also been determined by Levy's, Lytle's and Lytle, Sayers and Stern's (LSS) methods. The results obtained from LSS and the Fourier transformation methods are comparable with each other, since both are phase uncorrected bond lengths.

  13. Airborne Differential Absorption and High Spectral Resolution Lidar Measurements for Cirrus Cloud Studies

    NASA Astrophysics Data System (ADS)

    Gross, Silke; Schaefler, Andreas; Wirth, Martin; Fix, Andreas

    2016-06-01

    Aerosol and water vapor measurements were performed with the lidar system WALES of the German Aerospace Center (DLR) onboard the German research aircraft G550-HALO during the HALO Techno-Mission in October and November 2010 and during the ML-Cirrus mission in March and April 2014 over Central Europe and the North Atlantic region. Curtains composed of lidar profiles beneath the aircraft show the water vapor mixing ratio and the backscatter ratio. Temperature data from ECMWF model analysis are used to calculate the relative humidity above ice (RHi) in the 2-D field along the flight track to study the RHi distribution inside and outside of cirrus clouds at different stages of cloud evolution.

  14. Application of spectral analysis techniques in the intercomparison of aerosol data: Part III. Using combined PCA to compare spatiotemporal variability of MODIS, MISR, and OMI aerosol optical depth

    NASA Astrophysics Data System (ADS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-04-01

    Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.

  15. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data: Part III. Using Combined PCA to Compare Spatiotemporal Variability of MODIS, MISR and OMI Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Satellite measurements of global aerosol properties are very useful in constraining aerosol parameterization in climate models. The reliability of different data sets in representing global and regional aerosol variability becomes an essential question. In this study, we present the results of a comparison using combined principal component analysis (CPCA), applied to monthly mean, mapped (Level 3) aerosol optical depth (AOD) product from Moderate Resolution Imaging Spectroradiometer (MODIS), Multiangle Imaging Spectroradiometer (MISR), and Ozone Monitoring Instrument (OMI). This technique effectively finds the common space-time variability in the multiple data sets by decomposing the combined AOD field. The results suggest that all of the sensors capture the globally important aerosol regimes, including dust, biomass burning, pollution, and mixed aerosol types. Nonetheless, differences are also noted. Specifically, compared with MISR and OMI, MODIS variability is significantly higher over South America, India, and the Sahel. MODIS deep blue AOD has a lower seasonal variability in North Africa, accompanied by a decreasing trend that is not found in either MISR or OMI AOD data. The narrow swath of MISR results in an underestimation of dust variability over the Taklamakan Desert. The MISR AOD data also exhibit overall lower variability in South America and the Sahel. OMI does not capture the Russian wild fire in 2010 nor the phase shift in biomass burning over East South America compared to Central South America, likely due to cloud contamination and the OMI row anomaly. OMI also indicates a much stronger (boreal) winter peak in South Africa compared with MODIS and MISR.

  16. Evidence for cyclotron absorption from spectral features in gamma-ray bursts seen with Ginga

    NASA Technical Reports Server (NTRS)

    Murakami, T.; Fujii, M.; Hayashida, K.; Itoh, M.; Nishimura, J.

    1988-01-01

    New observations by the gamma-ray burst detector on board the Ginga satellite, which has two well-calibrated detectors covering a wide energy range of 1.5 to 375 keV, are reported. The spectral features obtained are consistent with first and second cyclotron harmonics. This finding is taken as strong evidence for the magnetized neutron star model of gamma-ray bursts.

  17. Application of Video Spectral Comparator (absorption spectra) for establishing the chronological order of intersecting printed strokes and writing pen strokes.

    PubMed

    Kaur, Ridamjeet; Saini, Komal; Sood, N C

    2013-06-01

    The sequence of intersecting strokes of laser printers (black, blue, red and green) and typewriter ink (black) with the strokes of gel pen ink, ballpoint pen ink and fountain pen ink (black, blue, red and green) has been determined by studying their absorption spectra. The absorption spectra have been generated for each of the two pure inks (i.e. A and B) and points of their intersections (i.e. A over B and B over A) by using Video Spectral Comparator (VSC-2000-HR). The study was carried out with an assumption that the peak characteristics of spectra from the point of intersection should correspond to the peak characteristics of pure ink which was executed later. It was observed that the absorption spectrum of intersection corresponds with either the laser printer or the typewriter ink stroke, whether these strokes were executed earlier or later than the writing instrument strokes. As the results obtained from the study were negative, the FDEs are advised against the practice of this technique in the examination of the sequence of intersecting strokes for these specified inks.

  18. Aerosol retrievals from AVHRR radiances: effects of particle nonsphericity and absorption and an updated long-term global climatology of aerosol properties

    NASA Astrophysics Data System (ADS)

    Mishchenko, M.; Geogdzhaev, I.; Liu, L.; Orgen, A.; Lacis, A.; Rossow, W.; Hovenier, J.; Volten, H.; Muñoz, O.

    2003-09-01

    The paper describes and discusses long-term global retrievals of aerosol properties from channel-1 and -2 Advanced Very High Resolution Radiometer (AVHRR) radiances. We reconfirm the previously reached conclusion that the nonsphericity of dust-like and dry sea salt aerosols can lead to very large errors in the retrieved optical thickness if one mistakenly applies the scattering model for spherical particles. Comparisons of single-scattering albedo and Ångström exponent values retrieved from the AVHRR data and those measured in situ at Sable Island indicate that the currently adopted value 0.003 can be a reasonable choice for the imaginary part of the aerosol refractive index in the global satellite retrievals. Several unexpected features in the long-term satellite record indicate a serious problem with post-launch calibration of channel-2 radiances from the NOAA-11 spacecraft. We solve this problem by using a simple re-calibration procedure removing the observed artifacts and derive a global climatology of aerosol optical thickness and size over the oceans for the period extending from July 1983 to December 1999. The global monthly mean optical thickness and Ångström exponent of tropospheric aerosols show no significant trends over the entire period and oscillate around the average values 0.145 and 0.75, respectively. The Northern hemisphere means optical thickness systematically exceeds that averaged over the Southern hemisphere. The AVHRR retrieval results during the period affected by the Mt. Pinatubo eruption are consistent with the retrievals of the stratospheric aerosol optical thickness based on Stratospheric Aerosol and Gas Experiment (SAGE) data. Time series of the aerosol optical thickness and Ângström exponent derived for four separate geographic regions exhibit varying degrees of seasonal variability controlled by local meteorological events and/or anthropogenic activities.

  19. Applying and comparing two chemometric methods in absorption spectral analysis of photopigments from Arctic microalgae.

    PubMed

    Zhang, Fang; He, Jianfeng; Xia, Lihua; Cai, Minghong; Lin, Ling; Guang, Yingzhi

    2010-11-01

    Pigment absorption property of two arctic microalgae species (Skeletonema marinoi and Chlorella sp.) cultured at three temperatures (0, 4 and 8°C) was analyzed. Carotenoids and chlorophyll (Chl) c were positive factors to the high cell activities and primary productivities of S. marinoi at 4°C and 0°C, respectively; whereas Chl a had a positive effect on Chlorella sp. at all three temperatures, and carotenoids had a relatively high effect at 0°C. The absorption locations of photopigments were analyzed in detail using both fourth derivative and Symlet-6 wavelet analysis. Both methods precisely detected pigments with a relative large content; the fourth derivative analysis specifically detected the existence of a Chl a peak at about 410 nm and showed better differentiation of diatoxanthin, whereas the wavelet analysis distinctively indicated the existence of chlorophyllide a, β-carotene, and Chl c. The separation limit to pigment peaks of the fourth derivative spectra (4 nm) was 1 nm higher than that of the wavelet high-frequency spectra (3 nm). The wavelet high-frequency spectra were more stable in detecting pigment locations and were more effective in discriminating microalgae. Small algebraic difference of 10(-16) between the reconstructed absorption spectra obtained by the inverse wavelet transform and their corresponding original spectra also showed the validity of Symlet-6 wavelet in the detection of pigments. Another specific discovery of this research is the existence of a Chl a allomer in Chlorella sp., which was detected by both methods.

  20. Source apportionment of absorbing aerosols in the central Indo-Gangetic Plain

    NASA Astrophysics Data System (ADS)

    Vaishya, Aditya; Singh, Prayagraj; Rastogi, Shantanu; Babu, S. Suresh

    2016-05-01

    Atmospheric aerosols in the Indo-Gangetic Plain (IGP) depicts high spatial and temporal heterogeneity in their radiative properties. Despite the fact that significant advancement in terms of characterizing aerosols radiative and physiochemical properties in the IGP have been made, information regarding the organic content towards total absorbing aerosol budget is lacking. In the present study we have analyzed two years of aerosol spectral light absorption measurements from the central-IGP, Gorakhpur (26.75°N, 83.38°E, 85m amsl), in order to study their seasonal behavior and to quantify their magnitude in terms of absorbing aerosols loading and source speciation. Remote sensing data in the form of 'Cloud corrected Fire Count' from MODIS Terra and 'Absorption Aerosol Index' from OMI satellites platform have been used to identify absorbing aerosol source regions. Spectral absorption analysis reveals a four-fold enhancement in absorption in the winter (W) and the post-monsoon (PoM) seasons at UV wavelengths as compared to 880 nm on account of increased biomass aerosol contribution to total absorbing aerosol load. Despite having higher fire events and absorption aerosol index, both indicating high biomass burning activities, in the pre-monsoon (PM) season, aerosols from the biomass sources contribute ~ 27% during the W and the PoM seasons as against ~17% in the PM season to the total absorbing aerosol content. This is due to near stagnant wind conditions and shallow height of air masses travelling to the central IGP in the W and the PoM seasons.

  1. Fitting peculiar spectral profiles in He I 10830Å absorption features

    NASA Astrophysics Data System (ADS)

    González Manrique, S. J.; Kuckein, C.; Pastor Yabar, A.; Collados, M.; Denker, C.; Fischer, C. E.; Gömöry, P.; Diercke, A.; Bello González, N.; Schlichenmaier, R.; Balthasar, H.; Berkefeld, T.; Feller, A.; Hoch, S.; Hofmann, A.; Kneer, F.; Lagg, A.; Nicklas, H.; Orozco Suárez, D.; Schmidt, D.; Schmidt, W.; Sigwarth, M.; Sobotka, M.; Solanki, S. K.; Soltau, D.; Staude, J.; Strassmeier, K. G.; Verma, M.; Volkmer, R.; von der Lühe, O.; Waldmann, T.

    2016-11-01

    The new generation of solar instruments provides better spectral, spatial, and temporal resolution for a better understanding of the physical processes that take place on the Sun. Multiple-component profiles are more commonly observed with these instruments. Particularly, the He I 10830 Å triplet presents such peculiar spectral profiles, which give information on the velocity and magnetic fine structure of the upper chromosphere. The purpose of this investigation is to describe a technique to efficiently fit the two blended components of the He I 10830 Å triplet, which are commonly observed when two atmospheric components are located within the same resolution element. The observations used in this study were taken on 2015 April 17 with the very fast spectroscopic mode of the GREGOR Infrared Spectrograph (GRIS) attached to the 1.5-m GREGOR solar telescope, located at the Observatorio del Teide, Tenerife, Spain. We apply a double-Lorentzian fitting technique using Levenberg-Marquardt least-squares minimization. This technique is very simple and much faster than inversion codes. Line-of-sight Doppler velocities can be inferred for a whole map of pixels within just a few minutes. Our results show sub- and supersonic downflow velocities of up to 32 km s-1 for the fast component in the vicinity of footpoints of filamentary structures. The slow component presents velocities close to rest.

  2. Retrieval of aerosol absorption properties using the AATSR satellite instrument: a case study of wildfires over Russia 2010

    NASA Astrophysics Data System (ADS)

    Rodríguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundström, A.-M.; de Leeuw, G.

    2014-09-01

    The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured radiances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties.The optimum fit is obtained for a certain combination of aerosol components, which are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). However, other aerosol properties could be provided. In the aerosol retrieval algorithm (ADV) applied to data from the Advanced Along Track Scanning Radiometer (AATSR), four aerosol components are used, each of which is defined by their (lognormal) size distribution and a complex refractive index. The fine mode fraction is a continuous mixture of weakly and strongly absorbing components which allows for the definition of any absorbing aerosol model within the specified limits. Hence, assuming that the correct aerosol model is selected during the retrieval process, also the single scattering albedo (SSA) should correctly be retrieved. In this paper we present the SSA retrieval using the ADV algorithm by application to wildfires over Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE is 0.03 for SSA and 0.02 for AAOD. The SSA is further evaluated by comparison with the SSA retrieved from the Ozone Monitoring Instrument (OMI). The SSA retrieved from both instruments show similar features, but the AATSR-retrieved SSA values over areas affected by wildfires are lower.

  3. Study of aerosol radiative properties under different relative humidity conditions in the thermal infrared region

    NASA Astrophysics Data System (ADS)

    Kuo, C. P.; Yang, P.; Nasiri, S. L.; Liu, X.

    2014-12-01

    In the aerosol transport process, the optical properties of aerosol particles can vary due to humidification or mixing with other kinds of aerosols. Previous studies have shown mixing dust with other types of aerosol tends to make the aerosol more spectrally absorptive, but the degree of impact of relative humidity (RH) along the transport path is not clear. To investigate this effect, we conduct a numerical study to estimate the radiative sensitivity of aerosols under various relative humidity conditions. Specifically, the OPAC (Optical Properties of Aerosols and Clouds) database is used, which provides the optical properties (i.e., the extinction, scattering and absorption coefficient, single-scattering albedo, asymmetry factor and phase function) of ten types of aerosols under various relative humidity conditions. Lookup tables (LUTs) of the bidirectional reflectivity, transmissivity and effective emissivity will be computed for the ten aerosol types for input to the high-spectral-resolution radiative transfer model (HRTM). Using these LUTs, the HTRM can calculate top-of-atmospheric brightness temperatures, which we can use to determine the degree of radiative sensitivity in the infrared spectral region. Furthermore, comparisons between simulations and MODIS observations will be presented.

  4. A critical review of measurements of water vapor absorption in the 840 to 1100 cm(-1) spectral region

    NASA Technical Reports Server (NTRS)

    Grant, William B.

    1987-01-01

    A set of eleven measurements of the water vapor continuum absorption in the 840 to 1100 sq cm spectral region is reviewed and compared with spectral models maintained by the Air Force Geophysics Laboratory. The measurements were made in four different ways: spectrometer with a White cell, CO2 laser with a White cell, CO2 laser with a spectrophone, and broadband radiation source over a long atmospheric path. Where possible, the data were selected at a water vapor partial pressure of ten torr buffered to 760 torr with N2 or synthetic air and a temperature of between 296 and 300 K. The intercomparison of the data leads to several observations and conclusions. First, there are four sets of laboratory data taken with nitrogen as the buffer gas which generally agree well mutually and with AFGL's HITRAN code. Second, there is one set of laboratory data that shows that using air as the buffer gas gives a few percent decrease in the water vapor continuum compared with using nitrogen as the buffer gas. Third, the atmospheric long-path measurements for water vapor partial pressure below about 12 torr are roughly grouped within 20 percent of the HITRAN values. Fourth, there are three sets of spectrophone data for water vapor in synthetic air which are significantly higher than any of the other measurements. This discrepancy is attributed to the effects of impurity gases in the cell.

  5. Spectral Moments of Collision-Induced Absorption of CO2 Pairs: The Role of the Intermolecular Potential

    NASA Technical Reports Server (NTRS)

    Gruszka, Marcin; Borysow, Aleksandra

    1994-01-01

    In this paper we examine the role of the anisotropy of the intermolecular potential in the rototranslational collision-induced absorption of the CO2 pairs. Using newly developed formulas that include the effects of anisotropy of the potential to all orders, we calculate the two lowest spectral moments gamma(prime), and alpha(prime), for four different classes of C02 pair potentials and compare the results with the experimental values. We assumed only multipolar induction in the process of forming the induced dipole, with the second-order contributions included. Using a site-site LJ and a site-site semi-ab initio intermolecular potentials we were able to reproduce the experimental values of gamma(prime), and alpha(prime) moments over entire temperature range from 230 to 330 K. Also, the role of an electrostatic interaction between two C02 molecules and its impact on the spectral moments is thoroughly investigated. An isotropic core with a point quadrupole centered at each molecule is shown to be an inadequate representation of the C02-CO2 potential. Additionally, we show the results obtained with the first- and second-order perturbation theory to be more than twice too small.

  6. Light Absorbing Aerosols in Mexico City

    NASA Astrophysics Data System (ADS)

    Marley, N. A.; Kelley, K. L.; Kilaparty, P. S.; Gaffney, J. S.

    2008-12-01

    The direct effects of aerosol radiative forcing has been identified by the IPCC as a major uncertainty in climate modeling. The DOE Megacity Aerosol Experiment-Mexico City (MAX-Mex), as part of the MILAGRO study in March of 2006, was undertaken to reduce these uncertainties by characterization of the optical, chemical, and physical properties of atmospheric aerosols emitted from this megacity environment. Aerosol samples collected during this study using quartz filters were characterized in the uv-visible-infrared by using surface spectroscopic techniques. These included the use of an integrating sphere approach combined with the use of Kubelka-Munk theory to obtain aerosol absorption spectra. In past work black carbon has been assumed to be the only major absorbing species in atmospheric aerosols with an broad band spectral profile that follows a simple inverse wavelength dependence. Recent work has also identified a number of other absorbing species that can also add to the overall aerosol absorption. These include primary organics from biomass and trash burning and secondary organic aerosols including nitrated PAHs and humic-like substances, or HULIS. By using surface diffuse reflection spectroscopy we have also obtained spectra in the infrared that indicate significant IR absorption in the atmospheric window-region. These data will be presented and compared to spectra of model compounds that allow for evaluation of the potential importance of these species in adding strength to the direct radiative forcing of atmospheric aerosols. This work was supported by the Office of Science (BER), U.S. Department of Energy, Grant No. DE-FG02-07ER64327 as part of the Atmospheric Science Program.

  7. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    NASA Astrophysics Data System (ADS)

    Parkhomenko, A. I.; Shalagin, Anatolii M.

    2013-02-01

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening γ and shift Δ of the absorption line on the velocity of resonance particles, ν. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency.

  8. Spectral anomalies of the light-induced drift effect caused by the velocity dependence of the collision broadening and shift of the absorption line

    SciTech Connect

    Parkhomenko, A I; Shalagin, Anatolii M

    2013-02-28

    We have theoretically investigated the spectral features of the light-induced drift (LID) effect, arising due to the dependence of the collision broadening {gamma} and shift {Delta} of the absorption line on the velocity of resonance particles, {nu}. It is shown that under certain conditions, account of this dependence can radically change the spectral shape of the LID signal, up to the appearance of additional zeros in the dependence of the drift velocity on the radiation frequency. (nonlinear optical phenomena)

  9. Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds

    NASA Astrophysics Data System (ADS)

    Fountoulakis, Ilias; Bais, Alkiviadis F.; Fragkos, Konstantinos; Meleti, Charickleia; Tourpali, Kleareti; Zempila, Melina Maria

    2016-03-01

    In this study, we discuss the short- and the long-term variability of spectral UV irradiance at Thessaloniki, Greece, using a long, quality-controlled data set from two Brewer spectrophotometers. Long-term changes in spectral UV irradiance at 307.5, 324 and 350 nm for the period 1994-2014 are presented for different solar zenith angles and discussed in association with changes in total ozone column (TOC), aerosol optical depth (AOD) and cloudiness observed in the same period. Positive changes in annual mean anomalies of UV irradiance, ranging from 2 to 6 % per decade, have been detected both for clear- and all-sky conditions. The changes are generally greater for larger solar zenith angles and for shorter wavelengths. For clear-skies, these changes are, in most cases, statistically significant at the 95 % confidence limit. Decreases in the aerosol load and weakening of the attenuation by clouds lead to increases in UV irradiance in the summer, of 7-9 % per decade for 64° solar zenith angle. The increasing TOC in winter counteracts the effect of decreasing AOD for this particular season, leading to small, statistically insignificant, negative long-term changes in irradiance at 307.5 nm. Annual mean UV irradiance levels are increasing from 1994 to 2006 and remain relatively stable thereafter, possibly due to the combined changes in the amount and optical properties of aerosols. However, no statistically significant corresponding turning point has been detected in the long-term changes of AOD. The absence of signatures of changes in AOD in the short-term variability of irradiance in the UV-A may have been caused by changes in the single scattering albedo of aerosols, which may counteract the effects of changes in AOD on irradiance. The anti-correlation between the year-to-year variability of the irradiance at 307.5 nm and TOC is clear and becomes clearer as the AOD decreases.

  10. Presence of terrestrial atmospheric gas absorption bands in standard extraterrestrial solar irradiance curves in the near-infrared spectral region.

    PubMed

    Gao, B C; Green, R O

    1995-09-20

    The solar irradiance curves compiled by Wehrli [Physikalisch-Meteorologisches Observatorium Publ. 615 (World Radiation Center, Davosdorf, Switzerland, 1985)] and by Neckel and Labs [Sol. Phys. 90, 205 (1984)] are widely used. These curves were obtained based on measurements of solar radiation from the ground and from aircraft platforms. Contaminations in these curves by atmospheric gaseous absorptions were inevitable. A technique for deriving the transmittance spectrum of the Sun's atmosphere from high-resolution (0.01 cm(-1)) solar occultation spectra measured above the Earth's atmosphere by the use of atmospheric trace molecule spectroscopy (ATMOS) aboard the space shuttle is described. The comparisons of the derived ATMOS solar transmittance spectrum with the two solar irradiance curves show that he curve derived by Wehrli contains many absorption features in the 2.0-2.5-µm region that are not of solar origin, whereas the curve obtained by Neckel and Labs is completely devoid of weak solar absorption features that should be there. An Earth atmospheric oxygen band at 1.268 µm and a water-vapor band near 0.94 µm are likely present in the curve obtained by Wehrli. It is shown that the solar irradiance measurement errors in some narrow spectral intervals can be as large as 20%. An improved solar irradiance spectrum is formed by the incorporation of the solar transmittance spectrum derived from the ATMOS data into the solar irradiance spectrum from Neckel and Labs. The availability of a new solar spectrum from 50 to 50 000 cm(-1) from the U.S. Air Force Phillips Laboratory is also discussed.

  11. High-accuracy measurement of low-water-content in liquid using NIR spectral absorption method

    NASA Astrophysics Data System (ADS)

    Peng, Bao-Jin; Wan, Xu; Jin, Hong-Zhen; Zhao, Yong; Mao, He-Fa

    2005-01-01

    Water content measurement technologies are very important for quality inspection of food, medicine products, chemical products and many other industry fields. In recent years, requests for accurate low-water-content measurement in liquid are more and more exigent, and great interests have been shown from the research and experimental work. With the development and advancement of modern production and control technologies, more accurate water content technology is needed. In this paper, a novel experimental setup based on near-infrared (NIR) spectral technology and fiber-optic sensor (OFS) is presented. It has a good measurement accuracy about -/+ 0.01%, which is better, to our knowledge, than most other methods published until now. It has a high measurement resolution of 0.001% in the measurement range from zero to 0.05% for water-in-alcohol measurement, and the water-in-oil measurement is carried out as well. In addition, the advantages of this method also include pollution-free to the measured liquid, fast measurement and so on.

  12. Photoacoustic Optical Properties at UV, VIS, and near IR Wavelengths for Laboratory Generated and Winter Time Ambient Urban Aerosols

    NASA Technical Reports Server (NTRS)

    Gyawali, M.; Arnott, W. P.; Zaveri, R. A.; Song, C.; Moosmuller, H.; Liu, L.; Mishchenko, M. I.; Chen, L.-W.A.; Green, M. C.; Watson, J. G.; Chow, J. C.

    2012-01-01

    We present the laboratory and ambient photoacoustic (PA) measurement of aerosol light absorption coefficients at ultraviolet wavelength (i.e., 355 nm) and compare with measurements at 405, 532, 870, and 1047 nm. Simultaneous measurements of aerosol light scattering coefficients were achieved by the integrating reciprocal nephelometer within the PA's acoustic resonator. Absorption and scattering measurements were carried out for various laboratory generated aerosols, including salt, incense, and kerosene soot to evaluate the instrument calibration and gain insight on the spectral dependence of aerosol light absorption and scattering. Ambient measurements were obtained in Reno, Nevada, between 18 December 2009 and 18 January 2010. The measurement period included days with and without strong ground level temperature inversions, corresponding to highly polluted (freshly emitted aerosols) and relatively clean (aged aerosols) conditions. Particulate matter (PM) concentrations were measured and analyzed with other tracers of traffic emissions. The temperature inversion episodes caused very high concentration of PM (sub 2.5) and PM( sub 10) (particulate matter with aerodynamic diameters less than 2.5 micrometers and 10 micrometers, respectively) and gaseous pollutants: carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO2). The diurnal change of absorption and scattering coefficients during the polluted (inversion) days increased approximately by a factor of two for all wavelengths compared to the clean days. The spectral variation in aerosol absorption coefficients indicated a significant amount of absorbing aerosol from traffic emissions and residential wood burning. The analysis of single scattering albedo (SSA), Angstrom exponent of absorption (AEA), and Angstrom exponent of scattering (AES) for clean and polluted days provides evidences that the aerosol aging and coating process is suppressed by strong temperature inversion under cloudy conditions. In

  13. Temporal and spectral cloud screening of polar winter aerosol optical depth (AOD): impact of homogeneous and inhomogeneous clouds and crystal layers on climatological-scale AODs

    NASA Astrophysics Data System (ADS)

    O'Neill, Norman T.; Baibakov, Konstantin; Hesaraki, Sareh; Ivanescu, Liviu; Martin, Randall V.; Perro, Chris; Chaubey, Jai P.; Herber, Andreas; Duck, Thomas J.

    2016-10-01

    We compared star-photometry-derived, polar winter aerosol optical depths (AODs), acquired at Eureka, Nunavut, Canada, and Ny-Ålesund, Svalbard, with GEOS-Chem (GC) simulations as well as ground-based lidar and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) retrievals over a sampling period of two polar winters. The results indicate significant cloud and/or low-altitude ice crystal (LIC) contamination which is only partially corrected using temporal cloud screening. Spatially homogeneous clouds and LICs that remain after temporal cloud screening represent an inevitable systematic error in the estimation of AOD: this error was estimated to vary from 78 to 210 % at Eureka and from 2 to 157 % at Ny-Ålesund. Lidar analysis indicated that LICs appeared to have a disproportionately large influence on the homogeneous coarse-mode optical depths that escape temporal cloud screening. In principle, spectral cloud screening (to yield fine-mode or submicron AODs) reduces pre-cloud-screened AODs to the aerosol contribution if one assumes that coarse-mode (super-micron) aerosols are a minor part of the AOD. Large, low-frequency differences between these retrieved values and their GC analogue appeared to be often linked to strong, spatially extensive planetary boundary layer events whose presence at either site was inferred from CALIOP profiles. These events were either not captured or significantly underestimated by the GC simulations. High-frequency AOD variations of GC fine-mode aerosols at Ny-Ålesund were attributed to sea salt, while low-frequency GC variations at Eureka and Ny-Ålesund were attributable to sulfates. CALIOP profiles and AODs were invaluable as spatial and temporal redundancy support (or, alternatively, as insightful points of contention) for star photometry retrievals and GC estimates of AOD.

  14. Aerosol absorption coefficient and Equivalent Black Carbon by parallel operation of AE31 and AE33 aethalometers at the Zeppelin station, Ny Ålesund, Svalbard

    NASA Astrophysics Data System (ADS)

    Eleftheriadis, Konstantinos; Kalogridis, Athina-Cerise; Vratolis, Sterios; Fiebig, Markus

    2016-04-01

    Light absorbing carbon in atmospheric aerosol plays a critical role in radiative forcing and climate change. Despite the long term measurements across the Arctic, comparing data obtained by a variety of methods across stations requires caution. A method for extracting the aerosol absorption coefficient from data obtained over the decades by filter based instrument is still under development. An IASOA Aerosol working group has been initiated to address this and other cross-site aerosol comparison opportunities. Continuous ambient measurements of EBC/light attenuation by means of a Magee Sci. AE-31 aethalometer operating at the Zeppelinfjellet station (474 m asl; 78°54'N, 11°53'E), Ny Ålesund, Svalbard, have been available since 2001 (Eleftheriadis et al, 2009), while a new aethalometer model (AE33, Drinovec et al, 2014) has been installed to operate in parallel from the same inlet since June 2015. Measurements are recorded by a Labview routine collecting all available parameters reported by the two instrument via RS232 protocol. Data are reported at 1 and 10 minute intervals as averages for EBC (μg m-3) and aerosol absorption coefficients (Mm-1) by means of routine designed to report Near Real Time NRT data at the EBAS WDCA database (ebas.nilu.no) Results for the first 6 month period are reported here in an attempt to evaluate comparative performance of the two instruments in terms of their response with respect to the variable aerosol load of light absorbing carbon during the warm and cold seasons found in the high arctic. The application of available conversion schemes for obtaining the absorption coefficient by the two instruments is found to demonstrate a marked difference in their output. During clean periods of low aerosol load (EBC < 30 ng m-3), the two instruments display a better agreement with regression slope for the 880 nm signal between the two at ~ 0.9 compared to a slope at ~ 0.6 during the period of higher absorbing carbon loads (400< EBC<30 ng m

  15. HST hot-Jupiter transmission spectral survey: evidence for aerosols and lack of TiO in the atmosphere of WASP-12b

    NASA Astrophysics Data System (ADS)

    Sing, D. K.; Lecavelier des Etangs, A.; Fortney, J. J.; Burrows, A. S.; Pont, F.; Wakeford, H. R.; Ballester, G. E.; Nikolov, N.; Henry, G. W.; Aigrain, S.; Deming, D.; Evans, T. M.; Gibson, N. P.; Huitson, C. M.; Knutson, H.; Showman, A. P.; Vidal-Madjar, A.; Wilson, P. A.; Williamson, M. H.; Zahnle, K.

    2013-12-01

    We present Hubble Space Telescope (HST) optical transmission spectra of the transiting hot-Jupiter WASP-12b, taken with the Space Telescope Imaging Spectrograph instrument. The resulting spectra cover the range 2900-10 300 Å which we combined with archival Wide Field Camera 3 spectra and Spitzer photometry to cover the full optical to infrared wavelength regions. With high spatial resolution, we are able to resolve WASP-12A's stellar companion in both our images and spectra, revealing that the companion is in fact a close binary M0V pair, with the three stars forming a triple-star configuration. We derive refined physical parameters of the WASP-12 system, including the orbital ephemeris, finding the exoplanet's density is ˜20 per cent lower than previously estimated. From the transmission spectra, we are able to decisively rule out prominent absorption by TiO in the exoplanet's atmosphere, as there are no signs of the molecule's characteristic broad features nor individual bandheads. Strong pressure-broadened Na and K absorption signatures are also excluded, as are significant metal-hydride features. We compare our combined broad-band spectrum to a wide variety of existing aerosol-free atmospheric models, though none are satisfactory fits. However, we do find that the full transmission spectrum can be described by models which include significant opacity from aerosols: including Rayleigh scattering, Mie scattering, tholin haze and settling dust profiles. The transmission spectrum follows an effective extinction cross-section with a power law of index α, with the slope of the transmission spectrum constraining the quantity αT = -3528 ± 660 K, where T is the atmospheric temperature. Rayleigh scattering (α = -4) is among the best-fitting models, though requires low terminator temperatures near 900 K. Sub-micron size aerosol particles can provide equally good fits to the entire transmission spectrum for a wide range of temperatures, and we explore corundum as a

  16. Biogenic Aerosols – Effects on Climate and Clouds. Cloud Optical Depth (COD) Sensor Three-Waveband Spectrally-Agile Technique (TWST) Field Campaign Report

    SciTech Connect

    Niple, E. R.; Scott, H. E.

    2016-04-01

    This report describes the data collected by the Three-Waveband Spectrally-agile Technique (TWST) sensor deployed at Hyytiälä, Finland from 16 July to 31 August 2014 as a guest on the Biogenic Aerosols Effects on Climate and Clouds (BAECC) campaign. These data are currently available from the Atmospheric Radiation Measurement (ARM) Data Archive website and consists of Cloud Optical Depth (COD) measurements for the clouds directly overhead approximately every second (with some dropouts described below) during the daylight periods. A good range of cloud conditions were observed from clear sky to heavy rainfall.

  17. Parameterization of single-scattering albedo (SSA) and absorption Ångström exponent (AAE) with EC / OC for aerosol emissions from biomass burning

    NASA Astrophysics Data System (ADS)

    Pokhrel, Rudra P.; Wagner, Nick L.; Langridge, Justin M.; Lack, Daniel A.; Jayarathne, Thilina; Stone, Elizabeth A.; Stockwell, Chelsea E.; Yokelson, Robert J.; Murphy, Shane M.

    2016-08-01

    Single-scattering albedo (SSA) and absorption Ångström exponent (AAE) are two critical parameters in determining the impact of absorbing aerosol on the Earth's radiative balance. Aerosol emitted by biomass burning represent a significant fraction of absorbing aerosol globally, but it remains difficult to accurately predict SSA and AAE for biomass burning aerosol. Black carbon (BC), brown carbon (BrC), and non-absorbing coatings all make substantial contributions to the absorption coefficient of biomass burning aerosol. SSA and AAE cannot be directly predicted based on fuel type because they depend strongly on burn conditions. It has been suggested that SSA can be effectively parameterized via the modified combustion efficiency (MCE) of a biomass burning event and that this would be useful because emission factors for CO and CO2, from which MCE can be calculated, are available for a large number of fuels. Here we demonstrate, with data from the FLAME-4 experiment, that for a wide variety of globally relevant biomass fuels, over a range of combustion conditions, parameterizations of SSA and AAE based on the elemental carbon (EC) to organic carbon (OC) mass ratio are quantitatively superior to parameterizations based on MCE. We show that the EC / OC ratio and the ratio of EC / (EC + OC) both have significantly better correlations with SSA than MCE. Furthermore, the relationship of EC / (EC + OC) with SSA is linear. These improved parameterizations are significant because, similar to MCE, emission factors for EC (or black carbon) and OC are available for a wide range of biomass fuels. Fitting SSA with MCE yields correlation coefficients (Pearson's r) of ˜ 0.65 at the visible wavelengths of 405, 532, and 660 nm while fitting SSA with EC / OC or EC / (EC + OC) yields a Pearson's r of 0.94-0.97 at these same wavelengths. The strong correlation coefficient at 405 nm (r = 0.97) suggests that parameterizations based on EC / OC or EC / (EC + OC) have good predictive

  18. Aerosol Single-Scattering Albedo Derived from MODIS Reflectances over a Bright Surface

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Martins, J.; Remer, L. A.; Kreidenweis, S. M.; Stephens, G. L.

    2010-12-01

    The sign and magnitude of the aerosol radiative forcing over bright surfaces is highly dependent on the absorbing properties of the aerosol. Thus, the determination of aerosol forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA). However, the brightness of desert surfaces complicates the retrieval of aerosol optical properties using passive space-based measurements. The aerosol critical reflectance is one parameter that can be used to relate TOA reflectance changes over land to the aerosol absorption properties, without knowledge of the underlying surface properties or aerosol loading. Physically, the parameter represents the TOA reflectance at which increased aerosol scattering due to increased aerosol loading is balanced by increased absorption of the surface contribution to the TOA reflectance. It can be derived by comparing two satellite images with different aerosol loading, assuming that the surface reflectance and background aerosol is similar between the two days. In this work, we explore the utility of the critical reflectance method for routine monitoring of spectral aerosol absorption from space over North Africa, a region that is predominantly impacted by absorbing dust and biomass burning aerosol. We derive the critical reflectance from MODIS Level 1B reflectances in the vicinity of two AERONET stations: Tamanrasset, a site in the Algerian Sahara, and Banizoumbou, a Sahelian site in Niger. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties, as well as solar and viewing geometry, using the SBDART model, and apply our findings to retrieve SSA from the MODIS critical reflectance values. We compare our results to AERONET-retrieved estimates, as well as measurements of the TOA albedo and surface fluxes from GERB, ARM, and CERES data. Spectral SSA values retrieved at Banizoumbou result in TOA forcing estimates that agree with CERES measurements

  19. The spectral variability of the GHZ-Peaked spectrum radio source PKS 1718-649 and a comparison of absorption models

    SciTech Connect

    Tingay, S. J.; Macquart, J.-P.; Wayth, R. B.; Trott, C. M.; Emrich, D.; Collier, J. D.; Wong, G. F.; Rees, G.; Stevens, J.; Carretti, E.; Callingham, J. R.; Gaensler, B. M.; McKinley, B.; Briggs, F.; Bernardi, G.; Bowman, J. D.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Goeke, R.; and others

    2015-02-01

    Using the new wideband capabilities of the ATCA, we obtain spectra for PKS 1718-649, a well-known gigahertz-peaked spectrum radio source. The observations, between approximately 1 and 10 GHz over 3 epochs spanning approximately 21 months, reveal variability both above the spectral peak at ∼3 GHz and below the peak. The combination of the low- and high-frequency variability cannot be easily explained using a single absorption mechanism, such as free–free absorption or synchrotron self-absorption. We find that the PKS 1718-649 spectrum and its variability are best explained by variations in the free–free optical depth on our line of sight to the radio source at low frequencies (below the spectral peak) and the adiabatic expansion of the radio source itself at high frequencies (above the spectral peak). The optical depth variations are found to be plausible when X-ray continuum absorption variability seen in samples of active galactic nuclei is considered. We find that the cause of the peaked spectrum in PKS 1718-649 is most likely due to free–free absorption. In agreement with previous studies, we find that the spectrum at each epoch of observation is best fit by a free–free absorption model characterized by a power-law distribution of free–free absorbing clouds. This agreement is extended to frequencies below the 1 GHz lower limit of the ATCA by considering new observations with Parkes at 725 MHz and 199 MHz observations with the newly operational Murchison Widefield Array. These lower frequency observations argue against families of absorption models (both free–free and synchrotron self-absorption) that are based on simple homogenous structures.

  20. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    NASA Technical Reports Server (NTRS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  1. A Chronology of Annual-Mean Effective Radii of Stratospheric Aerosols from Volcanic Eruptions During the Twentieth Century as Derived From Ground-based Spectral Extinction Measurements

    NASA Technical Reports Server (NTRS)

    Strothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    Stratospheric extinction can be derived from ground-based spectral photometric observations of the Sun and other stars (as well as from satellite and aircraft measurements, available since 1979), and is found to increase after large volcanic eruptions. This increased extinction shows a characteristic wavelength dependence that gives information about the chemical composition and the effective (or area weighted mean) radius of the particles responsible for it. Known to be tiny aerosols constituted of sulfuric acid in a water solution, the stratospheric particles at midlatitudes exhibit a remarkable uniformity of their column-averaged effective radii r(sub eff) in the first few months after the eruption. Considering the seven largest eruptions of the twentieth century, r(sub eff) at this phase of peak aerosol abundance is approx. 0.3 micrometers in all cases. A year later, r(sub eff) either has remained about the same size (almost certainly in the case of the Katmai eruption of 1912) or has increased to approx. 0.5 micrometers (definitely so for the Pinatubo eruption of 1991). The reasons for this divergence in aerosol growth are unknown.

  2. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar aerosol optical property retrieval intercomparison during the 2012 7-SEAS field campaign at Singapore

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boom Ning; Salinas, Santo V.

    2014-10-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  3. Spectrally Consistent Scattering, Absorption, and Polarization Properties of Atmospheric Ice Crystals at Wavelengths from 0.2 to 100 um

    NASA Technical Reports Server (NTRS)

    Yang, Ping; Bi, Lei; Baum, Bryan A.; Liou, Kuo-Nan; Kattawar, George W.; Mishchenko, Michael I.; Cole, Benjamin

    2013-01-01

    A data library is developed containing the scattering, absorption, and polarization properties of ice particles in the spectral range from 0.2 to 100 microns. The properties are computed based on a combination of the Amsterdam discrete dipole approximation (ADDA), the T-matrix method, and the improved geometric optics method (IGOM). The electromagnetic edge effect is incorporated into the extinction and absorption efficiencies computed from the IGOM. A full set of single-scattering properties is provided by considering three-dimensional random orientations for 11 ice crystal habits: droxtals, prolate spheroids, oblate spheroids, solid and hollow columns, compact aggregates composed of eight solid columns, hexagonal plates, small spatial aggregates composed of 5 plates, large spatial aggregates composed of 10 plates, and solid and hollow bullet rosettes. The maximum dimension of each habit ranges from 2 to 10,000 microns in 189 discrete sizes. For each ice crystal habit, three surface roughness conditions (i.e., smooth, moderately roughened, and severely roughened) are considered to account for the surface texture of large particles in the IGOM applicable domain. The data library contains the extinction efficiency, single-scattering albedo, asymmetry parameter, six independent nonzero elements of the phase matrix (P11, P12, P22, P33, P43, and P44), particle projected area, and particle volume to provide the basic single-scattering properties for remote sensing applications and radiative transfer simulations involving ice clouds. Furthermore, a comparison of satellite observations and theoretical simulations for the polarization characteristics of ice clouds demonstrates that ice cloud optical models assuming severely roughened ice crystals significantly outperform their counterparts assuming smooth ice crystals.

  4. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence

    NASA Astrophysics Data System (ADS)

    Du Le, Vinh Nguyen; Patterson, Michael S.; Farrell, Thomas J.; Hayward, Joseph E.; Fang, Qiyin

    2015-12-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  5. Experimental recovery of intrinsic fluorescence and fluorophore concentration in the presence of hemoglobin: spectral effect of scattering and absorption on fluorescence.

    PubMed

    Du Le, Vinh Nguyen; Patterson, Michael S; Farrell, Thomas J; Hayward, Joseph E; Fang, Qiyin

    2015-01-01

    The ability to recover the intrinsic fluorescence of biological fluorophores is crucial to accurately identify the fluorophores and quantify their concentrations in the media. Although some studies have successfully retrieved the fluorescence spectral shape of known fluorophores, the techniques usually came with heavy computation costs and did not apply for strongly absorptive media, and the intrinsic fluorescence intensity and fluorophore concentration were not recovered. In this communication, an experimental approach was presented to recover intrinsic fluorescence and concentration of fluorescein in the presence of hemoglobin (Hb). The results indicated that the method was efficient in recovering the intrinsic fluorescence peak and fluorophore concentration with an error of 3% and 10%, respectively. The results also suggested that chromophores with irregular absorption spectra (e.g., Hb) have more profound effects on fluorescence spectral shape than chromophores with monotonic absorption and scattering spectra (e.g., black India ink and polystyrene microspheres).

  6. Climatological Aspects of the Optical Properties of Fine/Coarse Mode Aerosol Mixtures

    NASA Technical Reports Server (NTRS)

    Eck, T. F.; Holben, B. N.; Sinyuk, A.; Pinker, R. T.; Goloub, P.; Chen, H.; Chatenet, B.; Li, Z.; Singh, R. P.; Tripathi, S.N.; Reid, J. S.; Giles, D. M.; Dubovik O.; O'Neill, N. T.; Smirnov, A.; Wang, P.; Xia, X.

    2010-01-01

    Aerosol mixtures composed of coarse mode desert dust combined with fine mode combustion generated aerosols (from fossil fuel and biomass burning sources) were investigated at three locations that are in and/or downwind of major global aerosol emission source regions. Multiyear monitoring data at Aerosol Robotic Network sites in Beijing (central eastern China), Kanpur (Indo-Gangetic Plain, northern India), and Ilorin (Nigeria, Sudanian zone of West Africa) were utilized to study the climatological characteristics of aerosol optical properties. Multiyear climatological averages of spectral single scattering albedo (SSA) versus fine mode fraction (FMF) of aerosol optical depth at 675 nm at all three sites exhibited relatively linear trends up to 50% FMF. This suggests the possibility that external linear mixing of both fine and coarse mode components (weighted by FMF) dominates the SSA variation, where the SSA of each component remains relatively constant for this range of FMF only. However, it is likely that a combination of other factors is also involved in determining the dynamics of SSA as a function of FMF, such as fine mode particles adhering to coarse mode dust. The spectral variation of the climatological averaged aerosol absorption optical depth (AAOD) was nearly linear in logarithmic coordinates over the wavelength range of 440-870 nm for both the Kanpur and Ilorin sites. However, at two sites in China (Beijing and Xianghe), a distinct nonlinearity in spectral AAOD in logarithmic space was observed, suggesting the possibility of anomalously strong absorption in coarse mode aerosols increasing the 870 nm AAOD.

  7. Thermal Infrared Radiative Forcing By Atmospheric Aerosol

    NASA Astrophysics Data System (ADS)

    Adhikari, Narayan

    The work mainly focuses on the study of thermal infrared (IR) properties of atmospheric greenhouse gases and aerosols, and the estimation of the aerosol-induced direct longwave (LW) radiative forcing in the spectral region 5-20 mum at the Earth's surface (BOA; bottom of the atmosphere) and the top of the atmosphere (TOA) in cloud-free atmospheric conditions. These objectives were accomplished by conducting case studies on clear sky, smoky, and dusty conditions that took place in the Great Basin of the USA in 2013. Both the solar and thermal IR measurements and a state-of-the-science radiative transfer model, the LBLDIS, a combination of the Line-By-Line Radiative Transfer Model and the Discrete Ordinate Radiative Transfer (DISORT) solver were employed for the study. The LW aerosol forcing is often not included in climate models because the aerosol effect on the LW is often assumed to be negligible. We lack knowledge of aerosol characteristics in the LW region, and aerosol properties exhibit high variability. We have found that the LW TOA radiative forcing due to fine mode aerosols, mainly associated with small biomass burning smoke particles, is + 0.4 W/m2 which seems to be small, but it is similar to the LW radiative forcing due to increase in CO2 concentration in the Earth's atmosphere since the preindustrial era of 1750 (+ 1.6 W/m 2). The LW radiative forcing due to coarse mode aerosols, associated with large airborne mineral dust particles, was found to be as much as + 5.02 W/m2 at the surface and + 1.71 W/m2 at the TOA. All of these significant positive values of the aerosol radiative forcing both at the BOA and TOA indicate that the aerosols have a heating effect in the LW range, which contributes to counterbalancing the cooling effect associated with the aerosol radiative forcing in the shortwave (SW) spectral region. In the meantime, we have found that LW radiative forcing by aerosols is highly sensitive to particle size and complex refractive indices of

  8. Assessing Aerosol Mixed Layer Heights from the NASA Larc Airborne High Spectral Resolution Lidar (HSRL) during the Discover-AQ Field Campaigns

    NASA Astrophysics Data System (ADS)

    Scarino, A. J.; Ferrare, R. A.; Burton, S. P.; Hostetler, C. A.; Hair, J. W.; Rogers, R. R.; Berkoff, T.; Sawamura, P.; Collins, J. E., Jr.; Seaman, S. T.; Cook, A. L.; Harper, D. B.; Follette-Cook, M. B.; daSilva, A.; Randles, C. A.

    2014-12-01

    The first- and second-generation NASA airborne High Spectral Resolution Lidars (HSRL-1 and HSRL-2) have been deployed on board the NASA Langley Research Center King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns. These included deployments during July 2011 over Washington, D.C. and Baltimore, MD, during January and February 2013 over the San Joaquin Valley of California, during September 2013 over Houston, TX and during July and August 2014 over Denver, CO. Measurements of aerosol extinction, backscatter, and depolarization are available from both HSRL-1 and HSRL-2 in coordination with other participating research aircraft and ground sites. These measurements constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, aerosol optical thickness (AOT), as well as the mixed layer (ML) height. Analysis of the ML height at these four locations is presented, including temporal and horizontal variability and comparisons between land and water, including the Chesapeake Bay and Galveston Bay. Using the ML heights, the distribution of AOT relative to the ML heights is determined, which is relevant for assessing the long-range transport of aerosols. The ML heights are also used to help relate column AOT measurements and extinction profiles to surface PM2.5 concentrations. The HSRL ML heights are also used to evaluate the performance in simulating the temporal and spatial variability of ML heights from both chemical regional models and global forecast models.

  9. Spectral Discrimination of Fine and Coarse Mode Aerosol Optical Depth from AERONET Direct Sun Data of Singapore and South-East Asia

    NASA Astrophysics Data System (ADS)

    Salinas Cortijo, S.; Chew, B.; Liew, S.

    2009-12-01

    Aerosol optical depth combined with the Angstrom exponent and its derivative, are often used as a qualitative indicator of aerosol particle size, with Angstrom exp. values greater than 2 indicating small (fine mode) particles associated with urban pollution and bio-mass burning. Around this region, forest fires are a regular occurrence during the dry season, specially near the large land masses of Sumatra and Borneo. The practice of clearing land by burning the primary and sometimes secondary forest, results in a smog-like haze covering large areas of regional cities such as cities Singapore, Kuala Lumpur and sometimes the south of Thailand, often reducing visibility and increasing health problems for the local population. In Singapore, the sources of aerosols are mostly from fossil fuel burning (energy stations, incinerators, urban transport etc.) and from the industrial and urban areas. The proximity to the sea adds a possible oceanic source. However, as stated above and depending on the time of the year, there can be a strong bio-mass component coming from forest fires from various regions of the neighboring countries. Bio-mass related aerosol particles are typically characterized by showing a large optical depth and small, sub-micron particle size distributions. In this work, we analyze three years of direct Sun measurements performed with a multi-channel Cimel Sun-Photometer (part of the AERONET network) located at our site. In order to identify bio-mass burning events in this region, we perform a spectral discrimination between coarse and fine mode optical depth; subsequently, the fine mode parameters such as optical depth, optical ratio and fine mode Angstrom exponents (and its derivative) are used to identify possible bio-mass related events within the data set.

  10. Spectral Absorption of Solar Radiation in Cloudy Atmospheres: A 20 cm1 Model.

    NASA Astrophysics Data System (ADS)

    Davies, Roger; Ridgway, William L.; Kim, Kyung-Eak

    1984-07-01

    The spectral of solar radiation in typical water clouds is determined using a radiative transfer model based on LOWTRAN transmission functions at a 20 cm1 resolution and Monte Carlo simulations of photon pathlength distributions. Relative absorption by the vapor and droplets within each cloud is obtained, and both plane-parallel and horizontally finite clouds are considered.Results indicate slightly lower absorption than found previously, with boundary layer clouds typically absorbing 9% of the extraterrestrial insolation for overhead sun. Cloud absorption depends strongly on the presence of water vapor above the cloud top and solar zenith angle, moderately on cloud aspect ratio, and (provided the cloud is neither tenuous nor broken) weakly on cloud type and thickness. The droplets, not the vapor, are shown to be the dominant absorbers within the cloud, except in the absence of water vapor above the cloud top, in which case the vapor and droplets make similar contributions to the low cloud absorption. For many of the cases modeled, the sum of the cloud and atmospheric absorption remained invariant, allowing the net solar radiation budget at the surface to be deduced from broadband satellite measurements of albedo. An explanation for this behavior is found in the analysis of the spectral absorption by the different components.

  11. Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high-altitude site in the western Mediterranean Basin

    NASA Astrophysics Data System (ADS)

    Pandolfi, M.; Ripoll, A.; Querol, X.; Alastuey, A.

    2014-06-01

    Aerosol light scattering (σsp), backscattering (σbsp) and absorption (σap) were measured at Montsec (MSC; 42°3' N, 0°44' E, 1570 m a.s.l.), a remote high-altitude site in the western Mediterranean Basin. Mean (±SD) σsp, σbsp and σap were 18.9 ± 20.8, 2.6 ± 2.8 and 1.5 ± 1.4 Mm-1, respectively at 635 nm during the period under study (June 2011-June 2013). Mean values of single-scattering albedo (SSA, 635 nm), the scattering Ångström exponent (SAE, 450-635 nm), backscatter-to-scatter ratio (B / S, 635 nm), asymmetry parameter (g, 635 nm), black carbon mass absorption cross section (MAC, 637 nm) and PM2.5 mass scattering cross section (MSCS, 635 nm) were 0.92 ± 0.03, 1.56 ± 0.88, 0.16 ± 0.09, 0.53 ± 0.16, 10.9 ± 3.5 m2 g-1 and 2.5 ± 1.3 m2 g-1, respectively. The scattering measurements performed at MSC were in the medium/upper range of values reported by Andrews et al. (2011) for other mountaintop sites in Europe due to the frequent regional recirculation scenarios (SREG) and Saharan dust episodes (NAF) occurring mostly in spring/summer and causing the presence of polluted layers at the MSC altitude. However, the development of upslope winds and the possible presence of planetary boundary layer air at MSC altitude in summer may also have contributed to the high scattering observed. Under these summer conditions no clear diurnal cycles were observed for the measured extensive aerosol optical properties (σsp, σbsp and σap). Conversely, low σsp and σap at MSC were measured during Atlantic advections (AA) and winter regional anticyclonic episodes (WREG) typically observed during the cold season in the western Mediterranean. Therefore, a season-dependent decrease in the magnitude of aerosol extensive properties was observed when MSC was in the free troposphere, with the highest free-troposphere vs. all-data difference observed in winter and the lowest in spring/summer. The location of MSC station allowed for a reliable characterization of aerosols

  12. Final Technical Report for Interagency Agreement No. DE-SC0005453 “Characterizing Aerosol Distributions, Types, and Optical and Microphysical Properties using the NASA Airborne High Spectral Resolution Lidar (HSRL) and the Research Scanning Polarimeter (RSP)”

    SciTech Connect

    Hostetler, Chris; Ferrare, Richard

    2015-01-13

    Measurements of the vertical profile of atmospheric aerosols and aerosol optical and microphysical characteristics are required to: 1) determine aerosol direct and indirect radiative forcing, 2) compute radiative flux and heating rate profiles, 3) assess model simulations of aerosol distributions and types, and 4) establish the ability of surface and space-based remote sensors to measure the indirect effect. Consequently the ASR program calls for a combination of remote sensing and in situ measurements to determine aerosol properties and aerosol influences on clouds and radiation. As part of our previous DOE ASP project, we deployed the NASA Langley airborne High Spectral Resolution Lidar (HSRL) on the NASA B200 King Air aircraft during major field experiments in 2006 (MILAGRO and MaxTEX), 2007 (CHAPS), 2009 (RACORO), and 2010 (CalNex and CARES). The HSRL provided measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm). These measurements were typically made in close temporal and spatial coincidence with measurements made from DOE-funded and other participating aircraft and ground sites. On the RACORO, CARES, and CalNEX missions, we also deployed the NASA Goddard Institute for Space Studies (GISS) Research Scanning Polarimeter (RSP). RSP provided intensity and degree of linear polarization over a broad spectral and angular range enabling column-average retrievals of aerosol optical and microphysical properties. Under this project, we analyzed observations and model results from RACORO, CARES, and CalNex and accomplished the following objectives. 1. Identified aerosol types, characterize the vertical distribution of the aerosol types, and partition aerosol optical depth by type, for CARES and CalNex using HSRL data as we have done for previous missions. 2. Investigated aerosol microphysical and macrophysical properties using the RSP. 3. Used the aerosol backscatter and extinction profiles measured by the HSRL

  13. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    PubMed

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  14. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2014-06-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al., 2013): first, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m); second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the particular altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angle (besides zenith view), for which the uncertainties of the retrieved values of the VMRs and surface extinctions are especially small. Using only 1° elevation angle for off-axis observation also allows an increased temporal resolution. We determine (and apply) correction factors (and their uncertainties) directly as function of the measured O4 absorption. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of aerosol extinction. Depending on atmospheric visibility, the typical uncertainty of the results ranges from about 20% to 30%. We apply the rapid method to observations of a newly-developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirts near Hefei in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations

  15. A rapid method to derive horizontal distributions of trace gases and aerosols near the surface using multi-axis differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Li, A.; Xie, P. H.; Wagner, T.; Chen, H.; Liu, W. Q.; Liu, J. G.

    2013-09-01

    We apply a novel experimental procedure for the rapid measurement of the average volume mixing ratios (VMRs) and horizontal distributions of trace gases such as NO2, SO2, and HCHO in the boundary layer, which was recently suggested by Sinreich et al. (2013). The method is based on two-dimensional scanning multi-axis differential optical absorption spectroscopy (MAX-DOAS). It makes use of two facts (Sinreich et al. 2013): First, the light path for observations at 1° elevation angle traverses mainly air masses located close to the ground (typically < 200 m). Second, the light path length can be calculated using the simultaneous measured absorption of the oxygen dimer O4. Thus, the average value of the trace gas VMR in the atmospheric layer between the surface and the altitude, for which this observation was sensitive, can be calculated. Compared to the originally proposed method, we introduce several important modifications and improvements: We apply the method only to measurements at 1° elevation angles, for which the uncertainties are especially small. Using only 1 elevation angle also allows an increased temporal resolution. We apply correction factors (and their uncertainties) as function of the simultaneously modelled O4 absorption. In this way the correction factors can be directly determined according to the measured O4 dAMF. Finally, the method is extended to trace gases analysed at other wavelengths and also to the retrieval of the aerosol extinction. Depending on the atmospheric visibility, the typical uncertainty of the results ranges from about 15 to 30%. We apply the rapid method to observations of a newly developed ground-based multifunctional passive differential optical absorption spectroscopy (GM-DOAS) instrument in the north-west outskirt near Hefei City in China. We report NO2, SO2, and HCHO VMRs and aerosol extinction for four azimuth angles and compare these results with those from simultaneous long-path DOAS observations. Good agreement is

  16. Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds

    NASA Astrophysics Data System (ADS)

    Fountoulakis, I.; Bais, A. F.; Fragkos, K.; Meleti, C.; Tourpali, K.; Zempila, M. M.

    2015-12-01

    In this study, we discuss the short- and the long-term variability of spectral UV irradiance at Thessaloniki, Greece using a long, quality-controlled data set from two Brewer spectrophotometers. Long-term changes in spectral UV irradiance at 307.5, 324 and 350 nm for the period 1994-2014 are presented for different solar zenith angles and discussed in association to changes in total ozone column (TOC), aerosol optical depth (AOD) and cloudiness observed in the same period. Positive changes in annual mean anomalies of UV irradiance, ranging from 2 to 6 % per decade, have been detected both for clear- and all-sky conditions. The changes are generally greater for larger solar zenith angles and for shorter wavelengths. For clear skies, these changes are, in most cases, statistically significant at the 95 % confidence limit. Decreases in the aerosol load and weakening of the attenuation by clouds lead to increases in UV irradiance in the summer, of 7-9 % per decade for 64° solar zenith angle. The increasing TOC in winter counteracts the effect of decreasing AOD for this particular season, leading to small, statistically insignificant, negative long-term changes in irradiance at 307.5 nm. Annual mean UV irradiance levels are increasing from 1994 to 2006 and remain relatively stable thereafter, possibly due to the combined changes in the amount and optical properties of aerosols. However, no statistically significant corresponding turning point has been detected in the long-term changes of AOD. Trends in irradiance during the two sub-periods are not discussed, because the length of the two datasets is too short for deriving statistically significant estimates. The absence of signatures of changes in AOD in the short-term variability of irradiance in the UV-A may have been caused by changes in the single scattering albedo of aerosols, which may counteract the effects of changes in AOD on irradiance. The anti-correlation between the year-to-year variability of the

  17. Measured Infrared Absorption and Extinction Cross Sections for a Variety of Chemically and Biologically Derived Aerosol Simulants

    DTIC Science & Technology

    2004-06-01

    Aerosols considered are categorized as biological, chemical, and inorganic in origin, i.e., bacillus subtilis endospores, dimethicone silicone oil...achieved. The materials considered for this study include dimethicone silicone oil (SF-96 grade 50), bacillus subtilis endospores (BG), and Kaolin

  18. Stand-off detection of aerosols using mid-infrared backscattering Fourier transform spectroscopy

    NASA Astrophysics Data System (ADS)

    Maidment, L.; Zhang, Z.; Bowditch, M. D.; Howle, C. R.; Reid, D. T.

    2016-10-01

    The spectrum of mid-infrared light scattered from an actively illuminated aerosol was used to distinguish between different chemicals. Using spectrally broad illumination from an optical parametric oscillator covering 3.2 - 3.55 μm, characteristic absorption features of two different chemicals were detected, and two similar molecules were clearly distinguished using the spectra of backscattered light from each chemical aerosol.

  19. Quantification of the aerosol direct radiative effect from smoke over clouds using passive space-borne spectrometry

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Stammes, P.; Tilstra, L. G.

    2013-05-01

    The solar radiative absorption by smoke layers above clouds is quantified, using the unique broad spectral range of the space-borne spectrometer Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) from the ultraviolet (UV) to the shortwave infrared (SWIR). Aerosol radiative effects in the UV are separated from cloud radiative effects in the shortwave infrared (SWIR). In the UV, aerosol absorption from smoke is strong, creating a strong signal in the measured reflectance. In the SWIR, absorbing and scattering effects from smoke are negligible, allowing the retrieval of cloud parameters from the measured spectrum using existing retrieval techniques. The spectral signature of the cloud can be modelled using a radiative transfer model (RTM) and the cloud parameters retrieved in the SWIR. In this way, the aerosol effects can be determined from the measured aerosol-polluted cloud shortwave spectrum and the modelled aerosol-unpolluted cloud shortwave spectrum. This can be used to derive the aerosol direct radiative effect (DRE) over marine clouds, independent of aerosol parameter retrievals, significantly improving the current accuracy of aerosol DRE estimates. Only cloud parameters are needed to model the aerosolunpolluted cloud reflectance, while the effects of the aerosol absorption are in the aerosol-polluted cloud reflectance measurements. In this paper we present a case study of the above method using SCIAMACHY data over the South Atlantic Ocean west of Africa on 13 August 2006, when a huge plume of smoke was present over persistent cloud fields. The aerosol DRE over clouds was as high as 128 ± 8 Wm-2 for this case, while the aerosol DRE over clouds averaged through August 2006 was found to be 23 ± 8 Wm-2 with a mean variation over the region in this month of 22 Wm-2.

  20. Interactions between aerosol absorption, thermodynamics, dynamics, and microphysics and their impacts on a multiple-cloud system

    NASA Astrophysics Data System (ADS)

    Lee, Seoung Soo; Li, Zhanqing; Mok, Jungbin; Ahn, Myoung-Hwan; Kim, Byung-Gon; Choi, Yong-Sang; Jung, Chang-Hoon; Yoo, Hye Lim

    2017-02-01

    This study investigates how the increasing concentration of black carbon aerosols, which act as radiation absorbers as well as agents for the cloud-particle nucleation, affects stability, dynamics and microphysics in a multiple-cloud system using simulations. Simulations show that despite increases in stability due to increasing concentrations of black carbon aerosols, there are increases in the averaged updraft mass fluxes (over the whole simulation domain and period). This is because aerosol-enhanced evaporative cooling intensifies convergence near the surface. This increase in the intensity of convergence induces an increase in the frequency of updrafts with the low range of speeds, leading to the increase in the averaged updraft mass fluxes. The increase in the frequency of updrafts induces that in the number of condensation entities and this leads to more condensation and cloud liquid that acts to be a source of the accretion of cloud liquid by precipitation. Hence, eventually, there is more accretion that offsets suppressed autoconversion, which results in negligible changes in cumulative precipitation as aerosol concentrations increase. The increase in the frequency of updrafts with the low range of speeds alters the cloud-system organization (represented by cloud-depth spatiotemporal distributions and cloud-cell population) by supporting more low-depth clouds. The altered organization in turn alters precipitation spatiotemporal distributions by generating more weak precipitation events. Aerosol-induced reduction in solar radiation that reaches the surface induces more occurrences of small-value surface heat fluxes, which in turn supports the more low-depth clouds and weak precipitation together with the greater occurrence of low-speed updrafts.

  1. Systematic Relationships among Background SE U.S. Aerosol Optical, Micro-physical, and Chemical Properties-Development of an Optically-based Aerosol Characterization

    NASA Astrophysics Data System (ADS)

    Sherman, J. P.; Link, M. F.; Zhou, Y.

    2014-12-01

    Remote sensing-based retrievals of aerosol composition require known or assumed relationships between aerosol optical properties and types. Most optically-based aerosol classification schemes apply some combination of the spectral dependence of aerosol light scattering and absorption-using the absorption and either scattering or extinction Angstrom exponents (AAE, SAE and EAE), along with single-scattering albedo (SSA). These schemes can differentiate between such aerosol types as dust, biomass burning, and urban/industrial but no such studies have been conducted in the SE U.S., where a large fraction of the background aerosol is a variable mixture of biogenic SOA, sulfates, and black carbon. In addition, AERONET retrievals of SSA are often highly uncertain due to low AOD in the region during most months. The high-elevation, semi-rural AppalAIR facility at Appalachian State University in Boone, NC (1090m ASL, 36.210N, 81.690W) is home to the only co-located NOAA-ESRL and AERONET monitoring sites in the eastern U.S. Aerosol chemistry measured at AppalAIR is representative of the background SE U.S (Link et al. 2014) Dried aerosol light absorption and dried and humidified aerosol light scattering and hemispheric backscattering at 3 visible wavelengths and 2 particle size cuts (sub-1μm and sub-10μm) are measured continuously. Measurements of size-resolved, non-refractory sub-1μm aerosol composition were made by a co-located AMS during the 2012-2013 summers and 2013 winter. Systematic relationships among aerosol optical, microphysical, and chemical properties were developed to better understand aerosol sources and processes and for use in higher-dimension aerosol classification schemes. The hygroscopic dependence of visible light scattering is sensitive to the ratio of sulfate to organic aerosol(OA), as are SSA and AAE. SAE is a less sensitive indicator of fine-mode aerosol size than hemispheric backscatter fraction (b) and is more sensitive to fine-mode aerosol

  2. Preparation and Absorption Spectral Property of a Multifunctional Water-Soluble Azo Compound with D-π-A Structure, 4-(4- Hydroxy-1-Naphthylazo)Benzoic Acid

    NASA Astrophysics Data System (ADS)

    Hu, L.; Lv, H.; Xie, C. G.; Chang, W. G.; Yan, Z. Q.

    2015-07-01

    A multifunctional water-soluble azo dye with the D-π-A conjugated structure, 4-(4-hydroxy-1-naphthylazo) benzoic acid ( HNBA), was designed and synthesized using 1-naphanol as the electron donator, benzoic acid as the electron acceptor, and -N=N- as the bridging group. After its structure was characterized by FTIR, 1H NMR, and element analysis, the UV-Vis absorption spectral performance of the target dye was studied in detail. The results showed that the dye, combining hydroxyl group, azo group, and carboxyl group, possessed excellent absorption spectral properties (ɛ = 1.2·104 l·mol-1·cm-1) changing with pH and solvents. In particular, in polar and protonic water, it had excellent optical response to some metal ions, i.e., Fe3+ and Pb2+, which might make it a latent colorimetric sensor for detecting heavy metal ions.

  3. Aerosol black carbon quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and source apportionment

    NASA Astrophysics Data System (ADS)

    Vaishya, Aditya; Singh, Prayagraj; Rastogi, Shantanu; Babu, S. Suresh

    2017-03-01

    Two years of aerosol spectral light absorption measurements, using filter based technique, from the central Indo-Gangetic plain (IGP), Gorakhpur (26.75°N, 83.38°E, 85 m amsl), are analyzed to study their seasonal behavior and to quantify their magnitude in terms of absorbing aerosols loading and source speciation. Spectral absorption analysis reveals a four-fold enhancement in absorption in winter (W) and post-monsoon (PoM) seasons at UV wavelengths as compared to IR wavelengths on account of increased biomass burning aerosol contribution to total absorbing aerosol load. Aerosols from the biomass sources contribute 28% during W and PoM seasons as against 16% in pre-monsoon (PM) and monsoon (M) seasons to the total absorbing aerosol content. A Mode shift in the distribution of the Absorption Ångström exponent (α) from 1.3 to 1.6 from PM-M seasons to PoM-W seasons signifies change in source type of absorbing aerosols from fossil fuel to biomass burning and their relative source strength. Due to near stagnant wind conditions combined with shallow boundary layer height, where air masses travelling to the central IGP are confined to a smaller volume, in W and PoM seasons, local sources assume more prominence rather than long-range transport of aerosols. Long-term measurements of aerosols physicochemical and radiative properties from this measurement location will enhance our understanding of the complex aerosol system over the IGP and its climatic implications.

  4. Spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell considering the absorption spectra of ideal cubic dots

    NASA Astrophysics Data System (ADS)

    Biswas, Sayantan; Chatterjee, Avigyan; Biswas, Ashim Kumar; Sinha, Amitabha

    2016-10-01

    Recently, attempts have been made by some researchers to improve the efficiency of quantum dot solar cells by incorporating different types of quantum dots. In this paper, the photocurrent density has been obtained considering the absorption spectra of ideal cubic dots. The effects of quantum dot size dispersion on the spectral response of the intrinsic region of a GaAs-InAs quantum dot solar cell have been studied. The dependence of the spectral response of this region on the size of quantum dots of such solar cell has also been investigated. The investigation shows that for smaller quantum dot size dispersion, the spectral response of the intrinsic region of the cell increases significantly. It is further observed that by enlarging the quantum dot size it is possible to enhance the spectral response of such solar cells as it causes better match between absorption spectra of the quantum dots and the solar spectrum. These facts indicate the significant role of quantum dot size and size dispersion on the performance of such devices. Also, the power conversion efficiency of such solar cell has been studied under 1 sun, AM 1.5 condition.

  5. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  6. The vertical distribution of BrO and aerosols in the Arctic: Measurements by active and passive differential optical absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Sihler, H.; Sander, R.; PöHler, D.; Yilmaz, S.; Platt, U.

    2011-07-01

    We present results from multiaxis differential optical absorption spectroscopy (MAX-DOAS) and long-path DOAS (LP-DOAS) measurements performed at the North Slope of Alaska from February to April 2009 as part of the Ocean-Atmosphere-Sea Ice-Snowpack Barrow 2009 campaign. For the first time, vertical profiles of aerosol extinction and BrO in the boundary layer were retrieved simultaneously from MAX-DOAS measurements using the method of optimal estimation. Even at very low visibility, retrieved extinction profiles and aerosol optical thickness are in good agreement with colocated ceilometer and Sun photometer measurements, respectively. BrO surface concentrations measured by MAX-DOAS and LP-DOAS are in very good agreement, and it has been found that useful information on the BrO vertical distribution can be retrieved from MAX-DOAS even in cases when blowing snow strongly reduces visibility. The retrieved BrO and extinction vertical profiles allow for a thorough characterization of the vertical structure of the boundary layer during numerous ozone depletion events observed during Barrow 2009. High BrO concentrations are usually present during the onset of ozone depletion events, and BrO disappears as ozone concentrations approach zero. The finding that elevated BrO concentrations occur mainly in the presence of high extinction near the surface strongly suggests that release of reactive bromine from airborne aerosols and/or ice particles at high wind speed plays an important role. Back trajectory calculations indicate that the particles were transported from the frozen ocean to the measurement site and that the release of reactive bromine from sea ice and/or frost flowers occurs when low temperatures (<250 K) prevail in the regions where reactive bromine is emitted.

  7. A New Retrieval of Aerosol Optical Depth under Partly Cloudy Conditions with Multi-Spectral Measurements of Reflectance

    SciTech Connect

    Kassianov, Evgueni I.; Ovtchinnikov, Mikhail; Berg, Larry K.; McFarlane, Sally A.; Flynn, Connor J.

    2009-02-01

    The three-dimensional (3D) radiative effects may cause large uncertainties of satellite aerosol retrievals under partly cloudy conditions [1,2]. For example, analysis of multi-year aerosol statistics derived from the MODerate-Resolution Imaging Spectroradiometer (MODIS) data in clear patches of cloud fields suggests that aerosol product may be in a large error (up to 140%) as a result of 3D cloud-induced enhancement of clear sky reflectance [3]. Retrievals of AOD τa from satellite observations consist of two basic steps: (1) sampling, which includes detection of clear pixels and (2) and application of an algorithm, which estimates AOD in these pixels. The quality of the final product depends on both steps [4]. The largest errors occur for pixels located within areas of sunlight and shadows where the 3D radiative effects have the greatest impacts on the AOD retrievals [2]. To reduce the 3D radiative effects, clear pixels have to be selected far away (~1-2 km) from clouds and their shadows [3]. For selected clear pixels, the independent pixel approximation approach (IPA) [5] is used to estimate the AOD. Since the IPA ignores the 3D cloud-induced enhancement, the IPA-based retrievals can substantially overestimate AOD even for these clear pixels. To take into account such enhancement, a simple parameterization has been suggested [6]. Here we introduce an approach [7], that provides an effective way to avoid the 3D cloud effects, and illustrate with a model-output inverse problem its capability to detect clear pixels (outside of shadows) and estimate their AOD.

  8. Comparative study on three highly sensitive absorption measurement techniques characterizing lithium niobate over its entire transparent spectral range.

    PubMed

    Leidinger, M; Fieberg, S; Waasem, N; Kühnemann, F; Buse, K; Breunig, I

    2015-08-24

    We employ three highly sensitive spectrometers: a photoacoustic spectrometer, a photothermal common-path interferometer and a whispering-gallery-resonator-based absorption spectrometer, for a comparative study of measuring the absorption coefficient of nominally transparent undoped, congruently grown lithium niobate for ordinarily and extraordinarily polarized light in the wavelength range from 390 to 3800 nm. The absorption coefficient ranges from below 10(-4) cm(-1) up to 2 cm(-1). Furthermore, we measure the absorption at the Urbach tail as well as the multiphonon edge of the material by a standard grating spectrometer and a Fourier-transform infrared spectrometer, providing for the first time an absorption spectrum of the whole transparency window of lithium niobate. The absorption coefficients obtained by the three highly sensitive and independent methods show good agreement.

  9. Filter-based measurements of UV-vis mass absorption cross sections of organic carbon aerosol from residential biomass combustion: Preliminary findings and sources of uncertainty

    NASA Astrophysics Data System (ADS)

    Pandey, Apoorva; Pervez, Shamsh; Chakrabarty, Rajan K.

    2016-10-01

    Combustion of solid biomass fuels is a major source of household energy in developing nations. Black (BC) and organic carbon (OC) aerosols are the major PM2.5 (particulate matter with aerodynamic diameter smaller than 2.5 μm) pollutants co-emitted during burning of these fuels. While the optical nature of BC is well characterized, very little is known about the properties of light-absorbing OC (LAOC). Here, we report our preliminary findings on the mass-based optical properties of LAOC emitted from the combustion of four commonly used solid biomass fuels - fuel-wood, agricultural residue, dung-cake, and mixed - in traditional Indian cookstoves. As part of a pilot field study conducted in central India, PM2.5 samples were collected on Teflon filters and analyzed for their absorbance spectra in the 300-900 nm wavelengths at 1 nm resolution using a UV-Visible spectrophotometer equipped with an integrating sphere. The mean mass absorption cross-sections (MAC) of the emitted PM2.5 and OC, at 550 nm, were 0.8 and 0.2 m2 g-1, respectively, each with a factor of ~2.3 uncertainty. The mean absorption Ångström exponent (AǺE) values for PM2.5 were 3±1 between 350 and 550 nm, and 1.2±0.1 between 550 and 880 nm. In the 350-550 nm range, OC had an AǺE of 6.3±1.8. The emitted OC mass, which was on average 25 times of the BC mass, contributed over 50% of the aerosol absorbance at wavelengths smaller than 450 nm. The overall OC contribution to visible solar light (300-900 nm) absorption by the emitted particles was 26-45%. Our results highlight the need to comprehensively and accurately address: (i) the climatic impacts of light absorption by OC from cookstove emissions, and (ii) the uncertainties and biases associated with variability in biomass fuel types and combustion conditions, and filter-based measurement artifacts during determination of MAC values.

  10. Measuring black carbon spectral extinction in the visible and infrared

    NASA Astrophysics Data System (ADS)

    Smith, A. J. A.; Peters, D. M.; McPheat, R.; Lukanihins, S.; Grainger, R. G.

    2015-09-01

    This work presents measurements of the spectral extinction of black carbon aerosol from 400 nm to 15 μm. The aerosol was generated using a Miniature Combustion Aerosol Standard soot generator and then allowed to circulate in an aerosol cell where its extinction was measured using a grating spectrometer in the visible and a Fourier transform spectrometer in the infrared. Size distribution, number concentration, and mass extinction cross sections have also been obtained using single-particle aerosol samplers. A mean mass extinction cross section at 550 nm of 8.3 ± 1.6 m2 g-1 is found which, assuming a reasonable single scatter albedo of 0.2, corresponds to a mass absorption cross section of 6.6 ± 1.3 m2 g-1. This compares well with previously reported literature values. Computer analysis of electron microscope images of the particles provides independent confirmation of the size distribution as well as fractal parameters of the black carbon aerosol. The aerosol properties presented in this work are representative of very fresh, uncoated black carbon aerosol. After atmospheric processing of such aerosols (which could include mixing with other constituents and structural changes), different optical properties would be expected.

  11. Analysis of DIAL/HSRL aerosol backscatter and extinction profiles during the SEAC4RS campaign with an aerosol assimilation system

    NASA Astrophysics Data System (ADS)

    Weaver, C. J.; da Silva, A. M., Jr.; Colarco, P. R.; Randles, C. A.

    2015-12-01

    We retrieve aerosol concentrations and optical information from vertical profiles of airborne 532 nm extinction and 532 and 1064 nm backscatter measurements made during the SEAC4RS summer 2013 campaign. The observations are from the High Spectral Resolution Lidar (HSRL) Airborne Differential Absorption Lidar (DIAL) on board the NASA DC-8. Instead of retrieving information about aerosol microphysical properties such as indexes of refraction, we seek information more directly applicable to an aerosol transport model - in our case the Goddard Chemistry Aerosol Radiation and Transport (GOCART) module used in the GEOS-5 Earth modeling system. A joint atmosphere/aerosol mini-reanalysis was performed for the SEAC4RS period using GEOS-5. The meteorological reanalysis followed the MERRA-2 atmospheric reanalysis protocol, and aerosol information from MODIS, MISR, and AERONET provided a constraint on the simulated aerosol optical depth (i.e., total column loading of aerosols). We focus on the simulated concentrations of 10 relevant aerosol species simulated by the GOCART module: dust, sulfate, and organic and black carbon. Our first retrieval algorithm starts with the SEAC4RS mini-reanalysis and adjusts the concentration of each GOCART aerosol species so that differences between the observed and simulated backscatter and extinction measurements are minimized. In this case, too often we are unable to simulate the observations by simple adjustment of the aerosol concentrations. A second retrieval approach adjusts both the aerosol concentrations and the optical parameters (i.e., assigned mass extinction efficiency) associated with each GOCART species. We present results from DC-8 flights over smoke from forest fires over the western US using both retrieval approaches. Finally, we compare our retrieved quantities with in-situ observations of aerosol absorption, scattering, and mass concentrations at flight altitude.

  12. Assessment of 10-Year Global Record of Aerosol Products from the OMI Near-UV Algorithm

    NASA Astrophysics Data System (ADS)

    Ahn, C.; Torres, O.; Jethva, H. T.

    2014-12-01

    Global observations of aerosol properties from space are critical for understanding climate change and air quality applications. The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption and dark surface albedo in the UV spectral region. These unique features enable us to retrieve both aerosol extinction optical depth (AOD) and single scattering albedo (SSA) successfully from radiance measurements at 354 and 388 nm by the OMI near UV aerosol algorithm (OMAERUV). Recent improvements to algorithms in conjunction with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Atmospheric Infrared Sounder (AIRS) carbon monoxide data also reduce uncertainties due to aerosol layer heights and types significantly in retrieved products. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network (AERONET) measured AOD values over multiple stations representing major aerosol episodes and regimes. We also compare the OMI SSA against the inversion made by AERONET as well as an independent network of ground-based radiometer called SKYNET in Japan, China, South-East Asia, India, and Europe. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability. The OMAERUV 10-year global aerosol record is publicly available at the NASA data service center web site (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml).

  13. Measurement of wavelength-dependent extinction to distinguish between absorbing and nonabsorbing aerosol particulates

    NASA Technical Reports Server (NTRS)

    Portscht, R.

    1977-01-01

    Measurements of spectral transmission factors in smoky optical transmission paths reveal a difference between wavelength exponents of the extinction cross section of high absorption capacity and those of low absorption capacity. A theoretical explanation of this behavior is presented. In certain cases, it is possible to obtain data on the absorption index of aerosol particles in the optical path by measuring the spectral decadic extinction coefficient at, at least, two wavelengths. In this manner it is possible, for instance, to distinguish smoke containing soot from water vapor.

  14. Influences of external vs. core-shell mixing on aerosol optical properties at various relative humidities.

    PubMed

    Ramachandran, S; Srivastava, Rohit

    2013-05-01

    Aerosol optical properties of external and core-shell mixtures of aerosol species present in the atmosphere are calculated in this study for different relative humidities. Core-shell Mie calculations are performed using the values of radii, refractive indices and densities of aerosol species that act as core and shell, and the core-shell radius ratio. The single scattering albedo (