Science.gov

Sample records for aerosol surface structure

  1. Surface ozone-aerosol behaviour and atmospheric boundary layer structure in Saharan dusty scenario

    NASA Astrophysics Data System (ADS)

    Adame, Jose; Córdoba-Jabonero, Carmen; Sorrribas, Mar; Gil-Ojeda, Manuel; Toledo, Daniel; Yela, Margarita

    2016-04-01

    A research campaign was performed for the AMISOC (Atmospheric Minor Species relevant to the Ozone Chemistry) project at El Arenosillo observatory (southwest Spain) in May-June 2012. The campaign focused on the impact of Saharan dust intrusions at the Atmospheric Boundary Layer (ABL) and ozone-aerosol interactions. In-situ and remote-sensing techniques for gases and aerosols were used moreover to modelling analyses. Meteorology features, ABL structures and evolution, aerosol profiling distributions and aerosol-ozone interactions on the surface were analysed. Two four-day periods were selected according to non-dusty (clean conditions) and dusty (Saharan dust) situations. In both scenarios, sea-land breezes developed in the lower atmosphere, but differences were found in the upper levels. Results show that surface temperatures were greater than 3°C and humidity values were lower during dusty conditions than non-dusty conditions. Thermal structures on the surface layer (estimated using an instrument on a 100 m tower) show differences, mainly during nocturnal periods with less intense inversions under dusty conditions. The mixing layer during dusty days was 400-800 m thick, less than observed on non-dusty days. Dust also disturbed the typical daily ABL evolution. Stable conditions were observed during the early evening during intrusions. Aerosol extinction on dusty days was 2-3 times higher, and the dust was confined between 1500 and 5500 m. Back trajectory analyses confirmed that the dust had an African origin. On the surface, the particle concentration was approximately 3.5 times higher during dusty events, but the local ozone did not exhibit any change. The arrival of Saharan dust in the upper levels impacted the meteorological surface, inhibited the daily evolution of the ABL and caused an increase in aerosol loading on the surface and at higher altitudes; however, no dust influence was observed on surface ozone.

  2. Surface biofunctionalization and production of miniaturized sensor structures using aerosol printing technologies.

    PubMed

    Grunwald, Ingo; Groth, Esther; Wirth, Ingo; Schumacher, Julian; Maiwald, Marcus; Zoellmer, Volker; Busse, Matthias

    2010-03-01

    The work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate. In this way, it is possible to focus the aerosol stream at a distance of about 5 mm from the printhead to the surface. This technology is useful for printing fluorescence-marked proteins and printing enzymes without affecting their biological activity. Furthermore, higher molecular weight DNA can be printed without shearing. The advantages, such as printing on complex, non-planar 3D structured surfaces, and disadvantages of the aerosol printing technology are also discussed and are compared with other printing technologies. In addition, miniaturized sensor structures with line thicknesses in the range of a few micrometers are fabricated by applying a silver sensor structure to glass. After sintering using an integrated laser or in an oven process, electrical conductivity is achieved within the sensor structure. Finally, we printed BSA in small micrometre-sized areas within the sensor structure using the same deposition system. The aerosol printing technology combined with material development offers great advantages for future-oriented applications involving biological surface functionalization on small areas. This is important for innovative biomedical micro-device development and for production solutions which bridge the disciplines of biology and electronics.

  3. Aromatic Structure in Simulates Titan Aerosol

    NASA Technical Reports Server (NTRS)

    Trainer, Melissa G.; Loeffler, M. J.; Anderson, C. M.; Hudson, R. L.; Samuelson, R. E.; Moore, M. A.

    2011-01-01

    Observations of Titan by the Cassini Composite Infrared Spectrometer (CIRS) between 560 and 20 per centimeter (approximately 18 to 500 micrometers) have been used to infer the vertical variations of Titan's ice abundances, as well as those of the aerosol from the surface to an altitude of 300 km [1]. The aerosol has a broad emission feature centered approximately at 140 per centimeter (71 micrometers). As seen in Figure 1, this feature cannot be reproduced using currently available optical constants from laboratory-generated Titan aerosol analogs [2]. The far-IR is uniquely qualified for investigating low-energy vibrational motions within the lattice structures of COITIDlex aerosol. The feature observed by CIRS is broad, and does not likely arise from individual molecules, but rather is representative of the skeletal movements of macromolecules. Since Cassini's arrival at Titan, benzene (C6H6) has been detected in the atmosphere at ppm levels as well as ions that may be polycyclic aromatic hydrocarbons (PAHs) [3]. We speculate that the feature may be a blended composite that can be identified with low-energy vibrations of two-dimensional lattice structures of large molecules, such as PAHs or nitrogenated aromatics. Such structures do not dominate the composition of analog materials generated from CH4 and N2 irradiation. We are performing studies forming aerosol analog via UV irradiation of aromatic precursors - specifically C6H6 - to understand how the unique chemical architecture of the products will influence the observable aerosol characteristics. The optical and chemical properties of the aromatic analog will be compared to those formed from CH4/N2 mixtures, with a focus on the as-yet unidentified far-IR absorbance feature. Preliminary results indicate that the photochemically-formed aromatic aerosol has distinct chemical composition, and may incorporate nitrogen either into the ring structure or adjoined chemical groups. These compositional differences are

  4. Sensitivity of aerosol retrieval over snow surfaces

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Painter, T. H.

    2011-12-01

    Significant amounts of black carbon and dust aerosols are transported to and accumulated in snowpacks of mountain ranges around the globe. The direct climate forcing of these particles is increasingly understood, whereas its indirect radiative forcing due to snow albedo and snow cover changes is still under investigation. In-situ and new remote sensing techniques are used to estimate snowpack properties from local to regional scales. Nevertheless, orbital and suborbital Earth observation data are difficult to analyze due to high spatial variability of the snowpack in rugged terrain. In addition, changes in atmospheric turbidity significantly complicate the estimation of snow cover characteristics and requires prior retrieval of optical and microphysical aerosol properties. Unfortunately, most aerosol retrieval techniques work only over dark surfaces. We therefore present a study on the sensitivity of aerosol optical depth (AOD) retrieval over snow surfaces. Radiative transfer calculations show that the sensitivity to surface spectral albedo depends strongly on the aerosol single scattering albedo (ratio of scattering efficiency to total extinction efficiency). Absorbing aerosol types (e.g. soot) provide a relatively good AOD retrieval sensitivity for very bright surfaces. The findings provide a basis for the development of future techniques and algorithms, which are able to concurrently retrieve snow and aerosol properties using remote sensing data. We explore these sensitivities with synthetic data and a time series of imaging spectrometer data, in situ spectral irradiance measurements, and sunphotometer measurements of AOD in the mountains of the Upper Colorado River Basin, USA. Ultimately, this research is important to map and better understand regional influences of aerosol and climate forcings on the cryosphere and water cycle in mountainous and other cold regions.

  5. Volume versus surface nucleation in freezing aerosols

    NASA Astrophysics Data System (ADS)

    Sigurbjörnsson, Ómar F.; Signorell, Ruth

    2008-05-01

    The present study puts an end to the ongoing controversy regarding volume versus surface nucleation in freezing aerosols: Our study on nanosized aerosol particles demonstrates that current state of the art measurements of droplet ensembles cannot distinguish between the two mechanisms. The reasons are inherent experimental uncertainties as well as approximations used to analyze the kinetics. The combination of both can lead to uncertainties in the rate constants of two orders of magnitude, with important consequences for the modeling of atmospheric processes.

  6. Aerosol Production from the Great Lakes Surface

    NASA Astrophysics Data System (ADS)

    Slade, J. H.; Mwaniki, G.; Bertman, S. B.; Vanreken, T. M.; Shepson, P. B.

    2009-12-01

    It is well understood that oceans generate airborne particulate matter from mechanical processes such as sea spray and bubble bursting. These particles are primarily composed of salts and other nonvolatile inorganic material; however, the organic mass fraction can vary by location and the extent of biological activity. The size distributions of aerosols in these environments depend greatly on relative humidity with diameters ranging from typically several hundred nanometers to several micrometers. There has been much less discussion of particle formation from fresh water ecosystems, a hub for organic activity, and thus a more likely medium for organic aerosol production. We investigated particle formation over the Great Lakes during the summer of 2009 as a part of the Community Atmosphere-Biosphere Interactions Experiments (CABINEX) at the University of Michigan Biological Station (UMBS) in Pellston, MI. With a scanning mobility particle sizer (SMPS) aboard Purdue University’s Airborne Laboratory for Atmospheric Research (ALAR) for size-distribution analysis of accumulation-mode aerosol, we conducted vertical profiles above Lake Michigan and the UMBS deciduous forest, and transects across the peninsula between Lakes Michigan and Huron to study particle formation, transport, and deposition. Preliminary results reveal a well-mixed troposphere above the forest with a mode ~0.1 μm, while in several cases, the total particle concentration over Lake Michigan is an order of magnitude greater than over the forest. There is a consistent bimodal distribution of particle sizes over Lake Michigan the lowest of which is centered at ~0.025 μm, suggesting the possibility of new particle formation. This mode is consistent with the presence of breaking waves on the lake’s surface, and this mode and the vertical structure depend greatly on wind speed. We present here evidence for new particle production from breaking waves on fresh water lakes, and discuss the results

  7. Ionic surface active compounds in atmospheric aerosols.

    PubMed

    Sukhapan, Jariya; Brimblecombe, Peter

    2002-04-27

    Surfactants in the atmosphere have several potential roles in atmospheric chemistry. They can form films on aqueous surfaces, which lowers the surface tension and possibly delays water evaporation and gaseous transportation across the aqueous interface. They can also increase the solubility of organic compounds in the aqueous phase. Recently, the decrease of surface tension in cloud growing droplets has been suggested as relevant to increases in the number of droplets of smaller size, potentially enhancing cloud albedo. Natural surfactants in the lung aid gas transfer and influence the dissolution rate of aerosol particles, so surfactants in atmospheric aerosols, once inhaled, may interact with pulmonary surfactants. Ambient aerosols were collected from the edge of Norwich, a small city in a largely agricultural region of England, and analysed for surfactants. Methylene blue, a conventional dye for detecting anionic surfactants, has been used as a colorimetric agent. The concentration of surfactants expressed as methylene blue active substances (MBAS) is in the range of 6-170 pmol m(-3)(air). A negative correlation with chloride aerosol indicates that these surfactants are probably not the well-known surfactants derived from marine spray. A more positive correlation with aerosol nitrate and gaseous NOx supports an association with more polluted inland air masses. The surfactants found in aerosols seem to be relatively strong acids, compared with weaker acids such as the long-chain carboxylic acids previously proposed as atmospheric surfactants. Surfactants from the oxidation of organic materials (perhaps vegetation- or soil-derived) seem a likely source of these substances in the atmosphere.

  8. The Dry Aerosol Deposition Device (DADD): An Instrument for Depositing Microbial Aerosols onto Surfaces (PREPRINT)

    DTIC Science & Technology

    2008-12-01

    AFRL-RX-TY-TP-2008-4617 PREPRINT THE DRY AEROSOL DEPOSITION DEVICE (DADD): AN INSTRUMENT FOR DEPOSITING MICROBIAL AEROSOLS ONTO SURFACES... Deposition Device (DADD): 3  An Instrument for Depositing Microbial Aerosols onto Surfaces 4  5  Authors and affiliation 6  7  Heimbuch, B.K., Kinney...footprint, variable loading, etc.). We developed a Dry Aerosol 33  Deposition Device (DADD) that uses impaction rather than settling for loading surfaces

  9. The Dry Aerosol Deposition Device (DADD): An Instrument for Depositing Microbial Aerosols onto Surfaces

    DTIC Science & Technology

    2008-12-01

    AFRL-RX-TY-TR-2008-4592 THE DRY AEROSOL DEPOSITION DEVICE (DADD): AN INSTRUMENT FOR DEPOSITING MICROBIAL AEROSOLS ONTO SURFACES...RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 30-NOV-2008 Final Technical Report 01-OCT-2004 -- 02-OCT-2008 The Dry Aerosol Deposition ...Device (DADD): An Instrument for Depositing Microbial Aerosols Onto Surfaces FA4819-07-D-0001 99999F DODT 00 DODT0056 Heimbuch, Brian K.; Kinney

  10. A new method for estimating aerosol mass flux in the urban surface layer using LAS technology

    NASA Astrophysics Data System (ADS)

    Yuan, Renmin; Luo, Tao; Sun, Jianning; Liu, Hao; Fu, Yunfei; Wang, Zhien

    2016-04-01

    Atmospheric aerosol greatly influences human health and the natural environment, as well as the weather and climate system. Therefore, atmospheric aerosol has attracted significant attention from society. Despite consistent research efforts, there are still uncertainties in understanding its effects due to poor knowledge about aerosol vertical transport caused by the limited measurement capabilities of aerosol mass vertical transport flux. In this paper, a new method for measuring atmospheric aerosol vertical transport flux is developed based on the similarity theory of surface layer, the theory of light propagation in a turbulent atmosphere, and the observations and studies of the atmospheric equivalent refractive index (AERI). The results show that aerosol mass flux can be linked to the real and imaginary parts of the atmospheric equivalent refractive index structure parameter (AERISP) and the ratio of aerosol mass concentration to the imaginary part of the AERI. The real and imaginary parts of the AERISP can be measured based on the light-propagation theory. The ratio of the aerosol mass concentration to the imaginary part of the AERI can be measured based on the measurements of aerosol mass concentration and visibility. The observational results show that aerosol vertical transport flux varies diurnally and is related to the aerosol spatial distribution. The maximum aerosol flux during the experimental period in Hefei City was 0.017 mg m-2 s-1, and the mean value was 0.004 mg m-2 s-1. The new method offers an effective way to study aerosol vertical transport in complex environments.

  11. MISR Level 3 Land Surface and Aerosol Versioning

    Atmospheric Science Data Center

    2016-11-04

      MISR Level 3 Land Surface and Aerosol Versioning Component Global Land Surface Product (CGLS) and Component Global Aerosol Product (CGAS) - ... to small, medium, large, spherical, non-spherical particles; LAND - DHRPAR, spectral DHR, FPAR (excluding needleleaf forest biome type), LAI ...

  12. Anthropogenic Aerosol Effects on Sea Surface Temperatures: Mixed-Layer Ocean Experiments with Explicit Aerosol Representation

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Wild, Martin; Knutti, Reto

    2014-05-01

    Anthropogenic aerosols affect the Earth's radiative balance both through direct and indirect effects. These effects can lead to a reduction of the incoming solar radiation at the surface, i.e. dimming, which may lead to a change in sea surface temperatures (SST) or SST pattern. This, in turn, may affect precipitation patterns. The goal of the present work is to achieve an estimate of the equilibrium SST changes under anthropogenic aerosol forcing since industrialisation. We show preliminary results from mixed-layer ocean (MLO) experiments with explicit aerosol representation performed with ECHAM6-HAM. The (fixed) MLO heat flux into the deep ocean was derived from atmosphere only runs with fixed climatological SSTs (1961-1990 average) and present day (year 2000) aerosols and GHG burdens. Some experiments we repeated with an alternative MLO deep ocean heat flux (based on pre-industrial conditions) to test the robustness of our results with regard to this boundary condition. The maximum surface temperature responses towards anthropogenic aerosol and GHG forcing (separately and combined) were derived on a global and regional scale. The same set of experiments was performed with aerosol and GHG forcings representative of different decades over the past one and a half centuries. This allows to assess how SST patterns at equilibrium changed with changing aerosol (and GHG) forcing. Correlating SST responses with the change in downward clear-sky and all-sky shortwave radiation provides a first estimate of the response to anthropogenic aerosols. Our results show a clear contrast in hemispheric surface temperature response, as expected from the inter-hemispheric asymmetry of aerosol forcing The presented work is part of a project aiming at quantifying the effect of anthropogenic aerosol forcing on SSTs and the consequences for global precipitation patterns. Results from this study will serve as a starting point for further experiments involving a dynamic ocean model, which

  13. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    SciTech Connect

    Tsay, S.

    2002-09-30

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (i) the spectral and spectrally-averaged surface albedo, and (ii) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  14. Applications of Sunphotometry to Aerosol Extinction and Surface Anisotropy

    NASA Technical Reports Server (NTRS)

    Tsay, S. C.; Holben, B. N.; Privette, J. L.

    2005-01-01

    Support cost-sharing of a newly developed sunphotometer in field deployment for aerosol studies. This is a cost-sharing research to deploy a newly developed sun-sky-surface photometer for studying aerosol extinction and surface anisotropy at the ARM SGP, TWP, and NSA-AAO CART sites and in many field campaigns. Atmospheric aerosols affect the radiative energy balance of the Earth, both directly by perturbing the incoming/outgoing radiation fields and indirectly by influencing the properties/processes of clouds and reactive greenhouse gases. The surface bidirectional reflectance distribution function (BRDF) also plays a crucial role in the radiative energy balance, since the BRDF is required to determine (1) the spectral and spectrally-averaged surface albedo, and (2) the top-of-the-atmosphere (TOA) angular distribution of radiance field. Therefore, the CART sites provide an excellent, albeit unique, opportunity to collect long-term climatic data in characterizing aerosol properties and various types of surface anisotropy.

  15. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  16. Accuracy of near-surface aerosol extinction determined from columnar aerosol optical depth measurements in Reno, NV, USA

    NASA Astrophysics Data System (ADS)

    Loría-Salazar, S. Marcela; Arnott, W. Patrick; Moosmüller, Hans

    2014-10-01

    The aim of the present work is a detailed analysis of aerosol columnar optical depth as a tool to determine near-surface aerosol extinction in Reno, Nevada, USA, during the summer of 2012. Ground and columnar aerosol optical properties were obtained by use of in situ Photoacoustic and Integrated Nephelometer and Cimel CE-318 Sun photometer instruments, respectively. Both techniques showed that seasonal weather changes and fire plumes had enormous influence on local aerosol optics. The apparent optical height followed the shape but not magnitude of the development of the convective boundary layer when fire conditions were not present. Back trajectory analysis demonstrated that a local flow known as the Washoe Zephyr circulation often induced aerosol transport from Northern California over the Sierra Nevada Mountains that increased the aerosol optical depth at 500 nm during afternoons when compared with mornings. Aerosol fine mode fraction indicated that afternoon aerosols in June and July and fire plumes in August were dominated by submicron particles, suggesting upwind urban plume biogenically enhanced evolution toward substantial secondary aerosol formation. This fine particle optical depth was inferred to be beyond the surface, thereby complicating use of remote sensing measurements for near-ground aerosol extinction measurements. It is likely that coarse mode depletes fine mode aerosol near the surface by coagulation and condensation of precursor gases.

  17. Reconciling satellite aerosol optical thickness and surface fine particle mass through aerosol liquid water

    NASA Astrophysics Data System (ADS)

    Nguyen, Thien Khoi V.; Ghate, Virendra P.; Carlton, Annmarie G.

    2016-11-01

    Summertime aerosol optical thickness (AOT) over the southeast U.S. is sharply enhanced over wintertime values. This seasonal pattern is unique and of particular interest because temperatures there have not warmed over the past 100 years. Patterns in surface fine particle mass are inconsistent with satellite reported AOT. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with particle mass measurements at the surface by examining trends in aerosol liquid water (ALW), a particle constituent that scatters radiation and affects satellite AOT but is removed in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIAv2.1 to estimate ALW mass concentrations at Interagency Monitoring of PROtected Visual Environments sites using measured ion mass concentrations and North American Regional Reanalysis meteorological data. Excellent agreement between Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations AOT and estimated ALW provides a plausible explanation for the discrepancies in the geographical patterns of AOT and aerosol mass measurements.

  18. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-04

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  19. Radiative Properties of Smoke and Aerosol Over Land Surfaces

    NASA Technical Reports Server (NTRS)

    King, Michael D.

    2000-01-01

    This talk discusses smoke and aerosol's radiative properties with particular attention to distinguishing the measurement over clear sky from clouds over land, sea, snow, etc. surfaces, using MODIS Airborne Simulator data from (Brazil, arctic sea ice and tundra and southern Africa, west Africa, and other ecosystems. This talk also discusses the surface bidirectional reflectance using Cloud Absorption Radiometer, BRDF measurements of Saudi Arabian desert, Persian Gulf, cerrado and rain forests in Brazil, sea ice, tundra, Atlantic Ocean, Great Dismal Swamp, Kuwait oil fire smoke. Recent upgrades to instrument (new TOMS UVA channels at 340 and 380 planned use in Africa (SAFARI 2000) and possibly for MEIDEX will also be discussed. This talk also plans to discuss the spectral variation of surface reflectance over land and the sensitivity of off-nadir view angles to correlation between visible near-infrared reflectance for use in remote sensing of aerosol over land.

  20. The post-pinatubo evolution of stratospheric aerosol surface area density as inferred from SAGE 2

    NASA Technical Reports Server (NTRS)

    Poole, L. R.; Thomason, L. W.

    1994-01-01

    Following the eruption of Mount Pinatubo in June of 1991, the aerosol mass loading of the stratosphere increased from -1 Mt to approximately 30 Mt. This change in aerosol loading was responsible for numerous radiative and chemical changes observed within the stratosphere. As a result, the ability to quantify aerosol properties on a global basis during this period is important. Aerosol surface area density is a critical parameter in governing the rates of heterogeneous reactions, such as ClONO2 plus H2O yields HNO3 plus HOCl, which influence the stratospheric abundance of ozone. Following the eruption of Mt. Pinatubo, measurements by the Stratospheric Aerosol and Gas Experiment (SAGE 2) indicated that the stratospheric aerosol surface area density increased by as much as a factor of 100. Using SAGE 2 multi-wavelength aerosol extinction data, aerosol surface area density as well as mass are derived for the period following the eruption of Mt. Pinatubo through the present.

  1. Surface Chemistry at Size-Selected Nano-Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Roberts, Jeffrey

    2005-03-01

    A method has been developed to conduct surface chemistry and extract surface kinetic rates from size-selected aerosol nanoparticles. The measurements encompass broad ranges of particle size, phase, and composition. Results will be presented on the uptake of water by aerosolized soot nanoparticles of radius between 10 and 40 nm. Water uptake was monitored by tandem differential mobility analysis (T-DMA), which is capable of measuring changes in particle diameter as little as 0.2 nm. Soot particles were produced in an ethene diffusion flame and extracted into an atmospheric pressure aerosol flow tube reactor. The particles were subjected to various thermal and oxidative treatments, and the effects of these treatments on the ability of soot to adsorb monolayer quantities of water was determined. The results are important because soot nucleates atmospheric cloud particles. More generally, the results represent one of the first kinetic and mechanistic studies of gas-phase nanoparticle reactivity. Co-author: Henry Ajo, University of Minnesota

  2. Aerosols

    Atmospheric Science Data Center

    2013-04-17

    ... article title:  Aerosols over Central and Eastern Europe     View Larger Image ... last weeks of March 2003, widespread aerosol pollution over Europe was detected by several satellite-borne instruments. The Multi-angle ...

  3. Disinfection of Aerosolized Pathogenic Fungi on Laboratory Surfaces

    PubMed Central

    Kruse, Richard H.; Green, Theron D.; Chambers, Richard C.; Jones, Marian W.

    1964-01-01

    The effect of several fungicides on laboratory surfaces contaminated with the culture (spore) phase of aerosolized Blastomyces dermatitidis, Coccidioides immitis, and Histoplasma capsulatum was ascertained. The culture (spore) phase was more resistant to the action of the fungicides than was the tissue (yeast) phase. The addition of a wetting agent increased the efficiency of several fungicides. The time required for disinfection with a given concentration of fungicide, or the concentration required to disinfect within a given time, can be determined by interpolating the plotted graphs. PMID:14131365

  4. Variability of Aerosol Optical Properties at Four North American Surface Monitoring Sites.

    NASA Astrophysics Data System (ADS)

    Delene, David J.; Ogren, John A.

    2002-03-01

    Aerosol optical properties measured over several years at surface monitoring stations located at Bondville, Illinois (BND); Lamont, Oklahoma (SGP); Sable Island, Nova Scotia (WSA); and Barrow, Alaska (BRW), have been analyzed to determine the importance of the variability in aerosol optical properties to direct aerosol radiative forcing calculations. The amount of aerosol present is of primary importance and the aerosol optical properties are of secondary importance to direct aerosol radiative forcing calculations. The mean aerosol light absorption coefficient (ap) is 10 times larger and the mean aerosol scattering coefficient (sp) is 5 times larger at the anthropogenically influenced site at BND than at BRW. The aerosol optical properties of single scattering albedo (o) and hemispheric backscatter fraction (b) have variability of approximately ±3% and ±8%, respectively, in mean values among the four stations. To assess the importance of the variability in o and b on top of the atmosphere aerosol radiative forcing calculations, the aerosol radiative forcing efficiency (F/) is calculated. The F/ is defined as the aerosol forcing (F) per unit optical depth () and does not depend explicitly on the amount of aerosol present. Based on measurements at four North American stations, radiative transfer calculations that assume fixed aerosol properties can have errors of 1%-6% in the annual average forcing at the top of the atmosphere due to variations in average single scattering albedo and backscatter fraction among the sites studied. The errors increase when shorter-term variations in aerosol properties are considered; for monthly and hourly timescales, errors are expected to be greater than 8% and 15%, respectively, approximately one-third of the time. Systematic relationships exist between various aerosol optical properties [ap, o, b, F/, and Ångström exponent (å)] and the amount of aerosol present (measured by sp) that are qualitatively similar but quantitatively

  5. Atmospheric Black Carbon: Chemical Bonding and Structural Information of Individual Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Gilles, M. K.; Tivanski, A. V.; Hopkins, R. J.; Marten, B. D.

    2006-12-01

    The formation of aerosols from both natural and anthropogenic sources affects the Earth's temperature and climate by altering the radiative properties of the atmosphere. Aerosols containing black carbon (BC) that are released into the atmosphere from the burning of biomass, natural fires and the combustion of coals, diesel and jet fuels, contribute a large positive component to this radiative forcing, thus causing a heating of the atmosphere. A distinct type of biomass burn aerosol referred to as "tar balls" has recently been reported in the literature and is characterized by a spherical morphology, high carbon content and ability to efficiently scatter and absorb light. At present, very little is known about the exact nature and variation of the range of BC aerosols in the atmosphere with regards to optical, chemical and physical properties. Additionally, the similarity of these aerosols to surrogates used in the laboratory as atmospheric mimics remains unclear. The local chemical bonding, structural ordering and carbon-to-oxygen ratios of a plethora of black carbon standard reference materials (BC SRMs), high molecular mass humic-like substances (HULIS) and atmospheric aerosols from a variety of sources are examined using scanning transmission X-ray microscopy (STXM) coupled with near edge X-ray absorption fine structure (NEXAFS) spectroscopy. STXM/NEXAFS enables single aerosol particles of diameter upwards of 100 nm to be studied, which allows the diversity of atmospheric aerosol collected during a variety of field missions to be assessed. We apply a semi-quantitative peak fitting method to the recorded NEXAFS spectral fingerprints allowing comparison of BC SRMs and HULIS to BC aerosol originating from anthropogenic combustion and biomass burning events. This method allows us to distinguish between anthropogenic combustion and biomass burn aerosol using both chemical bonding and structural ordering information. The STXM/NEXAFS technique has also been utilized to

  6. In Situ Aerosol Profile Measurements and Comparisons with SAGE 3 Aerosol Extinction and Surface Area Profiles at 68 deg North

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Under funding from this proposal three in situ profile measurements of stratospheric sulfate aerosol and ozone were completed from balloon-borne platforms. The measured quantities are aerosol size resolved number concentration and ozone. The one derived product is aerosol size distribution, from which aerosol moments, such as surface area, volume, and extinction can be calculated for comparison with SAGE III measurements and SAGE III derived products, such as surface area. The analysis of these profiles and comparison with SAGE III extinction measurements and SAGE III derived surface areas are provided in Yongxiao (2005), which comprised the research thesis component of Mr. Jian Yongxiao's M.S. degree in Atmospheric Science at the University of Wyoming. In addition analysis continues on using principal component analysis (PCA) to derive aerosol surface area from the 9 wavelength extinction measurements available from SAGE III. Ths paper will present PCA components to calculate surface area from SAGE III measurements and compare these derived surface areas with those available directly from in situ size distribution measurements, as well as surface areas which would be derived from PCA and Thomason's algorithm applied to the four wavelength SAGE II extinction measurements.

  7. Aerosol Single-Scattering Albedo Derived from MODIS Reflectances over a Bright Surface

    NASA Astrophysics Data System (ADS)

    Wells, K. C.; Martins, J.; Remer, L. A.; Kreidenweis, S. M.; Stephens, G. L.

    2010-12-01

    The sign and magnitude of the aerosol radiative forcing over bright surfaces is highly dependent on the absorbing properties of the aerosol. Thus, the determination of aerosol forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA). However, the brightness of desert surfaces complicates the retrieval of aerosol optical properties using passive space-based measurements. The aerosol critical reflectance is one parameter that can be used to relate TOA reflectance changes over land to the aerosol absorption properties, without knowledge of the underlying surface properties or aerosol loading. Physically, the parameter represents the TOA reflectance at which increased aerosol scattering due to increased aerosol loading is balanced by increased absorption of the surface contribution to the TOA reflectance. It can be derived by comparing two satellite images with different aerosol loading, assuming that the surface reflectance and background aerosol is similar between the two days. In this work, we explore the utility of the critical reflectance method for routine monitoring of spectral aerosol absorption from space over North Africa, a region that is predominantly impacted by absorbing dust and biomass burning aerosol. We derive the critical reflectance from MODIS Level 1B reflectances in the vicinity of two AERONET stations: Tamanrasset, a site in the Algerian Sahara, and Banizoumbou, a Sahelian site in Niger. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties, as well as solar and viewing geometry, using the SBDART model, and apply our findings to retrieve SSA from the MODIS critical reflectance values. We compare our results to AERONET-retrieved estimates, as well as measurements of the TOA albedo and surface fluxes from GERB, ARM, and CERES data. Spectral SSA values retrieved at Banizoumbou result in TOA forcing estimates that agree with CERES measurements

  8. Impact of aerosol radiative effects on 2000-2010 surface temperatures

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Shindell, D. T.; Lamarque, J. F.

    2015-10-01

    Aerosol radiative forcing from direct and indirect effects of aerosols is examined over the recent past (last 10-15 years) using updated sulfate aerosol emissions in two Earth System Models with very different surface temperature responses to aerosol forcing. The hypothesis is that aerosol forcing and in particular, the impact of indirect effects of aerosols on clouds (Aerosol-Cloud Interactions, or ACI), explains the recent `hiatus' in global mean surface temperature increases. Sulfate aerosol emissions increase globally from 2000 to 2005, and then decrease slightly to 2010. Thus the change in anthropogenic sulfate induced net global radiative forcing is small over the period. Regionally, there are statistically significant forcings that are similar in both models, and consistent with changes in simulated emissions and aerosol optical depth. Coupled model simulations are performed to look at impacts of the forcing on recent surface temperatures. Temperature response patterns in the models are similar, and reflect the regional radiative forcing. Pattern correlations indicate significant correlations between observed decadal surface temperature changes and simulated surface temperature changes from recent sulfate aerosol forcing in an equilibrium framework. Sulfate ACI might be a contributor to the spatial patterns of recent temperature forcing, but not to the global mean `hiatus' itself.

  9. The impact of marine aerosols on atmospheric characteristics over ocean surface in frontal zones

    NASA Astrophysics Data System (ADS)

    Pavlova, Hanna; Palamarchuk, Iuliia; Ruban, Igor; Ivanov, Sergiy

    2015-04-01

    Ocean-derived aerosols are particles produced from the ocean surface and remaining suspended in the atmosphere during a certain period of time. Aerosols act as climate forcers both directly (by scattering and absorbing solar radiation) and indirectly (by affecting cloud microphysics as cloud condensation nuclei). To evaluate the degree of marine aerosols impact on weather conditions the numerical experiments with the HARMONIE model were conducted with the model domain covering area over the North Atlantic. The results showed that marine aerosols have a significant impact on characteristics of the atmosphere (such as air temperature, specific humidity, precipitation, and vertical velocity) over the ocean surface. The most significant differences occur along the frontal zones with high gradients at all vertical levels in the atmosphere for all variables. Change in radiative fluxes leads to changes in temperature of the atmosphere. These anomalies appear as mesoscale cells of opposite signs alternating each other. It can be assumed that they are formed as a result of a chain of factors. Thus, the absorption and scattering of solar radiation in the upper troposphere during daytime, increasing of moisture content and subsequent increase in thermal inertia of the air, and enhanced greenhouse effect at nighttime are acting in different directions on formation of vertical structure and convection conditions. This leads to a strengthening/weakening of the updrafts and compensatory movements, and eventually to the changes in processes of precipitation formation. Thus, the simulation of weather conditions in frontal zones over the ocean requires considering the effect of the marine aerosols presence.

  10. Relationship between column aerosol optical properties and surface aerosol gravimetric concentrations during the Distributed Regional Aerosol Gridded Observation Network - Northeast ASIA 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jeong, U.; Kim, J.; Seo, S.; Choi, M.; Kim, W. V.; Holben, B. N.; Lee, S.; Kim, J.

    2012-12-01

    One of the main objectives of Distributed Regional Aerosol Gridded Observation Network (DRAGON) campaign in Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission is to understand the relationship between the column optical properties of the atmosphere and the surface level air quality in terms of aerosols and gases. This study aims to identify the important parameters that affecting the relationship between those variables during the DRAGON - northeast Asia 2012 campaign. Column aerosol optical properties from ten Cimel sun photometers at DRAGON sites in Seoul, MODIS (Moderate Resolution Imaging Spectroradiometer), and GOCI (Geostationary Ocean Color Imager) and particulate matter (PM10) sampling from 40 NIER (National Institute of Environmental Research of South Korea) measurement sites in Seoul during the period of 1st March - 31th May 2012 were employed in this study. The key parameters in relationship between aerosol optical depth (AOD) and PM are reported to be aerosol vertical profile and hygroscopicity of the aerosols. The meteorological conditions including relative humidity, surface temperature, and wind speed that could affect those parameters were investigated.

  11. A conceptual framework for mixing structures in individual aerosol particles

    NASA Astrophysics Data System (ADS)

    Li, Weijun; Sun, Jiaxing; Xu, Liang; Shi, Zongbo; Riemer, Nicole; Sun, Yele; Fu, Pingqing; Zhang, Jianchao; Lin, Yangting; Wang, Xinfeng; Shao, Longyi; Chen, Jianmin; Zhang, Xiaoye; Wang, Zifa; Wang, Wenxing

    2016-11-01

    This study investigated the particle size- and age-dependent mixing structures of individual particles in clean and polluted air. Aerosols were classified into eight components: sea salt, mineral dust, fly ash, metal, soot, sulfates, nitrates, and organic matter (OM). Based on our aerosol classification, a particle that consists of two or more aerosol components can be defined as an internally mixed particle. Otherwise, it is considered to be an externally mixed particle. Within the internally mixed particle class, we identified four heterogeneous mixing structures: core-shell, dumbbell, OM coating, and dispersed OM, as well as one homogeneous-like mixing structure. Homogeneous-like mixing mainly occurred in fine particles (<1 µm), while the frequency of heterogeneously mixed particles increased with particle size. Our study demonstrated that particle mixing structures depend on particle size and location and evolve with time. OM-coating and core-shell structures are important indicators for particle aging in air as long as they are distant from specific emission sources. Long-range transported particles tended to have core-shell and OM-coating structures. We found that secondary aerosol components (e.g., sulfates, nitrates, and organics) determined particle mixing structures, because their phases change following particle hydration and dehydration under different relative humidities. Once externally mixed particles are transformed into internally mixed particles, they cannot revert to their former state, except when semivolatile aerosol components are involved. Categorizing mixing structures of individual particles is essential for studying their optical and hygroscopic properties and for tracing the development of their physical or chemical properties over time.

  12. Vertical structure of aerosols, temperature, and moisture associated with an intense African dust event observed over the eastern Caribbean

    NASA Astrophysics Data System (ADS)

    Jung, Eunsil; Albrecht, Bruce; Prospero, Joseph M.; Jonsson, Haflidi H.; Kreidenweis, Sonia M.

    2013-05-01

    unusually intense African dust event affected a large area of the western Atlantic and eastern Caribbean in early April 2010. Measurements made east of Barbados from the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter research aircraft are used to characterize particle size distributions; vertical distributions of aerosols, temperature, and moisture; and processes leading to the observed stratification in the boundary layer. The vertical profiles of various aerosol characterizations were similar on both days and show three layers with distinct aerosol and thermodynamic characteristics: the Saharan Air Layer (SAL; ~2.2 km ± 500 m), a subcloud layer (SCL; surface to ~500 m), and an intermediate layer extending between them. The SAL and SCL display well-mixed aerosol and thermodynamic characteristics; but the most significant horizontal and vertical variations in aerosols and thermodynamics occur in the intermediate layer. The aerosol variability observed in the intermediate layer is likely associated with modification by shallow cumulus convection occurring sometime in the prior history of the air mass as it is advected across the Atlantic. A comparison of the thermodynamic structure observed in the event from its origin over Africa with that when it reached Barbados indicates that the lower part of the SAL was moistened by surface fluxes as the air mass was advected across the Atlantic. Mixing diagrams using aerosol concentrations and water vapor mixing ratios as conserved parameters provide insight into the vertical transports and mixing processes that may explain the observed aerosol and thermodynamic variability in each layer.

  13. Distinct impact of different types of aerosols on surface solar radiation in China

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhao, Chuanfeng; Zhou, Lijing; Wang, Yang; Liu, Xiaohong

    2016-06-01

    Observations of surface direct solar radiation (DSR) and visibility, particulate matter with aerodynamic diameters less than 2.5 µm (PM2.5), together with the aerosol optical thickness (AOT) taken from Moderate-Resolution Imaging Spectroradiometer and Multiangle Imaging Spectroradiometer, were investigated to gain insight into the impact of aerosol pollution on surface solar radiation in China. The surface DSR decreased during 2004-2014 compared with 1993~2003 over eastern China, but no clear reduction was observed in remote regions with cleaner air. Significant correlations of visibility, PM2.5, and regionally averaged AOT with the surface DSR over eastern China indicate that aerosol pollution greatly affects the energy available at the surface. The net loss of surface solar radiation also reduces the surface ground temperature over eastern China. However, the slope of the linear variation of the radiation with respect to atmospheric visibility is distinctly different at different stations, implying that the main aerosol type varies regionally. The largest slope value occurs at Zhengzhou and indicates that the aerosol absorption in central China is the highest, and lower slope values suggest relatively weakly absorbing types of aerosols at other locations. The spatial distribution of the linear slopes agrees well with the geographical distribution of the absorbing aerosols derived from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations and Ozone Monitoring Instrument over China. The regional correlation between a larger slope value and higher absorbance properties of aerosols indicates that the net effects of aerosols on the surface solar energy and corresponding climatic effects are dependent on both aerosol amount and optical properties.

  14. Sea Spray Aerosol Structure and Composition Using Cryogenic Transmission Electron Microscopy

    PubMed Central

    2016-01-01

    The composition and surface properties of atmospheric aerosol particles largely control their impact on climate by affecting their ability to uptake water, react heterogeneously, and nucleate ice in clouds. However, in the vacuum of a conventional electron microscope, the native surface and internal structure often undergo physicochemical rearrangement resulting in surfaces that are quite different from their atmospheric configurations. Herein, we report the development of cryogenic transmission electron microscopy where laboratory generated sea spray aerosol particles are flash frozen in their native state with iterative and controlled thermal and/or pressure exposures and then probed by electron microscopy. This unique approach allows for the detection of not only mixed salts, but also soft materials including whole hydrated bacteria, diatoms, virus particles, marine vesicles, as well as gel networks within hydrated salt droplets—all of which will have distinct biological, chemical, and physical processes. We anticipate this method will open up a new avenue of analysis for aerosol particles, not only for ocean-derived aerosols, but for those produced from other sources where there is interest in the transfer of organic or biological species from the biosphere to the atmosphere. PMID:26878061

  15. Aerosol measurements at the Southern Great Plains Site: Design and surface installation

    SciTech Connect

    Leifer, R.; Knuth, R.H.; Guggenheim, S.F.; Albert, B.

    1996-04-01

    To impropve the predictive capabilities of the Atmospheric Radiation Measurements (ARM) program radiation models, measurements of awserosol size distributions, condensation particle concentrations, aerosol scattering coefficients at a number of wavelenghts, and the aerosol absorption coefficients are needed at the Southern Great Plains (SGP) site. Alos, continuous measurements of ozone concnetrations are needed for model validation. The environmental Measuremenr Laboratory (EMK) has the responsibility to establish the surface aerosol measurements program at the SGP site. EML has designed a special sampling manifold.

  16. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, Charles T.; Layman, Lawrence R.; Gallimore, David L.

    1988-01-01

    A nebulizer for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets.

  17. Effects of ozone and aerosol on surface UV radiation variability.

    PubMed

    Kim, Jhoon; Cho, Hi-Ku; Mok, Jungbin; Yoo, Hee Dong; Cho, Nayeong

    2013-02-05

    Global (direct+diffuse) spectral ultraviolet (UV, 290-363nm) and total ozone measurements made on the roof of the Main Science Building, Yonsei University at Seoul (37.57°, 128.98°E) were analyzed to quantify the effects of ozone and aerosol on the variability of surface erythemal UV (EUV) irradiance. The measurements have been made with a Brewer Spectrophotometer MKIV (SCI-TEC#148) and a Dobson Ozone Spectrophotometer (Beck#123), respectively, during 2004-2008. The overall mean radiation amplification factor, RAF(AOD, SZA) [23,24] due to total ozone (O(3)) (hereafter O(3) RAF) shows that 1% decrease in total ozone results in an increase of 1.18±0.02% in the EUV irradiance with the range of 0.67-1.74% depending on solar zenith angles (SZAs) (40-70°) and on aerosol optical depths (AODs) (<4.0), under both clear (cloud cover<25%) and all sky conditions. For the mean AOD, the O(3) RAFs(SZA) for both sky conditions increased as SZA increased from 40° to 60°, and then decreased for higher SZA 70°, where the patterns are consistent with results of the previous studies [2,10]. A similar analysis of the RAF(O(3), SZA) due to AOD (hereafter AOD RAF) under clear and all-sky conditions shows that on average, a 1% increase in AOD forces a decrease of 0.29±0.06% in the EUV irradiance with the maximum range 0.18-0.63% depending on SZAs and O(3). Thus, overall sensitivity of UV to ozone (O(3), RAF) was estimated to be about four times higher than to the aerosol (AOD RAF). At the mean O(3), the AOD RAFs(SZA) for both skies appears to be almost independent of SZAs. It is shown that the O(3) RAFs are nearly independent of the sky conditions, whereas the AOD RAFs depend distinctly on the sky conditions with the larger values for all skies. Under cloud free conditions, the overall mean ratio for measured-to-modeled O(3), RAF(AOD, SZA) is 1.13, whereas the ratio for AOD RAF(O(3), SZA) shows 0.82 in the EUV irradiance. Overall, the RAF measurements are corroborated by radiative

  18. The effect of ozone and aerosols on the surface erythemal UV radiation estimated from OMI measurements

    NASA Astrophysics Data System (ADS)

    Lee, Joonsuk; Choi, Won Jun; Kim, Deok Rae; Kim, Seung-Yeon; Song, Chang-Keun; Hong, Jun Suk; Hong, Youdeog; Lee, Sukjo

    2013-05-01

    Surface erythemal UV radiation is mainly affected by total column ozone, aerosols, clouds, and solar zenith angle. The effect of ozone on the surface UV radiation has been explored many times in the previous studies due to the decrease of ozone layer. In this study, we calculated the effect of aerosols on the surface UV radiation as well as that of ozone using data acquired from Ozone Monitoring Instrument (OMI). First, ozone, aerosol optical depth (AOD), and surface erythemal UVB radiation measured from satellite are compared with those from ground measurements. The results showed that the comparison for ozone was good with r 2 of 0.92. For aerosol, there was difference between satellite measurements and surface measurements due to the insufficient information on aerosol in the retrieval algorithm. The r 2 for surface erythemal UV radiation was high (˜0.94) but satellite measurements showed about 30% larger values than surface measurements on average by not considering the effect of absorbing aerosols in the retrieval process from satellite measurements. Radiative amplification factor (RAF) is used to access the effect of ozone and aerosol quantitatively. RAF for ozone was 0.97˜1.49 with solar zenith angle. To evaluate the effect of aerosol on the surface UV radiation, only clear-sky pixel data were used and solar zenith angle and total column amount of ozone were fixed. Also, RAF for aerosol was assessed according to the single scattering albedo (SSA) of aerosols. The results showed that RAF for aerosol with smaller SSA (< 0.90) was larger than that for with larger SSA (> 0.90). The RAF for aerosol was 0.09˜0.22 for the given conditions which was relatively small compared to that for ozone. However, considering the fact that aerosol optical depth can change largely in time and space while the total column amount of ozone does not change very much, it needs to include the effect of aerosol to predict the variations of surface UV radiation more correctly.

  19. Infrared Aerosol Radiative Forcing at the Surface and the Top of the Atmosphere

    NASA Technical Reports Server (NTRS)

    Markowicz, Krzysztof M.; Flatau, Piotr J.; Vogelmann, Andrew M.; Quinn, Patricia K.; Welton, Ellsworth J.

    2003-01-01

    We study the clear-sky aerosol radiative forcing at infrared wavelengths using data from the Aerosol Characterization Experiment (ACE-Asia) cruise of the NOAA R/V Ronald H. Brown. Limited number of data points is analyzed mostly from ship and collocated satellite values. An optical model is derived from chemical measurements, lidar profiles, and visible extinction measurements which is used to and estimate the infrared aerosol optical thickness and the single scattering albedo. The IR model results are compared to detailed Fourier Transform Interferometer based infrared aerosol forcing estimates, pyrgeometer based infrared downward fluxes, and against the direct solar forcing observations. This combined approach attests for the self-consistency of the optical model and allows to derive quantities such as the infrared forcing at the top of the atmosphere or the infrared optical thickness. The mean infrared aerosol optical thickness at 10 microns is 0.08 and the single scattering albedo is 0.55. The modeled infrared aerosol forcing reaches 10 W/sq m during the cruise, which is a significant contribution to the total direct aerosol forcing. The surface infrared aerosol radiative forcing is between 10 to 25% of the shortwave aerosol forcing. The infrared aerosol forcing at the top of the atmosphere can go up to 19% of the solar aerosol forcing. We show good agreement between satellite (CERES instrument) retrievals and model results at the top of the atmosphere. Over the Sea of Japan, the average infrared radiative forcing is 4.6 W/sq m in the window region at the surface and it is 1.5 W/sq m at top of the atmosphere. The top of the atmosphere IR forcing efficiency is a strong function of aerosol temperature while the surface IR forcing efficiency varies between 37 and 55 W/sq m (per infrared optical depth unit). and changes between 10 to 18 W/sq m (per infrared optical depth unit).

  20. Competing Atmospheric and Surface-Driven Impacts of Absorbing Aerosols on the East Asian Summer Monsoon

    NASA Astrophysics Data System (ADS)

    Persad, G.; Paynter, D.; Ming, Y.; Ramaswamy, V.

    2015-12-01

    Absorbing aerosols, by attenuating shortwave radiation within the atmosphere and reemitting it as longwave radiation, redistribute energy both vertically within the surface-atmosphere column and horizontally between polluted and unpolluted regions. East Asia has the largest concentrations of anthropogenic absorbing aerosols globally, and these, along with the region's scattering aerosols, have both reduced the amount of solar radiation reaching the Earth's surface regionally ("solar dimming") and increased shortwave absorption within the atmosphere, particularly during the peak months of the East Asian Summer Monsoon (EASM). We here analyze how atmospheric absorption and surface solar dimming compete in driving the response of EASM circulation to anthropogenic absorbing aerosols, which dominates, and why—issues of particular importance for predicting how the EASM will respond to projected changes in absorbing and scattering aerosol emissions in the future. We probe these questions in a state-of-the-art general circulation model (GCM) using a combination of realistic and idealized aerosol perturbations that allow us to analyze the relative influence of absorbing aerosols' atmospheric and surface-driven impacts on EASM circulation. In combination, our results make clear that, although absorption-driven dimming has a less detrimental effect on EASM circulation than purely scattering-driven dimming, aerosol absorption is still a net impairment to EASM strength when both its atmospheric and surface effects are considered. Because atmospheric heating is not efficiently conveyed to the surface, the surface dimming and associated cooling from even a pure absorber is sufficient to counteract its atmospheric heating, resulting in a net reduction in EASM strength. These findings elevate the current understanding of the impacts of aerosol absorption on the EASM, improving our ability to diagnose EASM responses to current and future regional changes in aerosol emissions.

  1. Resolution and Content Improvements to MISR Aerosol and Land Surface Products

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Bull, M. A.; Diner, D. J.; Hansen, E. G.; Kalashnikova, O. V.

    2015-12-01

    Since early 2000, the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has been providing operational Level 2 (swath-based) aerosol optical depth (AOD) and particle property retrievals at 17.6 km spatial resolution and atmospherically corrected land surface products at 1.1 km resolution. The performance of the aerosol product has been validated against ground-based Aerosol Robotic Network (AERONET) observations, model comparisons, and climatological assessments. This product has played a major role in studies of the impacts of aerosols on climate and air quality. The surface product has found a variety of uses, particularly at regional scales for assessing vegetation and land surface change. A major development effort has led to the release of an update to the operational (Version 22) MISR Level 2 aerosol and land surface retrieval products, which has been in production since December 2007. The new release is designated Version 23. The resolution of the aerosol product has been increased to 4.4 km, allowing more detailed characterization of aerosol spatial variability, especially near local sources and in urban areas. The product content has been simplified and updated to include more robust measures of retrieval uncertainty and other fields to benefit users. The land surface product has also been updated to incorporate the Version 23 aerosol product as input and to improve spatial coverage, particularly over mountainous terrain and snow/ice-covered surfaces. We will describe the major upgrades incorporated in Version 23 and present validation of the aerosol product against both the standard AERONET historical database, as well as high spatial density AERONET-DRAGON deployments. Comparisons will also be shown relative to the Version 22 aerosol and land surface products. Applications enabled by these product updates will be discussed.

  2. Seasonal variation of surface and vertical profile of aerosol properties over a tropical urban station Hyderabad, India

    NASA Astrophysics Data System (ADS)

    Sinha, P. R.; Manchanda, R. K.; Kaskaoutis, D. G.; Kumar, Y. B.; Sreenivasan, S.

    2013-01-01

    One year measurement of vertical profiles of volume backscatter and extinction coefficient, aerosol optical depth (AOD), mass concentration of black carbon (BC) and composite aerosol along with thermodynamic structure of the atmosphere has been carried out over an urban tropical location of Hyderabad(17.47°N, 78.58°E), India, during April 2009 to March 2010. The mean mixing layer height (MLH) exhibits large seasonality exceeding 4 km in pre-monsoon period whereas in winter it comes down to ~1.5 km with an annual mean value of 2.35 ± 1.02 km. Surface BC mass fraction (FBC) shows marked seasonal variation from winter (13 ± 1.9%), pre-monsoon (8.19 ± 2.16%), monsoon (7.3 ± 1.8%) to post-monsoon (11.8 ± 0.18%). The profiles of volume backscatter and extinction coefficients reveal presence of elevated aerosol layers from 2 to 4 km and strong oscillations during pre-monsoon (March-May) and monsoon (June-September) seasons, respectively, while in post-monsoon (October-November) and winter (December-February), the aerosols are well within the lower boundary layer and also exhibit a drastic decrease with increasing altitude. These elevated aerosol layers and vertical distribution appear to be closely linked to the thermodynamic structure of the atmosphere. The aerosol optical properties in conjunction with air mass back trajectory analysis indicate that the observed elevated aerosol layers during pre-monsoon and monsoon could contain significant fraction of coarse mode particles with a mix of dust and marine aerosols. Further analysis reveals that the aerosols within atmospheric boundary layer (ABL) dominate the column aerosol loading with ABL-AOD contributing to ~77.7 ± 17.0%, with significant seasonal variation from winter (86.2 ± 13.1%), pre-monsoon (76.6 ± 12.8%), monsoon (54.2 ± 15.6%) to post monsoon (80.8 ± 14.8%). Seasonal variation of ABL-AOD and BC mass fraction follows similar pattern in the ABL indicating that BC may be an important contributor to

  3. Effective pulmonary delivery of an aerosolized plasmid DNA vaccine via surface acoustic wave nebulization

    PubMed Central

    2014-01-01

    Background Pulmonary-delivered gene therapy promises to mitigate vaccine safety issues and reduce the need for needles and skilled personnel to use them. While plasmid DNA (pDNA) offers a rapid route to vaccine production without side effects or reliance on cold chain storage, its delivery to the lung has proved challenging. Conventional methods, including jet and ultrasonic nebulizers, fail to deliver large biomolecules like pDNA intact due to the shear and cavitational stresses present during nebulization. Methods In vitro structural analysis followed by in vivo protein expression studies served in assessing the integrity of the pDNA subjected to surface acoustic wave (SAW) nebulisation. In vivo immunization trials were then carried out in rats using SAW nebulized pDNA (influenza A, human hemagglutinin H1N1) condensate delivered via intratracheal instillation. Finally, in vivo pulmonary vaccinations using pDNA for influenza was nebulized and delivered via a respirator to sheep. Results The SAW nebulizer was effective at generating pDNA aerosols with sizes optimal for deep lung delivery. Successful gene expression was observed in mouse lung epithelial cells, when SAW-nebulized pDNA was delivered to male Swiss mice via intratracheal instillation. Effective systemic and mucosal antibody responses were found in rats via post-nebulized, condensed fluid instillation. Significantly, we demonstrated the suitability of the SAW nebulizer to administer unprotected pDNA encoding an influenza A virus surface glycoprotein to respirated sheep via aerosolized inhalation. Conclusion Given the difficulty of inducing functional antibody responses for DNA vaccination in large animals, we report here the first instance of successful aerosolized inhalation delivery of a pDNA vaccine in a large animal model relevant to human lung development, structure, physiology, and disease, using a novel, low-power (<1 W) surface acoustic wave (SAW) hand-held nebulizer to produce droplets of p

  4. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater. 3. Lead

    NASA Astrophysics Data System (ADS)

    Maring, H. B.; Duce, R. A.

    1990-04-01

    Atmospheric aerosols collected at Enewetak Atoll in the tropical North Pacific were exposed to seawater in laboratory experiments to assess the impact of atmospheric aerosols on lead chemistry in surface seawater. The net atmospheric flux of soluble lead to the ocean is between 16 and 32 pmol cm-2 yr-1 at Enewetak. The stable lead isotopic composition of soluble aerosol lead indicates that it is of anthropogenic origin. Anthropogenic aerosol lead from Central and North America appears to be less soluble and/or to dissolve less rapidly than that from Asia. Dissolved organic matter and possibly lower pH appear to increase the nonaluminosilicate aerosol lead solubility and/or dissolution rate. The isotopic composition of lead in air, seawater and dry deposition suggests that after deposition in the ocean, nonaluminosilicate paniculate lead can be reinjected into the atmosphere during sea salt aerosol production.

  5. Modeling Electrical Structure of the Artificial Charged Aerosol Cloud

    NASA Astrophysics Data System (ADS)

    Davydenko, S.; Iudin, D.; Klimashov, V.; Kostinskiy, A. J.; Syssoev, V.

    2014-12-01

    The electric structure of the unipolar charged aerosol cloud is considered. The cloud of the volume about 30 cubic meters is generated in the open atmosphere by the original aeroelectrical facility consisting of the source of the aquated ions and the high-voltage discharger. Representing the charge density distribution as a superposition of regular and irregular parts, a model of the electrical structure of the cloud is developed. The regular part is calculated under the stationary current approximation taking into account the source current structure, the shape of the cloud, and results of the multi-point measurements of the electric field and conductivity in the vicinity of the cloud. The irregular part describes random spatiotemporal fluctuations of the charge density which are assumed to be proportional to the aerosol number density. It is shown that a quasi-electrostatic field of the charged aerosol is characterized by significant spatial fluctuations showing the scale invariance. The mean-square fluctuations of the voltage between different parts of the cloud are proportional to the square root of its linear dimensions and may reach significant values even in the absence of the regular field. The basic parameters of the fluctuating spatial structure of the electric field inside the charged aerosol cloud are estimated. It is shown that the charge density fluctuations could lead to a significant (up to 2,5 times) local enhancement of the electric field as compared to the field of the regular part of the charge density. The above effect could serve as one of the important mechanisms of the spark initiation.

  6. The impact of changing surface ocean conditions on the dissolution of aerosol iron

    NASA Astrophysics Data System (ADS)

    Fishwick, Matthew P.; Sedwick, Peter N.; Lohan, Maeve C.; Worsfold, Paul J.; Buck, Kristen N.; Church, Thomas M.; Ussher, Simon J.

    2014-11-01

    The proportion of aerosol iron (Fe) that dissolves in seawater varies greatly and is dependent on aerosol composition and the physicochemical conditions of seawater, which may change depending on location or be altered by global environmental change. Aerosol and surface seawater samples were collected in the Sargasso Sea and used to investigate the impact of these changing conditions on aerosol Fe dissolution in seawater. Our data show that seawater temperature, pH, and oxygen concentration, within the range of current and projected future values, had no significant effect on the dissolution of aerosol Fe. However, the source and composition of aerosols had the most significant effect on the aerosol Fe solubility, with the most anthropogenically influenced samples having the highest fractional solubility (up to 3.2%). The impact of ocean warming and acidification on aerosol Fe dissolution is therefore unlikely to be as important as changes in land usage and fossil fuel combustion. Our experimental results also reveal important changes in the size distribution of soluble aerosol Fe in solution, depending on the chemical conditions of seawater. Under typical conditions, the majority (77-100%) of Fe released from aerosols into ambient seawater existed in the colloidal (0.02-0.4 µm) size fraction. However, in the presence of a sufficient concentration of strong Fe-binding organic ligands (10 nM) most of the aerosol-derived colloidal Fe was converted to soluble Fe (<0.02 µm). This finding highlights the potential importance of organic ligands in retaining aerosol Fe in a biologically available form in the surface ocean.

  7. Towards Improved MODIS Aerosol Retrieval over the US East Coast Region: Re-examining the Aerosol Model and Surface Assumptions

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Remer, L. A.; Kaufman, Y. J.; Holben, B. N.

    2002-01-01

    The MODerate resolution Imaging Spectrometer (MODIS) aboard the Terra and recently the Aqua platform, produces a set of aerosol products over both ocean and land regions. Previous validation efforts have shown that from a global perspective, aerosol optical depth (AOD) is successfully retrieved from MODIS. Even over coastal regions, the over- land and over-ocean retrievals are consistent with each other, and well matched with ground-based sunphotometer measurements (such as AERONET). However, the East Coast of the United States is one region where there is consistently a discrepancy between land and ocean retrievals. Over the ocean, MODIS AODs are consistent with coastal sunphotometer measurements, but over land, AODs are consistently over- estimated. In this study we use field data from the Chesapeake Lighthouse and Aircraft Measurements for Satellites experiment (CLAMS), (held during summer 2001) to determine the aerosol properties at a number of sites. Using the 6-S radiative transfer package, we compute simulated satellite radiances and compare them with observed MODIS radiances. We believe that the AOD over-estimation is not likely due to an incorrect choice of the urban/industrial aerosol models. Using 6-S to do an atmospheric correction for a very low AOD case, we show rather, that the discrepancies are likely a result of incorrect assumptions about the surface reflectance properties. Understanding and improving MODIS retrievals over the East Coast will not only improve the global quality of MODIS, but also would enable the use of MODIS as a tool for monitoring regional aerosol events.

  8. Multi-Decadal Variations of Atmospheric Aerosols and Their Effects on Surface Radiation Trends

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Wild, Martin; Qian, Yun; Yu, Hongbin; Streets, David; Bian, Huisheng; Wang, Weiguo

    2010-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. We analyze the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world.

  9. Antibacterial and water purification activities of self-assembled honeycomb structure of aerosol deposited titania film.

    PubMed

    Park, Jung-Jae; Lee, Jong-Gun; Kim, Do-Yeon; Hong, Joo-Hyun; Kim, Jae-Jin; Hong, Seungkwan; Yoon, Sam S

    2012-11-20

    A simple and rapid room-temperature aerosol deposition method was used to fabricate TiO(2) films for photokilling/photdegradation applications. TiO(2) particles were accelerated to supersonic speeds and fractured upon impacting a glass substrate to form a functional thin film, a process known as aerosol deposition. After deposition, the films were annealed at various temperatures, and their photokilling/photodegradation performances following ultraviolet (UV) exposure were evaluated by counting the number of surviving bacterial colonies, and by a methylene blue decolorization test. The photocatalytic performances of all TiO(2) films were obtained under weak UV exposure (0.6 mW/cm(2)). The film density, crystalline phase, and surface roughness (morphology) were measured by scanning electron microscopy, X-ray diffraction, UV-visible spectroscopy, and atomic force microscopy. The unique, self-assembled honeycomb structure of the aerosol deposited films contributed to the increase in surface area because of extreme roughness, which enhances the photokilling and photodegradation performance. Nonannealed films yielded the best photocatalytic performance due to their small crystalline sizes and large surface areas due to increased surface roughness.

  10. Surface tension depression by low-solubility organic material in aqueous aerosol mimics

    NASA Astrophysics Data System (ADS)

    Schwier, Allison; Mitroo, Dhruv; McNeill, V. Faye

    2012-07-01

    Surface-active material, including long-chain fatty acids (LCFAs), comprises a significant fraction of organic aerosol mass. Surface-active species are thought to form a film at the gas-aerosol interface, with implications for aerosol heterogeneous chemistry and cloud formation. However, LCFA phase behavior and surface-bulk partitioning has not been characterized under most conditions typical of tropospheric aerosol water (i.e. acidic, high ionic content), making it challenging to predict surface film formation in aerosols. In this study, we present measurements of the surface tension of aqueous solutions containing the slightly soluble LCFAs oleic and stearic acid. The effect of varying pH, organic concentration, and inorganic salt content was tested for each system. We observe surface tension depression compared to water of up to ˜30 and 45% for aqueous solutions containing stearic or oleic acid at pH 0-8 and high inorganic salt concentrations (NaCl and (NH4)2SO4). This suggests that surface film formation is favorable for these species in atmospheric aerosols.

  11. Atmospheric aerosol deposition influences marine microbial communities in oligotrophic surface waters of the western Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Maki, Teruya; Ishikawa, Akira; Mastunaga, Tomoki; Pointing, Stephen B.; Saito, Yuuki; Kasai, Tomoaki; Watanabe, Koichi; Aoki, Kazuma; Horiuchi, Amane; Lee, Kevin C.; Hasegawa, Hiroshi; Iwasaka, Yasunobu

    2016-12-01

    Atmospheric aerosols contain particulates that are deposited to oceanic surface waters. These can represent a major source of nutrients, trace metals, and organic compounds for the marine environment. The Japan Sea and the western Pacific Ocean are particularly affected by aerosols due to the transport of desert dust and industrially derived particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5) from continental Asia. We hypothesized that supplementing seawater with aerosol particulates would lead to measurable changes in surface water nutrient composition as well as shifts in the marine microbial community. Shipboard experiments in the Pacific Ocean involved the recovery of oligotrophic oceanic surface water and subsequent supplementation with aerosol particulates obtained from the nearby coastal mountains, to simulate marine particulate input in this region. Initial increases in nitrates due to the addition of aerosol particulates were followed by a decrease correlated with the increase in phytoplankton biomass, which was composed largely of Bacillariophyta (diatoms), including Pseudo-nitzschia and Chaetoceros species. This shift was accompanied by changes in the bacterial community, with apparent increases in the relative abundance of heterotrophic Rhodobacteraceae and Colwelliaceae in aerosol particulate treated seawater. Our findings provide empirical evidence revealing the impact of aerosol particulates on oceanic surface water microbiology by alleviating nitrogen limitation in the organisms.

  12. Influence of Surface Seawater and Atmospheric Conditions on the Ccn Activity of Ocean-Derived Aerosol

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Bates, T. S.; Russell, L. M.; Frossard, A. A.; Keene, W. C.; Kieber, D. J.; Hakala, J. P.

    2012-12-01

    Ocean-derived aerosols are produced from direct injection into the atmosphere (primary production) and gas-to-particle conversion in the atmosphere (secondary production). These different production mechanisms result in a broad range of particle sizes that has implications for the impact of ocean-derived aerosol on climate. The chemical composition of ocean-derived aerosols is a result of a complex mixture of inorganic sea salt and organic matter including polysaccharides, proteins, amino acids, microorganisms and their fragments, and secondary oxidation products. Both production mechanisms and biological processes in the surface ocean impact the ability of ocean-derived aerosol to act as cloud condensation nuclei (CCN). In addition, CCN activity can be impacted by atmospheric processing that modifies particle size and composition after the aerosol is emitted from the ocean. To understand relationships between production mechanism, surface ocean biology, and atmospheric processing, measurements were made of surface ocean chlorophyll and dissolved organic matter; nascent sea spray aerosol freshly emitted from the ocean surface; and ambient marine aerosol. These measurements were made along the coast of California and in the North Atlantic between the northeast US and Bermuda. These regions include both eutrophic and oligotraphic waters and, thus, provide for observations over a wide range of ocean conditions.

  13. Aerosols attenuating the solar radiation collected by solar tower plants: The horizontal pathway at surface level

    NASA Astrophysics Data System (ADS)

    Elias, Thierry; Ramon, Didier; Dubus, Laurent; Bourdil, Charles; Cuevas-Agulló, Emilio; Zaidouni, Taoufik; Formenti, Paola

    2016-05-01

    Aerosols attenuate the solar radiation collected by solar tower plants (STP), along two pathways: 1) the atmospheric column pathway, between the top of the atmosphere and the heliostats, resulting in Direct Normal Irradiance (DNI) changes; 2) the grazing pathway close to surface level, between the heliostats and the optical receiver. The attenuation along the surface-level grazing pathway has been less studied than the aerosol impact on changes of DNI, while it becomes significant in STP of 100 MW or more. Indeed aerosols mostly lay within the surface atmospheric layer, called the boundary layer, and the attenuation increases with the distance covered by the solar radiation in the boundary layer. In STP of 100 MW or more, the distance between the heliostats and the optical receiver becomes large enough to produce a significant attenuation by aerosols. We used measured aerosol optical thickness and computed boundary layer height to estimate the attenuation of the solar radiation at surface level at Ouarzazate (Morocco). High variabilities in aerosol amount and in vertical layering generated a significant magnitude in the annual cycle and significant inter-annual changes. Indeed the annual mean of the attenuation caused by aerosols over a 1-km heliostat-receiver distance was 3.7% in 2013, and 5.4% in 2014 because of a longest desert dust season. The monthly minimum attenuation of less than 3% was observed in winter and the maximum of more than 7% was observed in summer.

  14. Measurements of regional-scale aerosol impacts on cloud microphysics over the East China Sea: Possible influences of warm sea surface temperature over the Kuroshio ocean current

    NASA Astrophysics Data System (ADS)

    Koike, M.; Takegawa, N.; Moteki, N.; Kondo, Y.; Nakamura, H.; Kita, K.; Matsui, H.; Oshima, N.; Kajino, M.; Nakajima, T. Y.

    2012-09-01

    Cloud microphysical properties and aerosol concentrations were measured aboard an aircraft over the East China Sea and Yellow Sea in April 2009 during the Aerosol Radiative Forcing in East Asia (A-FORCE) experiment. We sampled stratocumulus and shallow cumulus clouds over the ocean in 9 cases during 7 flights 500-900 km off the east coast of Mainland China. In this study we report aerosol impacts on cloud microphysical properties by focusing on regional characteristics of two key parameters, namely updraft velocity and aerosol size distribution. First, we show that the cloud droplet number concentration (highest 5%, Nc_max) correlates well with the accumulation-mode aerosol number concentration (Na) below the clouds. We then show that Nc_maxcorrelates partly with near-surface stratification evaluated as the difference between the sea surface temperature (SST) and 950-hPa temperature (SST - T950). Cold air advection from China to the East China Sea was found to bring not only a large number of aerosols but also a dry and cold air mass that destabilized the atmospheric boundary layer, especially over the warm Kuroshio ocean current. Over this high-SST region, greater updraft velocities and hence greater Nc_maxlikely resulted. We hypothesize that the low-level static stability determined by SST and regional-scale airflow modulates both the cloud microphysics (aerosol impact on clouds) and macro-structure of clouds (cloud base and top altitudes, hence cloud liquid water path). Second, we show that not only higher aerosol loading in terms of total aerosol number concentration (NCN, D > 10 nm) but also larger aerosol mode diameters likely contributed to high Ncduring A-FORCE. The mean Nc of 650 ± 240 cm-3was more than a factor of 2 larger than the global average for clouds influenced by continental sources. A crude estimate of the aerosol-induced cloud albedo radiative forcing is also given.

  15. The surface aerosol optical properties in the urban area of Nanjing, west Yangtze River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhuang, Bingliang; Wang, Tijian; Liu, Jane; Li, Shu; Xie, Min; Han, Yong; Chen, Pulong; Hu, Qiduo; Yang, Xiu-qun; Fu, Congbin; Zhu, Jialei

    2017-01-01

    Observational studies of aerosol optical properties are useful for reducing uncertainties in estimations of aerosol radiative forcing and forecasting visibility. In this study, the observed near-surface aerosol optical properties in urban Nanjing are analysed from March 2014 to February 2016. Results show that near-surface urban aerosols in Nanjing are mainly from local emissions and the surrounding regions. They have lower loadings but are more scattering than aerosols in most cities in China. The annual mean aerosol extinction coefficient (EC), single-scattering albedo (SSA) and asymmetry parameter (ASP) at 550 nm are 381.96 Mm-1, 0.9 and 0.57, respectively. The aerosol absorption coefficient (AAC) is about 1 order of magnitude smaller than its scattering coefficient (SC). However, the absorbing aerosol has a larger Ångström exponent (AAE) value, 1.58 at 470/660 nm, about 0.2 larger than the scattering aerosols (SAE). All the aerosol optical properties follow a near-unimodal pattern, and their values are mostly concentrated around their averages, accounting for more than 60 % of the total samplings. Additionally, they have substantial seasonality and diurnal variations. High levels of SC and AAC all appear in winter due to higher aerosol and trace gas emissions. AAE (ASP) is the smallest (largest) in summer, possibly because of high relative humidity (RH) which also causes considerably larger SC and smaller SAE, although intensive gas-to-particle transformation could produce a large number of finer scattering aerosols in this season. Seasonality of EC is different from the columnar aerosol optical depth. Larger AACs appear during the rush hours of the day while SC and back-scattering coefficient (Bsp) only peak in the early morning. Aerosols are fresher in the daytime than at night-time, leading to their larger Ångström exponent and smaller ASP. Different temporal variations between AAC and SC cause the aerosols to be more absorbing (smaller SSA) in autumn

  16. Profiling structured beams using injected aerosols

    NASA Astrophysics Data System (ADS)

    Loh, N. D.; Starodub, Dmitri; Lomb, Lukas; Hampton, Christina Y.; Martin, Andrew V.; Sierra, Raymond G.; Barty, Anton; Aquila, Andrew; Schulz, Joachim; Steinbrener, Jan; Shoeman, Robert L.; Kassemeyer, Stephan; Bostedt, Christoph; Bozek, John; Epp, Sascha W.; Erk, Benjamin; Hartmann, Robert; Rolles, Daniel; Rudenko, Artem; Rudek, Benedikt; Foucar, Lutz; Kimmel, Nils; Weidenspointner, Georg; Hauser, Günther; Holl, Peter; Pedersoli, Emanuele; Liang, MengNing; Hunter, Mark S.; Gumprecht, Lars; Coppola, Nicola; Wunderer, Cornelia; Graafsman, Heinz; Maia, Filipe R. N. C.; Ekeberg, Tomas; Hantke, Max; Fleckenstein, Holger; Hirsemann, Helmut; Nass, Karol; White, Thomas A.; Tobias, Herbert J.; Farquar, George R.; Benner, W. Henry; Hau-Riege, Stefan; Reich, Christian; Hartmann, Andreas; Soltau, Heike; Marchesini, Stefano; Bajt, Sasa; Barthelmess, Miriam; Strueder, Lothar; Ullrich, Joachim; Bucksbaum, Philip; Hodgson, Keith O.; Frank, Mathias; Schlichting, Ilme; Chapman, Henry N.; Bogan, Michael J.

    2012-10-01

    Profiling structured beams produced by X-ray free-electron lasers (FELs) is crucial to both maximizing signal intensity for weakly scattering targets and interpreting their scattering patterns. Earlier ablative imprint studies describe how to infer the X-ray beam profile from the damage that an attenuated beam inflicts on a substrate. However, the beams in-situ profile is not directly accessible with imprint studies because the damage profile could be different from the actual beam profile. On the other hand, although a Shack-Hartmann sensor is capable of in-situ profiling, its lenses may be quickly damaged at the intense focus of hard X-ray FEL beams. We describe a new approach that probes the in-situ morphology of the intense FEL focus. By studying the translations in diffraction patterns from an ensemble of randomly injected sub-micron latex spheres, we were able to determine the non-Gaussian nature of the intense FEL beam at the Linac Coherent Light Source (SLAC National Laboratory) near the FEL focus. We discuss an experimental application of such a beam-profiling technique, and the limitations we need to overcome before it can be widely applied.

  17. Brain surface parameterization using Riemann surface structure.

    PubMed

    Wang, Yalin; Gu, Xianfeng; Hayashi, Kiralee M; Chan, Tony F; Thompson, Paul M; Yau, Shing-Tung

    2005-01-01

    We develop a general approach that uses holomorphic 1-forms to parameterize anatomical surfaces with complex (possibly branching) topology. Rather than evolve the surface geometry to a plane or sphere, we instead use the fact that all orientable surfaces are Riemann surfaces and admit conformal structures, which induce special curvilinear coordinate systems on the surfaces. Based on Riemann surface structure, we can then canonically partition the surface into patches. Each of these patches can be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable. To illustrate the technique, we computed conformal structures for several types of anatomical surfaces in MRI scans of the brain, including the cortex, hippocampus, and lateral ventricles. We found that the resulting parameterizations were consistent across subjects, even for branching structures such as the ventricles, which are otherwise difficult to parameterize. Compared with other variational approaches based on surface inflation, our technique works on surfaces with arbitrary complexity while guaranteeing minimal distortion in the parameterization. It also offers a way to explicitly match landmark curves in anatomical surfaces such as the cortex, providing a surface-based framework to compare anatomy statistically and to generate grids on surfaces for PDE-based signal processing.

  18. Biomass burning aerosol impact on surface winds during the 2010 Russian heat wave

    NASA Astrophysics Data System (ADS)

    Baró, R.; Lorente-Plazas, R.; Montávez, J. P.; Jiménez-Guerrero, P.

    2017-01-01

    This paper elucidates the impact of biomass burning aerosols (BB) on surface winds for the Russian fires episode during 25 July to 15 August 2010. The methodology consists of three Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) simulations over Europe differing in the inclusion (or not) of aerosol-radiation and aerosol-cloud interactions. The presence of BB reduces the 10 m wind speed over Russia during this fire event by 0.2 m s-1 (10%). Aerosol interactions imply a decrease of the shortwave downwelling radiation at the surface leading to a reduction of the 2 m temperature. This decrease reduces the turbulence flux, developing a more stable planetary boundary layer. Moreover, cooling favors an increase of the surface pressure over Russian area and also it extends nearby northern Europe.

  19. The effect of aerosol vertical profiles on satellite-estimated surface particle sulfate concentrations

    SciTech Connect

    Liu, Yang; Wang, Zifeng; Wang, Jun; Ferrare, Richard A.; Newsom, Rob K.; Welton, Ellsworth J.

    2011-02-15

    The aerosol vertical distribution is an important factor in determining the relationship between satellite retrieved aerosol optical depth (AOD) and ground-level fine particle pollution concentrations. We evaluate how aerosol profiles measured by ground-based lidar and simulated by models can help improve the association between AOD retrieved by the Multi-angle Imaging Spectroradiometer (MISR) and fine particle sulfate (SO4) concentrations using matched data at two lidar sites. At the Goddard Space Flight Center (GSFC) site, both lidar and model aerosol profiles marginally improve the association between SO4 concentrations and MISR fractional AODs, as the correlation coefficient between cross-validation (CV) and observed SO4 concentrations changes from 0.87 for the no-scaling model to 0.88 for models scaled with aerosol vertical profiles. At the GSFC site, a large amount of urban aerosols resides in the well-mixed boundary layer so the column fractional AODs are already excellent indicators of ground-level particle pollution. In contrast, at the Atmospheric Radiation Measurement Program (ARM) site with relatively low aerosol loadings, scaling substantially improves model performance. The correlation coefficient between CV and observed SO4 concentrations is increased from 0.58 for the no-scaling model to 0.76 in the GEOS-Chem scaling model, and the model bias is reduced from 17% to 9%. In summary, despite the inaccuracy due to the coarse horizontal resolution and the challenges of simulating turbulent mixing in the boundary layer, GEOS-Chem simulated aerosol profiles can still improve methods for estimating surface aerosol (SO4) mass from satellite-based AODs, particularly in rural areas where aerosols in the free troposphere and any long-range transport of aerosols can significantly contribute to the column AOD.

  20. Detection of Remarkably Low Isotopic Ratio of Iron in Anthropogenic Aerosols and Evaluation of its Contribution to the Surface Ocean

    NASA Astrophysics Data System (ADS)

    Kurisu, M.; Iizuka, T.; Sakata, K.; Uematsu, M.; Takahashi, Y.

    2015-12-01

    It has been reported that phytoplankton growth in the High Nutrient-Low Chlorophyll (HNLC) regions is limited by dissolved iron (DFe) concentration (e.g., Martin and Fitzwater, 1988). Aerosol is known as one of the dominant sources of DFe to the ocean and classified into two origins such as anthropogenic and natural. A series of recent studies showed that Fe in anthropogenic aerosols is more soluble than that in natural aerosols (Takahashi et al., 2013) and has lower isotopic ratio (Mead et al., 2013). However, the difference between Fe isotopic ratio (δ56Fe: [(56Fe/54Fe)sample/(56Fe/54Fe)IRMM-14]-1) of two origins reported in Mead et al. (2013) is not so large compared with the standard deviation. Therefore, the aim of this study is to determine Fe species and δ56Fe in anthropogenic aerosols more accurately and to evaluate its contribution to the ocean surface. Iron species were determined by X-ray absorption fine structure (XAFS) analysis, while δ56Fe in size-fractionated aerosols were measured by MC-ICP-MS (NEPTUNE Plus) after chemical separation using anion exchange resin. Dominant Fe species in the samples were, ferrihydrite, hematite, and biotite. It was also revealed that coarse particles contained a larger amount of biotite and that fine particles contained a larger amount of hematite, which suggested that anthropogenic aerosols were emitted during combustion processes. In addition, results of Fe isotopic ratio analysis suggested that δ56Fe of coarse particles were around +0.25‰, whereas that of fine particles were -0.5 ˜ -2‰, which was lower than the δ56Fe in anthropogenic aerosol by Mead et al. (2013). The size-fractionated sampling made it possible to determine the δ56Fe in anthropogenic aerosol. Soluble component in fine particles extracted by simulated rain water also showed much lower δ56Fe (δ56Fe = -3.9±0.12‰), suggesting that anthropogenic Fe has much lower isotopic ratio. The remarkably low δ56Fe may be caused by the

  1. Surface-Sensitive and Bulk Studies on the Complexation and Photosensitized Degradation of Catechol by Iron(III) as a Model for Multicomponent Aerosol Systems

    NASA Astrophysics Data System (ADS)

    Al-abadleh, H. A.; Tofan-Lazar, J.; Situm, A.; Ruffolo, J.; Slikboer, S.

    2013-12-01

    Surface water plays a crucial role in facilitating or inhibiting surface reactions in atmospheric aerosols. Little is known about the role of surface water in the complexation of organic molecules to transition metals in multicomponent aerosol systems. We will show results from real time diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) experiments for the in situ complexation of catechol to Fe(III) and its photosensitized degradation under dry and humid conditions. Catechol was chosen as a simple model for humic-like substances (HULIS) in aerosols and aged polyaromatic hydrocarbons (PAH). It has also been detected in secondary organic aerosols (SOA) formed from the reaction of hydroxyl radicals with benzene. Given the importance of the iron content in aerosols and its biogeochemistry, our studies were conducted using FeCl3. For comparison, these surface-sensitive studies were complemented with bulk aqueous ATR-FTIR, UV-vis, and HPLC measurements for structural, quantitative and qualitative information about complexes in the bulk, and potential degradation products. The implications of our studies on understanding interfacial and condensed phase chemistry relevant to multicomponent aerosols, water thin islands on buildings, and ocean surfaces containing transition metals will be discussed.

  2. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  3. Development of algorithm for retrieving aerosols over land surfaces from NEMO-AM polarized measurements

    NASA Astrophysics Data System (ADS)

    Pandya, Mehul R.

    2016-04-01

    Atmospheric aerosols have a large effect on the Earth radiation budget through its direct and indirect effects. A systematic assessment of aerosol effects on Earth's climate requires global mapping of tropospheric aerosols through satellite remote sensing. However aerosol retrieval over land surface remains a challenging task due to bright background of the land surfaces. Polarized measurements can provide an improved aerosol sensing by providing a means of decoupling the surface and atmospheric contribution. The Indian Space Research Organisation has planned a Multi- Angle Dual-Polarization Instrument (MADPI) onboard a Nano satellite for Earth Monitoring & Observations for Aerosol Monitoring (NEMO-AM). MADPI has three spectral bands in blue, red and near infrared spectral regions with a nominal spatial resolution of 30 m from an altitude of 500 km polar orbit. A study has been taken up with the aim of development of an algorithm for retrieving aerosol optical thickness (AOT) over land surfaces from NEMO-AM polarized measurements. The study has three major components: (1) detailed theoretical modelling exercise for computing the atmospheric and surface polarized contributions, (2) modelling of total satellite-level polarized contribution, and (3) retrieval of aerosol optical thickness (AOT) by comparing the modelled and measured polarized signals. The algorithm has been developed for MADPI/NEMO-AM spectral bands and tested successfully on similar spectral bands of POLDER/PARASOL measurements to retrieve AOT over Indian landmass having diverse atmospheric conditions. POLDER-derived AOT fields were compared with MODIS-AOT products. Results showed a very good match (R2 0.69, RMSE 0.07). Initial results have provided encouraging results, however, comprehensive analysis and testing has to be carried out for establishing the proposed algorithm for retrieving AOT from NEMO-AM measurements.

  4. Towards improved MODIS aerosol retrieval over the US East Coast region: Re-examining the aerosol model and surface assumptions

    NASA Astrophysics Data System (ADS)

    Levy, R. C.; Remer, L. A.; Kaufman, Y. J.; Holben, B. N.

    2002-12-01

    The MODerate resolution Imaging Spectrometer (MODIS) aboard the Terra and recently the Aqua platform, produces a set of aerosol products over both ocean and land regions. Previous validation efforts have shown that from a global perspective, aerosol optical depth (AOD) is successfully retrieved from MODIS. Even over coastal regions, the over-land and over-ocean retrievals are consistent with each other, and well matched with ground-based sunphotometer measurements (such as AERONET). However, the East Coast of the United States is one region where there is consistently a discrepancy between land and ocean retrievals. Over the ocean, MODIS AODs are consistent with coastal sunphotometer measurements, but over land, AODs are consistently over-estimated. In this study we use field data from the Chesapeake Lighthouse and Aircraft Measurements for Satellites experiment (CLAMS), (held during summer 2001) to determine the aerosol properties at a number of sites. Using the 6-S radiative transfer package, we compute simulated satellite radiances and compare them with observed MODIS radiances. We believe that the AOD over-estimation is not likely due to an incorrect choice of the urban/industrial aerosol models. Using 6-S to do an atmospheric correction for a very low AOD case, we show rather, that the discrepancies are likely a result of incorrect assumptions about the surface reflectance properties. Understanding and improving MODIS retrievals over the East Coast will not only improve the global quality of MODIS, but also would enable the use of MODIS as a tool for monitoring regional aerosol events.

  5. The Effect of Non-Lambertian Surface Reflectance on Aerosol Radiative Forcing

    SciTech Connect

    Ricchiazzi, P.; O'Hirok, W.; Gautier, C.

    2005-03-18

    Surface reflectance is an important factor in determining the strength of aerosol radiative forcing. Previous studies of radiative forcing assumed that the reflected surface radiance is isotropic and does not depend on incident illumination angle. This Lambertian reflection model is not a very good descriptor of reflectance from real land and ocean surfaces. In this study we present computational results for the seasonal average of short and long wave aerosol radiative forcing at the top of the atmosphere and at the surface. The effect of the Lambertian assumption is found through comparison with calculations using a more detailed bi-direction reflectance distribution function (BRDF).

  6. A surface reflectance scheme for retrieving aerosol optical depth over urban surfaces in MODIS Dark Target retrieval algorithm

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan; Levy, Robert C.; Mattoo, Shana; Remer, Lorraine A.; Munchak, Leigh A.

    2016-07-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) instruments, aboard the two Earth Observing System (EOS) satellites Terra and Aqua, provide aerosol information with nearly daily global coverage at moderate spatial resolution (10 and 3 km). Almost 15 years of aerosol data records are now available from MODIS that can be used for various climate and air-quality applications. However, the application of MODIS aerosol products for air-quality concerns is limited by a reduction in retrieval accuracy over urban surfaces. This is largely because the urban surface reflectance behaves differently than that assumed for natural surfaces. In this study, we address the inaccuracies produced by the MODIS Dark Target (MDT) algorithm aerosol optical depth (AOD) retrievals over urban areas and suggest improvements by modifying the surface reflectance scheme in the algorithm. By integrating MODIS Land Surface Reflectance and Land Cover Type information into the aerosol surface parameterization scheme for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region, the continental United States (CONUS). The new surface scheme takes into account the change in underlying surface type and is only applied for MODIS pixels with urban percentage (UP) larger than 20 %. Over the urban areas where the new scheme has been applied (UP > 20 %), the number of AOD retrievals falling within expected error (EE %) has increased by 20 %, and the strong positive bias against ground-based sun photometry has been eliminated. However, we note that the new retrieval introduces a small negative bias for AOD values less than 0.1 due to the ultra-sensitivity of the AOD retrieval to the surface parameterization under low atmospheric aerosol loadings. Global application of the new urban surface parameterization appears promising, but further research and analysis are required before global implementation.

  7. A global climatology of stratospheric aerosol surface area density deduced from Stratospheric Aerosol and Gas Experiment II measurements: 1984-1994

    NASA Astrophysics Data System (ADS)

    Thomason, L. W.; Poole, L. R.; Deshler, T.

    1997-04-01

    A global climatology of stratospheric aerosol surface area density has been developed using the multiwavelength aerosol extinction measurements of the Stratospheric Aerosol and Gas Experiment (SAGE) II for 1984-1994. The spatial and temporal variability of aerosol surface area density at 15.5, 20.5, and 25.5 km are presented as well as cumulative statistical distributions as a function of altitude and latitude. During this period, which encompassed the injection and dissipation of the aerosol associated with the June 1991 Mount Pinatubo eruption as well as the low loading period of 1989-1991, aerosol surface area density varied by more than a factor 30 at some altitudes. Aerosol surface area density derived from SAGE II and from the University of Wyoming optical particle counters are compared for 1991-1994 and are shown to be in generally good agreement though some differences are noted. An extension of the climatology using single-wavelength measurements by the Stratospheric Aerosol Measurement II (1978-1994) and SAGE (1979-1981) instruments is also presented.

  8. AeroCom INSITU Project: Comparison of Aerosol Optical Properties from In-situ Surface Measurements and Model Simulations

    NASA Astrophysics Data System (ADS)

    Schmeisser, L.; Andrews, E.; Schulz, M.; Fiebig, M.; Zhang, K.; Randles, C. A.; Myhre, G.; Chin, M.; Stier, P.; Takemura, T.; Krol, M. C.; Bian, H.; Skeie, R. B.; da Silva, A. M., Jr.; Kokkola, H.; Laakso, A.; Ghan, S.; Easter, R. C.

    2015-12-01

    AeroCom, an open international collaboration of scientists seeking to improve global aerosol models, recently initiated a project comparing model output to in-situ, surface-based measurements of aerosol optical properties. The model/measurement comparison project, called INSITU, aims to evaluate the performance of a suite of AeroCom aerosol models with site-specific observational data in order to inform iterative improvements to model aerosol modules. Surface in-situ data have the unique property of being traceable to physical standards, which is a big asset in accomplishing the overarching goal of bettering the accuracy of aerosol processes and predicative capability of global climate models. The INSITU project looks at how well models reproduce aerosol climatologies on a variety of time scales, aerosol characteristics and behaviors (e.g., aerosol persistence and the systematic relationships between aerosol optical properties), and aerosol trends. Though INSITU is a multi-year endeavor, preliminary phases of the analysis, using GOCART and other models participating in this AeroCom project, show substantial model biases in absorption and scattering coefficients compared to surface measurements, though the sign and magnitude of the bias varies with location and optical property. Spatial patterns in the biases highlight model weaknesses, e.g., the inability of models to properly simulate aerosol characteristics at sites with complex topography (see Figure 1). Additionally, differences in modeled and measured systematic variability of aerosol optical properties suggest that some models are not accurately capturing specific aerosol co-dependencies, for example, the tendency of in-situ surface single scattering albedo to decrease with decreasing aerosol extinction coefficient. This study elucidates specific problems with current aerosol models and suggests additional model runs and perturbations that could further evaluate the discrepancies between measured and modeled

  9. Satellite Detection of Smoke Aerosols Over a Snow/Ice Surface by TOMS

    NASA Technical Reports Server (NTRS)

    Hsu, N. Christina; Herman, Jay R.; Gleason, J. F.; Torres, O.; Seftor, C. J.

    1998-01-01

    The use of TOMS (Total Ozone Mapping Spectrometer) satellite data demonstrates the recently developed technique of using satellite UV radiance measurements to detect absorbing tropospheric aerosols is effective over snow/ice surfaces. Instead of the traditional single wavelength (visible or infrared) method of measuring tropospheric aerosols, this method takes advantage of the wavelength dependent reduction in the backscattered radiance due to the presence of absorbing aerosols over snow/ice surfaces. An example of the resulting aerosol distribution derived from TOMS data is shown for an August 1998 event in which smoke generated by Canadian forest fires drifts over and across Greenland. As the smoke plume moved over Greenland, the TOMS observed 380 nm reflectivity over the snow/ice surface dropped drastically from 90-100% down to 30-40%. To study the effects of this smoke plume in both the UV and visible regions of the spectrum, we compared a smoke-laden spectrum taken over Greenland by the high spectral resolution (300 to 800 nm) GOME instrument with one that is aerosol-free. We also discuss the results of modeling the darkening effects of various types of absorbing aerosols over snow/ice surfaces using a radiative transfer code. Finally, we investigated the history of such events by looking at the nearly twenty year record of TOMS aerosol index measurements and found that there is a large interannual variability in the amount of smoke aerosols observed over Greenland. This information will be available for studies of radiation and transport properties in the Arctic.

  10. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater, 1. Aluminum

    NASA Astrophysics Data System (ADS)

    Maring, H. B.; Duce, R. A.

    1987-08-01

    Significant quantities of aerosol aluminum are transported from continental regions through the atmosphere to the oceans. Enrichments in the concentration of dissolved aluminum in open ocean surface seawater suggest that dissolution of aerosol aluminum is an important source of dissolved aluminum to these waters. Atmospheric aerosols collected at Enewetak Atoll were exposed to seawater and artificial rain water to determine directly the importance of atmospheric deposition as a source of marine dissolved aluminum. The results of these experiments indicate that ˜ 8-10% of the aluminum in atmospheric aerosols of crustal origin over the North Pacific is soluble in seawater. Approximately 5-6% dissolves very rapidly ( < 0.6 hr). An additional 3-4% dissolves within 60 hr. This bimodal dissolution of aerosol aluminum of crustal origin suggests that this aluminum is present in two forms. The rapidly dissolving fraction is likely aluminum already weathered from primary minerals, while the more slowly dissolving fraction is probably aluminum from the aluminosilicate matrix. Nearly the same amount of aerosol aluminum dissolved in artificial rain water ( pH= 5.5) in 6 hr as dissolved in seawater ( pH= 8) in 60 hr. The lower pH appears to not only increase the dissolution rate but may also increase the quantity of aerosol aluminum that dissolves. Dissolved organic matter in seawater appears to have relatively little effect on aerosol aluminum dissolution. Considering measured total aerosol aluminum fluxes, aluminum dissolution of 5-10% would constitute the major source for dissolved aluminum in surface waters of the open North Pacific. The calculated residence time of dissolved aluminum in the upper 100 m of the tropical North Pacific ranges from 2 to 6 years.

  11. Calf Lung Surfactant Recovers Surface Functionality After Exposure to Aerosols Containing Polymeric Particles

    PubMed Central

    Farnoud, Amir M.

    2016-01-01

    Abstract Background: Recent studies have shown that colloidal particles can disrupt the interfacial properties of lung surfactant and thus key functional abilities of lung surfactant. However, the mechanisms underlying the interactions between aerosols and surfactant films remain poorly understood, as our ability to expose films to particles via the aerosol route has been limited. The aim of this study was to develop a method to reproducibly apply aerosols with a quantifiable particle dose on lung surfactant films and investigate particle-induced changes to the interfacial properties of the surfactant under conditions that more closely mimic those in vivo. Methods: Films of DPPC and Infasurf® were exposed to aerosols containing polystyrene particles generated using a Dry Powder Insufflator™. The dose of particles deposited on surfactant films was determined via light absorbance. The interfacial properties of the surfactant were studied using a Langmuir-Wilhelmy balance during surfactant compression to film collapse and cycles of surface compression and expansion at a fast cycling rate within a small surface area range. Results: Exposure of surfactant films to aerosols led to reproducible dosing of particles on the films. In film collapse experiments, particle deposition led to slight changes in collapse surface pressure and surface area of both surfactants. However, longer interaction times between particles and Infasurf® films resulted in time-dependent inhibition of surfactant function. When limited to lung relevant surface pressures, particles reduced the maximum surface pressure that could be achieved. This inhibitory effect persisted for all compression-expansion cycles in DPPC, but normal surfactant behavior was restored in Infasurf® films after five cycles. Conclusions: The observation that Infasurf® was able to quickly restore its function after exposure to aerosols under conditions that better mimicked those in vivo suggests that particle

  12. Externally pressurized porous cylinder for multiple surface aerosol generation and method of generation

    DOEpatents

    Apel, C.T.; Layman, L.R.; Gallimore, D.L.

    1988-05-10

    A nebulizer is described for generating aerosol having small droplet sizes and high efficiency at low sample introduction rates. The nebulizer has a cylindrical gas permeable active surface. A sleeve is disposed around the cylinder and gas is provided from the sleeve to the interior of the cylinder formed by the active surface. In operation, a liquid is provided to the inside of the gas permeable surface. The gas contacts the wetted surface and forms small bubbles which burst to form an aerosol. Those bubbles which are large are carried by momentum to another part of the cylinder where they are renebulized. This process continues until the entire sample is nebulized into aerosol sized droplets. 2 figs.

  13. Aerosol and Surface Deposition Characteristics of Two Surrogates for Bacillus anthracis Spores.

    PubMed

    Bishop, Alistair H; Stapleton, Helen L

    2016-11-15

    Spores of an acrystalliferous derivative of Bacillus thuringiensis subsp. kurstaki, termed Btcry-, are morphologically, aerodynamically, and structurally indistinguishable from Bacillus anthracis spores. Btcry- spores were dispersed in a large, open-ended barn together with spores of Bacillus atrophaeus subsp. globigii, a historically used surrogate for Bacillus anthracis Spore suspensions (2 × 10(12) CFU each of B. atrophaeus subsp. globigii and Btcry-) were aerosolized in each of five spray events using a backpack misting device incorporating an air blower; a wind of 4.9 to 7.6 m s(-1) was also flowing through the barn in the same direction. Filter air samplers were situated throughout the barn to assess the aerosol density of the spores during each release. Trays filled with a surfactant in aqueous buffer were placed on the floor near the filter samplers to assess spore deposition. Spores were also recovered from arrays of solid surfaces (concrete, aluminum, and plywood) that had been laid on the floor and set up as a wall at the end of the barn. B. atrophaeus subsp. globigii spores were found to remain airborne for significantly longer periods, and to be deposited on horizontal surfaces at lower densities, than Btcry- spores, particularly near the spray source. There was a 6-fold-higher deposition of Btcry- spores than of B. atrophaeus subsp. globigii spores on vertical surfaces relative to the surrounding airborne density. This work is relevant for selecting the best B. anthracis surrogate for the prediction of human exposure, hazard assessment, and hazard management following a malicious release of B. anthracis IMPORTANCE: There is concern that pathogenic bacteria could be maliciously disseminated in the air to cause human infection and disruption of normal life. The threat from spore-forming organisms, such as the causative agent of anthrax, is particularly serious. In order to assess the extent of this risk, it is important to have a surrogate organism

  14. Synergy of Satellite-Surface Observations for Studying the Properties of Absorbing Aerosols in Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2010-01-01

    Through interaction with clouds and alteration of the Earth's radiation budget, atmospheric aerosols significantly influence our weather and climate. Monsoon rainfalls, for example, sustain the livelihood of more than half of the world's population. Thus, understanding the mechanism that drives the water cycle and freshwater distribution is high-lighted as one of the major near-term goals in NASA's Earth Science Enterprise Strategy. Every cloud droplet/ice-crystal that serves as an essential element in portraying water cycle and distributing freshwater contains atmospheric aerosols at its core. In addition, the spatial and temporal variability of atmospheric aerosol properties is complex due to their dynamic nature. In fact, the predictability of the tropical climate system is much reduced during the boreal spring, which is associated with the peak season of biomass burning activities and regional/long-range transport of dust aerosols. Therefore, to accurately assess the impact of absorbing aerosols on regional-to-global climate requires not only modeling efforts but also continuous observations from satellites, aircraft, networks of ground-based instruments and dedicated field experiments. Since 1997 NASA has been successfully launching a series of satellites the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite

  15. Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing

    2014-01-01

    Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680

  16. The impact of atmospheric aerosols on trace metal chemistry in open ocean surface seawater: 2. Copper

    NASA Astrophysics Data System (ADS)

    Maring, H. B.; Duce, R. A.

    1989-01-01

    Atmospheric deposition contributes copper to the surface ocean. The biogeochemical importance and fate of this copper is poorly understood for open ocean regions. Atmospheric aerosols collected at Enewetak Atoll, in the tropical North Pacific, were exposed to seawater and artificial rainwater in laboratory experiments. Aerosol copper during the high-dust season at Enewetak Atoll is made up of aluminosilicate, oceanic, and possibly soil organic matter components. During the low-dust season, aerosol copper appears to be essentially all of oceanic origin. Virtually all nonaluminosilicate copper in marine aerosols collected at Enewetak is soluble in seawater. Dissolved organic matter and possibly cations in seawater increase the dissolution of aerosol copper. The net atmospheric flux of soluble copper to the tropical North Pacific near Enewetak is approximately 0.13 nmol cm-2 yr-1 out of a total net atmospheric copper flux of 0.14 nmol cm-2 yr-1. Atmospheric deposition supplies roughly the same quantity of soluble copper to tropical open North Pacific surface waters as does upwelling to eastern North Pacific surface waters. Atmospheric copper deposition, which appears to be primarily of natural origin, may be the most important input of copper to the surface waters of the central gyre of the North Pacific.

  17. Impact of aerosol indirect effect on surface temperature over East Asia

    PubMed Central

    Huang, Yan; Dickinson, Robert E.; Chameides, William L.

    2006-01-01

    A regional coupled climate–chemistry–aerosol model is developed to examine the impacts of anthropogenic aerosols on surface temperature and precipitation over East Asia. Besides their direct and indirect reduction of short-wave solar radiation, the increased cloudiness and cloud liquid water generate a substantial downward positive long-wave surface forcing; consequently, nighttime temperature in winter increases by +0.7°C, and the diurnal temperature range decreases by −0.7°C averaged over the industrialized parts of China. Confidence in the simulated results is limited by uncertainties in model cloud physics. However, they are broadly consistent with the observed diurnal temperature range decrease as reported in China, suggesting that changes in downward long-wave radiation at the surface are important in understanding temperature changes from aerosols. PMID:16537432

  18. Aerosol optical depth under "clear" sky conditions derived from sea surface reflection of lidar signals.

    PubMed

    He, Min; Hu, Yongxiang; Huang, Jian Ping; Stamnes, Knut

    2016-12-26

    There are considerable demands for accurate atmospheric correction of satellite observations of the sea surface or subsurface signal. Surface and sub-surface reflection under "clear" atmospheric conditions can be used to study atmospheric correction for the simplest possible situation. Here "clear" sky means a cloud-free atmosphere with sufficiently small aerosol particles. The "clear" aerosol concept is defined according to the spectral dependence of the scattering cross section on particle size. A 5-year combined CALIPSO and AMSR-E data set was used to derive the aerosol optical depth (AOD) from the lidar signal reflected from the sea surface. Compared with the traditional lidar-retrieved AOD, which relies on lidar backscattering measurements and an assumed lidar ratio, the AOD retrieved through the surface reflectance method depends on both scattering and absorption because it is based on two-way attenuation of the lidar signal transmitted to and then reflected from the surface. The results show that the clear sky AOD derived from the surface signal agrees with the clear sky AOD available in the CALIPSO level 2 database in the westerly wind belt located in the southern hemisphere, but yields significantly higher aerosol loadings in the tropics and in the northern hemisphere.

  19. Surface submicron aerosol chemical composition: What fraction is not sulfate?

    NASA Astrophysics Data System (ADS)

    Quinn, P. K.; Bates, T. S.; Miller, T. L.; Coffman, D. J.; Johnson, J. E.; Harris, J. M.; Ogren, J. A.; Forbes, G.; Anderson, T. L.; Covert, D. S.; Rood, M. J.

    2000-03-01

    Measurements of submicron aerosol mass and the mass of major ionic components have been made over the past 5 years on cruises in the Pacific and Southern Oceans and at monitoring stations across North America (Barrow, Alaska; Cheeka Peak, Washington; Bondville, Illinois; and Sable Island, Nova Scotia). Reported here are submicron concentrations of aerosol mass, nonsea salt (nss) sulfate, sea salt, methanesulfonate, other nss inorganic ions, and residual, or chemically unanalyzed, mass. Residual mass concentrations are based on the difference between simultaneously measured aerosol mass and the mass of the major ionic components. A standardized sampling protocol was used for all measurements making the data from each location directly comparable. For the Pacific and Southern Oceans, concentrations of the chemical components are presented in zonally averaged 20° latitude bins. For the monitoring stations, mean concentrations are presented for distinct air mass types (marine, clean continental, and polluted based on air mass back trajectories). In addition, percentile information for each chemical component is given to indicate the variability in the measured concentrations. Mean nss sulfate submicron aerosol mass fractions for the different latitude bins of the Pacific ranged from 0.14±0.01 to 0.34±0.03 (arithmetic mean±absolute uncertainty at the 95% confidence level). The lowest average value occurred in the 40°-60°S latitude band where nss sulfate concentrations were low due to the remoteness from continental sources and sea salt concentrations were relatively high. Mean nss sulfate aerosol mass fractions were more variable at the monitoring stations ranging from 0.13±0.004 to 0.65±0.02. Highest values occurred in polluted air masses at Bondville and Sable Island. Sea salt mean mass fractions ranged between 0.20±0.02 and 0.53±0.03 at all latitude bands of the Pacific (except 20°-40°N where the residual mass fraction was relatively high) and at Barrow

  20. Surface Chemical Composition of Size-fractionated Urban Walkway Aerosols Determined by XPS and ToF-SIMS

    NASA Astrophysics Data System (ADS)

    Wenjuan, Cheng; Lu-Tao, Weng; Yongjie, Li; Arthur, Lau; Chak, Chan; Chi-Ming, Chan

    2013-04-01

    In this study, aerosol particles with sizes ranging from 0.056 to 10 ?m were collected using a ten-stage impactor sampler (MOUDI) from a busy walkway of Hong Kong. The aerosol samples of each stage were examined with X-ray photoelectron spectroscopy (XPS). Size dependent distributions of the detected six key elements (N, S, Ca, Si, O, and C) were revealed together with the chemical states of N, S and C. The results indicated that aliphatic hydrocarbons were the dominant species on the surface of all particles while a small portion of graphitic carbon (due to elemental and aromatic hydrocarbons) was also detected on the surface of the particles with sizes ranging from 0.056 to 0.32 ?m. Organic oxygen- and nitrogen-containing surface groups as well as sulfates were more abundant on the surface of the particles with sizes ranging from 0.32 to 1 μm. Organic oxygen- and nitrogen-containing surface groups as well as sulfates were more abundant on the surface of the particles with sizes ranging from 0.32 to 1 μm. Inorganic salts and nitrates were found in coarse-mode particles. Time-of-flight secondary ion mass spectrometry (ToF-SIMS) was used for detailed surface and near surface composition analysis. Principal component analysis (PCA) of the ToF-SIMS spectra confirmed the XPS results that aromatic hydrocarbons were associated with the nucleation-mode particles. Aliphatic hydrocarbons with O- and N-containing functional groups were associated with accumulation-mode particles and inorganic salts were related to the coarse-mode particles. Depth-profiling experiments were performed on three specific sets of samples (nucleation-, accumulation- and coarse-mode particles) to study their near-surface structures. It showed that organic compounds were concentrated on the very top surface of the coarse-mode particles with inorganics in the core. The accumulation-mode particles had thick coatings of diverse organic compositions. The nucleation-mode particles, which contained

  1. Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Liger-Belair, G.; Koch, B. P.; Flerus, R.; Kattner, G.; Harir, M.; Kanawati, B.; Lucio, M.; Tziotis, D.; Hertkorn, N.; Gebefügi, I.

    2012-04-01

    Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by absorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of Organic primary aerosols, i.e. the transfer of dissolved organic matter from the marine surface into the atmosphere, was studied. We present a molecular level description of this phenomenon using the high resolution analytical tools of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR). Our experiments confirm the chemoselective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of compounds enriched in the aerosol phase were CHO and CHOS molecular series, smaller molecules of higher aliphaticity and lower oxygen content, and typical surfactants. A non-targeted metabolomics analysis demonstrated that many of these molecules corresponded to homologous series of oxo-, hydroxy-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of sea spray production leaves a selective biological signature of the surface water in the corresponding aerosol that may be transported into higher altitudes up to the lower atmosphere, thus contributing to the formation of secondary organic aerosol on a global scale or transported laterally with

  2. Surface tensions, viscosities, and diffusion constants in mixed component single aerosol particles

    NASA Astrophysics Data System (ADS)

    Bzdek, Bryan; Marshall, Frances; Song, Young-Chul; Haddrell, Allen; Reid, Jonathan

    2016-04-01

    Surface tension and viscosity are important aerosol properties but are challenging to measure on individual particles owing to their small size and mass. Aerosol viscosity impacts semivolatile partitioning from the aerosol phase, molecular diffusion in the bulk of the particle, and reaction kinetics. Aerosol surface tension impacts how particles activate to serve as cloud condensation nuclei. Knowledge of these properties and how they change under different conditions hinders accurate modelling of aerosol physical state and atmospheric impacts. We present measurements made using holographic optical tweezers to directly determine the viscosity and surface tension of optically trapped droplets containing ~1-4 picolitres of material (corresponding to radii of ~5-10 micrometres). Two droplets are captured in the experimental setup, equilibrated to a relative humidity, and coalesced through manipulation of the relative trap positions. The moment of coalescence is captured using camera imaging as well as from elastically backscattered light connected to an oscilloscope. For lower viscosity droplets, the relaxation in droplet shape to a sphere follows the form of a damped oscillator and gives the surface tension and viscosity. For high viscosity droplets, the relaxation results in a slow merging of the two droplets to form a sphere and the timescale of that process permits determination of viscosity. We show that droplet viscosity and surface tension can be quantitatively determined to within <10% of the expected value for low viscosity droplets and to better than 1 order of magnitude for high viscosity droplets. Examples illustrating how properties such as surface tension can change in response to environmental conditions will be discussed. Finally, a study of the relationship between viscosity, diffusion constants, vapour pressures, and reactive uptake coefficients for a mixed component aerosol undergoing oxidation and volatilisation will be discussed.

  3. Intensification of aerosol pollution associated with its feedback with surface solar radiation and winds in Beijing

    NASA Astrophysics Data System (ADS)

    Yang, Xin; Zhao, Chuanfeng; Guo, Jianping; Wang, Yang

    2016-04-01

    Beijing has been experiencing serious air pollution in recent years, resulting in serious impacts on the local environment and climate and on human health. In addition to individual pollution sources and weather systems, feedback between aerosols and downwelling solar radiation (DSR) and between aerosols and winds also contribute to heavy aerosol pollution. By using atmospheric visibility (VIS) to represent the relative amount of aerosol pollution during a 5 week observation around the Asia-Pacific Economic Cooperation (APEC) period (22 October to 25 November 2014) over a site in south Beijing, China, we show clear positive relationships between DSR and VIS and between winds and VIS. The sensitivities of daily DSR and surface winds to VIS are approximately 15.42 W/m2/km and 0.068 m/s/km, respectively. The strengthening contributions to atmospheric visibility by surface DSR-VIS interactions and between surface wind-aerosol interactions are estimated at approximately 15% and 12%, respectively, in south Beijing around the APEC period.

  4. Confining capillary waves to control aerosol droplet size from surface acoustic wave nebulisation

    NASA Astrophysics Data System (ADS)

    Nazarzadeh, Elijah; Reboud, Julien; Wilson, Rab; Cooper, Jonathan M.

    Aerosols play a significant role in targeted delivery of medication through inhalation of drugs in a droplet form to the lungs. Delivery and targeting efficiencies are mainly linked to the droplet size, leading to a high demand for devices that can produce aerosols with controlled sizes in the range of 1 to 5 μm. Here we focus on enabling the control of the droplet size of a liquid sample nebulised using surface acoustic wave (SAW) generated by interdigitated transducers on a piezoelectric substrate (lithium niobate). The formation of droplets was monitored through a high-speed camera (600,000 fps) and the sizes measured using laser diffraction (Spraytec, Malvern Ltd). Results show a wide droplet size distribution (between 0.8 and 400 μm), while visual observation (at fast frame rates) revealed that the large droplets (>100 μm) are ejected due to large capillary waves (80 to 300 μm) formed at the free surface of liquid due to leakage of acoustic radiation of the SAWs, as discussed in previous literature (Qi et al. Phys Fluids, 2008). To negate this effect, we show that a modulated structure, specifically with feature sizes, typically 200 μm, prevents formation of large capillary waves by reducing the degrees of freedom of the system, enabling us to obtain a mean droplet size within the optimum range for drug delivery (<10 μm). This work was supported by an EPSRC grant (EP/K027611/1) and an ERC Advanced Investigator Award (340117-Biophononics).

  5. Vertical Profiles of Aerosol Optical Properties Over Central Illinois and Comparison with Surface and Satellite Measurements

    NASA Technical Reports Server (NTRS)

    Sheridan P. J.; Andrews, E.; Ogren, J A.; Tackett, J. L.; Winker, D. M.

    2012-01-01

    Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1) measure the in situ aerosol properties and determine their vertical and temporal variability and (2) relate these aircraft measurements to concurrent surface and satellite measurements. Underflights of the CALIPSO satellite show reasonable agreement in a majority of retrieved profiles between aircraft-measured extinction at 532 nm (adjusted to ambient relative humidity) and CALIPSO-retrieved extinction, and suggest that routine aircraft profiling programs can be used to better understand and validate satellite retrieval algorithms. CALIPSO tended to overestimate the aerosol extinction at this location in some boundary layer flight segments when scattered or broken clouds were present, which could be related to problems with CALIPSO cloud screening methods. The in situ aircraft-collected aerosol data suggest extinction thresholds for the likelihood of aerosol layers being detected by the CALIOP lidar. These statistical data offer guidance as to the likelihood of CALIPSO's ability to retrieve aerosol extinction at various locations around the globe.

  6. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2013-04-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  7. Effective aerosol optical depth from pyranometer measurements of surface solar radiation (global radiation) at Thessaloniki, Greece

    NASA Astrophysics Data System (ADS)

    Lindfors, A. V.; Kouremeti, N.; Arola, A.; Kazadzis, S.; Bais, A. F.; Laaksonen, A.

    2012-12-01

    Pyranometer measurements of the solar surface radiation (SSR) are available at many locations worldwide, often as long time series covering several decades into the past. These data constitute a potential source of information on the atmospheric aerosol load. Here, we present a method for estimating the aerosol optical depth (AOD) using pyranometer measurements of the SSR together with total water vapor column information. The method, which is based on radiative transfer simulations, was developed and tested using recent data from Thessaloniki, Greece. The effective AOD calculated using this method was found to agree well with co-located AERONET measurements, exhibiting a correlation coefficient of 0.9 with 2/3 of the data found within ±20% or ±0.05 of the AERONET AOD. This is similar to the performance of current satellite aerosol methods. Differences in the AOD as compared to AERONET can be explained by variations in the aerosol properties of the atmosphere that are not accounted for in the idealized settings used in the radiative transfer simulations, such as variations in the single scattering albedo and Ångström exponent. Furthermore, the method is sensitive to calibration offsets between the radiative transfer simulations and the pyranometer SSR. The method provides an opportunity of extending our knowledge of the atmospheric aerosol load to locations and times not covered by dedicated aerosol measurements.

  8. Joint retrieval of surface reflectance and aerosol properties from MSG/SEVIRI observations in the framework of aerosol_CCI2

    NASA Astrophysics Data System (ADS)

    Damman, Alix; Zunz, Violette; Govaerts, Yves; Kaminski, Thomas; Voßbeck, Michael

    2016-04-01

    The Meteosat satellites play an important role for the generation of consistent long time series of aerosol properties. This importance relies on (i) the long duration of past (Meteosat First Generation, MFG), present (Meteosat Second Generation, MSG) and future (Meteosat Third Generation, MTG) missions and (ii) their frequent cycle of acquisition that can be used to document the anisotropy of the surface and therefore the lower boundary condition for aerosol retrieval over land surfaces. The Package for the joint Inversion of Surface and Aerosol (PISA) is a new algorithm developed by Rayference and The Inversion Lab for the joint retrieval of surface reflectance and aerosol properties. It relies on the inversion of a physically-based radiative transfer model accounting for the surface reflectance anisotropy and its coupling with aerosol scattering. The inversion scheme accounts for prior knowledge on the surface properties and smoothness constraints on the temporal variation of aerosols. PISA also provides the posterior uncertainty covariance matrix for the retrieved variables in every processed pixel. The package has been applied on Top Of Atmosphere (TOA) Bidirectional Reflectance Factor (BRF) acquired by SEVIRI onboard Meteosat Second Generation (MSG) in the VIS0.6, VIS0.8 and NIR1.6 spectral bands. Observations are accumulated during a certain period of time to sufficiently document the surface anisotropy and minimize the impact of clouds. The surface radiative properties are retrieved for this entire accumulation period during which they are supposed to be constant. Aerosol properties however are derived on an hourly basis. Based on PISA, a processing chain has been developed and applied on 2008 MSG/SEVIRI observations for some specific sub-domains of the Earth disk. For these processed sub-domains, the information content of each MSG/SEVIRI band will be analysed based on the prior and posterior uncertainty covariance matrices. This constitutes a first step

  9. Extraction of Aerosol-Deposited Yersinia pestis from Indoor Surfaces To Determine Bacterial Environmental Decay

    PubMed Central

    Bartlett, Ryan A.; Yeager, John J.; Leroux, Brian; Ratnesar-Shumate, Shanna; Dabisch, Paul

    2016-01-01

    ABSTRACT Public health and decontamination decisions following an event that causes indoor contamination with a biological agent require knowledge of the environmental persistence of the agent. The goals of this study were to develop methods for experimentally depositing bacteria onto indoor surfaces via aerosol, evaluate methods for sampling and enumerating the agent on surfaces, and use these methods to determine bacterial surface decay. A specialized aerosol deposition chamber was constructed, and methods were established for reproducible and uniform aerosol deposition of bacteria onto four coupon types. The deposition chamber facilitated the control of relative humidity (RH; 10 to 70%) following particle deposition to mimic the conditions of indoor environments, as RH is not controlled by standard heating, ventilation, and air conditioning (HVAC) systems. Extraction and culture-based enumeration methods to quantify the viable bacteria on coupons were shown to be highly sensitive and reproducible. To demonstrate the usefulness of the system for decay studies, Yersinia pestis persistence as a function of surface type at 21°C and 40% RH was determined to be >40%/min for all surfaces. Based upon these results, at typical indoor temperature and RH, a 6-log reduction in titer would expected to be achieved within 1 h as the result of environmental decay on surfaces without active decontamination. The developed approach will facilitate future persistence and decontamination studies with a broad range of biological agents and surfaces, providing agent decay data to inform both assessments of risk to personnel entering a contaminated site and decontamination decisions following biological contamination of an indoor environment. IMPORTANCE Public health and decontamination decisions following contamination of an indoor environment with a biological agent require knowledge of the environmental persistence of the agent. Previous studies on Y. pestis persistence have

  10. An initial assessment of the impact of Australian aerosols on surface ultraviolet radiation and implications for human health

    NASA Astrophysics Data System (ADS)

    Chee, C. Y.; Mills, F. P.

    2010-08-01

    Aerosols can have significant influence on surface radiation, and the intense surface ultraviolet radiation Australia experiences contributes to Australia's high incidence rates for related human diseases. Aerosol properties, such as total column aerosol optical depth, have been measured over several years for varying lengths of time at sites across Australia using sunphotometers. Statistical analysis of the average daily aerosol optical depth over sites near Alice Springs, Canberra, Darwin, and Perth provides one measure of the annual atmospheric loading of aerosols over these sites. The sunphotometers used at these sites do not make measurements in the UV-B spectral region and have only one channel in the UV-A spectral region, the regions of most interest for assessing human health impact. Consequently, model calculations using standard aerosol types have been used to make an initial estimate of the impact of the aerosols found over these four sites on surface ultraviolet radiation. The aerosol loading is at times sufficient to significantly reduce the surface ultraviolet radiation, but few such days occur each year. The annual average effect of aerosols on surface ultraviolet radiation, thus, appears to be small compared to lifestyle factors, such as clothing and use of sunscreen.

  11. Effect of Aerosols on Surface Radiation and Air Quality in the Central American Region Estimated Using Satellite UV Instruments

    NASA Astrophysics Data System (ADS)

    Bhartia, P. K.; Torres, O.; Krotkov, N. A.

    2007-05-01

    Solar radiation reaching the Earth's surface is reduced by both aerosol scattering and aerosol absorption. Over many parts of the world the latter effect can be as large or larger than the former effect, and small changes in the aerosol single scattering albedo can either cancel the former effect or enhance it. In addition, absorbing aerosols embedded in clouds can greatly reduce the amount of radiation reaching the surface by multiple scattering. Though the potential climatic effects of absorbing aerosols have received considerable attention lately, their effect on surface UV, photosynthesis, and photochemistry can be equally important for our environment and may affect human health and agricultural productivity. Absorption of all aerosols commonly found in the Earth's atmosphere becomes larger in the UV and blue wavelengths and has a relatively strong wavelength dependence. This is particularly true of mineral dust and organic aerosols. However, these effects have been very difficult to estimate on a global basis since the satellite instruments that operate in the visible are primarily sensitive to aerosol scattering. A notable exception is the UV Aerosol Index (AI), first produced using NASA's Nimbus-7 TOMS data. AI provides a direct measure of the effect of aerosol absorption on the backscattered UV radiation in both clear and cloudy conditions, as well as over snow/ice. Although many types of aerosols produce a distinct color cast in the visible images, and aerosols absorption over clouds and snow/ice could, in principle be detected from their color, so far this technique has worked well only in the UV. In this talk we will discuss what we have learned from the long-term record of AI produced from TOMS and Aura/OMI about the possible role of aerosols on surface radiation and air quality in the Central American region.

  12. Surfactants in the sea-surface microlayer and atmospheric aerosol around the southern region of Peninsular Malaysia.

    PubMed

    Jaafar, Shoffian Amin; Latif, Mohd Talib; Chian, Chong Woan; Han, Wong Sook; Wahid, Nurul Bahiyah Abd; Razak, Intan Suraya; Khan, Md Firoz; Tahir, Norhayati Mohd

    2014-07-15

    This study was conducted to determine the composition of surfactants in the sea-surface microlayer (SML) and atmospheric aerosol around the southern region of the Peninsular Malaysia. Surfactants in samples taken from the SML and atmospheric aerosol were determined using a colorimetric method, as either methylene blue active substances (MBAS) or disulphine blue active substances (DBAS). Principal component analysis with multiple linear regressions (PCA-MLR), using the anion and major element composition of the aerosol samples, was used to determine possible sources of surfactants in atmospheric aerosol. The results showed that the concentrations of surfactants in the SML and atmospheric aerosol were dominated by anionic surfactants and that surfactants in aerosol were not directly correlated (p>0.05) with surfactants in the SML. Further PCA-MLR from anion and major element concentrations showed that combustion of fossil fuel and sea spray were the major contributors to surfactants in aerosol in the study area.

  13. Martian aerosols: Near-infrared spectral properties and effects on the observation of the surface

    NASA Technical Reports Server (NTRS)

    Erard, Stephane; Mustard, John; Murchie, Scott; Bibring, Jean-Pierre; Cerroni, Priscilla; Caradini, Angioletta

    1994-01-01

    Imaging sprectroscopic measurements (ISM) of Mars acquired by the ISM instrument on Phobos-2 are used to investigate the NIR spectral properties of aerosols and the effects of atmospheric scattering on inferred mineralogy of the surface. Estimates of aerosols spectra between 0.77 and 2.6 micrometers are derived above Tharsis and Ophir Planum. The spectral continua are consistent with the particle size distribution derived using data from the solar occultation experiment on-board the spacecraft (effective radius approximately = 1.2 micrometers, with an effective variance approximately = 0.2). The aerosols spectra contain water-ice absorption features and possibly absorptions due to clay and/or sulfates. The largest effect of the aerosols on surface spectra is in dark regions, where the continuum spectral slope becomes more negative and the 1-micrometers absorption due to Fe in pyroxene is shifted toward longer wavelengths. The effects of aerosols on spectra of bright regions are insufficiently large to change mineralogic interpretations based on ISM data, i.e., that bright regions in Tharsis are dominated spectrally by hematite, but that additional ferric minerals are probably present in other areas including Arabia.

  14. Multi-Decadal Change of Atmospheric Aerosols and their Effects on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2011-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007) during which a suite of aerosol data from satellite observations) ground-based measurements) and intensive field experiments have become available. We analyze the long-term global and regional aerosol trends and their relationship to the changes of aerosol and precursor emissions and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world) including the major anthropogenic source regions (North America) Europe) Asia) that have been experiencing considerable changes of emissions) dust and biomass burning regions that have large interannual variabilities) downwind regions that are directly affected by the changes in the source area) and remote regions that are considered to representing "backgroundH conditions.

  15. The structural evolution of magnesium acetate complex in aerosols by FTIR-ATR spectra

    NASA Astrophysics Data System (ADS)

    Pang, Shu-Feng; Wu, Chang-Qin; Zhang, Qing-Nuan; Zhang, Yun-Hong

    2015-05-01

    The structural evolution of magnesium acetate complex in aerosols with the relative humidity (RH) has been studied by ATR-FTIR technique. When the RH is higher than 66%, the ν4 band lies at 929 cm-1 meaning the free CH3COO- ions in Mg(CH3COO)2 droplets. At the 66% RH, ν4 band positioned at 939 cm-1, accompanying the ν8 band shift to 1554 cm-1, which indicats that the free CH3COO- ions are bounded to Mg2+ ions to form [Mg(H2O)5(CH3COO)]+ species. At the 57.7% RH, the ν8-COO band shifts to 1556 cm-1 accompanying the ν3 band at 1421 cm-1 and the appearance of shoulder at 1452 cm-1, which suggests the formation of chain-structure connected by the bridging bidentate of Mg2(CH3COO)4(H2O)2. In the region of 57.7-18.7% RH, the shoulder at 1452 cm-1 increases with the decrease in RH, showing the increase of Mg2(CH3COO)4(H2O)2. From the water-content, the water-transfer from and to the surface of the aerosols became limited, showing the aerosols enter the gel state. Below 18.7%RH, water-loss becomes rapid and the ν8 band performs blue-shift. At 3.8%RH, the ν8 band positioned at 1581 cm-1, showing the anhydrous Mg(CH3COO)2 solid, which can be reflected by the ν4 band at 947 cm-1. During the humidification process, the reverse structural evolution can be found.

  16. Modelling size and structure of nanoparticles formed from drying of submicron solution aerosols

    NASA Astrophysics Data System (ADS)

    Bandyopadhyay, Arpan A.; Pawar, Amol A.; Venkataraman, Chandra; Mehra, Anurag

    2015-01-01

    Drying of submicron solution aerosols, under controlled conditions, has been explored to prepare nanoparticles for drug delivery applications. A computational model of solution drop evaporation is developed to study the evolution of solute gradients inside the drop and predict the size and shell thickness of precipitating nanoparticles. The model considers evaporation as a two-stage process involving droplet shrinkage and shell growth. It was corroborated that droplet evaporation rate controls the solute distribution within a droplet and the resulting particle structure (solid or shell type). At higher gas temperatures, rapid build-up of solute near drop surface from high evaporation rates results in early attainment of critical supersaturation solubility and a steeper solute gradient, which favours formation of larger, shell-type particles. At lower gas temperatures, formation of smaller, solid nanoparticles is indicated. The computed size and shell thickness are in good agreement with experimentally prepared lipid nanoparticles. This study indicates that solid or shell structure of precipitated nanoparticles is strongly affected by evaporation rate, while initial solute concentration in the precursor solution and atomized droplet size affect shell thickness. For the gas temperatures considered, evaporative cooling leads to droplet temperature below the melting point of the lipid solute. Thus, we conclude that control over nanoparticle size and structure, of thermolabile precursor materials suitable for drug delivery, can be achieved by controlling evaporation rates, through selection of aerosol processing conditions.

  17. USE OF CONTINUOUS MEASUREMENTS OF INTEGRAL AEROSOL PARAMETERS TO ESTIMATE PARTICLE SURFACE AREA

    EPA Science Inventory

    This study was undertaken because of interest in using particle surface area as an indicator for studies of the health effects of particulate matter. First, we wished to determine the integral parameter of the size distribution measured by the electrical aerosol detector. Secon...

  18. Secondary organic aerosol formation initiated from reactions between ozone and surface-sorbed squalene

    NASA Astrophysics Data System (ADS)

    Wang, Chunyi; Waring, Michael S.

    2014-02-01

    Previous research has shown that ozone reactions on surface-sorbed D-limonene can promote gas phase secondary organic aerosol (SOA) formation indoors. In this work, we conducted 13 steady state chamber experiments to measure the SOA formation entirely initiated by ozone reactions with squalene sorbed to glass, at chamber ozone of 57-500 ppb for two relative humidity (RH) conditions of 21% and 51%, in the absence of seed particles. Squalene is a nonvolatile compound that is a component of human skin oil and prevalent on indoor surfaces and in settled dust due to desquamation. The size distributions, mass and number secondary emission rates (SER), aerosol mass fractions (AMF), and aerosol number fractions (ANF) of formed SOA were quantified. The surface AMF and ANF are defined as the change in SOA mass or number formed, respectively, per ozone mass consumed by ozone-squalene reactions. All experiments but one exhibited nucleation and mass formation. Mass formation was relatively small in magnitude and increased with ozone, most notably for the RH = 51% experiments. The surface AMF was a function of the chamber aerosol concentration, and a multi-product model was fit using the 'volatility basis set' framework. Number formation was relatively strong at low ozone and low RH conditions. Though we cannot extrapolate our results because experiments were conducted at high air exchange rates, we speculate that this process may enhance particle number more than mass concentrations indoors.

  19. Tropospheric aerosols remote sensing over the water surface of Penang Island

    NASA Astrophysics Data System (ADS)

    Hashim, S. A.; MatJafri, M. Z.; Abdullah, K.; Lim, H. S.; Wong, C. J.; Salleh, N. Mohd.

    2006-05-01

    Tropospheric aerosols play an important role in climate change. Aerosols are typically studied over deep clear water, due to the relatively constant reflectance of water and the ability to easily separate surface and atmospheric contributions on the satellite signal. A methodology based on multi-spectral approach was employed to map tropospheric aerosols concentrations over the water areas surrounding Penang Island. The aim of this study was to estimate the pollutants concentrations using remote sensing techniques. In this study, we attempted to derive AOT (Aerosol Optical Thickness) values from the sky transmittance measurements in the visible spectrum. The transmittance values were measured at the sea surface using a handheld spectroradiometer. The correspond PM10 readings were taken simultaneously during the transmittance measurements acquisition of the imageries using a Dust Trak meter. The PCI Geomatica version 9.1 digital image processing software was used in all image-processing analyses. The results produced a linear relationship between PM10 and AOT values over the water surface of Penang Island. Finally, The PM10 concentration map over the water surface of Penang Island was generated using Kriging interpolation technique. This study has indicated the potential use of a handheld spectroradiometer for air quality study.

  20. Black carbon surface oxidation and organic composition of beech-wood soot aerosols

    NASA Astrophysics Data System (ADS)

    Corbin, J. C.; Lohmann, U.; Sierau, B.; Keller, A.; Burtscher, H.; Mensah, A. A.

    2015-10-01

    Soot particles are the most strongly light-absorbing particles commonly found in the atmosphere. They are major contributors to the radiative budget of the Earth and to the toxicity of atmospheric pollution. Atmospheric aging of soot may change its health- and climate-relevant properties by oxidizing the primary black carbon (BC) or organic particulate matter (OM) which, together with ash, comprise soot. This atmospheric aging, which entails the condensation of secondary particulate matter as well as the oxidation of the primary OM and BC emissions, is currently poorly understood. In this study, atmospheric aging of wood-stove soot aerosols was simulated in a continuous-flow reactor. The composition of fresh and aged soot particles was measured in real time by a dual-vaporizer aerosol-particle mass spectrometer (SP-AMS). The dual-vaporizer SP-AMS provided information on the OM and BC components of the soot as well as on refractory components internally mixed with BC. By switching the SP-AMS laser vaporizer off and using only the AMS thermal vaporizer (at 600 °C), information on the OM component only was obtained. In both modes, OM appeared to be generated largely by cellulose and/or hemicellulose pyrolysis and was only present in large amounts when new wood was added to the stove. In SP-AMS mode, BC signals otherwise dominated the mass spectrum. These signals consisted of ions related to refractory BC (rBC, C1-5+), oxygenated carbonaceous ions (CO1-2+), potassium (K+), and water (H2O+ and related fragments). The C4+ : C3+ ratio, but not the C1+ : C3+ ratio, was consistent with the BC-structure trends of Corbin et al. (2015c). The CO1-2+ signals likely originated from BC surface groups: upon aging, both CO+ and CO2+ increased relative to C1-3+ while CO2+ simultaneously increased relative to CO+. Factor analysis (positive matrix factorization) of SP-AMS and AMS data, using a modified error model to address peak-integration uncertainties, indicated that the surface

  1. Aerosol interactions between the surface and the atmosphere: Urban fluxes, forest canopy vertical exchange, and wintertime urban patterns

    NASA Astrophysics Data System (ADS)

    Grivicke, Rasa

    Atmospheric aerosols play a major role in regional atmospheric chemistry and air quality, while on a global scale, aerosol processes continue to represent the largest source of uncertainty related to climate change. An important aspect of understanding the role of aerosols in these areas is to document the vertical exchange of aerosols with the surface in both urban and rural landscapes since the vertical exchange represents important sources and sinks of aerosols on regional and global scales. In this dissertation, investigation of aerosol dynamics is described for three separate field studies. First, urban eddy covariance flux measurements were made from a building rooftop in Mexico City using a quadrupole aerosol mass spectrometer (Q-AMS) to determine the fluxes of aerosol species to/from the urban landscape. Second, conditional sampling of fine particles in updrafts and downdrafts was performed above a pine forest in Colorado using a thermal desorption chemical ionization mass spectrometer (TD-CIMS) to investigate the relative strengths of sources and sinks for speciated aerosol in a forest environment. Third, the aerosol and gas phase pollutant patterns, measured in Boise, ID during wintertime inversion conditions, were analyzed with respect to the daily evolution of the planetary boundary layer depth and surface meteorological conditions. This dissertation describes the methods used for each of the three studies and summarizes the analysis of the results.

  2. Ultrasonic and jet aerosolization of phospholipids and the effects on surface activity.

    PubMed

    Marks, L B; Notter, R H; Oberdorster, G; McBride, J T

    1983-09-01

    Surface active aerosols were produced from aqueous dispersions of mixed lipids (CLL), extracted from bovine lung lavage. Particle size distributions were measured as a function of humidity for two types of aerosol generators: ultrasonic and jet. Lipid dispersions before aerosolization were prepared by sonication in an ice bath and by mechanical vortexing. Over a range of high humidity greater than 60-70%, ultrasonic nebulization gave CLL aerosols with mass median aerodynamic diameters (MMAD) of 1.4 +/- 0.1 micron, compatible with predicted alveolar deposition fractions of 0.2-0.3 according to current deposition models. For humidities of 30-95%, jet nebulization gave MMAD values of 0.4-0.5 micron, which have lower predicted alveolar deposition. The surface pressure-time (pi - t) adsorption characteristics at 35 +/- 2 degrees C of CLL dispersions prepared initially by vortexing or sonication were not significantly affected by ultrasonic nebulization over a 1-2 h time period. In addition, the dynamic surface tension lowering of both kinds of CLL dispersion was not affected by ultrasonic nebulization (minimum surface tension less than 1 dyne/cm at 37 degrees C and 100% humidity). Current interest in the treatment of the respiratory distress syndrome (RDS) with exogenous surfactant replacement has focused largely on the delivery of surfactant replacement has focused largely on h delivery of surfactants to infants by tracheal instillation at birth. However, the ability to form multi-component surfactant aerosols with appreciable alveolar deposition fractions and high surface activity may help to expand the utility of replacement therapy to patients with aerated lungs.

  3. Gas/aerosol-ash interaction in volcanic plumes: New insights from surface analyses of fine ash particles

    NASA Astrophysics Data System (ADS)

    Delmelle, Pierre; Lambert, Mathieu; Dufrêne, Yves; Gerin, Patrick; Óskarsson, Niels

    2007-07-01

    The reactions occurring between gases/aerosols and silicate ash particles in volcanic eruption plumes remain poorly understood, despite the fact that they are at the origin of a range of volcanic, environmental, atmospheric and health effects. In this study, we apply X-ray photoelectron spectroscopy (XPS), a surface-sensitive technique, to determine the chemical composition of the near-surface region (2-10 nm) of nine ash samples collected from eight volcanoes. In addition, atomic force microscopy (AFM) is used to image the nanometer-scale surface structure of individual ash particles isolated from three samples. We demonstrate that rapid acid dissolution of ash occurs within eruption plumes. This process is favoured by the presence of fluoride and is believed to supply the cations involved in the deposition of sulphate and halide salts onto ash. AFM imaging also has permitted the detection of extremely thin (< 10 nm) coatings on the surface of ash. This material is probably composed of soluble sulphate and halide salts mixed with sparingly soluble fluoride compounds. The surface approach developed here offers promising aspects for better appraising the role of gas/aerosol-ash interaction in dictating the ability of ash to act as sinks for various volcanic and atmospheric chemical species as well as sources for others.

  4. Structural Change of Aerosol Particle Aggregates with Exposure to Elevated Relative Humidity.

    PubMed

    Montgomery, James F; Rogak, Steven N; Green, Sheldon I; You, Yuan; Bertram, Allan K

    2015-10-20

    Structural changes of aggregates composed of inorganic salts exposed to relative humidity (RH) between 0 and 80% after formation at selected RH between 0 and 60% were investigated using a tandem differential mobility analyzer (TDMA) and fluorescence microscopy. The TDMA was used to measure a shift in peak mobility diameter for 100-700 nm aggregates of hygroscopic aerosol particles composed of NaCl, Na2SO4, (NH4)2SO4, and nonhygroscopic Al2O3 as the RH was increased. Aggregates of hygroscopic particles were found to shrink when exposed to RH greater than that during the aggregation process. The degree of aggregate restructuring is greater for larger aggregates and greater increases in RH. Growth factors (GF) calculated from mobility diameter measurements as low as 0.77 were seen for NaCl before deliquescence. The GF subsequently increased to 1.23 at 80% RH, indicating growth after deliquescence. Exposure to RH lower than that experienced during aggregation did not result in structural changes. Fluorescent microscopy confirmed that aggregates formed on wire surfaces undergo an irreversible change in structure when exposed to elevated RH. Analysis of 2D movement of aggregates shows a displacement of 5-13% compared to projected length of initial aggregate from a wire surface. Surface tension due to water adsorption within the aggregate structure is a potential cause of the structural changes.

  5. Aerosol-assisted plasma deposition of hydrophobic polycations makes surfaces highly antimicrobial.

    PubMed

    Liu, Harris; Kim, Yoojeong; Mello, Kerrianne; Lovaasen, John; Shah, Apoorva; Rice, Norman; Yim, Jacqueline H; Pappas, Daphne; Klibanov, Alexander M

    2014-02-01

    The currently used multistep chemical synthesis for making surfaces antimicrobial by attaching to them hydrophobic polycations is replaced herein by an aerosol-assisted plasma deposition procedure. To this end, N,N-hexyl,methyl-PEI (HMPEI) is directly plasma-coated onto a glass surface. The resultant immobilized HMPEI coating has been thoroughly characterized and shown to be robust, bactericidal against Escherichia coli, and virucidal against human influenza virus.

  6. Condensed-Phase Photochemical Processes in Titan's Aerosols and Surface: The Role of Longer Wavelength Photochemistry

    NASA Technical Reports Server (NTRS)

    Gudipati, Murthy S.; Jacovi, Ronen; Lignell, Antti; Couturier, Isabelle

    2011-01-01

    We will discuss photochemical properties of Titan's organic molecules in the condensed phase as solid aerosols or surface material, from small linear polyyenes (polyacetylenes and polycyanoacetylenes) such as C2H2, C4N2, HC5N, etc. In particular we will focus on photochemistry caused by longer wavelength UV-VIS photons (greater than 250 nm) photons that make it through Titan's atmosphere to the haze region (approximately 100 km) and on to the surface of Titan.

  7. Dust Aerosols at the Source Region During ACE-ASIA: A Surface/Satellite Perspective

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2001-01-01

    ACE (Aerosol Characterization Experiment)-Asia is designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern Asia and along the rim of the western Pacific. The phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian dust is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of dust aerosol radiative flux in addition to measurements of loading and optical thickness. At the time of the Terra/MODIS, SeaWiFS, TOMS and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. Preliminary results will be presented and discussed their implications in regional climatic effects.

  8. Deriving aerosol properties from measurements of the Atmosphere-Surface Radiation Automatic Instrument (ASRAI)

    NASA Astrophysics Data System (ADS)

    Xu, Hua; Li, Donghui; Li, Zhengqiang; Zheng, Xiaobing; Li, Xin; Xie, Yisong; Liu, Enchao

    2015-10-01

    The Atmosphere-surface Radiation Automatic Instrument (ASRAI) is a newly developed hyper-spectral apparatus by Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences (AIOFM, CAS), measuring total spectral irradiance, diffuse spectral irradiance of atmosphere and reflected radiance of the land surface for the purpose of in-situ calibration. The instrument applies VIS-SWIR spectrum (0.4~1.0 μm) with an averaged spectral resolution of 0.004 μm. The goal of this paper is to describe a method of deriving both aerosol optical depth (AOD) and aerosol modes from irradiance measurements under free cloudy conditions. The total columnar amounts of water vapor and oxygen are first inferred from solar transmitted irradiance at strong absorption wavelength. The AOD together with total columnar amounts of ozone and nitrogen dioxide are determined by a nonlinear least distance fitting method. Moreover, it is able to infer aerosol modes from the spectral dependency of AOD because different aerosol modes have their inherent spectral extinction characteristics. With assumption that the real aerosol is an idea of "external mixing" of four basic components, dust-like, water-soluble, oceanic and soot, the percentage of volume concentration of each component can be retrieved. A spectrum matching technology based on Euclidean-distance method is adopted to find the most approximate combination of components. The volume concentration ratios of four basic components are in accordance with our prior knowledge of regional aerosol climatology. Another advantage is that the retrievals would facilitate the TOA simulation when applying 6S model for satellite calibration.

  9. GRASP Algorithm: retrieval of the aerosol properties over land surface from satellite observations (solicited)

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Ducos, Fabrice; Aspetsberger, Michael; Planer, Wolfgang; Federspiel, Christian; Fuertes, David

    The GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm has been developed for enhanced characterization of the properties of both aerosol and land surface from diverse remote sensing observations. The concept of the algorithm is described in details by Dubovik et al. (2011). The algorithm is based on highly advanced statistically optimized fitting implemented as Multi-Term Least Square minimization (Dubovik, 2004) and deduces nearly 50 unknowns for each observed site. The algorithm derives a set of aerosol parameters similar to that derived by AERONET including detailed particle size distribution, the spectral dependence on the complex index of refraction and the fraction of non-spherical particles. The algorithm uses detailed aerosol and surface models and fully accounts for all multiple interactions of scattered solar light with aerosol, gases and the underlying surface. All calculations are done on-line without using traditional look-up tables. In addition, the algorithm can use the new multi-pixel concept - a simultaneous fitting of a large group of pixels with additional constraints limiting the time variability of surface properties and spatial variability of aerosol properties. This principle provides a possibility to improve retrieval for multiple observations even if the observations are not exactly co-incident or co-located. Significant efforts have been spent for optimization and speedup of the GRASP computer routine and retrievals from satellite observations. For example, the routine has been adapted for running at GPGPUs accelerators. Originally GRASP has been developed for POLDER/PARASOL multi-viewing imager and later adapted to a number of other satellite sensors such as MERIS at polar-orbiting platform and COCI/GOMS geostationary observations. The results of numerical tests and results of applications to real data will be presented. REFERENCES: Dubovik, et al.,“Statistically optimized inversion algorithm for enhanced

  10. Ambient Observations of Aerosols, Novel Aerosol Structures, And Their Engineering Applications

    NASA Astrophysics Data System (ADS)

    Beres, Nicholas D.

    The role of atmospheric aerosols remains a crucial issue in understanding and mitigating climate change in our world today. These particles influence the Earth by altering the Earth's delicate radiation balance, human health, and visibility. In particular, black carbon particulate matter remains the key driver in positive radiative forcing (i.e., warming) due to aerosols. Produced from the incomplete combustion of hydrocarbons, these compounds can be found in many different forms around the globe. This thesis provides an overview of three research topics: (1) the ambient characterization of aerosols in the Northern Indian Ocean, measurement techniques used, and how these aerosols influence local, regional, and global climate; (2) the exploration of novel soot superaggregate particles collected in the Northern Indian Ocean and around the globe and how the properties of these particles relate to human health and climate forcing; and (3) how aerogelated soot can be produced in a novel, one-step method utilizing an inverted flame reactor and how this material could be used in industrial settings.

  11. Three-dimensional structure of aerosol in China: A perspective from multi-satellite observations

    NASA Astrophysics Data System (ADS)

    Guo, Jianping; Liu, Huan; Wang, Fu; Huang, Jingfeng; Xia, Feng; Lou, Mengyun; Wu, Yerong; Jiang, Jonathan H.; Xie, Tao; Zhaxi, Yangzong; Yung, Yuk L.

    2016-09-01

    Using eight years (2006-2014) of passive (MODIS/Aqua and OMI/Aura) and active (CALIOP/CALIPSO) satellite measurements of aerosols, we yield a three-dimensional (3D) distribution of the frequency of occurrence (FoO) of aerosols over China. As an indicator of the vertical heterogeneity of aerosol layers detected by CALIOP, two types of Most Probable Height (MPH), including MPH_FoO and MPH_AOD, are deduced. The FoO of "Total Aerosol" reveals significant geographical dependence. Eastern China showed much stronger aerosol FoD than northwestern China. The FoO vertical structures of aerosol layer are strongly dependent on altitudes. Among the eight typical ROIs analyzed, aerosol layers over the Gobi Desert have the largest occurrence probability located at an altitude as high as 2.83 km, as compared to 1.26 km over Beijing-Tianjin-Hebei. The diurnal variation (nighttime-daytime) in MPH_AOD varies from an altitude as low as 0.07 km over the Sichuan basin to 0.27 km over the Gobi Desert, whereas the magnitude of the diurnal variation in terms of MPH_AOD is six times as large as the MPH_FoO, mostly attributable to the day/night lidar SNR difference. Also, the 3D distribution of dust and smoke aerosols was presented. The multi-sensor synergized 3D observations of dust aerosols, frequently observed in the zonal belt of 38°N-45°N, is markedly different from that of smoke aerosols that are predominantly located in the eastern and southern parts. The 3D FoO distribution of dust indicates a west-to-east passageway of dust originating from the westernmost Taklimakan Desert all the way to North China Plain (NCP). The findings from the multi-sensor synergetic observations greatly improved our understanding on the long-range aerosol dispersion, transport and passageway over China.

  12. Detection of cw-related species in complex aerosol particles deposited on surfaces with an ion trap-based aerosol mass spectrometer

    SciTech Connect

    Harris, William A; Reilly, Pete; Whitten, William B

    2007-01-01

    A new type of aerosol mass spectrometer was developed by minimal modification of an existing commercial ion trap to analyze the semivolatile components of aerosols in real time. An aerodynamic lens-based inlet system created a well-collimated particle beam that impacted into the heated ionization volume of the commercial ion trap mass spectrometer. The semivolatile components of the aerosols were thermally vaporized and ionized by electron impact or chemical ionization in the source. The nascent ions were extracted and injected into the ion trap for mass analysis. The utility of this instrument was demonstrated by identifying semivolatile analytes in complex aerosols. This study is part of an ongoing effort to develop methods for identifying chemical species related to CW agent exposure. Our efforts focused on detection of CW-related species doped on omnipresent aerosols such as house dust particles vacuumed from various surfaces found in any office building. The doped aerosols were sampled directly into the inlet of our mass spectrometer from the vacuumed particle stream. The semivolatile analytes were deposited on house dust and identified by positive ion chemical ionization mass spectrometry up to 2.5 h after deposition. Our results suggest that the observed semivolatile species may have been chemisorbed on some of the particle surfaces in submonolayer concentrations and may remain hours after deposition. This research suggests that identification of trace CW agent-related species should be feasible by this technique.

  13. MODIS Aerosol Optical Depth retrieval over land considering surface BRDF effects

    NASA Astrophysics Data System (ADS)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2016-04-01

    Aerosols in the atmosphere play an important role in the climate system and human health. Retrieval from satellite data, Aerosol Optical Depth (AOD), one of most important indices of aerosol optical properties, has been extensively investigated. Benefiting from the high resolution at spatial and temporal and the maturity of the aerosol retrieval algorithm, MOderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOD product has been extensively applied in other scientific research such as climate change and air pollution. The latest product - MODIS Collection 6 Dark Target AOD (C6_DT) has been released. However, the accuracy of C6_DT AOD (global mean ±0.03) over land is still too low for the constraint on radiative forcing in the climate system, where the uncertainty should be reduced to ±0.02. The major uncertainty mainly lies on the underestimation/overestimation of the surface contribution to the Top Of Atmosphere (TOA) radiance since a lambertian surface is assumed in the C6_DT land algorithm. In the real world, it requires considering the heterogeneity of the surface reflection in the radiative transfer process. Based on this, we developed a new algorithm to retrieve AOD by considering surface Bidirectional Reflectance Distribution Function (BRDF) effects. The surface BRDF is much more complicated than isotropic reflection, described as 4 elements: directional-directional, directional-hemispherical, hemispherical-directional and hemispherical-hemispherical reflectance, and coupled into radiative transfer equation to generate an accurate top of atmosphere reflectance. The limited MODIS measurements (three channels available) allow us to retrieve only three parameters, which including AOD, the surface directional-directional reflectance and fine aerosol ratio η. The other three elements of the surface reflectance are expected to be constrained by ancillary data and assumptions or "a priori" information since there are more unknowns than MODIS

  14. Relating Aerosol Profile and Column Measurements to Surface Concentrations: What Have We Learned from Discover-AQ?

    NASA Astrophysics Data System (ADS)

    Hoff, R. M.

    2014-12-01

    One research goal of the Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) mission was to determine sufficient column profile measurements to relate column integrated quantities such as Aerosol Optical Depth to surface concentrations. I will review the relationship between AOD and PM2.5 at the surface. DISCOVER-AQ in Baltimore, the San Joaquin Valley, Houston and Denver revealed quite different conditions for determining this relationship. In each case, the surface reflectivity made determination of aerosol optical depth challenging, but upward looking columns of aerosol optical depth from sunphotometers provided confirmation of the AOD results from space. In Baltimore, AOD fields reflected PM2.5 concentrations well. In California, however, the low boundary layer heights and dominance of nitrate and organic aerosols made the AOD fields less predictive of PM2.5. In California and Colorado, hydration of the aerosol varied dramatically with aerosol type (especially smoke and dust) and revealed that without an understanding of the degree of aerosol hydration with aerosol composition, the relationship between AOD and PM2.5 will continue to be a challenge. Model predictions in the Baltimore-Washington study are relatively disappointing in helping define the needed physics between the optical and microphysical properties. An overview of the measurements from DISCOVER-AQ which will help define the needed information in a more general case in the future will be given.

  15. Multi-decadal Change of Atmospheric Aerosols and their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diel, Thomas; Streets, David; Wild, Martin; Qian, Yun; Yu, Hongbin; Tan, Qian; Bian, Huisheng; Wang. Weiguo

    2012-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model GOCART along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007 during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. Particularly: (1) We compare the model calculated clear sky downward radiation at the surface with surface network data from Baseline Surface Radiation Network (BSRN) and CMA (2) We compare the model and surface data with satellite derived downward radiation products from ISCCP and SRB (3) We analyze the long-term global and regional aerosol trends in major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions during the three decades, dust and biomass burning regions that have large interannual variability, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.

  16. Multi-Decadal Change of Atmospheric Aerosols and Their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Tan, Qian; Wild, Martin; Qian, Yun; Yu, Hongbin; Bian, Huisheng; Wang, Weiguo

    2012-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007, during which a suite of aerosol data from satellite observations and ground-based remote sensing and in-situ measurements have become available. We analyze the long-term global and regional aerosol optical depth and concentration trends and their relationship to the changes of emissions" and assess the role aerosols play in the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening") at different regions of the world, including the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions, dust and biomass burning regions that have large interannual variabilities, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions.

  17. Influence of tropospheric aerosol on integral albedo of cloudy atmosphere. Underlying surface system

    NASA Astrophysics Data System (ADS)

    Tarasova, T. A.; Feygelson, Y. M.

    1984-05-01

    The integral albedo which is formed for the most part due to the albedo of clouds and the underlying surface, but aerosol outside the cloud can exert an influence is discussed. The four layer system was examined. Stimulated parameters for the individual layers and stipulated albedo of the underlying surface are used in computing the spectral albedo of the cloud layer of subsystem and transmission. The albedo for the system (a formula for Asys is derived) are determined. The method reduces the problem of determining the albedo of the four layer system to three independent problems, A sub 0, A sub I, A sub II, each of which is solved in the delta-Eddington two-flux approximation on the assumption of homogeneity of the individual layers. The effect of aerosol outside the cloud is indicated. In small absorption aerosol scattering in the layers outside the clouds increases the albedo of the system as a whole. The formula for Asys and other results evaluate the aerosol effect information of the integral albedo of the system.

  18. Role of Black Carbon and Absorbing Organic Carbon Aerosols in Surface Dimming Trends

    NASA Astrophysics Data System (ADS)

    Feng, Y.; Ramanathan, V.; Kotamarthi, V. R.

    2010-12-01

    Solar radiation reaching at the Earth’s surface plays an essential role in driving both atmosphere hydrological and land/ocean biogeochemical processes. Measurements have shown significant decreases in surface solar radiation (dimming) in many regions since 1960s. At least half of the observed dimming could be linked to the direct radiative effect of anthropogenic aerosols, especially absorbing aerosols like black carbon (BC) due to their strong atmospheric absorption. However, previous model-data comparisons indicate that absorption by aerosols is commonly and significantly underestimated in current GCM simulations by several factors over regions. Using a global chemical transport model coupled with a radiative transfer model, we include a treatment for absorbing organic carbons (OC) from bio-fuel and open biomass burnings in optical calculations and estimate aerosol radiative forcings for two anthropogenic aerosol emission scenarios representative of 1975 and 2000. Assumptions about aerosol mixing and the OC absorption spectrum are examined by comparing simulated atmospheric heating against aircraft optical and radiation measurements. The calculated aerosol single scattering albedo distribution (0.93+/-0.044) is generally comparable to the AERONET data (0.93+/-0.030) for year 2001, with best agreements in Europe and N. America, while overestimated in E. Asia and underestimated in the S. American biomass burning areas. On a global scale, inclusion of absorbing OC enhances the absorption in the atmosphere by 11% for July. The estimated aerosol direct radiative forcing at TOA (-0.24 W/m2) is similar to the average value of the AeroCom models based on the same 2000 emissions, but significantly enhanced negatively at surface by about 53% (-1.56 W/m2) and the atmosphere absorption is increased by +61% (+1.32 W/m2). About 87% of the estimated atmosphere absorption and 42% of the surface dimming is contributed by BC. Between 1975 and 2000, the calculated all-sky flux

  19. Ozone oxidation of oleic acid surface films decreases aerosol cloud condensation nuclei activity

    NASA Astrophysics Data System (ADS)

    Schwier, A. N.; Sareen, N.; Lathem, T. L.; Nenes, A.; McNeill, V. F.

    2011-08-01

    Heterogeneous oxidation of aerosols composed of pure oleic acid (C18H34O2, an unsaturated fatty acid commonly found in continental and marine aerosol) by gas-phase O3 is known to increase aerosol hygroscopicity and activity as cloud condensation nuclei (CCN). Whether this trend is preserved when the oleic acid is internally mixed with other electrolytes is unknown and addressed in this study. We quantify the CCN activity of sodium salt aerosols (NaCl and Na2SO4) internally mixed with sodium oleate (SO) and oleic acid (OA). We find that particles containing roughly one monolayer of SO/OA show similar CCN activity to pure salt particles, whereas a tenfold increase in organic concentration slightly depresses CCN activity. O3 oxidation of these multicomponent aerosols has little effect on the critical diameter for CCN activation for unacidified particles at all conditions studied, and the activation kinetics of the CCN are similar in each case to those of pure salts. SO-containing particles which are acidified to atmospherically relevant pH before analysis in order to form oleic acid, however, show depressed CCN activity upon oxidation. This effect is more pronounced at higher organic concentrations. The behavior after oxidation is consistent with the disappearance of the organic surface film, supported by Köhler Theory Analysis (KTA). The κ-Köhler calculations show a small decrease in hygroscopicity after oxidation. The important implication of this finding is that oxidative aging may not always enhance the hygroscopicity of internally mixed inorganic-organic aerosols.

  20. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Surface/Satellite Perspective

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Lau, William K. M. (Technical Monitor)

    2002-01-01

    Many recent field experiments are designed to study the compelling variability in spatial and temporal scale of both pollution-derived and naturally occurring aerosols, which often exist in high concentrations over eastern/southeastern Asia and along the rim of the western Pacific. For example, the phase-I of ACE-Asia was conducted from March-May 2001 in the vicinity of the Gobi desert, East Coast of China, Yellow Sea, Korea, and Japan, along the pathway of Kosa (severe events that blanket East Asia with yellow desert dust, peaked in the Spring season). Asian dust typically originates in desert areas far from polluted urban regions. During transport, dust layers can interact with anthropogenic sulfate and soot aerosols from heavily polluted urban areas. Springtime is also the peak season for biomass burning in southeastern Asia. Added to the complex effects of clouds and natural marine aerosols, dust particles reaching the marine environment can have drastically different properties than those from the source. Thus, understanding the unique temporal and spatial variations of Asian aerosols is of special importance in regional-to-global climate issues such as radiative forcing, the hydrological cycle, and primary biological productivity in the mid-Pacific Ocean. During ACE-Asia we have measured continuously aerosol physical/optical/radiative properties, column precipitable water amount, and surface reflectivity over homogeneous areas from surface. The inclusion of flux measurements permits the determination of aerosol radiative flux in addition to measurements of loading and optical depth. At the time of the Terra/MODIS (Moderate Resolution Imaging Spectroradiometer), SeaWiFS (Sea-viewing Wide Field-of-view Sensor), TOMS (Total Ozone Mapping Spectrometer) and other satellite overpasses, these ground-based observations can provide valuable data to compare with satellite retrievals over land. A column satellite-surface perspective of Asian aerosols will be presented

  1. Long-term Datasets of Aerosol and Surface Reflectance from ERS-2, ENVISAT and Sentinel-3

    NASA Astrophysics Data System (ADS)

    North, P. R.; Heckel, A.; Davies, W.; Bevan, S. L.

    2013-12-01

    We present results of a new global retrieval of aerosol optical thickness and size distribution from the ESA ATSR instrument series on ERS-2 and ENVISAT (1995-2012), developed under the ESA Aerosol Climate Change Initiative. Further testing of a new algorithm developed for Sentinel-3, with planned operation 2013-2030 is also discussed. The ATSR series instruments on ERS-2 and ENVISAT together provide one of the longest available, well-calibrated datasets of satellite radiance measurements. The dual-angle viewing capability gives two near-simultaneous images at differing slant paths though the atmosphere, allowing global retrieval of aerosol optical thickness without assumptions on surface spectral properties. We present the global ATSR time series and analysis of trends, and give comparison with AERONET and with MODIS and MISR global datasets. The algorithm has been developed for application to Sentinel-3 to make use of synergistic retrieval from two sensors, OLCI and SLSTR. The research explores the gain by using information from both instruments simultaneously to constrain atmospheric profile, characterise cloud, and provide improved atmospheric correction to surface reflectance. The algorithm has been implemented on the ESA BEAM system and tested on MERIS and AATSR data, and compared with existing algorithms. The retrieval also forms the basis of simultaneous estimation surface reflectance corrected for atmospheric scattering, which underpins retrieval of albedo and other surface properties in the ESA GLobAlbedo and SEN4LST projects.

  2. Multi-Decadal Change of Atmospheric Aerosols and their Effect on Surface Radiation

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Streets, David; Wild, Martin; Qian, Yun; Yu, Hongbin; Tan, Qian; Bian, Huisheng; Wang, Weiguo

    2011-01-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model, GOCART, along with the near-term to long-term data records. We focus on a 28-year time period of satellite era from 1980 to 2007 during which a suite of aerosol data from satellite observations, ground-based measurements, and intensive field experiments have become available. Particularly: (1) We compare the model calculated clear sky downward radiation at the surface with surface network data from BSRN and CMA (2) We compare the model and surface data with satellite derived downward radiation products from ISCCP and SRS (3) We analyze the long-term global and regional aerosol trends in major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of emissions during the three decades, dust and biomass burning regions that have large interannual variability, downwind regions that are directly affected by the changes in the source area, and remote regions that are considered to representing "background" conditions. The comparisons and methods from this study can be applied to multiple model analysis in the AeroCom framework.

  3. Multi-decadal trends of solar radiation reaching the surface: What is the role of aerosols?

    NASA Astrophysics Data System (ADS)

    Chin, M.; Diehl, T. L.; Bian, H.; Yu, H.; Qian, Y.; Wild, M.; Streets, D. G.; Stackhouse, P. W.

    2014-12-01

    We present an investigation on multi-decadal changes of atmospheric aerosols and their effects on surface radiation using a global chemistry transport model along with the near-term to long-term data records. We present the aerosol trends in the past 3 decades (1980-2009) in different regions and assess their effects on the multi-decadal change of solar radiation reaching the surface (known as "dimming" or "brightening"). The regions include the major anthropogenic source regions (North America, Europe, Asia) that have been experiencing considerable changes of pollution emissions, dust and biomass burning influenced regions that have large interannual variabilities, and relatively remote regions that maybe considered as "background". We will compare the GOCART model simulated surface radiation trends with data from the Global Energy Balance Archive (GEBA), the Baseline Solar Radiation Network (BSRN), and the China Meteorological Administration (CMA), as well as the satellite derived products. We will use the model to attribute the surface radiation changes to aerosol amount and type under all sky and clear sky conditions and link the changes to the emission trends in major source regions.

  4. Modeling aerosol surface chemistry and gas-particle interaction kinetics with K2-SURF: PAH oxidation

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Garland, R.; Pöschl, U.

    2009-04-01

    Atmospheric aerosols are ubiquitous in the atmosphere. They have the ability to impact cloud properties, radiative balance and provide surfaces for heterogeneous reactions. The uptake of gaseous species on aerosol surfaces impacts both the aerosol particles and the atmospheric budget of trace gases. These subsequent changes to the aerosol can in turn impact the aerosol chemical and physical properties. However, this uptake, as well as the impact on the aerosol, is not fully understood. This uncertainty is due not only to limited measurement data, but also a dearth of comprehensive and applicable modeling formalizations used for the analysis, interpretation and description of these heterogeneous processes. Without a common model framework, comparing and extrapolating experimental data is difficult. In this study, a novel kinetic surface model (K2-SURF) [Ammann & Pöschl, 2007; Pöschl et al., 2007] was used to describe the oxidation of a variety of polycyclic aromatic hydrocarbons (PAHs). Integrated into this consistent and universally applicable kinetic and thermodynamic process model are the concepts, terminologies and mathematical formalizations essential to the description of atmospherically relevant physicochemical processes involving organic and mixed organic-inorganic aerosols. Within this process model framework, a detailed master mechanism, simplified mechanism and parameterizations of atmospheric aerosol chemistry are being developed and integrated in analogy to existing mechanisms and parameterizations of atmospheric gas-phase chemistry. One of the key aspects to this model is the defining of a clear distinction between various layers of the particle and surrounding gas phase. The processes occurring at each layer can be fully described using known fluxes and kinetic parameters. Using this system there is a clear separation of gas phase, gas-surface and surface bulk transport and reactions. The partitioning of compounds can be calculated using the flux

  5. Electrospray neutralization process and apparatus for generation of nano-aerosol and nano-structured materials

    SciTech Connect

    Bailey, Charles L.; Morozov, Victor; Vsevolodov, Nikolai N.

    2010-08-17

    The claimed invention describes methods and apparatuses for manufacturing nano-aerosols and nano-structured materials based on the neutralization of charged electrosprayed products with oppositely charged electrosprayed products. Electrosprayed products include molecular ions, nano-clusters and nano-fibers. Nano-aerosols can be generated when neutralization occurs in the gas phase. Neutralization of electrospan nano-fibers with molecular ions and charged nano-clusters may result in the formation of fibrous aerosols or free nano-mats. Nano-mats can also be produced on a suitable substrate, forming efficient nano-filters.

  6. Determination of Aerosol Optical Depth and Land Surface Directional Reflectances Using Multiangle Imagery

    NASA Technical Reports Server (NTRS)

    Martonchik, John V.

    1997-01-01

    Spectral aerosol optical depths, surface hemispherical-directional reflectance factors, and bihemispherical reflectances (albedos) are retrieved for an area of Glacier National Park using spectral, multiangle imagery obtained with the airborne advanced solid state array spectroradiometer (ASAS). The retrieval algorithms are described and are identical in principle to those being devised for use by the multiangle imaging spectroradiometer (MISR) which will fly on the EOS-AMI spacecraft in 1998. As part of its science mission, MISR will produce global coverage of both aerosol amounts an an surface reflection properties. The results in this paper represent the initial effort in applying the MISR algorithms to real data. These algorithms will undergo additional testing and validation as more multiangle data become available.

  7. Elastic back-scattering patterns via particle surface roughness and orientation from single trapped airborne aerosol particles

    NASA Astrophysics Data System (ADS)

    Fu, Richard; Wang, Chuji; Muñoz, Olga; Videen, Gorden; Santarpia, Joshua L.; Pan, Yong-Le

    2017-01-01

    We demonstrate a method for simultaneously measuring the back-scattering patterns and images of single laser-trapped airborne aerosol particles. This arrangement allows us to observe how the back-scattering patterns change with particle size, shape, surface roughness, orientation, etc. The recoded scattering patterns cover the angular ranges of θ=167.7-180° (including at 180° exactly) and ϕ=0-360° in spherical coordinates. The patterns show that the width of the average speckle intensity islands or rings is inversely proportional to particle size and how the shape of these intensity rings or islands also depends on the surface roughness. For an irregularly shaped particle with substantial roughness, the back-scattering patterns are formed with speckle intensity islands, the size and orientations of these islands depend more on the overall particle size and orientation, but have less relevance to the fine alteration of the surface structure and shapes. The back-scattering intensity at 180° is very sensitive to the particle parameters. It can change from a maximum to a minimum with a change of 0.1% in particle size or refractive index. The method has potential use in characterizing airborne aerosol particles, and may be used to provide back-scattering information for LIDAR applications.

  8. Effect of the aerosol type uncertainty on the surface reflectance retrieval using CHRIS/PROBA hyperspectral images over land.

    NASA Astrophysics Data System (ADS)

    Tirelli, C.; Manzo, C.; Curci, G.; Bassani, C.

    2014-12-01

    The surface reflectance is crucial for the quantitative analysis of land surface properties in geological, agricultural and urban studies. The first requirement for a reliable surface reflectance estimation is an accurate atmospheric correction obtained by an appropriate selection of aerosol loading and type. The aerosol optical thickness at 550nm is widely used to describe the aerosol loading. Recent works have highlighted the relevant role of the aerosol types on the atmospheric correction process defined by their micro-physical properties. The aim of this work is to evaluate the radiative impact of the aerosol type on the surface reflectance obtained from CHRIS (Compact High Resolution Imaging Spectrometer) hyperspectral data over land. CHRIS on PROBA satellite is an high resolution multi-angular imaging spectrometer, operating in the visible near-infrared spectral domain (400 to 1000 nm). As test case the urban site of Brussels has been selected. The physically-based algorithm CHRIS@CRI (CHRIS Atmospherically Corrected Reflectance Imagery) has been developed specifically for CHRIS data by using the vector version of 6S (6SV) radiative transfer model. The atmospheric data needed for the atmospheric correction were obtained from CIMEL CE-318 of the Brussels AERONET station. CHRIS images were selected if simultaneous AERONET data were available. Other specific requirements for imagery acquisition were high aerosol loading and high solar irradiation. The aerosol radiative impact has been investigated comparing the reflectance obtained by applying the CHRIS@CRI algorithm with different aerosol types: the three aerosol standard of 6SV and two characterized by specific microphysical properties provided by the AERONET station and calculated with FlexAOD code (a post-processing tool of the chemical transport model GEOS-Chem), respectively. The results show a clear dependence of the atmospheric correction results on the aerosol absorption properties.

  9. Global relationships among the earth's radiation budget, cloudiness, volcanic aerosols, and surface temperature

    SciTech Connect

    Ardanuy, P.E.; Kyle, H.L.; Hoyt, D. NASA, Goddard Space Flight Center, Greenbelt, MD )

    1992-10-01

    Global relationships among the earth's radiation budget, cloudiness, solar constant, volcanic aerosols, and surface temperature are analyzed using data obtained by the Nimbus-7 spacecraft. It was found that these parameters were interrelated on interannual time scales, demonstrating that the interannual variability in the earth's climate (i.e., radiation budget) is detectable and observable by current spaceborne instruments. The degree of global interannual variation is on the order of tenths of percent. 41 refs.

  10. Surface ozone depletion in Arctic spring sustained by bromine reactions on aerosols

    NASA Astrophysics Data System (ADS)

    Fan, Song-Miao; Jacob, Daniel J.

    1992-10-01

    NEAR-TOTAL depletion of the ozone in surface air is often observed in the Arctic spring, coincident with high atmospheric concentrations of inorganic bromine. A mechanism based on known aqueous-phase chemistry is proposed which rapidly converts HBr, HOBr, and BrNO3 back to Br and BrO radicals. This mechanism should be particularly efficient in the presence of the high concentrations of sulphuric acid aerosols observed during ozone depletion events.

  11. Global relationships among the earth's radiation budget, cloudiness, volcanic aerosols, and surface temperature

    NASA Technical Reports Server (NTRS)

    Ardanuy, Philip E.; Kyle, H. L.; Hoyt, Douglas

    1992-01-01

    Global relationships among the earth's radiation budget, cloudiness, solar constant, volcanic aerosols, and surface temperature are analyzed using data obtained by the Nimbus-7 spacecraft. It was found that these parameters were interrelated on interannual time scales, demonstrating that the interannual variability in the earth's climate (i.e., radiation budget) is detectable and observable by current spaceborne instruments. The degree of global interannual variation is on the order of tenths of percent.

  12. Characterization of Aerosols and Atmospheric Parameters From Space-Borne and Surface-Based Remote Sensing

    DTIC Science & Technology

    2016-06-07

    Ocean color and temperature exhibit strong gradients. White capping and sun glint (which are highly wind speed dependent) cause further ocean color...aircraft altitude causing spectral brightness shift due to changes in aerosol and molecular scattering, and repeat the sequence. The method for remote...sensing of smoke or sulfates over vegetated (dark) regions by Kaufman et al. (1997) is extended to include dust over the desert ( bright surface). Now

  13. Atmospheric Polarization Imaging with Variable Aerosols, Clouds, and Surface Albedo

    DTIC Science & Technology

    2013-07-01

    which are comparable to or larger than the optical wavelength, alter the pure Rayleigh background through scattering processes that do not follow the...removes the uncertainty of film processing inherent in systems described by North and Duggin (1997) and Horvath et al. (2002). Our use of electronically...polarization. We used satellite imagery to determine the effective surface reflectance for the area surrounding the MLO, and processed clear-sky

  14. Final report. [Impact of tropospheric aerosols on the past surface radiation income: Calibration with ARM site data

    SciTech Connect

    Kukla, George

    2001-03-15

    This work involved a comparison of surface solar radiation observations from the SOCMET-DATA BASE from 1960-1990 and results from a General Circulation Model to test and evaluate the effects of tropospheric aerosols on clouds.

  15. Experience of direct impactor measurements of the structure and composition of stratospheric aerosols in polar latitudes

    NASA Astrophysics Data System (ADS)

    Kondratyev, K. Y.; Ivlev, Leo S.; Ivanov, V. A.; Zhukov, V. M.

    1993-11-01

    The data obtained in 1989 during the launchings to the stratosphere of a two-cascade impactor from the test ground in Apatity have been discussed. The aerosol samples have been analyzed using an electronic microscope to have information on the structure and size distribution of aerosol particles. The chemical and elemental analyses have been made using the methods of mass-spectrometry, IR spectroscopy, neutron activation, and x-ray fluorescence.

  16. The effect of aerosols and sea surface temperature on China's climate over the late twentieth century

    NASA Astrophysics Data System (ADS)

    Folini, Doris; Wild, Martin

    2015-04-01

    Focusing on China in the second half of the twentieth century, we examine the relative role of aerosols and prescribed, observation based sea surface temperatures (SSTs) for the evolution of surface solar radiation (SSR), surface air temperature (SAT), and precipitation in ensembles of transient (1870 - 2005) sensitivity experiments with the global climate model ECHAM5-HAM. Observations and simulations with transient SSTs and aerosol emissions agree reasonably well in eastern China in terms of SSR dimming (-6 +/- 2 W/m2/decade, 1960 - 2000), statistically non-significant JJA SAT trend (1950 - 2000), and drying in JJA from 1950 to 1990 (-2.5% to -3.5% per decade, essentially via reduction of convective precipitation). Other major observed features are not reproduce by the model, e.g. precipitation increase in the 1990s in the Yangtze valley, the strong warming in winter in northern parts of China and Mongolia, or SSR dimming in western China. For the model results, SO2 emissions are more relevant than emissions of black and organic carbon. Aerosol effects are less pronounced at higher model resolution. Transient SSTs are found to be crucial for decadal scale SAT variability over land, especially the strong warming in the 1990s, and, via SST forced reduction of cloud cover, for the ceasing of SSR dimming around the year 2000. Unforced cloud variability leads to relevant scatter (up to +/- 2 W/m2/decade) of modeled SSR trends at individual observation sites.

  17. Evaluation of the Aerosol Type Effect on the Surface Reflectance Retrieval Using Chris/proba Images Over Land

    NASA Astrophysics Data System (ADS)

    Tirelli, C.; Manzo, C.; Curci, G.; Bassani, C.

    2015-04-01

    Surface reflectance has a central role in the analysis of land surface for a broad variety of agricultural, geological and urban studies. An accurate atmospheric correction, obtained by an appropriate selection of aerosol type and loading, is the first requirement for a reliable surface reflectance estimation. The aerosol type is defined by its micro-physical properties, while the aerosol loading is described by optical thickness at 550 nm. The aim of this work is to evaluate the radiative impact of the aerosol model on the surface reflectance obtained from CHRIS (Compact High Resolution Imaging Spectrometer) hyperspectral data over land by using the specifically developed algorithm CHRIS@CRI (CHRIS Atmospherically Corrected Reflectance Imagery) based on the 6SV radiative transfer model. Five different aerosol models have been used: one provided by the AERONET inversion products (used as reference), three standard aerosol models in 6SV, and one obtained from the output of the GEOS-Chem global chemistry-transport model (CTM). As test case the urban site of Bruxelles and the suburban area of Rome Tor Vergata have been considered. The results obtained encourages the use of CTM in operational retrieval and provides an evaluation of the role of the aerosol model in the atmospheric correction process, considering the different microphysical properties impact.

  18. A Multi-Year Aerosol Characterization for the Greater Tehran Area Using Satellite, Surface, and Modeling Data

    PubMed Central

    Crosbie, Ewan; Sorooshian, Armin; Monfared, Negar Abolhassani; Shingler, Taylor; Esmaili, Omid

    2014-01-01

    This study reports a multi-year (2000–2009) aerosol characterization for metropolitan Tehran and surrounding areas using multiple datasets (Moderate Resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging Spectroradiometer (MISR), Total Ozone Mapping Spectrometer (TOMS), Goddard Ozone Chemistry Aerosol Radiation and Transport (GOCART), and surface and upper air data from local stations). Monthly trends in aerosol characteristics are examined in the context of the local meteorology, regional and local emission sources, and air mass back-trajectory data. Dust strongly affects the region during the late spring and summer months (May–August) when aerosol optical depth (AOD) is at its peak and precipitation accumulation is at a minimum. In addition, the peak AOD that occurs in July is further enhanced by a substantial number of seasonal wildfires in upwind regions. Conversely, AOD is at a minimum during winter; however, reduced mixing heights and a stagnant lower atmosphere trap local aerosol emissions near the surface and lead to significant reductions in visibility within Tehran. The unique meteorology and topographic setting makes wintertime visibility and surface aerosol concentrations particularly sensitive to local anthropogenic sources and is evident in the noteworthy improvement in visibility observed on weekends. Scavenging of aerosol due to precipitation is evident during the winter when aconsistent increase in surface visibility and concurrent decrease in AOD is observed in the days after rain compared with the days immediately before rain. PMID:25083295

  19. A preliminary analysis of the surface chemistry of atmospheric aerosol particles in a typical urban area of Beijing.

    PubMed

    Zhang, Zhengzheng; Li, Hong; Liu, Hongyan; Ni, Runxiang; Li, Jinjuan; Deng, Liqun; Lu, Defeng; Cheng, Xueli; Duan, Pengli; Li, Wenjun

    2016-09-01

    Atmospheric aerosol particle samples were collected using an Ambient Eight Stage (Non-Viable) Cascade Impactor Sampler in a typical urban area of Beijing from 27th Sep. to 5th Oct., 2009. The surface chemistry of these aerosol particles was analyzed using Static Time of Flight-Secondary Ion Mass Spectrometry (Static TOF-SIMS). The factors influencing surface compositions were evaluated in conjunction with the air pollution levels, meteorological factors, and air mass transport for the sampling period. The results show that a variety of organic ion groups and inorganic ions/ion groups were accumulated on the surfaces of aerosol particles in urban areas of Beijing; and hydrophobic organic compounds with short- or middle-chain alkyl as well as hydrophilic secondary inorganic compounds were observed. All these compounds have the potential to affect the atmospheric behavior of urban aerosol particles. PM1.1-2.1 and PM3.3-4.7 had similar elements on their surfaces, but some molecules and ionic groups demonstrated differences in Time of Flight-Secondary Ion Mass Spectrometry spectra. This suggests that the quantities of elements varied between PM1.1-2.1 and PM3.3-4.7. In particular, more intense research efforts into fluoride pollution are required, because the fluorides on aerosol surfaces have the potential to harm human health. The levels of air pollution had the most significant influence on the surface compositions of aerosol particles in our study. Hence, heavier air pollution was associated with more complex surface compositions on aerosol particles. In addition, wind, rainfall, and air masses from the south also greatly influenced the surface compositions of these urban aerosol particles.

  20. Heterogeneous chemistry of HOBR on surfaces characteristic of atmospheric aerosols

    SciTech Connect

    Abbatt, J.P.D.

    1995-12-31

    The heterogeneous interactions of HOBr, HBr and HCl with ice and supercooled sulfuric acid solutions have been studied in a low temperatures low pressure flow tube coupled to a mass spectrometer. The heterogeneous reactions HOBr + HCl {yields} BrCl + H{sub 2}O and HOBr + HBr {yields} Br{sub 2} + H{sub 2}O have been demonstrated to proceed readily on these surfaces, and it has been shown that both HOBr and HBr are more easily partitioned to the condensed phase than their chlorine analogues. These heterogeneous reactions represent routes for the activation of halogen species in the atmosphere. In particular, the implications of this research to the depletion of stratospheric ozone after the Mt. Pinatubo volcanic eruption and to the depletion of ozone in the springtime Arctic boundary layer will be discussed.

  1. Surface acoustic-wave piezoelectric crystal aerosol mass microbalance

    NASA Astrophysics Data System (ADS)

    Bowers, W. D.; Chuan, R. L.

    1989-07-01

    The development of a particulate mass-sensing instrument based on a quartz-crystal microbalance and enhanced with the new surface acoustic-wave (SAW) technology is reported. Mass sensitivity comparisons of a 158-MHz SAW piezoelectric microbalance and a conventional 10-MHz quartz-crystal microbalance show that the SAW crystal is 266 times more sensitive, in good agreement with the theoretical value of 250. The frequency stability of a single SAW resonator is 6 parts in 10 to the 8th over 1 min. The response to temperature changes is found to be very linear over the range +30 to -30 C. A strong response to 15 ppm SO2 has been demonstrated on a chemically coated SAW crystal.

  2. Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2012-01-01

    This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.

  3. Changes in droplet surface tension affect the observed hygroscopicity of photochemically aged biomass burning aerosol.

    PubMed

    Giordano, Michael R; Short, Daniel Z; Hosseini, Seyedehsan; Lichtenberg, William; Asa-Awuku, Akua A

    2013-10-01

    This study examines the hygroscopic and surface tension properties as a function of photochemical aging of the aerosol emissions from biomass burning. Experiments were conducted in a chamber setting at the UC-Riverside Center for Environmental Research and Technology (CE-CERT) Atmospheric Processes Lab using two biomass fuel sources, manzanita and chamise. Cloud condensation nuclei (CCN) measurements and off-line filter sample analysis were conducted. The water-soluble organic carbon content and surface tension of the extracted filter samples were measured. Surface tension information was then examined with Köhler theory analysis to calculate the hygroscopicity parameter, κ. Laboratory measurement of biomass burning smoke from two chaparral fuels is shown to depress the surface tension of water by 30% or more at organic matter concentrations relevant at droplet activation. Accounting for surface tension depression can lower the calculated κ by a factor of 2. This work provides evidence for surface tension depression in an important aerosol system and may provide closure for differing sub- and supersaturated κ measurements.

  4. Surface structure determines dynamic wetting

    PubMed Central

    Wang, Jiayu; Do-Quang, Minh; Cannon, James J.; Yue, Feng; Suzuki, Yuji; Amberg, Gustav; Shiomi, Junichiro

    2015-01-01

    Liquid wetting of a surface is omnipresent in nature and the advance of micro-fabrication and assembly techniques in recent years offers increasing ability to control this phenomenon. Here, we identify how surface roughness influences the initial dynamic spreading of a partially wetting droplet by studying the spreading on a solid substrate patterned with microstructures just a few micrometers in size. We reveal that the roughness influence can be quantified in terms of a line friction coefficient for the energy dissipation rate at the contact line, and that this can be described in a simple formula in terms of the geometrical parameters of the roughness and the line-friction coefficient of the planar surface. We further identify a criterion to predict if the spreading will be controlled by this surface roughness or by liquid inertia. Our results point to the possibility of selectively controlling the wetting behavior by engineering the surface structure. PMID:25683872

  5. The Houston Urban Heat Island: Surface Temperature, Aerosol Mixing Layer Height, and Surface Wind Field Relationships

    NASA Astrophysics Data System (ADS)

    Darby, L. S.; Senff, C. J.

    2007-12-01

    Both Dallas and Houston, Texas have comprehensive networks of surface meteorology and chemistry sensors. The similarities of the networks and lack of terrain in Dallas and Houston allow for the comparison of their urban heat islands (UHI). The Dallas UHI, unperturbed by thermal flows driven by the land/sea temperature difference, is a well-defined phenomenon over the summers of 2000-2006. Including all weather conditions, the average nighttime T(urban) - T(rural) temperature difference was between 1.5° and 2.0° C and the average daytime difference was ~ 1.0° C. Analysis of Houston temperature data, however, revealed a different picture due to the bay and gulf breezes. While the Houston UHI was a distinct phenomenon, even when including all weather conditions, the bay or gulf breeze modified the Houston UHI by cooling the city. Average nighttime T(urban) - T(rural) temperature differences in Houston were between 1.75° and 2.75° C. However, during the day, the rural areas to the north and west of the city were often warmer than the downtown area during afternoon hours as a result of the sea breeze. Averaging the Houston T(urban) - T(rural) temperature differences over the summers of 2000-2006 indicated a very small urban-rural temperature difference between 1400 to 1600 LST. In some individual years, such as 2000, 2003, 2005 and 2006, the urban areas were actually cooler than the rural areas, on average, in the mid-afternoon. These years had more bay breeze/gulf breeze activity to cool the urban area. We will also look at how land use, the UHI, and boundary-layer winds impact the horizontal distribution of boundary layer heights over the Houston area, as calculated from backscatter measurements from TOPAZ, an ozone and aerosol profiling lidar deployed on a NOAA Twin Otter in the summer of 2006 during the Texas Air Quality Study II.

  6. Dust, Pollution, and Biomass Burning Aerosols in Asian Pacific: A Column Satellite-Surface Perspective

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee

    2004-01-01

    Airborne dusts from northern China contribute a significant part of the air quality problem and, to some extent, regional climatic impact in Asia during spring-time. However, with the economical growth in China, increases in the emission of air pollutants generated from industrial and vehicular sources will not only impact the radiation balance, but adverse health effects to humans all year round. In addition, both of these dust and air pollution clouds can transport swiftly across the Pacific reaching North America within a few days, possessing an even larger scale effect. The Asian dust and air pollution aerosols can be detected by its colored appearance on current Earth observing satellites (e.g., MODIS, SeaWiFS, TOMS, etc.) and its evolution monitored by satellites and surface network. Biomass burning has been a regular practice for land clearing and land conversion in many countries, especially those in Africa, South America, and Southeast Asia. However, the unique climatology of Southeast Asia is very different than that of Africa and South America, such that large-scale biomass burning causes smoke to interact extensively with clouds during the peak-burning season of March to April. Significant global sources of greenhouse gases (e.g., CO2, CH4), chemically active gases (e.g., NO, CO, HC, CH3Br), and atmospheric aerosols are produced by biomass burning processes. These gases influence the Earth-atmosphere system, impacting both global climate and tropospheric chemistry. Some aerosols can serve as cloud condensation nuclei, which play an important role in determining cloud lifetime and precipitation, hence, altering the earth's radiation and water budget. Biomass burning also affects the biogeochemical cycling of nitrogen and carbon compounds from the soil to the atmosphere; the hydrological cycle (i.e., run off and evaporation); land surface reflectivity and emissivity; as well as ecosystem biodiversity and stability. Two new initiatives, EAST-AIRE (East

  7. Multi-year Satellite and Surface Observations of AOD in support of Two-Column Aerosol Project (TCAP) Field Campaign

    SciTech Connect

    Kassianov, Evgueni I.; Chand, Duli; Berg, Larry K.; Fast, Jerome D.; Tomlinson, Jason M.; Ferrare, R.; Hostetler, Chris A.; Hair, John

    2012-11-01

    We use combined multi-year measurements from the surface and space for assessing the spatial and temporal distribution of aerosol properties within a large (~400x400 km) region centered on Cape Cod, Massachusetts, along the East Coast of the United States. The ground-based Aerosol Robotic Network (AERONET) measurements at Martha’s Vineyard Coastal Observatory (MVCO) site and Moderate Resolution Imaging Spectrometer (MODIS) sensors on board the Terra and Aqua satellites provide horizontal and temporal variations of aerosol optical depth, while the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) offers the altitudes of aerosol-layers. The combined ground-based and satellite measurements indicated several interesting features among which were the large differences in the aerosol properties observed in July and February. We applied the climatology of aerosol properties for designing the Two-Column Aerosol Project (TCAP), which is supported by the U.S. Department of Energy’s (DOE’s) Atmospheric Radiation Measurement (ARM) Program. The TCAP field campaign involves 12-month deployment (started July 1, 2012) of the ground-based ARM Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) on Cape Cod and complimentary aerosol observations from two research aircraft: the DOE Gulfstream-1 (G-1) and the National Aeronautics and Space Administration (NASA) B200 King Air. Using results from the coordinated G-1 and B200 flights during the recent (July, 2012) Intensive Observation Period, we demonstrated that the G-1 in situ measurements and B200 active remote sensing can provide complementary information on the temporal and spatial changes of the aerosol properties off the coast of North America.

  8. Adsorption of HO(x) on aerosol surfaces - Implications for the atmosphere of Mars

    NASA Technical Reports Server (NTRS)

    Anbar, A. D.; Leu, M.-T.; Nair, H. A.; Yung, Y. L.

    1993-01-01

    The potential impact of heterogeneous chemistry on the abundance and distribution of HO(x) in the Martian atmosphere is investigated using observational data on dust and ice aerosol distributions combined with an updated photochemical model. Critical parameters include the altitude distributions of aerosols and the surface loss coefficients of HO2 on dust and ice in the lower atmosphere and of H on ice above 40 km. Results of calculations indicate that adsorption of HO2 on dust, or ice near 30 km, can deplete OH abundances in the lower atmosphere by 10 percent or more and that the adsorption of H on ice at 50 km can result in even larger OH depletions (this effect is localized to altitudes greater than 40 km, where CO oxidation is relatively unimportant).

  9. Structured surfaces on metal optics

    NASA Astrophysics Data System (ADS)

    Steinkopf, Ralf; Hartung, Johannes; Kinast, Jan; Gebhardt, Andreas; Risse, Stefan; Eberhardt, Ramona

    2015-09-01

    Diamond machining of metal optics is a flexible way to manufacture structured elements on different surface geometries. Especially curved substrates such as spheres, aspheres, or freeforms in combination with structured elements enable innovative products like headlights of automobiles or spectrometers in life science or space applications. Using diamond turning, servo turning, milling, and shaping, different technologies for arbitrary geometries are available. The addressed wavelengths are typically in the near- infrared (NIR) and infrared (IR) spectral range. Applying additional finishing processes, diamond machining is also used for optics applicable down to the EUV spectral range. This wide range of applications is represented in the used materials, too. However, one important material group for diamond machining is metal substrates. For diamond machining of structured surfaces, it is important to consider the microstructure of the utilized materials thoroughly. Especially amorphous materials as nickel-phosphorus alloys or fine-grained copper allow the fine structuring of refractive and diffractive structures. The paper analyzes the influence variables for diamond machining of structured surfaces and shows the use of this research for applications in the spectral range from IR to EUV.

  10. A Global Model Simulation of Aerosol Effects of Surface Radiation Budget- Toward Understanding of the "Dimming to Brightening" Transition

    NASA Technical Reports Server (NTRS)

    Chin, Mian; Diehl, Thomas; Bian, Huisheng; Yu, Hongbin

    2008-01-01

    We present a global model study on the role aerosols play in the change of solar radiation at Earth's surface that transitioned from a decreasing (dimming) trend to an increasing (brightening) trend. Our primary objective is to understand the relationship between the long-term trends of aerosol emission, atmospheric burden, and surface solar radiation. More specifically, we use the recently compiled comprehensive global emission datasets of aerosols and precursors from fuel combustion, biomass burning, volcanic eruptions and other sources from 1980 to 2006 to simulate long-term variations of aerosol distributions and optical properties, and then calculate the multi-decadal changes of short-wave radiative fluxes at the surface and at the top of the atmosphere by coupling the GOCART model simulated aerosols with the Goddard radiative transfer model. The model results are compared with long-term observational records from ground-based networks and satellite data. We will address the following critical questions: To what extent can the observed surface solar radiation trends, known as the transition from dimming to brightening, be explained by the changes of anthropogenic and natural aerosol loading on global and regional scales? What are the relative contributions of local emission and long-range transport to the surface radiation budget and how do these contributions change with time?

  11. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  12. Intensification of North American Megadroughts through Surface and Dust Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Seager, Richard; Miller, Ron L.; Mason, Joseph A

    2013-01-01

    Tree-ring-based reconstructions of the Palmer drought severity index (PDSI) indicate that, during the Medieval Climate Anomaly (MCA), the central plains of North America experienced recurrent periods of drought spanning decades or longer. These megadroughts had exceptional persistence compared to more recent events, but the causes remain uncertain. The authors conducted a suite of general circulation model experiments to test the impact of sea surface temperature (SST) and land surface forcing on the MCA megadroughts over the central plains. The land surface forcing is represented as a set of dune mobilization boundary conditions, derived from available geomorphological evidence and modeled as increased bare soil area and a dust aerosol source (32deg-44degN, 105deg-95degW). In the experiments, cold tropical Pacific SST forcing suppresses precipitation over the central plains but cannot reproduce the overall drying or persistence seen in the PDSI reconstruction. Droughts in the scenario with dust aerosols, however, are amplified and have significantly longer persistence than in other model experiments, more closely matching the reconstructed PDSI. This additional drying occurs because the dust increases the shortwave planetary albedo, reducing energy inputs to the surface and boundary layer. The energy deficit increases atmospheric stability, inhibiting convection and reducing cloud cover and precipitation over the central plains. Results from this study provide the first model-based evidence that dust aerosol forcing and land surface changes could have contributed to the intensity and persistence of the central plains megadroughts, although uncertainties remain in the formulation of the boundary conditions and the future importance of these feedbacks.

  13. Parameterization of clear-sky surface irradiance and its implications for estimation of aerosol direct radiative effect and aerosol optical depth

    PubMed Central

    Xia, Xiangao

    2015-01-01

    Aerosols impact clear-sky surface irradiance () through the effects of scattering and absorption. Linear or nonlinear relationships between aerosol optical depth (τa) and have been established to describe the aerosol direct radiative effect on (ADRE). However, considerable uncertainties remain associated with ADRE due to the incorrect estimation of (τa in the absence of aerosols). Based on data from the Aerosol Robotic Network, the effects of τa, water vapor content (w) and the cosine of the solar zenith angle (μ) on are thoroughly considered, leading to an effective parameterization of as a nonlinear function of these three quantities. The parameterization is proven able to estimate with a mean bias error of 0.32 W m−2, which is one order of magnitude smaller than that derived using earlier linear or nonlinear functions. Applications of this new parameterization to estimate τa from , or vice versa, show that the root-mean-square errors were 0.08 and 10.0 Wm−2, respectively. Therefore, this study establishes a straightforward method to derive from τa or estimate τa from measurements if water vapor measurements are available. PMID:26395310

  14. Influence of surface structure and chemistry on water droplet splashing.

    PubMed

    Koch, Kerstin; Grichnik, Roland

    2016-08-06

    Water droplet splashing and aerosolization play a role in human hygiene and health systems as well as in crop culturing. Prevention or reduction of splashing can prevent transmission of diseases between animals and plants and keep technical systems such as pipe or bottling systems free of contamination. This study demonstrates to what extent the surface chemistry and structures influence the water droplet splashing behaviour. Smooth surfaces and structured replicas of Calathea zebrina (Sims) Lindl. leaves were produced. Modification of their wettability was done by coating with hydrophobizing and hydrophilizing agents. Their wetting was characterized by contact angle measurement and splashing behaviour was observed with a high-speed video camera. Hydrophobic and superhydrophilic surfaces generally showed fewer tendencies to splash than hydrophobic ones. Structuring amplified the underlying behaviour of the surface chemistries, increasing hydrophobic surfaces' tendency to splash and decreasing splash on hydrophilic surfaces by quickly transporting water off the impact point by capillary forces. The non-porous surface structures found in C. zebrina could easily be applied to technical products such as plastic foils or mats and coated with hydrophilizing agents to suppress splash in areas of increased hygiene requirements or wherever pooling of liquids is not desirable.This article is part of the themed issue 'Bioinspired hierarchically structured surfaces for green science'.

  15. Are atmospheric aerosols able to modify the surface winds? A sensitivity study of the biomass burning aerosols impact on the spatially-distributed wind over Europe

    NASA Astrophysics Data System (ADS)

    Baró, Rocío; Lorente-Plazas, Raquel; Jerez, Sonia; Montávez, Juan Pedro; Jiménez-Guerrero, Pedro

    2015-04-01

    and the turbulence, developing a more stable planetary boundary layer with lower heights (around 80 m). This implies a wind speed reduction of 0.4 m s-1 (spatial correlation between planetary boundary layer and wind speed is around 0.4). On the other hand, the decrease of the temperature favours an increase of the surface pressure not only over Russia but also extends towards northern Europe. Opposite, the surface pressure decreases over central Europe where there is an increase of the wind speed up to 0.4 m s-1. The indirect effects of the aerosols also affect wind direction, especially in the North Sea (around 10 degrees). This work evidences the importance of taking into account the aerosol radiative effects in order to improve the representativeness of winds and could help to estimate the wind energy.

  16. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; VanReken, Timothy; Flagan, Richard C.; Seinfeld, John H.

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  17. Heterogeneous Reactions of Surface-Adsorbed Catechol: A Comparison of Tropospheric Aerosol Surrogates

    NASA Astrophysics Data System (ADS)

    Hinrichs, R. Z.; Woodill, L. A.

    2009-12-01

    Surface-adsorbed organics can alter the chemistry of tropospheric solid-air interfaces, such as aerosol and ground level surfaces, thereby impacting photochemical cycles and altering aerosol properties. The nature of the surface can also influence the chemistry of the surface-adsorbed organic. We employed diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) to monitor the adsorption of gaseous catechol on several tropospheric aerosol surrogates and to investigate the subsequent reactivity of adsorbed-catechol with nitrogen dioxide and, in separate preliminary experiments, ozone. Graphite, kaolinite, and sodium halide (NaF, NaCl, NaBr) powders served as carbonaceous, mineral and sea salt aerosol surrogates, respectively. Broad OH stretching bands for adsorbed catechol shifted to lower wavenumber with peak frequencies following the trend NaBr > NaCl > NaF ≈ kaolinite, consistent with the increasing basicity of the halide anions and basic Brønsted sites on kaolinite. The dark heterogeneous reaction of NO2 with NaCl-adsorbed catechol at relative humidity (RH) <2% promoted nitration forming 4-nitrocatechol and oxidation forming 1,2-benzoquinone and the ring cleavage product muconic acid, with product yields of 88%, 8%, and 4%, respectively. 4-Nitrocatechol was the dominant product for catechol adsorbed on NaF and kaolinite, while NaBr-adsorbed catechol produced less 4-nitrocatechol and more 1,2-benzoquinone and muconic acid. For all three sodium halides, the reactions of NO2 with adsorbed catechol were orders of magnitude faster than between NO2 and each NaX substrate. 4-Nitrocatechol rates and product yields were consistent with the relative ability of each substrate to enhance the deprotonated nature of adsorbed-catechol. Increasing the relative humidity caused the rate of each product channel to decrease and also altered the product branching ratios. Most notably, 1,2-benzoquinone formation decreased significantly even at 13% RH. The dramatic

  18. Estimation of surface-level PM concentration from satellite observation taking into account the aerosol vertical profiles and hygroscopicity.

    PubMed

    Kim, Kwanchul; Lee, Kwon H; Kim, Ji I; Noh, Youngmin; Shin, Dong H; Shin, Sung K; Lee, Dasom; Kim, Jhoon; Kim, Young J; Song, Chul H

    2016-01-01

    Surface-level PM10 distribution was estimated from the satellite aerosol optical depth (AOD) products, taking the account of vertical profiles and hygroscopicity of aerosols over Jeju, Korea during March 2008 and October 2009. In this study, MODIS AOD data from the Terra and Aqua satellites were corrected with aerosol extinction profiles and relative humidity data. PBLH (Planetary Boundary Layer Height) was determined from MPLNET lidar-derived aerosol extinction coefficient profiles. Through statistical analysis, better agreement in correlation (R = 0.82) between the hourly PM10 concentration and hourly average Sunphotometer AOD was the obtained when vertical fraction method (VFM) considering Haze Layer Height (HLH) and hygroscopic growth factor f(RH) was used. The validity of the derived relationship between satellite AOD and surface PM10 concentration clearly demonstrates that satellite AOD data can be utilized for remote sensing of spatial distribution of regional PM10 concentration.

  19. Effects of aerosols and surface shadowing on bidirectional reflectance measurements of deserts

    NASA Technical Reports Server (NTRS)

    Bowker, David E.; Davis, Richard E.

    1987-01-01

    Desert surfaces are probably one of the most stable of the Earth's natural targets for remote sensing. The bidirectional reflectance properties of the Saudi Arabian desert was investigated during the Summer Monsoon Experiment (Summer Monex). A comparison of high-altitude with near-surface measurements of the White Sands desert showed significant differences. These discrepancies have been attributed to forward scattering of the dust-laden atmosphere prevalent during Summer Monex. This paper is concerned in general with modeling the effects of atmospheric aerosols and surface shadowing on the remote sensing of bidirectional reflectance factors of desert targets, and in particular with comparing the results of these models with flight results. Although it is possible to approximate the latter, it is felt that a surface reflectance model with a smaller specular component would have permitted using a more realistic set of atmospheric conditions in the simulations.

  20. Role of volcanic and anthropogenic aerosols in the recent global surface warming slowdown

    NASA Astrophysics Data System (ADS)

    Smith, Doug M.; Booth, Ben B. B.; Dunstone, Nick J.; Eade, Rosie; Hermanson, Leon; Jones, Gareth S.; Scaife, Adam A.; Sheen, Katy L.; Thompson, Vikki

    2016-10-01

    The rate of global mean surface temperature (GMST) warming has slowed this century despite the increasing concentrations of greenhouse gases. Climate model experiments show that this slowdown was largely driven by a negative phase of the Pacific Decadal Oscillation (PDO), with a smaller external contribution from solar variability, and volcanic and anthropogenic aerosols. The prevailing view is that this negative PDO occurred through internal variability. However, here we show that coupled models from the Fifth Coupled Model Intercomparison Project robustly simulate a negative PDO in response to anthropogenic aerosols implying a potentially important role for external human influences. The recovery from the eruption of Mount Pinatubo in 1991 also contributed to the slowdown in GMST trends. Our results suggest that a slowdown in GMST trends could have been predicted in advance, and that future reduction of anthropogenic aerosol emissions, particularly from China, would promote a positive PDO and increased GMST trends over the coming years. Furthermore, the overestimation of the magnitude of recent warming by models is substantially reduced by using detection and attribution analysis to rescale their response to external factors, especially cooling following volcanic eruptions. Improved understanding of external influences on climate is therefore crucial to constrain near-term climate predictions.

  1. Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model.

    PubMed

    Yu, Pengfei; Toon, Owen B; Bardeen, Charles G; Bucholtz, Anthony; Rosenlof, Karen H; Saide, Pablo E; Da Silva, Arlindo; Ziemba, Luke D; Thornhill, Kenneth L; Jimenez, Jose-Luis; Campuzano-Jost, Pedro; Schwarz, Joshua P; Perring, Anne E; Froyd, Karl D; Wagner, N L; Mills, Michael J; Reid, Jeffrey S

    2016-06-27

    The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m(-2) per unit aerosol optical depth in the midvisible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.

  2. Concentrations and composition of aerosols and particulate matter in surface waters along the transatlantic section

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.; Lisitzin, A. P.; Novigatsky, A. N.; Redzhepova, Z. U.; Dara, O. M.

    2016-07-01

    Along the transatlantic section from Ushuaia to Gdańsk (March 26-May 7, 2015; cruise 47 of R/V Akademik Ioffe), data were obtained on the concentrations of aerosols in the near-water layer of the atmosphere and of particulate matter in surface waters, as well as of organic compounds within the considered matter (Corg, chlorophyll a, lipids, and hydrocarbons). The concentrations of aerosols amounted to 1237-111 739 particles/L for the fraction of 0.3-1 μm and to 0.02-34.4 μg/m2/day for the matter collected by means of the network procedure. The distribution of aerosols is affected by circumcontinental zoning and by the fluxes from arid areas of African deserts. The maximum concentration of the treated compounds were found in the river-sea frontal area (the runoff of the Colorado River, Argentina), as well as when nearing the coasts, especially in the English Channel.

  3. Rapid generation of protein aerosols and nanoparticles via surface acoustic wave atomization

    NASA Astrophysics Data System (ADS)

    Alvarez, Mar; Friend, James; Yeo, Leslie Y.

    2008-11-01

    We describe the fabrication of a surface acoustic wave (SAW) atomizer and show its ability to generate monodisperse aerosols and particles for drug delivery applications. In particular, we demonstrate the generation of insulin liquid aerosols for pulmonary delivery and solid protein nanoparticles for transdermal and gastrointestinal delivery routes using 20 MHz SAW devices. Insulin droplets around 3 µm were obtained, matching the optimum range for maximizing absorption in the alveolar region. A new approach is provided to explain these atomized droplet diameters by returning to fundamental physical analysis and considering viscous-capillary and inertial-capillary force balance rather than employing modifications to the Kelvin equation under the assumption of parametric forcing that has been extended to these frequencies in past investigations. In addition, we consider possible mechanisms by which the droplet ejections take place with the aid of high-speed flow visualization. Finally, we show that nanoscale protein particles (50-100 nm in diameter) were obtained through an evaporative process of the initial aerosol, the final size of which could be controlled merely by modifying the initial protein concentration. These results illustrate the feasibility of using SAW as a novel method for rapidly producing particles and droplets with a controlled and narrow size distribution.

  4. Surface dimming by the 2013 Rim Fire simulated by a sectional aerosol model

    NASA Astrophysics Data System (ADS)

    Yu, Pengfei; Toon, Owen B.; Bardeen, Charles G.; Bucholtz, Anthony; Rosenlof, Karen H.; Saide, Pablo E.; Da Silva, Arlindo; Ziemba, Luke D.; Thornhill, Kenneth L.; Jimenez, Jose-Luis; Campuzano-Jost, Pedro; Schwarz, Joshua P.; Perring, Anne E.; Froyd, Karl D.; Wagner, N. L.; Mills, Michael J.; Reid, Jeffrey S.

    2016-06-01

    The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m-2 per unit aerosol optical depth in the midvisible at 13:00-15:00 local time. Underestimation of simulated smoke single scattering albedo at midvisible by 0.04 suggests that the model overestimates either the particle size or the absorption due to black carbon. This study shows that exceptional events like the 2013 Rim Fire can be simulated by a climate model with 1° resolution with overall good skill, although that resolution is still not sufficient to resolve the smoke peak near the source region.

  5. Classification of summertime synoptic patterns in Beijing and their associations with boundary layer structure affecting aerosol pollution

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Guo, Jianping; Liu, Shuhua; Liu, Huan; Li, Zhanqing; Zhang, Wanchun; Zhai, Panmao

    2017-02-01

    Meteorological conditions within the planetary boundary layer (PBL) are closely governed by large-scale synoptic patterns and play important roles in air quality by directly and indirectly affecting the emission, transport, formation, and deposition of air pollutants. Partly due to the lack of long-term fine-resolution observations of the PBL, the relationships between synoptic patterns, PBL structure, and aerosol pollution in Beijing have not been well understood. This study applied the obliquely rotated principal component analysis in T-mode to classify the summertime synoptic conditions over Beijing using the National Centers for Environmental Prediction reanalysis from 2011 to 2014, and investigated their relationships with PBL structure and aerosol pollution by combining numerical simulations, measurements of surface meteorological variables, fine-resolution soundings, the concentration of particles with diameters less than or equal to 2.5 µm, total cloud cover (CLD), and reanalysis data. Among the seven identified synoptic patterns, three types accounted for 67 % of the total number of cases studied and were associated with heavy aerosol pollution events. These particular synoptic patterns were characterized by high-pressure systems located to the east or southeast of Beijing at the 925 hPa level, which blocked the air flow seaward, and southerly PBL winds that brought in polluted air from the southern industrial zone. The horizontal transport of pollutants induced by the synoptic forcings may be the most important factor affecting the air quality of Beijing in summer. In the vertical dimension, these three synoptic patterns featured a relatively low boundary layer height (BLH) in the afternoon, accompanied by high CLD and southerly cold advection from the seas within the PBL. The high CLD reduced the solar radiation reaching the surface, and suppressed the thermal turbulence, leading to lower BLH. Besides, the numerical sensitive experiments show that cold

  6. Trend of surface solar radiation over Asia simulated by aerosol transport-climate model

    NASA Astrophysics Data System (ADS)

    Takemura, T.; Ohmura, A.

    2009-12-01

    Long-term records of surface radiation measurements indicate a decrease in the solar radiation between the 1950s and 1980s (“global dimming”), then its recovery afterward (“global brightening”) at many locations all over the globe [Wild, 2009]. On the other hand, the global brightening is delayed over the Asian region [Ohmura, 2009]. It is suggested that these trends of the global dimming and brightening are strongly related with a change in aerosol loading in the atmosphere which affect the climate change through the direct, semi-direct, and indirect effects. In this study, causes of the trend of the surface solar radiation over Asia during last several decades are analyzed with an aerosol transport-climate model, SPRINTARS. SPRINTARS is coupled with MIROC which is a general circulation model (GCM) developed by Center for Climate System Research (CCSR)/University of Tokyo, National Institute for Environmental Studies (NIES), and Frontier Research Center for Global Change (FRCGC) [Takemura et al., 2000, 2002, 2005, 2009]. The horizontal and vertical resolutions are T106 (approximately 1.1° by 1.1°) and 56 layers, respectively. SPRINTARS includes the transport, radiation, cloud, and precipitation processes of all main tropospheric aerosols (black and organic carbons, sulfate, soil dust, and sea salt). The model treats not only the aerosol mass mixing ratios but also the cloud droplet and ice crystal number concentrations as prognostic variables, and the nucleation processes of cloud droplets and ice crystals depend on the number concentrations of each aerosol species. Changes in the cloud droplet and ice crystal number concentrations affect the cloud radiation and precipitation processes in the model. Historical emissions, that is consumption of fossil fuel and biofuel, biomass burning, aircraft emissions, and volcanic eruptions are prescribed from database provided by the Aerosol Model Intercomparison Project (AeroCom) and the latest IPCC inventories

  7. Combining Satellite Data, Trajectory Modeling and Surface Insolation Measurements to Deduce the Direct Radiative Effect of Smoke Aerosol

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W., Jr.; Pierce, R. Bradley; Baum, Bryan A.; DiPasquale, Robert C.

    2004-01-01

    In this paper, we have introduced a method of inferring the radiative effect of smoke aerosols using a technique that combines satellite remote sensing with trajectory modeling. The results shown here clearly show large flux biases between theoretical and measured radiative fluxes correlate with the arrival of smoke aerosol to the area. Further analysis is required to convincingly demonstrate that the reason for these differences is the radiative effect of the smoke aerosols. To do this, the estimated fluxes taken from the ERA-15 will be recomputed every 3 hours using International Satellite Cloud Climatology Project (ISCCP) data set entitled DX gridded to a 1o equal angle resolution (see paper 7B.2 for details). Surface radiometric and ancillary data for several more Canadian surface sites are being obtained at minute temporal resolution. The ultimate purpose of this research is to derive aerosol smoke maps for fire events such as this to be included in an aerosol climatology and be incorporated in the computation of the earth's surface radiation budget to better understand the radiative effect of aerosols.

  8. Modeling Impacts On and Feedbacks Among Surface Energy and Water Budgets Due to Aerosols-In-Snow Across North America

    NASA Astrophysics Data System (ADS)

    Oaida, C. M.; Xue, Y.; Chin, M.; Flanner, M.; De Sales, F.; Painter, T. H.

    2014-12-01

    Snow albedo is known to have a significant impact on energy and water budgets by modulating land-atmosphere flux exchanges. In recent decades, anthropogenic activities that cause dust and soot emission and deposition on snow-covered areas have lead to the alteration of snow albedo. Our study aims to investigate and quantitatively assess the impact of aerosols-in-snow on surface energy and water budgets at a local and regional scale using a recently enhanced regional climate model that has physically based snow processes, including aerosols in snow. We employ NCAR's WRF-ARW model, which we have previously coupled with a land surface model, Simplified Simple Biosphere version 3 (SSiB-3). We improve the original WRF/SSiB-3 framework to include a snow-radiative transfer model, Snow, Ice, and Aerosol Radiative (SNICAR) model, which considers the effects of snow grain size and aerosols-in-snow on snow albedo evolution. Furthermore, the modified WRF/SSiB-3 can now account for the deposition and tracking of aerosols in snow. The model is run for 10 continuous years (2000-2009) over North America under two scenarios: (1) no aerosol deposition in snow, and (2) with GOCART dust, black carbon, and organic carbon surface deposition in snow. By comparing the two cases, we can investigate the impact of aerosols-in-snow. We examine the changes in surface energy balance, such as albedo, surface net solar radiation (radiative forcing), and surface air and skin temperature, and how these might interact with, and lead to, changes in the hydrologic cycle, including SWE, runoff, evapotranspiration and soil moisture. We investigate the mechanisms and feedbacks that might contribute to the changes seen across select regions of North America, which are potentially a result of both local and remote effects.

  9. Aerosol Optical Retrieval and Surface Reflectance from Airborne Remote Sensing Data over Land

    PubMed Central

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550nm (τ550) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ550 with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ550 and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ550 retrieved by Module A (r2 = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r2 ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness. PMID:22163558

  10. Aerosol optical retrieval and surface reflectance from airborne remote sensing data over land.

    PubMed

    Bassani, Cristiana; Cavalli, Rosa Maria; Pignatti, Stefano

    2010-01-01

    Quantitative analysis of atmospheric optical properties and surface reflectance can be performed by applying radiative transfer theory in the Atmosphere-Earth coupled system, for the atmospheric correction of hyperspectral remote sensing data. This paper describes a new physically-based algorithm to retrieve the aerosol optical thickness at 550 nm (τ(550)) and the surface reflectance (ρ) from airborne acquired data in the atmospheric window of the Visible and Near-Infrared (VNIR) range. The algorithm is realized in two modules. Module A retrieves τ(550) with a minimization algorithm, then Module B retrieves the surface reflectance ρ for each pixel of the image. The method was tested on five remote sensing images acquired by an airborne sensor under different geometric conditions to evaluate the reliability of the method. The results, τ(550) and ρ, retrieved from each image were validated with field data contemporaneously acquired by a sun-sky radiometer and a spectroradiometer, respectively. Good correlation index, r, and low root mean square deviations, RMSD, were obtained for the τ(550) retrieved by Module A (r(2) = 0.75, RMSD = 0.08) and the ρ retrieved by Module B (r(2) ≤ 0.9, RMSD ≤ 0.003). Overall, the results are encouraging, indicating that the method is reliable for optical atmospheric studies and the atmospheric correction of airborne hyperspectral images. The method does not require additional at-ground measurements about at-ground reflectance of the reference pixel and aerosol optical thickness.

  11. Effects of sulfate aerosol on the central Pennsylvania surface shortwave radiation budget. Master's thesis

    SciTech Connect

    Guimond, P.W.

    1994-12-01

    Surface radiation measurements are taken simultaneously with measurements of meteorological variables including temperature, pressure, relative humidity, and visibility to evaluate the impact of sulfate haze on the surface radiation budget. A relationship is sought between flux losses due only to aerosol and relative humidity, visibility or both, with the goal of facilitating parameterization of sulfate hazes by climate modelers. At the same time, a rotating shadowband radiometer (RSR) is compared with a more costly sun photometer to determine the feasibility of substituting the former for the latter in future research. It is found that depletion of surface radiation due to aerosol is typically ten to twenty percent of initial insolation, and that the losses can be correlated with zenith angle, relative humidity and optical depth. In the case of flux loss as a function of optical depth, the two are related in a nearly linear fashion. It is also discovered that the RSR has a predictable error owing to a wider field of view than the sun photometer, and can be used as a replacement for the former by correcting for the error.

  12. Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations

    NASA Astrophysics Data System (ADS)

    Jähn, Michael; Muñoz-Esparza, Domingo; Chouza, Fernando; Reitebuch, Oliver; Knoth, Oswald; Haarig, Moritz; Ansmann, Albert; Tegen, Ina

    2016-04-01

    Large eddy simulations (LESs) with ASAM (All Scale Atmospheric Model) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude potential temperature perturbations. This method is now also validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE (Saharan Aerosol Long-range Transport and Aerosol-Cloud-Interaction Experiment) field campaign is used for both model initialization and comparisons. Several sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" or when the turbulent marine boundary layer flow is replaced by laminar winds. Additional simulation cases deal with modified surface characteristics and their impacts on the simulation results. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ≈ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with lidar data show similarities in the downwind vertical wind structure and accurately reproduces the development of the daytime convective boundary layer measured by the Raman lidar.

  13. Measurements of scattering and absorption properties of surface aerosols at a semi-arid site, Anantapur

    NASA Astrophysics Data System (ADS)

    Rama Gopal, K.; Balakrishnaiah, G.; Arafath, S. Md.; Raja Obul Reddy, K.; Siva Kumar Reddy, N.; Pavan Kumari, S.; Raghavendra Kumar, K.; Chakradhar Rao, T.; Lokeswara Reddy, T.; Reddy, R. R.; Nazeer Hussain, S.; Vasudeva Reddy, M.; Suresh Babu, S.; Mallikarjuna Reddy, P.

    2017-01-01

    Aerosol optical properties are continuously measured at a semi-arid station, Anantapur from June 2012 to May 2013 which describes the impact of surface aerosols on climate change over the region. Scattering coefficient (σsct) and absorption coefficient (σabs) are obtained from integrating Nephelometer and Aethalometer, respectively. Also, the single scattering albedo (ω0), Scattering/absorption Ångström exponents were examined during the period of study. Diurnal variations of σsct and σabs show a bi-peak pattern with two maxima and one minimum in a day. The largest values of σsct and σabs are obtained in winter while the lowest values are measured in monsoon. From the measurements σsct550 and σabs550 are found to be 110 ± 12.23 Mm- 1 and 33 ± 5.2 Mm- 1, respectively during the study period. An analysis of the ω0 suggests that there is a more absorbing fraction in the particle composition over the measurement site. The ω0 obtained in the surface boundary layer of Anantapur is below the critical value of 0.86 that determines the shift from cooling to warming. A relationship between scattering/absorption coefficients and scattering/absorption Ångström exponent and single scattering albedo is further examined. In order to understand the origins of the air masses in the study region, we performed seven-day back trajectory analyses based on the NOAA HYSPLIT model. These trajectories were computed at several altitudes (3000 m, 1500 m, and 500 m) for June 2012 and May 2013. These results put in evidence the need of efforts to reduce absorbing particles (black carbon) emissions to avoid the possible warming that would result from the reductions of the cooling aerosol only.

  14. Seasonal differences in aerosol water may reconcile AOT and surface mass measurements in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. V.; Ghate, V. P.; Carlton, A. M. G.

    2015-12-01

    Summertime aerosol optical thickness (AOT) in the Southeast U.S. is high and sharply enhanced (2-3 times) compared to wintertime AOT. This seasonal pattern is unique to the Southeast U.S. and is of particular interest because temperatures there have not warmed over the past 100 years, contrasting with trends in other U.S. regions. Some investigators hypothesize the Southeast temperature trend is due to secondary organic aerosols (SOA) formed from interactions of biogenic volatile organic compounds (BVOCs) and anthropogenic emissions that create a cooling haze. However, aerosol measurements made at the surface do not exhibit strong seasonal differences in mass or organic fraction to support this hypothesis. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with surface mass measurements by examining trends in particle-phase liquid water, an aerosol constituent that effectively scatters radiation and is removed from aerosols in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIA (v2.1) to estimate surface and aloft aerosol water mass concentrations at locations of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites using measured speciated ion mass concentrations and NCEP North American Regional Reanalysis (NARR) meteorological data. Results demonstrate strong seasonal differences in aerosol water in the eastern compared to the western part of the U.S., consistent with geographic patterns in AOT. The highest mean regional seasonal difference from 2000 to 2007 is 5.5 μg m-3 and occurs the Southeast, while the lowest is 0.44 μg m-3 and occurs in the dry Mountain West. Our findings suggest 1) similarity between spatial trends in aerosol water in the U.S. and previously published AOT data from the MODIS-TERRA instrument and 2) similar interannual trends in mean aerosol water and previously published interannual AOT trends from MISR, MODIS-TERRA, MODIS

  15. On the effect of different aerosol types on surface solar radiation levels over the region of Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Alexandri, Georgia; Georgoulias, Aristeidis K.; Kourtidis, Konstantinos; Meleti, Charikleia; Balis, Dimitris

    2014-05-01

    In this work, we examine the direct effect of different aerosol types on the surface solar radiation (SSR) levels in the region of Eastern Mediterranean. Simulations with the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model were performed using ground and satellite-based data as input. An IDL tool that "feeds" SBDART with the appropriate input data was developed allowing us to simulate SSR with a time step of 1 hour. Level-2 aerosol optical depth, cloud optical depth, cloud fraction, effective droplet radius, cloud top pressure, precipitable water and surface albedo data from MODIS, as well as ozone total column data from Earth Probe TOMS and OMI satellite sensors, coarse resolution cloud data from the ISCCP and single scattering albedo, asymmetry factor and Angström exponent sunphotometric data from the AERONET are used in our radiative transfer simulations. Simulations are performed over selected spots within Eastern Mediterranean for clear, liquid cloud and ice cloud covered skies and for different aerosol types (maritime, dust, anthropogenic, fine-mode natural). The optical properties of aerosols were determined using a combination of satellite, ground-based, model and reanalysis products. The aerosol direct radiative effect is defined as the difference between simulations done with and without the presence of aerosols. This research has been financed by EPAN II and PEP under the national action "Bilateral, multilateral and regional R&T cooperations" (AEROVIS Sino-Greek project).

  16. Downward solar global irradiance at the surface in São Paulo city - The climatological effects of aerosol and clouds

    NASA Astrophysics Data System (ADS)

    Yamasoe, M. A.; Rosário, N. M. E.; Barros, K. M.

    2017-01-01

    We analyzed the variability of downward solar irradiance reaching the surface at São Paulo city, Brazil, and estimated the climatological aerosol and cloud radiative effects. Eleven years of irradiance were analyzed, from 2005 to 2015. To distinguish the aerosol from the cloud effect, the radiative transfer code LibRadtran was used to calculate downward solar irradiance. Two runs were performed, one considering only ozone and water vapor daily variability, with AOD set to zero and the second allowing the three variables to change, according to mean climatological values. The difference of the 24 h mean irradiance calculated with and without aerosol resulted in the shortwave aerosol direct radiative effect, while the difference between the measured and calculated, including the aerosol, represented the cloud effect. Results showed that, climatologically, clouds can be 4 times more effective than aerosols. The cloud shortwave radiative effect presented a maximum reduction of about -170 W m-2 in January and a minimum in July, of -37 W m-2. The aerosol direct radiative effect was maximum in spring, when the transport of smoke from the Amazon and central parts of South America is frequent toward São Paulo. Around mid-September, the 24 h radiative effect due to aerosol only was estimated to be -50 W m-2. Throughout the rest of the year, the mean aerosol effect was around -20 W m-2 and was attributed to local urban sources. The effect of the cloud fraction on the cloud modification factor, defined as the ratio of all-sky irradiation to cloudless sky irradiation, showed dependence on the cloud height. Low clouds presented the highest impact while the presence of high clouds only almost did not affect solar transmittance, even in overcast conditions.

  17. Evaluating the Assumptions of Surface Reflectance and Aerosol Type Selection Within the MODIS Aerosol Retrieval Over Land: The Problem of Dust Type Selection

    NASA Technical Reports Server (NTRS)

    Mielonen, T.; Levy, R. C.; Aaltonen, V.; Komppula, M.; de Leeuw, G.; Huttunen, J.; Lihavainen, H.; Kolmonen, P.; Lehtinen, K. E. J.; Arola, A.

    2011-01-01

    Aerosol Optical Depth (AOD) and Angstrom exponent (AE) values derived with the MODIS retrieval algorithm over land (Collection 5) are compared with ground based sun photometer measurements at eleven sites spanning the globe. Although, in general, total AOD compares well at these sites (R2 values generally over 0.8), there are cases (from 2 to 67% of the measurements depending on the site) where MODIS clearly retrieves the wrong spectral dependence, and hence, an unrealistic AE value. Some of these poor AE retrievals are due to the aerosol signal being too small (total AOD<0.3) but in other cases the AOD should have been high enough to derive accurate AE. However, in these cases, MODIS indicates AE values close to 0.6 and zero fine model weighting (FMW), i.e. dust model provides the best fitting to the MODIS observed reflectance. Yet, according to evidence from the collocated sun photometer measurements and back-trajectory analyses, there should be no dust present. This indicates that the assumptions about aerosol model and surface properties made by the MODIS algorithm may have been incorrect. Here we focus on problems related to parameterization of the land-surface optical properties in the algorithm, in particular the relationship between the surface reflectance at 660 and 2130 nm.

  18. Characterization of Light Non-Methane Hydrocarbons, Surface Water DOC, and Aerosols over the Nordic Seas

    NASA Astrophysics Data System (ADS)

    Hudson, E. D.; Ariya, P. A.

    2006-12-01

    Whole air, size-fractionated marine aerosols, and surface ocean water DOC were sampled together during June-July 2004 on the Nordic seas, in order to explore factors leading to the formation of volatile organic compounds (VOCs) at the sea surface and their transfer to the atmosphere. High site-to-site variability in 19 non-methane hydrocarbon concentrations suggests highly variable, local sources for these compounds. Acetone, C5 and C6 hydrocarbons, and dimethylsulfide were identified in the seawater samples using solid-phase microextraction/GC-MS. The aerosols were analysed by SEM-EDX and contained primarily inorganic material (sea salt, marine sulfates, and carbonates) and little organic matter. However, a culturable bacterium was isolated from the large (9.9 - 18 μ m) fraction at one site, and identified as Micrococcus luteus. We will discuss the implication of these results on potential exchange processes at the ocean-atmosphere interface and the impact of bioaerosols in transferring marine organic carbon to atmospheric organic carbon.

  19. Characteristics of Black Carbon Aerosol from a Surface Oil Burn During the Deepwater Horizon Oil Spill

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Schwarz, J. P.; Spackman, J. R.; Bahreini, R.; De Gouw, J. A.; Gao, R.; Holloway, J. S.; Lack, D. A.; Langridge, J. M.; Peischl, J.; Middlebrook, A. M.; Ryerson, T. B.; Warneke, C.; Watts, L. A.; Fahey, D. W.

    2011-12-01

    Black carbon (BC) aerosol mass mixing ratio and microphysical properties were measured from the NOAA P-3 aircraft during active surface oil burning subsequent to the Deepwater Horizon oil rig explosion in April 2010. Approximately 4% of the combusted material was released into the atmosphere as BC. The total amount of BC introduced to the atmosphere of the Gulf of Mexico via surface burning of oil during the 9-week spill is estimated to be (1.35 ± 0.72) x106 kg. The median mass diameter of BC particles observed in the burning plume was much larger than that of the non-plume Gulf background air. The plume BC particles were internally mixed with very little non-refractory material, a feature typical of fresh emissions from fairly efficient fossil-fuel burning sources and atypical of BC in biomass burning plumes. BC dominated the total accumulation-mode aerosol in both mass and number. The BC mass-specific extinction cross-section is determined at 405 and 532 nm.

  20. Characteristics of black carbon aerosol from a surface oil burn during the Deepwater Horizon oil spill

    NASA Astrophysics Data System (ADS)

    Perring, A. E.; Schwarz, J. P.; Spackman, J. R.; Bahreini, R.; de Gouw, J. A.; Gao, R. S.; Holloway, J. S.; Lack, D. A.; Langridge, J. M.; Peischl, J.; Middlebrook, A. M.; Ryerson, T. B.; Warneke, C.; Watts, L. A.; Fahey, D. W.

    2011-09-01

    Black carbon (BC) aerosol mass mixing ratio and microphysical properties were measured from the NOAA P-3 aircraft during active surface oil burning subsequent to the Deepwater Horizon oil rig explosion in April 2010. Approximately 4% of the combusted material was released into the atmosphere as BC. The total amount of BC introduced to the atmosphere of the Gulf of Mexico via surface burning of oil during the 9-week spill is estimated to be (1.35 ± 0.72) × 106 kg. The median mass diameter of BC particles observed in the burning plume was much larger than that of the non-plume Gulf background air and previously sampled from a variety of sources. The plume BC particles were internally mixed with very little non-refractory material, a feature typical of fresh emissions from fairly efficient fossil-fuel burning sources and atypical of BC in biomass burning plumes. BC dominated the total accumulation-mode aerosol in both mass and number. The BC mass-specific extinction cross-section was 10.2 ± 4.1 and 7.1 ± 2.8 m2/g at 405 and 532 nm respectively. These results help constrain the properties of BC emissions associated with DWH and other large spills.

  1. Optical and Structural Properties of Aerosols Emitted from Open Biomass Burning (Invited)

    NASA Astrophysics Data System (ADS)

    Moosmuller, H.; Chakrabarty, R. K.; Lewis, K.; Gyawali, M.; Mazzoleni, C.; Dubey, M. K.; Kreidenweis, S. M.; Arnott, W. P.

    2010-12-01

    Open biomass burning including wildland fires and agricultural burning emits substantial quantities of carbonaceous aerosols into the atmosphere. Fuel, soil, and atmospheric conditions largely determine the combustion phase. High temperature flaming combustion emits black aerosols, generally consisting of fractal-like chain aggregates that have a high black carbon content and therefore strongly absorb visible light. Low temperature, smoldering combustion, on the other hand, emits fairly white aerosols, often consisting of near-spherical particles that have high organic carbon content. While this organic carbon is traditionally considered to cause negligent absorption of visible light, more recent studies have shown that organic carbon from biomass burning often contains brown carbon. Brown carbon is a component of organic carbon, optically defined by its increasing light absorption toward shorter wavelengths. The physical characteristics of biomass combustion aerosol particles are determined by a combination of their morphology, monomer size, and shape, all of which can be determined from electron microscopy and image analysis. Here, we review optical and structural properties of aerosols emitted from open biomass burning with a focus on relevance for radiative forcing and climate change and satellite remote sensing. This review is followed by a discussion of measurements and modeling of brown carbon optical properties, of associated metrics such as the Ångström absorption coefficient, and of future research needs.

  2. Recovery efficiency and limit of detection of aerosolized Bacillus anthracis Sterne from environmental surface samples.

    PubMed

    Estill, Cheryl Fairfield; Baron, Paul A; Beard, Jeremy K; Hein, Misty J; Larsen, Lloyd D; Rose, Laura; Schaefer, Frank W; Noble-Wang, Judith; Hodges, Lisa; Lindquist, H D Alan; Deye, Gregory J; Arduino, Matthew J

    2009-07-01

    After the 2001 anthrax incidents, surface sampling techniques for biological agents were found to be inadequately validated, especially at low surface loadings. We aerosolized Bacillus anthracis Sterne spores within a chamber to achieve very low surface loading (ca. 3, 30, and 200 CFU per 100 cm(2)). Steel and carpet coupons seeded in the chamber were sampled with swab (103 cm(2)) or wipe or vacuum (929 cm(2)) surface sampling methods and analyzed at three laboratories. Agar settle plates (60 cm(2)) were the reference for determining recovery efficiency (RE). The minimum estimated surface concentrations to achieve a 95% response rate based on probit regression were 190, 15, and 44 CFU/100 cm(2) for sampling steel surfaces and 40, 9.2, and 28 CFU/100 cm(2) for sampling carpet surfaces with swab, wipe, and vacuum methods, respectively; however, these results should be cautiously interpreted because of high observed variability. Mean REs at the highest surface loading were 5.0%, 18%, and 3.7% on steel and 12%, 23%, and 4.7% on carpet for the swab, wipe, and vacuum methods, respectively. Precision (coefficient of variation) was poor at the lower surface concentrations but improved with increasing surface concentration. The best precision was obtained with wipe samples on carpet, achieving 38% at the highest surface concentration. The wipe sampling method detected B. anthracis at lower estimated surface concentrations and had higher RE and better precision than the other methods. These results may guide investigators to more meaningfully conduct environmental sampling, quantify contamination levels, and conduct risk assessment for humans.

  3. Surface fractal dimension, water adsorption efficiency, and cloud nucleation activity of insoluble aerosol

    PubMed Central

    Laaksonen, Ari; Malila, Jussi; Nenes, Athanasios; Hung, Hui-Ming; Chen, Jen-Ping

    2016-01-01

    Surface porosity affects the ability of a substance to adsorb gases. The surface fractal dimension D is a measure that indicates the amount that a surface fills a space, and can thereby be used to characterize the surface porosity. Here we propose a new method for determining D, based on measuring both the water vapour adsorption isotherm of a given substance, and its ability to act as a cloud condensation nucleus when introduced to humidified air in aerosol form. We show that our method agrees well with previous methods based on measurement of nitrogen adsorption. Besides proving the usefulness of the new method for general surface characterization of materials, our results show that the surface fractal dimension is an important determinant in cloud drop formation on water insoluble particles. We suggest that a closure can be obtained between experimental critical supersaturation for cloud drop activation and that calculated based on water adsorption data, if the latter is corrected using the surface fractal dimension of the insoluble cloud nucleus. PMID:27138171

  4. A Characterization of Arctic Aerosols as Derived from Airborne Observations and their Influence on the Surface Radiation Budget

    NASA Astrophysics Data System (ADS)

    Herber, A.; Stone, R.; Liu, P. S.; Li, S.; Sharma, S.; Neuber, R.; Birnbaumn, G.; Vitale, V.

    2011-12-01

    Arctic climate is influenced by aerosols that affect the radiation balance at the surface and within the atmosphere. Impacts depend on the composition and concentration of aerosols that determine opacity, which is quantified by the measure of aerosol optical depth (AOD). During winter and spring, aerosols are transported into the Arctic from lower latitude industrial regions. Trans-Arctic flight missions PAMARCMiP (Polar Airborne Measurements and Arctic Regional Climate Model Simulation Project) of the German POLAR 5 during spring 2009 and spring 2011 provided opportunities to collect a comprehensive data set from which properties of the aerosol were derived, including AOD. Measurements were made from near the surface to over 4 km in altitude during flights between Svalbard, Norway and Pt. Barrow, Alaska. These, along with measurements of particle size and concentration, and black carbon content (BC) provide a three-dimensional characterization of the aerosols encountered along track. The horizontal and vertical distribution of Arctic haze, in particular, was evaluated. During April 2009, the Arctic atmosphere was variably turbid with total column AOD (at 500 nm) ranging from ~ 0.12 to > 0.35, where clean background values are typically < 0.06 (Stone et al., 2010). The haze was concentrated within and just above the surface-based temperature inversion layer. Few, distinct elevated aerosol layers were observed, also with an aerosol airborne Lidar. The presence of these haze layers in the Arctic atmosphere during spring reduced the diurnally averaged net shortwave irradiance, which can cause cooling of the surface, depending on its Albedo (reflectivity). An overview of both campaigns will be given with results presented in the context of historical observations and current thinking about the impact aerosols have on the Arctic climate. Stone, R.S., A. Herber, V. Vitale, M. Mazzola, A. Lupi, R. Schnell, E.G. Dutton, P. Liu, S.M. Li, K. Dethloff, A. Lampert, C. Ritter

  5. Surface Structure of Yeast Protoplasts

    PubMed Central

    Streiblová, Eva

    1968-01-01

    The fine structure of the yeast cell wall during protoplast formation was studied by means of phase-contrast microscopy and the freeze-etching technique. The freeze-etching results indicated that at least in some cases the entire wall substance was not removed from the surface of the protoplasts. After a treatment of 30 min to 3 hr with 2% snail enzymes, an innermost thin wall layer as well as remnants of the fibrillar middle layer sometimes could be demonstrated. Images PMID:4867751

  6. Volume and surface area size distribution, water mass and model fitting of GCE/CASE/WATOX marine aerosols

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Sievering, H.; Boatman, J.

    1990-06-01

    As a part of the Global Change Expedition/Coordinated Air-Sea Experiment/Western Atlantic Ocean Experiment (GCE/CASE/WATOX), size distributions of marine aerosols were measured at two altitudes of about 2750 and 150 m above sea level (asl) over the size range 0.1 ˜ 32 μm. Lognormal fitting was applied to the corrected aerosol size spectra to determine the volume and surface area size distributions of the CASE-WATOX marine aerosols. Each aerosol size distribution was fitted with three lognormal distributions representing fine-, large-, and giant-particle modes. Water volume fraction and dry particle size of each aerosol size distribution were also calculated using empirical formulas for particle size as a function of relative humidity and particle type. Because of the increased influence from anthropogenic sources in the continental United States, higher aerosol volume concentrations were observed in the fine-particle mode near-shore off the east coast; 2.11 and 3.63 μm3 cm-3 for free troposphere (FT) and marine boundary layer (MBL), compared with the open-sea Bermuda area values; 0.13 and 0.74 μm3 cm-3 for FT and MBL. The large-particle mode exhibits the least variations in volume distributions between the east coast and open-sea Bermuda area, having a volume geometric median diameter (VGMD) between 1.4 and 1.6 μm and a geometric standard deviation between 1.57 and 1.68. For the giant-particle mode, larger VGMD and volume concentrations were observed for marine aerosols nearshore off the east coast than in the open-sea Bermuda area because of higher relative humidity and higher surface wind speed conditions. Wet VGMD and aerosol water volume concentrations at 15 m asl ship level were determined by extrapolating from those obtained by analysis of the CASE-WATOX aircraft aerosol data. Abundance of aerosol water in the MBL serves as an important pathway for heterogeneous conversion of SO2 in sea salt aerosol particles.

  7. Field Observation of Heterogeneous Formation of Secondary Organic Aerosols on Asian Mineral Dust Surfaces

    NASA Astrophysics Data System (ADS)

    Wang, G.

    2014-12-01

    This study investigated the heterogeneous formation mechanism of secondary organic aerosols (SOA) on dust surfaces by characterizing molecular compositions and size distributions of dicarboxylic acids, keto-carboxylic acids, a-dicarbonyls and inorganic ions in size-segregated aerosols (9-stages) in the urban atmosphere of Xi'an, China during dust storm periods and comparing with those in non-dust storm periods. In the presence of a dust storm, all the above mentioned SOA species in Xi'an are predominantly enriched on coarse particles (>2.1 µm). Oxalic acid well correlated with NO3- (r2=0.72, p<0.01) rather than SO42-. This phenomenon differs greatly from the observed particles during a non-dust storm period, which is characterized by an enrichment of the SOA on fine particles (<2.1 µm) with a strong correlation between C2 and SO42-. We propose a three-step formation pathway to explain these observations as follows. First, nitric acid and nitrogen oxides react with dust to form a liquid film on the surface via water vapor-absorption of calcium nitrate. Second, gaseous Gly and mGly partition into the aqueous-phase. Finally, the aqueous-phase Gly and mGly oxidize into glyoxylic acid (wC2), followed by a further oxidation into C2. To the best of our knowledge, we found for the first time the enrichments of glyoxal (Gly) and methylglyoxal (mGly) on dust surfaces. Our data indicate a more critical role of nitrate than sulfate in the heterogeneous formation process of SOA on dust surfaces. Mass ratio of C2 to wC2 was found to be higher in coarse particles than in fine particles during the dust storm events, which is due to low acidity condition of large particles that is favorable for conversion of wC2 to C2.

  8. The Vertical Structure, Sources, and Evolution of Aerosols in the Mediterranean Region

    NASA Astrophysics Data System (ADS)

    Roberts, Greg; Bourrianne, Thierry; Léon, Jean-François; Pont, Véronique; Mallet, Marc; Lambert, Dominique; Augustin, Patrick; Dulac, François; Junkermann, Wolfgang

    2013-04-01

    The VESSAER campaign (VErtical Structure and Sources of AERosols in the Mediterranean Region) was designed to characterize the different sources of aerosol in the Mediterranean Basin and assess the regional impact of aerosol on cloud microphysical and radiative properties. VESSAER was conducted on an ultra-light aircraft in summer 2012. Research activities included ground-based observations in the central and northern regions of Corsica, as well as aerosol lidar and sunphotometer measurements near the eastern coast. The main scientific goals were to investigate local versus long-range sources of aerosol and cloud condensation nuclei (CCN) and their vertical stratification in the lower troposphere, study evolution and ageing due to atmospheric processes, and determine aerosol direct radiative impacts over a larger spatial scale. The background aerosol concentrations (D > 0.01 um) within the boundary layer in Corsica were nearly 2000 cm^-3 and increased to ca. 104 cm^-3 during pollution events when back-trajectories originated from coastal areas in France and Italy and the Po Valley. Nearly all of these particles were CCN-active at 0.38% supersaturation, indicating a relatively hygroscopic aerosol. Vertical profiles of aerosol hygroscopicity revealed that ageing (with respect to CCN-activity) of European emissions occurred exclusively in the boundary layer. Within two days, the European emissions had become hygroscopic, probably a result of cloud processing. In contrast, aerosol hygroscopicity did not change as a function of transport time in elevated aerosol layers, suggesting that photochemical ageing of less hygroscopic material is relatively slow compared to ageing processes in the boundary layer. The vertical profiles clearly showed the long-range transport of dust from the Saharan Desert and pollution from the European continent, which were the two major sources of aerosol during the campaign. Two of the research flights coincided with CALIPSO overpasses, when

  9. Relationship between lead levels on painted surfaces and percent lead in the particles aerosolized during lead abatement.

    PubMed

    Choe, Kyoo T; Trunov, Mikhaylo; Menrath, William; Succop, Paul; Grinshpun, Sergey A

    2002-08-01

    Quantifying airborne lead on lead abatement work sites is critical in assessing worker lead exposures. Airborne lead levels depend on both the concentration of aerosolized particles and the percent lead in those particles. The lead level on the painted surface being abated may affect the percent lead in aerosolized particles. Experiments were performed in the University of Cincinnati Environmental Test Chamber (volume approximately 24.3 m3) using wood doors painted with lead-based paint. Three methods were used for paint removal: dry scraping, wet scraping, and dry machine sanding. Particles aerosolized during lead abatement activities were collected on filters using the Button Personal Inhalable Aerosol Samplers (SKC Inc., Eighty Four, PA) mounted in the workers' breathing zone. The filters were subsequently analyzed for percent lead in the particles. A portable X-ray fluorescence (XRF) instrument (NITON-700, NITON Inc., Bedford, MA) was used to measure surface lead levels of the doors. The accuracy of the XRF instrument was verified by testing standard reference materials prepared by the National Institute of Standards and Technology (NIST) and by Princeton Gamma Tech Inc. It was also verified by relating XRF results from painted door surfaces to laboratory lead analysis data obtained from paint chip samples taken from the same painted surfaces (r2 = 0.81, p < 0.001). A highly significant relationship (r2 = 0.83, p < 0.001) was found between the XRF readings and the percent lead in the particles aerosolized during dry scraping. No significant relationship was found for wet scraping (r2 = 0.09, p = 0.56) or dry machine sanding (r2 = 0.002, p = 0.92). The relationship between surface lead levels and percent lead in particles was found to be dependent on the paint removal method. This variation was attributed to the difference in water absorption property of the paint layers and the different particle aerosolization mechanisms inherent in each paint removal method.

  10. Simultaneous Cartography of Aerosol Opacity and Surface Albedo of Titan by the Massive Inversion of the Cassini/VIMS Dataset

    NASA Astrophysics Data System (ADS)

    Rodriguez, S.; Maltagliati, L.; Sotin, C.; Rannou, P.; Cornet, T.; Hirtzig, M.; Appéré, T.; Solomonidou, A.; Le Mouelic, S.; Coustenis, A.; Brown, R. H.

    2015-12-01

    Mapping Titan's surface albedo is a necessary step to give reliable constraints on its composition. However, surface albedo maps of Titan, especially over large regions, are still very rare, the surface windows being strongly affected by atmospheric effects (absorption, scattering). A full radiative transfer model is an essential tool to remove these effects, but too time-consuming to treat systematically the ~40000 hyperspectral images VIMS acquired since the beginning of the mission. We developed a massive inversion of VIMS data based on lookup tables computed from a state-of-the-art radiative transfer model (Hirtzig et al. 2013), updated with new aerosol properties coming from our analysis of the Emission Phase Function observation acquired recently by VIMS. Once the physical properties of gases, aerosols and surface are fixed, the lookup tables are built for the remaining free parameters: the incidence, emergence and azimuth angles, given by navigation; and two products (the aerosol opacity and the surface albedo at all wavelengths). The lookup table grid was carefully selected after thorough testing. The data inversion on these pre-computed spectra (opportunely interpolated) is more than 1000 times faster than recalling the full radiative transfer at each minimization step. We present here the results from selected flybys. We invert mosaics composed by couples of flybys observing the same area at two different times. The composite albedo maps do not show significant discontinuities in any of the surface windows, suggesting a robust correction of the effects of the geometry (and thus the aerosols) on the observations. Maps of aerosol and albedo uncertainties are also provided, with the absolute error on the albedo being approximately between 1 and 3% (depending on the surface window considered). We are thus able to provide for the first time ever reliable surface albedo maps at pixel scale for the whole VIMS spectral range.

  11. Nonlinear effects of anthropogenic aerosol and urban land surface forcing on spring climate in eastern China

    NASA Astrophysics Data System (ADS)

    Deng, Jiechun; Xu, Haiming; Zhang, Leying

    2016-05-01

    Anthropogenic aerosols and urban land cover change induce opposite thermal effects on the atmosphere near surface as well as in the troposphere. One can think of these anthropogenic effects as composed of two parts: the individual effect due to an individual anthropogenic forcing and the nonlinear effects resulting from the coexistence of two forcing factors. In this study, we explored the role of such nonlinear effects in affecting East Asian climate, as well as individual forcing effects, using the Community Atmosphere Model version 5.1 coupled with the Community Land Model version 4. Atmospheric responses were simulated by including anthropogenic aerosol emission only, urban cover only, or the combination of the two, over eastern China. Results showed that nonlinear responses were different from any effects by an individual forcing or the linear combination of individual responses. The nonlinear interaction could generate cold horizontal temperature advection to cool the troposphere, which induced anomalous subsidence along the Yangtze River Valley (YRV). This anomalous vertical motion, together with a weakened low-level southwesterly, favored below-normal (above-normal) rainfall over the YRV (southern China), shifting the spring rain belt southward. The resultant diabatic cooling, in turn, amplified the anomalous descent and further decreased tropospheric temperature over the YRV, forming a positive feedback loop to maintain the nonlinear effects. Consequently, the nonlinear effects acted to reduce the climate anomalies from a simple linear combination of two individual effects and played an important role in regional responses to one anthropogenic forcing when the other is prescribed.

  12. Radiative forcing of climate in the western Antarctic Peninsula: Effects of cloud, surface, and aerosol properties

    NASA Astrophysics Data System (ADS)

    Payton, Allison Mccomiskey

    2003-12-01

    Polar regions are expected to show early and extreme responses to a rise in average global temperatures. The region west of the Antarctic Peninsula has shown a significant rise in temperature of the past half century while temperatures over the rest of the continent are decreasing. Approximately half of the warming over the western Antarctic Peninsula has been explained by changes in atmospheric circulation. This research has examined local climate feedback processes involving aerosols, clouds, and surface properties relative to sea ice cover, to explain the remainder of the warming, and addresses the most appropriate approach in examining local radiative processes. Two data sets are used: a highly resolved ground-based data set from the spring and summer season of 1999 2000 at Palmer Station, Antarctica and a 14 year satellite-derived data set. A three- dimensional radiative transfer model is shown to perform better than the plane-parallel models traditionally used for this application. Aerosol concentrations are low, as expected, and have a typical optical depth of 0.05 which has little effect on surface radiation budgets and climate feedback processes. An absorption process is found on three clear-sky days that accounts for 5 20 W·m-2 of energy absorbed by the atmosphere. The absorption process is of unknown origin. Cloud properties over the short- and long-term were found to be invariant with time and changes in temperature except in the summer season. Cloud radiative forcing was negative throughout the 14 year time period, but the majority of this effect was attributed to changes in surface properties (decreasing reflectance) rather than increasing cloud amount or thickness. The trend in cloud cover over the long-term and the effect of clouds on climate appears to be different in the region of the western Antarctic Peninsula than in the Arctic.

  13. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    NASA Astrophysics Data System (ADS)

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong; Qian, Yun; Zhang, Kai; Wang, Yuhang; Yang, Xiu-Qun

    2016-11-01

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol-radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m-2 (1σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m-2), while fire POM induces a small effect (-0.05 and 0.04 ± 0.01 W m-2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol-cloud interactions (REaci) of all fire aerosols is -0.70 ± 0.05 W m-2, resulting mainly from the fire POM effect (-0.59 ± 0.03 W m-2). REari (0.43 ± 0.03 W m-2) and REaci (-1.38 ± 0.23 W m-2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and -0.82 ± 0.09 W m-2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to -15 W m-2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 ± 0.10 W m-2) is small and statistically insignificant and is mainly due to the fire BC-in-snow effect (0.02 W m-2) with the maximum albedo effect

  14. Vertical Structure and Sources of Aerosols in the Mediterranean Region (VESSAER)

    NASA Astrophysics Data System (ADS)

    Roberts, G. C.; Junkermann, W.; Leon, J.; Pont, V.; Mallet, M.; Augustin, P.; Dulac, F.

    2012-12-01

    The Mediterranean region has been identified as one of the most prominent global "Hot-Spots" in future climate change projections [Giorgi and Lionello, 2008] and is particularly characterized by its vulnerability to changes in the water cycle. To this end, the VESSAER campaign (VErtical Structure and Sources of AERosols in the Mediterranean Region) was designed to characterize the different sources of aerosol in the Mediterranean Basin and assess their regional impact on cloud microphysical and radiative properties. VESSAER was conducted on the ENDURO-KIT ultra-light aircraft [W. Junkermann, 2001] in late June-early July 2012. Activities include ground observations as well as aerosol lidar and sunphotometer measurements in conjunction with the airborne measurements. The VESSAER campaign complements existing ChArMEx (http://charmex.lsce.ipsl.fr/ ; PI: F. Dulac) and HyMeX (http://www.hymex.org/ ; PI: V. Ducroc and P. Drobinski) activities, which are the target of many European research institutes in 2012 and 2013. The main scientific goals during VESSAER are to investigate local versus long-range sources of aerosol and cloud condensation nuclei (CCN) and their vertical stratification in the lower troposphere, use aerosol hygroscopicity to study their evolution due to atmospheric processes, and couple in-situ airborne measurements with ground-based remote sensing to determine aerosol direct radiative impacts over a larger spatial scale. The background aerosol concentrations within the boundary layer (BL) in Corsica are nearly 2000 cm-3 (Dp > 10 nm); 50 cm-3 (Dp > 300 nm). We were surprised to find that nearly all of these particles are CCN-active at 0.3% supersaturation and presume that ageing and/or cloud processing play a role in rendering the aerosol in the Mediterranean Basin more hygroscopic. The vertical profiles during VESSAER clearly show the long-range transport of dust from the Saharan Desert and pollution from the European continent -- which were the two

  15. Improvement in Clouds and the Earth's Radiant Energy System/Surface and Atmosphere Radiation Budget Dust Aerosol Properties, Effects on Surface Validation of Clouds and Radiative Swath

    SciTech Connect

    Rutan, D.; Rose, F.; Charlock, T.P.

    2005-03-18

    Within the Clouds and the Earth's Radiant Energy System (CERES) science team (Wielicki et al. 1996), the Surface and Atmospheric Radiation Budget (SARB) group is tasked with calculating vertical profiles of heating rates, globally, and continuously, beneath CERES footprint observations of Top of Atmosphere (TOA) fluxes. This is accomplished using a fast radiative transfer code originally developed by Qiang Fu and Kuo-Nan Liou (Fu and Liou 1993) and subsequently highly modified by the SARB team. Details on the code and its inputs can be found in Kato et al. (2005) and Rose and Charlock (2002). Among the many required inputs is characterization of the vertical column profile of aerosols beneath each footprint. To do this SARB combines aerosol optical depth information from the moderate-resolution imaging spectroradiometer (MODIS) instrument along with aerosol constituents specified by the Model for Atmosphere and Chemical Transport (MATCH) of Collins et al. (2001), and aerosol properties (e.g. single scatter albedo and asymmetry parameter) from Tegen and Lacis (1996) and OPAC (Hess et al. 1998). The publicly available files that include these flux profiles, called the Clouds and Radiative Swath (CRS) data product, available from the Langley Atmospheric Sciences Data Center (http://eosweb.larc.nasa.gov/). As various versions of the code are completed, publishable results are named ''Editions.'' After CRS Edition 2A was finalized it was found that dust aerosols were too absorptive. Dust aerosols have subsequently been modified using a new set of properties developed by Andy Lacis and results have been released in CRS Edition 2B. This paper discusses the effects of changing desert dust aerosol properties, which can be significant for the radiation budget in mid ocean, a few thousand kilometers from the source regions. Resulting changes are validated via comparison of surface observed fluxes from the Saudi Solar Village surface site (Myers et al. 1999), and the E13 site

  16. Possible role of aerosols in the charge structure of isolated thunderstorms

    NASA Astrophysics Data System (ADS)

    Pawar, S. D.; Gopalakrishnan, V.; Murugavel, P.; Veremey, N. E.; Sinkevich, A. A.

    2017-01-01

    The electric field and Maxwell current density measured below 32 small isolated thunderstorms over Pune (India) have been analyzed here. These data clearly show the presence of 10 out of 32 thunderstorms with inverted polarity charge structure. Values of Aerosol Optical Depth (AOD) on thunderstorm days taken from MODIS show that all the thunderstorms with inverted polarity occurred on days with significantly higher AOD compared to normal polarity thunderstorms. The peak flash rate did not show significant difference between normal polarity thunderstorms and inverted polarity thunderstorms. The dew point depression (DPD) during pre-monsoon thunderstorms shows good correlation with inverted polarity charge structure. Observations suggest that aerosol concentration plays an important role in the formation of inverted polarity charge structure in these thunderclouds. In presence of high aerosol concentration with adequate ice nuclei non-inductive charging mechanism can produce strong and wide spread positive charge region in the lower portion of cloud. However, observed good correlation of DPD with inverted polarity charge structure in the pre-monsoon period suggest that the effect of high cloud base height on inverted polarity charge structure as suggested by Williams et al. (2005) cannot be ruled out.

  17. Homochiral magnetic structures at surfaces

    NASA Astrophysics Data System (ADS)

    Blugel, Stefan

    2008-03-01

    Electrons propagating in the vicinity of inversion asymmetric environments such as surfaces, interfaces, ultrathin films or nanostructures can give rise to an important antisymmetric exchange interaction, known as Dzyaloshinskii-Moriya (DM) interaction. Although this interaction, favoring spatially rotating spin structures, is in principle known for about 50 years, its consequences for the magnetic structure in low-dimensional magnets remained nearly unexplored and has been basically overlooked the past 20 years. Theoretical models considering isotropic exchange, magnetic anisotropy and the DM interaction display a rich phase diagram of complex magnetic phases on different length scales depending on the strength of the different contributions. Today, it is unknown how large is the strength of the DM interaction. Is this just a small perturbation to the collinear uniaxial ferro- or antiferromagnetic state, determined by exchange and magnetic anisotropy or is it strong enough to create new phases which had been overlooked? Surprisingly little first-principles calculations deal with the DM interaction. There might be several reasons for this: The investigation requires the treatment of non-collinear magnetism together with spin-orbit interactions of large magnetic structures in low-symmetry situations. We developed a perturbative strategy implemented into the FLAPW code FLEUR which can cope with this challenge. We show by first- principles calculations based on the vector-spin density formulation of the density- functional theory (DFT) that that there are circumstances whre the DM interaction is indeed sufficiently strong to compete with the interactions that favor collinear spin alignment causing magnetic phases of unique handedness e.g.homochiral magnetic phases such as a left rotation cycloidal spiral in Mn on W(110) [M. Bode et al., Nature 447, 190 (2007)] or favoring magnetic domain-walls with unique turning sense.

  18. Influence of a high aerosol concentration on the thermal structure of the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Khaikin, M. N.; Kuznetsova, I. N.; Kadygrov, E. N.

    2006-12-01

    The influence of increased concentrations of submicron aerosol produced by forest fires on thermal characteristics of the atmospheric boundary layer (ABL) in Moscow and its remote vicinity (the town of Zvenigorod) are analyzed on the basis of regular remote measurements of the ABL temperature profile with the use of MTP-5 profilers. In the air basin of a large city, additional aerosol and accompanying pollutants in early morning hours (at small heights of the Sun) most frequently did not cause substantial changes in the ABL thermal structure. In the locality remote from the megalopolis (Zvenigorod), the atmospheric pollution by aerosol led to noticeable changes in the ABL thermal characteristics. Especially strong changes were observed in the daytime, during the maximum supply of solar radiation. In morning hours, the heating rate of the lower 100-m layer of the polluted air exceeded the heating rate of a relatively pure air by more than one degree. In higher layers, the differences between the rates of temperature changes in a relatively clean atmosphere and in an atmosphere polluted by aerosol (in the suburb) were insignificant.

  19. Self-assembly of new surface active ionic liquids based on Aerosol-OT in aqueous media.

    PubMed

    Rao, K Srinivasa; Gehlot, Praveen Singh; Trivedi, Tushar J; Kumar, Arvind

    2014-08-15

    New anionic ionic liquid surfactants have been synthesized by replacing the sodium cation of Aerosol-OT (sodium dioctylsulfosuccinate, [Na]AOT) with various biocompatible moieties, such as 1-butyl-3-methyl imidazolium ([C4mim]), proliniumisopropylester ([ProC3]), cholinium ([Cho]), and guanidinium ([Gua]). The Aerosol-OT derived ionic liquids (AOT-ILs) were found fairly soluble in water and formed vesicles above a critical vesicle concentration (CVC) which depended upon the nature of cation, and followed the order: [ProC3]<[C4mim]<[Gua]<[Cho]surface tension (ST), isothermal titration calorimetry (ITC), conductivity, dynamic light scattering (DLS), nuclear magnetic resonance (NMR) and transmission electron microscopy (TEM). Unlike other AOT-ILs, a structural transformation has been observed for [C4mim]AOT above CVC, because of certain amphiphilic character in the cation [C4mim]. Thermodynamic parameters calculated from ITC and conductivity techniques revealed that the vesicle formation process is entropy driven for [C4mim]AOT, whereas the process is both enthalpy and entropy driven for other AOT-ILs. In order to check the versatility of synthesized AOT-ILs we have tested their dissolution behavior in a different class of ionic liquids. All the AOT-ILs were found fairly soluble in the hydrophilic IL, ethanolammonium formate (EOAF), whereas only [C4mim]AOT and [ProC3]AOT were found soluble in hydrophobic IL, [C4mim]Tf2N. Such combinations can have potential for construction of stable colloidal formulations or microemulsions in ionic liquid media.

  20. Structurally Complex Surface of Europa

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This is a composite of two images of Jupiter's icy moon Europa obtained from a range of 2119 miles (3410 kilometers) by the Galileo spacecraft during its fourth orbit around Jupiter and its first close pass of Europa. The mosaic spans 11 miles by 30 miles (17 km by 49 km) and shows features as small as 230 feet (70 meters) across. This mosaic is the first very high resolution image data obtained of Europa, and has a resolution more than 50 times better than the best Voyager coverage and 500 times better than Voyager coverage in this area. The mosaic shows the surface of Europa to be structurally complex. The sun illuminates the scene from the right, revealing complex overlapping ridges and fractures in the upper and lower portions of the mosaic, and rugged, more chaotic terrain in the center. Lateral faulting is revealed where ridges show offsets along their lengths (upper left of the picture). Missing ridge segments indicate obliteration of pre-existing materials and emplacement of new terrain (center of the mosaic). Only a small number of impact craters can be seen, indicating the surface is not geologically ancient.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the Galileo mission home page on the World Wide Web at http://galileo.jpl.nasa.gov. Background information and educational context for the images can be found at URL http://www.jpl.nasa.gov/galileo/sepo

  1. A method for the direct measurement of surface tension of collected atmospherically relevant aerosol particles using atomic force microscopy

    NASA Astrophysics Data System (ADS)

    Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.

    2016-08-01

    Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.

  2. Charged aerosols and electrical structure of the polar summer mesopause region

    NASA Technical Reports Server (NTRS)

    Mitchell, John D.; Walter, Deborah J.; Croskey, Charles L.

    1997-01-01

    The results of observations carried out in the framework of two programs, the middle atmosphere electrodynamics campaign and the noctilucent cloud (NLC) campaign, are reported. The measurements performed during overhead NLC and polar mesosphere summer echo (PMSE) conditions revealed a number of aerosol-related layering effects on the region's electrical structure. It was found that both polar components of electrical conductivity can be affected in NLC regions.

  3. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-06-01

    the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  4. Aerosolization properties, surface composition and physical state of spray-dried protein powders.

    PubMed

    Bosquillon, Cynthia; Rouxhet, Paul G; Ahimou, François; Simon, Denis; Culot, Christine; Préat, Véronique; Vanbever, Rita

    2004-10-19

    Powder aerosols made of albumin, dipalmitoylphosphatidylcholine (DPPC) and a protein stabilizer (lactose, trehalose or mannitol) were prepared by spray-drying and analyzed for aerodynamic behavior, surface composition and physical state. The powders exited a Spinhaler inhaler as particle aggregates, the size of which depending on composition, spray-drying parameters and airflow rate. However, due to low bulk powder tap density (<0.15 g/cm3), the aerodynamic size of a large fraction of aggregates remained respirable (<5 microm). Fine particle fractions ranged between 21% and 41% in an Andersen cascade impactor operated at 28.3 l/min, with mannitol and lactose providing the most cohesive and free-flowing powders, respectively. Particle surface analysis by X-ray photoelectron spectroscopy (XPS) revealed a surface enrichment with DPPC relative to albumin for powders prepared under certain spray-drying conditions. DPPC self-organized in a gel phase in the particle and no sugar or mannitol crystals were detected by X-ray diffraction. Water sorption isotherms showed that albumin protected lactose from moisture-induced crystallization. In conclusion, a proper combination of composition and spray-drying parameters allowed to obtain dry powders with elevated fine particle fractions (FPFs) and a physical environment favorable to protein stability.

  5. Aerosol, surface, and cloud optical parameters derived from airborne spectral actinic flux: measurement comparison with other methods

    NASA Astrophysics Data System (ADS)

    Stark, H.; Bierwirth, E.; Schmidt, S.; Kindel, B. C.; Pilewskie, P.; Lack, D. A.; Madronich, S.; Parrish, D. D.

    2009-12-01

    Optical parameters of aerosols, surfaces, and clouds are essential for an accurate description of Earth’s radiative balance. We will present values for such parameters derived from spectral actinic flux measured on board the NOAA WP-3D aircraft during the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) study in April 2008. We will compare these measurements to results obtained from other instruments on board the same aircraft, such as the Solar Spectral Flux Radiometer (SSFR) for irradiance measurements and aerosol extinction and absorption measurements by cavity ring-down and Particle Soot Absorption Photometer (PSAP). Actinic flux is sensitive to these parameters and can be used to measure them directly in the atmosphere without in-situ sampling methods required. We will describe the specifics of the actinic flux measurements, show advantages and disadvantages of this measurement technique, and compare results with other techniques. Furthermore, we will compare our measurements with model calculations from radiative transfer models such as the Tropospheric Ultraviolet and Visible (TUV) radiation model, the widely used library of radiative transfer (libradtran) model, and a Monte-Carlo radiation model (GRIMALDI). Also, we will investigate satellite measurements to constrain the radiation measurements to general radiation conditions in the arctic and to compare the results to aerosol optical depth retrievals. In particular, we will show results for surface albedo of the Arctic Ocean ice surface, extinction and absorption of Arctic haze layers, and optical thickness and albedo measurements of clouds.

  6. Evaluation of the surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States

    NASA Astrophysics Data System (ADS)

    Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.

    2016-01-01

    We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations. Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the

  7. Evaluation of the Surface PM2.5 in Version 1 of the NASA MERRA Aerosol Reanalysis over the United States

    NASA Technical Reports Server (NTRS)

    Buchard, V.; da Silva, A. M.; Randles, C. A.; Colarco, P.; Ferrare, R.; Hair, J.; Hostetler, C.; Tackett, J.; Winker, D.

    2015-01-01

    We use surface fine particulate matter (PM2.5) measurements collected by the United States Environmental Protection Agency (US EPA) and the Interagency Monitoring of Protected Visual Environments (IMPROVE) networks as independent validation for Version 1 of the Modern Era Retrospective analysis for Research and Applications Aerosol Reanalysis (MERRAero) developed by the Global Modeling Assimilation Office (GMAO). MERRAero is based on a version of the GEOS-5 model that is radiatively coupled to the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) aerosol module and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors on both Terra and Aqua satellites. By combining the spatial and temporal coverage of GEOS-5 with observational constraints on AOD, MERRAero has the potential to provide improved estimates of PM2.5 compared to the model alone and with greater coverage than available observations.Importantly, assimilation of AOD data constrains the total column aerosol mass in MERRAero subject to assumptions about optical properties for each of the species represented in GOGART. However, single visible wavelength AOD data does not contain sufficient information content to correct errors in either aerosol vertical placement or composition, critical elements for a proper characterization of surface PM2.5. Despite this, we find that the data-assimilation equipped version of GEOS-5 better represents observed PM2.5 between 2003 and 2012 compared to the same version of the model without AOD assimilation. Compared to measurements from the EPA-AQS network, MERRAero shows better PM2.5 agreement with the IMPROVE network measurements, which are composed essentially of rural stations. Regardless the data network, MERRAero PM2.5 are closer to observation values during the summer while larger discrepancies are observed during the winter. Comparing MERRAero to PM2.5 data collected by the

  8. Surface and guided waves on structured surfaces and inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Polanco, Javier

    Surface and guided waves on structured surfaces and inhomogeneous media studies the propagation of waves in systems with spatially varying parameters. In the rainbow case (chapter 1), the dielectric constant changes with coordinates. In the cylinder case: boundary and the metal (chapter 2), it is a curved surface. Finally, in the last case (chapter 3), the dielectric constant changes in z-direction.

  9. Opposite seasonality of the aerosol optical depth and the surface particulate matter concentration over the north China Plain

    NASA Astrophysics Data System (ADS)

    Qu, Wenjun; Wang, Jun; Zhang, Xiaoye; Sheng, Lifang; Wang, Wencai

    2016-02-01

    Great difference exists in the aerosol optical depth (AOD) between summer and winter over the North China Plain (NCP). Monthly mean AOD at 550 nm derived from the MODIS (MODerate Resolution Imaging Spectroradiometer) products during 2000-2014 over the area of 30-40° N and 110-125° E exhibits an annual maximum in June (0.855 ± 0.130) and a minimum in December (0.381 ± 0.032). This seasonality of AOD is in the opposite phase with the surface particulate matter (PM) concentration (higher in winter and lower in summer). The possible causes for the higher AOD in June (compared with December) include (a) a higher boundary layer height (BLH) that results in more efficient transport and mixing of aerosol particles to a higher altitude (corresponding to a lower particle concentration near surface) as revealed by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations profile, (b) a higher relative humidity (RH) due to the inshore monsoon circulation that leads to enhancement of aerosol extinction, (c) emission from the regional open stalk burning in the summer harvest season (as seen from MODIS fire products), and (d) the typical eastward open topographical basin over NCP. Under the assumption that the aerosol and water vapor are well mixed within the boundary layer, analysis on multi-year average shows that the differences in BLH, RH and surface PM concentration can explain up to 81% of the variance of monthly averaged AOD over NCP. A preliminarily hypothesis is also suggested to interpret the shift of AOD pattern from winter to summer with an abrupt increase of AOD from May to June, as well as an increase of surface PM2.5 concentration over NCP during the early phase of northward progress of the East Asia summer monsoon front.

  10. Similarities in the Spatial Pattern of the Surface Flux Response to Present-Day Greenhouse Gases and Aerosols

    NASA Astrophysics Data System (ADS)

    Persad, G.; Ming, Y.; Ramaswamy, V.

    2014-12-01

    Recent studies suggest that present-day greenhouse gases (GHGs) and aerosols can produce remarkably similar patterns of climate response in fully coupled general circulation model (GCM) simulations, despite having significantly different spatial patterns of top-of-atmosphere (TOA) forcing. However, there is little understanding of the mechanisms of ocean-atmosphere interaction that could lead to the response pattern formation. Surface flux perturbations are a crucial pathway by which TOA forcing is communicated to the ocean, and may be a vital link in explaining the spatial similarities in the fully coupled responses to disparate TOA forcing patterns—a phenomenon with implications for detection and attribution, as well as the climate sensitivity to different forcers. We analyze the surface energy budget response to present-day aerosols versus GHGs in single forcing, fixed SST, atmospheric GCM experiments to identify mechanisms for response pattern formation via surface flux perturbations. We find that, although the TOA forcing spatial patterns of GHGs and aerosols are largely uncorrelated, their surface radiative and heat flux patterns are significantly anti-correlated. Furthermore, this anti-correlation is largely explained by similar (but sign-reversed) spatial patterns of surface latent and sensible heat flux response to the two forcers, particularly over the winter-hemisphere extratropical oceans. These are, in turn, driven by spatially similar perturbations in surface winds from changes in mean tropical and midlatitude circulation. These results suggest that the mean atmospheric circulation, which has many anti-symmetric responses to GHG and aerosol forcings, is an efficient homogenizer of spatial patterns in the surface heat flux response to heterogeneous TOA forcings, creating an atmosphere-only pathway for similarities in the fully coupled response.

  11. Removal of bio-aerosols by water flow on surfaces in health-care settings

    NASA Astrophysics Data System (ADS)

    Yu, Han; Li, Yuguo

    2016-11-01

    Hand hygiene is one of the most important and efficient measures to prevent infections, however the compliance with hand hygiene remains poor especially for health-care workers. To improve this situation, the mechanisms of hand cleansing need to be explored and a detailed study on the adhesion interactions for bio-aerosols on hand surfaces and the process during particles removal by flow is significant for more efficient methods to decrease infections. The first part of presentation will focus on modelling adhesion interactions between particles, like bacteria and virus, and hand surfaces with roughness in water environment. The model presented is based on the DLVO and its extended theories. The removal process comes next, which will put forward a new model to describe the removal of particles by water flow. In this model, molecular dynamics is combined with particle motion and the results by the model will be compared with experiment results and existed models (RnR, Rock & Roll). Finally, possible improvement of the study and future design of experiments will be discussed.

  12. Comparison of Satellite Observations of Aerosol Optical Depth to Surface Monitor Fine Particle Concentration

    NASA Technical Reports Server (NTRS)

    Kleb, Mary M.; AlSaadi, Jassim A.; Neil, Doreen O.; Pierce, Robert B.; Pippin, Margartet R.; Roell, Marilee M.; Kittaka, Chieko; Szykman, James J.

    2004-01-01

    Under NASA's Earth Science Applications Program, the Infusing satellite Data into Environmental Applications (IDEA) project examined the relationship between satellite observations and surface monitors of air pollutants to facilitate a more capable and integrated observing network. This report provides a comparison of satellite aerosol optical depth to surface monitor fine particle concentration observations for the month of September 2003 at more than 300 individual locations in the continental US. During September 2003, IDEA provided prototype, near real-time data-fusion products to the Environmental Protection Agency (EPA) directed toward improving the accuracy of EPA s next-day Air Quality Index (AQI) forecasts. Researchers from NASA Langley Research Center and EPA used data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument combined with EPA ground network data to create a NASA-data-enhanced Forecast Tool. Air quality forecasters used this tool to prepare their forecasts of particle pollution, or particulate matter less than 2.5 microns in diameter (PM2.5), for the next-day AQI. The archived data provide a rich resource for further studies and analysis. The IDEA project uses data sets and models developed for tropospheric chemistry research to assist federal, state, and local agencies in making decisions concerning air quality management to protect public health.

  13. An automated analyzer to measure surface-atmosphere exchange fluxes of water soluble inorganic aerosol compounds and reactive trace gases.

    PubMed

    Thomas, Rick M; Trebs, Ivonne; Otjes, René; Jongejan, Piet A C; Ten Brink, Harry; Phillips, Gavin; Kortner, Michael; Meixner, Franz X; Nemitz, Eiko

    2009-03-01

    Here, we present a new automated instrument for semicontinuous gradient measurements of water-soluble reactive trace gas species (NH3, HNO3, HONO, HCl, and SO2) and their related aerosol compounds (NH4+, NO3-, Cl-, SO4(2-)). Gas and aerosol samples are collected simultaneously at two heights using rotating wet-annular denuders and steam-jet aerosol collectors, respectively. Online (real-time) analysis using ion chromatography (IC) for anions and flow injection analysis (FIA) for NH4+ and NH3 provide a half-hourly averaged gas and aerosol gradients within each hour. Through the use of syringe pumps, IC preconcentration columns, and high-quality purified water, the system achieves detection limits (3sigma-definition) under field conditions of typically: 136/207,135/114, 29/ 22,119/92, and 189/159 ng m(-3) for NH3/NH4+, HNO3/NO3-, HONO/ NO2-, HCl/Cl- and SO2/SO4(2-), respectively. The instrument demonstrates very good linearity and accuracy for liquid and selected gas phase calibrations over typical ambient concentration ranges. As shown by examples from field experiments, the instrument provides sufficient precision (3-9%), even at low ambient concentrations, to resolve vertical gradients and calculate surface-atmosphere exchange fluxes undertypical meteorological conditions of the atmospheric surface layer using the aerodynamic gradient technique.

  14. Determinants of aerosol lung-deposited surface area variation in an urban environment.

    PubMed

    Reche, Cristina; Viana, Mar; Brines, Mariola; Pérez, Noemí; Beddows, David; Alastuey, Andrés; Querol, Xavier

    2015-06-01

    Ultrafine particles are characterized by a high surface area per mass. Particle surface has been reported to play a significant role in determining the toxicological activity of ultrafine particles. In light of this potential role, the time variation of lung deposited surface area (LDSA) concentrations in the alveolar region was studied at the urban background environment of Barcelona (Spain), aiming to asses which processes and sources govern this parameter. Simultaneous data on Black Carbon (BC), total particle number (N) and particle number size distribution were correlated with LDSA. Average LDSA concentrations in Barcelona were 37 ± 26 μm(2)cm(-3), levels which seem to be characteristic for urban environments under traffic influence across Europe. Results confirm the comparability between LDSA data provided by the online monitor and those calculated based on particle size distributions (by SMPS), and reveal that LDSA concentrations are mainly influenced by particles in the size range 50-200 nm. A set of representative daily cycles for LDSA concentrations was obtained by means of a k-means cluster technique. The contribution of traffic emissions to daily patterns was evidenced in all the clusters, but was quantitatively different. Traffic events under stable atmospheric conditions increased mean hourly background LDSA concentrations up to 6 times, attaining levels higher than 200 μm(2)cm(-3). However, under warm and relatively clean atmospheric conditions, the traffic rush hour contribution to the daily LDSA mean appeared to be lower and the contribution of new urban particle formation events (by photochemically induced nucleation) was detected. These nucleation events were calculated to increase average background LDSA concentrations by 15-35% (maximum LDSA levels=45-50 μm(2)cm(-3)). Thereby, it may be concluded that in the urban background of Barcelona road traffic is the main source increasing the aerosol surface area which can deposit on critical

  15. Brain Surface Conformal Parameterization Using Riemann Surface Structure

    PubMed Central

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M.; Chan, Tony F.; Toga, Arthur W.; Thompson, Paul M.; Yau, Shing-Tung

    2011-01-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks. PMID:17679336

  16. Brain surface conformal parameterization using Riemann surface structure.

    PubMed

    Wang, Yalin; Lui, Lok Ming; Gu, Xianfeng; Hayashi, Kiralee M; Chan, Tony F; Toga, Arthur W; Thompson, Paul M; Yau, Shing-Tung

    2007-06-01

    In medical imaging, parameterized 3-D surface models are useful for anatomical modeling and visualization, statistical comparisons of anatomy, and surface-based registration and signal processing. Here we introduce a parameterization method based on Riemann surface structure, which uses a special curvilinear net structure (conformal net) to partition the surface into a set of patches that can each be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable (their solutions tend to be smooth functions and the boundary conditions of the Dirichlet problem can be enforced). Conformal parameterization also helps transform partial differential equations (PDEs) that may be defined on 3-D brain surface manifolds to modified PDEs on a two-dimensional parameter domain. Since the Jacobian matrix of a conformal parameterization is diagonal, the modified PDE on the parameter domain is readily solved. To illustrate our techniques, we computed parameterizations for several types of anatomical surfaces in 3-D magnetic resonance imaging scans of the brain, including the cerebral cortex, hippocampi, and lateral ventricles. For surfaces that are topologically homeomorphic to each other and have similar geometrical structures, we show that the parameterization results are consistent and the subdivided surfaces can be matched to each other. Finally, we present an automatic sulcal landmark location algorithm by solving PDEs on cortical surfaces. The landmark detection results are used as constraints for building conformal maps between surfaces that also match explicitly defined landmarks.

  17. Chemical and optical properties of atmospheric aerosols in Phimai, Thailand by intensive surface measurements and satellite data analysis

    NASA Astrophysics Data System (ADS)

    Tsuruta, H.; Thana, B.; Takamura, T.; Hashimoto, M.; Yabuki, M.; Oikawa, E.; Nakajima, T.

    2013-12-01

    Atmospheric aerosols were measured at the Observatory of Atmospheric Research, in Phimai, Thailand, a key station of SKYNET, during 2006-2008. In the surface measurement, mass concentrations and major chemical components in fine and coarse aerosols were analyzed, and the optical properties such as AOT and SSA were measured by skyradiometer. Analysis of MODIS and CALIPSO satellite data was made for wild fire activities and aerosol distribution, respectively. In this paper, the following topics are summarized. The surface wind pattern in dry season was divided into the three periods as follows; D1 (Oct.-Nov.) with northeasterly monsoon, D3 (middle March-April) with southerly wind, and D2 (Dec.-early March) with a transit stage between D1 and D3. Wet season in southwesterly monsoon was from May to September. The concentration ratio of BC/nss-SO4 showed that the dominant PM2.5 aerosols in D1 were due to long-range transport of air pollutants emitted from urban/industrial area of east Asia. In contrast, most of aerosols in D3 were derived from biomass burning in Indochina, because the activity of biomass burning was highest in the latter D2 and early D3 period, by the analysis of the fire database in MODIS and of BC/nss-SO4. The mass concentration in PM2.5 showed a clear seasonal variation with the maximum in D2. On the contrary, AOT showed the maximum in D3, and which could be attributed to an increase in the vertical thickness of high aerosol concentration in the boundary layer by the CALIOP data analysis. Dust particles in D1 were directly transported from east Asia, and re-suspension of soil dusts was dominant in D2 because the surface soil became dry. In D3, soil dusts were re-suspended with the thermal plume caused by biomass burning. In contrast, high dust particles measured in the wet season was due to long range transport of dust aerosols from western desert area by the CALIOP data analysis.

  18. Heterogeneous OH Oxidation of Two Structure Isomers of Dimethylsuccinic Acid Aerosol: Reactivity and Oxidation Products

    NASA Astrophysics Data System (ADS)

    Chan, M. N.; Cheng, C. T.; Wilson, K. R.

    2014-12-01

    Organic aerosol contribute a significant mass fraction of ambient aerosol carbon and can continuously undergo oxidation by colliding with gas phase OH radicals. Although heterogeneous oxidation plays a significant role in the chemical transformation of organic aerosol, the effect of molecular structure on the reactivity and oxidation products remains unclear. We investigate the effect of branched methyl groups on the reactivity of two dimethylsuccinic acids (2,2-dimethylsuccinic acid (2,2-DMSA) and 2,3-dimethylsuccinic acid (2,3-DMSA)) toward gas phase OH radicals in an atmospheric pressure aerosol flow tube reactor. The oxidation products formed upon oxidation is characterized in real time by the Direct Analysis in Real Time (DART), an ambient soft ionization source. The 2,2-DMSA and 2,3-DMSA are structural isomers with the same oxidation state (OSC = -0.33) and carbon number (NC = 6), but different branching characteristics (2,2-DMSA has one secondary carbon and 2,3-DMSA has two tertiary carbons). The difference in molecular distribution of oxidation products observed in these two structural isomers would allow one to assess the sensitivity of kinetics and chemistry to the position of branched methyl group in the DMSA upon oxidation. We observe that the reactivity of 2,3-DMSA toward OH radicals is about 2 times faster than that of 2,2-DMSA. This difference in OH reactivity may attribute to the stability of the carbon-centered radical generated after hydrogen abstraction because an alkyl radical formed from the hydrogen abstraction on a tertiary carbon in 2,3-DMSA is more stable than on a secondary carbon in 2,2-DMSA. For both 2,2-DMSA and 2,3-DMSA, the molecular distribution and evolution of oxidation products is characterized by a predominance of functionalization products at the early oxidation stages. When the oxidation further proceeds, the fragmentation becomes more favorable and the oxidation mainly leads to the reduction of the carbon chain length through

  19. Impacts of surface adsorbed catechol on tropospheric aerosol surrogates: heterogeneous ozonolysis and its effects on water uptake.

    PubMed

    Woodill, Laurie A; O'Neill, Erinn M; Hinrichs, Ryan Z

    2013-07-11

    Surface adsorbed organics are ubiquitous components of inorganic tropospheric aerosols and have the potential to alter aerosol chemical and physical properties. To assess the impact of adsorbed organics on water uptake by inorganic substrates, we used diffuse reflectance infrared spectroscopy to compared water adsorption isotherms for uncoated NaCl and α-Al2O3 samples, samples containing a monolayer of adsorbed catechol, and adsorbed catechol samples following ozonolysis. Adsorption of gaseous catechol on to the inorganic substrates produced vibrational features indicating physisorption on NaCl and displacement of surface hydroxyl groups forming binuclear bidentate catecholate on α-Al2O3, with surface concentrations of 2-3 × 10(18) molecules m(-2). Subsequent heterogeneous ozonolysis produced muconic acid at a rate 4-5 times faster on NaCl compared to α-Al2O3, with predicted atmospheric lifetimes of 4.3 and 18 h, respectively, assuming a tropospheric ozone concentration of 40 ppb. Water adsorption isotherms for all NaCl samples were indistinguishable within experimental uncertainty, indicating that these organic monolayers had negligible impact on coadsorbed water surface concentrations for these systems. α-Al2O3-catechol samples exhibited dramatically less water uptake compared to uncoated α-Al2O3, while oxidation of surface adsorbed catechol had no effect on the extent of water uptake. For both substrates, adsorbed organics increased the relative abundance of "ice-like" versus "liquid-like" water, with the effect larger for catechol than oxidized ozonolysis products. These results highlight the importance of aerosol substrate in understanding the heterogeneous ozonolysis of adsorbed polyphenols and suggest such coatings may impair ice nucleation by aluminosilicate mineral aerosol.

  20. Dust transport over the eastern Mediterranean derived from Total Ozone Mapping Spectrometer, Aerosol Robotic Network, and surface measurements

    NASA Astrophysics Data System (ADS)

    Kalivitis, N.; Gerasopoulos, E.; Vrekoussis, M.; Kouvarakis, G.; Kubilay, N.; Hatzianastassiou, N.; Vardavas, I.; Mihalopoulos, N.

    2007-02-01

    Multiyear surface PM10 measurements performed on Crete Island, Greece, have been used in conjunction with satellite (Total Ozone Mapping Spectrometer (TOMS)) and ground-based remote sensing measurements (Aerosol Robotic Network (AERONET)) to enhance our understanding of the evolution of mineral dust events over the eastern Mediterranean. An analysis of southerly air masses at altitudes of 1000 and 3000 m over a 5 year period (2000-2005), showed that dust can potentially arrive over Crete, either simultaneously in the lower free troposphere and inside the boundary layer (vertical extended transport (VET)) or initially into the free troposphere with the heavier particles gradually being scavenged inside the boundary layer (free troposphere transport (FTT)). Both pathways present significant seasonal variations but on an annual basis contribute almost equally to the dust transport in the area. During VET the aerosol index (AI) derived from TOMS was significantly correlated with surface PM10, and in general AI was found to be adequate for the characterization of dust loadings over the eastern Mediterranean on a climatological basis. A significant covariance between PM10 and AOT was observed during VET as well, indicating that AOT levels from AERONET may be estimated by PM10 levels at the surface. Surface measurements are thus crucial for the validation of remote sensing measurements and hence are a powerful tool for the investigation of the impact of aerosols on climate.

  1. Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations

    NASA Astrophysics Data System (ADS)

    Reddington, Carly L.; Spracklen, Dominick V.; Artaxo, Paulo; Ridley, David A.; Rizzo, Luciana V.; Arana, Andrea

    2016-09-01

    We use the GLOMAP global aerosol model evaluated against observations of surface particulate matter (PM2.5) and aerosol optical depth (AOD) to better understand the impacts of biomass burning on tropical aerosol over the period 2003 to 2011. Previous studies report a large underestimation of AOD over regions impacted by tropical biomass burning, scaling particulate emissions from fire by up to a factor of 6 to enable the models to simulate observed AOD. To explore the uncertainty in emissions we use three satellite-derived fire emission datasets (GFED3, GFAS1 and FINN1). In these datasets the tropics account for 66-84 % of global particulate emissions from fire. With all emission datasets GLOMAP underestimates dry season PM2.5 concentrations in regions of high fire activity in South America and underestimates AOD over South America, Africa and Southeast Asia. When we assume an upper estimate of aerosol hygroscopicity, underestimation of AOD over tropical regions impacted by biomass burning is reduced relative to previous studies. Where coincident observations of surface PM2.5 and AOD are available we find a greater model underestimation of AOD than PM2.5, even when we assume an upper estimate of aerosol hygroscopicity. Increasing particulate emissions to improve simulation of AOD can therefore lead to overestimation of surface PM2.5 concentrations. We find that scaling FINN1 emissions by a factor of 1.5 prevents underestimation of AOD and surface PM2.5 in most tropical locations except Africa. GFAS1 requires emission scaling factor of 3.4 in most locations with the exception of equatorial Asia where a scaling factor of 1.5 is adequate. Scaling GFED3 emissions by a factor of 1.5 is sufficient in active deforestation regions of South America and equatorial Asia, but a larger scaling factor is required elsewhere. The model with GFED3 emissions poorly simulates observed seasonal variability in surface PM2.5 and AOD in regions where small fires dominate, providing

  2. A comprehensive NMR structural study of Titan aerosol analogs: Implications for Titan's atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    He, Chao; Smith, Mark A.

    2014-11-01

    Titan has a thick atmosphere composed primarily of nitrogen and methane. Complex organic chemistry induced by solar ultraviolet radiation and energetic particles, takes place in Titan's upper atmosphere, producing an optically thick reddish brown carbon based haze encircling this moon. The chemistry in Titan's atmosphere and its resulting chemical structures are still not fully understood in spite of a great many efforts being made. In our previous work, we have investigated the structure of the 13C and 15N labeled, simulated Titan haze aerosols (tholin) by NMR and identified several dominant small molecules in the tholin. Here we report our expanded structural investigation of the bulk of the tholin by more comprehensive NMR study. The NMR results show that the tholin materials are dominated by heavily nitrogenated compounds, in which the macromolecular structures are highly branched polymeric or oligomeric compounds terminated in methyl, amine, and nitrile groups. The structural characteristic suggest that the tholin materials are formed via different copolymerization or incorporation mechanisms of small precursors, such as HCN, CH2dbnd NH, NH3 and C2H2. This study helps to understand the formation process of nitrogenated organic aerosols in Titan's atmosphere and their prebiotic implications.

  3. Structure and properties of solid surfaces

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.

    1974-01-01

    Difficulties in experimental studies of crystalline surfaces are related to the fact that surface atoms have an intrinsic tendency to react with their environment. A second problem is connected with the effective thickness of surfaces, which ranges from one to several atom layers. The phenomenology of surface interactions with gases are considered, taking into account physical adsorption, chemisorption, and the oxidation of surfaces. Studies of the surface structure are discussed, giving attention to field emission microscopy, field-ion microscopy, electron diffraction techniques, Auger spectroscopy, scanning electron microscopy, electron probe microanalysis, ion microprobe methods, and low-energy backscattering spectroscopy. Investigations of semiconductor surfaces are also described.

  4. Silicon surface structure-controlled oleophobicity.

    PubMed

    Liu, Yan; Xiu, Yonghao; Hess, Dennis W; Wong, C P

    2010-06-01

    Superoleophobic surfaces display contact angles >150 degrees with liquids that have lower surface energies than does water. The design of superoleophobic surfaces requires an understanding of the effect of the geometrical shape of etched silicon surfaces on the contact angle and hysteresis observed when different liquids are brought into contact with these surfaces. This study used liquid-based metal-assisted etching and various silane treatments to create superoleophobic surfaces on a Si(111) surface. Etch conditions such as the etch time and etch solution concentration played critical roles in establishing the oleophobicity of Si(111). When compared to Young's contact angle, the apparent contact angle showed a transition from a Cassie to a Wenzel state for low-surface-energy liquids as different silane treatments were applied to the silicon surface. These results demonstrated the relationship between the re-entrant angle of etched surface structures and the contact angle transition between Cassie and Wenzel behavior on etched Si(111) surfaces.

  5. Evidence for water structuring forces between surfaces

    SciTech Connect

    Stanley, Christopher B; Rau, Dr. Donald

    2011-01-01

    Structured water on apposing surfaces can generate significant energies due to reorganization and displacement as the surfaces encounter each other. Force measurements on a multitude of biological structures using the osmotic stress technique have elucidated commonalities that point toward an underlying hydration force. In this review, the forces of two contrasting systems are considered in detail: highly charged DNA and nonpolar, uncharged hydroxypropyl cellulose. Conditions for both net repulsion and attraction, along with the measured exclusion of chemically different solutes from these macromolecular surfaces, are explored and demonstrate features consistent with a hydration force origin. Specifically, the observed interaction forces can be reduced to the effects of perturbing structured surface water.

  6. Triple Isotopic Composition of Atmospheric Carbonates: A Novel Technique to Identify Heterogeneous Chemistry on Aerosol Surfaces in Polluted Environment

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Horn, J.; Dominguez, G.; Masterson, A.; Ivanov, A. V.; Thiemens, M. H.

    2009-12-01

    In the ambient atmosphere, the physical and chemical properties of aerosol vary greatly between location and time due to various heterogeneous and photochemical reactions in the atmosphere. In polluted urban environments, the aerosol and gaseous mixtures interact to produce new compounds and particulates; consequently humans are exposed to many as yet undetected species. Studies of actual chemically-active, airborne particulates can better address the interaction of complex particulate and gaseous pollutant mixtures, however, it is notoriously difficult to measure chemical transformations of aerosols. Here we describe a new technique that can be used to understand the chemical transformation occurring on the surface of aerosols and thus to quantify the interaction of gaseous species and aerosol in the atmosphere. Fine and coarse aerosol samples were collected on filter papers in La Jolla, CA, USA for one week. The aerosol samples were digested with phosphoric acid and CO2 released was purified chromatographically and analyzed for 13 C. To obtain independent measurements of oxygen isotopes, the CO2 was fluorinated and oxygen gas obtained was analyzed using Mat253 Isotope Ratio Mass Spectrometer. The data indicated an excess 17O (0.6 to 4‰) in atmospheric carbonates. The oxygen isotope anomaly in atmospheric carbonates has been observed for the first time and it showed a highly significant correlation (r2 = 0.90) with urban index; an indirect measure of ozone chemistry. The δ13C in atmospheric carbonates was found to vary from -18 to -40‰. Controlled laboratory experiments to understand the origin and variation in the C and O isotopic composition of atmospheric carbonates were conducted using various mineral surfaces. Isotopic measurements of in-situ formed carbonated on CaOH, CaO, MgO, SiO2,Cu, CuO, Ni and Fe2O3 due to chemisorbed CO2 in the presence of thin water films were performed and we found that the δ13C in these carbonates ranged from -12 to -24

  7. Long-term comparative study of columnar and surface mass concentration aerosol properties in a background environment

    NASA Astrophysics Data System (ADS)

    Bennouna, Y. S.; Cachorro, V. E.; Mateos, D.; Burgos, M. A.; Toledano, C.; Torres, B.; de Frutos, A. M.

    2016-09-01

    The relationship between columnar and surface aerosol properties is not a straightforward problem. The Aerosol Optical Depth (AOD), Ångström exponent (AE), and ground-level Particulate Matter (PMX, x = 10 or 2.5 μm) data have been studied from a climatological point of view. Despite the different meanings of AOD and PMx both are key and complementary quantities that quantify aerosol load in the atmosphere and many studies intend to find specific relationships between them. Related parameters such as AE and PM ratio (PR = PM2.5/PM10), giving information about the predominant particle size, are included in this study on the relationships between columnar and surface aerosol parameters. This study is based on long measurement records (2003-2014) obtained at two nearby background sites from the AERONET and EMEP networks in the north-central area of Spain. The climatological annual cycle of PMx shows two maxima along the year (one in late-winter/early-spring and another in summer), but this cycle is not followed by the AOD which shows only a summer maximum and a nearly bell shape. However, the annual means of both data sets show strong correlation (R = 0.89) and similar decreasing trends of 40% (PM10) and 38% (AOD) for the 12-year record. PM10 and AOD daily data are moderately correlated (R = 0.58), whereas correlation increases for monthly (R = 0.74) and yearly (R = 0.89) means. Scatter plots of AE vs. AOD and PR vs. PM10 have been used to characterize aerosols over the region. The PR vs. AE scatterplot of daily data shows no correlation due to the prevalence of intermediate-sized particles. As day-to-day correlation is low (especially for high turbidity events), a binned analysis was also carried out to establish consistent relationships between columnar and surface quantities, which is considered to be an appropriate approach for environmental and climate studies. In this way the link between surface concentrations and columnar remote sensing data is shown to

  8. Effects of surface-active organic matter on carbon dioxide nucleation in atmospheric wet aerosols: a molecular dynamics study.

    PubMed

    Daskalakis, Vangelis; Charalambous, Fevronia; Panagiotou, Fostira; Nearchou, Irene

    2014-11-21

    Organic matter (OM) uptake in cloud droplets produces water-soluble secondary organic aerosols (SOA) via aqueous chemistry. These play a significant role in aerosol properties. We report the effects of OM uptake in wet aerosols, in terms of the dissolved-to-gas carbon dioxide nucleation using molecular dynamics (MD) simulations. Carbon dioxide has been implicated in the natural rainwater as well as seawater acidity. Variability of the cloud and raindrop pH is assumed in space and time, as regional emissions, local human activities and geophysical characteristics differ. Rain scavenging of inorganic SOx, NOx and NH3 plays a major role in rain acidity in terms of acid-base activity, however carbon dioxide solubility also remains a key parameter. Based on the MD simulations we propose that the presence of surface-active OM promotes the dissolved-to-gas carbon dioxide nucleation in wet aerosols, even at low temperatures, strongly decreasing carbon dioxide solubility. A discussion is made on the role of OM in controlling the pH of a cloud or raindrop, as a consequence, without involving OM ionization equilibrium. The results are compared with experimental and computational studies in the literature.

  9. Very low isotope ratio of iron in fine aerosols related to its contribution to the surface ocean

    NASA Astrophysics Data System (ADS)

    Kurisu, Minako; Takahashi, Yoshio; Iizuka, Tsuyoshi; Uematsu, Mitsuo

    2016-09-01

    Seven size-fractionated aerosol samples were collected from Hiroshima, Japan, and were analyzed in terms of chemical composition, soluble fraction of iron (Fe), Fe species, and Fe isotope ratios. The results suggested that Fe in fine particles contained a larger fraction of anthropogenic aerosols than coarse particles did. Iron in the fine particles was more soluble in simulated seawater (up to 25%) than that in the coarse particles and was in the form of Fe (hydr)oxide species, such as ferrihydrite or hematite. The Fe isotope ratios (δ56Fe) of the coarse particles (+0.04‰ to +0.30‰) were close to the crustal mean value (0.0‰). By contrast, the δ56Fe values of fine particles were much lower and ranged from -2.01‰ to -0.56‰. δ56Fe values of the soluble Fe fraction in the fine particles were remarkably low (-3.91 to -1.87‰), suggesting that anthropogenic aerosols yield soluble Fe with low δ56Fe values. Such low values could be explained by kinetic isotope fractionation during evaporation of Fe at high temperatures, coupled with the refractory characteristics of Fe. Marine aerosols from the Northwest Pacific were also analyzed. The δ56Fe values in the fine particles were also lower than those in the coarse particles. These results may be important to quantitatively estimate the contribution of anthropogenic Fe deposited on the surface ocean on the basis of the Fe isotopes.

  10. Contribution of Changes in Sea Surface Temperature and Aerosol Loading to the Decreasing Precipitation Trend in Southern China.

    NASA Astrophysics Data System (ADS)

    Cheng, Yanjie; Lohmann, Ulrike; Zhang, Junhua; Luo, Yunfeng; Liu, Zuoting; Lesins, Glen

    2005-05-01

    The effects of increasing sea surface temperature (SST) and aerosol loading in a drought region in Southern China are studied using aerosol optical depth (AOD), low-level cloud cover (LCC), visibility, and precipitation from observed surface data; wind, temperature, specific humidity, and geopotential height from the NCEP-NCAR reanalysis fields; and SST from the NOAA archive data. The results show a warming of the SST in the South China Sea and the Indian Ocean, and a strengthening of the West Pacific Subtropical High (WPSH) in the early summer during the last 40 yr, with the high pressure system extending farther westward over the continent in Southern China. Because the early summer average temperature contrast between the land and ocean decreased, the southwesterly monsoon from the ocean onto mainland China weakened and a surface horizontal wind divergence anomaly occurred over Southern China stabilizing the boundary layer. Thus, less moisture was transported to Southern China, causing a drying trend. Despite this, surface observations show that AOD and LCC have increased, while visibility has decreased. Precipitation has decreased in this region in the early summer, consistent with both the second aerosol indirect effect (reduction in precipitation efficiency caused by the more numerous and smaller cloud droplets) and dynamically induced changes from convective to more stratiform clouds. The second aerosol indirect effect and increases in SST and greenhouse gases (GHG) were simulated separately with the ECHAM4 general circulation model (GCM). The GCM results suggest that both effects contribute to the changes in LCC and precipitation in the drought region in Southern China. The flooding trend in Eastern China, however, is more likely caused by strengthened convective precipitation associated with increases in SST and GHG.

  11. Numerical simulation of condensation on structured surfaces.

    PubMed

    Fu, Xiaowu; Yao, Zhaohui; Hao, Pengfei

    2014-11-25

    Condensation of liquid droplets on solid surfaces happens widely in nature and industrial processes. This phase-change phenomenon has great effect on the performance of some microfluidic devices. On the basis of micro- and nanotechnology, superhydrophobic structured surfaces can be well-fabricated. In this work, the nucleating and growth of droplets on different structured surfaces are investigated numerically. The dynamic behavior of droplets during the condensation is simulated by the multiphase lattice Boltzmann method (LBM), which has the ability to incorporate the microscopic interactions, including fluid-fluid interaction and fluid-surface interaction. The results by the LBM show that, besides the chemical properties of surfaces, the topography of structures on solid surfaces influences the condensation process. For superhydrophobic surfaces, the spacing and height of microridges have significant influence on the nucleation sites. This mechanism provides an effective way for prevention of wetting on surfaces in engineering applications. Moreover, it suggests a way to prevent ice formation on surfaces caused by the condensation of subcooled water. For hydrophilic surfaces, however, microstructures may be submerged by the liquid films adhering to the surfaces. In this case, microstructures will fail to control the condensation process. Our research provides an optimized way for designing surfaces for condensation in engineering systems.

  12. Thermal Emission Spectrometer Results: Mars Atmospheric Thermal Structure and Aerosol Distribution

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.; Vondrak, Richard R. (Technical Monitor)

    2001-01-01

    Infrared spectra returned by the Thermal Emission Spectrometer (TES) are well suited for retrieval of the thermal structure and the distribution of aerosols in the Martian atmosphere. Combined nadir- and limb-viewing spectra allow global monitoring of the atmosphere up to 0.01 mbar (65 km). We report here on the atmospheric thermal structure and the distribution of aerosols as observed thus far during the mapping phase of the Mars Global Surveyor mission. Zonal and temporal mean cross sections are used to examine the seasonal evolution of atmospheric temperatures and zonal winds during a period extending from northern hemisphere mid-summer through vernal equinox (L(sub s) = 104-360 deg). Temperature maps at selected pressure levels provide a characterization of planetary-scale waves. Retrieved atmospheric infrared dust opacity maps show the formation and evolution of regional dust storms during southern hemisphere summer. Response of the atmospheric thermal structure to the changing dust loading is observed. Maps of water-ice clouds as viewed in the thermal infrared are presented along with seasonal trends of infrared water-ice opacity. Uses of these observations for diagnostic studies of the dynamics of the atmosphere are discussed.

  13. Role of anthropogenic aerosols in the20th century surface solar radiation, temperature, and meridional heat transport in the Max Planck Earth System Model

    NASA Astrophysics Data System (ADS)

    Dallafior, Tanja; Folini, Doris; Knutti, Reto; Wild, Martin

    2016-04-01

    It is still debated, to what degree anthropogenic aerosols were affected surface temperatures - especially over sea surfaces - through alteration of surface solar radiation (SSR). Previous work using mixed-layer ocean equilibria corroborated the relevance of anthropogenic aerosols for surface temperature response patterns obtained. Here we complement these studies by fully coupled simulations with the Max Planck Earth System Model (MPI-ESM) in its CMIP5 version. Experiments comprise preindustrial control and historical as in CMIP5, as well as transient experiments 1850 - 2000 with either anthropogenic aerosols or well-mixed greenhouse gases (WMGHG) kept at 1850 levels. With this suite of experiments, we analyse the impact of anthropogenic aerosols and WMGHG on the global energy balance and provide estimates of atmospheric and oceanic meridional heat transport changes in our modeling setup. We find that Global mean surface temperature responses to single forcings are additive. Furthermore, spatial surface temperature response patterns in the WMGHG only experiment are more strongly correlated with the historical experiment than the aerosol only case. We compare transient and equilibrium responses and discuss potential implications of not allowing for cloud-aerosol interactions in the transient modeling set-up.

  14. Comparison of POLDER Derived Aerosol Optical Thickness to Surface Monitor Fine Particle Concentration

    NASA Astrophysics Data System (ADS)

    Leon, J.; Kacenelenbogen, M.; Chiapello, I.

    2005-12-01

    The Particulate Matter (PM) mass measured at the ground level is a common way to quantify the amount of aerosol particles in the atmosphere and is used as a standard to evaluate air quality. Satellite remote sensing is well suited for a daily monitoring of the aerosol load. However, there are no straightforward relationship between aerosol optical properties derived from the satellite sensor and the PM mass at the ground. This paper is focused on the use of Polarization and Directionality of Earth's Reflectance (POLDER-2) derived aerosol optical thickness (AOT) for the monitoring of PM2.5. We present a correlation study between PM2.5 data collected in the frame of the French Environmental protection agency, aerosol optical properties derived from Sun photometer measurements, and POLDER derived-AOT over the land. POLDER AOT retrieval algorithm over the land is based on the use of the measurement of the linear polarized light in the 670 nm and 865 nm channels. We show that only the fine fraction (below 0.3 μm) of the aerosol size distribution contributes to the signal in polarization and then to the POLDER derived-AOT and then is well suited for monitoring of fine particle. The correlation between POLDER AOT and PM2.5 is significant (R between 0.6 and 0.7) over several sites. We present a tentative evaluation of Air Quality Categories from satellite data.

  15. Structure and functions of fungal cell surfaces

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.

    1984-01-01

    A review with 24 references on the biochemistry, molecular structure, and function of cell surfaces of fungi, especially dermatophytes: the chemistry and structure of the cell wall, the effect of polyene antibiotics on the morphology and function of cytoplasmic membranes, and the chemical structure and function of pigments produced by various fungi are discussed.

  16. An enhanced VIIRS aerosol optical thickness (AOT) retrieval algorithm over land using a global surface reflectance ratio database

    NASA Astrophysics Data System (ADS)

    Zhang, Hai; Kondragunta, Shobha; Laszlo, Istvan; Liu, Hongqing; Remer, Lorraine A.; Huang, Jingfeng; Superczynski, Stephen; Ciren, Pubu

    2016-09-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) on board the Suomi National Polar-orbiting Partnership (S-NPP) satellite has been retrieving aerosol optical thickness (AOT), operationally and globally, over ocean and land since shortly after S-NPP launch in 2011. However, the current operational VIIRS AOT retrieval algorithm over land has two limitations in its assumptions for land surfaces: (1) it only retrieves AOT over the dark surfaces and (2) it assumes that the global surface reflectance ratios between VIIRS bands are constants. In this work, we develop a surface reflectance ratio database over land with a spatial resolution 0.1° × 0.1° using 2 years of VIIRS top of atmosphere reflectances. We enhance the current operational VIIRS AOT retrieval algorithm by applying the surface reflectance ratio database in the algorithm. The enhanced algorithm is able to retrieve AOT over both dark and bright surfaces. Over bright surfaces, the VIIRS AOT retrievals from the enhanced algorithm have a correlation of 0.79, mean bias of -0.008, and standard deviation (STD) of error of 0.139 when compared against the ground-based observations at the global AERONET (Aerosol Robotic Network) sites. Over dark surfaces, the VIIRS AOT retrievals using the surface reflectance ratio database improve the root-mean-square error from 0.150 to 0.123. The use of the surface reflectance ratio database also increases the data coverage of more than 20% over dark surfaces. The AOT retrievals over bright surfaces are comparable to MODIS Deep Blue AOT retrievals.

  17. Modal structure of chemical mass size distribution in the high Arctic aerosol

    NASA Astrophysics Data System (ADS)

    Hillamo, Risto; Kerminen, Veli-Matti; Aurela, Minna; MäKelä, Timo; Maenhaut, Willy; Leek, Caroline

    2001-11-01

    Chemical mass size distributions of aerosol particles were measured in the remote marine boundary layer over the central Arctic Ocean as part of the Atmospheric Research Program on the Arctic Ocean Expedition 1996 (AOE-96). An inertial impaction method was used to classify aerosol particles into different size classes for subsequent chemical analysis. The particle chemical composition was determined by ion chromatography and by the particle-induced X-ray emission technique. Continuous particle size spectra were extracted from the raw data using a data inversion method. Clear and varying modal structures for aerosols consisting of primary sea-salt particles or of secondary particles related to dimethyl sulfide emissions were found. Concentration levels of all modes decreased rapidly when the distance from open sea increased. In the submicrometer size range the major ions found by ion chromatography were sulfate, methane sulfonate, and ammonium. They had most of the time a clear Aitken mode and one or two accumulation modes, with aerodynamic mass median diameters around 0.1 μm, 0.3 μm, and between 0.5-1.0 μm, respectively. The overall submicron size distributions of these three ions were quite similar, suggesting that they were internally mixed over most of this size range. The corresponding modal structure was consistent with the mass size distributions derived from the particle number size distributions measured with a differential mobility particle sizer. The Aitken to accumulation mode mass ratio for nss-sulfate and MSA was substantially higher during clear skies than during cloudy periods. Primary sea-salt particles formed a mode with an aerodynamic mass median diameter around 2 μm. In general, the resulting continuous mass size distributions displayed a clear modal structure consistent with our understanding of the two known major source mechanisms. One is the sea-salt aerosol emerging from seawater by bubble bursting. The other is related to

  18. Ensemble-Based Assimilation of Aerosol Observations in GEOS-5

    NASA Technical Reports Server (NTRS)

    Buchard, V.; Da Silva, A.

    2016-01-01

    MERRA-2 is the latest Aerosol Reanalysis produced at NASA's Global Modeling Assimilation Office (GMAO) from 1979 to present. This reanalysis is based on a version of the GEOS-5 model radiatively coupled to GOCART aerosols and includes assimilation of bias corrected Aerosol Optical Depth (AOD) from AVHRR over ocean, MODIS sensors on both Terra and Aqua satellites, MISR over bright surfaces and AERONET data. In order to assimilate lidar profiles of aerosols, we are updating the aerosol component of our assimilation system to an Ensemble Kalman Filter (EnKF) type of scheme using ensembles generated routinely by the meteorological assimilation. Following the work performed with the first NASA's aerosol reanalysis (MERRAero), we first validate the vertical structure of MERRA-2 aerosol assimilated fields using CALIOP data over regions of particular interest during 2008.

  19. Sources, seasonality, and trends of Southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-07-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the Southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 km × 25 km resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the Southeast US. GEOS-Chem simulation of sulfate requires a missing oxidant, taken here to be stabilized Criegee intermediates, but which could alternatively reflect an unaccounted for heterogeneous process. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 20 % in the cloud convective layer at 1.5-3 km, and 20 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-])) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by organic aerosol. This would explain the long-term decline of ammonium aerosol in the Southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the Southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the Southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 21 %. The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from

  20. Modulated exponential films generated by surface acoustic waves and their role in liquid wicking and aerosolization at a pinned drop

    NASA Astrophysics Data System (ADS)

    Taller, Daniel; Go, David B.; Chang, Hsueh-Chia

    2013-05-01

    The exponentially decaying acoustic pressure of scattered surface acoustic waves (SAWs) at the contact line of a liquid film pinned to filter paper is shown to sustain a high curvature conic tip with micron-sized modulations whose dimension grows exponentially from the tip. The large negative capillary pressure in the film, necessary for offsetting the large positive acoustic pressure at the contact line, also creates significant negative hydrodynamic pressure and robust wicking action through the paper. An asymptotic analysis of this intricate pressure matching between the quasistatic conic film and bulk drop shows that the necessary SAW power to pump liquid from the filter paper and aerosolize, expressed in terms of the acoustic pressure scaled by the drop capillary pressure, grows exponentially with respect to twice the acoustic decay constant multiplied by the drop length, with a universal preexponential coefficient. Global rapid aerosolization occurs at a SAW power twice as high, beyond which the wicking rate saturates.

  1. Modulated exponential films generated by surface acoustic waves and their role in liquid wicking and aerosolization at a pinned drop.

    PubMed

    Taller, Daniel; Go, David B; Chang, Hsueh-Chia

    2013-05-01

    The exponentially decaying acoustic pressure of scattered surface acoustic waves (SAWs) at the contact line of a liquid film pinned to filter paper is shown to sustain a high curvature conic tip with micron-sized modulations whose dimension grows exponentially from the tip. The large negative capillary pressure in the film, necessary for offsetting the large positive acoustic pressure at the contact line, also creates significant negative hydrodynamic pressure and robust wicking action through the paper. An asymptotic analysis of this intricate pressure matching between the quasistatic conic film and bulk drop shows that the necessary SAW power to pump liquid from the filter paper and aerosolize, expressed in terms of the acoustic pressure scaled by the drop capillary pressure, grows exponentially with respect to twice the acoustic decay constant multiplied by the drop length, with a universal preexponential coefficient. Global rapid aerosolization occurs at a SAW power twice as high, beyond which the wicking rate saturates.

  2. Modeling the influence of alkane molecular structure on secondary organic aerosol formation.

    PubMed

    Aumont, Bernard; Camredon, Marie; Mouchel-Vallon, Camille; La, Stéphanie; Ouzebidour, Farida; Valorso, Richard; Lee-Taylor, Julia; Madronich, Sasha

    2013-01-01

    Secondary Organic Aerosols (SOA) production and ageing is a multigenerational oxidation process involving the formation of successive organic compounds with higher oxidation degree and lower vapor pressure. Intermediate Volatility Organic Compounds (IVOC) emitted to the atmosphere are expected to be a substantial source of SOA. These emitted IVOC constitute a complex mixture including linear, branched and cyclic alkanes. The explicit gas-phase oxidation mechanisms are here generated for various linear and branched C10-C22 alkanes using the GECKO-A (Generator for Explicit Chemistry and Kinetics of Organics in the Atmosphere) and SOA formation is investigated for various homologous series. Simulation results show that both the size and the branching of the carbon skeleton are dominant factors driving the SOA yield. However, branching appears to be of secondary importance for the particle oxidation state and composition. The effect of alkane molecular structure on SOA yields appears to be consistent with recent laboratory observations. The simulated SOA composition shows, however, an unexpected major contribution from multifunctional organic nitrates. Most SOA contributors simulated for the oxidation of the various homologous series are far too reduced to be categorized as highly oxygenated organic aerosols (OOA). On a carbon basis, the OOA yields never exceeded 10% regardless of carbon chain length, molecular structure or ageing time. This version of the model appears clearly unable to explain a large production of OOA from alkane precursors.

  3. Measurements of the HO2 uptake coefficient onto aqueous salt and organic aerosols and interpretation using the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB)

    NASA Astrophysics Data System (ADS)

    Matthews, P. S. J.; Berkemeier, T.; George, I. J.; Whalley, L. K.; Moon, D. R.; Ammann, M.; Baeza-Romero, M. T.; Poeschl, U.; Shiraiwa, M.; Heard, D. E.

    2014-12-01

    HO2 is closely coupled with OH which is responsible for the majority of the oxidation in the troposphere. Therefore, it is important to be able to accurately predict OH and HO2 concentrations. However, many studies have reported a large discrepancy between HO2 radical concentrations measured during field campaigns and predicted by constrained box models using detailed chemical mechanisms (1,2). However, there have been very few laboratory studies (3,4) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for deliquesced ammonium nitrate and sodium chloride aerosols and copper doped sucrose aerosols. The measurements were performed using an aerosol flow tube coupled to a Fluorescence Assay by Gas Expansion (FAGE) detector. By either placing the HO2 injector in set positions and varying the aerosol concentration or by moving it along the flow tube at given aerosol concentrations, uptake coefficients could be measured. The aerosols were generated using an atomiser and the total aerosol surface area was measured using a SMPS. Larger uptake coefficients were measured at shorter times and lower HO2 concentrations for aqueous salt aerosols. The time dependence was able to be modelled by the KM-SUB model (5) as the HO2 concentration decreases along the flow tube and the HO2 uptake mechanism is known to be a second order reaction. Measurements have shown that at higher HO2 concentrations there was also more H2O2 exiting the injector which could convert back to HO2 if trace amounts of metals are present within the aerosol via Fenton reactions. Preliminary results have shown that the inclusion of a Fenton-like reaction within the KM-SUB model has the potential to explain the apparent HO2 concentration dependence. Finally, the KM-SUB model has been used to demonstrate that the increase in uptake coefficient observed when increasing the relative humidity for copper doped sucrose aerosols could be explained by an

  4. Dynamics of phytoplankton community structure in the South China Sea in response to the East Asian aerosol input

    NASA Astrophysics Data System (ADS)

    Guo, C.; Yu, J.; Ho, T.-Y.; Wang, L.; Song, S.; Kong, L.; Liu, H.

    2012-04-01

    Recent studies have demonstrated atmospheric deposition as an important source of bioreactive compounds to the ocean. The South China Sea (SCS), where aerosol loading is among the highest in the world, however, is poorly studied, particularly on the in situ response of phytoplankton community structures to atmospheric deposition. By conducting a series of microcosm bioassays at different hydrographical locations and simulating different aerosol event scales, we observed both positive and negative responses to the input of East Asian (EA) aerosol with high nitrogen (N) and trace metal contents, in terms of biomass, composition and physiological characteristics of phytoplankton communities. High levels of aerosol loading relieved phytoplankton nitrogen and trace metal limitations in SCS, and thus increased total phytoplankton biomass, enhanced their physiological indicators (e.g. photosynthetic efficiency) and shifted phytoplankton assemblages from being dominated by picoplankton to microphytoplanton, especially diatoms. However, under low levels of aerosol loading, the composition shift and biomass accumulation were not apparent, suggesting that the stimulation effects might be counterbalanced by enhanced grazing mortality indicated by increased abundance of protist grazers. Trace metal toxicity of the aerosols might also be the reason for the reduction of picocyanobacteria when amended with high EA aerosols. The magnitude and duration of the deposition event, as well as the hydrographical and trophic conditions of receiving waters are also important factors when predicting the influence of an aerosol deposition event. Our results demonstrated different responses of phytoplankton and microbial food web dynamics to different scales of atmospheric input events in SCS and highlighted the need for achieving an accurate comprehension of atmospheric nutrient on the biogeochemical cycles of the oceans.

  5. Perovskite LaFeO3 nanoparticles synthesized by the reverse microemulsion nanoreactors in the presence of aerosol-OT: Morphology, crystal structure, and their optical properties

    NASA Astrophysics Data System (ADS)

    Abazari, Reza; Sanati, Soheila

    2013-12-01

    Orthorhombic structure of lanthanum ferrite nanoparticles (LaFeO3 NPs) with perovskite type phase has been synthesized with water-in-oil (W/O) microemulsion consisted of water/dioctyl sulfosuccinate sodium (aerosol-OT)/isooctane at room temperature. It has been shown that aerosol-OT reverse microemulsion solution is appropriate for synthesizing perovskite LaFeO3 NPs in the absence of any co-surfactants. Field emission scanning electron microscope (FE-SEM), transmission electron microscopy (TEM), energy dispersive analysis of X-ray (EDAX), X-ray diffraction (XRD), ultraviolet-visible absorption spectroscopy (UV-Vis), and Fourier transform infrared spectroscopy (FT-IR) have been adopted for characterization of surface morphology, size, phase composition, structure, and optical properties of the considered NPs. Furthermore, the optical properties of LaFeO3 NPs have been further analyzed via photoluminescence (PL) spectroscopy. As shown by the physicochemical characterizations, our prepared NPs via aerosol-OT reverse microemulsion solution are spherical and nearly uniform (with a size of about 24.65 nm). Besides, they include an orthorhombic phase while no impurities are observed. Single phase lanthanum ferrite NPs have successfully been prepared at 500 °C. Moreover, UV-Vis spectrum indicates that the LaFeO3 NPs synthesized through this technique can be considered as a type of photo-catalytic materials.

  6. Simulation of Long-term Changes in the Surface Ozone and Aerosol Concentrations Based on the Solar Activity Data

    NASA Astrophysics Data System (ADS)

    Belan, Boris; Antokhin, Pavel; Arshinov, Mikhail; Belan, Sergey; Slyadneva, Tatyana; Tolmachev, Gennadii

    2010-05-01

    Based on the long-term data obtained during previous studies we have found an interrelationship the surface ozone and aerosol content with solar activity. Variation of the concentration of both these atmospheric components have a period close to 11 years that has a 2(3)-year phase lag with respect to solar activity. Analyzing possible causes of such behaviour we discarded hypotheses of the anthropogenic origin of the trend and post-volcanic influence of El Chichon and Penatubo eruptions. It turned out, that variation of aerosol number concentration correlates with atmospheric circulation forms (W, E, and C), which are governed by solar activity. Then we analysed sequentially an ozone mechanism and variations of incoming ultraviolet radiation to determine possible causes of this phenomenon. As a result we found an intermediate process, which consists in the influence of increasing UV radiation on plants. At the beginning of UV radiation increase it is observed suppression of the vegetation. After 1- or 2-year adaptation period its productivity becomes stronger that leads to the emission of additional amount of ozone and aerosol precursors. This hypothesis has been verified using Normalized Difference Vegetation Index (NDVI) and gave good results. Prediction of the long-term changes in the surface ozone and aerosol concentrations has been done based on this hypothesis. This work was funded by Presidium of RAS (Program No. 16), Brunch of Geology, Geophysics and Mining Sciences of RAS (Program No 5), Russian Foundation for Basic Research (grant No 08-05-92499), and Federal Agency for Science and Innovation (State Contract № 02.518.11.7153).

  7. Arctic Sea Salt Aerosol from Blowing Snow and Sea Ice Surfaces - a Missing Natural Source in Winter

    NASA Astrophysics Data System (ADS)

    Frey, M. M.; Norris, S. J.; Brooks, I. M.; Nishimura, K.; Jones, A. E.

    2015-12-01

    Atmospheric particles in the polar regions consist mostly of sea salt aerosol (SSA). SSA plays an important role in regional climate change through influencing the surface energy balance either directly or indirectly via cloud formation. SSA irradiated by sunlight also releases very reactive halogen radicals, which control concentrations of ozone, a pollutant and greenhouse gas. However, models under-predict SSA concentrations in the Arctic during winter pointing to a missing source. It has been recently suggested that salty blowing snow above sea ice, which is evaporating, to be that source as it may produce more SSA than equivalent areas of open ocean. Participation in the 'Norwegian Young Sea Ice Cruise (N-ICE 2015)' on board the research vessel `Lance' allowed to test this hypothesis in the Arctic sea ice zone during winter. Measurements were carried out from the ship frozen into the pack ice North of 80º N during February to March 2015. Observations at ground level (0.1-2 m) and from the ship's crows nest (30 m) included number concentrations and size spectra of SSA (diameter range 0.3-10 μm) as well as snow particles (diameter range 50-500 μm). During and after blowing snow events significant SSA production was observed. In the aerosol and snow phase sulfate is fractionated with respect to sea water, which confirms sea ice surfaces and salty snow, and not the open ocean, to be the dominant source of airborne SSA. Aerosol shows depletion in bromide with respect to sea water, especially after sunrise, indicating photochemically driven release of bromine. We discuss the SSA source strength from blowing snow in light of environmental conditions (wind speed, atmospheric turbulence, temperature and snow salinity) and recommend improved model parameterisations to estimate regional aerosol production. N-ICE 2015 results are then compared to a similar study carried out previously in the Weddell Sea during the Antarctic winter.

  8. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DTIC Science & Technology

    2014-10-27

    distribution is unlimited. Surface Structure of Aerobically Oxidized Diamond Nanocrystals The views, opinions and/or findings contained in this report...2211 diamond nanocrystals, REPORT DOCUMENTATION PAGE 11. SPONSOR/MONITOR’S REPORT NUMBER(S) 10. SPONSOR/MONITOR’S ACRONYM(S) ARO 8. PERFORMING...Room 254, Mail Code 8725 New York, NY 10027 -7922 ABSTRACT Surface Structure of Aerobically Oxidized Diamond Nanocrystals Report Title We investigate

  9. Elemental and iron isotopic composition of aerosols collected in a parking structure.

    PubMed

    Majestic, Brian J; Anbar, Ariel D; Herckes, Pierre

    2009-09-01

    The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM)<2.5 microm in diameter (the fine fraction) and PM>2.5 microm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m(-3)) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be +0.15+/-0.03 per thousand and +0.18+/-0.03 per thousand for the PM<2.5 microm and PM>2.5 microm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average=+0.02 per thousand) and the ceramic brake linings (average=+0.65 per thousand). Differences in isotopic composition were also observed between the metallic (average=+0.18 per thousand) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.

  10. An evaluation of the impact of aerosol particles on weather forecasts from a biomass burning aerosol event over the Midwestern United States: observational-based analysis of surface temperature

    NASA Astrophysics Data System (ADS)

    Zhang, Jianglong; Reid, Jeffrey S.; Christensen, Matthew; Benedetti, Angela

    2016-05-01

    A major continental-scale biomass burning smoke event from 28-30 June 2015, spanning central Canada through the eastern seaboard of the United States, resulted in unforecasted drops in daytime high surface temperatures on the order of 2-5 °C in the upper Midwest. This event, with strong smoke gradients and largely cloud-free conditions, provides a natural laboratory to study how aerosol radiative effects may influence numerical weather prediction (NWP) forecast outcomes. Here, we describe the nature of this smoke event and evaluate the differences in observed near-surface air temperatures between Bismarck (clear) and Grand Forks (overcast smoke), to evaluate to what degree solar radiation forcing from a smoke plume introduces daytime surface cooling, and how this affects model bias in forecasts and analyses. For this event, mid-visible (550 nm) smoke aerosol optical thickness (AOT, τ) reached values above 5. A direct surface cooling efficiency of -1.5 °C per unit AOT (at 550 nm, τ550) was found. A further analysis of European Centre for Medium-Range Weather Forecasts (ECMWF), National Centers for Environmental Prediction (NCEP), United Kingdom Meteorological Office (UKMO) near-surface air temperature forecasts for up to 54 h as a function of Moderate Resolution Imaging Spectroradiometer (MODIS) Dark Target AOT data across more than 400 surface stations, also indicated the presence of the daytime aerosol direct cooling effect, but suggested a smaller aerosol direct surface cooling efficiency with magnitude on the order of -0.25 to -1.0 °C per unit τ550. In addition, using observations from the surface stations, uncertainties in near-surface air temperatures from ECMWF, NCEP, and UKMO model runs are estimated. This study further suggests that significant daily changes in τ550 above 1, at which the smoke-aerosol-induced direct surface cooling effect could be comparable in magnitude with model uncertainties, are rare events on a global scale. Thus, incorporating

  11. Correlating simulated surface marks with near-surface tornado structure

    NASA Astrophysics Data System (ADS)

    Zimmerman, Michael I.

    Tornadoes often leave behind patterns of debris deposition, or "surface marks", which provide a direct signature of their near surface winds. The intent of this thesis is to investigate what can be learned about near-surface tornado structure and intensity through the properties of surface marks generated by simulated, debris-laden tornadoes. Earlier work showed through numerical simulations that the tornado's structure and intensity is highly sensitive to properties of the near-surface flow and can change rapidly in time for some conditions. The strongest winds often occur within tens of meters of the surface where the threat to human life and property is highest, and factors such as massive debris loadings and asymmetry of the main vortex have proven to be critical complications in some regimes. However, studying this portion of the flow in the field is problematic; while Doppler radar provides the best tornado wind field measurements, it cannot probe below about 20 m, and interpretation of Doppler data requires assumptions about tornado symmetry, steadiness in time, and correlation between scatterer and air velocities that are more uncertain near the surface. As early as 1967, Fujita proposed estimating tornado wind speeds from analysis of aerial photography and ground documentation of surface marks. A handful of studies followed but were limited by difficulties in interpreting physical origins of the marks, and little scientific attention has been paid to them since. Here, Fujita's original idea is revisited in the context of three-dimensional, large-eddy simulations of tornadoes with fully-coupled debris. In this thesis, the origins of the most prominent simulated marks are determined and compared with historical interpretations of real marks. The earlier hypothesis that cycloidal surface marks were directly correlated with the paths of individual vortices (either the main vortex or its secondary vortices, when present) is unsupported by the simulation results

  12. Effect of Spectrally Varying Albedo of Vegetation Surfaces on Shortwave Radiation Fluxes and Aerosol Direct Radiative Forcing

    NASA Technical Reports Server (NTRS)

    Zhu, L.; Martins, J. V.; Yu, H.

    2012-01-01

    This study develops an algorithm for representing detailed spectral features of vegetation albedo based on Moderate Resolution Imaging Spectrometer (MODIS) observations at 7 discrete channels, referred to as the MODIS Enhanced Vegetation Albedo (MEVA) algorithm. The MEVA algorithm empirically fills spectral gaps around the vegetation red edge near 0.7 micrometers and vegetation water absorption features at 1.48 and 1.92 micrometers which cannot be adequately captured by the MODIS 7 channels. We then assess the effects of applying MEVA in comparison to four other traditional approaches to calculate solar fluxes and aerosol direct radiative forcing (DRF) at the top of atmosphere (TOA) based on the MODIS discrete reflectance bands. By comparing the DRF results obtained through the MEVA method with the results obtained through the other four traditional approaches, we show that filling the spectral gap of the MODIS measurements around 0.7 micrometers based on the general spectral behavior of healthy green vegetation leads to significant improvement in the instantaneous aerosol DRF at TOA (up to 3.02Wm(exp -2) difference or 48% fraction of the aerosol DRF, .6.28Wm(exp -2), calculated for high spectral resolution surface reflectance from 0.3 to 2.5 micrometers for deciduous vegetation surface). The corrections of the spectral gaps in the vegetation spectrum in the near infrared, again missed by the MODIS reflectances, also contributes to improving TOA DRF calculations but to a much lower extent (less than 0.27Wm(exp -2), or about 4% of the instantaneous DRF). Compared to traditional approaches, MEVA also improves the accuracy of the outgoing solar flux between 0.3 to 2.5 micrometers at TOA by over 60Wm(exp -2) (for aspen 3 surface) and aerosol DRF by over 10Wm(exp -2) (for dry grass). Specifically, for Amazon vegetation types, MEVA can improve the accuracy of daily averaged aerosol radiative forcing in the spectral range of 0.3 to 2.5 micrometers at equator at the

  13. The impacts of a plume-rise scheme on earth system modeling: climatological effects of biomass aerosols on the surface temperature and energy budget of South America

    NASA Astrophysics Data System (ADS)

    de Menezes Neto, Otacilio L.; Coutinho, Mariane M.; Marengo, José A.; Capistrano, Vinícius B.

    2016-05-01

    Seasonal forest fires in the Amazon are the largest source of pollutants in South America. The impacts of aerosols due to biomass burning on the temperature and energy balance in South America are investigated using climate simulations from 1979 to 2005 using HadGEM2-ES, which includes the hot plume-rise scheme (HPR) developed by Freitas et al. (Estudos Avançados 19:167-185, 2005, Atmos Chem Phys 7:3385-3398, 2007, Atmos Chem Phys 10:585-594, 2010). The HPR scheme is used to estimate the vertical heights of biomass-burning aerosols based on the thermodynamic characteristics of the underlying model. Three experiments are performed. The first experiment includes the HPR scheme, the second experiment turns off the HPR scheme and the effects of biomass aerosols (BIOMASS OFF), and the final experiment assumes that all biomass aerosols are released at the surface (HPR OFF). Relative to the BIOMASS OFF experiment, the temperature decreased in the HPR experiment as the net shortwave radiation at the surface decreased in a region with a large amount of biomass aerosols. When comparing the HPR and HPR OFF experiments, the release of biomass aerosols higher on the atmosphere impacts on temperature and the energy budget because the aerosols were transported by strong winds in the upper atmospheric levels.

  14. 30 CFR 75.1708-1 - Surface structures; fireproof construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures; fireproof construction. 75... Surface structures; fireproof construction. Structures of fireproof construction is interpreted to mean structures with fireproof exterior surfaces....

  15. The impact of volcanic aerosol on the Northern Hemisphere stratospheric polar vortex: mechanisms and sensitivity to forcing structure

    NASA Astrophysics Data System (ADS)

    Toohey, M.; Krüger, K.; Bittner, M.; Timmreck, C.; Schmidt, H.

    2014-12-01

    Observations and simple theoretical arguments suggest that the Northern Hemisphere (NH) stratospheric polar vortex is stronger in winters following major volcanic eruptions. However, recent studies show that climate models forced by prescribed volcanic aerosol fields fail to reproduce this effect. We investigate the impact of volcanic aerosol forcing on stratospheric dynamics, including the strength of the NH polar vortex, in ensemble simulations with the Max Planck Institute Earth System Model. The model is forced by four different prescribed forcing sets representing the radiative properties of stratospheric aerosol following the 1991 eruption of Mt. Pinatubo: two forcing sets are based on observations, and are commonly used in climate model simulations, and two forcing sets are constructed based on coupled aerosol-climate model simulations. For all forcings, we find that simulated temperature and zonal wind anomalies in the NH high latitudes are not directly impacted by anomalous volcanic aerosol heating. Instead, high-latitude effects result from enhancements in stratospheric residual circulation, which in turn result, at least in part, from enhanced stratospheric wave activity. High-latitude effects are therefore much less robust than would be expected if they were the direct result of aerosol heating. Both observation-based forcing sets result in insignificant changes in vortex strength. For the model-based forcing sets, the vortex response is found to be sensitive to the structure of the forcing, with one forcing set leading to significant strengthening of the polar vortex in rough agreement with observation-based expectations. Differences in the dynamical response to the forcing sets imply that reproducing the polar vortex responses to past eruptions, or predicting the response to future eruptions, depends on accurate representation of the space-time structure of the volcanic aerosol forcing.

  16. Influence of surface characteristics of modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization performance.

    PubMed

    Zellnitz, Sarah; Schroettner, Hartmuth; Urbanetz, Nora Anne

    2015-01-01

    The aim of this work is to investigate the effect of surface characteristics (surface roughness and specific surface area) of surface-modified glass beads as model carriers in dry powder inhalers (DPIs) on the aerosolization, and thus, the in vitro respirable fraction often referred to as fine particle fraction (FPF). By processing glass beads in a ball mill with different grinding materials (quartz and tungsten carbide) and varying grinding time (4 h and 8 h), and by plasma etching for 1 min, glass beads with different shades of surface roughness and increased surface area were prepared. Compared with untreated glass beads, the surface-modified rough glass beads show increased FPFs. The drug detachment from the modified glass beads is also more reproducible than from untreated glass beads indicated by lower standard deviations for the FPFs of the modified glass beads. Moreover, the FPF of the modified glass beads correlates with their surface characteristics. The higher the surface roughness and the higher the specific surface area of the glass beads the higher is the FPF. Thus, surface-modified glass beads make an ideal carrier for tailoring the performance of DPIs in the therapy of asthma and chronically obstructive pulmonary diseases.

  17. Sources, seasonality, and trends of southeast US aerosol: an integrated analysis of surface, aircraft, and satellite observations with the GEOS-Chem chemical transport model

    NASA Astrophysics Data System (ADS)

    Kim, P. S.; Jacob, D. J.; Fisher, J. A.; Travis, K.; Yu, K.; Zhu, L.; Yantosca, R. M.; Sulprizio, M. P.; Jimenez, J. L.; Campuzano-Jost, P.; Froyd, K. D.; Liao, J.; Hair, J. W.; Fenn, M. A.; Butler, C. F.; Wagner, N. L.; Gordon, T. D.; Welti, A.; Wennberg, P. O.; Crounse, J. D.; St. Clair, J. M.; Teng, A. P.; Millet, D. B.; Schwarz, J. P.; Markovic, M. Z.; Perring, A. E.

    2015-09-01

    We use an ensemble of surface (EPA CSN, IMPROVE, SEARCH, AERONET), aircraft (SEAC4RS), and satellite (MODIS, MISR) observations over the southeast US during the summer-fall of 2013 to better understand aerosol sources in the region and the relationship between surface particulate matter (PM) and aerosol optical depth (AOD). The GEOS-Chem global chemical transport model (CTM) with 25 × 25 km2 resolution over North America is used as a common platform to interpret measurements of different aerosol variables made at different times and locations. Sulfate and organic aerosol (OA) are the main contributors to surface PM2.5 (mass concentration of PM finer than 2.5 μm aerodynamic diameter) and AOD over the southeast US. OA is simulated successfully with a simple parameterization, assuming irreversible uptake of low-volatility products of hydrocarbon oxidation. Biogenic isoprene and monoterpenes account for 60 % of OA, anthropogenic sources for 30 %, and open fires for 10 %. 60 % of total aerosol mass is in the mixed layer below 1.5 km, 25 % in the cloud convective layer at 1.5-3 km, and 15 % in the free troposphere above 3 km. This vertical profile is well captured by GEOS-Chem, arguing against a high-altitude source of OA. The extent of sulfate neutralization (f = [NH4+]/(2[SO42-] + [NO3-]) is only 0.5-0.7 mol mol-1 in the observations, despite an excess of ammonia present, which could reflect suppression of ammonia uptake by OA. This would explain the long-term decline of ammonium aerosol in the southeast US, paralleling that of sulfate. The vertical profile of aerosol extinction over the southeast US follows closely that of aerosol mass. GEOS-Chem reproduces observed total column aerosol mass over the southeast US within 6 %, column aerosol extinction within 16 %, and space-based AOD within 8-28 % (consistently biased low). The large AOD decline observed from summer to winter is driven by sharp declines in both sulfate and OA from August to October. These declines

  18. Remote sensing of aerosols over North American land surfaces from POLDER and MODIS measurements

    NASA Astrophysics Data System (ADS)

    Vachon, F.; Royer, A.; Aubé, M.; Toubbé, B.; O'Neill, N. T.; Teillet, P. M.

    We examine two different aerosol remote sensing approaches based on polarized ADEOS-1 POLDER measurements and on multispectral EOS Terra MODIS dark target retrieval. Satellite-derived aerosol optical depth (AOD) is assessed from comparisons with AERONET/AEROCAN ground-based sunphotometer AOD measurements over North America. The results show that the POLDER polarization retrieval method for AOD at 865 nm yields large scatter with a root mean square error (RMSE) of 0.11 for single pixels, and RMSE=0.092 for 3×3 windows and a systematic mean overestimation of +0.036 and +0.031 for single pixels and 3×3 windows, respectively. The correlation statistics can be significantly improved by employing the Size Weighted Aerosol Index (SWAI) defined as the product of the AOD times the Angstrom exponent, showing a correlation coefficient ( R) of 0.68 with RMSE=0.072 for single pixels and R=0.75 with RMSE=0.065 for the 3×3 windows. We have checked the reliability of the POLDER inversion scheme by comparing the aerosol polarized radiance (i.e., corrected for ground and molecular contributions) with AOD sunphotometer measurements at 670 nm for five different sites ( R=0.36). The MODIS capability for monitoring seasonal and long-term aerosol dynamics is assessed by analyzing the 8-day MODIS AOD product at 550 nm (Level-3 product). The retrieved AOD accuracy is variable depending on sites and observed AOD dynamic range; for the overall database ( N=1200 points), R=0.37, RMSE=0.17 and Bias=+0.088. We illustrate how satellite-derived AOD images can be used to monitor spatial and temporal aerosol dynamics at the regional scale (anthropogenic pollution events over the North-Eastern American coast) and at the continental scale (dust storm events and mean seasonal background atmospheric aerosol loading). It appears that aerosol mapping from satellite images is still difficult over North America, particularly at high latitudes where AOD variations are generally relatively small.

  19. Aqueous aerosol SOA formation: impact on aerosol physical properties.

    PubMed

    Woo, Joseph L; Kim, Derek D; Schwier, Allison N; Li, Ruizhi; McNeill, V Faye

    2013-01-01

    Organic chemistry in aerosol water has recently been recognized as a potentially important source of secondary organic aerosol (SOA) material. This SOA material may be surface-active, therefore potentially affecting aerosol heterogeneous activity, ice nucleation, and CCN activity. Aqueous aerosol chemistry has also been shown to be a potential source of light-absorbing products ("brown carbon"). We present results on the formation of secondary organic aerosol material in aerosol water and the associated changes in aerosol physical properties from GAMMA (Gas-Aerosol Model for Mechanism Analysis), a photochemical box model with coupled gas and detailed aqueous aerosol chemistry. The detailed aerosol composition output from GAMMA was coupled with two recently developed modules for predicting a) aerosol surface tension and b) the UV-Vis absorption spectrum of the aerosol, based on our previous laboratory observations. The simulation results suggest that the formation of oligomers and organic acids in bulk aerosol water is unlikely to perturb aerosol surface tension significantly. Isoprene-derived organosulfates are formed in high concentrations in acidic aerosols under low-NO(x) conditions, but more experimental data are needed before the potential impact of these species on aerosol surface tension may be evaluated. Adsorption of surfactants from the gas phase may further suppress aerosol surface tension. Light absorption by aqueous aerosol SOA material is driven by dark glyoxal chemistry and is highest under high-NO(x) conditions, at high relative humidity, in the early morning hours. The wavelength dependence of the predicted absorption spectra is comparable to field observations and the predicted mass absorption efficiencies suggest that aqueous aerosol chemistry can be a significant source of aerosol brown carbon under urban conditions.

  20. Colloids with high-definition surface structures.

    PubMed

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-07-03

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of approximately 10(7) to 10(8) particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors.

  1. Colloids with high-definition surface structures

    PubMed Central

    Chen, Hsien-Yeh; Rouillard, Jean-Marie; Gulari, Erdogan; Lahann, Joerg

    2007-01-01

    Compared with the well equipped arsenal of surface modification methods for flat surfaces, techniques that are applicable to curved, colloidal surfaces are still in their infancy. This technological gap exists because spin-coating techniques used in traditional photolithographic processes are not applicable to the curved surfaces of spherical objects. By replacing spin-coated photoresist with a vapor-deposited, photodefinable polymer coating, we have now fabricated microstructured colloids with a wide range of surface patterns, including asymmetric and chiral surface structures, that so far were typically reserved for flat substrates. This high-throughput method can yield surface-structured colloidal particles at a rate of ≈107 to 108 particles per operator per day. Equipped with spatially defined binding pockets, microstructured colloids can engage in programmable interactions, which can lead to directed self-assembly. The ability to create a wide range of colloids with both simple and complex surface patterns may contribute to the genesis of previously unknown colloidal structures and may have important technological implications in a range of different applications, including photonic and phononic materials or chemical sensors. PMID:17592149

  2. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    SciTech Connect

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong; Qian, Yun; Zhang, Kai; Wang, Yuhang; Yang, Xiu-Qun

    2016-11-29

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m-2 (1σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m-2), while fire POM induces a small effect (-0.05 and 0.04 ± 0.01 W m-2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is -0.70 ± 0.05 W m-2, resulting mainly from the fire POM effect (-0.59 ± 0.03 W m-2). REari (0.43 ± 0.03 W m-2) and REaci (-1.38 ± 0.23 W m-2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and -0.82 ± 0.09 W m-2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to -15 Wm-2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 ± 0.10 W m-2) is small

  3. Impacts of global open-fire aerosols on direct radiative, cloud and surface-albedo effects simulated with CAM5

    DOE PAGES

    Jiang, Yiquan; Lu, Zheng; Liu, Xiaohong; ...

    2016-11-29

    Aerosols from open-land fires could significantly perturb the global radiation balance and induce climate change. In this study, Community Atmosphere Model version 5 (CAM5) with prescribed daily fire aerosol emissions is used to investigate the spatial and seasonal characteristics of radiative effects (REs, relative to the case of no fires) of open-fire aerosols including black carbon (BC) and particulate organic matter (POM) from 2003 to 2011. The global annual mean RE from aerosol–radiation interactions (REari) of all fire aerosols is 0.16 ± 0.01 W m−2 (1σ uncertainty), mainly due to the absorption of fire BC (0.25 ± 0.01 W m−2), while fire POM induces a small effect (−0.05 andmore » 0.04 ± 0.01 W m−2 based on two different methods). Strong positive REari is found in the Arctic and in the oceanic regions west of southern Africa and South America as a result of amplified absorption of fire BC above low-level clouds, in general agreement with satellite observations. The global annual mean RE due to aerosol–cloud interactions (REaci) of all fire aerosols is −0.70 ± 0.05 W m−2, resulting mainly from the fire POM effect (−0.59 ± 0.03 W m−2). REari (0.43 ± 0.03 W m−2) and REaci (−1.38 ± 0.23 W m−2) in the Arctic are stronger than in the tropics (0.17 ± 0.02 and −0.82 ± 0.09 W m−2 for REari and REaci), although the fire aerosol burden is higher in the tropics. The large cloud liquid water path over land areas and low solar zenith angle of the Arctic favor the strong fire aerosol REaci (up to −15 W m−2) during the Arctic summer. Significant surface cooling, precipitation reduction and increasing amounts of low-level cloud are also found in the Arctic summer as a result of the fire aerosol REaci based on the atmosphere-only simulations. The global annual mean RE due to surface-albedo changes (REsac) over land areas (0.03 ± 0.10 W m−2) is small

  4. Direct observations of shortwave aerosol radiative forcing at surface and its diurnal variation during the Asian dry season at southwest Indian peninsula

    NASA Astrophysics Data System (ADS)

    Mishra, Manoj Kumar; Rajeev, K.

    2016-08-01

    The Arabian Sea witnesses consistent occurrence of a large-scale aerosol plume transported by the northerlies from the Asian region during the dry season (December-April). This paper presents direct observations of the diurnal variation (and dependence on solar zenith angle, SZA) of instantaneous aerosol direct radiative forcing efficiency (IADRFE) and aerosol direct radiative forcing (ADRF) at surface during the period from December to March of 2010-2013 at Thiruvananthapuram (8.5°N, 77°E), an Indian peninsular station adjoining the Arabian Sea coast, which resides well within this aerosol plume. Magnitude of the IADRFE increases with SZA from -75 ± 20 W m-2 τ 500 -1 at SZA of ~80° to attain a peak value of -170 ± 30 W m-2 τ 500 -1 at SZA ~60° in March (~3 h before and after the local noon). Absolute magnitudes and SZA dependence of the observed seasonal mean IADRFE are in agreement (within 16 % of the absolute magnitudes) with those estimated using radiation transfer computations employing an aerosol model with visible band single-scattering albedo of ~0.90 ± 0.03. Observed values of the diurnal mean aerosol radiative forcing efficiency (ADRFE) averaged during the season (December-March) vary between -71 and -76.5 W m-2 τ 500 -1 , which is in agreement with the model estimate of -71 W m-2 τ 500 -1 . The present observations show that the seasonal mean ADRF at surface (-25 to -28 W m-2) is about 10 % of the diurnal mean downwelling shortwave flux reaching the surface (in the absence of aerosols) during dry season at this location, indicating the major role of aerosols in regulating surface energetics.

  5. Nature inspired structured surfaces for biomedical applications.

    PubMed

    Webb, H K; Hasan, J; Truong, V K; Crawford, R J; Ivanova, E P

    2011-01-01

    Nature has created an array of superhydrophobic surfaces that possess water-repellent, self-cleaning and anti-icing properties. These surfaces have a number of potential applications in the biomedical industry, as they have the potential to control protein adsorption and cell adhesion. Natural superhydrophobic surfaces are typically composed of materials with a low intrinsic surface free-energy (e.g the cuticular waxes of lotus leaves and insect wings) with a hierarchical structural configuration. This hierarchical surface topography acts to decrease the contact area of water droplets in contact with the surface, thereby increasing the extent of the air/water interface, resulting in water contact angles greater than 150º. In order to employ these surfaces in biotechnological applications, fabrication techniques must be developed so that these multi-scale surface roughness characteristics can be reproduced. Additionally, these fabrication techniques must also be able to be applied to the material required for the intended application. An overview of some of the superhydrophobic surfaces that exist in nature is presented, together with an explanation of the theories of their wettability. Also included is a description of some of the biomedical applications of superhydrophobic surfaces and fabrication techniques that can be used to mimic superhydrophobic surfaces found in nature.

  6. Analysis of organic and inorganic species on the surface of atmospheric aerosol using time-of-flight secondary ion mass spectrometry (TOF-SIMS)

    NASA Astrophysics Data System (ADS)

    Peterson, Richard E.; Tyler, Bonnie J.

    This work explores the utility of time-of-flight static secondary-ion mass spectrometry (TOF-SIMS) for the analysis of the surface organic layer on individual atmospheric aerosol particles. The surface sensitivity and minimal fragmentation available with TOF-SIMS suggest that it can be a powerful tool for the examination of the organic and inorganic species on the surface of individual particles. Cascade impactors were used to collect aerosol from summer 2000 Montana forest fires, winter snowmobile samples in Yellowstone National Park, Hawaiian lava and sea salt, from an Asian Dust event reaching Salt Lake City, Utah in April 2001 and from Salt Lake Valley summer urban aerosol. TOF-SIMS analysis and multivariate statistical techniques combined gave chemical and morphological information about the particles. Surfaces of the aerosol from forest fires, snowmobile exhaust, and sea salt were all dominated by aliphatic hydrocarbons and their amphiphilic derivatives. Each source showed a different organic chemical signature. The extent and composition of the organics layer which typically covers the surface of atmospheric particles are expected to effect all of the surface related aerosol properties such as health effects, the ability of the particle to activate and form cloud droplets, and the aggregation of particles as well as reactions between the particle and gas phase species.

  7. Organic carbon in the sea surface microlayer and in submicron aerosol particles - measurements from the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    van Pinxteren, Manuela; Wadinga Fomba, Kanneh; Müller, Konrad; Barthel, Stefan; von Tümpling, Wolf; Herrmann, Hartmut

    2016-04-01

    The export of organic compounds from the oceans can establish a considerable carbon flux in the Earth system. The detailed transport processes and especially the impact of environmental drivers in the organic carbon transfer are not yet fully understood. Here we present a broad study of measured dissolved organic carbon (DOC) and particulate organic carbon (POC) concentrations and enrichment in the sea surface microlayer (SML) as well as equivalent measurements in marine aerosol particles. For the first time, enrichment factors of organic carbon in marine ambient aerosol are reported that based on concerted measurements of seawater and aerosol particles. The measurements were conducted at different field campaigns in the Atlantic Ocean: at the Cape Verde islands, during two Atlantic transects with the RV Polarstern, and during a campaign at the Raune Fjord in Bergen, Norway. In oceanic water, concentration of DOC were in average 161 μmol/L in bulk water and 225 μmol/L in the SML. Average POC concentrations were 13 μmol/L in bulk water and 17 μmol/L in the SML. Instead of a constant enrichment of DOC or POC there are rather two pattern: high enrichment in samples with low concentrations and low enrichment when concentration were high. In seawater (bulk water and SML) small, mostly insignificant effects, concerning concentration and enrichment of DOC and POC were found regarding the impact of wind stress and chl-a concentrations. Differences between SML and bulk water concentrations are more pronounced at times of high chl-a, but all in all these effects are not strong. The thickness of the SML is affected by biological activity but probably caused by a more surface-active part of the DOC/POC pool and this is not reflected in the sum parameters. In the ambient marine aerosol particles water-soluble organic carbon (WSOC) and water-insoluble organic carbon (WISOC) concentrations were in average about 0.2 μg m-3, respectively. Higher concentration differences of

  8. Sustained distribution of aerosolized PEGylated liposomes in epithelial lining fluids on alveolar surfaces.

    PubMed

    Kaneko, Keita; Togami, Kohei; Yamamoto, Eri; Wang, Shujun; Morimoto, Kazuhiro; Itagaki, Shirou; Chono, Sumio

    2016-10-01

    The distribution characteristics of aerosolized PEGylated liposomes in alveolar epithelial lining fluid (ELF) were examined in rats, and the ensuing mechanisms were investigated in the in vitro uptake and protein adsorption experiments. Nonmodified or PEGylated liposomes (particle size 100 nm) were aerosolized into rat lungs. PEGylated liposomes were distributed more sustainably in ELFs than nonmodified liposomes. Furthermore, the uptake of PEGylated liposomes by alveolar macrophages (AMs) was less than that of nonmodified liposomes. In further in vitro uptake experiments, nonmodified and PEGylated liposomes were opsonized with rat ELF components and then added to NR8383 cells as cultured rat AMs. The uptake of opsonized PEGylated liposomes by NR8383 cells was lower than that of opsonized nonmodified liposomes. Moreover, the protein absorption levels in opsonized PEGylated liposomes were lower than those in opsonized nonmodified liposomes. These findings suggest that sustained distributions of aerosolized PEGylated liposomes in ELFs reflect evasion of liposomal opsonization with surfactant proteins and consequent reductions in uptake by AMs. These data indicate the potential of PEGylated liposomes as aerosol-based drug delivery system that target ELF for the treatment of respiratory diseases.

  9. Aircraft/Surface Derived Aerosol Optical Properties Near Hawaii for Satellite Validation

    NASA Technical Reports Server (NTRS)

    Porter, John N.; Clarke, Antony; Lienert, Barry

    2001-01-01

    Due to the complexity of atmospheric aerosol, validation efforts are required to test satellite retrievals. Here we give an overview of our aircraft and ship validation measurements near Hawaii. Some examples of the measurements are shown which illustrate some of the variability we have encountered, This effort is ongoing and can provide important background measurements for satellite validation as well as radiation studies.

  10. Evidence for surface nucleation: efflorescence of ammonium sulfate and coated ammonium sulfate aerosol particles

    NASA Astrophysics Data System (ADS)

    Ciobanu, V. Gabriela; Marcolli, Claudia; Krieger, Ulrich K.; Zuend, Andreas; Peter, Thomas

    2010-05-01

    Aerosol particles are ubiquitous in the atmosphere and can undergo different phase transitions, such as deliquescence and efflorescence. Using optical microscopy, we investigated the efflorescence of ammonium sulfate (AS) in supersaturated AS and 1:1 and 8:1 (by weight) poly(ethylene glycol)-400 (PEG-400)/AS particles, which were deposited as droplets with diameters in the 16 - 35 μm range on a hydrophobically coated slide. The PEG-400/AS particles that are exposed to decreasing relative humidity (RH) exhibit a liquid-liquid phase separation below 90 % RH with the PEG-400 phase surrounding the aqueous AS inner phase (Marcolli and Krieger, 2006; Ciobanu et al., 2009). Pure AS particles effloresced in the RH range from 36.3 to 43.7 % RH, in agreement with literature data (31 - 48 % RH). In contrast, 1:1 PEG-400/AS particles with diameters of the AS phase from 7.2 - 19.2 μm effloresced between 26.8 - 33.9 % RH and 8:1 PEG-400/AS particles with diameters of the AS phase from 1.8 - 7.3 μm between 24.3 - 29.3 % RH. Such low efflorescence relative humidity (ERH) values have never been reached before for AS particles of this size range. We show that neither a potential inhibition of water evaporation via anomalously slow diffusion through the PEG coating, nor the presence of low amounts of PEG-400 in the AS phase, nor different timescales between various experimental techniques could possibly explain the low AS ERH values of PEG-400/AS particles in our setup. High-speed photography of the efflorescence process allowed to monitor the proceeding of the AS crystallization fronts within the particles with millisecond time resolution. The nucleation locations were deduced based on the initial crystals growth locations. Statistical analysis of 31 and 19 efflorescence events for pure AS and 1:1 PEG-400/AS particles, respectively, identified the air/droplet/substrate contact line and the air/droplet interface as preferred nucleation locations in the case of pure AS particles

  11. Aerosol vertical distribution characteristics over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Deng, Z. Q.; Han, Y. X.; Zhao, Q.; Li, J.

    2014-03-01

    The Stratospheric Aerosol and Gas Experiment II (SAGE II) aerosol products are widely used in climatic characteristic studies and stratospheric aerosol pattern research. Some SAGE II products, e.g., temperature, aerosol surface area density, 1020 nm aerosol extinction coefficient and dust storm frequency, from ground-based observations were analysed from 1984 to 2005. This analysis explored the time and spatial variations of tropospheric and stratospheric aerosols on the Tibet Plateau. The stratospheric aerosol extinction coefficient increased more than two orders of magnitude because of a large volcanic eruption. However, the tropospheric aerosol extinction coefficient decreased over the same period. Removing the volcanic eruption effect, the correlation coefficient for stratospheric AOD (Aerosol Optical Depth) and tropospheric AOD was 0.197. Moreover, the correlation coefficient for stratospheric AOD and dust storm frequency was 0.315. The maximum stratospheric AOD was attained in January, the same month as the tropospheric AOD, when the Qaidam Basin was the centre of low tropospheric AOD and the large mountains coincided with high stratospheric AOD. The vertical structure generated by westerly jet adjustment and the high altitude of the underlying surface of the Tibetan Plateau were important factors affecting winter stratospheric aerosols.

  12. Overview of the Cumulus Humilis Aerosol Processing Study

    SciTech Connect

    Berg, Larry K.; Berkowitz, Carl M.; Ogren, John A.; Hostetler, Chris A.; Ferrare, Richard; Dubey, Manvendra K.; Andrews, Elizabeth; Coulter, Richard L.; Hair, John; Hubbe, John M.; Lee, Yin-Nan; Mazzoleni, Claudio; Olfert, Jason N.; Springston, Stephen R.

    2009-11-30

    The primary goal of the Cumulus Humilis Aerosol Processing Study (CHAPS) was to characterize and contrast freshly emitted aerosols below, above, and within fields of cumuli, and to study changes to the cloud microphysical structure within these same cloud fields. The CHAPS is one of very few studies that have had an Aerosol Mass Spectrometer (AMS) sampling downstream of a counter-flow virtual impactor (CVI) inlet on an aircraft, allowing the examination of the chemical composition of the nucleated aerosols within the cumuli. The results from the CHAPS will provide insights into changes in the aerosol chemical and optical properties as aerosols move through shallow cumuli downwind of a moderately sized city. Three instrument platforms were employed during the CHAPS, including the U.S. Department of Energy Gulfstream-1 aircraft, which was equipped for in situ sampling of aerosol optical and chemical properties; the NASA-Langley King Air B200, which carried the downward looking NASA Langley High Spectral Resolution Lidar (HSRL) to measure profiles of aerosol backscatter, extinction, and depolarization between the King Air and the surface; and a surface site equipped for continuous in situ measurements of aerosol properties, profiles of aerosol backscatter, and meteorological conditions including total sky cover and thermodynamic profiles of the atmosphere. In spite of record precipitation over central Oklahoma, a total of eight research flights were made by the G-1, and eighteen by the B200, including special satellite verification flights timed to coincide with NASA satellite A-Train overpasses.

  13. Impacts of Aerosol Direct Effects on the South Asian Climate: Assessment of Radiative Feedback Processes Using Model Simulations and Satellite/Surface Measurements

    NASA Technical Reports Server (NTRS)

    Wang, Sheng-Hsiang; Gautam, Ritesh; Lau, William K. M.; Tsay, Si-Chee; Sun, Wen-Yih; Kim, Kyu-Myong; Chern, Jiun-Dar; Hsu, Christina; Lin, Neng-Huei

    2011-01-01

    Current assessment of aerosol radiative effect is hindered by our incomplete knowledge of aerosol optical properties, especially absorption, and our current inability to quantify physical and microphysical processes. In this research, we investigate direct aerosol radiative effect over heavy aerosol loading areas (e.g., Indo-Gangetic Plains, South/East Asia) and its feedbacks on the South Asian climate during the pre-monsoon season (March-June) using the Purdue Regional Climate Model (PRCM) with prescribed aerosol data derived by the NASA Goddard Earth Observing System Model (GEOS-5). Our modeling domain covers South and East Asia (60-140E and 0-50N) with spatial resolutions of 45 km in horizontal and 28 layers in vertical. The model is integrated from 15 February to 30 June 2008 continuously without nudging (i.e., only forced by initial/boundary conditions). Two numerical experiments are conducted with and without the aerosol-radiation effects. Both simulations are successful in reproducing the synoptic patterns on seasonal-to-interannual time scales and capturing a pre-monsoon feature of the northward rainfall propagation over Indian region in early June which shown in Tropical Rainfall Measuring Mission (TRMM) observation. Preliminary result suggests aerosol-radiation interactions mainly alter surface-atmosphere energetics and further result in an adjustment of the vertical temperature distribution in lower atmosphere (below 700 hPa). The modifications of temperature and associated rainfall and circulation feedbacks on the regional climate will be discussed in the presentation.

  14. [Use of laser flow-type fluorescence aerosol particle counter to evaluate the concentration of microbes in the surface air under high dust content].

    PubMed

    Kalinin, Iu T; Vorob'ev, S A; Khramov, E N; Vorob'eva, E A; Kuznetsov, A P; Kiselev, O S

    2000-01-01

    The paper deals with the use of a laser flow-type fluorescence aerosol particle counter to evaluate the concentrations of microbes in the surface air under high dust content. Various circuits of flow-type optic aerosol recorders are analyzed. Flow spectral luminescence analysis of some particles flow while exciting the fourth harmonics of a pulse laser on yttrium-aluminium garnet with neodymium by ultraviolet radiation is shown to be the most optimum method for indication of individual aerosol particles. Experiments were conducted on the authors' model of a pilot plant based on this method. The model of a laser flow-type optic analyzer was developed for experimental studies that give a clear display of biological aerosols in complex aerosols. The laser flow-type analyzer-based unit developed may provide a fluorescence signal of aerosol particles in the flow of a sample and that light diffusion signal from them at an exciting light wavelength of 266 nm. Experiments with BVC aerosols and soil dust particles were conducted in different regions of Russia. They showed it possible to detect and to rapidly calculate soil microorganisms by laser flow-type fluorescence assay of individual particles when excited by ultraviolet radiation.

  15. Origin of surface and columnar Indian Ocean Experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model - article no. D24211

    SciTech Connect

    Verma, S.; Venkataraman, C.; Boucher, O.

    2008-12-15

    We study the relative influence of aerosols emitted from different sectors and geographical regions on aerosol loading in south Asia. Sectors contributing aerosol emissions include biofuel and fossil fuel combustion, open biomass burning, and natural sources. Geographical regions include India, southeast Asia, east Asia, Africa-west Asia, and the rest of the world. Simulations of the Indian Ocean Experiment (INDOEX), from January to March 1999, are made in the general circulation model of Laboratoire de Meteorologie Dynamique (LMD-ZT GCM) with emissions tagged by sector and geographical region. Anthropogenic emissions dominate (54-88%) the predicted aerosol optical depth (AOD) over all the receptor regions. Among the anthropogenic sectors, fossil fuel combustion has the largest overall influence on aerosol loading, primarily sulfate, with emissions from India (50-80%) and rest of the world significantly influencing surface concentrations and AOD. Biofuel combustion has a significant influence on both the surface and columnar black carbon (BC) in particular over the Indian subcontinent and Bay of Bengal with emissions largely from the Indian region (60-80%). Open biomass burning emissions influence organic matter (OM) significantly, and arise largely from Africa-west Asia. The emissions from Africa-west Asia affect the carbonaceous aerosols AOD in all receptor regions, with their largest influence (AOD-BC: 60%; and AOD-OM: 70%) over the Arabian Sea. Among Indian regions, the Indo-Gangetic Plain is the largest contributor to anthropogenic surface mass concentrations and AOD over the Bay of Bengal and India. Dust aerosols are contributed mainly through the long-range transport from Africa-west Asia over the receptor regions. Overall, the model estimates significant intercontinental incursion of aerosol, for example, BC, OM, and dust from Africa-west Asia and sulfate from distant regions (rest of the world) into the INDOEX domain.

  16. Speciation and pulmonary effects of acidic SO x formed on the surface of ultrafine zinc oxide aerosols

    NASA Astrophysics Data System (ADS)

    Amdur, Mary O.; Chen, Lung Chi; Guty, John; Lam, Hua Fuan; Miller, Patricia D.

    Ultrafine metal oxides and SO 2 react during coal combustion or smelting operations to form primary emissions coated with an acidic SO x layer. A ZnO-SO 2-H 2O (mixed 500°C) system generates such particles to provide greatly needed information on both quantitative composition of the surface layer and its effects on the lung. Total S on the particles is related to ZnO concentration and is predominantly S VI. As a surface layer, 20 μg m -3 H 2SO 4 decreases pulmonary diffusing capacity in guinea pigs after four daily 3-h exposures and produces bronchial hypersensitivity following a single 1-h exposure. That 200 μg m -3 H 2SO 4 aerosols of equivalent particle size are needed to produce the same degree of bronchial hypersensitivity emphasizes the importance of the surface layer.

  17. Influence of aerosols on surface reaching spectral irradiance and introduction to a new technique for estimating aerosol radiative forcing from spectral flux measurements

    NASA Astrophysics Data System (ADS)

    Rao, R. R.

    2015-12-01

    Aerosol radiative forcing estimates with high certainty are required in climate change studies. The approach in estimating the aerosol radiative forcing by using the chemical composition of aerosols is not effective as the chemical composition data with radiative properties are not widely available. In this study we look into the approach where ground based spectral radiation flux measurements along with an RT model is used to estimate radiative forcing. Measurements of spectral flux were made using an ASD spectroradiometer with 350 - 1050 nm wavelength range and 3nm resolution for around 54 clear-sky days during which AOD range was around 0.1 to 0.7. Simultaneous measurements of black carbon were also made using Aethalometer (Magee Scientific) which ranged from around 1.5 ug/m3 to 8 ug/m3. All the measurements were made in the campus of Indian Institute of Science which is in the heart of Bangalore city. The primary study involved in understanding the sensitivity of spectral flux to change in the mass concentration of individual aerosol species (Optical properties of Aerosols and Clouds -OPAC classified aerosol species) using the SBDART RT model. This made us clearly distinguish the region of influence of different aerosol species on the spectral flux. Following this, a new technique has been introduced to estimate an optically equivalent mixture of aerosol species for the given location. The new method involves an iterative process where the mixture of aerosol species are changed in OPAC model and RT model is run as long as the mixture which mimics the measured spectral flux within 2-3% deviation from measured spectral flux is obtained. Using the optically equivalent aerosol mixture and RT model aerosol radiative forcing is estimated. The new method is limited to clear sky scenes and its accuracy to derive an optically equivalent aerosol mixture reduces when diffuse component of flux increases. Our analysis also showed that direct component of spectral flux is

  18. Unique effects of aerosol OT lamellar structures on the dynamics of guest molecules.

    PubMed

    De, Dipanwita; Datta, Anindya

    2013-06-25

    The behavior of lamellar structures of Aerosol OT (AOT) as hosts, vis-à-vis the flexible normal micelles and rigid nanochannels of Nafion membranes, has been investigated with two different fluorophores, [2,2'-bipyridyl]-3,3'-diol (BP(OH)2) and coumarin 102 (C102). Surprisingly, for BP(OH)2, a rise time is observed at intermediate emission wavelengths and not in the red edge of the fluorescence spectrum. A shoulder at 525 nm is observed in time resolved emission spectra (TRES) at initial times of BP(OH)2 in AOT lamellar structures. This feature is the signature of the monoketo (MK) tautomer, observed for the first time in a microheterogeneous medium. Also, the usually ultrafast single proton transfer in BP(OH)2 is retarded to an considerable extent in lamellar structures. The potential of this medium in promoting unusual intermediates is thus highlighted. This property may be ascribed to the rigidity of lamellar structures, compared to hosts such as regular micelles. However, studies using another fluorophore, coumarin 102 (C102), brings out the fact that these structures are significantly different from the rigid host, Nafion, as well. The absence of excited state proton transfer (ESPT) in this molecule in AOT lamellar structures indicates that it is not protonated, unlike in Nafion. Thus, the interfacial pH of lamellar structures is found to be significantly greater than that of Nafion nanochannels. From the time dependent Stokes shift (TDSS) of the emission spectra of C102, the relaxation time (0.85 ns) of interfacial water in lamellar structures is found to be an order of magnitude faster than that observed in Nafion nanochannels, in which H3O(+) ions have been substituted by different cations. Hence, this study demonstrates that AOT lamellar structures are rather unique hosts and that they behave very differently from conventional rigid and flexible hosts such as normal micelles and Nafion, respectively.

  19. Spatial heterogeneity in near surface aerosol characteristics across the Brahmaputra valley

    NASA Astrophysics Data System (ADS)

    Pathak, Binita; Borgohain, Arup; Bhuyan, Pradip Kumar; Kundu, Shyam Sundar; Sudhakar, S.; Gogoi, Mukunda M.; Takemura, Toshihiko

    2014-06-01

    In order to examine the spatial variability of the aerosol characteristics across the Brahmaputra valley, a land campaign was conducted during late winter (February 3-March 2) 2011. Measurements of particulate matter (PM, PM10, PM2.5) and black carbon (BC) concentrations were made onboard an interior redesigned vehicle. The length of the campaign trail stretched about 700 km, covering the longitude belt of 89.97°-95.55°E and latitude belt of 26.1°-27.6°N, comprising 13 measurement locations. The valley is divided into three sectors longitudinally: western sector (R1: 89.97°-91.75°E), middle sector (R2: 92.5°-94.01°E) and eastern sector (R3: 94.63°-95.55°E). Spatial heterogeneity in aerosol distribution has been observed with higher PM10 and PM2.5 concentrations at the western and middle sectors compared to the eastern sector. The locations in the western sector are found to be rich in BC compared to the other two sectors and there is a gradual decrease in BC concentrations from west to east of the Brahmaputra valley. Two hotspots within the western and middle sectors with high PM and BC concentrations have been identified. The associated physico-optical parameters of PM reveal abundance of PM2.5 aerosols along the entire valley. High population density in the western and middle sectors, together with the contribution of remote aerosols, leads to higher anthropogenic aerosols over those regions. Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) slightly underestimates the measured PM10 and PM2.5 at the eastern sector while the model overestimates the measurements at a number of locations in the western sector. In general, BC is underestimated by the model. The variation of BC within the campaign trail has not been adequately captured by the model leading to higher variance in the western locations as compared to the middle and eastern locations.

  20. Surface structure and electronic properties of materials

    NASA Technical Reports Server (NTRS)

    Siekhaus, W. J.; Somorjai, G. A.

    1975-01-01

    A surface potential model is developed to explain dopant effects on chemical vapor deposition. Auger analysis of the interaction between allotropic forms of carbon and silicon films has shown Si-C formation for all forms by glassy carbon. LEED intensity measurements have been used to determine the mean square displacement of surface atoms of silicon single crystals, and electron loss spectroscopy has shown the effect of structure and impurities on surface states located within the band gap. A thin film of Al has been used to enhance film crystallinity at low temperature.

  1. Surface structure of novel semimetal WTe2

    NASA Astrophysics Data System (ADS)

    Kawahara, Kazuaki; Ni, Zeyuan; Arafune, Ryuichi; Shirasawa, Tetsuroh; Lin, Chun-Liang; Minamitani, Emi; Watanabe, Satoshi; Kawai, Maki; Takagi, Noriaki

    2017-04-01

    We investigate the atomic structure of the tungsten ditelluride (WTe2) surface by using low-energy electron diffraction (LEED), scanning tunneling microscopy, and density functional theory (DFT) calculations. From the LEED and DFT analyses, we find small but non-negligible surface relaxation that gradually decays in an oscillatory manner inside the first WTe2 layer. In addition, the DFT calculations reveal that the Fermi surface topology is sensitive to this relaxation. These results are helpful for understanding the exotic properties of WTe2.

  2. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    NASA Astrophysics Data System (ADS)

    Jones, G. S.; Christidis, N.; Stott, P. A.

    2010-09-01

    Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by the aerosol's control is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC), produces a positive radiative forcing of about + 0.25 Wm-2 over the 20th century, compared with a little under + 2.5 Wm-2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, -0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 years of the 20th century, although the results are sensitive to a number of analysis choices, and fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from the unscaled simulation. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  3. Retrieval of aerosol optical depth from surface solar radiation measurements using machine learning algorithms, non-linear regression and a radiative transfer-based look-up table

    NASA Astrophysics Data System (ADS)

    Huttunen, Jani; Kokkola, Harri; Mielonen, Tero; Esa Juhani Mononen, Mika; Lipponen, Antti; Reunanen, Juha; Vilhelm Lindfors, Anders; Mikkonen, Santtu; Erkki Juhani Lehtinen, Kari; Kouremeti, Natalia; Bais, Alkiviadis; Niska, Harri; Arola, Antti

    2016-07-01

    In order to have a good estimate of the current forcing by anthropogenic aerosols, knowledge on past aerosol levels is needed. Aerosol optical depth (AOD) is a good measure for aerosol loading. However, dedicated measurements of AOD are only available from the 1990s onward. One option to lengthen the AOD time series beyond the 1990s is to retrieve AOD from surface solar radiation (SSR) measurements taken with pyranometers. In this work, we have evaluated several inversion methods designed for this task. We compared a look-up table method based on radiative transfer modelling, a non-linear regression method and four machine learning methods (Gaussian process, neural network, random forest and support vector machine) with AOD observations carried out with a sun photometer at an Aerosol Robotic Network (AERONET) site in Thessaloniki, Greece. Our results show that most of the machine learning methods produce AOD estimates comparable to the look-up table and non-linear regression methods. All of the applied methods produced AOD values that corresponded well to the AERONET observations with the lowest correlation coefficient value being 0.87 for the random forest method. While many of the methods tended to slightly overestimate low AODs and underestimate high AODs, neural network and support vector machine showed overall better correspondence for the whole AOD range. The differences in producing both ends of the AOD range seem to be caused by differences in the aerosol composition. High AODs were in most cases those with high water vapour content which might affect the aerosol single scattering albedo (SSA) through uptake of water into aerosols. Our study indicates that machine learning methods benefit from the fact that they do not constrain the aerosol SSA in the retrieval, whereas the LUT method assumes a constant value for it. This would also mean that machine learning methods could have potential in reproducing AOD from SSR even though SSA would have changed during

  4. Effects of Coastal Topography and Atmospheric Aerosol on the Surface Forcing of Marginal Seas

    DTIC Science & Technology

    2003-09-30

    initial and lateral boundary conditions for the regional models (MM5 and Navy COAMPS ) in AMSG. WORK COMPLETED During the past year (FY2002...2003), we have developed modeling capability of including the dust and other atmospheric aerosols and investigating their impact on the radiative heat...total heat flux of the marginal seas, especially in the AMSG region is the contribution of the dust to the shortwave radiative flux. Fig. 1 shows an

  5. Competing effects of viscosity and surface-tension depression on the hygroscopicity and CCN activity of laboratory surrogates for oligomers in atmospheric aerosol

    NASA Astrophysics Data System (ADS)

    Hodas, N.; Zuend, A.; Shiraiwa, M.; Flagan, R. C.; Seinfeld, J.; Schilling, K.; Berkemeier, T.

    2015-12-01

    The presence of oligomers in biomass burning aerosol, as well as secondary organic aerosol derived from other sources, influences particle viscosity and can introduce kinetic limitations to water uptake. This, in turn, impacts aerosol optical properties and the efficiency with which these particles serve as cloud condensation nuclei (CCN). To explore the influence of organic-component viscosity on aerosol hygroscopicity, the water-uptake behavior of aerosol systems comprised of polyethylene glycol (PEG) and mixtures of PEG and ammonium sulfate (AS) was measured under sub- and supersaturated relative humidity (RH) conditions. Experiments were conducted with systems containing PEG with average molecular weights ranging from 200 to 10,000 g/mol, corresponding to a range in viscosity of 0.004 - 4.5 Pa s under dry conditions. While evidence suggests that viscous aerosol components can suppress water uptake at RH < 90%, under supersaturated conditions (with respect to RH), an increase in CCN activity with increasing PEG molecular weight was observed. We attribute this to an increase in the efficiency with which PEG serves as a surfactant with increasing molecular weight. This effect is most pronounced for PEG-AS mixtures and, in fact, a modest increase in CCN activity is observed for the PEG 10,000-AS mixture as compared to pure AS, as evidenced by a 4% reduction in critical activation diameter. Experimental results are compared with calculations of hygroscopic growth at thermodynamic equilibrium using the Aerosol Inorganic-Organic Mixtures Functional groups Activity Coefficients model and the potential influence of kinetic limitations to observed water uptake is further explored with the Kinetic Multi-Layer Model of Gas-Particle Interactions. Results suggest the competing effects of organic-component viscosity and surface-tension depression may lead to RH-dependent differences in hygroscopicity for oligomers and other surface-active compounds present in atmospheric

  6. Surface structure, crystallographic and ice-nucleating properties of cellulose

    NASA Astrophysics Data System (ADS)

    Hiranuma, Naruki; Möhler, Ottmar; Kiselev, Alexei; Saathoff, Harald; Weidler, Peter; Shutthanandan, Shuttha; Kulkarni, Gourihar; Jantsch, Evelyn; Koop, Thomas

    2015-04-01

    Increasing evidence of the high diversity and efficient freezing ability of biological ice-nucleating particles is driving a reevaluation of their impact upon climate. Despite their potential importance, little is known about their atmospheric abundance and ice nucleation efficiency, especially non-proteinaceous ones, in comparison to non-biological materials (e.g., mineral dust). Recently, microcrystalline cellulose (MCC; non-proteinaceous plant structural polymer) has been identified as a potential biological ice-nucleating particle. However, it is still uncertain if the ice-nucleating activity is specific to the MCC structure or generally relevant to all cellulose materials, such that the results of MCC can be representatively scaled up to the total cellulose content in the atmosphere to address its role in clouds and the climate system. Here we use the helium ion microscopy (HIM) imaging and the X-ray diffraction (XRD) technique to characterize the nanoscale surface structure and crystalline properties of the two different types of cellulose (MCC and fibrous cellulose extracted from natural wood pulp) as model proxies for atmospheric cellulose particles and to assess their potential accessibility for water molecules. To complement these structural characterizations, we also present the results of immersion freezing experiments using the cold stage-based droplet freezing BINARY (Bielefeld Ice Nucleation ARaY) technique. The HIM results suggest that both cellulose types have a complex porous morphology with capillary spaces between the nanoscale fibrils over the microfiber surface. These surface structures may make cellulose accessible to water. The XRD results suggest that the structural properties of both cellulose materials are in agreement (i.e., P21 space group; a=7.96 Å, b=8.35 Å, c=10.28 Å) and comparable to the crystallographic properties of general monoclinic cellulose (i.e., Cellulose Iβ). The results obtained from the BINARY measurements suggest

  7. A spectroscopic tour through the liquid aerosol interface: Implications for atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-Xiang; Aiello, Denise; Aker, Pamela M.

    1994-12-01

    A novel nonlinear Raman spectroscopic technique has been used to image the extent of hydrogen bonding at water aerosol interfaces. The aerosols probed were generated in the laboratory using the vibrating orifice technique. The spectroscopic results show that the aerosols suffer severe hydrogen bond disruption and that the structural impairment is more pronounced at the surface. Laboratory aerosols generated this way do not mimic those found naturally. Thus mass accommodation coefficients measured using such aerosols should not be used in global climate modeling calculations.

  8. Planetary surface structure and evolution of Mars

    NASA Technical Reports Server (NTRS)

    Franck, Siegfried

    1991-01-01

    The surface of the planet Mars is characterized by two different hemispheres: old densely cratered structures in the Southern Uplands, and sparsely cratered younger topographically lower regions covering approximately the northern third of the planet's surface. The model for explaining these global surface structures is characterized by the following features: (1) homogeneous accretion of Mars; (2) formation of a metal melt layer; (3) northward translation of the undifferentiated core due to a Rayleigh-Taylor instability; (4) vigorous convection in the southern parts and formation of the Southern Uplands' crust; (5) fragmentation of the primordial core, slowly dissolving rockbergs, beginning of Tharsis uplift and volcanism; (6) formation of the Northern Lowlands' crust from only weakly differentiated silicatic material; and (7) reaching of the present state with symmetrically placed core and further thermal evolution.

  9. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures

    NASA Astrophysics Data System (ADS)

    Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben

    2012-11-01

    Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.

  10. A Comparison of Aerosol-Layer and Convective Boundary-Layer Structure over a Mountain Range during STAAARTE '97

    SciTech Connect

    De Wekker, Stephan; Steyn, D. G.; Nyeki, Stephan

    2004-11-01

    The temporal evolution and spatial structure of the aerosol layer (AL) height as observed with an airborne downlooking lidar over the Swiss Alps was investigated with a three dimensional mesoscale numerical model and a particle dispersion model. Convective boundary layer (CBL) heights were derived from the mesoscale model output, and the behavior of surface-released particles was investigated with the particle dispersion model. While a previous investigation, using data from the same field study, equated the observed AL height with the CBL height, the results of the current investigation indicate that there is a considerable difference between AL and CBL heights caused by mixing and transport processes between the CBL and the free atmosphere. CBL heights show a more terrain-following behavior and are lower than AL heights. We argue that processes causing the difference between AL and CBL heights are common over mountainous terrain and that the AL height is a length scale that needs t o be considered in air pollution studies in mountainous terrain.

  11. Pool Boiling Heat Transfer on structured Surfaces

    NASA Astrophysics Data System (ADS)

    Addy, J.; Olbricht, M.; Müller, B.; Luke, A.

    2016-09-01

    The development in the process and energy sector shows the importance of efficient utilization of available resources to improve thermal devices. To achieve this goal, all thermal components have to be optimized continuously. Various applications of multi-phase heat and mass transfer have to be improved. Therefore, the heat transfer and the influence of surface roughness in nucleate boiling with the working fluid propane is experimentally investigated on structured mild steel tubes, because only few data are available in the literature. The mild steel tube is sandblasted to obtain different surface roughness. The measurements are carried out over wide ranges of heat flux and pressure. The experimental results are compared with correlations from literature and the effect of surface roughness on the heat transfer is discussed. It is shown that the heat transfer coefficient increases with increasing surface roughness, heat flux and reduced pressure at nucleate pool boiling.

  12. Surface conduction in encapsulated topological gated structures

    NASA Astrophysics Data System (ADS)

    Deshko, Yury; Korzhovska, Inna; Zhao, Lukas; Arefe, Ghidewon; Konczykowski, Marcin; Krusin-Elbaum, Lia

    2015-03-01

    In three-dimensional (3D) topological insulators (TIs), the surface Dirac fermions intermix with the conducting bulk, thereby complicating access to the low-energy surface charge transport or magnetic response. The subsurface 2D states of bulk origin are vulnerable to bandbending due to surface adatoms, a band modification thought to be responsible for the `ageing' effect. To minimize this effect, we have developed an inert environment mechanical exfoliation technique to fabricate transistor-like gated structures in which prototypical binary TIs as well as ultra-low bulk carrier density ternaries (such as Bi2Te2Se) were encapsulated by thin h-BN layers, with electrical contacts made using exfoliated graphene. The effects of electrostatic tuning by the gate bias voltage on surface conductivity as a function of thickness of the TI layers and the variation with disorder will be presented. Supported by NSF-DMR-1312483, and DOD-W911NF-13-1-0159.

  13. Specialized cell surface structures in cellulolytic bacteria.

    PubMed

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-08-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose.

  14. Specialized cell surface structures in cellulolytic bacteria.

    PubMed Central

    Lamed, R; Naimark, J; Morgenstern, E; Bayer, E A

    1987-01-01

    The cell surface topology of various gram-negative and -positive, anaerobic and aerobic, mesophilic and thermophilic, cellulolytic and noncellulolytic bacteria was investigated by scanning electron microscopic visualization using cationized ferritin. Characteristic protuberant structures were observed on cells of all cellulolytic strains. These structures appeared to be directly related to the previously described exocellular cellulase-containing polycellulosomes of Clostridium thermocellum YS (E. A. Bayer and R. Lamed, J. Bacteriol. 167:828-836, 1986). Immunochemical evidence and lectin-binding studies suggested a further correlation on the molecular level among cellulolytic bacteria. The results indicate that such cell surface cellulase-containing structures may be of general consequence to the bacterial interaction with and degradation of cellulose. Images PMID:3301817

  15. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.; Ferrare, R. A.; Browell, E. V.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the "effective" aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar-derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  16. Retrieving the Vertical Structure of the Effective Aerosol Complex Index of Refraction from a Combination of Aerosol in Situ and Remote Sensing Measurements During TARFOX

    NASA Technical Reports Server (NTRS)

    Redemann, J.; Turco, R. P.; Liou, K. N.; Russell, P. B.; Bergstrom, R. W.; Schmid, B.; Livingston, J. M.; Hobbs, P. V.; Hartley, W. S.; Ismail, S.

    2000-01-01

    The largest uncertainty in estimates of the effects of atmospheric aerosols on climate stems from uncertainties in the determination of their microphysical properties, including the aerosol complex index of refraction, which in turn determines their optical properties. A novel technique is used to estimate the aerosol complex index of refraction in distinct vertical layers from a combination of aerosol in situ size distribution and remote sensing measurements during the Tropospheric Aerosol Radiative Forcing Observational Experiment (TARFOX). In particular, aerosol backscatter measurements using the NASA Langley LASE (Lidar Atmospheric Sensing Experiment) instrument and in situ aerosol size distribution data are utilized to derive vertical profiles of the 'effective' aerosol complex index of refraction at 815 nm (i.e., the refractive index that would provide the same backscatter signal in a forward calculation on the basis of the measured in situ particle size distributions for homogeneous, spherical aerosols). A sensitivity study shows that this method yields small errors in the retrieved aerosol refractive indices, provided the errors in the lidar derived aerosol backscatter are less than 30% and random in nature. Absolute errors in the estimated aerosol refractive indices are generally less than 0.04 for the real part and can be as much as 0.042 for the imaginary part in the case of a 30% error in the lidar-derived aerosol backscatter. The measurements of aerosol optical depth from the NASA Ames Airborne Tracking Sunphotometer (AATS-6) are successfully incorporated into the new technique and help constrain the retrieved aerosol refractive indices. An application of the technique to two TARFOX case studies yields the occurrence of vertical layers of distinct aerosol refractive indices. Values of the estimated complex aerosol refractive index range from 1.33 to 1.45 for the real part and 0.001 to 0.008 for the imaginary part. The methodology devised in this study

  17. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    m, PM10=1.1 μg m-3; estimated coefficient of light scattering by particulate matter, σep, at 570 nm=12 Mm-1). (b) High aerosol concentration (PM2.5=43.9 μg m-3; PM10=83.4 μg m-3; estimated σep at 570 nm=245 Mm-1) (reproduced by permission of National Park Service, 2002). Although comprising only a small fraction of the mass of Earth's atmosphere, aerosol particles are highly important constituents of the atmosphere. Special interest has focused on aerosols in the troposphere, the lowest part of the atmosphere, extending from the land or ocean surface typically to ˜8 km at high latitudes, ˜12 km in mid-latitudes, and ˜16 km at low latitudes. That interest arises in large part because of the importance of aerosol particles in geophysical processes, human health impairment through inhalation, environmental effects through deposition, visibility degradation, and influences on atmospheric radiation and climate.Anthropogenic aerosols are thought to exert a substantial influence on Earth's climate, and the need to quantify this influence has sparked much of the current interest in and research on tropospheric aerosols. The principal mechanisms by which aerosols influence the Earth radiation budget are scattering and absorbing solar radiation (the so-called "direct effects") and modifying clouds and precipitation, thereby affecting both radiation and hydrology (the so-called "indirect effects"). Light scattering by aerosols increases the brightness of the planet, producing a cooling influence. Light-absorbing aerosols such as black carbon exert a warming influence. Aerosols increase the reflectivity of clouds, another cooling influence. These radiative influences are quantified as forcings, where a forcing is a perturbation to the energy balance of the atmosphere-Earth system, expressed in units of watts per square meter, W m-2. A warming influence is denoted a positive forcing, and a cooling influence, negative. The radiative direct and indirect forcings by

  18. Influence of aerosols on propagation of intensive pulses of a CO2-laser of microsecond duration in the near-surface atmosphere

    NASA Astrophysics Data System (ADS)

    Chistyakova, Liliya K.

    2002-02-01

    The results of the field experiments on propagation of intensive pulses of CO2- laser on the near surface atmospheric path have been discussed. The data are given on non-linear aerosol scattering, luminescence of aerosol particles and plasma in a light beam and their influence on the beam characteristics. The field experiments have shown that the optical breakdown and thermal luminescence of aerosol particles are possible under the effect of the CO2-laser pulses. The heating aerosol particle up to the temperature, when the developed evaporation is occurred, yet does not guarantee the appearance of the plasma initiation core, which is capable to evolve in the regime of light detonation. At the thermal mechanism of development of equilibrium plasma the luminescence intensity maxims in different ranges of the spectrum coincide in time and occur after a maximum of an effecting pulse. The intensity fluctuations in the beam at the beginning of the pulse do not result in the luminescence fluctuations, which arise only to the end of a pulse. It testifies to an essential role of energy of a line-transmitted spectrum of the luminescence core, i.e., not too high temperatures (T approximately 103 K) and the pressures achievable at absorption by particles of energy of the initiating pulse. The thermal blooming of luminescent particles are new radiation sources with dimensions, exceeding the size of aerosol particles by two orders that results in the 104 increase of the scattering radiation. The essential part of the laser energy scattered on these blooming, as well as on shock waves, will be concentrated in a narrow angle in a forward direction, as their dielectric constant is less, than it is for aerosol particles. The measured aerosol scattering coefficient is higher than the calculated linear coefficient by one order. It is shown, that the overcondensation at explosive destruction of a water aerosol by fragments can also result in the considerable increase of scattering for

  19. Superhydrophobic Behavior on Nano-structured Surfaces

    NASA Astrophysics Data System (ADS)

    Schaeffer, Daniel

    2008-05-01

    Superhydrophobic behavior is observed in natural occurrences and has been thoroughly studied over the past few years. Water repellant properties on uniform arrays of vertically aligned nano-cones were investigated to determine the highest achievable contact angle (a measure of water drop repellency), which is measured from the reference plane on which the water drop sits to the tangent line of the point at which the drop makes contact with the reference plane. At low aspect ratios (height vs. width of the nano-cones), surface tension pulls the water into the nano-cone array, resulting in a wetted surface. Higher aspect ratios reverse the effect of the surface tension, resulting in a larger contact angle that causes water drops to roll off the surface. Fiber drawing, bundling, and redrawing are used to produce the structured array glass composite surface. Triple-drawn fibers are fused together, annealed, and sliced into thin wafers. The surface of the composite glass is etched to form nano-cones through a differential etching process and then coated with a fluorinated self-assembled monolayer (SAM). Cone aspect ratios can be varied through changes in the chemistry and concentration of the etching acid solution. Superhydrophobic behavior occurs at contact angles >150 and it is predicted and measured that optimal behavior is achieved when the aspect ratio is 4:1, which displays contact angles >=175 .

  20. Angular and Seasonal Variation of Spectral Surface Reflectance Ratios: Implications for the Remote Sensing of Aerosol over Land

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Wald, A. E.; Kaufman, Y. J.

    1999-01-01

    We obtain valuable information on the angular and seasonal variability of surface reflectance using a hand-held spectrometer from a light aircraft. The data is used to test a procedure that allows us to estimate visible surface reflectance from the longer wavelength 2.1 micrometer channel (mid-IR). Estimating or avoiding surface reflectance in the visible is a vital first step in most algorithms that retrieve aerosol optical thickness over land targets. The data indicate that specular reflection found when viewing targets from the forward direction can severely corrupt the relationships between the visible and 2.1 micrometer reflectance that were derived from nadir data. There is a month by month variation in the ratios between the visible and the mid-IR, weakly correlated to the Normalized Difference Vegetation Index (NDVI). If specular reflection is not avoided, the errors resulting from estimating surface reflectance from the mid-IR exceed the acceptable limit of DELTA-rho approximately 0.01 in roughly 40% of the cases, using the current algorithm. This is reduced to 25% of the cases if specular reflection is avoided. An alternative method that uses path radiance rather than explicitly estimating visible surface reflectance results in similar errors. The two methods have different strengths and weaknesses that require further study.

  1. Improved retrieval of direct and diffuse downwelling surface shortwave flux in cloudless atmosphere using dynamic estimates of aerosol content and type: application to the LSA-SAF project

    NASA Astrophysics Data System (ADS)

    Ceamanos, X.; Carrer, D.; Roujean, J.-L.

    2014-03-01

    Downwelling surface shortwave flux (DSSF) is a key parameter to address many climate, meteorological, and solar energy issues. Under clear sky conditions, DSSF is particularly sensitive to the variability both in time and space of the aerosol load and chemical composition. Hitherto, this dependence has not been properly addressed by the Satellite Application Facility on Land Surface Analysis (LSA-SAF), which operationally disseminates instantaneous DSSF products over the continents since 2005 considering unchanging aerosol conditions. In the present study, an efficient method is proposed for DSSF retrieval that will overcome the limitations of the current LSA-SAF product. This method referred to as SIRAMix (Surface Incident Radiation estimation using Aerosol Mixtures) is based on an accurate physical parameterization that is coupled with a radiative transfer-based look up table of aerosol properties. SIRAMix considers an aerosol layer constituted of several major aerosol species that are conveniently mixed to match real aerosol conditions. This feature of SIRAMix allows it to provide not only accurate estimates of global DSSF but also the direct and diffuse DSSF components, which are crucial radiative terms in many climatological applications. The implementation of SIRAMix is tested in the present article using atmospheric inputs from the European Center for Medium-Range Weather Forecasts (ECMWF). DSSF estimates provided by SIRAMix are compared against instantaneous DSSF measurements taken at several ground stations belonging to several radiation measurement networks. Results show an average root mean square error (RMSE) of 23.6 W m-2, 59.1 W m-2, and 44.9 W m-2 for global, direct, and diffuse DSSF, respectively. These scores decrease the average RMSE obtained for the current LSA-SAF product by 18.6%, which only provides global DSSF for the time being, and, to a lesser extent, for the state of the art in matter of DSSF retrieval (RMSE decrease of 10.9%, 6.5%, and

  2. Bacterial cell surface structures in Yersinia enterocolitica.

    PubMed

    Białas, Nataniel; Kasperkiewicz, Katarzyna; Radziejewska-Lebrecht, Joanna; Skurnik, Mikael

    2012-06-01

    Yersinia enterocolitica is a widespread member of the family of Enterobacteriaceae that contains both non-virulent and virulent isolates. Pathogenic Y. enterocolitica strains, especially belonging to serotypes O:3, O:5,27, O:8 and O:9 are etiologic agents of yersiniosis in animals and humans. Y. enterocolitica cell surface structures that play a significant role in virulence have been subject to many investigations. These include outer membrane (OM) glycolipids such as lipopolysaccharide (LPS) and enterobacterial common antigen (ECA) and several cell surface adhesion proteins present only in virulent Y. enterocolitica, i.e., Inv, YadA and Ail. While the yadA gene is located on the Yersinia virulence plasmid the Ail, Inv, LPS and ECA are chromosomally encoded. These structures ensure the correct architecture of the OM, provide adhesive properties as well as resistance to antimicrobial peptides and to host innate immune response mechanisms.

  3. Remote Sensing of Aerosol Backscatter and Earth Surface Targets By Use of An Airborne Focused Continuous Wave CO2 Doppler Lidar Over Western North America

    NASA Technical Reports Server (NTRS)

    Jarzembski, Maurice A.; Srivastava, Vandana; Goodman, H. Michael (Technical Monitor)

    2000-01-01

    Airborne lidar systems are used to determine wind velocity and to measure aerosol or cloud backscatter variability. Atmospheric aerosols, being affected by local and regional sources, show tremendous variability. Continuous wave (cw) lidar can obtain detailed aerosol loading with unprecedented high resolution (3 sec) and sensitivity (1 mg/cubic meter) as was done during the 1995 NASA Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) mission over western North America and the Pacific Ocean. Backscatter variability was measured at a 9.1 micron wavelength cw focused CO2 Doppler lidar for approximately 52 flight hours, covering an equivalent horizontal distance of approximately 30,000 km in the troposphere. Some quasi-vertical backscatter profiles were also obtained during various ascents and descents at altitudes that ranged from approximately 0.1 to 12 km. Similarities and differences for aerosol loading over land and ocean were observed. Mid-tropospheric aerosol backscatter background mode was approximately 6 x 10(exp -11)/ms/r, consistent with previous lidar datasets. While these atmospheric measurements were made, the lidar also retrieved a distinct backscatter signal from the Earth's surface from the unfocused part of the focused cw lidar beam during aircraft rolls. Atmospheric backscatter can be highly variable both spatially and temporally, whereas, Earth-surface backscatter is relatively much less variant and can be quite predictable. Therefore, routine atmospheric backscatter measurements by an airborne lidar also give Earth surface backscatter which can allow for investigating the Earth terrain. In the case where the Earth's surface backscatter is coming from a well-known and fairly uniform region, then it can potentially offer lidar calibration opportunities during flight. These Earth surface measurements over varying Californian terrain during the mission were compared with laboratory backscatter measurements using the same lidar of various

  4. Lidar Ratios for Dust Aerosols Derived From Retrievals of CALIPSO Visible Extinction Profiles Constrained by Optical Depths from MODIS-Aqua and CALIPSO/CloudSat Ocean Surface Reflectance Measurements

    NASA Technical Reports Server (NTRS)

    Young, Stuart A.; Josset, Damien B.; Vaughan, Mark A.

    2010-01-01

    CALIPSO's (Cloud Aerosol Lidar Infrared Pathfinder Satellite Observations) analysis algorithms generally require the use of tabulated values of the lidar ratio in order to retrieve aerosol extinction and optical depth from measured profiles of attenuated backscatter. However, for any given time or location, the lidar ratio for a given aerosol type can differ from the tabulated value. To gain some insight as to the extent of the variability, we here calculate the lidar ratio for dust aerosols using aerosol optical depth constraints from two sources. Daytime measurements are constrained using Level 2, Collection 5, 550-nm aerosol optical depth measurements made over the ocean by the MODIS (Moderate Resolution Imaging Spectroradiometer) on board the Aqua satellite, which flies in formation with CALIPSO. We also retrieve lidar ratios from night-time profiles constrained by aerosol column optical depths obtained by analysis of CALIPSO and CloudSat backscatter signals from the ocean surface.

  5. Measurement of surface scratches on aircraft structures

    NASA Astrophysics Data System (ADS)

    Sarr, Dennis P.

    1996-01-01

    In assuring the quality of aircraft, the skin quality must be free of surface imperfections. Surface imperfections such as scratches are unacceptable for cosmetic and structural reasons. Scratches beyond a certain depth are not repairable, resulting in costly replacement of an aircraft's part. Measurements of aircraft exterior surfaces require a ladder or cherry picker for positioning the inspector. Commercially-available computer vision systems are not portable, easy to use, or ergonomic. The machine vision system must be designed with these criteria in mind. The scratch measurement system (SMS) uses computer vision, digital signal processing, and automated inspection methods. The system is portable and battery powered. It is certified for measuring the depth and width of the anomaly. The SMS provides a comprehensive, analytical, and accurate reading. A hardcopy output provides a permanent record of the analysis. The graphical data shows the surface profile and provides substantial information of the surface anomaly. The factory and flight line use the SMS at different stages of aircraft production. Six systems have been built for use within Boeing. A patent was issued for the SMS in February 1994.

  6. Investigations of boundary layer structure, cloud characteristics and vertical mixing of aerosols at Barbados with large eddy simulations

    NASA Astrophysics Data System (ADS)

    Jähn, M.; Muñoz-Esparza, D.; Chouza, F.; Reitebuch, O.

    2015-08-01

    Large eddy simulations (LES) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Due to the presence of a topographically structured island surface in the domain center, the model setup has to be designed with open lateral boundaries. In order to generate inflow turbulence consistent with the upstream marine boundary layer forcing, we use the cell perturbation method based on finite amplitude perturbations. In this work, this method is for the first time tested and validated for moist boundary layer simulations with open lateral boundary conditions. Observational data obtained from the SALTRACE field campaign is used for both model initialization and a comparison with Doppler wind lidar data. Several numerical sensitivity tests are carried out to demonstrate the problems related to "gray zone modeling" when using coarser spatial grid spacings beyond the inertial subrange of three-dimensional turbulence or when the turbulent marine boundary layer flow is replaced by laminar winds. Especially cloud properties in the downwind area west of Barbados are markedly affected in these kinds of simulations. Results of an additional simulation with a strong trade-wind inversion reveal its effect on cloud layer depth and location. Saharan dust layers that reach Barbados via long-range transport over the North Atlantic are included as passive tracers in the model. Effects of layer thinning, subsidence and turbulent downward transport near the layer bottom at z ~ 1800 m become apparent. The exact position of these layers and strength of downward mixing is found to be mainly controlled atmospheric stability (especially inversion strength) and wind shear. Comparisons of LES model output with wind lidar data show similarities in the formation of the daytime convective plume and the mean vertical wind structure.

  7. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  8. Influence of surface roughness on the elastic-light scattering patterns of micron-sized aerosol particles

    NASA Astrophysics Data System (ADS)

    Auger, J.-C.; Fernandes, G. E.; Aptowicz, K. B.; Pan, Y.-L.; Chang, R. K.

    2010-04-01

    The relation between the surface roughness of aerosol particles and the appearance of island-like features in their angle-resolved elastic-light scattering patterns is investigated both experimentally and with numerical simulation. Elastic scattering patterns of polystyrene spheres, Bacillus subtilis spores and cells, and NaCl crystals are measured and statistical properties of the island-like intensity features in their patterns are presented. The island-like features for each class of particle are found to be similar; however, principal-component analysis applied to extracted features is able to differentiate between some of the particle classes. Numerically calculated scattering patterns of Chebyshev particles and aggregates of spheres are analyzed and show qualitative agreement with experimental results.

  9. ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS

    EPA Science Inventory

    ANALYSIS OF RESPIRATORY DEPOSITION OF INHALED PARTICLES FOR DIFFERENT DOSE METRICS: COMPARISON OF NUMBER, SURFACE AREA AND MASS DOSE OF TYPICAL AMBIENT BI-MODAL AEROSOLS.
    Chong S. Kim, SC. Hu*, PA Jaques*, US EPA, National Health and Environmental Effects Research Laboratory, ...

  10. Detecting the influence of fossil fuel and bio-fuel black carbon aerosols on near surface temperature changes

    NASA Astrophysics Data System (ADS)

    Jones, G. S.; Christidis, N.; Stott, P. A.

    2011-01-01

    Past research has shown that the dominant influence on recent global climate changes is from anthropogenic greenhouse gas increases with implications for future increases in global temperatures. One mitigation proposal is to reduce black carbon aerosol emissions. How much warming can be offset by controlling black carbon is unclear, especially as its influence on past climate has not been previously unambiguously detected. In this study observations of near-surface warming over the last century are compared with simulations using a climate model, HadGEM1. In the simulations black carbon, from fossil fuel and bio-fuel sources (fBC), produces a positive radiative forcing of about +0.25 Wm-2 over the 20th century, compared with +2.52 Wm-2 for well mixed greenhouse gases. A simulated warming of global mean near-surface temperatures over the twentieth century from fBC of 0.14 ± 0.1 K compares with 1.06 ± 0.07 K from greenhouse gases, -0.58 ± 0.10 K from anthropogenic aerosols, ozone and land use changes and 0.09 ± 0.09 K from natural influences. Using a detection and attribution methodology, the observed warming since 1900 has detectable influences from anthropogenic and natural factors. Fossil fuel and bio-fuel black carbon is found to have a detectable contribution to the warming over the last 50 yr of the 20th century, although the results are sensitive to the period being examined as fBC is not detected for the later fifty year period ending in 2006. The attributed warming of fBC was found to be consistent with the warming from fBC unscaled by the detection analysis. This study suggests that there is a possible significant influence from fBC on global temperatures, but its influence is small compared to that from greenhouse gas emissions.

  11. Atmospheric Chemistry: Nature's plasticized aerosols

    NASA Astrophysics Data System (ADS)

    Ziemann, Paul J.

    2016-01-01

    The structure of atmospheric aerosol particles affects their reactivity and growth rates. Measurements of aerosol properties over the Amazon rainforest indicate that organic particles above tropical rainforests are simple liquid drops.

  12. Impact of Asian aerosols on air quality over the United States: A perspective from aerosol-cloud-radiation coupling

    NASA Astrophysics Data System (ADS)

    Tao, Z.; Yu, H.; Chin, M.

    2013-12-01

    It has well been established, through satellite/ground observations, that dust and aerosols from various Asian sources can travel across the Pacific and reach North America (NA) at least on episode bases. Once reaching NA, these inflow aerosols would compete with local emissions to influence atmospheric composition and air quality over the United States (US). The previous studies, typically based on one or multiple satellite measurements in combination with global/regional model simulations, suggest that the impact of Asian dust/aerosols on US air quality tend to be small since most inflow aerosols stay aloft. On the other hand, aerosols affect many key meteorological processes that will ultimately channel down to impact air quality. Aerosols absorb and scatter solar radiation that change the atmospheric stability, thus temperature, wind, and planetary boundary layer structure that would directly alter air quality. Aerosols can serve as cloud condensation nuclei and ice nuclei to modify cloud properties and precipitation that would also affect aerosol removal and concentration. This indirect impact of Asian aerosol inflow on US air quality may be substantial and need to be investigated. This study employs the NASA Unified WRF (NU-WRF) to address the question from the aerosol-radiation-cloud interaction perspective. The simulation period was selected from April to June of 2010 during which the Asian dust continuously reached NA based on CALIPSO satellite observation. The preliminary results show that the directly-transported Asian aerosol increases surface PM2.5 concentration by less than 2 μg/m3 over the west coast areas of US, and the aerosol-radiation-cloud feedback has a profound effect on air quality over the central to eastern US. A more detailed analysis links this finding to a series of meteorological conditions modified by aerosol effects.

  13. Bioinspired, dynamic, structured surfaces for biofilm prevention

    NASA Astrophysics Data System (ADS)

    Epstein, Alexander K.

    Bacteria primarily exist in robust, surface-associated communities known as biofilms, ubiquitous in both natural and anthropogenic environments. Mature biofilms resist a wide range of biocidal treatments and pose persistent pathogenic threats. Treatment of adherent biofilm is difficult, costly, and, in medical systems such as catheters, frequently impossible. Adding to the challenge, we have discovered that biofilm can be both impenetrable to vapors and extremely nonwetting, repelling even low surface tension commercial antimicrobials. Our study shows multiple contributing factors, including biochemical components and multiscale reentrant topography. Reliant on surface chemistry, conventional strategies for preventing biofilm only transiently affect attachment and/or are environmentally toxic. In this work, we look to Nature's antifouling solutions, such as the dynamic spiny skin of the echinoderm, and we develop a versatile surface nanofabrication platform. Our benchtop approach unites soft lithography, electrodeposition, mold deformation, and material selection to enable many degrees of freedom—material, geometric, mechanical, dynamic—that can be programmed starting from a single master structure. The mechanical properties of the bio-inspired nanostructures, verified by AFM, are precisely and rationally tunable. We examine how synthetic dynamic nanostructured surfaces control the attachment of pathogenic biofilms. The parameters governing long-range patterning of bacteria on high-aspect-ratio (HAR) nanoarrays are combinatorially elucidated, and we discover that sufficiently low effective stiffness of these HAR arrays mechanoselectively inhibits ˜40% of Pseudomonas aeruginosa biofilm attachment. Inspired by the active echinoderm skin, we design and fabricate externally actuated dynamic elastomer surfaces with active surface microtopography. We extract from a large parameter space the critical topographic length scales and actuation time scales for achieving

  14. Improved retrieval of direct and diffuse downwelling surface shortwave flux in cloudless atmosphere using dynamic estimates of aerosol content and type: application to the LSA-SAF project

    NASA Astrophysics Data System (ADS)

    Ceamanos, X.; Carrer, D.; Roujean, J.-L.

    2014-08-01

    Downwelling surface shortwave flux (DSSF) is a key parameter to addressing many climate, meteorological, and solar energy issues. Under clear sky conditions, DSSF is particularly sensitive to the variability both in time and space of the aerosol load and chemical composition. Hitherto, this dependence has not been properly addressed by the Satellite Application Facility on Land Surface Analysis (LSA-SAF), which operationally disseminates instantaneous DSSF products over the continents since 2005 considering constant aerosol conditions. In the present study, an efficient method is proposed for DSSF retrieval that will overcome the limitations of the current LSA-SAF product. This method referred to as SIRAMix (Surface Incident Radiation estimation using Aerosol Mixtures) is based upon an accurate physical parameterization coupled with a radiative transfer-based look up table of aerosol properties. SIRAMix considers a tropospheric layer composed of several major aerosol species that are conveniently mixed to reproduce real aerosol conditions as best as possible. This feature of SIRAMix allows it to provide not only accurate estimates of global DSSF but also the direct and diffuse DSSF components, which are crucial radiative terms in many climatological applications. The implementation of SIRAMix is tested in the present article using atmospheric analyses from the European Center for Medium-Range Weather Forecasts (ECMWF). DSSF estimates provided by SIRAMix are compared against instantaneous DSSF measurements taken at several ground stations belonging to several radiation measurement networks. Results show an average root mean square error (RMSE) of 23.6, 59.1, and 44.9 W m-2 for global, direct, and diffuse DSSF, respectively. These scores decrease the average RMSE obtained for the current LSA-SAF product by 18.6%, which only provides global DSSF for the time being, and, to a lesser extent, for the state of the art in the matter of DSSF retrieval (RMSE decrease of 10

  15. Structure and thermodynamics of surface recognition

    SciTech Connect

    Gupta, G.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). Interactions of the surface glycoprotein, gp120, with the receptors of host cells define the pathogenesis of HIV-1, the virus that causes AIDS. gp120 is made of several disulfide-bridged loops--the amino acid sequences of some of these loops are fairly conserved whereas the rest are variable. The third variable (V3) loop has been the target of vaccine design for quite some time since this loop is involved in various steps of viral pathogenesis. However, this loop also happens to be the most variable one. The authors have carried out structural and immunological studies to determine the sequence-structure-antigenicity correlations of the HIV-1 V3 loops. This resulted in the identification of a secondary structure at the tip of the V3 loop that remains invariant in spite of the sequence variation. The authors designed a multi-valent V3-based antigen that presents multiple copies of the same tip element several times in the same structure. During the course of this project, they realized that the protective epitopes of gp120 should be judged in the context of the native structure. Therefore, the authors developed a method to obtain a model of gp120 that is consistent with all the immunology and virology data. This model is useful in choosing or designing gp120 subdomains for vaccine development.

  16. Lidar Observations of the Vertical Structure of Ozone and Aerosol during Wintertime High-Ozone Episodes Associated with Oil and Gas Exploration in the Uintah Basin

    NASA Astrophysics Data System (ADS)

    Senff, C. J.; Langford, A. O.; Banta, R. M.; Alvarez, R. J.; Weickmann, A.; Sandberg, S.; Marchbanks, R. D.; Brewer, A.; Hardesty, R. M.

    2013-12-01

    The Uintah Basin in northeast Utah has been experiencing extended periods of poor air quality in the winter months including very high levels of surface ozone. To investigate the causes of these wintertime ozone pollution episodes, two comprehensive studies were undertaken in January/February of 2012 and 2013. As part of these Uintah Basin Ozone Studies (UBOS), NOAA deployed its ground-based, scanning Tunable Optical Profiler for Aerosol and oZone (TOPAZ) lidar to document the vertical structure of ozone and aerosol backscatter from near the surface up to about 3 km above ground level (AGL). TOPAZ, along with a comprehensive set of chemistry and meteorological measurements, was situated in both years at the Horse Pool site at the northern edge of a large concentration of gas producing wells in the eastern part of the Uintah Basin. The 2012 study was characterized by unusually warm and snow-free condition and the TOPAZ lidar observed deep boundary layers (BL) and mostly well-mixed vertical ozone profiles at or slightly above tropospheric background levels. During UBOS 2013, winter weather conditions in the Uintah Basin were more typical with snow-covered ground and a persistent, shallow cold-pool layer. The TOPAZ lidar characterized with great temporal and spatial detail the evolution of multiple high-ozone episodes as well as cleanout events caused by the passage of synoptic-scale storm systems. Despite the snow cover, the TOPAZ observations show well-mixed afternoon ozone and aerosol profiles up to about 100 m AGL. After several days of pollutant buildup, BL ozone values reached 120-150 ppbv. Above the mixed layer, ozone values gradually decreased to tropospheric background values of around 50 ppbv throughout the several-hundred-meter-deep cold-pool layer and then stayed constant above that up to about 3 km AGL. During the ozone episodes, the lidar observations show no indication of either vertical or horizontal transport of high ozone levels to the surface, thus

  17. Subtask 2.7 -- Mercury capture on solid surfaces and aerosols. Semi-annual report, July 1--December 31, 1996

    SciTech Connect

    Schultz, R.L.

    1997-08-01

    Determining the fly ash properties responsible for the capture of mercury in coal-fired power generation systems is key to understanding and controlling mercury emissions in these systems. Several capture mechanisms and interactions may be possible, such as condensation, chemical adsorption, physical adsorption, chemical bonding, and amalgamation. The chemical nature of the exposed surfaces and the amount of surface area are likely to affect the amount of mercury capture, so both of these parameters must be explored. Since much of the fly ash surface area is concentrated on submicron particles, the interaction of mercury with submicron particles needs to be evaluated. Another possible explanation of mercury capture on fly ash is the formation of amalgams with other metal species that may be present in the fly ash; if this is true, amalgamation may be a viable control technology. The project objectives are to relate mercury capture by fly ash to chemical and physical properties of the fly ash, determine mercury associations with submicron aerosols, evaluate mercury capture on metal sorbents, and relate experimental results to predictions based on state-of-the-art models. Results to date on these activities are described.

  18. Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints

    NASA Astrophysics Data System (ADS)

    Lin, J.-T.; Liu, M.-Y.; Xin, J.-Y.; Boersma, K. F.; Spurr, R.; Martin, R.; Zhang, Q.

    2015-10-01

    Satellite retrievals of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. Here, we conduct an improved retrieval of NO2 VCDs over China, called the POMINO algorithm, based on measurements from the Ozone Monitoring Instrument (OMI), and we test the importance of a number of aerosol and surface reflectance treatments in this algorithm. POMINO uses a parallelized LIDORT-driven AMFv6 package to derive tropospheric air mass factors via pixel-specific radiative transfer calculations with no look-up tables, taking slant column densities from DOMINO v2. Prerequisite cloud optical properties are derived from a dedicated cloud retrieval process that is fully consistent with the main NO2 retrieval. Aerosol optical properties are taken from GEOS-Chem simulations constrained by MODIS aerosol optical depth (AOD) data. MODIS bi-directional reflectance distribution function (BRDF) data are used for surface reflectance over land. For the present analysis, POMINO level-2 data for 2012 are aggregated into monthly means on a 0.25° long. × 0.25° lat. grid. POMINO-retrieved annual mean NO2 VCDs vary from 15-25 × 1015 cm-2 over the polluted North China Plain (NCP) to below 1015 cm-2 over much of western China. Using POMINO to infer Chinese emissions of nitrogen oxides leads to annual anthropogenic emissions of 9.05 TgN yr-1, an increase from 2006 (Lin, 2012) by about 19 %. Replacing the MODIS BRDF data with the OMLER v1 monthly climatological albedo data affects NO2 VCDs by up to 40 % for certain locations and seasons. The effect on constrained NOx emissions is small. Excluding aerosol information from the retrieval process (this is the traditional "implicit" treatment) enhances annual mean NO2 VCDs by 15-40 % over much of eastern China. Seasonally, NO2 VCDs are reduced by 10-20 % over parts of the NCP in spring and over northern China

  19. Surface characterization of semiconductor photocathode structures

    NASA Astrophysics Data System (ADS)

    Liu, Zhi

    The need for a high performance photocathode in the electron beam lithography and microscopy is well established. Previous research demonstrated high brightness (1 x 108 A/cm2-sr at 3 KeV), and an energy spread as low as 50meV at room temperature for a GaAs based negative electron affinity (NEA) cathode in a sealed-off tube. However the GaAs cathodes suffer rapid decay in an open vacuum system. Achieving a clean, stoichiometric and repeatable GaAs(100) surface was the first step in this study. Based on the knowledge obtained from synchrotron radiation photoelectron spectroscopy, we successfully developed and optimized a reliable surface cleaning technique for our GaAs photocathodes. The fully activated photocathode and its decay under different vacuum conditions were investigated. The NEA activation layer is about 1 nm thick and was very vulnerable to oxygen in the system. A revised double dipole structural model was proposed to explain how the Cs/O co-deposition could produce a NEA surface. We found the chemical changes of oxygen species in the activation layer caused the initial quantum yield (QY) decay of the cathode. Further exposure to oxygen oxidized the substrate and permanently reduced the QY to zero. Energy distribution curve measurements of GaAs(100) and GaN(0001) NEA surfaces were performed under laser illumination. We found that the main contribution to the total emitted current of NEA GaAs and GaN surfaces was due to the electrons that were lost an average 140meV and 310 meV respectively in the near surface region prior to emission into vacuum. This energy loss is due not to the scattering through Cs or Cs/O layer; In GaN, it is probably due to a Gunn-like effect involving inter-valley phonon scattering within the band-bending region. We observed a highly directional emission profile from GaAs cathodes (electrons emitted within a semi-angle of 15° relative to the surface normal). In practice, it is expected that the highly directional photoemission

  20. The Surface Structure of Ground Metal Crystals

    NASA Technical Reports Server (NTRS)

    Boas, W.; Schmid, E.

    1944-01-01

    The changes produced on metallic surfaces as a result of grinding and polishing are not as yet fully understood. Undoubtedly there is some more or less marked change in the crystal structure, at least, in the top layer. Hereby a diffusion of separated crystal particles may be involved, or, on plastic material, the formation of a layer in greatly deformed state, with possible recrystallization in certain conditions. Czochralski verified the existence of such a layer on tin micro-sections by successive observations of the texture after repeated etching; while Thomassen established, roentgenographically by means of the Debye-Scherrer method, the existence of diffused crystal fractions on the surface of ground and polished tin bars, which he had already observed after turning (on the lathe). (Thickness of this layer - 0.07 mm). Whether this layer borders direct on the undamaged base material or whether deformed intermediate layers form the transition, nothing is known. One observation ty Sachs and Shoji simply states that after the turning of an alpha-brass crystal the disturbance starting from the surface, penetrates fairly deep (approx. 1 mm) into the crystal (proof by recrystallization at 750 C).

  1. Design of a lunar surface structure

    NASA Astrophysics Data System (ADS)

    Mottaghi, Sohrob

    The next step for manned exploration and settlement is a return to the Moon. In such a return, the most challenging task is the construction of structures for habitation, considering the Moon's hostile environment. Therefore the question is: What is the best way to erect habitable structures on the lunar surface? Given the cost associated with bringing material to the Moon, In-Situ Resource Utilization (ISRU) is viewed by most as the basis for a successful manned exploration and settlement of the Solar system. Along these lines, we propose an advanced concept where the use of freeform fabrication technologies by autonomous mini-robots can form the basis for habitable lunar structures. Also, locally-available magnesium is proposed as the structural material. While it is one of the most pervasive metals in the regolith, magnesium has been only suggested only briefly as a viable option in the past. Therefore, a study has been conducted on magnesium and its alloys, taking into account the availability of the alloying elements on the Moon. An igloo-shaped magnesium structure, covered by sandbags of regolith shielding and supported on a sintered regolith foundation, is considered as a potential design of a lunar base, as well as the test bed for the proposed vision. Three studies are carried out: First a static analysis is conducted which proves the feasibility of the proposed material and method. Second, a thermal analysis is carried out to study the effect of the regolith shielding as well as the sensitivity of such designs to measurement uncertainties of regolith and sintered thermal properties. The lunar thermal environment is modeled for a potential site at 88º latitude in the lunar South Pole Region. Our analysis shows that the uncertainties are in an acceptable range where a three-meter thick shield is considered. Also, the required capacity of a thermal rejection system is estimated, choosing the thermal loads to be those of the Space Station modules. In the

  2. Aerosol Charging by Ion Attachment and Electrical Conductivity in the Lower Atmosphere of Mars

    NASA Astrophysics Data System (ADS)

    Tripathi, S. N.; Michael, M.

    2007-12-01

    Aerosol in the atmosphere of Mars is a topic of considerable interest since their effect on the climate has been recognized. The aerosols interact with both visible and infrared radiation and modify atmospheric heating rates which are responsible for the atmospheric circulation, dust storms etc. In the present work, the charging of aerosols and the conductivity of the lower atmosphere of Mars during the day and night-time are calculated. Galactic cosmic rays are the dominant ionizing process in the lower atmosphere producing molecular ions and ion clusters. These ion clusters get attached to the aerosols and charging occurs during the night-time. Solar UV photons are an additional ionizing agent during the day-time. Solar photons of energy less than 6 eV reach the surface of Mars as those with energies greater than 6 eV are absorbed by the atmospheric molecules before they reach the lower atmosphere. Those photons, which reach the lower atmosphere, ionize the aerosols as the ionization potential of most of the aerosols is less than 6 eV and produce electrons. Aerosols become charged by the attachment of ions and electrons during the day-time. The ion-aerosol and electron-aerosol attachment coefficients are calculated. The neutral atmospheric properties required to calculate the aerosol charging and the conductivity are obtained from Magalhaes et al. (1999). The aerosols have a concentration and effective radius of 2.26 cm-3 and 1.9 mm, respectively, at the surface. The charge distribution of aerosols is obtained by the simultaneous solution of the ion-electron-aerosol charge balance equations. Both the steady state and time dependent concentration of charged aerosols are calculated. It was observed that about 80% of the aerosols close to the surface become charged during the night-time (Michael et al., 2007). In addition to ions, electrons are also present during the day-time. More charging occurs and most of the aerosols become charged during the day-time. The

  3. From BASE-ASIA Toward 7-SEAS: A Satellite-Surface Perspective of Boreal Spring Biomass-Burning Aerosols and Clouds in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Tsay, Si-Chee; Hsu, N. Christina; Lau, William K.-M.; Li, Can; Gabriel, Philip M.; Ji, Qiang; Holben, Brent N.; Welton, E. Judd; Nguyen, Anh X.; Janjai, Serm; Lin, Neng-Huei; Reid, Jeffrey S.; Boonjawat, Jariya; Howell, Steven G.; Huebert, Barry J.; Fu, Joshua S.; Hansell, Richard A.; Sayer, Andrew M.; Gautam, Ritesh; Wang, Sheng-Hsiang; Goodloe, Colby S.; Miko, Laddawan R.; Shu, Peter K.; Loftus, Adrian M.; Huang, Jingfeng; Kim, Jin Young; Jeong, Myeong-Jae; Pantina, Peter

    2013-01-01

    In this paper, we present recent field studies conducted by NASA's SMART-COMMIT (and ACHIEVE, to be operated in 2013) mobile laboratories, jointly with distributed ground-based networks (e.g., AERONET, http://aeronet.gsfc.nasa.gov/ and MPLNET, http://mplnet.gsfc.nasa.gov/) and other contributing instruments over northern Southeast Asia. These three mobile laboratories, collectively called SMARTLabs (cf. http://smartlabs.gsfc.nasa.gov/, Surface-based Mobile Atmospheric Research & Testbed Laboratories) comprise a suite of surface remote sensing and in-situ instruments that are pivotal in providing high spectral and temporal measurements, complementing the collocated spatial observations from various Earth Observing System (EOS) satellites. A satellite-surface perspective and scientific findings, drawn from the BASE-ASIA (2006) field deployment as well as a series of ongoing 7-SEAS (2010-13) field activities over northern Southeast Asia are summarized, concerning (i) regional properties of aerosols from satellite and in situ measurements, (ii) cloud properties from remote sensing and surface observations, (iii) vertical distribution of aerosols and clouds, and (iv) regional aerosol radiative effects and impact assessment. The aerosol burden over Southeast Asia in boreal spring, attributed to biomass burning, exhibits highly consistent spatial and temporal distribution patterns, with major variability arising from changes in the magnitude of the aerosol loading mediated by processes ranging from large-scale climate factors to diurnal meteorological events. Downwind from the source regions, the tightly coupled-aerosolecloud system provides a unique, natural laboratory for further exploring the micro- and macro-scale relationships of the complex interactions. The climatic significance is presented through large-scale anti-correlations between aerosol and precipitation anomalies, showing spatial and seasonal variability, but their precise cause-and-effect relationships

  4. Surface and aerosol models for use in radiative transfer codes. [for radiometric calibration of Landsat-5 Thematic Mapper (TM)

    NASA Technical Reports Server (NTRS)

    Hart, Quinn J.

    1991-01-01

    Absolute reflectance-based radiometric calibrations of Landsat-5 Thematic Mapper (TM) are improved with the inclusion of a method to invert optical-depth measurements to obtain aerosol-particle size distributions, and a non-Lambertian surface reflectance model. The inverted size distributions can predict radiances varying from the previously assumed jungian distributions by as much as 5 percent, though the reduction in the estimated error is less than one percent. Comparison with measured diffuse-to-global ratios show that neither distribution consistently predicts the ratio accurately, and this is shown to be a large contributor to calibration uncertainties. An empirical model for the surface reflectance of White Sands, using a two-degree polynomial fit as a function of scattering angle, was employed. The model reduced estimated errors in radiance predictions by up to one percent. Satellite calibrations dating from October, 1984 were reprocessed using the improved methods and linear estimations of satellite counts per unit radiance versus time since launch were determined which showed a decrease over time for the first four bands.

  5. Femtosecond laser surface structuring technique for making human enamel and dentin surfaces superwetting

    NASA Astrophysics Data System (ADS)

    Vorobyev, A. Y.; Guo, Chunlei

    2013-12-01

    It is known that good wettability of enamel and dentin surfaces is a key factor in enhancing adhesion of restorative materials in dentistry. Here, we report on a femtosecond laser surface texturing approach that makes both the enamel and dentine surfaces superwetting. In contrast to the traditional chemical etching that yields random surface structures, this new approach produces engineered surface structures. The surface structure engineered and tested here is an array of femtosecond laser-produced parallel microgrooves that generates a strong capillary force. Due to the powerful capillary action, water is rapidly sucked into this engineered surface structure and spreads even on a vertical surface.

  6. Aerosol Direct, Indirect, Semidirect, and Surface Albedo Effects from Sector Contributions Based on the IPCC AR5 Emissions for Preindustrial and Present-day Conditions

    NASA Technical Reports Server (NTRS)

    Bauer, Susanne E.; Menon, Surabi

    2012-01-01

    The anthropogenic increase in aerosol concentrations since preindustrial times and its net cooling effect on the atmosphere is thought to mask some of the greenhouse gas-induced warming. Although the overall effect of aerosols on solar radiation and clouds is most certainly negative, some individual forcing agents and feedbacks have positive forcing effects. Recent studies have tried to identify some of those positive forcing agents and their individual emission sectors, with the hope that mitigation policies could be developed to target those emitters. Understanding the net effect of multisource emitting sectors and the involved cloud feedbacks is very challenging, and this paper will clarify forcing and feedback effects by separating direct, indirect, semidirect and surface albedo effects due to aerosols. To this end, we apply the Goddard Institute for Space Studies climate model including detailed aerosol microphysics to examine aerosol impacts on climate by isolating single emission sector contributions as given by the Coupled Model Intercomparison Project Phase 5 (CMIP5) emission data sets developed for Intergovernmental Panel on Climate Change (IPCC) AR5. For the modeled past 150 years, using the climate model and emissions from preindustrial times to present-day, the total global annual mean aerosol radiative forcing is -0.6 W/m(exp 2), with the largest contribution from the direct effect (-0.5 W/m(exp 2)). Aerosol-induced changes on cloud cover often depends on cloud type and geographical region. The indirect (includes only the cloud albedo effect with -0.17 W/m(exp 2)) and semidirect effects (-0.10 W/m(exp 2)) can be isolated on a regional scale, and they often have opposing forcing effects, leading to overall small forcing effects on a global scale. Although the surface albedo effects from aerosols are small (0.016 W/m(exp 2)), triggered feedbacks on top of the atmosphere (TOA) radiative forcing can be 10 times larger. Our results point out that each

  7. Theoretical Basis for the Surface Spectral Reflectance Relationships Used in the MODIS Aerosol Algorithm

    NASA Technical Reports Server (NTRS)

    Kaufman, Yoram J.; Gobron, Nadine; Pinty, Bernard; Widlowski, Jean-Luc; Verstraete, Michel M.; Lau, William K. M. (Technical Monitor)

    2001-01-01

    The analysis of data from the MODIS instrument on the Terra platform to derive global distribution of aerosols assumes a set of relationships between the blue, rho (sub blue), the red, rho (sub red), and 2.1 micrometers, rho (sub 2.1), spectral channels. These relations have been established from a series of measurements indicating that rho (sub blue) approximately 0.5 rho (sub red) approximately 0.25 rho (sub 2.1). Here we use a model to describe the transfer of radiation through a vegetation canopy composed of randomly oriented leaves to assess the theoretical foundations for these relationships. The influence of varying fractional vegetation coverage is simulated simply as a linear combination of pure soil and pure vegetation conditions, also known as Independent Pixel Approximation (IPA). Calculations for a wide range of leaf area indices and vegetation fractions show that rho (sub blue) is consistently about 1/4 of rho (sub 2.1) as used by MODIS for the whole range of analyzed cases, except for very dark soils, such as those found in burn scars. For its part, the ratio rho (sub red)/rho (sub 2.1) varies from less than the empirically derived value of 1/2 for dense and dark vegetation (rho (sub 2.1) less than 0.1), to more than 1/2 for bright mixture of soil and vegetation. This is in agreement with measurements over uniform dense vegetation, but not with measurements over mixed dark scenes. In the later case, the discrepancy is probably mitigated by shadows due to uneven canopy and terrain on a large scale. It is concluded that the value of this ratio should ideally be made dependent on the land cover type in the operational processing of MODIS data, especially over dense forests.

  8. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-06-01

    Sea salt aerosols (SSA) are dominant particles in the arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes of physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased but the C, N, O, and S content increased. 12C14N- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C14N- line scans further show that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces determines their hygroscopic and optical properties. These abundant SSA, whose reactive surfaces absorb inorganic and organic acidic gases in the arctic troposphere, need to be incorporated into atmospheric chemical models.

  9. Sea salt aerosols as a reactive surface for inorganic and organic acidic gases in the Arctic troposphere

    NASA Astrophysics Data System (ADS)

    Chi, J. W.; Li, W. J.; Zhang, D. Z.; Zhang, J. C.; Lin, Y. T.; Shen, X. J.; Sun, J. Y.; Chen, J. M.; Zhang, X. Y.; Zhang, Y. M.; Wang, W. X.

    2015-10-01

    Sea salt aerosols (SSA) are dominant particles in the Arctic atmosphere and determine the polar radiative balance. SSA react with acidic pollutants that lead to changes in physical and chemical properties of their surface, which in turn alter their hygroscopic and optical properties. Transmission electron microscopy with energy-dispersive X-ray spectrometry was used to analyze morphology, composition, size, and mixing state of individual SSA at Ny-Ålesund, Svalbard, in summertime. Individual fresh SSA contained cubic NaCl coated by certain amounts of MgCl2 and CaSO4. Individual partially aged SSA contained irregular NaCl coated by a mixture of NaNO3, Na2SO4, Mg(NO3)2, and MgSO4. The comparison suggests the hydrophilic MgCl2 coating in fresh SSA likely intrigued the heterogeneous reactions at the beginning of SSA and acidic gases. Individual fully aged SSA normally had Na2SO4 cores and an amorphous coating of NaNO3. Elemental mappings of individual SSA particles revealed that as the particles ageing Cl gradually decreased, the C, N, O, and S content increased. 12C- mapping from nanoscale secondary ion mass spectrometry indicates that organic matter increased in the aged SSA compared with the fresh SSA. 12C- line scan further shows that organic matter was mainly concentrated on the aged SSA surface. These new findings indicate that this mixture of organic matter and NaNO3 on particle surfaces likely determines their hygroscopic and optical properties. These abundant SSA as reactive surfaces adsorbing inorganic and organic acidic gases can shorten acidic gas lifetime and influence the possible gaseous reactions in the Arctic atmosphere, which need to be incorporated into atmospheric chemical models in the Arctic troposphere.

  10. Aerosol based direct-write micro-additive fabrication method for sub-mm 3D metal-dielectric structures

    NASA Astrophysics Data System (ADS)

    Rahman, Taibur; Renaud, Luke; Heo, Deuk; Renn, Michael; Panat, Rahul

    2015-10-01

    The fabrication of 3D metal-dielectric structures at sub-mm length scale is highly important in order to realize low-loss passives and GHz wavelength antennas with applications in wearable and Internet-of-Things (IoT) devices. The inherent 2D nature of lithographic processes severely limits the available manufacturing routes to fabricate 3D structures. Further, the lithographic processes are subtractive and require the use of environmentally harmful chemicals. In this letter, we demonstrate an additive manufacturing method to fabricate 3D metal-dielectric structures at sub-mm length scale. A UV curable dielectric is dispensed from an Aerosol Jet system at 10-100 µm length scale and instantaneously cured to build complex 3D shapes at a length scale  <1 mm. A metal nanoparticle ink is then dispensed over the 3D dielectric using a combination of jetting action and tilted dispense head, also using the Aerosol Jet technique and at a length scale 10-100 µm, followed by the nanoparticle sintering. Simulation studies are carried out to demonstrate the feasibility of using such structures as mm-wave antennas. The manufacturing method described in this letter opens up the possibility of fabricating an entirely new class of custom-shaped 3D structures at a sub-mm length scale with potential applications in 3D antennas and passives.

  11. Lunar surface structural concepts and construction studies

    NASA Technical Reports Server (NTRS)

    Mikulas, Martin

    1991-01-01

    The topics are presented in viewgraph form and include the following: lunar surface structures construction research areas; lunar crane related disciplines; shortcomings of typical mobile crane in lunar base applications; candidate crane cable suspension systems; NIST six-cable suspension crane; numerical example of natural frequency; the incorporation of two new features for improved performance of the counter-balanced actively-controlled lunar crane; lunar crane pendulum mechanics; simulation results; 1/6 scale lunar crane testbed using GE robot for global manipulation; basic deployable truss approaches; bi-pantograph elevator platform; comparison of elevator platforms; perspective of bi-pantograph beam; bi-pantograph synchronously deployable tower/beam; lunar module off-loading concept; module off-loader concept packaged; starburst deployable precision reflector; 3-ring reflector deployment scheme; cross-section of packaged starburst reflector; and focal point and thickness packaging considerations.

  12. Thermal Tomography of Asteroid Surface Structure

    NASA Astrophysics Data System (ADS)

    Harris, Alan W.; Drube, Line

    2016-12-01

    Knowledge of the surface thermal inertia of an asteroid can provide insight into its surface structure: porous material has a lower thermal inertia than rock. We develop a means to estimate thermal inertia values of asteroids and use it to show that thermal inertia appears to increase with spin period in the case of main-belt asteroids (MBAs). Similar behavior is found on the basis of thermophysical modeling for near-Earth objects (NEOs). We interpret our results in terms of rapidly increasing material density and thermal conductivity with depth, and provide evidence that thermal inertia increases by factors of 10 (MBAs) to 20 (NEOs) within a depth of just 10 cm. Our results are consistent with a very general picture of rapidly changing material properties in the topmost regolith layers of asteroids and have important implications for calculations of the Yarkovsky effect, including its perturbation of the orbits of potentially hazardous objects and those of asteroid family members after the break-up event. Evidence of a rapid increase of thermal inertia with depth is also an important result for studies of the ejecta-enhanced momentum transfer of impacting vehicles (“kinetic impactors”) in planetary defense.

  13. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2015-04-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt%) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  14. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    NASA Astrophysics Data System (ADS)

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2014-11-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, Attenuated Total Reflectance-Fourier Transform Infrared and 1H Nuclear Magnetic Resonance spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene, which was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence for products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and methylglyoxal

  15. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities

    PubMed Central

    Van Wyngarden, A. L.; Pérez-Montaño, S.; Bui, J. V. H.; Li, E. S. W.; Nelson, T. E.; Ha, K. T.; Leong, L.; Iraci, L. T.

    2016-01-01

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40–80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance–Fourier transform infrared (ATR-FTIR) and 1H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  16. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    PubMed

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H2SO4) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and (1)H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal and

  17. Structure of the airflow above surface waves

    NASA Astrophysics Data System (ADS)

    Buckley, Marc; Veron, Fabrice

    2016-04-01

    Weather, climate and upper ocean patterns are controlled by the exchanges of momentum, heat, mass, and energy across the ocean surface. These fluxes are, in turn, influenced by the small-scale physics at the wavy air-sea interface. We present laboratory measurements of the fine-scale airflow structure above waves, achieved in over 15 different wind-wave conditions, with wave ages Cp/u* ranging from 1.4 to 66.7 (where Cp is the peak phase speed of the waves, and u* the air friction velocity). The experiments were performed in the large (42-m long) wind-wave-current tank at University of Delaware's Air-Sea Interaction laboratory (USA). A combined Particle Image Velocimetry and Laser Induced Fluorescence system was specifically developed for this study, and provided two-dimensional airflow velocity measurement as low as 100 um above the air-water interface. Starting at very low wind speeds (U10~2m/s), we directly observe coherent turbulent structures within the buffer and logarithmic layers of the airflow above the air-water interface, whereby low horizontal velocity air is ejected away from the surface, and higher velocity fluid is swept downward. Wave phase coherent quadrant analysis shows that such turbulent momentum flux events are wave-phase dependent. Airflow separation events are directly observed over young wind waves (Cp/u*<3.7) and counted using measured vorticity and surface viscous stress criteria. Detached high spanwise vorticity layers cause intense wave-coherent turbulence downwind of wave crests, as shown by wave-phase averaging of turbulent momentum fluxes. Mean wave-coherent airflow motions and fluxes also show strong phase-locked patterns, including a sheltering effect, upwind of wave crests over old mechanically generated swells (Cp/u*=31.7), and downwind of crests over young wind waves (Cp/u*=3.7). Over slightly older wind waves (Cp/u* = 6.5), the measured wave-induced airflow perturbations are qualitatively consistent with linear critical layer

  18. Hyperbolic Spirals as Surface Structures in Thin Layers.

    PubMed

    Weh, Lothar

    2001-03-15

    When thin layers of 4-chloro-3-methylphenol and a copolymer of methyl(methacrylate) and maleic acid dissolved in acetone are dried by solvent evaporation, various surface structures appear. Besides linear surface deformations that can ramify like fractals, spirals of the hyperbolic type have been found. The surface structures are due to crystallization processes and flows caused by surface tension differences. The spirals are surface elevations with grooves on both sides as shown by surface profile measurements by means of a microscope interferometer. The addition of surfactants reduces the structure formation. A large surfactant concentration prevents the structure formation. Copyright 2001 Academic Press.

  19. 30 CFR 75.1708 - Surface structures, fireproofing.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Surface structures, fireproofing. 75.1708... structures, fireproofing. After March 30, 1970, all structures erected on the surface within 100 feet of any mine opening shall be of fireproof construction. Unless structures existing on or prior to such...

  20. Intercomparison of aerosol extinction profiles retrieved from MAX-DOAS measurements

    NASA Astrophysics Data System (ADS)

    Frieß, U.; Klein Baltink, H.; Beirle, S.; Clémer, K.; Hendrick, F.; Henzing, B.; Irie, H.; de Leeuw, G.; Li, A.; Moerman, M. M.; van Roozendael, M.; Shaiganfar, R.; Wagner, T.; Wang, Y.; Xie, P.; Yilmaz, S.; Zieger, P.

    2016-07-01

    A first direct intercomparison of aerosol vertical profiles from Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS) observations, performed during the Cabauw Intercomparison Campaign of Nitrogen Dioxide measuring Instruments (CINDI) in summer 2009, is presented. Five out of 14 participants of the CINDI campaign reported aerosol extinction profiles and aerosol optical thickness (AOT) as deduced from observations of differential slant column densities of the oxygen collision complex (O4) at different elevation angles. Aerosol extinction vertical profiles and AOT are compared to backscatter profiles from a ceilometer instrument and to sun photometer measurements, respectively. Furthermore, the near-surface aerosol extinction coefficient is compared to in situ measurements of a humidity-controlled nephelometer and dry aerosol absorption measurements. The participants of this intercomparison exercise use different approaches for the retrieval of aerosol information, including the retrieval of the full vertical profile using optimal estimation and a parametrised approach with a prescribed profile shape. Despite these large conceptual differences, and also differences in the wavelength of the observed O4 absorption band, good agreement in terms of the vertical structure of aerosols within the boundary layer is achieved between the aerosol extinction profiles retrieved by the different groups and the backscatter profiles observed by the ceilometer instrument. AOTs from MAX-DOAS and sun photometer show a good correlation (R>0.8), but all participants systematically underestimate the AOT. Substantial differences between the near-surface aerosol extinction from MAX-DOAS and from the humidified nephelometer remain largely unresolved.

  1. Structural-phase states and wear resistance of surface formed on steel by surfacing

    SciTech Connect

    Kapralov, Evgenie V.; Raykov, Sergey V.; Vaschuk, Ekaterina S.; Budovskikh, Evgenie A. Gromov, Victor E.; Ivanov, Yuri F.

    2014-11-14

    Investigations of elementary and phase structure, state of defect structure and tribological characteristics of a surfacing, formed on a low carbon low-alloy steel by a welding method were carried out. It was revealed that a surfacing, formed on a steel surface is accompanied by the multilayer formation, and increases the wear resistance of the layer surfacing as determined.

  2. Composite isogrid structures for parabolic surfaces

    NASA Technical Reports Server (NTRS)

    Silverman, Edward M. (Inventor); Boyd, Jr., William E. (Inventor); Rhodes, Marvin D. (Inventor); Dyer, Jack E. (Inventor)

    2000-01-01

    The invention relates to high stiffness parabolic structures utilizing integral reinforced grids. The parabolic structures implement the use of isogrid structures which incorporate unique and efficient orthotropic patterns for efficient stiffness and structural stability.

  3. Surface modification of active material structures in battery electrodes

    DOEpatents

    Erickson, Michael; Tikhonov, Konstantin

    2016-02-02

    Provided herein are methods of processing electrode active material structures for use in electrochemical cells or, more specifically, methods of forming surface layers on these structures. The structures are combined with a liquid to form a mixture. The mixture includes a surface reagent that chemically reacts and forms a surface layer covalently bound to the structures. The surface reagent may be a part of the initial liquid or added to the mixture after the liquid is combined with the structures. In some embodiments, the mixture may be processed to form a powder containing the structures with the surface layer thereon. Alternatively, the mixture may be deposited onto a current collecting substrate and dried to form an electrode layer. Furthermore, the liquid may be an electrolyte containing the surface reagent and a salt. The liquid soaks the previously arranged electrodes in order to contact the structures with the surface reagent.

  4. Enceladus Jet Orientations: Effects of Surface Structure

    NASA Astrophysics Data System (ADS)

    Helfenstein, P.; Porco, C.; DiNino, D.

    2013-12-01

    Jetting activity across the South Polar Terrain (SPT) of Enceladus is now known to erupt directly from tiger-stripe rifts and associated fracture systems. However, details of the vent conduit geometry are hidden below the icy surface. The three-dimensional orientations of the erupting jets may provide important clues. Porco et al. (2013, Lunar Planet. Sci. Conf. 44th, p.1775) surveyed jet locations and orientations as imaged at high resolution (< 1.3 km/pixel) by Cassini ISS from 2005 through May 2012. Ninety-eight (98) jets were identified either on the main trunks or branches of the 4 tiger-stripes. The azimuth angles of the jets are seen to vary across the SPT. Here, we use histogram analysis of the survey data to test if the jet azimuths are influenced by their placement relative to surface morphology and tectonic structures. Azimuths are measured positive counterclockwise with zero pointing along the fracture in the direction of the sub-Saturn hemisphere, and rosette histograms were binned in 30° increments. Overall, the jet azimuths are not random and only about 11% of them are co-aligned with the tiger stripe valley. There are preferred diagonal orientations between 105°-165° and again between 255°-345°. These trends are dominant along the Damascus and Baghdad tiger-stripes where more than half of the jets are found. Histograms for Cairo and Alexandria show less-distinct trends, fewer jets being measured there, but combining data from both suggests a different pattern of preferred orientations; from 45°-75° and 265°-280°. Many possible factors could affect the orientations of jets, for example, the conduit shape, the presence of obstacles like narrow medial ridges called 'shark-fins' along tiger-stripe valleys, the possibility that jets may breach the surface at some point other than the center of a tiger-stripe, and the presence of structural fabrics or mechanical weaknesses, such as patterns of cross-cutting fractures. The dominance of diagonally

  5. Evaluation of multidecadal variability in CMIP5 surface solar radiation and inferred underestimation of aerosol direct effects over Europe, China, Japan, and India

    NASA Astrophysics Data System (ADS)

    Allen, R. J.; Norris, J. R.; Wild, M.

    2013-06-01

    Observations from the Global Energy Balance Archive indicate regional decreases in all sky surface solar radiation from ˜1950s to 1980s, followed by an increase during the 1990s. These periods are popularly called dimming and brightening, respectively. Removal of the radiative effects of cloud cover variability from all sky surface solar radiation results in a quantity called "clear sky proxy" radiation, in which multidecadal trends can be seen more distinctly, suggesting aerosol radiative forcing as a likely cause. Prior work has shown climate models from the Coupled Model Intercomparison Project 3 (CMIP3) generally underestimate the magnitude of these trends, particularly over China and India. Here we perform a similar analysis with 173 simulations from 42 climate models participating in the new CMIP5. Results show negligible improvement over CMIP3, as CMIP5 dimming trends over four regions—Europe, China, India, and Japan—are all underestimated. This bias is largest for both India and China, where the multimodel mean yields a decrease in clear sky proxy radiation of -1.3±0.3 and -1.2±0.2 W m-2decade-1, respectively, compared to observed decreases of -6.5±0.9 and -8.2±1.3 W m-2decade-1. Similar underestimation of the observed dimming over Japan exists, with the CMIP5 mean dimming ˜20% as large as observed. Moreover, not a single simulation reproduces the magnitude of the observed dimming trend for these three regions. Relative to dimming, CMIP5 models better simulate the observed brightening, but significant underestimation exists for both China and Japan. Overall, no individual model performs particularly well for all four regions. Model biases do not appear to be related to the use of prescribed versus prognostic aerosols or to aerosol indirect effects. However, models exhibit significant correlations between clear sky proxy radiation and several aerosol-related fields, most notably aerosol optical depth (AOD) and absorption AOD. This suggests model

  6. Heterogeneous Chemical Transformation on Mineral Aerosol Surfaces during Long Range Transport and its Implications in Understanding Aeolian Dust Deposits in Antarctic Dry Valleys

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Bao, H.; Thiemens, M. H.

    2010-12-01

    Mineral dust aerosols comprise ~ 60% of aerosol dry mass and link the atmosphere, lithosphere and hydrosphere in complex ways. The µm sized mineral dust particles can be transported over long distances (> 1000 km) and have ample opportunity en-route to interact with trace gases such as O3, NOx, SOx, VOC’s , thus not only affecting gas phase chemistry by serving as chemical sink but also providing reactive surfaces for the formation of secondary compounds. Defining these pathways is important for understanding chemical budgets of trace gases and to assess the role of mineral aerosols on hydrological, biogeochemical cycle, and climate change through direct/ indirect radiative forcing. These processes are recognizably important but difficult to measure due to the lack of relevant analytical techniques to trace secondary transformation on aerosol surfaces. Here we show that stable isotopes of C and O in the carbonate fractions of secondary mineral dust aerosols can be used to fingerprint the heterogeneous chemical transformations and reaction mechanism at a molecular level. Soil samples were collected from McMurdo Dry Valleys, Antarctica. CO2 was obtained by phosphoric acid digestion from the carbonate fractions of mineral dust. Purified CO2 gas was analyzed for δ13C and subsequently fluorinated to produce O2 gas thus enabling the measurement of triple oxygen isotopic composition of the CO2. Data indicated significant variations in δ13C (+3 to -34 ‰) and δ18O (+2 to 26‰) of the carbonate fractions of the soil samples. Intriguingly, we found distinct 17O anomalies (Δ17O = δ17O - 0.524 δ18O) in some of the soils, ranging from +0.52 to +1.60‰. On the other hand, carbonate crusts formed underneath surface pebbles in Dry Valleys are significantly enriched in the δ13C(+11‰) but do not bear a 17O anomaly. To understand the origin and variation in the C and O isotopic composition of dust deposits in Antarctica, controlled laboratory experiments using various

  7. Estimating Size-Resolved Surface Particulate Matter Concentrations Using MISR High-Resolution Size-Fractionated Aerosol Optical Depth

    NASA Astrophysics Data System (ADS)

    Franklin, M.; Kalashnikova, O. V.; Garay, M. J.

    2015-12-01

    There is significant public health interest in gaining a better understanding of the health effects associated with particulate matter (PM) of different composition and size, yet ground-based monitoring data for such PM species is extremely limited. Due to their spatial and temporal coverage, satellite observations of total column aerosol optical depth (AOD) have increasingly been used to estimate surface concentrations of PM. While techniques for using satellite observations of AOD to predict surface concentrations of PM2.5 have been established, predicting surface concentrations of different particle sizes and species is more challenging. The Multi-angle Imaging SpectroRadiometer (MISR) instrument has the unique capability of estimating both total column AOD as well as total column size fractionated (small, medium and large) AOD. Using MISR AOD and AOD size fractionated products derived from high-resolution (275 m) observations reported at a spatial scale of 4.4 km in combination with national Air Quality System (AQS) monitoring data over the 2008-2009 period, we examine the association between size-fractionated MISR AOD and surface measurements of PM at different sizes (PM2.5 and PM10) and PM2.5 species (EC, OC, SO42-, NH4+) over the greater Los Angeles area. While there was a limited sample size of speciated PM data, the strongest univariate association found was between AOD and PM2.5 SO42- (R2=0.76). Incorporating meteorological data from weather stations in the area resulted in improvements to the models associating AOD with PM2.5 and PM10 mass. We found that PM2.5 was best predicted by a spatio-temporal model of AOD that also included dew point temperature and wind speed (R2=0.61), and that PM10 was best predicted by a spatio-temporal model of large fraction AOD that also included atmospheric pressure and wind speed (R2=0.65). These flexibly specified spatio-temporal models enabled reliable predictions of surface PM2.5 and PM10 concentrations at a 4.4km

  8. Bulk and surface structural investigations of diesel engine soot and carbon black.

    PubMed

    Müller, J-O; Su, D S; Wild, U; Schlögl, R

    2007-08-14

    The microstructure and electronic structure of environmentally relevant carbons such as Euro IV heavy duty diesel engine soot, soot from a black smoking diesel engine, spark discharge soot as model aerosol, commercial furnace soot and lamp black are investigated by transmission electron microscopy, electron energy-loss spectroscopy and X-ray photoelectron spectroscopy. The materials exhibit differences in the predominant bonding, which influences microstructure as well as surface functionalization. These chemical and physical properties depend on the formation history of the investigated carbonaceous materials. In this work, a correlation of the microstructure of the samples to the predominant bonding and incorporation of oxygen into the carbons is obtained. It is shown that a high amount of defects and the deviation of the carbons from a perfect graphitic structure results in a increased incorporation of oxygen and hydrogen. A correlation between the length and curvature of graphene layers with the bonding state of carbon atoms and incorporation of oxygen and hydrogen is established.

  9. Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints

    NASA Astrophysics Data System (ADS)

    Lin, J.-T.; Liu, M.-Y.; Xin, J.-Y.; Boersma, K. F.; Spurr, R.; Martin, R.; Zhang, Q.

    2015-04-01

    Satellite retrievals of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. Here, we conduct an improved retrieval of NO2 VCDs over China, called the POMINO algorithm, based on measurements from the Ozone Monitoring Instrument (OMI), and we test the importance of a number of aerosol and surface reflectance treatments in this algorithm. POMINO uses a parallelized LIDORT-driven AMFv6 package to derive tropospheric air mass factors via pixel-specific radiative transfer calculations with no look-up tables, taking slant column densities from DOMINO v2. Prerequisite cloud optical properties are derived from a dedicated cloud retrieval process that is fully consistent with the main NO2 retrieval. Aerosol optical properties are taken from GEOS-Chem simulations constrained by MODIS AOD values. MODIS bi-directional reflectance distribution function (BRDF) data are used for surface reflectance over land. For the present analysis, POMINO level-2 data for 2012 are aggregated into monthly means on a 0.25° long. × 0.25° lat. grid. POMINO-retrieved annual mean NO2 VCDs vary from 15-25 × 1015 cm-2 over the polluted North China Plain (NCP) to below 1015 cm-2 over much of west China. The subsequently-constrained Chinese annual anthropogenic emissions are 9.05 TgN yr-1, an increase from 2006 (Lin, 2012) by about 19%. Replacing the MODIS BRDF data with the OMLER v1 monthly climatological albedo data affects NO2 VCDs by up to 40% for certain locations and seasons. The effect on constrained NOx emissions is small. Excluding aerosol information from the retrieval process (this is the traditional "implicit" treatment) enhances annual mean NO2 VCDs by 15-40% over much of east China. Seasonally, NO2 VCDs are reduced by 10-20% over parts of the NCP in spring and over north China in winter, despite the general enhancements in summer and fall

  10. The effect of aerosols and sea surface temperature on China's climate in the late twentieth century from ensembles of global climate simulations

    NASA Astrophysics Data System (ADS)

    Folini, D.; Wild, M.

    2015-03-01

    Over the late twentieth century, China has seen a strong increase in aerosol emissions, whose quantitative role for observed changes in surface solar radiation (SSR), surface air temperature (SAT), and precipitation remains debated. We use ensembles of transient sensitivity experiments with the global climate model ECHAM5 from the Max Planck Institute for Meteorology, Hamburg, Germany, combined with the Hamburg Aerosol Module to examine the effect of aerosols and prescribed, observation-based sea surface temperatures (SSTs) on the above variables. Observations and control experiments agree reasonably well in eastern China in terms of SSR dimming (-6 ± 2 W/m2/decade, 1960-2000; stronger than in models of the Coupled Model Intercomparison Project Phase 5, CMIP5), statistically nonsignificant summer SAT trend (1950-2005), and drying in summer from 1950 to 1990 (-2.5% to -3.5% per decade, essentially via reduction of convective precipitation). Other observed features are not reproduced by the model, e.g., precipitation increase in the 1990s in the Yangtze River valley or, from the 1960s onward, the strong winter warming in northern China and Mongolia and SSR dimming in western China. Aerosol effects are stronger for sulfur dioxide than for black and organic carbon and are more pronounced at lower model resolution. Transient SSTs are crucial for decadal-scale SAT variability over land, especially the strong warming in the 1990s, and, via SST forced reduction of cloud cover, for the ceasing of SSR dimming around the year 2000. Unforced cloud variability leads to relevant scatter (up to ±2 W/m2/decade) of modeled SSR trends at individual observation sites.

  11. Surface ozone photolysis rate trends in the Eastern Mediterranean: Modeling the effects of aerosols and total column ozone based on Terra MODIS data

    NASA Astrophysics Data System (ADS)

    Benas, N.; Mourtzanou, E.; Kouvarakis, G.; Bais, A.; Mihalopoulos, N.; Vardavas, I.

    2013-08-01

    The surface ozone photolysis rate (J(O1D)) was computed on a daily basis and on a 50 km × 50 km resolution for the 11-year period 2000-2010 at Finokalia meteorological station in Crete, Greece. A radiative transfer model was used, with climatological data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra satellite. The area is representative of the Eastern Mediterranean, a region with high variability in aerosol loads and total column ozone. Instantaneous values of J(O1D) computed from the model were validated against corresponding station measurements available during the 5-year period 2002-2006. Monthly mean values of J(O1D) during the 11-year period examined, reveal a statistically significant decreasing trend, based on Terra MODIS data, which shows an overall 13% decrease. The aerosol effect on J(O1D) varies on a daily basis, depending on the aerosol load, and can exceed -10% during dust events, with a median value of -2.3% over the whole period examined. On a seasonal basis, the aerosol effect on J(O1D) follows the seasonal pattern of the aerosol load, with higher values in spring and autumn, due to the increased Saharan dust episodes during these seasons. Linear regression analysis on monthly mean values of total column ozone revealed a statistically significant increasing trend in both Finokalia and Thessaloniki stations. Total column ozone MODIS data were validated against spectroradiometric (columnar) measurements at Thessaloniki station. Sensitivity analysis on the effect of total column ozone on J(O1D) showed that a 10% variation in total ozone causes a corresponding 15-17% change in J(O1D). These results suggest that the decreasing trend in J(O1D) found in the case of Terra MODIS should be attributed mainly to the corresponding increasing trend in total column ozone.

  12. Size segregated mass concentration and size distribution of near surface aerosols over a tropical Indian semi-arid station, Anantapur: Impact of long range transport.

    PubMed

    Raghavendra Kumar, K; Narasimhulu, K; Balakrishnaiah, G; Suresh Kumar Reddy, B; Rama Gopal, K; Reddy, R R; Moorthy, K Krishna; Suresh Babu, S

    2009-10-15

    Regular measurements of size segregated as well as total mass concentration and size distribution of near surface composite aerosols, made using a ten-channel Quartz Crystal Microbalance (QCM) cascade impactor during the period of September 2007-May 2008 are used to study the aerosol characteristics in association with the synoptic meteorology. The total mass concentration varied from 59.70+/-1.48 to 41.40+/-1.72 microg m(-3), out of which accumulation mode dominated by approximately 50%. On a synoptic scale, aerosol mass concentration in the accumulation (submicron) mode gradually increased from an average low value of approximately 26.92+/-1.53 microg m(-3) during the post monsoon season (September-November) to approximately 34.95+/-1.32 microg m(-3) during winter (December-February) and reaching a peak value of approximately 43.56+/-1.42 microg m(-3) during the summer season (March-May). On the contrary, mass concentration of aerosols in the coarse (supermicron) mode increased from approximately 9.23+/-1.25 microg m(-3)during post monsoon season to reach a comparatively high value of approximately 25.89+/-1.95 microg m(-3) during dry winter months and a low value of approximately 8.07+/-0.76 microg m(-3) during the summer season. Effective radius, a parameter important in determining optical (scattering) properties of aerosol size distribution, varied between 0.104+/-0.08 microm and 0.167+/-0.06 microm with a mean value of 0.143+/-0.01 microm. The fine mode is highly reduced during the post monsoon period and the large and coarse modes continue to remain high (replenished) so that their relative dominance increases. It can be seen that among the two parameters measured, correlation of total mass concentration with air temperature is positive (R(2)=0.82) compared with relative humidity (RH) (R(2)=0.75).

  13. Accuracy Assessment of Aqua-MODIS Aerosol Optical Depth Over Coastal Regions: Importance of Quality Flag and Sea Surface Wind Speed

    NASA Technical Reports Server (NTRS)

    Anderson, J. C.; Wang, J.; Zeng, J.; Petrenko, M.; Leptoukh, G. G.; Ichoku, C.

    2012-01-01

    Coastal regions around the globe are a major source for anthropogenic aerosols in the atmosphere, but the underlying surface characteristics are not favorable for the Moderate Resolution Imaging Spectroradiometer (MODIS) algorithms designed for retrieval of aerosols over dark land or open-ocean surfaces. Using data collected from 62 coastal stations worldwide from the Aerosol Robotic Network (AERONET) from approximately 2002-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard Aqua satellite. It is found that coastal AODs (at 550 nm) characterized respectively by the MODIS Dark Land (hereafter Land) surface algorithm, the Open-Ocean (hereafter Ocean) algorithm, and AERONET all exhibit a log-normal distribution. After filtering by quality flags, the MODIS AODs respectively retrieved from the Land and Ocean algorithms are highly correlated with AERONET (with R(sup 2) is approximately equal to 0.8), but only the Land algorithm AODs fall within the expected error envelope greater than 66% of the time. Furthermore, the MODIS AODs from the Land algorithm, Ocean algorithm, and combined Land and Ocean product show statistically significant discrepancies from their respective counterparts from AERONET in terms of mean, probability density function, and cumulative density function, which suggest a need for future improvement in retrieval algorithms. Without filtering with quality flag, the MODIS Land and Ocean AOD dataset can be degraded by 30-50% in terms of mean bias. Overall, the MODIS Ocean algorithm overestimates the AERONET coastal AOD by 0.021 for AOD less than 0.25 and underestimates it by 0.029 for AOD greater than 0.25. This dichotomy is shown to be related to the ocean surface wind speed and cloud contamination effects on the satellite aerosol retrieval. The Modern Era Retrospective-Analysis for Research and Applications (MERRA) reveals that wind speeds over the global coastal region 25 (with a mean and median

  14. MELCOR 1. 8. 1 assessment: LACE aerosol experiment LA4

    SciTech Connect

    Kmetyk, L.N.

    1991-09-01

    The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.

  15. Secondary Ion Mass Spectrometry of Environmental Aerosols

    SciTech Connect

    Gaspar, Daniel J.; Cliff, John B.

    2010-08-01

    Atmospheric particles influence many aspects of climate, air quality and human health. Understanding the composition, chemistry and behavior of atmospheric aerosols is a key remaining challenge in improving climate models. Furthermore, particles may be traced back to a particular source based on composition, stable isotope ratios, or the presence of particular surface chemistries. Finally, the characterization of atmospheric particles in the workplace plays an important role in understanding the potential for exposure and environmental and human health effects to engineered and natural nanoscale particles. Secondary ion mass spectrometry (SIMS) is a useful tool in determining any of several aspects of the structure, composition and chemistry of these particles. Often used in conjunction with other surface analysis and electron microscopy methods, SIMS has been used to determine or confirm reactions on and in particles, the presence of particular organic species on the surface of atmospheric aerosols and several other interesting and relevant findings. Various versions of SIMS instruments – dynamic SIMS, time of flight secondary ion mass spectrometry or TOF-SIMS, nanoSIMS – have been used to determine specific aspects of aerosol structure and chemistry. This article describes the strengths of each type of SIMS instrument in the characterization of aerosols, along with guidance on sample preparation, specific characterization specific to the particular information sought in the analysis. Examples and guidance are given for each type of SIMS analysis.

  16. Investigation of the Changes in Aerosolization Behavior Between the Jet-Milled and Spray-Dried Colistin Powders Through Surface Energy Characterization.

    PubMed

    Jong, Teresa; Li, Jian; Morton, David A V; Zhou, Qi Tony; Larson, Ian

    2016-03-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared with those produced by jet milling. Inhalable colistin powder formulations were produced by jet milling or spray drying (with or without l-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, whereas the spray-dried particles were more spherical. Significantly higher fine particle fractions were measured for the spray-dried (43.8%-49.6%) versus the jet-milled formulation (28.4%) from a Rotahaler at 60 L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of l-leucine in the spray drying feed solution gave no significant improvement in fine particle fraction. As measured by inverse gas chromatography, spray-dried formulations had significantly (p < 0.001) lower dispersive, specific, and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without l-leucine. Based on our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray drying contributed significantly to the reduction of surface free energy and the superior aerosolization performance.

  17. Investigation of the changes in aerosolization behavior between the jet-milled and spray-dried colistin powders through surface energy characterization

    PubMed Central

    Jong, Teresa; Li, Jian; Mortonx, David A.V.; Zhou, Qi (Tony); Larson, Ian

    2016-01-01

    This study aimed to investigate the surface energy factors behind improved aerosolization performance of spray-dried colistin powder formulations compared to those produced by jet-milling. Inhalable colistin powder formulations were produced by jet-milling or spray-drying (with or without L-leucine). Scanning electron micrographs showed the jet-milled particles had irregularly angular shapes, while the spray-dried particles were more spherical. Significantly higher fine particle fractions (FPFs) were measured for the spray-dried (43.8-49.6%) vs. the jet-milled formulation (28.4 %) from a Rotahaler at 60L/min; albeit the size distribution of the jet-milled powder was smaller. Surprisingly, addition of L-leucine in the spray drying feed-solution gave no significant improvement in FPF. As measured by inverse gas chromatography, spray-dried formulations had significantly (p<0.001) lower dispersive, specific and total surface energy values and more uniform surface energy distributions than the jet-milled powder. Interestingly, no significant difference was measured in the specific and total surface energy values between the spray-dried formulation with or without L-leucine. Based upon our previous findings in the self-assembling behavior of colistin in aqueous solution and the surface energy data obtained here, we propose the self-assembly of colistin molecules during spray-drying, contributed significantly to the reduction of surface free energy and the superior aerosolization performance. PMID:26886330

  18. Rule for structures of open metal surfaces.

    PubMed

    Sun, Y Y; Xu, H; Feng, Y P; Huan, A C H; Wee, A T S

    2004-09-24

    We present a clear and simple rule for determining the relaxation sequences on open (stepped, vicinal, or high-Miller-index) metal surfaces. At the bulk-truncated configuration of a surface, a surface slab is defined where the coordination of atoms is reduced from the bulk. The rule predicts that the interlayer spacings within this slab contract, while the interlayer spacing between this slab and the substrate expands. By first-principles calculations, we show that this rule is obeyed on all open Cu surfaces with interlayer spacings down to about 0.5 A. We also illustrate a direct relation of the relaxation sequences to the charge redistribution on these surfaces, which is demonstrated to be driving the multilayer relaxations. The applicability of the rule can be extended to other fcc and bcc metals, including unreconstructed and missing-row surfaces.

  19. Smart Structures for Control of Optical Surfaces

    DTIC Science & Technology

    2002-03-01

    placed on a flat surface and allowed to cure [14]. After curing, the mirrors were tested using a Twyman -Green interferometer to determine the surface...surfaces can be accomplished using Twyman -Green interfer- ometry or a Shack-Hartmann sensor, among other techniques. Interferometry requires that the test...later. The mirror was placed in the test setup and a Twyman -Green interferometry setup was constructed using the available optics equipment [17

  20. Short wave Aerosol Radiative Forcing estimates over a semi urban coastal environment in south-east India and validation with surface flux measurements

    NASA Astrophysics Data System (ADS)

    Aruna, K.; Lakshmi Kumar, T. V.; Krishna Murthy, B. V.; Babu, S. Suresh; Ratnam, M. Venkat; Rao, D. Narayana

    2016-01-01

    The short wave direct Aerosol Radiative Forcing (ARF) at a semi urban coastal location near Chennai (12.81 °N, 80.03 °E, ˜45 m amsl), a mega city on the east coast of India has been estimated for all the four seasons in the year 2013 using the SBDART (Santa Barbara Discrete ordinate Atmospheric Radiative Transfer) model. As inputs to this model, measured aerosol parameters together with modeled aerosol and atmospheric parameters are used. The ARF in the atmosphere is found to be higher in the pre-monsoon and winter seasons compared to the other seasons whereas at the surface, it is found to be higher in the south-west (SW) monsoon and winter seasons. The estimated ARF values are compared with those reported over other locations in India. The effect of Relative Humidity on ARF has been investigated for the first time in the present study. It is found that the ARF increases with increasing RH in the SW monsoon and winter seasons. An unique feature of the present study is the comparison of the net surface short wave fluxes estimated from the model (SBDART) and measured fluxes using CNR 4 net radiometer. This comparison between the estimated and measured fluxes showed good agreement, providing a 'closure' for the estimates.

  1. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  2. Multilayer relaxation and surface structure of ordered alloys

    NASA Technical Reports Server (NTRS)

    Kobistek, Robert J.; Bozzolo, Guillermo; Ferrante, John; Schlosser, Herbert

    1993-01-01

    Using BFS, a new semiempirical method for alloys, we study the surface structure of fcc ordered binary alloys in the Ll(sub 2) structure (Ni3Al and Cu3Au). We show that the surface energy is lowest for the mixed composition truncation of the low-index faces of such systems. Also, we present results for the interlayer relaxations for planes close to the surface, revealing different relaxations for atoms of different species producing a rippled surface layer.

  3. Use of the NASA GEOS-5 SEAC4RS Meteorological and Aerosol Reanalysis for assessing simulated aerosol optical properties as a function of smoke age

    NASA Astrophysics Data System (ADS)

    Randles, C. A.; da Silva, A. M., Jr.; Colarco, P. R.; Darmenov, A.; Buchard, V.; Govindaraju, R.; Chen, G.; Hair, J. W.; Russell, P. B.; Shinozuka, Y.; Wagner, N.; Lack, D.

    2014-12-01

    The NASA Goddard Earth Observing System version 5 (GEOS-5) Earth system model, which includes an online aerosol module, provided chemical and weather forecasts during the SEAC4RS field campaign. For post-mission analysis, we have produced a high resolution (25 km) meteorological and aerosol reanalysis for the entire campaign period. In addition to the full meteorological observing system used for routine NWP, we assimilate 550 nm aerosol optical depth (AOD) derived from MODIS (both Aqua and Terra satellites), ground-based AERONET sun photometers, and the MISR instrument (over bright surfaces only). Daily biomass burning emissions of CO, CO2, SO2, and aerosols are derived from MODIS fire radiative power retrievals. We have also introduced novel smoke "age" tracers, which provide, for a given time, a snapshot histogram of the age of simulated smoke aerosol. Because GEOS-5 assimilates remotely sensed AOD data, it generally reproduces observed (column) AOD compared to, for example, the airborne 4-STAR instrument. Constraining AOD, however, does not imply a good representation of either the vertical profile or the aerosol microphysical properties (e.g., composition, absorption). We do find a reasonable vertical structure for aerosols is attained in the model, provided actual smoke injection heights are not much above the planetary boundary layer, as verified with observations from DIAL/HRSL aboard the DC8. The translation of the simulated aerosol microphysical properties to total column AOD, needed in the aerosol assimilation step, is based on prescribed mass extinction efficiencies that depend on wavelength, composition, and relative humidity. Here we also evaluate the performance of the simulated aerosol speciation by examining in situ retrievals of aerosol absorption/single scattering albedo and scattering growth factor (f(RH)) from the LARGE and AOP suite of instruments. Putting these comparisons in the context of smoke age as diagnosed by the model helps us to

  4. Structure, Bonding and Surface Chemistry of Metal Oxide Nanoclusters

    DTIC Science & Technology

    2015-06-23

    AFRL-OSR-VA-TR-2015-0191 Structure , Bonding and Surface Chemistry of Metal Oxide Nanoclusters Michael Duncan UNIVERSITY OF GEORGIA RESEARCH...2015 4. TITLE AND SUBTITLE Structure , Bonding and Surface Chemistry of Metal Oxide Nanoclusters 5a. CONTRACT NUMBER 5b. GRANT NUMBER FA9550-12-1...Back (Rev. 8/98) DISTRIBUTION A: Distribution approved for public release. Final Report Project title: Structure , Bonding and Surface Chemistry of

  5. Surface Measurements of dust/local aerosol properties over Northern China during 2008 China-US joined dust field campaign

    NASA Astrophysics Data System (ADS)

    Wang, X.; Huang, J.

    2009-12-01

    The objective of this study is to understand the detailed characteristics and underlying mechanisms of aerosol physical and optical parameters over China Loess Plateau and its potential impacts on the regional/global climate. In order to characterize the emission, transport, and removal of atmospheric pollutants emitted from East Asia, the 2008 China-US joined field campaign are conducted from late April to May 2008 focused specifically on the Asian direct measurements of dust and pollution transport, following the plume from the Northern China which from the Taklamakan desert and Gobi desert to the Eastern Pacific and into North America. Such measurements are crucial to understanding how the dust and the pollution plume (including black carbon) are modified as their age. Three sites involved this campaign, including one permanent site (Semi-Arid Climate & Environment Observatory of Lanzhou University (SACOL)) (located in Yuzhong, 35.95N/104.1E), one SACOL's Mobile Facility (SMF) (deployed in Jintai, 37.57N/104.23E) and the U.S. Department of Energy Atmospheric Radiation Measurements(ARM) Ancillary Facility (AAF mobile laboratories, SMART-COMMIT) (deployed in Zhangye, 39.08N/100.27E). Results indicate that the dust plumes are transported from the surface to a long distance from their sources have a significant influence on the air quality in the study area. The meteorological analysis indicates that these polluted layers are not from local sources during dust plume and this large-scale transport of dust and pollutants remains a major uncertainty in quantifying the global effect of emissions from Northern China.

  6. Linking surface in-situ measurements to columnar aerosol optical properties at Hyytiälä, Finland

    NASA Astrophysics Data System (ADS)

    Zieger, P.; Aalto, P.; Aaltonen, V.; Äijälä, M.; Backman, J.; Ehn, M.; Hong, J.; Krejci, R.; Laborde, M.; de Leeuw, G.; Petäjä, T.; Pfüller, A.; Rosati, B.; Tesche, M.; Väänänen, R.

    2014-12-01

    Ambient optical properties of aerosols strongly depend on the particles' hygroscopicity and the relative humidity (RH) of the surrounding air. The key parameter to describe the influence of RH on the particle light scattering is the scattering enhancement factor f(RH), which is defined as the particle light scattering coefficient at defined RH divided by its dry value. Knowledge of this hygroscopicity effect is of crucial importance for climate forcing calculations and is needed for the comparison or validation of remote sensing with in-situ measurements. We will present results of an intensive field campaign carried out in summer 2013 at the SMEAR II station in Hyytiälä, Finland, which was part of the EU-FP7 project PEGASOS (Pan-European Gas-Aerosols-climate interaction Study). Ground-based and airborne measurements of aerosol optical, chemical and microphysical properties were conducted. The f(RH) measured at ground by a humidified nephelometer was found to be significantly lower (1.53 ± 0.24 at RH=85% and wavelength λ=450 nm) than observed at other European sites (Zieger et al., 2013). One reason is the high organic mass fraction of the boreal aerosol as measured by an aerosol chemical speciation monitor (ACSM). A closure study using Mie theory showed the consistency of the ground based in-situ measurements. Our measurements allowed to determine the ambient particle light extinction coefficient. Together with intensive aircraft measurements (lasting one month) of the particle number size distribution and ambient humidity, different columnar values were determined and compared to direct measurements and inversions of the AERONET Sun photometer (e.g., the columnar aerosol volume size distribution). The aerosol optical depth strongly correlated (R2≈0.9 for λ=440 nm to R2≈0.6 for λ=1020 nm) with the in situ derived values, but was significantly lower compared to the direct measurements of the Sun photometer (slope ≈0.5). This was explained by the loss of

  7. Modelling Aerosol Dispersion in Urban Street Canyons

    NASA Astrophysics Data System (ADS)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    recommended height for pollutant measurements to represent pedestrian exposure. The vertical structure of aerosols within a street canyon is a topic of constant debate, due to the inability of measurement campaigns to have sufficient spatial resolution to adequately represent the entire vertical structure. Several vertical profiles have been proposed: one where the concentration is the highest at the bottom, decreasing exponentially with increasing height; a homogenous profile across the canyon depth or one with a maximum observed near the road surface. Consistent with previous measurement results, modelling studies found that at the leeward side of the canyon, there was an increase in aerosol concentration up to approximately 2 m in height, followed by a decrease along the height of the canyon. It was also found that the vertical structure of the aerosols would be influenced by the relative contributions of convection and turbulent diffusivities and therefore vary at different locations of the canyon. Using a first-order eddy viscosity turbulence closure, knowledge of the vertical structure of the aerosol concentration would provide insights into the emission velocity structure within the canyon and account for its observed heterogeneity. Investigation of the different factors which influence the ventilation characteristics of the canyon are presented and we show how these facilitate parameterizations into other modelling platforms. Both vertical turbulent flux and flux due to mean flow contribute to the overall ventilation characteristics of a street canyon and these are described. The influence of micro-meteorological factors on the vertical flux of aerosols at the roof level of the street canyon and the relative contributions of flux due to mean flow and turbulent flux at different flow conditions are also investigated. Turbulent flux was found to be of an order of magnitude higher than mean flow flux in isothermal conditions. Therefore, whilst the net effect of turbulent

  8. Phonons on the clean metal surfaces and in adsorption structures

    NASA Astrophysics Data System (ADS)

    Rusina, Galina G.; Chulkov, Evgenii V.

    2013-06-01

    The state-of-the-art studies of the vibrational dynamics of clean metal surfaces and metal surface structures formed upon the sub-monolayer adsorption of the atoms of various elements are considered. A brief historical survey of the milestones of investigations of surface phonons is presented. The results of studies of the atomic structure and vibration characteristics of surfaces with low and high Miller indices and adsorption structures are analyzed. It is demonstrated that vicinal surfaces of FCC metals tend to exhibit specific vibrational modes located on the step and polarized along the step. Irrespective of the type and position of adsorption or the substrate structure, the phonon spectra of sub-monolayer adsorption structures always tend to display two modes for combined translational displacements of adatoms and for coupled vibrations of substrate atoms and adatoms polarized in the direction normal to the surface. The bibliography includes 202 references.

  9. A well-structured metastable ceria surface

    SciTech Connect

    Olbrich, R.; Pieper, H. H.; Oelke, R.; Wilkens, H.; Wollschläger, J.; Reichling, M.; Zoellner, M. H.; Schroeder, T.

    2014-02-24

    By the growth of a 180 nm thick film on Si(111), we produce a metastable ceria surface with a morphology dominated by terraced pyramids with an oriented triangular base. Changes in the nanoscale surface morphology and local surface potential due to annealing at temperatures ranging from 300 K to 1150 K in the ultra-high vacuum are studied with non-contact atomic force microscopy and Kelvin probe force microscopy. As the surface is stable in the temperature range of 300 K to 850 K, it is most interesting for applications requiring regular steps with a height of one O-Ce-O triple layer.

  10. Coal surface structure and thermodynamics. Final report

    SciTech Connect

    Larsen, J.W.; Wernett, P.C.; Glass, A.S.; Quay, D.; Roberts, J.

    1994-05-01

    Coals surfaces were studied using static surface adsorption measurements, low angle x-ray scattering (LAXS), inverse gas chromatography (IGC) and a new {sup 13}C NMR relaxation technique. A comparison of surface areas determined by hydrocarbon gas adsorption and LAXS led to the twin conclusions that the hydrocarbons had to diffuse through the solid to reach isolated pores and that the coal pores do not form interconnected networks, but are largely isolated. This conclusion was confirmed when IGC data for small hydrocarbons showed no discontinuities in their size dependence as usually observed with porous solids. IGC is capable of providing adsorption thermodynamics of gases on coal surfaces. The interactions of non-polar molecules and coal surfaces are directly proportioned to the gas molecular polarizability. For bases, the adsorption enthalpy is equal to the polarizability interaction plus the heat of hydrogen bond formation with phenol. Amphoteric molecules have more complex interactions. Mineral matter can have highly specific effects on surface interactions, but with most of the molecules studied is not an important factor.

  11. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  12. Neutron and X-Ray Reflectivity Studies of the Adsorption of Aerosol-OT at the Air-Water Interface: The Structure of the Calcium Salt

    PubMed

    Li; Lee; Thomas; Penfold

    1997-03-15

    We have used neutron and X-ray reflection to determine the structure of a layer of calcium bis-(2-ethyl 1-hexyl) sulphosuccinate (Aerosol-OT or AOT) adsorbed at the air/solution interface. The widths of the distributions of the chains and head groups of the molecule, and their positions in relation to the underlying water, have been measured at four concentrations varying from the solubility limit (CMC) at 4 x 10(-4) M to 1 x 10(-6) M. Over this concentration range the coverage changes from 68 ± 3 to 142 ± 8 Å2 per AOT unit. The structure of the layer both is quite different from that of NaAOT and varies quite differently with surface concentration. The Ca(AOT)2 layer is slightly (1 Å) further out from the water, but the chain region is thinner for the calcium surfactant. This is reflected most in the greatly reduced chain to head separation, which drops from about 6 Å in NaAOT to about 4 Å in Ca(AOT)2.

  13. Relationships between aerosol optical depth and surface-layer extinction in the central part of the Upper Silesia industrial region over the period of 1983-1994

    NASA Astrophysics Data System (ADS)

    Sztyler, Apoloniusz

    The subject of analysis is the aerosol optical depth (AOD) in the visible part of the solar spectrum (τ) (wavelength λ=0.295-0.695μ m). Calculation of τ-values was based on pyrheliometric observation data performed from 1983 to 1994 at IEIA's station (Katowice-Załęże). This paper examines the dependence of τ and its relation to surface-layer extinction coefficient σ (Koschmider quotient of 3.912 and visibility V) on meteorological and anthropological factors during the observation period. Knowledge of the relationship between columnar aerosol turbidity (which can be expressed by τ) and σ allows a more precise and accurate estimation of the aerosol effect on the radiative composition of climate. This work offers some contributions to solving this problem. Therefore, the relations have been described in the form of mathematical/statistical models of AOD (based on "momentary" and mean seasonal values), in which meteorological (and astronomical) parameters as well as the amount of industry dust emission were used as independent variables to improve exactness and credibility in the models.

  14. Hierarchically structured superoleophobic surfaces with ultralow contact angle hysteresis.

    PubMed

    Kota, Arun K; Li, Yongxin; Mabry, Joseph M; Tuteja, Anish

    2012-11-14

    Hierarchically structured, superoleophobic surfaces are demonstrated that display one of the lowest contact angle hysteresis values ever reported - even with extremely low-surface-tension liquids such as n-heptane. Consequently, these surfaces allow, for the first time, even ≈2 μL n-heptane droplets to bounce and roll-off at tilt angles. ≤ 2°.

  15. Secondary electron emission from surfaces with small structure

    NASA Astrophysics Data System (ADS)

    Dzhanoev, A. R.; Spahn, F.; Yaroshenko, V.; Lühr, H.; Schmidt, J.

    2015-09-01

    It is found that for objects possessing small surface structures with differing radii of curvature the secondary electron emission (SEE) yield may be significantly higher than for objects with smooth surfaces of the same material. The effect is highly pronounced for surface structures of nanometer scale, often providing a more than 100 % increase of the SEE yield. The results also show that the SEE yield from surfaces with structure does not show a universal dependence on the energy of the primary, incident electrons as it is found for flat surfaces in experiments. We derive conditions for the applicability of the conventional formulation of SEE using the simplifying assumption of universal dependence. Our analysis provides a basis for studying low-energy electron emission from nanometer structured surfaces under a penetrating electron beam important in many technological applications.

  16. Surface ferromagnetism in close-packed structures

    NASA Astrophysics Data System (ADS)

    Sanchez, J. M.; Morán-López, J. L.

    The temperature-magnetic field equilibrium phase diagram for the (111) surface of an fcc spin- {1}/{2} Ising ferromagnet is calculated using the tetrahedron aproximation of the cluster variation method. Among the new features found in the model is a triple point corresponding to a ferromagnetic first-order phase transition at zero field. Some characteristics of the model, such as the increase in the surface transition temperature with the magnetic field, may be relevant to recent observations in Gd(0001) by Weller and Alvarado.

  17. A net decrease in the Earth's cloud plus aerosol reflectivity during the past 33 yr (1979-2011) and increased solar heating at the surface

    NASA Astrophysics Data System (ADS)

    Herman, J. R.; DeLand, M. T.; Huang, L.-K.; Labow, G.; Larko, D.; Lloyd, S. A.; Mao, J.; Qin, W.; Weaver, C.

    2012-12-01

    Measured upwelling radiances from Nimbus-7 SBUV, seven NOAA SBUV/2 and the AURA-OMI instruments have been used to calculate the 340 nm Lambertian Equivalent Reflectivity (LER) of the Earth from 1979 to 2011 after applying a new common calibration. The 340 nm LER is highly correlated with cloud and aerosol cover because of the low surface reflectivity of the land and oceans (typically 2 to 6 RU, where 1 RU = 0.01 = 1.0%) relative to the much higher reflectivity of clouds plus aerosols (typically 10 to 90 RU). Because of the nearly constant seasonal and long-term 340 nm surface reflectivity, the 340 nm LER can be used to estimate changes in cloud plus aerosol amount associated with seasonal and interannual variability and decadal climate change. The annual motion of the Intertropical Convergence Zone, episodic El Nino Southern Oscillation ENSO, and latitude dependent seasonal cycles are apparent in the LER time series. LER trend estimates from 5° zonal average and from 2° × 5° latitude × longitude time series show that there has been a global net decrease in cloud plus aerosol reflectivity. The decrease in global cos2 (latitude) weighted average LER from 60° S to 60° N is 0.79 ± 0.03 RU over 33 yr, corresponding to a 3.6 ± 0.2% change in LER. Based on energy balance partitioning (Trenberth et al., 2009) this corresponds to an increase of 2.7 W m-2 of solar energy reaching the Earth's surface (an increase of 1.4% or 2.3 W m-2) absorbed by the surface, which is partially offset by an increase in longwave cooling to space. Most of the decreases in cloud reflectivity occur over land, with the largest decreases occurring over the US (-0.97 RU decade-1), Brazil (-0.9 RU decade-1), and Central Europe (-1.35 RU decade-1). There are reflectivity increases near the west coast of Peru and Chile (0.8 ± 0.1 RU decade-1) over parts of India, China, and Indochina, and almost no change over Australia. The largest Pacific Ocean change is -2 ± 0.1 RU decade-1 over the

  18. Surface wave holography on designing subwavelength metallic structures.

    PubMed

    Chen, Yu-Hui; Fu, Jin-Xin; Li, Zhi-Yuan

    2011-11-21

    We report a method in the framework of surface wave holography to manipulate the electromagnetic wave on the metallic surface for realizing complicated electromagnetic wave transport functionalities in three-dimensional (3D) space. The method allows for direct determination of the metallic surface structure morphology for a given transport functionality, by means of writing desirable object information on the metallic surface via interference with a reference surface wave. We have employed the analytical approach to design and build metallic surface structures that realize arbitrary single-point focusing, arbitrary single-direction beam collimation, and simultaneous two-point focusing of electromagnetic wave in 3D space. Good agreement between numerical simulations and microwave experimental measurements has been found and confirms the power of the method in conceptually understanding and exploiting the surface electromagnetic wave on subwavelength metal structures.

  19. Modal Bin Hybrid Model: A Surface Area Consistent, Triple Moment Sectional Method for Use in Process-oriented Modeling of Atmospheric Aerosols

    SciTech Connect

    Kajino, Mizuo; Easter, Richard C.; Ghan, Steven J.

    2013-09-10

    A triple moment sectional method, Modal Bin Hybrid Model (MBHM), has been developed. In addition to number and mass (volume), surface area is predicted (and preserved), which is important for gas-to-particle mass transfer and light extinction cross section. The performance of MBHM was evaluated against double moment sectional (DMS) methods with various size resolutions up to BIN256 (BINx: x is number of sections over three orders of magnitude in size, ΔlogD = 3/x) for simulating evolution of particles under simultaneously occurring nucleation, condensation and coagulation processes. Because MBHM gives a physically consistent form of the intra-sectional distributions, errors and biases of MBHM at BIN4-8 resolution were almost equivalent to those of DMS at BIN16-32 resolution for various important variables such as the moments Mk (k: 0, 2, 3), dMk/dt, and the number and volume of particles larger than a certain diameter. Another important feature of MBHM is that only a single bin is adequate to simulate full aerosol dynamics for particles whose size distribution can be approximated by a single lognormal mode. This flexibility is useful for process-oriented (multi category and/or mixing state) modeling: primary aerosols whose size parameters would not differ substantially in time and space can be expressed by a single or a small number of modes, whereas secondary aerosols whose size changes drastically from one to several hundred nanometers can be expressed by a number of modes. Added dimensions can be applied to MBHM to represent mixing state or photo-chemical age for aerosol mixing state studies.

  20. Effect of aerosol surface lubricants on the abundance and richness of selected forest insects captured in multiple-funnel and panel traps.

    PubMed

    Allison, Jeremy D; Johnson, C Wood; Meeker, James R; Strom, Brian L; Butler, Sarah M

    2011-08-01

    Survey and detection programs for native and exotic forest insects frequently rely on traps baited with odorants, which mediate the orientation of target taxa (e.g., the southern pine beetle, Dendroctonusfrontalis Zimmermann) toward a resource (e.g., host material, mates). The influence of trap design on the capture efficiency of baited traps has received far less empirical attention than odorants, despite concerns that intercept traps currently used operationally have poor capture efficiencies for some target taxa (e.g., large woodborers). Several studies have recently demonstrated that treating traps with a surface lubricant to make them "slippery" can increase their capture efficiency; however, previously tested products can be expensive and their application time-consuming. The purpose of this study was to evaluate the effect of alternate, easier to apply aerosol lubricants on trap capture efficiency of selected forest insects. Aerosol formulations of Teflon and silicone lubricants increased both panel and multiple-funnel trap capture efficiencies. Multiple-funnel traps treated with either aerosol lubricant captured significantly more Monochamus spp. and Acanthocinus obsoletus (Olivier) than untreated traps. Similarly, treated panel traps captured significantly more Xylotrechus sagittatus (Germar), Ips calligraphus (Germar), Pissodes nemorensis (Germar), Monochamus spp., A. obsoletus, Thanasimus dubius (F.), and Ibalia leucospoides (Hochenwarth) than untreated traps. This study demonstrates that treating multiple-funnel and panel traps with an aerosol dry film lubricant can increase their capture efficiencies for large woodborers (e.g., Cerambycidae) as well as bark beetles, a weevil, a woodwasp parasitoid and a bark beetle natural enemy (Coleoptera: Cleridae).

  1. Review of antireflective surface structures on laser optics and windows.

    PubMed

    Busse, Lynda E; Frantz, Jesse A; Shaw, L Brandon; Aggarwal, Ishwar D; Sanghera, Jasbinder S

    2015-11-01

    We present recent advancements in structured, antireflective surfaces on optics, including crystals for high-energy lasers as well as windows for the infrared wavelength region. These structured surfaces have been characterized and show high transmission and laser damage thresholds, making them attractive for these applications. We also present successful tests of windows with antireflective surfaces that were exposed to simulated harsh environments for the application of these laser systems.

  2. 10 Years of Studies Comparing Airborne Sunphotometer and Satellite Views of Aerosols Over the Ocean

    NASA Astrophysics Data System (ADS)

    Russell, P.; Livingston, J.; Schmid, B.; Redemann, J.; Ramirez, S.; Zhang, Q.

    2006-12-01

    In 1996 the NASA Ames Airborne Tracking Sunphotometers (AATS) began a decade of campaigns with major focus on tropospheric aerosols over the oceans, including comparisons to spaceborne retrievals. (This followed an 11-year period starting in 1985 that focused primarily on studies of stratospheric aerosols, smoke plumes, and atmospheric correction of land imagery.) Bridging the gap between coastal, surface-based or shipborne measurements, and satellite observations, the airborne sunphotometer measurements have provided important insights into the spectral properties of aerosols and their spatial distribution, often with an emphasis on observations over the dark ocean. Among the many contributions afforded by the airborne sunphotometer data alone are measurements of the vertical structure of spectral aerosol extinction derived from vertical profiles of aerosol optical depth, validation of over-ocean satellite retrievals of aerosol properties and studies of the spatial variability of aerosols at varying spatial scales down to a few hundred meters. In conjunction with other airborne sensors, the sunphotometer data have been used to assess aerosol absorbing properties and the direct aerosol radiative forcing of climate. In recent field campaigns, the airborne sunphotometer observations have been increasingly coordinated with satellite observations, providing among other things a dual view of oceanic aerosols in regions not usually accessible to other measurement techniques. In this paper, we will provide an overview of the AATS-based findings regarding aerosols over the ocean in field campaigns such as TARFOX, ACE-2, ACE-Asia, SAFARI, CLAMS, EVE, INTEX-A and INTEX-B. We will focus on those AATS observations that either validated or complemented satellite-based aerosol retrievals for a specific science objective, thereby shedding light on the question of consistency between suborbital and spaceborne aerosol observations over the ocean.

  3. Prediction of Protein Structure Using Surface Accessibility Data

    PubMed Central

    Hartlmüller, Christoph; Göbl, Christoph

    2016-01-01

    Abstract An approach to the de novo structure prediction of proteins is described that relies on surface accessibility data from NMR paramagnetic relaxation enhancements by a soluble paramagnetic compound (sPRE). This method exploits the distance‐to‐surface information encoded in the sPRE data in the chemical shift‐based CS‐Rosetta de novo structure prediction framework to generate reliable structural models. For several proteins, it is demonstrated that surface accessibility data is an excellent measure of the correct protein fold in the early stages of the computational folding algorithm and significantly improves accuracy and convergence of the standard Rosetta structure prediction approach. PMID:27560616

  4. Laser Surface Preparation and Bonding of Aerospace Structural Composites

    NASA Technical Reports Server (NTRS)

    Belcher, M. A.; Wohl, C. J.; Hopkins, J. W.; Connell, J. W.

    2010-01-01

    Adhesive bonds are critical to the integrity of built-up structures. Disbonds can often be detected but the strength of adhesion between surfaces in contact is not obtainable without destructive testing. Typically the number one problem in a bonded structure is surface contamination, and by extension, surface preparation. Standard surface preparation techniques, including grit blasting, manual abrasion, and peel ply, are not ideal because of variations in their application. Etching of carbon fiber reinforced plastic (CFRP) panels using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser appears to be a highly precise and promising way to both clean a composite surface prior to bonding and provide a bond-promoting patterned surface akin to peel ply without the inherent drawbacks from the same (i.e., debris and curvature). CFRP surfaces prepared using laser patterns conducive to adhesive bonding were compared to typical prebonding surface treatments through optical microscopy, contact angle goniometry, and post-bonding mechanical testing.

  5. Phototransformation of 4-phenoxyphenol sensitised by 4-carboxybenzophenone: Evidence of new photochemical pathways in the bulk aqueous phase and on the surface of aerosol deliquescent particles

    NASA Astrophysics Data System (ADS)

    De Laurentiis, Elisa; Socorro, Joanna; Vione, Davide; Quivet, Etienne; Brigante, Marcello; Mailhot, Gilles; Wortham, Henri; Gligorovski, Sasho

    2013-12-01

    In addition to direct photolysis, degradation of organic compounds by solar light can also occur by indirect photolysis or photo-sensitised processes. These reactions are important because they are involved in, among others, direct and indirect climate changes, adverse health effects from inhaled particles, effects on cloud chemistry and ozone production. In this work, the importance of atmospheric photo-sensitisation is evaluated in bulk aqueous solution and on the surface of aerosol deliquescent particles. Irradiation experiments in aqueous solution indicate that 4-carboxybenzophenone (CBP) is able to photosensitise the degradation of 4-phenoxyphenol (4 PP). The process takes place via the CBP triplet state (3CBP*), which has an oxidising nature. 4 PP is fluorescent, unlike the photosensitiser CBP, with two emission bands at ˜320 and ˜380 nm. However, addition of CBP to a 4 PP solution considerably decreases the intensity of 4 PP fluorescence bands and causes a very intense new band to appear at ˜420 nm. This behaviour suggests a possible interaction between CBP and 4 PP in solution, which could favour further light-induced processes. Moreover, the new band overlaps with the fluorescence spectrum of atmospheric HULIS (HUmic-LIke Substances), suggesting that supramolecular photosensitiser-substrate interactions may have a role in HULIS fluorescence properties. The interaction between CBP and 4 PP coated on silica particles (gas-solid system) was also investigated under simulated sunlight, and in the presence of variable relative humidity. The water molecules inhibit the degradation of 4 PP, induced by 3CBP* on the surface of aerosol particles, indicating that the process could be even faster on particles than in solution. We demonstrate that phenol substances adsorbed on aerosol surfaces and in bulk solution are substantially altered upon photosensitised processes.

  6. Surface structures of rutile TiO2(114)

    NASA Astrophysics Data System (ADS)

    Kubo, Toshitaka; Orita, Hideo; Nozoye, Hisakazu

    2016-11-01

    The surface structures of rutile TiO2(114) have been studied using a combination of scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Depending on the sample preparation, the surface exhibits many complicated local nanostructures, e.g., dot-like, missing row, row-like (1 × 3), and twin dotted (2 × 2) structures. After several cycles of sputtering and high-temperature annealing, all samples exhibit triangular pyramidal structure. Microfaceted structural models, which are composed of combinations of {111} and (001) microfacets, can explain all experimental results as well as the structural variety. The calculated STM images are in good agreement with the experimental results. The decreasing density of dangling bonds, the increasing coordination number, and the evolution of non-polar structures stabilize the surface energy, which results in the microfaceted reconstructions. The formation of various nanostructures and the surface stoichiometric changes are discussed.

  7. LOAC (Light Optical Particle Counter): a new small aerosol counter with particle characterization capabilities for surface and airborne measurements

    NASA Astrophysics Data System (ADS)

    Renard, Jean-Baptiste; Berthet, Gwenael; Jégou, Fabrice; Jeannot, Matthieu; Jourdain, Line; Dulac, François; Mallet, Marc; Dupont, Jean-Charles; Thaury, Claire; Tonnelier, Thierry; Verdier, Nicolas; Charpentier, Patrick

    2013-04-01

    The determination of the size distribution of tropospheric and stratospheric aerosols with conventional optical counters is difficult when different natures of particles are present (droplets, soot, mineral dust, secondary organic or mineral particles...). Also, a light and cheap aerosol counter that can be used at ground, onboard drones or launched under all kinds of atmospheric balloons can be very useful during specific events as volcanic plumes, desert dust transport or local pollution episodes. These goals can be achieved thanks to a new generation of aerosol counter, called LOAC (Light Optical Aerosol Counter). The instrument was developed in the frame of a cooperation between French scientific laboratories (CNRS), the Environnement-SA and MeteoModem companies and the French Space Agency (CNES). LOAC is a small optical particle counter/sizer of ~250 grams, having a low electrical power consumption. The measurements are conducted at two scattering angles. The first one, at 12°, is used to determine the aerosol particle concentrations in 19 size classes within a diameter range of 0.3-100 micrometerers. At such an angle close to forward scattering, the signal is much more intense and the measurements are the least sensitive to the particle nature. The second angle is at 60°, where the scattered light is strongly dependent on the particle refractive index and thus on the nature of the aerosols. The ratio of the measurements at the two angles is used to discriminate between the different types of particles dominating the nature of the aerosol particles in the different size classes. The sensor particularly discriminates wet or liquid particles, soil dust and soot. Since 2011, we have operated LOAC in various environments (Arctic, Mediterranean, urban and peri-urban…) under different kinds of balloons including zero pressure stratospheric, tethered, drifting tropospheric, and meteorological sounding balloons. For the last case, the total weight of the gondola

  8. Structure and Hardness of Cast Iron after Surface Hardening

    NASA Astrophysics Data System (ADS)

    Safonov, E. N.

    2005-09-01

    Special features of structure formation in the heat-affected zone of roll-foundry iron with flaked or globular graphite due to surface heat treatment by direct electric (plasma) arc are considered. The influence of the parameters of the process on the composition, structure, and properties of the hardened zone is studied. Treatment modes ensuring a structure with enhanced hardness and wear resistance in the surface layer of iron are determined.

  9. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    SciTech Connect

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with the OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.

  10. On the accuracy of stratospheric aerosol extinction derived from in situ size distribution measurements and surface area density derived from remote SAGE II and HALOE extinction measurements

    DOE PAGES

    Kovilakam, Mahesh; Deshler, Terry

    2015-08-26

    In situ stratospheric aerosol measurements, from University of Wyoming optical particle counters (OPCs), are compared with Stratospheric Aerosol Gas Experiment (SAGE) II (versions 6.2 and 7.0) and Halogen Occultation Experiment (HALOE) satellite measurements to investigate differences between SAGE II/HALOE-measured extinction and derived surface area and OPC-derived extinction and surface area. Coincident OPC and SAGE II measurements are compared for a volcanic (1991-1996) and nonvolcanic (1997 2005) period. OPC calculated extinctions agree with SAGE II measurements, within instrumental uncertainty, during the volcanic period, but have been a factor of 2 low during the nonvolcanic period. Three systematic errors associated with themore » OPC measurements, anisokineticity, inlet particle evaporation, and counting efficiency, were investigated. An overestimation of the OPC counting efficiency is found to be the major source of systematic error. With this correction OPC calculated extinction increases by 15 30% (30 50%) for the volcanic (nonvolcanic) measurements. These changes significantly improve the comparison with SAGE II and HALOE extinctions in the nonvolcanic cases but slightly degrade the agreement in the volcanic period. These corrections have impacts on OPC-derived surface area density, exacerbating the poor agreement between OPC and SAGE II (version 6.2) surface areas. This disparity is reconciled with SAGE II version 7.0 surface areas. For both the volcanic and nonvolcanic cases these changes in OPC counting efficiency and in the operational SAGE II surface area algorithm leave the derived surface areas from both platforms in significantly better agreement and within the 40% precision of the OPC moment calculations.« less

  11. Surface Structure of Aerobically Oxidized Diamond Nanocrystals.

    PubMed

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E; Chen, Edward H; Nordlund, Dennis; Diaz, Rosa E; Gaathon, Ophir; Englund, Dirk; Owen, Jonathan S

    2014-11-20

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5-50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core-hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed.

  12. Stress analysis for structures with surface cracks

    NASA Technical Reports Server (NTRS)

    Bell, J. C.

    1978-01-01

    Two basic forms of analysis, one treating stresses around arbitrarily loaded circular cracks, the other treating stresses due to loads arbitrarily distributed on the surface of a half space, are united by a boundary-point least squares method to obtain analyses for stresses from surface cracks in places or bars. Calculations were for enough cases to show how effects from the crack vary with the depth-to-length ratio, the fractional penetration ratio, the obliquity of the load, and to some extent the fractional span ratio. The results include plots showing stress intensity factors, stress component distributions near the crack, and crack opening displacement patterns. Favorable comparisons are shown with two kinds of independent experiments, but the main method for confirming the results is by wide checking of overall satisfaction of boundary conditions, so that external confirmation is not essential. Principles involved in designing analyses which promote dependability of the results are proposed and illustrated.

  13. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    PubMed Central

    2015-01-01

    We investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. The importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications is discussed. PMID:25436035

  14. Carbon Nanomaterials: Surface Structure and Morphology

    NASA Astrophysics Data System (ADS)

    Mansurov, Z. A.; Shabanova, T. A.; Mofa, N. N.; Glagolev, V. A.

    2014-09-01

    We propose a classification of individual nanoparticles on the basis of the form of the surface and the internal architectural packing for investigations carried out with the help of transmission electron microscopy. The investigated samples contain individual nanoparticles of seven kinds in different ratios: rounded, tubular, fibrous, fi lm, "veil," "active" particles and "particles with regular geometric contours." The classification was made on the basis of an analysis of the results of investigations of the surfaces and internal architectural packing of carbon particles obtained in different physiochemical processes (carbonization, carburizing, arc discharge, mechanochemical treatment, plasma chemistry, and in carbon-containing fl ames). For the source materials, we used waste of farming products and widely distributed mineral raw materials.

  15. Trends in surface solar radiation in Spain since the 1980s: the role of the changes in the radiative effects of aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Sanchez-Lorenzo, Arturo; Mateos, David; Wild, Martin; Calbó, Josep; Antón, Manuel; Enriquez-Alonso, Aaron; Sanchez-Romero, Alex

    2014-05-01

    There is a growing interest in the study of decadal variations in surface solar radiation, although the analyses of long-term time series in some areas with major gaps in observations, such as in Spain, are still pending. In the first part of this work, a previously published surface solar radiation dataset in Spain is described (for more details, see Sanchez-Lorenzo et al., 2013) based on the longest series with ground-based records of global and diffuse solar radiation, most of them starting in the early 1980s and ending in 2012. Particular emphasis is placed upon the homogenization of this dataset in order to ensure the reliability of the trends. The linear trend in the mean annual series of global solar radiation shows a significant increase since 1981 of 4.0 Wm-2 (or 2.4 %) per decade. These results are in line with the increase of global solar radiation (i.e. brightening period) reported at many worldwide observation sites (Wild, 2009). In addition, the annual mean diffuse solar radiation series shows a significant decrease during the last three decades, but it is disturbed by strong increases in 1983 and 1991-1992, which might reflect the effects of the El Chichón and Pinatubo volcanic eruptions as a result of enhanced scattering of the aerosols emitted during these large volcanic eruptions. As clouds and aerosols are the main sources of uncertainty in the determination of the energy balance of the Earth, there is a growing interest in the evaluation of their radiative effects and their impact on the decadal variability of the surface solar radiation. Hence, in the second part of this work, the changes of the combined radiative effects of clouds and aerosols in Spain since the 1980s are investigated (for more details, see Mateos et al., 2013). In particular, the global solar radiation data above mentioned and radiative transfer simulations fed with reanalysis data of ozone, water vapour and surface albedo, are used to evaluate the cloud and aerosol

  16. Three Dimensional Aerosol Climatology over India and the North Indian Ocean

    NASA Astrophysics Data System (ADS)

    Adams, A.; Zhang, C.

    2013-12-01

    the CALIPSO algorithm, probably misclassifying marine aerosol as polluted dust. The origin of much of the polluted dust, the most prominent aerosol species in the region, is the mixing of dust and smoke from Africa. Low-level southerly winds south of 10°N transport smoke northward while northerly winds north of 10°N transport dust southward and upward due to orographic lifting. At their area of convergence, zonal wind transports the now elevated polluted dust eastward toward the Indian subcontinent. Subsidence and monsoon circulation reversal during boreal winter and fall limit vertical and horizontal aerosol transport from the India, particularly in the highly populated and always polluted Indo¬-Gangetic Plain. Polluted dust, polluted continental (non-elevated smoke), and smoke aerosols are confined near the surface and located over high population density areas and known biomass burning locations. Himalayan topography is an obvious barrier for the northward extent of aerosol. However, it also acts to create a meridional circulation limiting the southward extent of aerosol. Although transport pathways and the spatial structure of aerosol are well documented in the 2D sense, understanding the mechanisms controlling the vertical structure in concert with observation of the structure will be a valuable tool in reducing the uncertainty of aerosol effects in model simulations.

  17. Poster 13: Large-scale simultaneous mapping of Titan's aerosol opacity and surface albedo by a new massive inversion method of Cassini/VIMS data

    NASA Astrophysics Data System (ADS)

    Maltagliati, Luca; Rodriguez, Sebastien; Sotin, Christophe; Rannou, Pascal; Bezard, Bruno; Solomonidou, Anezina; Coustenis, Athena; Appere, Thomas; Cornet, Thomas; Le Mouelic, Stephane%F. Aa(Aim Cea Saclay; Lesia Observatoire de Paris), Ab(Aim Cea Saclay; Universite Paris 7), Ac(Jpl; Lpg Nantes), Ad(Gsma Reims), Ae(Lesia Observatoire De Paris), Af(Jpl), Ag(Lesia Observatoire De Paris), Ah(Aim Cea Saclay), Ai(Esac/Esa), Aj(Lpg Nantes)

    2016-06-01

    We have still limited information on Titan's surface albedo in the near-infrared. Only few spectral windows exist in between the intense methane bands, and even those windows are strongly affected by atmospheric contributions (absorption, scattering). Yet, this part of the spectrum is important to determine the surface composition thanks to the wealth of absorption bands by minerals and ices present there. A radiative transfer model is an effective tool to take the atmospheric effects into consideration in the analysis (e.g. Rannou et al. 2010, Griffith et al 2012, Solomonidou et al. 2016,...), but it is too time-consuming to process the whole VIMS hyperspectral dataset (millions of spectra) and create large-scale maps of the surface albedo. To overcome this problem, we developed an inversion method of VIMS data that employs lookup tables of synthetic spectra produced by a state-of-the-art radiative transfer model (described in its original form in Hirtzig et al. 2013). The heavy computational part (calling the radiative transfer model) is thus done only once for all during the creation of the modeled spectra. We updated the model with new methane spectroscopy and the new aerosol parameters we found in our analysis of the VIMS Emission Phase Function (see the other Maltagliati et al. abstract in this workshop). We analyzed in detail the behavior of the spectra as a function of the free parameters of the model (three inputs, the incidence, emergence and azimuth angles; and two products: the aerosol opacity and the surface albedo) in order to create an optimized grid for the lookup table. The lookup tables were then grafted onto an ad-hoc inversion model. Our method can process a whole 64x64 VIMS datacube in few minutes, with a gain in computational time of a factor of more than one thousand with respect to the standard method. This will consent for the first time a truly massive inversion of VIMS data and large-scale acquisition of Titan's surface albedo, paving the

  18. Surface Structure and Surface Electronic States Related to Plasma Cleaning of Silicon and Germanium

    NASA Astrophysics Data System (ADS)

    Cho, Jaewon

    This thesis discusses the surface structure and the surface electronic states of Si and Ge(100) surfaces as well as the effects of oxidation process on the silicon oxide/Si(100) interface structure. The H-plasma exposure was performed in situ at low temperatures. The active species, produced in the H-plasma by the rf-excitation of H_2 gas, not only remove microcontaminants such as oxygen and carbon from the surface, but also passivate the surface with atomic hydrogen by satisfying the dangling bonds of the surface atoms. The surfaces were characterized by Angle Resolved UV-Photoemission Spectroscopy (ARUPS) and Low Energy Electron Diffraction (LEED). In the case of Si(100), H-plasma exposure produced ordered H-terminated crystallographic structures with either a 2 x 1 or 1 x 1 LEED pattern. The hydride phases, found on the surfaces of the cleaned Si(100), were shown to depend on the temperature of the surface during H-plasma cleaning. The electronic states for the monohydride and dihydride phases were identified by ARUPS. When the plasma cleaned surface was annealed, the phase transition from the dihydride to monohydride was observed. The monohydride Si-H surface bond was stable up to 460^circC, and the dangling bond surface states were identified after annealing at 500^circC which was accompanied by the spectral shift. The H-terminated surface were characterized to have a flat band structure. For the Ge(100) surface, an ordered 2 x 1 monohydride phase was obtained from the surface cleaned at 180 ^circC. After plasma exposure at <=170^circC a 1 x 1 surface was observed, but the ARUPS indicated that the surface was predominantly composed of disordered monohydride structures. After annealing above the H-dissociation temperatures, the shift in the spectrum was shown to occur with the dangling bond surface states. The H-terminated surfaces were identified to be unpinned. The interface structure of silicon oxide/Si(100) was studied using ARUPS. Spectral shifts were

  19. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  20. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    SciTech Connect

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; Chen, Edward H.; Nordlund, Dennis; Diaz, Rosa E.; Gaaton, Ophir; Englund, Dirk; Owen, Jonathan S.

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed. Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.

  1. Thermodynamics and surface structure of coals

    SciTech Connect

    Glass, A.S.; Larsen, J.W.; Quay, D.M.; Roberts, J.E.; Wernett, P.C.

    1991-01-01

    Our work this month has been determining the effect of added surface dysprosium(III) ions on the NMR spectra of coal. We have also been examining the effect of this relaxation agent on our model system, an aryl sulfonate silica gel. To the best of our knowledge, NMR has not previously been. applied to surface studies of coal. It is a powerful technique because line positions and intensities are indicative of geometry, bonding hybridization and population of distinct functionalities as well as local environment effects. The NMR spectrum can be influenced by many factors including dipolar through-space coupling between an unpaired electron spin and the spin of the carbon atom. The unpaired electron can act as a relaxation sink, significantly shortening the spin-lattice relaxation time (T{sub 1}) of the coupled carbon-13 atom. This shortening of the T{sub 1} can broaden the signal to the point where it disappears into the baseline noise. The effective range of interaction is proportional to the inverse sixth power of the separation of the two spins (r{sup {minus}6}). In this system, the effective range is a relatively short distance on the order of 1 nanometer.

  2. Surface Structure of Aerobically Oxidized Diamond Nanocrystals

    DOE PAGES

    Wolcott, Abraham; Schiros, Theanne; Trusheim, Matthew E.; ...

    2014-10-27

    Here we investigate the aerobic oxidation of high-pressure, high-temperature nanodiamonds (5–50 nm dimensions) using a combination of carbon and oxygen K-edge X-ray absorption, wavelength-dependent X-ray photoelectron, and vibrational spectroscopies. Oxidation at 575 °C for 2 h eliminates graphitic carbon contamination (>98%) and produces nanocrystals with hydroxyl functionalized surfaces as well as a minor component (<5%) of carboxylic anhydrides. The low graphitic carbon content and the high crystallinity of HPHT are evident from Raman spectra acquired using visible wavelength excitation (λexcit = 633 nm) as well as carbon K-edge X-ray absorption spectra where the signature of a core–hole exciton is observed.more » Both spectroscopic features are similar to those of chemical vapor deposited (CVD) diamond but differ significantly from the spectra of detonation nanodiamond. Lastly, we discuss the importance of these findings to the functionalization of nanodiamond surfaces for biological labeling applications.« less

  3. Aerosols in the Convective Boundary Layer: Radiation Effects on the Coupled Land-Atmosphere System

    NASA Astrophysics Data System (ADS)

    Barbaro, E.; Vila-Guerau Arellano, J.; Ouwersloot, H. G.; Schroter, J.; Donovan, D. P.; Krol, M. C.

    2013-12-01

    We investigate the responses of the surface energy budget and the convective boundary-layer (CBL) dynamics to the presence of aerosols using a combination of observations and numerical simulations. A detailed observational dataset containing (thermo)dynamic variables observed at CESAR (Cabauw Experimental Site for Atmospheric Research) and aerosol information from the European Integrated Project on Aerosol, Cloud, Climate, and Air Quality Interactions (IMPACT/EUCAARI) campaign is employed to design numerical experiments reproducing two prototype clear-sky days characterized by: (i) a well-mixed residual layer above a ground inversion and (ii) a continuously growing CBL. A large-eddy simulation (LES) model and a mixed-layer (MXL) model, both coupled to a broadband radiative transfer code and a land-surface model, are used to study the impacts of aerosol scattering and absorption of shortwave radiation on the land-atmosphere system. We successfully validate our model results using the measurements of (thermo)dynamic variables and aerosol properties for the two different CBL prototypes studied here. Our findings indicate that in order to reproduce the observed surface energy budget and CBL dynamics, information of the vertical structure and temporal evolution of the aerosols is necessary. Given the good agreement between the LES and the MXL model results, we use the MXL model to explore the aerosol effect on the land-atmosphere system for a wide range of optical depths and single scattering albedos. Our results show that higher loads of aerosols decrease irradiance, imposing an energy restriction at the surface. Over the studied well-watered grassland, aerosols reduce the sensible heat flux more than the latent heat flux. As a result, aerosols increase the evaporative fraction. Moreover, aerosols also delay the CBL morning onset and anticipate its afternoon collapse. If also present above the CBL during the morning transition, aerosols maintain a persistent near-surface

  4. Evidence for two different structuring and scattering mechanisms and the associated role of aerosols in the polar summer mesosphere

    NASA Astrophysics Data System (ADS)

    Ulwick, J. C.; Kelley, M. C.; Alcala, C.; Blix, T. A.; Thrane, E. V.

    1993-10-01

    A Super Arcas rocket, MISTI B, was launched as part of the Polar Mesospheric Summer Echoes (PMSE) salvo to measure electron density irregularities using rf and dc probes. Large and small scale structures in the electron density were measured on rocket ascent and descent at the altitudes of 86.5 and 88.5 +/- .5 km. Since the rocket apogee was 89 km, the rocket was in the height range 88.5 +/- .5 km for 30 seconds giving us an unusual measurement of horizontal structure over a distance of 5.5 km. A power spectrum of the fluctuations for the upper layer gives further evidence that turbulent mixing is an important process in PMSE. The power spectrum of the lower layer, however, gives evidence that this layer is characterized by a form of partial or Fresnel scattering. Both spectra are in excellent agreement with similar analysis of electron fluctuation spectra measured in the same layers on the TURBO-B rocket flown 12 minutes later and the analysis of Cornell University Portable Radar Interferometer (CUPRI) data by Cho et al., 1993A. Thus two different structuring and scattering mechanisms exist at altitudes only 1 km apart. Using the simultaneous dc and rf probe measurements of electron depletions and sharp gradients in the lower layer, we speculate on the role of aerosols in creating these depletions and gradients.

  5. Nematic films at chemically structured surfaces

    NASA Astrophysics Data System (ADS)

    Silvestre, N. M.; Telo da Gama, M. M.; Tasinkevych, M.

    2017-02-01

    We investigate theoretically the morphology of a thin nematic film adsorbed at flat substrate patterned by stripes with alternating aligning properties, normal and tangential respectively. We construct a simple ‘exactly-solvable’ effective interfacial model where the liquid crystal distortions are accounted for via an effective interface potential. We find that chemically patterned substrates can strongly deform the nematic-air interface. The amplitude of this substrate-induced undulations increases with decreasing average film thickness and with increasing surface pattern pitch. We find a regime where the interfacial deformation may be described in terms of a material-independent universal scaling function. Surprisingly, the predictions of the effective interfacial model agree semi-quantitatively with the results of the numerical solution of a full model based on the Landau-de Gennes theory coupled to a square-gradient phase field free energy functional for a two phase system.

  6. A Study of Aerosols Transportation around City Boundary in the Fog Weather

    NASA Astrophysics Data System (ADS)

    Ding, J.; Li, J. H.; Liu, Y.; Zhang, B. L.; Wang, Q. T.

    2011-09-01

    The structure of city surface seriously affects transport and diffusion of pollutant aerosol particles in the fog weather. So dynamic model population balance model (PBM) of aerosol particles and multiphase-coupled flow model were established to describe the fluid-particle system of fog. Based on the Eulerian-Lagrangian method and Multi-Monte Carlo method, a study of aerosols transportation around city boundary was conducted. The computed results show a part of aerosols change into droplets during the formation of fog, and the average sizes of aerosols, droplets are about 0.032 7 μm and 28.7 μm with time evolution to 60 min. For the development of fog, with time of 60 min and wind of 2 m/s, the number of aerosol is down to 84.5% of initial value, and the average particle size is down to 22.1 μm accordingly. During the dissipation of fog, the numbers of aerosol and fog droplet are decreased to the 1.65% and 0.016 5% of initial value. As wind speed rising, the turbulent motion strength of particles is increased. Eventually, the droplets have almost disappeared, and a small number of aerosols are still suspended in the atmosphere. The computed results reflect the transport and dynamic characteristics for respirable aerosols around city boundary during three stages of fog.

  7. Aerosol Radiative Forcing and Regional Climate Impact over Middle East and North Africa

    NASA Astrophysics Data System (ADS)

    Bangalth, H. K.; Stenchikov, G.; Zampieri, M.; Bantges, R.; Brindley, H.

    2012-04-01

    Middle East and North Africa (MENA) is a unique region due in part to the abundance of atmospheric aerosols and their significant contribution to the energy balance of the region. Mineral dust plays a leading role in this process. In this study we evaluate the radiative forcing of dust aerosols in the MENA region and their impact on the regional circulation and temperature distribution using a global high-resolution atmospheric model HIRAM developed at the NOAA Geophysical Fluid Dynamics Laboratory. We found that dust aerosols reduce downward radiative fluxes at surface up to 30 W/m2 and warm by about this amount the lower five-km-deep atmospheric layer. To better quantify radiative impact of aerosols we have employed the available aerosol satellite observations that primarily provide column integral aerosol optical depth (AOD), as a measure of aerosol burden. Climatology of AOD from different satellites (MODIS, MISR, SEVIRI and CALIPSO) over MENA and their inter comparison is made to have a comprehension of the discrepancies and agreement between them. Though the observed AODs vary among the different instruments spatially and temporally, the difference falls within a factor of less than two. We implement these observed aerosols in HIRAM. The radiative forcing corresponding to the satellite aerosol observation and the sensitivity of regional climate to this forcing are analyzed. The analysis shows that the differential heating in the vertical and the corresponding response of the vertical temperature profile have a profound impact on the tropospheric dynamics and the structure of the boundary layer.

  8. Intercomparison of aerosol physical and physical properties derived from surface radiometers and in-situ aircraft profiles over six Maryland sites during the DRAGON and DISCOVER-AQ campaign

    NASA Astrophysics Data System (ADS)

    Schafer, J. S.; Thornhill, K. L.; Holben, B. N.; Anderson, B. E.; Eck, T. F.; Giles, D. M.; Winstead, E. L.; Ziemba, L. D.; Beyersdorf, A. J.; Smirnov, A.; Slutsker, I.; Sinyuk, A.; Kenny, P.

    2011-12-01

    The Aerosol Robotic Network (AERONET) project and international collaborators deployed more than 40 Cimel sunphotometers in the Baltimore-Washington, DC region for the summer 2011 DRAGON-USA (Distributed Regional Aerosol Gridded Observational Network) campaign. This unprecedented mesoscale network was comprised of automatic sun/sky radiometers distributed with roughly 10km grid spacing (covering an area of ~60km x 120km) which operated continuously for more than two months. The DRAGON-USA campaign was concurrent with the NASA sponsored DISCOVER-AQ air quality experiment which performed 14 days of research flights in July concentrating on repeated multiple daily profile measurements of gaseous and particulate pollution over 6 primary sun photometer sites. Atmospheric conditions varied from clean and dry to extremely hazy and humid on flight days with corresponding aerosol optical depth (AOD) at 500 nm ranging from ~0.06 to ~0.90 and precipitable water (PW) ranging from ~1.5 cm to ~4.5 cm. In-situ aerosol properties were measured on the NASA P-3B by the NASA Langley Aerosol Group Experiment (LARGE) team using a suite of instruments to characterize ambient aerosol optical and microphysical properties. Size distributions were made with a custom scanning mobility particle sizer (SMPS), an Ultrahigh Sensitivity Aerosol Spectrometer (UHSAS) from Droplet Measurement Technologies, and Aerosol Particle Sizer (APS) from TSI. Aerosol optical measurements were made with a TSI-3563 3-wavelength integrating nephelometer and a 3-wavelength Radiance Research Particle Soot Absorption Photometer (PSAP). We present preliminary comparisons of coincident single scattering albedo (at three wavelengths) and column integrated size distributions retrieved from the surface Cimel sunphotometer almucantar sky radiances and from aircraft in-situ observations during flight profiles at key sites.

  9. BAECC Biogenic Aerosols - Effects on Clouds and Climate

    SciTech Connect

    Petäjä, Tuukka; Moisseev, Dmitri; Sinclair, Victoria; O'Connor, Ewan J.; Manninen, Antti J.; Levula, Janne; Väänänen, Riikka; Heikkinen, Liine; Äijälä, Mikko; Aalto, Juho; Bäck, Jaana

    2015-11-01

    “Biogenic Aerosols - Effects on Clouds and Climate (BAECC)”, featured the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Program’s 2nd Mobile Facility (AMF2) in Hyytiälä, Finland. It operated for an 8-month intensive measurement campaign from February to September 2014. The main research goal was to understand the role of biogenic aerosols in cloud formation. One of the reasons to perform BAECC study in Hyytiälä was the fact that it hosts SMEAR-II (Station for Measuring Forest Ecosystem-Atmosphere Relations), which is one of the world’s most comprehensive surface in-situ observation sites in a boreal forest environment. The station has been measuring atmospheric aerosols, biogenic emissions and an extensive suite of parameters relevant to atmosphere-biosphere interactions continuously since 1996. The BAECC enables combining vertical profiles from AMF2 with surface-based in-situ SMEAR-II observations and allows the processes at the surface to be directly related to processes occurring throughout the entire tropospheric column. With the inclusion of extensive surface precipitation measurements, and intensive observation periods involving aircraft flights and novel radiosonde launches, the complementary observations of AMF2 and SMEAR-II provide a unique opportunity for investigating aerosol-cloud interactions, and cloud-to-precipitation processes. The BAECC dataset will initiate new opportunities for evaluating and improving models of aerosol sources and transport, cloud microphysical processes, and boundary-layer structures.

  10. Atomic Structure of the Stoichiometric GaAs(114) Surface.

    PubMed

    Márquez; Kratzer; Geelhaar; Jacobi; Scheffler

    2001-01-01

    The stoichiometric GaAs(114) surface has been prepared using molecular beam epitaxy followed by annealing in ultrahigh vacuum. Based on in situ scanning tunneling microscopy measurements and first-principles electronic-structure calculations, we determine the surface reconstruction which we call alpha2(2x1). Contrary to what is expected for a high-index surface, it is surprisingly elementary. The (2x1) unit cell contains two As dimers and two rebonded Ga atoms. The surface energy is calculated as 53 meV/Å(2), which falls well within the range of low-index GaAs surface energies.

  11. Electronic Structure of the NaxCoO2 Surface

    NASA Astrophysics Data System (ADS)

    Pillay, D.; Johannes, M. D.; Mazin, I. I.

    2008-12-01

    The idea that surface effects may play an important role in suppressing eg' Fermi surface pockets on NaxCoO2 (0.333≤x≤0.75) has been frequently proposed to explain the discrepancy between local-density approximation calculations which find eg' hole pockets present and Angle resolved photoemission spectra (ARPES) experiments, which do not observe the hole pockets. Since ARPES is a surface sensitive technique, it is important to investigate the effects that surface formation will have on the electronic structure. We show that a combination of surface formation and contamination effects could resolve the ongoing controversy between ARPES experiments and theory.

  12. On the influence of Aerosols in measurement of electric field from Earth surface using a Field-Mill

    NASA Astrophysics Data System (ADS)

    Ghosh, Abhijit; Sundar De, Syam; Paul, Suman; Hazra, Pranab; Guha, Gautam

    2016-07-01

    Aerosol particles influence the electrical conductivity of air. The value is reduced through the removal of small ions responsible for the conductivity. The metropolitan city, Kolkata (latitude 22.56° N, longitude 88.5° E) is densely populated surrounded by various types of Industries. Air is highly invaded by pollutant particles here for which the city falls under small-scale fair-weather condition where electric field and air-earth current get perturbed by ionization and different aerosols produced locally. Fine particles having diameter < 0.1 μm (Aitken nuclei) are distributed in air which decreases the electrical conductivity and increases the columnar resistance. Aerosol particles steadily change the status at different times of the day through coagulation, sedimentation, charge-transfer initiated by precipitation. The diurnal variation of potential gradient is caused mainly due to urbanization, emission from industry and traffic. The rate of production of haze (atmospheric suspension) and their vertical transportation control the daily variation of atmospheric potential. The nuclei of pollutant particles combine with ions and decrease the concentration of small ions thereby reducing the conductivity. The pollutants, influenced by CO _{2} and other green house gas emission from fossil fuels are also responsible for the variation of electric field. Variation in consumption of Oil and Gasoline due to traffic in the city contributes a high Aitken count and there are changes in atmospheric dispersion following reduction of conductivity of the medium. Outcome of some important measurement of potential gradient and air-earth current will be presented. Different parameters like air-conductivity, relative abundance of smoke, visibility would offer new signatures of aerosol-influence on electric potential gradient. Some of those will be reported here.

  13. Replication of Leaf Surface Structures for Light Harvesting.

    PubMed

    Huang, Zhongjia; Yang, Sai; Zhang, Hui; Zhang, Meng; Cao, Wei

    2015-09-18

    As one of the most important hosts of natural light harvesting, foliage normally has complicated surface structures to capture solar radiances. Bio-mimicking leaf surface structures can provide novel designs of covers in photovoltaic systems. In this article, we reported on replicating leaf surface structures on poly-(methyl methacrylate) polymers to prompt harvesting efficiencies. Prepared via a double transfer process, the polymers were found to have high optical transparencies and transmission hazes, with both values exceeding 80% in some species. Benefiting from optical properties and wrinkled surfaces, the biomimetic polymers brought up to 17% gains to photovoltaic efficiencies. Through Monte-Carlo simulations of light transport, ultrahigh haze values and low reflections were attributed to lightwave guidance schemes lead by the nano- and micro-morphologies which are inherited from master leaves. Thus, leaf surface bio-mimicking can be considered as a strategic direction to design covers of light harvesting systems.

  14. Replication of Leaf Surface Structures for Light Harvesting

    PubMed Central

    Huang, Zhongjia; Yang, Sai; Zhang, Hui; Zhang, Meng; Cao, Wei

    2015-01-01

    As one of the most important hosts of natural light harvesting, foliage normally has complicated surface structures to capture solar radiances. Bio-mimicking leaf surface structures can provide novel designs of covers in photovoltaic systems. In this article, we reported on replicating leaf surface structures on poly-(methyl methacrylate) polymers to prompt harvesting efficiencies. Prepared via a double transfer process, the polymers were found to have high optical transparencies and transmission hazes, with both values exceeding 80% in some species. Benefiting from optical properties and wrinkled surfaces, the biomimetic polymers brought up to 17% gains to photovoltaic efficiencies. Through Monte-Carlo simulations of light transport, ultrahigh haze values and low reflections were attributed to lightwave guidance schemes lead by the nano- and micro-morphologies which are inherited from master leaves. Thus, leaf surface bio-mimicking can be considered as a strategic direction to design covers of light harvesting systems. PMID:26381702

  15. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    SciTech Connect

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; Hammack, Aaron T.; Doris, Sean E.; Aloni, Shaul; Altoe, Virginia; Nordlund, Dennis; Weng, Tsu -Chien; Sokaras, Dimosthenis; Cohen, Bruce E.; Urban, Jeffrey J.; Ogletree, D. Frank; Milliron, Delia J.; Prendergast, David; Helms, Brett A.

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons is readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.

  16. Chemically directing d-block heterometallics to nanocrystal surfaces as molecular beacons of surface structure

    DOE PAGES

    Rosen, Evelyn L.; Gilmore, Keith; Sawvel, April M.; ...

    2015-07-28

    Our understanding of structure and bonding in nanoscale materials is incomplete without knowledge of their surface structure. Needed are better surveying capabilities responsive not only to different atoms at the surface, but also their respective coordination environments. We report here that d-block organometallics, when placed at nanocrystal surfaces through heterometallic bonds, serve as molecular beacons broadcasting local surface structure in atomic detail. This unique ability stems from their elemental specificity and the sensitivity of their d-orbital level alignment to local coordination environment, which can be assessed spectroscopically. Re-surfacing cadmium and lead chalcogenide nanocrystals with iron- or ruthenium-based molecular beacons ismore » readily accomplished with trimethylsilylated cyclopentadienyl metal carbonyls. For PbSe nanocrystals with iron-based beacons, we show how core-level X-ray spectroscopies and DFT calculations enrich our understanding of both charge and atomic reorganization at the surface when beacons are bound.« less

  17. Surface Relaxations, Surface Energies and Electronic Structures of BaSnO3 (001) Surfaces: Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Slassi, A.; Hammi, M.; El Rhazouani, O.

    2017-02-01

    The surface relaxations, surface energies and electronic structures of BaO- and SnO2-terminated BaSnO3 (001) surfaces have been studied by employing the first-principles density functional theory. For both terminations, we find that the upper-layer Ba and Sn atoms move inward, whereas upper-layer O atoms move outward from the surface. Moreover, the largest relaxations are occurred on the first-layer atoms of both terminations. The surface rumpling of BaO-terminated BaSnO3 (001) is slightly less than that of the SnO2-terminated BaSnO3 (001) surface. The surface energies show that both terminated surfaces are energetically stable and favorable. Finally, the surface band gap is slightly decreased for the BaO termination, while it is dramatically decreased for the SnO2 termination.

  18. Determining the surface and interface structure of nanomaterials

    SciTech Connect

    Van Hove, Michel A.

    2004-06-14

    This paper informally speculates on the challenges of determining the atomic-scale surface and interface structure of nanomaterials. The relative capabilities of different techniques are compared. This includes discussion of theoretical methods needed to interpret experimental techniques.

  19. Structural and electronic properties of a tetrahedral amorphous carbon surface

    NASA Astrophysics Data System (ADS)

    Dong, Jianjun; Drabold, D. A.

    1997-03-01

    We present ab initio studies of a model of tetrahedral amorphous carbon (ta-C) surface. Our methodology is LDA (with Harris functional and local basis) molecular dynamics simulations. The surface is modeled by a 216 atom slab supercell. Several candidate slabs are constructed by starting with the DTW model (B.R. Djordjevic, M.F. Thorpe and F. Wooten, Phys. Rev. B 52) 5685 (1995) and applying various simulated heating/quenching cycles. We analyze the structural and electronic properties of the surface , with special attention forcused on the electronic signatures of surface structural defects. Preliminary results indicate that the surface layer significantly graphitizes, and many surface gap states are present in the electronic density of states.

  20. Surface band structure of Bi1 -xSbx(111 )

    NASA Astrophysics Data System (ADS)

    Benia, Hadj M.; Straßer, Carola; Kern, Klaus; Ast, Christian R.

    2015-04-01

    Theoretical and experimental studies agree that Bi1-xSbx (0.07 ≤x ≤0.21 ) is a three-dimensional topological insulator. However, there is still a debate on the corresponding Bi1-xSbx(111 ) surface band structure. While three spin polarized bands have been claimed experimentally, theoretically, only two surface bands appear, with the third band being attributed to surface imperfections. Here, we address this controversy using angle-resolved photoemission spectroscopy (ARPES) on Bi1-xSbx films. To minimize surface imperfections, we have optimized the sample growth recipe. We have measured the evolution of the surface band structure of Bi1-xSbx with x increasing gradually from x =0 to x =0.6 . Our ARPES data show better agreement with the theoretical calculations, where the system is topologically nontrivial with two surface bands.

  1. Validation of aerosol and cloud layer structures from the space-borne lidar CALIOP using a ground-based lidar in Seoul, Korea

    NASA Astrophysics Data System (ADS)

    Kim, S.-W.; Berthier, S.; Raut, J.-C.; Chazette, P.; Dulac, F.; Yoon, S.-C.

    2008-07-01

    We present initial validation results of the space-borne lidar CALIOP onboard CALIPSO satellite using coincidental observations from a ground-based lidar in Seoul National University (SNU), Seoul, Korea (37.46° N, 126.95° E). We analyze six selected cases between September 2006 and February 2007, including 3 daytime and 3 night-time observations and covering different types of clear and cloudy atmospheric conditions. Apparent scattering ratios calculated from the two lidar measurements of total attenuated backscatter at 532 nm show similar aerosol and cloud layer structures both under cloud-free conditions and in cases of multiple aerosol layers underlying semi-transparent cirrus clouds. Agreement on top and base heights of cloud and aerosol layers is generally within 0.10 km, particularly during night-time. This result confirms that the CALIPSO science team algorithms for the discrimination of cloud and aerosol as well as for the detection of layer top and base altitude provide reliable information in such atmospheric conditions. This accuracy of the planetary boundary layer top height under cirrus cloud appears, however, limited during daytime. Under thick cloud conditions, however, information on the cloud top (bottom) height only is reliable from CALIOP (ground-based lidar) due to strong signal attenuations. However, simultaneous space-borne CALIOP and ground-based SNU lidar (SNU-L) measurements complement each other and can be combined to provide full information on the vertical distribution of aerosols and clouds. An aerosol backscatter-to-extinction ratio (BER) estimated from lidar and sunphotometer synergy at the SNU site during the CALIOP overpass is assessed to be 0.023±0.004 sr-1 (i.e. a lidar ratio of 43.2±6.2 sr) from CALIOP and 0.027±0.006 sr-1 (37.4±7.2 sr) from SNU-L. For aerosols within the planetary boundary layer under cloud-free conditions, the aerosol extinction profiles from both lidars are in agreement within about 0.02 km-1. Under semi

  2. Accuracy of functional surfaces on comparatively modeled protein structures

    PubMed Central

    Zhao, Jieling; Dundas, Joe; Kachalo, Sema; Ouyang, Zheng; Liang, Jie

    2012-01-01

    Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using Mod