Science.gov

Sample records for aerosol testing parameters

  1. "Worst case" aerosol testing parameters: II. Efficiency dependence of commercial respirator filters on humidity pretreatment.

    PubMed

    Moyer, E S; Stevens, G A

    1989-05-01

    Previous studies have shown that relative humidity has a degrading effect on the performance of commercially available particulate air-purifying respirator filters. That degradation results from a reduction of charge within the filter. This study was done to evaluate the time-dependent effects of relative humidity pretreatment and the reduction of charge on filter penetration against a most penetrating, "worst case" aerosol challenge. Filters of the dust and mist; dust, fume, and mist; paint, lacquer, and enamel mist; and high efficiency types were tested after being pretreated in an environment of 38 degrees C and 85% relative humidity for periods up to 42 days. After various intervals of pretreatment (1, 7, 14, 28, and 42 days), the filters were tested against neutralized worst-case sodium chloride (NaCl) and dioctyl phthalate (DOP) aerosols for percent penetration. The results showed a drop in filter efficiency of approximately 2%-6% depending on preconditioning time, except for the high efficiency filters tested which showed no detectable change. PMID:2729102

  2. Worst case aerosol testing parameters: II. Efficiency dependence of commercial respirator filters on humidity pretreatment

    SciTech Connect

    Moyer, E.S.; Stevens, G.A.

    1989-05-01

    Previous studies have shown that relative humidity has a degrading effect on the performance of commercially available particulate air-purifying respirator filters. That degradation results from a reduction of charge within the filter. This study was done to evaluate the time-dependent effects of relative humidity pretreatment and the reduction of charge on filter penetration against a most penetrating, ''worst case'' aerosol challenge. Filters of the dust and mist; dust, fume, and mist; paint, lacquer, and enamel mist; and high efficiency types were tested after being pretreated in an environment of 38 degrees C and 85% relative humidity for periods up to 42 days. After various intervals of pretreatment (1, 7, 14, 28, and 42 days), the filters were tested against neutralized worst-case sodium chloride (NaCl) and dioctyl phthalate (DOP) aerosols for percent penetration. The results showed a drop in filter efficiency of approximately 2%-6% depending on preconditioning time, except for the high efficiency filters tested which showed no detectable change.

  3. "Worst-case" aerosol testing parameters: III. Initial penetration of charged and neutralized lead fume and silica dust aerosols through clean, unloaded respirator filters.

    PubMed

    Moyer, E S; Stevens, G A

    1989-05-01

    The National Institute for Occupational Safety and Health (NIOSH) tests and certifies respirator filter media according to Title 30, Code of Federal Regulations, Part 11 (30 CFR 11). Subpart K of those regulations specifies that a silica dust test, silica mist test, and/or lead fume test will be used to test and certify dust and mist; and dust, fume, and mist particulate air-purifying respirator filter media. NIOSH studies have shown that an aerosol particle of a certain size can be identified as the most penetrating particle ("worst case") size. Commercial filter media of various types have been studied and the filter's performance against a worst-case sodium chloride (NaCl) and dioctyl phthalate (DOP) aerosol evaluated. This investigation was done to complement those previous studies by determining how one manufacturer's particulate filters performed against the existing certification aerosol challenges as compared with the worst-case size DOP and NaCl aerosols. Only initial penetration values were determined, and no loading effects were considered. Both neutralized (Boltzman charge distribution) and unneutralized aerosols were used in order to assess the contribution of charging. The results show the dramatic effect of particle size on filter efficiency, and they show that the present methods are not as sensitive as the worst-case aerosol method. PMID:2543198

  4. Worst-case aerosol testing parameters: III. Initial penetration of charged and neutralized lead fume and silica dust aerosols through clean, unloaded respirator filters

    SciTech Connect

    Moyer, E.S.; Stevens, G.A.

    1989-05-01

    The National Institute for Occupational Safety and Health (NIOSH) tests and certifies respirator filter media according to Title 30, Code of Federal Regulations, Part 11 (30 CFR 11). Subpart K of those regulations specifies that a silica dust test, silica mist test, and/or lead fume test will be used to test and certify dust and mist; and dust, fume, and mist particulate air-purifying respirator filter media. NIOSH studies have shown that an aerosol particle of a certain size can be identified as the most penetrating particle (''worst case'') size. Commercial filter media of various types have been studied and the filter's performance against a worst-case sodium chloride (NaCl) and dioctyl phthalate (DOP) aerosol evaluated. This investigation was done to complement those previous studies by determining how one manufacturer's particulate filters performed against the existing certification aerosol challenges as compared with the worst-case size DOP and NaCl aerosols. Only initial penetration values were determined, and no loading effects were considered. Both neutralized (Boltzman charge distribution) and unneutralized aerosols were used in order to assess the contribution of charging. The results show the dramatic effect of particle size on filter efficiency, and they show that the present methods are not as sensitive as the worst-case aerosol method.

  5. Ice-condenser aerosol tests

    SciTech Connect

    Ligotke, M.W.; Eschbach, E.J.; Winegardner, W.K. )

    1991-09-01

    This report presents the results of an experimental investigation of aerosol particle transport and capture using a full-scale height and reduced-scale cross section test facility based on the design of the ice compartment of a pressurized water reactor (PWR) ice-condenser containment system. Results of 38 tests included thermal-hydraulic as well as aerosol particle data. Particle retention in the test section was greatly influenced by thermal-hydraulic and aerosol test parameters. Test-average decontamination factor (DF) ranged between 1.0 and 36 (retentions between {approximately}0 and 97.2%). The measured test-average particle retentions for tests without and with ice and steam ranged between DF = 1.0 and 2.2 and DF = 2.4 and 36, respectively. In order to apparent importance, parameters that caused particle retention in the test section in the presence of ice were steam mole fraction (SMF), noncondensible gas flow rate (residence time), particle solubility, and inlet particle size. Ice-basket section noncondensible flows greater than 0.1 m{sup 3}/s resulted in stable thermal stratification whereas flows less than 0.1 m{sup 3}/s resulted in thermal behavior termed meandering with frequent temperature crossovers between flow channels. 10 refs., 66 figs., 16 tabs.

  6. Optical measurement of medical aerosol media parameters

    NASA Astrophysics Data System (ADS)

    Sharkany, Josif P.; Zhytov, Nikolay B.; Sichka, Mikhail J.; Lemko, Ivan S.; Pintye, Josif L.; Chonka, Yaroslav V.

    2000-07-01

    The problem of aerosol media parameters measurements are presented in the work and these media are used for the treatment of the patients with bronchial asthma moreover we show the results of the development and the concentration and dispersity of the particles for the long-term monitoring under such conditions when the aggressive surroundings are available. The system for concentration measurements is developed, which consists of two identical photometers permitting to carry out the measurements of the transmission changes and the light dispersion depending on the concentration of the particles. The given system permits to take into account the error, connected with the deposition of the salt particles on the optical windows and the mirrors in the course of the long-term monitoring. For the controlling of the dispersity of the aggressive media aerosols the optical system is developed and used for the non-stop analysis of the Fure-spectra of the aerosols which deposit on the lavsan film. The registration of the information is performed with the help of the rule of the photoreceivers or CCD-chamber which are located in the Fure- plane. With the help of the developed optical system the measurements of the concentration and dispersity of the rock-salt aerosols were made in the medical mines of Solotvino (Ukraine) and in the artificial chambers of the aerosol therapy.

  7. Parameter sensitivity study of Arctic aerosol vertical distribution in CAM5

    NASA Astrophysics Data System (ADS)

    Jiao, C.; Flanner, M.

    2015-12-01

    Arctic surface temperature response to light-absorbing aerosols (black carbon, brown carbon and dust) depends strongly on their vertical distributions. Improving model simulations of three dimensional aerosol fields in the remote Arctic region will therefore lead to improved projections of the climate change caused by aerosol emissions. In this study, we investigate how different physical parameterizations in the Community Atmosphere Model version 5 (CAM5) influence the simulated vertical distribution of Arctic aerosols. We design experiments to test the sensitivity of the simulated aerosol fields to perturbations of selected aerosol process-related parameters in the Modal Aerosol Module with seven lognormal modes (MAM7), such as those govern aerosol aging, in-cloud and below-cloud scavenging, aerosol hygroscopicity and so on. The simulations are compared with observed aerosol vertical distributions and total optical depth to assess model performance and quantify uncertainties associated with these model parameterizations. Observations applied here include Arctic aircraft measurements of black carbon and sulfate vertical profiles, along with Aerosol Robotic Network (AERONET) optical depth measurements. We also assess the utility of using High Spectral Resolution Lidar (HSRL) measurements from the ARM Barrow site to infer vertical profiles of aerosol extinction. The sensitivity study explored here will provide guidance for optimizing global aerosol simulations.

  8. Climate Engineering with Stratospheric Aerosols and Associated Engineering Parameters

    SciTech Connect

    Kravitz, Benjamin S.

    2013-02-12

    Climate engineering with stratospheric aerosols, an idea inspired by large volcaniceruptions, could cool the Earth’s surface and thus alleviate some of the predicted dangerous impacts of anthropogenic climate change. However, the effectiveness of climate engineering to achieve a particular climate goal, and any associated side effects, depend on certain aerosol parameters and how the aerosols are deployed in the stratosphere. Through the examples of sulfate and black carbon aerosols, this paper examines "engineering" parameters-aerosol composition, aerosol size, and spatial and temporal variations in deployment-for stratospheric climate engineering. The effects of climate engineering are sensitive to these parameters, suggesting that a particle could be found ordesigned to achieve specific desired climate outcomes. This prospect opens the possibility for discussion of societal goals for climate engineering.

  9. Test-Aerosol Generator For Calibrating Particle Counters

    NASA Technical Reports Server (NTRS)

    Mogan, Paul A.; Adams, Alois J.; Schwindt, Christian J.; Hodge, Timothy R.; Mallow, Tim J.; Duong, Anh A.; Bukauskas, Vyto V.

    1996-01-01

    Apparatus generates clean, stable aerosol stream for use in testing and calibrating laser-based aerosol-particle counter. Size and concentration of aerosol particles controlled to ensure accurate calibration. Cheap, widely available medical nebulizers used to generate aerosols.

  10. Results and code predictions for ABCOVE (aerosol behavior code validation and evaluation) aerosol code validation: Test AB6 with two aerosol species. [LMFBR

    SciTech Connect

    Hilliard, R K; McCormack, J C; Muhlestein, L D

    1984-12-01

    A program for aerosol behavior code validation and evaluation (ABCOVE) has been developed in accordance with the LMFBR Safety Program Plan. The ABCOVE program is a cooperative effort between the USDOE, the USNRC, and their contractor organizations currently involved in aerosol code development, testing or application. The second large-scale test in the ABCOVE program, AB6, was performed in the 850-m/sup 3/ CSTF vessel with a two-species test aerosol. The test conditions simulated the release of a fission product aerosol, NaI, in the presence of a sodium spray fire. Five organizations made pretest predictions of aerosol behavior using seven computer codes. Three of the codes (QUICKM, MAEROS and CONTAIN) were discrete, multiple species codes, while four (HAA-3, HAA-4, HAARM-3 and SOFIA) were log-normal codes which assume uniform coagglomeration of different aerosol species. Detailed test results are presented and compared with the code predictions for seven key aerosol behavior parameters.

  11. Paint spray tests for respirators: aerosol characteristics.

    PubMed

    Ackley, M W

    1980-05-01

    Liquid paint is sprayed from an atomizing nozzle to form an aerosol for testing paint spray respirators. The generated aerosol conditions are dependent upon liguid properties, spray-nozzle flow conditions and droplet evaporation. A technique was developed for controlling the aerosol concentrations reliably. Particle-size distributions of lacquer and enamel have been measured. The lacquer distribution was found to be multi-modal. Aerosol concentration dradients arise when the nozzle is not properly positioned. Filter loading resistance is significantly affected by these concentration variations. With regard to selection of standard aerosol test be improved by modifying the current NIOSH criteria to include a description of the particle-size distribution, a more precise definition of the paint and paint thinner chemical compositions, and a narrower concentration range. PMID:6932174

  12. Multi-Parameter Aerosol Scattering Sensor

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S.; Fischer, David G.

    2011-01-01

    This work relates to the development of sensors that measure specific aerosol properties. These properties are in the form of integrated moment distributions, i.e., total surface area, total mass, etc., or mathematical combinations of these moment distributions. Specifically, the innovation involves two fundamental features: a computational tool to design and optimize such sensors and the embodiment of these sensors in actual practice. The measurement of aerosol properties is a problem of general interest. Applications include, but are not limited to, environmental monitoring, assessment of human respiratory health, fire detection, emission characterization and control, and pollutant monitoring. The objectives for sensor development include increased accuracy and/or dynamic range, the inclusion in a single sensor of the ability to measure multiple aerosol properties, and developing an overall physical package that is rugged, compact, and low in power consumption, so as to enable deployment in harsh or confined field applications, and as distributed sensor networks. Existing instruments for this purpose include scattering photometers, direct-reading mass instruments, Beta absorption devices, differential mobility analyzers, and gravitational samplers. The family of sensors reported here is predicated on the interaction of light and matter; specifically, the scattering of light from distributions of aerosol particles. The particular arrangement of the sensor, e.g. the wavelength(s) of incident radiation, the number and location of optical detectors, etc., can be derived so as to optimize the sensor response to aerosol properties of practical interest. A key feature of the design is the potential embodiment as an extremely compact, integrated microsensor package. This is of fundamental importance, as it enables numerous previously inaccessible applications. The embodiment of these sensors is inherently low maintenance and high reliability by design. The novel and

  13. Aerosol water parameterization: a single parameter framework

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Steil, B.; Abdelkader, M.; Klingmüller, K.; Xu, L.; Penner, J. E.; Fountoukis, C.; Nenes, A.; Lelieveld, J.

    2015-11-01

    We introduce a framework to efficiently parameterize the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute specific coefficient was introduced in Metzger et al. (2012) to accurately parameterize the single solution hygroscopic growth, considering the Kelvin effect - accounting for the water uptake of concentrated nanometer sized particles up to dilute solutions, i.e., from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler-theory). Here we extend the νi-parameterization from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II, ISORROPIA II models as well as textbook examples. We apply our parameterization in EQSAM4clim, the EQuilibrium Simplified Aerosol Model V4 for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show: (i) that the νi-approach enables to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that, e.g., pure ammonium nitrate and mixed ammonium nitrate - ammonium sulfate mixtures can be solved with a simple method, and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.

  14. Aerosol water parameterisation: a single parameter framework

    NASA Astrophysics Data System (ADS)

    Metzger, Swen; Steil, Benedikt; Abdelkader, Mohamed; Klingmüller, Klaus; Xu, Li; Penner, Joyce E.; Fountoukis, Christos; Nenes, Athanasios; Lelieveld, Jos

    2016-06-01

    We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect - accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.

  15. Spent fuel sabotage aerosol test program :FY 2005-06 testing and aerosol data summary.

    SciTech Connect

    Gregson, Michael Warren; Brockmann, John E.; Nolte, O. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Loiseau, O. (Institut de radioprotection et de Surete Nucleaire, France); Koch, W. (Fraunhofer institut fur toxikologie und experimentelle Medizin, Germany); Molecke, Martin Alan; Autrusson, Bruno (Institut de radioprotection et de Surete Nucleaire, France); Pretzsch, Gunter Guido (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Billone, M. C. (Argonne National Laboratory, USA); Lucero, Daniel A.; Burtseva, T.; Brucher, W (Gesellschaft fur anlagen- und Reaktorsicherheit, Germany); Steyskal, Michele D.

    2006-10-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides source-term data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This document focuses on an updated description of the test program and test components for all work and plans made, or revised, primarily during FY 2005 and about the first two-thirds of FY 2006. It also serves as a program status report as of the end of May 2006. We provide details on the significant findings on aerosol results and observations from the recently completed Phase 2 surrogate material tests using cerium oxide ceramic pellets in test rodlets plus non-radioactive fission product dopants. Results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; status on determination of the spent fuel ratio, SFR (the ratio of respirable particles from real spent fuel/respirables from surrogate spent fuel, measured under closely matched test conditions, in a contained test chamber); and, measurements of enhanced volatile fission product species sorption onto respirable particles. We discuss progress and results for the first three, recently performed Phase 3 tests using depleted uranium oxide, DUO{sub 2}, test rodlets. We will also review the status of preparations and the final Phase 4 tests in this program, using short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. These data plus testing results and design are tailored to support and guide, follow-on computer modeling of aerosol dispersal hazards and radiological consequence

  16. Aerosol can puncture device operational test plan

    SciTech Connect

    Leist, K.J.

    1994-05-03

    Puncturing of aerosol cans is performed in the Waste Receiving and Processing Facility Module 1 (WRAP 1) process as a requirement of the waste disposal acceptance criteria for both transuranic (TRU) waste and low-level waste (LLW). These cans have contained such things as paints, lubricating oils, paint removers, insecticides, and cleaning supplies which were used in radioactive facilities. Due to Westinghouse Hanford Company (WHC) Fire Protection concerns of the baseline system`s fire/explosion proof characteristics, a study was undertaken to compare the baseline system`s design to commercially available puncturing devices. While the study found no areas which might indicate a risk of fire or explosion, WHC Fire Protection determined that the puncturing system must have a demonstrated record of safe operation. This could be obtained either by testing the baseline design by an independent laboratory, or by substituting a commercially available device. As a result of these efforts, the commercially available Aerosolv can puncturing device was chosen to replace the baseline design. Two concerns were raised with the system. Premature blinding of the coalescing/carbon filter, due to its proximity to the puncture and draining operation; and overpressurization of the collection bottle due to its small volume and by blinding of the filter assembly. As a result of these concerns, testing was deemed necessary. The objective of this report is to outline test procedures for the Aerosolv.

  17. Results and code predictions for ABCOVE aerosol code validation - Test AB5

    SciTech Connect

    Hilliard, R K; McCormack, J D; Postma, A K

    1983-11-01

    A program for aerosol behavior code validation and evaluation (ABCOVE) has been developed in accordance with the LMFBR Safety Program Plan. The ABCOVE program is a cooperative effort between the USDOE, the USNRC, and their contractor organizations currently involved in aerosol code development, testing or application. The first large-scale test in the ABCOVE program, AB5, was performed in the 850-m{sup 3} CSTF vessel using a sodium spray as the aerosol source. Seven organizations made pretest predictions of aerosol behavior using seven different computer codes (HAA-3, HAA-4, HAARM-3, QUICK, MSPEC, MAEROS and CONTAIN). Three of the codes were used by more than one user so that the effect of user input could be assessed, as well as the codes themselves. Detailed test results are presented and compared with the code predictions for eight key parameters.

  18. Aerosol optical properties in the southeastern United States in summer - Part 2: Sensitivity of aerosol optical depth to relative humidity and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.; Beyersdorf, Andreas; Campuzano-Jost, Pedro; Day, Douglas A.; Diskin, Glenn S.; Gordon, Timothy D.; Jimenez, Jose L.; Lack, Daniel A.; Liao, Jin; Markovic, Milos Z.; Middlebrook, Ann M.; Perring, Anne E.; Richardson, Matthews S.; Schwarz, Joshua P.; Welti, Andre; Ziemba, Luke D.; Murphy, Daniel M.

    2016-04-01

    Aircraft observations of meteorological, trace gas, and aerosol properties were made between May and September 2013 in the southeastern United States (US). Regionally representative aggregate vertical profiles of median and interdecile ranges of the measured parameters were constructed from 37 individual aircraft profiles made in the afternoon when a well-mixed boundary layer with typical fair-weather cumulus was present (Wagner et al., 2015). We use these 0-4 km aggregate profiles and a simple model to calculate the sensitivity of aerosol optical depth (AOD) to changes in dry aerosol mass, relative humidity, mixed-layer height, the central diameter and width of the particle size distribution, hygroscopicity, and dry and wet refractive index, while holding the other parameters constant. The calculated sensitivity is a result of both the intrinsic sensitivity and the observed range of variation in these parameters. These observationally based sensitivity studies indicate that the relationship between AOD and dry aerosol mass in these conditions in the southeastern US can be highly variable and is especially sensitive to relative humidity (RH). For example, calculated AOD ranged from 0.137 to 0.305 as the RH was varied between the 10th and 90th percentile profiles with dry aerosol mass held constant. Calculated AOD was somewhat less sensitive to aerosol hygroscopicity, mean size, and geometric standard deviation, σg. However, some chemistry-climate models prescribe values of σg substantially larger than we or others observe, leading to potential high biases in model-calculated AOD of ˜ 25 %. Finally, AOD was least sensitive to observed variations in dry and wet aerosol refractive index and to changes in the height of the well-mixed surface layer. We expect these findings to be applicable to other moderately polluted and background continental air masses in which an accumulation mode between 0.1-0.5 µm diameter dominates aerosol extinction.

  19. Scattering directionality parameters of fractal black carbon aerosols and comparison with the Henyey-Greenstein approximation.

    PubMed

    Pandey, Apoorva; Chakrabarty, Rajan K

    2016-07-15

    Current radiation transfer schemes employ the Henyey-Greenstein (HG) phase function to connect three single parameter representations of aerosol scattering directionality-the hemispherical upscatter fraction (β), the backscatter fraction (b), and the asymmetry parameter (g). The HG phase function does not account for particle morphology, which could lead to significant errors. In this Letter, we compute these single parameters for fractal black carbon (BC) aerosols using the numerically exact superposition T-matrix method. The variations in β, g, and b as a function of aerosol morphology are examined. Corrected empirical relationships connecting these parameters are proposed. We find that the HG phase function could introduce up to a 35% error in β and g estimates. Interestingly, these errors are suppressed by the large mass absorption cross-sections of BC aerosols in radiative transfer calculations and contribute to ≤8% error in direct forcing efficiencies. PMID:27420533

  20. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, R. E.; Ansmann, A.

    2015-12-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of number concentrations of aerosol particles with radius > 50 nm (APC50, reservoir of favorable CCN) and with radius > 250 nm (APC250, reservoir of favorable INP), as well as profiles of the aerosol particle surface area concentration (ASC, used in INP parameterization) can be retrieved from lidar-derived aerosol extinction coefficients (AEC) with relative uncertainties of a factor of around 2 (APC50), and of about 25-50 % (APC250, ASC). Of key importance is the potential of polarization lidar to identify mineral dust particles and to distinguish and separate the aerosol properties of basic aerosol types such as mineral dust and continental pollution (haze, smoke). We investigate the relationship between AEC and APC50, APC250, and ASC for the main lidar wavelengths of 355, 532 and 1064 nm and main aerosol types (dust, pollution, marine). Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures of continental pollution, mineral dust, and marine aerosol. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple relationship between APC50 and the CCN-reservoir particles (APCCCN) and published INP parameterization schemes (with APC250 and ASC as input) we finally compute APCCCN and INP concentration profiles. We apply the full methodology to a lidar observation of a heavy dust outbreak crossing Cyprus with dust up to 8 km height and to a case during which anthropogenic pollution dominated.

  1. Microphysical aerosol parameters of spheroidal particles via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine

    2015-04-01

    One of the main topics in understanding the aerosol impact on climate requires the investigation of the spatial and temporal variability of microphysical properties of particles, e.g., the complex refractive index, the effective radius, the volume and surface-area concentration, and the single-scattering albedo. Remote sensing is a technique used to monitor aerosols in global coverage and fill in the observational gap. This research topic involves using multi-wavelength Raman lidar systems to extract the microphysical properties of aerosol particles, along with depolarization signals to account for the non-sphericity of the latter. Given, the optical parameters (measured by a lidar), the kernel functions, which summarize the size, shape and composition of particles, we solve for the size distribution of the particles modeled by a Fredholm integral system and further calculate the refractive index. This model works well for spherical particles (e.g. smoke); the kernel functions are derived from relatively simplified formulas (Mie scattering theory) and research has led to successful retrievals for particles which at least resemble a spherical geometry (small depolarization ratio). Obviously, more complicated atmospheric structures (e.g dust) require employment of non-spherical kernels and/or more complicated models which are investigated in this paper. The new model is now a two-dimensional one including the aspect ratio of spheroidal particles. The spheroidal kernel functions are able to be calculated via T-Matrix; a technique used for computing electromagnetic scattering by single, homogeneous, arbitrarily shaped particles. In order to speed up the process and massively perform simulation tests, we created a software interface using different regularization methods and parameter choice rules. The following methods have been used: Truncated singular value decomposition and Pade iteration with the discrepancy principle, and Tikhonov regularization with the L

  2. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    NASA Astrophysics Data System (ADS)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  3. Unique DNA-barcoded aerosol test particles for studying aerosol transport

    DOE PAGES

    Harding, Ruth N.; Hara, Christine A.; Hall, Sara B.; Vitalis, Elizabeth A.; Thomas, Cynthia B.; Jones, A. Daniel; Day, James A.; Tur-Rojas, Vincent R.; Jorgensen, Trond; Herchert, Edwin; et al

    2016-03-22

    Data are presented for the first use of novel DNA-barcoded aerosol test particles that have been developed to track the fate of airborne contaminants in populated environments. Until DNATrax (DNA Tagged Reagents for Aerosol eXperiments) particles were developed, there was no way to rapidly validate air transport models with realistic particles in the respirable range of 1–10 μm in diameter. The DNATrax particles, developed at Lawrence Livermore National Laboratory (LLNL) and tested with the assistance of the Pentagon Force Protection Agency, are the first safe and effective materials for aerosol transport studies that are identified by DNA molecules. The usemore » of unique synthetic DNA barcodes overcomes the challenges of discerning the test material from pre-existing environmental or background contaminants (either naturally occurring or previously released). The DNATrax particle properties are demonstrated to have appropriate size range (approximately 1–4.5 μm in diameter) to accurately simulate bacterial spore transport. As a result, we describe details of the first field test of the DNATrax aerosol test particles in a large indoor facility.« less

  4. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    NASA Astrophysics Data System (ADS)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  5. A Multi-Parameter Aerosol Classification Method and its Application to Retrievals from Spaceborne Polarimetry

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Kacenelenbogen, M. S.; Livingston, J. M.; Hasekamp, O. P.; Burton, S. P.; Schuster, G. L.; Johnson, M. S.; Knobelspiesse, K. D.; Redemann, J.; Ramachandran, S.; Holben, B. N.

    2014-12-01

    Classifying observed aerosols into types (e.g., urban-industrial, biomass burning, mineral dust, maritime) helps to understand aerosol sources, transformations, effects, and feedback mechanisms; to improve accuracy of satellite retrievals; and to quantify aerosol radiative impacts on climate. The number of aerosol parameters retrieved from spaceborne sensors has been growing, from the initial aerosol optical depth (AOD) at one or a few wavelengths to a list that now includes AOD, complex refractive index, single scattering albedo (SSA), and depolarization of backscatter, each at several wavelengths, plus several particle size and shape parameters. Making optimal use of these varied data products requires objective, multi-dimensional analysis methods. We describe such a method, which makes explicit use of uncertainties in input parameters. It treats an N-parameter retrieved data point and its N-dimensional uncertainty as an extended data point, E. It then uses a modified Mahalanobis distance, DEC, to assign an observation to the class (cluster) C that has minimum DEC from the point. We use parameters retrieved from the Aerosol Robotic Network (AERONET) to define seven prespecified clusters (pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke, pure marine), and we demonstrate application of the method to a 5-year record of retrievals from the spaceborne POLDER-3 (Polarization and Directionality of the Earth's Reflectances) polarimeter over the island of Crete, Greece. Results show changes of aerosol type at this location in the eastern Mediterranean Sea, which is influenced by a wide variety of aerosol sources.

  6. Regional differences of column aerosol parameters in western Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Obregón, M. A.; Pereira, S.; Wagner, F.; Serrano, A.; Cancillo, M. L.; Silva, A. M.

    2012-12-01

    This study presents a characterization of aerosols columnar properties measured at three different AERONET sites in the western part of the Iberian Peninsula, namely Évora and Cabo da Roca, in Portugal, and Cáceres, in Spain, during the period from 2005 to 2010. AERONET level 2.0 products have been analyzed. The comparison of these three stations has great interest because it has not been conducted yet and it allows to characterize the aerosols of a wide region in western Iberian Peninsula by a long-term analysis of their aerosol properties. In addition, it allows analyzing the possible differences in these properties between the three sites located at different distances from the coast. The results show differences between the aerosol optical depth at 440 and 1020 nm at the three stations, being the mean values in Cabo da Roca at 1020 and 440 nm (0.08 and 0.16) slightly higher than in the other two stations (Évora: 0.06 and 0.15; Cáceres: 0.05 and 0.14). Greater differences among the three stations are found for the Ångström exponent values. Thus, Cáceres shows the highest mean value (1.33), followed by Évora (1.14) and, finally, by Cabo da Roca (1.00) which exhibits the smallest median α values due to the presence of coarse sea salt particles and high atmospheric humidity. These values are consistent with the values of volume size distribution, exhibiting a greater value of large particles at Cabo da Roca. The mean values of the single scattering albedo (ω) have been also analyzed, obtaining higher results as the coast is approached: Cabo da Roca: ω (440) = 0.95; ω (1020) = 0.96, Évora: ω (440) = 0.93; ω (1020) = 0.95 and Cáceres: ω (440) = 0.88; ω (1020) = 0.83. The differences between the three stations are explained in terms of the distance to the coast and to the occasional arrival of diverse air masses transporting different aerosol types to each station. One classification method proposed for the study region has been applied to multi

  7. Retrieval of aerosol parameters from the oxygen A band in the presence of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.

    2013-04-01

    We have investigated precision of retrieved parameters for a generic aerosol retrieval algorithm over vegetated land using the O2 A band. Chlorophyll fluorescence is taken into account in the forward model. Fluorescence emissions are modeled as isotropic contributions to the upwelling radiance field at the surface and they are retrieved along with aerosol parameters. Precision is calculated by propagating measurement noise using the forward model's derivatives. We assume that measurement noise is dominated by shot noise; thus, results apply to grating spectrometers in particular. In a number of retrieval simulations, we describe precision for various atmospheric states, observation geometries and spectral resolutions of the instrument. Our results show that aerosol optical thickness, aerosol pressure, fluorescence emission and surface albedo can be simultaneously retrieved from the O2 A band. We also show that most of the fluorescence signal is provided by filling-in of the O2 A band and to a lesser extent by filling-in of Fraunhofer lines.

  8. Retrieval of aerosol parameters from the oxygen A band in the presence of chlorophyll fluorescence

    NASA Astrophysics Data System (ADS)

    Sanders, A. F. J.; de Haan, J. F.

    2013-10-01

    We have investigated the precision of retrieved aerosol parameters for a generic aerosol retrieval algorithm over vegetated land using the O2 A band. Chlorophyll fluorescence is taken into account in the forward model. Fluorescence emissions are modeled as isotropic contributions to the upwelling radiance field at the surface and they are retrieved along with aerosol parameters. Precision is calculated by propagating measurement errors and a priori errors, including model parameter errors, using the forward model's derivatives. Measurement errors consist of noise and calibration errors. The model parameter errors considered are related to the single scattering albedo, surface pressure and temperature profile. We assume that measurement noise is dominated by shot noise; thus, results apply to grating spectrometers in particular. We describe precision for various atmospheric states, observation geometries and spectral resolutions of the instrument in a number of retrieval simulations. These precision levels can be compared with user requirements. A comparison of precision estimates with the literature and an analysis of the dependence on the a priori error in the fluorescence emission indicate that aerosol parameters can be retrieved in the presence of chlorophyll fluorescence: if fluorescence is present, fluorescence emissions should be included in the state vector to avoid biases in retrieved aerosol parameters.

  9. Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multi-Parameter Algorithm

    NASA Astrophysics Data System (ADS)

    Russell, P. B.; Kacenelenbogen, M. S.; Livingston, J. M.; Hasekamp, O.; Burton, S. P.; Schuster, G. L.; Redemann, J.; Ramachandran, S.; Holben, B. N.

    2013-12-01

    In this presentation we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimeter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e,g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals; and quantifying assessments of aerosol radiative impacts on climate. With ongoing improvements in satellite measurement capability, the number of aerosol parameters retrieved from spaceborne sensors has been growing, from the initial aerosol optical depth at one or a few wavelengths to a list that now includes complex refractive index, single scattering albedo (SSA), and depolarization of backscatter, each at several wavelengths; wavelength dependences of extinction, scattering, absorption, SSA, and backscatter; and several particle size and shape parameters. Making optimal use of these varied data products requires objective, multi-dimensional analysis methods. We describe such a method, which uses a modified Mahalanobis distance to quantify how far a data point described by N aerosol parameters is from each of several prespecified classes. The method makes explicit use of uncertainties in input parameters, treating a point and its N-dimensional uncertainty as an extended data point or pseudo-cluster E. It then uses a modified Mahalanobis distance, DEC, to assign that observation to the class (cluster) C that has minimum DEC from the point (equivalently, the class to which the point has maximum probability of belonging). The method also uses Wilks' overall lambda to indicate how well the input data lend themselves to separation into classes and Wilks' partial lambda to indicate the relative

  10. Aerosol tests conducted at Aberdeen Proving Grounds MD.

    SciTech Connect

    Brockmann, John E.; Lucero, Daniel A.; Servantes, Brandon Lee; Hankins, Matthew Granholm

    2012-06-01

    Test data are reported that demonstrate the deposition from a spray dispersion system (Illinois Tool Works inductively charging rotary atomization nozzle) for application of decontamination solution to various surfaces in the passenger cabin of a Boeing 737 aircraft. The decontamination solution (EnviroTru) was tagged with a known concentration of fluorescein permitting determination of both airborne decontaminant concentration and surface deposited decontaminant solution so that the effective deposition rates and surface coverage could be determined and correlated with the amount of material sprayed. Six aerosol dispersion tests were conducted. In each test, aluminum foil deposition coupons were set out throughout the passenger area and the aerosol was dispersed. The aerosol concentration was measured with filter samplers as well as with optical techniques Average aerosol deposition ranged from 3 to 15 grams of decontamination solution per square meter. Some disagreement was observed between various instruments utilizing different measurement principles. These results demonstrate a potentially effective method to disperse decontaminant to interior surfaces of a passenger aircraft.

  11. Potential of polarization lidar to provide profiles of CCN- and INP-relevant aerosol parameters

    NASA Astrophysics Data System (ADS)

    Mamouri, Rodanthi-Elisavet; Ansmann, Albert

    2016-05-01

    We investigate the potential of polarization lidar to provide vertical profiles of aerosol parameters from which cloud condensation nucleus (CCN) and ice nucleating particle (INP) number concentrations can be estimated. We show that height profiles of particle number concentrations n50, dry considering dry aerosol particles with radius > 50 nm (reservoir of CCN in the case of marine and continental non-desert aerosols), n100, dry (particles with dry radius > 100 nm, reservoir of desert dust CCN), and of n250, dry (particles with dry radius > 250 nm, reservoir of favorable INP), as well as profiles of the particle surface area concentration sdry (used in INP parameterizations) can be retrieved from lidar-derived aerosol extinction coefficients σ with relative uncertainties of a factor of 1.5-2 in the case of n50, dry and n100, dry and of about 25-50 % in the case of n250, dry and sdry. Of key importance is the potential of polarization lidar to distinguish and separate the optical properties of desert aerosols from non-desert aerosol such as continental and marine particles. We investigate the relationship between σ, measured at ambient atmospheric conditions, and n50, dry for marine and continental aerosols, n100, dry for desert dust particles, and n250, dry and sdry for three aerosol types (desert, non-desert continental, marine) and for the main lidar wavelengths of 355, 532, and 1064 nm. Our study is based on multiyear Aerosol Robotic Network (AERONET) photometer observations of aerosol optical thickness and column-integrated particle size distribution at Leipzig, Germany, and Limassol, Cyprus, which cover all realistic aerosol mixtures. We further include AERONET data from field campaigns in Morocco, Cabo Verde, and Barbados, which provide pure dust and pure marine aerosol scenarios. By means of a simple CCN parameterization (with n50, dry or n100, dry as input) and available INP parameterization schemes (with n250, dry and sdry as input) we finally compute

  12. Surrogate/spent fuel sabotage : aerosol ratio test program and Phase 2 test results.

    SciTech Connect

    Borek, Theodore Thaddeus III; Thompson, N. Slater; Sorenson, Ken Bryce; Hibbs, R.S.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno; Young, F. I.; Koch, Wolfgang; Brochard, Didier; Pretzsch, Gunter Guido; Lange, Florentin

    2004-05-01

    A multinational test program is in progress to quantify the aerosol particulates produced when a high energy density device, HEDD, impacts surrogate material and actual spent fuel test rodlets. This program provides needed data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments; the program also provides significant political benefits in international cooperation. We are quantifying the spent fuel ratio, SFR, the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are crucial for predicting radiological impacts. This document includes a thorough description of the test program, including the current, detailed test plan, concept and design, plus a description of all test components, and requirements for future components and related nuclear facility needs. It also serves as a program status report as of the end of FY 2003. All available test results, observations, and analyses - primarily for surrogate material Phase 2 tests using cerium oxide sintered ceramic pellets are included. This spent fuel sabotage - aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks, WGSTSC, and supported by both the U.S. Department of Energy and Nuclear Regulatory Commission.

  13. Efficiency tests of samplers for microbiological aerosols, a review

    NASA Technical Reports Server (NTRS)

    Henningson, E.; Faengmark, I.

    1984-01-01

    To obtain comparable results from studies using a variety of samplers of microbiological aerosols with different collection performances for various particle sizes, methods reported in the literature were surveyed, evaluated, and tabulated for testing the efficiency of the samplers. It is concluded that these samplers were not thoroughly tested, using reliable methods. Tests were conducted in static air chambers and in various outdoor and work environments. Results are not reliable as it is difficult to achieve stable and reproducible conditions in these test systems. Testing in a wind tunnel is recommended.

  14. Production of aerosols by optical catapulting: Imaging, performance parameters and laser-induced plasma sampling rate

    NASA Astrophysics Data System (ADS)

    Abdelhamid, M.; Fortes, F. J.; Fernández-Bravo, A.; Harith, M. A.; Laserna, J. J.

    2013-11-01

    Optical catapulting (OC) is a sampling and manipulation method that has been extensively studied in applications ranging from single cells in heterogeneous tissue samples to analysis of explosive residues in human fingerprints. Specifically, analysis of the catapulted material by means of laser-induced breakdown spectroscopy (LIBS) offers a promising approach for the inspection of solid particulate matter. In this work, we focus our attention in the experimental parameters to be optimized for a proper aerosol generation while increasing the particle density in the focal region sampled by LIBS. For this purpose we use shadowgraphy visualization as a diagnostic tool. Shadowgraphic images were acquired for studying the evolution and dynamics of solid aerosols produced by OC. Aluminum silicate particles (0.2-8 μm) were ejected from the substrate using a Q-switched Nd:YAG laser at 1064 nm, while time-resolved images recorded the propagation of the generated aerosol. For LIBS analysis and shadowgraphy visualization, a Q-switched Nd:YAG laser at 1064 nm and 532 nm was employed, respectively. Several parameters such as the time delay between pulses and the effect of laser fluence on the aerosol production have been also investigated. After optimization, the particle density in the sampling focal volume increases while improving the aerosol sampling rate till ca. 90%.

  15. Atmospheric aerosol optical parameters, deep convective clouds and hail occurence - a correlation study

    NASA Astrophysics Data System (ADS)

    Talianu, Camelia; Andrei, Simona; Toanca, Florica; Stefan, Sabina

    2016-04-01

    Among the severe weather phenomena, whose frequency has increased during the past two decades, hail represents a major threat not only for agriculture but also for other economical fields. Generally, hail are produced in deep convective clouds, developed in an unstable environment. Recent studies have emphasized that besides the state of the atmosphere, the atmospheric composition is also very important. The presence of fine aerosols in atmosphere could have a high impact on nucleation processes, initiating the occurrence of cloud droplets, ice crystals and possibly the occurrence of graupel and/or hail. The presence of aerosols in the atmosphere, correlated with specific atmospheric conditions, could be predictors of the occurrence of hail events. The atmospheric investigation using multiwavelength Lidar systems can offer relevant information regarding the presence of aerosols, identified using their optical properties, and can distinguish between spherical and non-spherical shape, and liquid and solid phase of these aerosols. The aim of this study is to analyse the correlations between the presence and the properties of aerosols in atmosphere, and the production of hail events in a convective environment, using extensive and intensive optical parameters computed from lidar and ceilometer aerosols measurements. From these correlations, we try to evaluate if these aerosols can be taken into consideration as predictors for hail formation. The study has been carried out in Magurele - Romania (44.35N, 26.03E, 93m ASL) using two collocated remote sensing systems: a Raman Lidar (RALI) placed at the Romanian Atmospheric 3D Observatory and a ceilometer CL31 placed at the nearby Faculty of Physics, University of Bucharest. To evaluate the atmospheric conditions, radio sounding and satellite images were used. The period analysed was May 1st - July 15th, 2015, as the May - July period is climatologically favorable for deep convection events. Two hail events have been

  16. USE OF CONTINUOUS MEASUREMENTS OF INTEGRAL AEROSOL PARAMETERS TO ESTIMATE PARTICLE SURFACE AREA

    EPA Science Inventory

    This study was undertaken because of interest in using particle surface area as an indicator for studies of the health effects of particulate matter. First, we wished to determine the integral parameter of the size distribution measured by the electrical aerosol detector. Secon...

  17. Large-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Daniel, Richard C.; Gauglitz, Phillip A.; Burns, Carolyn A.; Fountain, Matthew S.; Shimskey, Rick W.; Billing, Justin M.; Bontha, Jagannadha R.; Kurath, Dean E.; Jenks, Jeromy WJ; MacFarlan, Paul J.; Mahoney, Lenna A.

    2013-08-01

    One of the events postulated in the hazard analysis for the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak event involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids that behave as a Newtonian fluid. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and in processing facilities across the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are mostly absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale testing. The small-scale testing and resultant data are described in Mahoney et al. (2012b), and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used

  18. The influence of fog parameters on aerosol depletion measured in the KAEVER experiments

    SciTech Connect

    Poss, G.; Weber, D.; Fritsche, B.

    1995-12-31

    The release of radioactive aerosols in the environment is one of the most serious hazards in case of an accident in nuclear power plant. Many efforts have been made in the past in numerous experimental programs like NSPP, DEMONA, VANAM, LACE, MARVIKEN, others are still underway to improve the knowledge of the aerosol behavior and depletion in a reactor containment in order to estimate the possible source term and to validate computer codes. In the German single compartment KAEVER facility the influence of size distribution, morphology, composition and solubility on the aerosol behavior is investigated. One of the more specific items is to learn about {open_quotes}wet depletion{close_quotes} means, the aerosol depletion behavior in condensing atmospheres. There are no experiments known where the fog parameters like droplet size distribution, volume concentration, respectively airborne liquid water content have been measured in- and on-line explicitly. To the authors knowledge the use of the Battelle FASP photometer, which was developed especially for this reason, for the first time gives insight in condensation behavior under accident typical thermal hydraulic conditions. It delivers a basis for code validation in terms of a real comparison of measurements and calculations. The paper presents results from {open_quotes}wet depletion{close_quotes} aerosol experiments demonstrating how depletion velocity depends on the fog parameters and where obviously critical fog parameter seem to change the regime from a {open_quotes}pseudo dry depletion{close_quotes} at a relative humidity of 100% but quasi no or very low airborne liquid water content to a real {open_quotes}wet depletion{close_quotes} under the presence of fogs with varying densities. Characteristics are outlined how soluble and insoluble particles as well as aerosol mixtures behave under condensing conditions.

  19. Small-Scale Spray Releases: Additional Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, G. N.; Mahoney, Lenna A.; Tran, Diana N.; Burns, Carolyn A.; Kurath, Dean E.

    2013-08-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. To expand the data set upon which the WTP accident and safety analyses were based, an aerosol spray leak testing program was conducted by Pacific Northwest National Laboratory (PNNL). PNNL’s test program addressed two key technical areas to improve the WTP methodology (Larson and Allen 2010). The first technical area was to quantify the role of slurry particles in small breaches where slurry particles may plug the hole and prevent high-pressure sprays. The results from an effort to address this first technical area can be found in Mahoney et al. (2012a). The second technical area was to determine aerosol droplet size distribution and total droplet volume from prototypic breaches and fluids, including sprays from larger breaches and sprays of slurries for which literature data are largely absent. To address the second technical area, the testing program collected aerosol generation data at two scales, commonly referred to as small-scale and large-scale. The small-scale testing and resultant data are described in Mahoney et al. (2012b) and the large-scale testing and resultant data are presented in Schonewill et al. (2012). In tests at both scales, simulants were used to mimic the

  20. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2013-05-29

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and net generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of antifoam agents was assessed with most of the simulants. Orifices included round holes and

  1. PHEBUS on-line aerosol monitor development test program

    SciTech Connect

    Sprenger, M.H.; Pentecost, C.G.

    1992-03-01

    EG&G Idaho, Inc. developed an on-line aerosol monitor (OLAM) for the French PHEBUS Fission Product Project. Part of the development was to manufacture and test an OLAM prototype. This report presents the results of the testing which determined the mechanical integrity of the monitor at operating temperature and pressure and performed a preliminary test of the optical system. A series of twenty different tests was conducted during the prototype testing sequence. Since no leaks were detected, the OLAM demonstrated that it could provide a pressure boundary at required test conditions. The optical and electrical system also proved its integrity by exceeding the design requirement of less than 105 optical signal drift during an actual two-hour test sequence.

  2. PHEBUS on-line aerosol monitor development test program

    SciTech Connect

    Sprenger, M.H.; Pentecost, C.G.

    1992-03-01

    EG G Idaho, Inc. developed an on-line aerosol monitor (OLAM) for the French PHEBUS Fission Product Project. Part of the development was to manufacture and test an OLAM prototype. This report presents the results of the testing which determined the mechanical integrity of the monitor at operating temperature and pressure and performed a preliminary test of the optical system. A series of twenty different tests was conducted during the prototype testing sequence. Since no leaks were detected, the OLAM demonstrated that it could provide a pressure boundary at required test conditions. The optical and electrical system also proved its integrity by exceeding the design requirement of less than 105 optical signal drift during an actual two-hour test sequence.

  3. Small-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Mahoney, Lenna A.; Gauglitz, Phillip A.; Kimura, Marcia L.; Brown, Garrett N.; Kurath, Dean E.; Buchmiller, William C.; Smith, Dennese M.; Blanchard, Jeremy; Song, Chen; Daniel, Richard C.; Wells, Beric E.; Tran, Diana N.; Burns, Carolyn A.

    2012-11-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  4. Large-Scale Spray Releases: Initial Aerosol Test Results

    SciTech Connect

    Schonewill, Philip P.; Gauglitz, Phillip A.; Bontha, Jagannadha R.; Daniel, Richard C.; Kurath, Dean E.; Adkins, Harold E.; Billing, Justin M.; Burns, Carolyn A.; Davis, James M.; Enderlin, Carl W.; Fischer, Christopher M.; Jenks, Jeromy WJ; Lukins, Craig D.; MacFarlan, Paul J.; Shutthanandan, Janani I.; Smith, Dennese M.

    2012-12-01

    One of the events postulated in the hazard analysis at the Waste Treatment and Immobilization Plant (WTP) and other U.S. Department of Energy (DOE) nuclear facilities is a breach in process piping that produces aerosols with droplet sizes in the respirable range. The current approach for predicting the size and concentration of aerosols produced in a spray leak involves extrapolating from correlations reported in the literature. These correlations are based on results obtained from small engineered spray nozzles using pure liquids with Newtonian fluid behavior. The narrow ranges of physical properties on which the correlations are based do not cover the wide range of slurries and viscous materials that will be processed in the WTP and across processing facilities in the DOE complex. Two key technical areas were identified where testing results were needed to improve the technical basis by reducing the uncertainty due to extrapolating existing literature results. The first technical need was to quantify the role of slurry particles in small breaches where the slurry particles may plug and result in substantially reduced, or even negligible, respirable fraction formed by high-pressure sprays. The second technical need was to determine the aerosol droplet size distribution and volume from prototypic breaches and fluids, specifically including sprays from larger breaches with slurries where data from the literature are scarce. To address these technical areas, small- and large-scale test stands were constructed and operated with simulants to determine aerosol release fractions and generation rates from a range of breach sizes and geometries. The properties of the simulants represented the range of properties expected in the WTP process streams and included water, sodium salt solutions, slurries containing boehmite or gibbsite, and a hazardous chemical simulant. The effect of anti-foam agents was assessed with most of the simulants. Orifices included round holes and

  5. A novel technique for estimating aerosol optical thickness trends using meteorological parameters

    NASA Astrophysics Data System (ADS)

    Emetere, Moses E.; Akinyemi, M. L.; Akin-Ojo, O.

    2016-02-01

    Estimating aerosol optical thickness (AOT) over regions can be tasking if satellite data set over such region is very scanty. Therefore a technique whose application captures real-time events is most appropriate for adequate monitoring of risk indicators. A new technique i.e. arithmetic translation of pictorial model (ATOPM) was developed. The ATOPM deals with the use mathematical expression to compute other meteorological parameters obtained from satellite or ground data set. Six locations within 335 × 230 Km2 area of a selected portion of Nigeria were chosen and analyzed -using the meteorological data set (1999-2012) and MATLAB. The research affirms the use of some parameters (e.g. minimum temperature, cloud cover, relative humidity and rainfall) to estimate the aerosol optical thickness. The objective of the paper was satisfied via the use of other meteorological parameters to estimate AOT when the satellite data set over an area is scanty.

  6. THERMOPHORESIS AND ITS THERMAL PARAMETERS FOR AEROSOL COLLECTION

    SciTech Connect

    Huang, Z.; Apte, M.; Gundel, L.

    2007-01-01

    The particle collection effi ciency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler’s heating element was made of three sets of thermophoretic (TP) wires 25μm in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  7. Thermophoresis and Its Thermal Parameters for Aerosol Collection

    SciTech Connect

    Huang, Z.; Apte, Michael; Gundel, Lara

    2007-08-01

    The particle collection efficiency of a prototype environmental tobacco smoke (ETS) sampler based on the use of thermophoresis is determined by optimizing the operational voltage that determines its thermal gradient. This sampler's heating element was made of three sets of thermophoretic (TP) wires 25mu m in diameter suspended across a channel cut in a printed circuit board and mounted with collection surfaces on both sides. The separation between the heating element and the room temperature collection surface was determined in a numerical simulation based on the Brock-Talbot model. Other thermal parameters of this TP ETS sampler were predicted by the Brock-Talbot model for TP deposition. From the normalized results the optimal collection ratio was expressed in terms of operational voltage and fi lter mass. Prior to the Brock-Talbot model simulation for this sampler, 1.0V was used arbitrarily. The operational voltage was raised to 3.0V, and the collection effi ciency was increased by a factor of fi ve for both theory and experiment.

  8. The design of an aerosol test tunnel for occupational hygiene investigations

    NASA Astrophysics Data System (ADS)

    Blackford, D. B.; Heighington, K.

    An aerosol test tunnel which provides large working sections is described and its performance evaluated. Air movement within the tunnel is achieved with a powerful D.C. motor and centrifugal fan. Test dusts are dispersed and injected into the tunnel by means of an aerosol generator. A unique divertor valve allows aerosol laden air to be either cleaned by a commercial pulse jet filtration unit or recycled around the tunnel to obtain a high aerosol concentration. The tunnel instrumentation is managed by a microcomputer which automatically controls the airspeed and aerosol concentration.

  9. Microscopy and Spectroscopy Techniques to Guide Parameters for Modeling Mineral Dust Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Veghte, D. P.; Moore, J. E.; Jensen, L.; Freedman, M. A.

    2013-12-01

    Mineral dust aerosol particles are the second largest emission by mass into the atmosphere and contribute to the largest uncertainty in radiative forcing. Due to the variation in size, composition, and shape, caused by physical and chemical processing, uncertainty exists as to whether mineral dust causes a net warming or cooling effect. We have used Cavity Ring-Down Aerosol Extinction Spectroscopy (CRD-AES), Scanning Electron Microscopy (SEM), and Transmission Electron Microscopy (TEM) to measure extinction cross sections and morphologies of size-selected, non-absorbing and absorbing mineral dust aerosol particles. We have found that microscopy is essential for characterizing the polydispersity of the size selection of non-spherical particles. Through the combined use of CRD-AES, microscopy, and computation (Mie theory and Discreet Dipole Approximation), we have determined the effect of shape on the optical properties of additional species including clay minerals, quartz, and hematite in the sub-micron regime. Our results have shown that calcite can be treated as polydisperse spheres while quartz and hematite need additional modeling parameters to account for their irregularity. Size selection of clay minerals cannot be performed due to their irregular shape, but microscopy techniques can be used to better quantify the particle aspect ratio. Our results demonstrate a new method that can be used to extend cavity ring-down spectroscopy for the measurement of the optical properties of non-spherical particles. This characterization will lead to better aerosol extinction parameters for modeling aerosol optical properties in climate models and satellite retrieval algorithms.

  10. Pumping test evaluation of stream depletion parameters.

    PubMed

    Lough, Hilary K; Hunt, Bruce

    2006-01-01

    Descriptions are given of a pumping test and a corresponding analysis that permit calculation of all five hydrogeological parameters appearing in the Hunt (2003) solution for stream depletion caused by ground water abstraction from a well beside a stream. This solution assumes that flow in the pumped aquifer is horizontal, flow in the overlying aquitard or system of aquitards is vertical, and the free surface in the top aquitard is allowed to draw down. The definition of an aquitard in this paper is any layer with a vertical hydraulic conductivity much lower than the horizontal hydraulic conductivity of the pumped aquifer. These "aquitards" may be reasonably permeable layers but are distinguished from the pumped aquifer by their hydraulic conductivity contrast. The pumping test requires a complete set of drawdown measurements from at least one observation well. This well must be deep enough to penetrate the pumped aquifer, and pumping must continue for a sufficient time to ensure that depleted streamflow becomes a significant portion of the well abstraction rate. Furthermore, two of the five parameters characterize an aquitard that overlies the pumped aquifer, and values for these parameters are seen to be dependent upon the initial water table elevation in the aquitard. The field test analyzed herein used a total of eight observation wells screened in the pumped aquifer, and measurements from these wells gave eight sets of parameters that are used in a sensitivity analysis to determine the relative importance of each parameter in the stream depletion calculations. PMID:16857031

  11. [Specific parameters for the calculation of dose after aerosol inhalation of transuranium elements].

    PubMed

    Ramounet-Le Gall, B; Fritsch, P; Abram, M C; Rateau, G; Grillon, G; Guillet, K; Baude, S; Bérard, P; Ansoborlo, E; Delforge, J

    2002-07-01

    A review on specific parameter measurements to calculate doses per unit of incorporation according to recommendations of the International Commission of Radiological Protection has been performed for inhaled actinide oxides. Alpha activity distribution of the particles can be obtained by autoradiography analysis using aerosol sampling filters at the work places. This allows us to characterize granulometric parameters of "pure" actinide oxides, but complementary analysis by scanning electron microscopy is needed for complex aerosols. Dissolution parameters with their standard deviation are obtained after rat inhalation exposure, taking into account both mechanical lung clearance and actinide transfer to the blood estimated from bone retention. In vitro experiments suggest that the slow dissolution rate might decrease as a function of time following exposure. Dose calculation software packages have been developed to take into account granulometry and dissolution parameters as well as specific physiological parameters of exposed individuals. In the case of poorly soluble actinide oxides, granulometry and physiology appear as the main parameters controlling dose value, whereas dissolution only alters dose distribution. Validation of these software packages are in progress.

  12. Aerosol and Surface Parameter Retrievals for a Multi-Angle, Multiband Spectrometer

    NASA Technical Reports Server (NTRS)

    Broderick, Daniel

    2012-01-01

    This software retrieves the surface and atmosphere parameters of multi-angle, multiband spectra. The synthetic spectra are generated by applying the modified Rahman-Pinty-Verstraete Bidirectional Reflectance Distribution Function (BRDF) model, and a single-scattering dominated atmosphere model to surface reflectance data from Multiangle Imaging SpectroRadiometer (MISR). The aerosol physical model uses a single scattering approximation using Rayleigh scattering molecules, and Henyey-Greenstein aerosols. The surface and atmosphere parameters of the models are retrieved using the Lavenberg-Marquardt algorithm. The software can retrieve the surface and atmosphere parameters with two different scales. The surface parameters are retrieved pixel-by-pixel while the atmosphere parameters are retrieved for a group of pixels where the same atmosphere model parameters are applied. This two-scale approach allows one to select the natural scale of the atmosphere properties relative to surface properties. The software also takes advantage of an intelligent initial condition given by the solution of the neighbor pixels.

  13. An analysis of the meteorological parameters affecting ambient concentrations of acid aerosols in Uniontown, Pennsylvania

    NASA Astrophysics Data System (ADS)

    Zelenka, Michael P.

    Ambient concentrations of aerosol strong acidity (H +) that were collected in Uniontown, Pennsylvania, during the summer of 1990 were evaluated to determine the relationships between meteorology and the magnitude of the H + concentrations. An extensive database containing 17 meteorological parameters was compiled for the Uniontown - Pittsburgh region. The database included both surface and upper air meteorological parameters. Concentrations of ambient acid sulfate aerosols collected in Uniontown, Pennsylvania, in the summer of 1990 were greatly affected by both local and regional meteorological conditions. Seven distinct meteorological synoptic types or regimes were identified for the summer months. A clear association was shown between episodic events of elevated ambient H + concentrations and one of the regimes, referred to here as synoptic type 5, which occurred when an anticyclone set up to the east of the mid-Atlantic states. Much of the variability (approximately 45%) in H + concentrations for the overall model was explained by the surface air temperature. Approximately 10% of the H' variability was explained by westerly winds as expressed by the U components of the morning 850 mb wind and the mean daily surface wind at Uniontown. Results showed that for days under the influence of synoptic type 5, which was associated with the highest levels of ambient H', the surface temperature explained approximately one-third of the variability in H' concentrations. The height of the mixing layer also affected the variability in H + concentrations, accounting for nearly a quarter of the variance. These results show that an analysis of the surface wind speed and direction alone will not adequately explain the variability in the concentrations of ambient acid aerosols. Analyses of the meteorological parameters affecting ambient concentrations of acid aerosols should include the mixing height, as well as the temperature, wind speed, and wind direction; both at the surface

  14. Simulating aerosols over Arabian Peninsula with CHIMERE: Sensitivity to soil, surface parameters and anthropogenic emission inventories

    NASA Astrophysics Data System (ADS)

    Beegum, S. Naseema; Gherboudj, Imen; Chaouch, Naira; Couvidat, Florian; Menut, Laurent; Ghedira, Hosni

    2016-03-01

    A three dimensional chemistry transport model, CHIMERE, was used to simulate the aerosol optical depths (AOD) over the Arabian Peninsula desert with an offline coupling of Weather Research and Forecasting (WRF) model. The simulations were undertaken with: (i) different horizontal and vertical configurations, (ii) new datasets derived for soil/surface properties, and (iii) EDGAR-HTAP anthropogenic emissions inventories. The model performance evaluations were assessed: (i) qualitatively using MODIS (Moderate-Resolution Imaging Spectroradiometer) deep blue (DB) AOD data for the two local dust events of August 6th and 23rd (2013), and (ii) quantitatively using AERONET (Aerosol Robotic Network) AOD observations, CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) aerosol extinction profiles, and AOD simulations from various forecast models. The model results were observed to be highly sensitive to erodibility and aerodynamic surface roughness length. The use of new datasets on soil erodibility, derived from the MODIS reflectance, and aerodynamic surface roughness length (z0), derived from the ERA-Interim datasets, significantly improved the simulation results. Simulations with the global EDGAR-HTAP anthropogenic emission inventories brought the simulated AOD values closer to the observations. Performance testing of the adapted model for the Arabian Peninsula domain with improved datasets showed good agreement between AERONET AOD measurements and CHIMERE simulations, where the correlation coefficient (R) is 0.6. Higher values of the correlation coefficients and slopes were observed for the dusty periods compared to the non-dusty periods.

  15. Parameter estimation with Sandage-Loeb test

    SciTech Connect

    Geng, Jia-Jia; Zhang, Jing-Fei; Zhang, Xin E-mail: jfzhang@mail.neu.edu.cn

    2014-12-01

    The Sandage-Loeb (SL) test directly measures the expansion rate of the universe in the redshift range of 2 ∼< z ∼< 5 by detecting redshift drift in the spectra of Lyman-α forest of distant quasars. We discuss the impact of the future SL test data on parameter estimation for the ΛCDM, the wCDM, and the w{sub 0}w{sub a}CDM models. To avoid the potential inconsistency with other observational data, we take the best-fitting dark energy model constrained by the current observations as the fiducial model to produce 30 mock SL test data. The SL test data provide an important supplement to the other dark energy probes, since they are extremely helpful in breaking the existing parameter degeneracies. We show that the strong degeneracy between Ω{sub m} and H{sub 0} in all the three dark energy models is well broken by the SL test. Compared to the current combined data of type Ia supernovae, baryon acoustic oscillation, cosmic microwave background, and Hubble constant, the 30-yr observation of SL test could improve the constraints on Ω{sub m} and H{sub 0} by more than 60% for all the three models. But the SL test can only moderately improve the constraint on the equation of state of dark energy. We show that a 30-yr observation of SL test could help improve the constraint on constant w by about 25%, and improve the constraints on w{sub 0} and w{sub a} by about 20% and 15%, respectively. We also quantify the constraining power of the SL test in the future high-precision joint geometric constraints on dark energy. The mock future supernova and baryon acoustic oscillation data are simulated based on the space-based project JDEM. We find that the 30-yr observation of SL test would help improve the measurement precision of Ω{sub m}, H{sub 0}, and w{sub a} by more than 70%, 20%, and 60%, respectively, for the w{sub 0}w{sub a}CDM model.

  16. Retrieval of aerosol parameters from multiwavelength lidar: investigation of the underlying inverse mathematical problem.

    PubMed

    Chemyakin, Eduard; Burton, Sharon; Kolgotin, Alexei; Müller, Detlef; Hostetler, Chris; Ferrare, Richard

    2016-03-20

    We present an investigation of some important mathematical and numerical features related to the retrieval of microphysical parameters [complex refractive index, single-scattering albedo, effective radius, total number, surface area, and volume concentrations] of ambient aerosol particles using multiwavelength Raman or high-spectral-resolution lidar. Using simple examples, we prove the non-uniqueness of an inverse solution to be the major source of the retrieval difficulties. Some theoretically possible ways of partially compensating for these difficulties are offered. For instance, an increase in the variety of input data via combination of lidar and certain passive remote sensing instruments will be helpful to reduce the error of estimation of the complex refractive index. We also demonstrate a significant interference between Aitken and accumulation aerosol modes in our inversion algorithm, and confirm that the solutions can be better constrained by limiting the particle radii. Applying a combination of an analytical approach and numerical simulations, we explain the statistical behavior of the microphysical size parameters. We reveal and clarify why the total surface area concentration is consistent even in the presence of non-unique solution sets and is on average the most stable parameter to be estimated, as long as at least one extinction optical coefficient is employed. We find that for selected particle size distributions, the total surface area and volume concentrations can be quickly retrieved with fair precision using only single extinction coefficients in a simple arithmetical relationship. PMID:27140552

  17. Testing Saliency Parameters for Automatic Target Recognition

    NASA Technical Reports Server (NTRS)

    Pandya, Sagar

    2012-01-01

    A bottom-up visual attention model (the saliency model) is tested to enhance the performance of Automated Target Recognition (ATR). JPL has developed an ATR system that identifies regions of interest (ROI) using a trained OT-MACH filter, and then classifies potential targets as true- or false-positives using machine-learning techniques. In this project, saliency is used as a pre-processing step to reduce the space for performing OT-MACH filtering. Saliency parameters, such as output level and orientation weight, are tuned to detect known target features. Preliminary results are promising and future work entails a rigrous and parameter-based search to gain maximum insight about this method.

  18. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  19. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies.

    PubMed

    Arunkumar, R; Hogancamp, Kristina U; Parsons, Michael S; Rogers, Donna M; Norton, Olin P; Nagel, Brian A; Alderman, Steven L; Waggoner, Charles A

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30 x 30 x 29 cm(3) nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5 to 12 standard m(3)/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150 degrees C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7 standard m(3)/min, high mass concentrations (approximately 25 mg/m(3)) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160 nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions. PMID

  20. High-efficiency particulate air filter test stand and aerosol generator for particle loading studies

    NASA Astrophysics Data System (ADS)

    Arunkumar, R.; Hogancamp, Kristina U.; Parsons, Michael S.; Rogers, Donna M.; Norton, Olin P.; Nagel, Brian A.; Alderman, Steven L.; Waggoner, Charles A.

    2007-08-01

    This manuscript describes the design, characterization, and operational range of a test stand and high-output aerosol generator developed to evaluate the performance of 30×30×29cm3 nuclear grade high-efficiency particulate air (HEPA) filters under variable, highly controlled conditions. The test stand system is operable at volumetric flow rates ranging from 1.5to12standardm3/min. Relative humidity levels are controllable from 5%-90% and the temperature of the aerosol stream is variable from ambient to 150°C. Test aerosols are produced through spray drying source material solutions that are introduced into a heated stainless steel evaporation chamber through an air-atomizing nozzle. Regulation of the particle size distribution of the aerosol challenge is achieved by varying source solution concentrations and through the use of a postgeneration cyclone. The aerosol generation system is unique in that it facilitates the testing of standard HEPA filters at and beyond rated media velocities by consistently providing, into a nominal flow of 7standardm3/min, high mass concentrations (˜25mg/m3) of dry aerosol streams having count mean diameters centered near the most penetrating particle size for HEPA filters (120-160nm). Aerosol streams that have been generated and characterized include those derived from various concentrations of KCl, NaCl, and sucrose solutions. Additionally, a water insoluble aerosol stream in which the solid component is predominantly iron (III) has been produced. Multiple ports are available on the test stand for making simultaneous aerosol measurements upstream and downstream of the test filter. Types of filter performance related studies that can be performed using this test stand system include filter lifetime studies, filtering efficiency testing, media velocity testing, evaluations under high mass loading and high humidity conditions, and determination of the downstream particle size distributions.

  1. Developments of aerosol retrieval algorithm for Geostationary Environmental Monitoring Spectrometer (GEMS) and the retrieval accuracy test

    NASA Astrophysics Data System (ADS)

    KIM, M.; Kim, J.; Jeong, U.; Ahn, C.; Bhartia, P. K.; Torres, O.

    2013-12-01

    A scanning UV-Visible spectrometer, the GEMS (Geostationary Environment Monitoring Spectrometer) onboard the GEO-KOMPSAT2B (Geostationary Korea Multi-Purpose Satellite) is planned to be launched in geostationary orbit in 2018. The GEMS employs hyper-spectral imaging with 0.6 nm resolution to observe solar backscatter radiation in the UV and Visible range. In the UV range, the low surface contribution to the backscattered radiation and strong interaction between aerosol absorption and molecular scattering can be advantageous in retrieving aerosol optical properties such as aerosol optical depth (AOD) and single scattering albedo (SSA). By taking the advantage, the OMI UV aerosol algorithm has provided information on the absorbing aerosol (Torres et al., 2007; Ahn et al., 2008). This study presents a UV-VIS algorithm to retrieve AOD and SSA from GEMS. The algorithm is based on the general inversion method, which uses pre-calculated look-up table with assumed aerosol properties and measurement condition. To obtain the retrieval accuracy, the error of the look-up table method occurred by the interpolation of pre-calculated radiances is estimated by using the reference dataset, and the uncertainties about aerosol type and height are evaluated. Also, the GEMS aerosol algorithm is tested with measured normalized radiance from OMI, a provisional data set for GEMS measurement, and the results are compared with the values from AERONET measurements over Asia. Additionally, the method for simultaneous retrieve of the AOD and aerosol height is discussed.

  2. Effects of design parameters and puff topography on heating coil temperature and mainstream aerosols in electronic cigarettes

    NASA Astrophysics Data System (ADS)

    Zhao, Tongke; Shu, Shi; Guo, Qiuju; Zhu, Yifang

    2016-06-01

    Emissions from electronic cigarettes (ECs) may contribute to both indoor and outdoor air pollution and the number of users is increasing rapidly. ECs operate based on the evaporation of e-liquid by a high-temperature heating coil. Both puff topography and design parameters can affect this evaporation process. In this study, both mainstream aerosols and heating coil temperature were measured concurrently to study the effects of design parameters and puff topography. The heating coil temperatures and mainstream aerosols varied over a wide range across different brands and within same brand. The peak heating coil temperature and the count median diameter (CMD) of EC aerosols increased with a longer puff duration and a lower puff flow rate. The particle number concentration was positively associated with the puff duration and puff flow rate. These results provide a better understanding of how EC emissions are affected by design parameters and puff topography and emphasize the urgent need to better regulate EC products.

  3. Testing Linear Models for Ability Parameters in Item Response Models

    ERIC Educational Resources Information Center

    Glas, Cees A. W.; Hendrawan, Irene

    2005-01-01

    Methods for testing hypotheses concerning the regression parameters in linear models for the latent person parameters in item response models are presented. Three tests are outlined: A likelihood ratio test, a Lagrange multiplier test and a Wald test. The tests are derived in a marginal maximum likelihood framework. They are explicitly formulated…

  4. Spent fuel sabotage aerosol ratio program : FY 2004 test and data summary.

    SciTech Connect

    Brucher, Wenzel; Koch, Wolfgang; Pretzsch, Gunter Guido; Loiseau, Olivier; Mo, Tin; Billone, Michael C.; Autrusson, Bruno A.; Young, F. I.; Coats, Richard Lee; Burtseva, Tatiana; Luna, Robert Earl; Dickey, Roy R.; Sorenson, Ken Bryce; Nolte, Oliver; Thompson, Nancy Slater; Hibbs, Russell S.; Gregson, Michael Warren; Lange, Florentin; Molecke, Martin Alan; Tsai, Han-Chung

    2005-07-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program has been underway for several years. This program provides data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. The program also provides significant technical and political benefits in international cooperation. We are quantifying the Spent Fuel Ratio (SFR), the ratio of the aerosol particles released from HEDD-impacted actual spent fuel to the aerosol particles produced from surrogate materials, measured under closely matched test conditions, in a contained test chamber. In addition, we are measuring the amounts, nuclide content, size distribution of the released aerosol materials, and enhanced sorption of volatile fission product nuclides onto specific aerosol particle size fractions. These data are the input for follow-on modeling studies to quantify respirable hazards, associated radiological risk assessments, vulnerability assessments, and potential cask physical protection design modifications. This document includes an updated description of the test program and test components for all work and plans made, or revised, during FY 2004. It also serves as a program status report as of the end of FY 2004. All available test results, observations, and aerosol analyses plus interpretations--primarily for surrogate material Phase 2 tests, series 2/5A through 2/9B, using cerium oxide sintered ceramic pellets are included. Advanced plans and progress are described for upcoming tests with unirradiated, depleted uranium oxide and actual spent fuel test rodlets. This spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of

  5. Crop Burning in the North and Northwestern Parts in India and Its Impact on Air Quality and Aerosol Parameters

    NASA Astrophysics Data System (ADS)

    Chauhan, A.

    2015-12-01

    Crop burning in the North and Northwestern parts of India started sometime in 1986 when the farmers started using mechanized forming. During October-November and April-May crop residues are burnt which is a serious health threat to people living in the areas and also it impacts climate of the northern parts of India including Himalayan region. Detailed analysis of satellite data, MODIS, AIRS and OMI AURA have been carried out to study aerosol and meteorological parameters near the source of biomass burning and also at far region. During crop burning period, pronounced changes in the aerosol and meteorological parameters are observed at different pressure levels. The emissions from the crop burning are spread in the Indo-Gangetic plains from west-east, over the Himalayan region and over the central parts of India depending upon the wind direction and wind speed. The air quality changes anomalously affecting the visibility and aerosol parameters. The emissions from crop burning mixes with the local emissions (vehicular and industrial sources) affecting the trace gas concentrations and aerosol optical parameters as a result dense haze fog and smog are observed during burning period. Long range transport of emissions from crop burning over India and its various climatic and health consequences will be presented.

  6. Laboratory Testing of Aerosol for Enclosure Air Sealing

    SciTech Connect

    Harrington, Curtis; Modera, Mark

    2012-05-01

    This report presents a process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

  7. 40 CFR 761.389 - Testing parameter requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Testing parameter requirements. 761... Under § 761.79(d)(4) § 761.389 Testing parameter requirements. There are no restrictions on the variable testing parameters described in this section which may be used in the validation study....

  8. The impact of marine surface organic enrichment on the measured hygroscopicity parameter of laboratory generated sea-spray aerosols

    NASA Astrophysics Data System (ADS)

    Schill, S.; Novak, G.; Zimmermann, K.; Bertram, T. H.

    2014-12-01

    The ocean serves as a major source for atmospheric aerosol particles, yet the chemicophysical properties of sea spray aerosol to date are not well characterized. Understanding the transfer of organic compounds, present in the sea surface microlayer (SSML), to sea-spray particles and their resulting impact on cloud formation is important for predicting aerosol impact on climate in remote marine environments. Here, we present a series of laboratory experiments designed to probe the fractionation of select organic molecules during wave breaking. We use a representative set of organic mimics (e.g. sterols, sugars, lipids, proteins, fatty acids) to test a recent physically based model of organic enrichment in sea-spray aerosol [Burrows et al., 2014] that is based on Langmuir absorption equilibria. Experiments were conducted in the UCSD Marine Aerosol Reference Tank (MART) permitting accurate representation of wave breaking processes in the laboratory. We report kappa values for the resulting sea-spray aerosols and compare them to a predictions made using Kappa-Köhler Theory driven by a linear combination of the pure component kappa values. Hygroscopicity determinations made using the model systems are discussed within the context of measurements of CCN activity made using natural, coastal water.

  9. Neural network radiative transfer solvers for the generation of high resolution solar irradiance spectra parameterized by cloud and aerosol parameters

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kosmopoulos, P. G.; Kazadzis, S.; Keramitsoglou, I.; Kiranoudis, C. T.

    2016-01-01

    This paper reports on the development of a neural network (NN) model for instantaneous and accurate estimation of solar radiation spectra and budgets geared toward satellite cloud data using a ≈2.4 M record, high-spectral resolution look up table (LUT) generated with the radiative transfer model libRadtran. Two NN solvers, one for clear sky conditions dominated by aerosol and one for cloudy skies, were trained on a normally-distributed and multiparametric subset of the LUT that spans a very broad class of atmospheric and meteorological conditions as inputs with corresponding high resolution solar irradiance target spectra as outputs. The NN solvers were tested by feeding them with a large (10 K record) "off-grid" random subset of the LUT spanning the training data space, and then comparing simulated outputs with target values provided by the LUT. The NN solvers demonstrated a capability to interpolate accurately over the entire multiparametric space. Once trained, the NN solvers allow for high-speed estimation of solar radiation spectra with high spectral resolution (1 nm) and for a quantification of the effect of aerosol and cloud optical parameters on the solar radiation budget without the need for a massive database. The cloudy sky NN solver was applied to high spatial resolution (54 K pixel) cloud data extracted from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the geostationary Meteosat Second Generation 3 (MSG3) satellite and demonstrated that coherent maps of spectrally-integrated global horizontal irradiance at this resolution can be produced on the order of 1 min.

  10. Evaluation Parameters for Computer-Adaptive Testing

    ERIC Educational Resources Information Center

    Georgiadou, Elisabeth; Triantafillou, Evangelos; Economides, Anastasios A.

    2006-01-01

    With the proliferation of computers in test delivery today, adaptive testing has become quite popular, especially when examinees must be classified into two categories (passfail, master nonmaster). Several well-established organisations have provided standards and guidelines for the design and evaluation of educational and psychological testing.…

  11. Development and testing of an aerosol-stratus cloud parameterization scheme for middle and high latitudes

    SciTech Connect

    Olsson, P.Q.; Meyers, M.P.; Kreidenweis, S.; Cotton, W.R.

    1996-04-01

    The aim of this new project is to develop an aerosol/cloud microphysics parameterization of mixed-phase stratus and boundary layer clouds. Our approach is to create, test, and implement a bulk-microphysics/aerosol model using data from Atmospheric Radiation Measurement (ARM) Cloud and Radiation Testbed (CART) sites and large-eddy simulation (LES) explicit bin-resolving aerosol/microphysics models. The primary objectives of this work are twofold. First, we need the prediction of number concentrations of activated aerosol which are transferred to the droplet spectrum, so that the aerosol population directly affects the cloud formation and microphysics. Second, we plan to couple the aerosol model to the gas and aqueous-chemistry module that will drive the aerosol formation and growth. We begin by exploring the feasibility of performing cloud-resolving simulations of Arctic stratus clouds over the North Slope CART site. These simulations using Colorado State University`s regional atmospheric modeling system (RAMS) will be useful in designing the structure of the cloud-resolving model and in interpreting data acquired at the North Slope site.

  12. Laboratory Testing of Aerosol for Enclosure Air Sealing

    SciTech Connect

    Harrington, C.; Modera, M.

    2012-05-01

    Space conditioning energy use can be significantly reduced by addressing uncontrolled infiltration and exfiltration through the envelope of a building. A process for improving the air tightness of a building envelope by sealing shell leaks with an aerosol sealing technology is presented. Both retrofit and new construction applications are possible through applying this process either in attics and crawlspaces or during rough-in stage.

  13. Key parameters controlling OH-initiated formation of secondary organic aerosol in the aqueous phase (aqSOA)

    NASA Astrophysics Data System (ADS)

    Ervens, Barbara; Sorooshian, Armin; Lim, Yong B.; Turpin, Barbara J.

    2014-04-01

    Secondary organic aerosol formation in the aqueous phase of cloud droplets and aerosol particles (aqSOA) might contribute substantially to the total SOA burden and help to explain discrepancies between observed and predicted SOA properties. In order to implement aqSOA formation in models, key processes controlling formation within the multiphase system have to be identified. We explore parameters affecting phase transfer and OH(aq)-initiated aqSOA formation as a function of OH(aq) availability. Box model results suggest OH(aq)-limited photochemical aqSOA formation in cloud water even if aqueous OH(aq) sources are present. This limitation manifests itself as an apparent surface dependence of aqSOA formation. We estimate chemical OH(aq) production fluxes, necessary to establish thermodynamic equilibrium between the phases (based on Henry's law constants) for both cloud and aqueous particles. Estimates show that no (currently known) OH(aq) source in cloud water can remove this limitation, whereas in aerosol water, it might be feasible. Ambient organic mass (oxalate) measurements in stratocumulus clouds as a function of cloud drop surface area and liquid water content exhibit trends similar to model results. These findings support the use of parameterizations of cloud-aqSOA using effective droplet radius rather than liquid water volume or drop surface area. Sensitivity studies suggest that future laboratory studies should explore aqSOA yields in multiphase systems as a function of these parameters and at atmospherically relevant OH(aq) levels. Since aerosol-aqSOA formation significantly depends on OH(aq) availability, parameterizations might be less straightforward, and oxidant (OH) sources within aerosol water emerge as one of the major uncertainties in aerosol-aqSOA formation.

  14. Satellite retrieval of aerosol microphysical and optical parameters using neural networks: a new methodology applied to the Sahara desert dust peak

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Tsekeri, A.; Gkikas, A.; Amiridis, V.

    2014-09-01

    In order to exploit the full-earth viewing potential of satellite instruments to globally characterise aerosols, new algorithms are required to deduce key microphysical parameters like the particle size distribution and optical parameters associated with scattering and absorption from space remote sensing data. Here, a methodology based on neural networks is developed to retrieve such parameters from satellite inputs and to validate them with ground-based remote sensing data. For key combinations of input variables available from the MODerate resolution Imaging Spectro-radiometer (MODIS) and the Ozone Measuring Instrument (OMI) Level 3 data sets, a grid of 100 feed-forward neural network architectures is produced, each having a different number of neurons and training proportion. The networks are trained with principal components accounting for 98% of the variance of the inputs together with principal components formed from 38 AErosol RObotic NETwork (AERONET) Level 2.0 (Version 2) retrieved parameters as outputs. Daily averaged, co-located and synchronous data drawn from a cluster of AERONET sites centred on the peak of dust extinction in Northern Africa is used for network training and validation, and the optimal network architecture for each input parameter combination is identified with reference to the lowest mean squared error. The trained networks are then fed with unseen data at the coastal dust site Dakar to test their simulation performance. A neural network (NN), trained with co-located and synchronous satellite inputs comprising three aerosol optical depth measurements at 470, 550 and 660 nm, plus the columnar water vapour (from MODIS) and the modelled absorption aerosol optical depth at 500 nm (from OMI), was able to simultaneously retrieve the daily averaged size distribution, the coarse mode volume, the imaginary part of the complex refractive index, and the spectral single scattering albedo - with moderate precision: correlation coefficients in the

  15. CMAQ validation of optical parameters and PM2.5 based on lidar and sky radiometers: a sensitivity study of optical parameters to hygroscopic aerosols

    NASA Astrophysics Data System (ADS)

    Vladutescu, Daniela Viviana; Garofalo, Erika; Gross, Barry; Moshary, Fred; Ahmed, Samir

    2009-08-01

    With the dramatically climate changing we are facing today atmospheric monitoring is of major importance. Several atmospheric monitoring instruments are used for measuring atmospheric composition, optical coefficients, PM2.5, aerosol optical depth, size distribution, PBL height and many other parameters. However an inexpensive method of determining these parameters is by use of models and one model that depicts the aerosol dynamics in the atmosphere is the Community Multi-scale Air Quality (CMAQ) model. Our paper is focused on converting CMAQ retrieval outputs into optical coefficients that can then be comparing the lidar, AERONET and TEOM measurements performed at City College of the City University of New York . Differences between the full approach and parameterized methods such as the MALM formula used in AIR-NOW are observed and comparisons with AERONET show the full modeling is in general superior to the MALM formula.

  16. Surrogate/spent fuel sabotage aerosol ratio testing:phase 1 summary and results.

    SciTech Connect

    Vigil, Manuel Gilbert; Sorenson, Ken Bryce; Lange, F. , Germany); Nolte, O. (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Koch, W. (Fraunhofer Institut fur Toxikologie und Experimentelle Medizin, Germany); Dickey, Roy R.; Yoshimura, Richard Hiroyuki; Molecke, Martin Alan; Autrusson, Bruno (Institut de Radioprotection et de Surete Nucleaire , France); Young, F. I.; Pretzsch, Gunter Guido (Gesellschaft fur Anlagen- und reaktorsicherheit , Germany)

    2005-10-01

    This multinational test program is quantifying the aerosol particulates produced when a high energy density device (HEDD) impacts surrogate material and actual spent fuel test rodlets. The experimental work, performed in four consecutive test phases, has been in progress for several years. The overall program provides needed data that are relevant to some sabotage scenarios in relation to spent fuel transport and storage casks, and associated risk assessments. This program also provides significant political benefits in international cooperation for nuclear security related evaluations. The spent fuel sabotage--aerosol test program is coordinated with the international Working Group for Sabotage Concerns of Transport and Storage Casks (WGSTSC), and supported by both the U.S. Department of Energy and Nuclear Regulatory Commission. This report summarizes the preliminary, Phase 1 work performed in 2001 and 2002 at Sandia National Laboratories and the Fraunhofer Institute, Germany, and documents the experimental results obtained, observations, and preliminary interpretations. Phase 1 testing included: performance quantifications of the HEDD devices; characterization of the HEDD or conical shaped charge (CSC) jet properties with multiple tests; refinement of the aerosol particle collection apparatus being used; and, CSC jet-aerosol tests using leaded glass plates and glass pellets, serving as representative brittle materials. Phase 1 testing was quite important for the design and performance of the following Phase 2 test program and test apparatus.

  17. Segmented cell testing for cathode parameter investigation

    NASA Astrophysics Data System (ADS)

    Tanasini, Pietro; Schuler, J. Andreas; Wuillemin, Zacharie; Ameur, Myriam L. Ben; Comninellis, Christos; Van herle, Jan

    The increasing quality and durability of solid oxide fuel cells (SOFCs) state-of-the-art materials renders the long-term testing of fuel cells difficult since considerably long equipment times are needed to obtain valuable results. Moreover, reproducibility issues are common due to the high sensitivity of the performance and degradation on the testing conditions. An original segmented cell configuration has been adopted in order to carry out four tests in parallel, thus decreasing the total experimental time and ensuring the same operating conditions for the four segments. The investigation has been performed on both anode-supported cells and symmetrical Lanthanum-Strontium Manganite-Yttria-stabilized Zirconia (LSM-YSZ) electrolyte-supported cells. In separate tests, the influence of variables like cathode thickness, current density and cathode composition on performance and degradation have been explored on anode-supported cells. Furthermore, the effect of chromium poisoning has been studied on electrolyte-supported symmetric cells by contacting one segment with a chromium-iron interconnect material. Long-term polarization of the segments is controlled with a multi-channel galvanostatic device designed in-house. Electrochemical characterization has been performed through electrochemical impedance spectroscopy (EIS) at different H 2 partial pressures, temperatures and bias current, effectively demonstrating the direct impact of each studied variable on the cell performance and degradation behavior. Segmented cell testing has been proven to be an effective strategy to achieve better reproducibility for SOFC measurements since it avoids the inevitable fluctuations found in a series of successively run tests. Moreover, simultaneous testing increased n-fold the data output per experiment, implying a considerable economy of time.

  18. Characteristics of aerosol optical properties and meteorological parameters during three major dust events (2005-2010) over Beijing, China

    NASA Astrophysics Data System (ADS)

    Cao, Chunxiang; Zheng, Sheng; Singh, Ramesh P.

    2014-12-01

    Multi-satellite sensors are capable of monitoring transport and characteristics of dust storms and changes in atmospheric parameters along their transport. The present paper discusses aerosol optical properties and meteorological parameters during major dust storm events occurred in the period 2005-2010 over Beijing, China. The back trajectory model shows that the dust is transported from the Inner Mongolia and Mongolia arid regions to Beijing. High aerosol optical depth (AOD) at the wavelength 675 nm and low Ångström exponent (AE) values in the wavelength 440-870 nm are observed during dusty days. The aerosol size distribution (ASD) in coarse mode shows a large increase in the volume during dusty days. The single scattering albedo (SSA) increases with higher wavelength on dusty days, and is generally found to be higher compared to the days prior to and after the dust events, indicating the presence of high concentrations of scattering particles due to dust storm events. The physico-chemical properties of aerosols during dusty and non dusty days show distinct characteristics as reflected from the changes in the real and imaginary parts of refractive index (RI). In addition, the CO volume mixing ratio (COVMR) from Atmospheric Infrared Sounder (AIRS) shows a pronounced decrease on dusty days, while the H2O mass mixing ratio (H2OMMR) shows enhanced signal. Furthermore, enhanced level of water vapor (WV) using Moderate Resolution Imaging Spectroradiometer (MODIS) data is also observed in and around Beijing over the dust storms track.

  19. [Cytologic parameters of broncho-alveolar lavage state in experimental animals exposed to mechanical rubber aerosol].

    PubMed

    Zhumabekova, B K; Sraubayev, E N; Gazalieva, M A; Akhmetova, S B

    2015-01-01

    Cytologic studies covered broncho-alveolar lavage in animals exposed to mechanical rubber aerosol in subacute (2 months) and chronic (5 months) experiments. Under exposure to mechanical rubber aerosol the experimental animals developed disorders of lung protective mechanisms. Subacute dust inhalation in the experimental animals caused higher counts of neutrophils and degeneratively changed cells with increased functional activity of alveolar macrophages and neutrophils. Chronic dust inhalation in the experimental animals proved lower functional activity alveolar macrophages and neutrophils.

  20. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... specified in 40 CFR part 50, appendix L or appendix O, as applicable. The test requirements and performance... specified for a reference method sampler in 40 CFR part 50, appendix L or appendix O, as applicable, such as... candidate samplers in which the aerosol flow path (the flow path through which sample air passes upstream...

  1. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... specified in 40 CFR part 50, appendix L or appendix O, as applicable. The test requirements and performance... specified for a reference method sampler in 40 CFR part 50, appendix L or appendix O, as applicable, such as... candidate samplers in which the aerosol flow path (the flow path through which sample air passes upstream...

  2. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols.

  3. Respirator Testing Using Virus Aerosol: Comparison between Viability Penetration and Physical Penetration.

    PubMed

    Zuo, Zhili; Kuehn, Thomas H; Pui, David Y H

    2015-07-01

    Viability, fluorescence (particle volume), photometric, viral RNA, and particle number penetration of MS2 bacteriophage through filter media used in three different models of respirators were compared to better understand the correlation between viability and physical penetration. Although viability and viral RNA penetration were better represented by particle volume penetration than particle number penetration, they were several-fold lower than photometric penetration, which was partially due to the difference in virus survival between upstream and downstream aerosol samples. Results suggest that the current NIOSH photometer-based test method can be used as a quick means to roughly differentiate respirators with different performance against virus aerosols. PMID:25846360

  4. A study on characterization of stratospheric aerosol and gas parameters with the spacecraft solar occultation experiment

    NASA Technical Reports Server (NTRS)

    Chu, W. P.

    1977-01-01

    Spacecraft remote sensing of stratospheric aerosol and ozone vertical profiles using the solar occultation experiment has been analyzed. A computer algorithm has been developed in which a two step inversion of the simulated data can be performed. The radiometric data are first inverted into a vertical extinction profile using a linear inversion algorithm. Then the multiwavelength extinction profiles are solved with a nonlinear least square algorithm to produce aerosol and ozone vertical profiles. Examples of inversion results are shown illustrating the resolution and noise sensitivity of the inversion algorithms.

  5. Spent fuel sabotage test program, characterization of aerosol dispersal : interim final report.

    SciTech Connect

    Gregson, Michael Warren; Brockmann, John E.; Loiseau, Olivier; Klennert, Lindsay A.; Nolte, Oliver; Molecke, Martin Alan; Autrusson, Bruno A.; Koch, Wolfgang; Pretzsch, Gunter Guido; Brucher, Wenzel; Steyskal, Michele D.

    2008-03-01

    This multinational, multi-phase spent fuel sabotage test program is quantifying the aerosol particles produced when the products of a high energy density device (HEDD) interact with and explosively particulate test rodlets that contain pellets of either surrogate materials or actual spent fuel. This program provides source-term data that are relevant to plausible sabotage scenarios in relation to spent fuel transport and storage casks and associated risk assessments. We present details and significant results obtained from this program from 2001 through 2007. Measured aerosol results include: respirable fractions produced; amounts, nuclide content, and produced particle size distributions and morphology; measurements of volatile fission product species enhanced sorption--enrichment factors onto respirable particles; and, status on determination of the spent fuel ratio, SFR, needed for scaling studies. Emphasis is provided on recent Phase 3 tests using depleted uranium oxide pellets plus non-radioactive fission product dopants in surrogate spent fuel test rodlets, plus the latest surrogate cerium oxide results and aerosol laboratory supporting calibration work. The DUO{sub 2}, CeO{sub 2}, plus fission product dopant aerosol particle results are compared with available historical data. We also provide a status review on continuing preparations for the final Phase 4 in this program, tests using individual short rodlets containing actual spent fuel from U.S. PWR reactors, with both high- and lower-burnup fuel. The source-term data, aerosol results, and program design have been tailored to support and guide follow-on computer modeling of aerosol dispersal hazards and radiological consequence assessments. This spent fuel sabotage, aerosol test program was performed primarily at Sandia National Laboratories, with support provided by both the U.S. Department of Energy and the Nuclear Regulatory Commission. This program has significant input from, and is cooperatively

  6. Spent fuel sabotage test program, characterization of aerosol dispersal : technical review and analysis supplement.

    SciTech Connect

    Durbin, Samuel G.; Lindgren, Eric Richard

    2009-07-01

    This project seeks to provide vital data required to assess the consequences of a terrorist attack on a spent fuel transportation cask. One such attack scenario involves the use of conical shaped charges (CSC), which are capable of damaging a spent fuel transportation cask. In the event of such an attack, the amount of radioactivity that may be released as respirable aerosols is not known with great certainty. Research to date has focused on measuring the aerosol release from single short surrogate fuel rodlets subjected to attack by a small CSC device in various aerosol chamber designs. The last series of three experiments tested surrogate fuel rodlets made with depleted uranium oxide ceramic pellets in a specially designed double chamber aerosol containment apparatus. This robust testing apparatus was designed to prevent any radioactive release and allow high level radioactive waste disposal of the entire apparatus following testing of actual spent fuel rodlets as proposed. DOE and Sandia reviews of the project to date identified a number of issues. The purpose of this supplemental report is to address and document the DOE review comments and to resolve the issues identified in the Sandia technical review.

  7. Aerosol behavior during SIC control rod failure in QUENCH-13 test

    NASA Astrophysics Data System (ADS)

    Lind, Terttaliisa; Csordás, Anna Pintér; Nagy, Imre; Stuckert, Juri

    2010-02-01

    In a nuclear reactor severe accident, radioactive fission products as well as structural materials are released from the core by evaporation, and the released gases form particles by nucleation and condensation. In addition, aerosol particles may be generated by droplet formation and fragmentation of the core. In pressurized water reactors (PWR), a commonly used control rod material is silver-indium-cadmium (SIC) covered with stainless steel cladding. The control rod elements, Cd, In and Ag, have relatively low melting temperatures, and especially Cd has also a very low boiling point. Control rods are likely to fail early on in the accident due to melting of the stainless steel cladding which can be accelerated by eutectic interaction between stainless steel and the surrounding Zircaloy guide tube. The release of the control rod materials would follow the cladding failure thus affecting aerosol source term as well as fuel rod degradation. The QUENCH experimental program at Forschungszentrum Karlsruhe investigates phenomena associated with reflood of a degrading core under postulated severe accident conditions. QUENCH-13 test was the first in this program to include a silver-indium-cadmium control rod of prototypic PWR design. To characterize the extent of aerosol release during the control rod failure, aerosol particle size distribution and concentration measurements in the off-gas pipe of the QUENCH facility were carried out. For the first time, it was possible to determine on-line the aerosol concentration and size distribution released from the core. These results are of prime importance for model development for the proper calculation of the source term resulting from control rod failure. The on-line measurement showed that the main aerosol release started at the bundle temperature maximum of T ˜ 1570 K at hottest bundle elevation. A very large burst of aerosols was detected 660 s later at the bundle temperature maximum of T ˜ 1650 K, followed by a relatively

  8. Testing parameters in structural equation modeling: every "one" matters.

    PubMed

    Gonzalez, R; Griffin, D

    2001-09-01

    A problem with standard errors estimated by many structural equation modeling programs is described. In such programs, a parameter's standard error is sensitive to how the model is identified (i.e., how scale is set). Alternative but equivalent ways to identify a model may yield different standard errors, and hence different Z tests for a parameter, even though the identifications produce the same overall model fit. This lack of invariance due to model identification creates the possibility that different analysts may reach different conclusions about a parameter's significance level even though they test equivalent models on the same data. The authors suggest that parameters be tested for statistical significance through the likelihood ratio test, which is invariant to the identification choice. PMID:11570231

  9. 16 CFR 1211.5 - General testing parameters.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... parameters. (a) The following test parameters are to be used in the investigation of the circuit covered by... evaluation of entrapment protection circuits used in residential garage door operators, the critical condition flow chart shown in figure 1 shall be used: (1) To conduct a failure-mode and effect...

  10. Parameter selection and testing the soil water model SOIL

    NASA Astrophysics Data System (ADS)

    McGechan, M. B.; Graham, R.; Vinten, A. J. A.; Douglas, J. T.; Hooda, P. S.

    1997-08-01

    The soil water and heat simulation model SOIL was tested for its suitability to study the processes of transport of water in soil. Required parameters, particularly soil hydraulic parameters, were determined by field and laboratory tests for some common soil types and for soils subjected to contrasting treatments of long-term grassland and tilled land under cereal crops. Outputs from simulations were shown to be in reasonable agreement with independently measured field drain outflows and soil water content histories.

  11. Development of an aerosol dispersion test to detect early changes in lung function

    SciTech Connect

    McCawley, M.; Lippmann, M.

    1988-07-01

    The dispersion of a 0.5 micron aerosol bolus during tidal breathing differs significantly (p less than 0.0001) between a group of smokers (with approximately 20 pack-years average exposure) and a comparable group of nonsmokers. Their mean differences in standard respiratory function indexes from spirometry (forced vital capacity (FVC), forced expiratory volume in one second (FEV1), mean forced expiratory flow during the middle half of the FVC (FEF25-75)) were smaller and not statistically significant. The test is simple to perform and may be done as quickly as spirometry but without using a forced exhalation. Comparison of the coefficients of variation for the dispersion test and FEV1 indicate that the aerosol dispersion test may be useful in epidemiologic investigations either by reducing the required population size or increasing the level of confidence.

  12. Accuracy of Aerodynamic Model Parameters Estimated from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1997-01-01

    An important put of building mathematical models based on measured date is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of this accuracy, the parameter estimates themselves have limited value. An expression is developed for computing quantitatively correct parameter accuracy measures for maximum likelihood parameter estimates when the output residuals are colored. This result is important because experience in analyzing flight test data reveals that the output residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Monte Carlo simulation runs were used to show that parameter accuracy measures from the new technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for correction factors or frequency domain analysis of the output residuals. The technique was applied to flight test data from repeated maneuvers flown on the F-18 High Alpha Research Vehicle. As in the simulated cases, parameter accuracy measures from the new technique were in agreement with the scatter in the parameter estimates from repeated maneuvers, whereas conventional parameter accuracy measures were optimistic.

  13. The development of a test system for investigating the performances of personal aerosol samplers under actual workplace conditions.

    PubMed

    Botham, R A; Hughson, G W; Vincent, J H; Mark, D

    1991-10-01

    The performances of new "total" aerosol samplers for use in workplaces are required to match the inhalability criteria as contained in the latest recommendations of the International Standards Organization (ISO) and the American Conference of Governmental Industrial Hygienists (ACGIH). In the past, practical evaluations have been carried out under idealized conditions in wind tunnels, and there is now the need to extend these to more realistic workplace conditions. This paper describes a new test system that was designed and built for this purpose. It consisted of a life-size mannequin mounted on a trolley so that it can be taken to and wheeled around in workplaces. The mannequin itself incorporated a robotic arm so that, under joystick control, it can be made to simulate a range of worker movements, orientations, and attitudes. An electronically controlled, compact breathing machine provided a range of typical breathing parameters for the mannequin. The pump also provided air movement for a number of personal samplers that were mounted on the torso of the mannequin and tested in that position. Sampler performance should be assessed by comparing directly the aerosol collected by the sampler with that inhaled by the mannequin (and collected on filters inside the head).

  14. Testing Distributed Parameter Hypotheses for the Detection of Climate Change.

    NASA Astrophysics Data System (ADS)

    Kheshgi, Haroon S.; White, Benjamin S.

    2001-08-01

    A general statistical methodology, based on testing alternative distributed parameter hypotheses, is proposed as a method for deciding whether or not anthropogenic influences are causing climate change. This methodology provides a framework for including known uncertainties in the definition of the hypotheses by allowing model parameters to be specified by probability distributions and thereby allowing the definition of more realistic hypotheses. The method can be used to derive the unique statistical test that minimizes errors in test conclusions. The method is applied to illustrative detection problems by first defining alternative hypotheses for global mean temperature; second, deriving the most powerful test and calculating its statistics; third, applying the test to observed temperature records; and finally, illustrating the test statistics and results on a receiver or relative operating characteristic curve showing the relation between false positive and false negative test errors. It is demonstrated, with an illustrative example, that proper accounting for the uncertainty in all the parameters can produce very different statistical conclusions than the conclusions that would be obtained by simply fixing some parameters at nominal values.

  15. Aerosol assisted chemical vapour deposition control parameters for selective deposition of tungsten oxide nanostructures.

    PubMed

    Vallejos, S; Umek, P; Blackman, C

    2011-09-01

    Tungsten oxide films were deposited via Aerosol Assisted Chemical Vapour Deposition (AACVD) from the single-source precursor W(OPh)6. Film morphology and optimum deposition temperatures for formation of quasi-one-dimensional structures is influenced by the solvent 'carrier' used for deposition of the films with bulk porous films and nanostructured needles, hollow tubes and fibres obtained dependent on the solvent used and the deposition temperature. This influence of solvent could be exploited for the synthesis of other nanomaterials, and so provide a new and versatile route to develop and integrate nanostructured materials for device applications. PMID:22097557

  16. Improving the quality of parameter estimates obtained from slug tests

    USGS Publications Warehouse

    Butler, J.J.; McElwee, C.D.; Liu, W.

    1996-01-01

    The slug test is one of the most commonly used field methods for obtaining in situ estimates of hydraulic conductivity. Despite its prevalence, this method has received criticism from many quarters in the ground-water community. This criticism emphasizes the poor quality of the estimated parameters, a condition that is primarily a product of the somewhat casual approach that is often employed in slug tests. Recently, the Kansas Geological Survey (KGS) has pursued research directed it improving methods for the performance and analysis of slug tests. Based on extensive theoretical and field research, a series of guidelines have been proposed that should enable the quality of parameter estimates to be improved. The most significant of these guidelines are: (1) three or more slug tests should be performed at each well during a given test period; (2) two or more different initial displacements (Ho) should be used at each well during a test period; (3) the method used to initiate a test should enable the slug to be introduced in a near-instantaneous manner and should allow a good estimate of Ho to be obtained; (4) data-acquisition equipment that enables a large quantity of high quality data to be collected should be employed; (5) if an estimate of the storage parameter is needed, an observation well other than the test well should be employed; (6) the method chosen for analysis of the slug-test data should be appropriate for site conditions; (7) use of pre- and post-analysis plots should be an integral component of the analysis procedure, and (8) appropriate well construction parameters should be employed. Data from slug tests performed at a number of KGS field sites demonstrate the importance of these guidelines.

  17. Improving the quality of parameter estimates obtained from slug tests

    SciTech Connect

    Butler, J.J. Jr.; McElwee, C.D.; Liu, W.

    1996-05-01

    The slug test is one of the most commonly used field methods for obtaining in situ estimates of hydraulic conductivity. Despite its prevalence, this method has received criticism from many quarters in the ground-water community. This criticism emphasizes the poor quality of the estimated parameters, a condition that is primarily a product of the somewhat casual approach that is often employed in slug tests. Recently, the Kansas Geological Survey (KGS) has pursued research directed at improving methods for the performance and analysis of slug tests. Based on extensive theoretical and field research, a series of guidelines have been proposed that should enable the quality of parameter estimates to be improved. The most significant of these guidelines are: (1) three or more slug tests should be performed at each well during a given test period; (2) two or more different initial displacements (H{sub 0}) should be used at each well during a test period; (3) the method used to initiate a test should enable the slug to e introduced in a near-instantaneous manner and should allow a good estimate of H{sub 0} to be obtained; (4) data-acquisition equipment that enables a large quantity of high quality data to be collected should be employed; (5) if an estimate of the storage parameter is needed, an observation well other than the test well should be employed; (6) the method chosen for analysis of the slug-test data should be appropriate for site conditions; (7) use of pre- and post-analysis plots should be an integral component of the analysis procedure, and (8) appropriate well construction parameters should be employed. Data from slug tests performed at a number of KGS field sites demonstrate the importance of these guidelines.

  18. Estimation of uncertain material parameters using modal test data

    SciTech Connect

    Veers, P.S.; Laird, D.L.; Carne, T.G.; Sagartz, M.J.

    1997-11-01

    Analytical models of wind turbine blades have many uncertainties, particularly with composite construction where material properties and cross-sectional dimension may not be known or precisely controllable. In this paper the authors demonstrate how modal testing can be used to estimate important material parameters and to update and improve a finite-element (FE) model of a prototype wind turbine blade. An example of prototype blade is used here to demonstrate how model parameters can be identified. The starting point is an FE model of the blade, using best estimates for the material constants. Frequencies of the lowest fourteen modes are used as the basis for comparisons between model predictions and test data. Natural frequencies and mode shapes calculated with the FE model are used in an optimal test design code to select instrumentation (accelerometer) and excitation locations that capture all the desired mode shapes. The FE model is also used to calculate sensitivities of the modal frequencies to each of the uncertain material parameters. These parameters are estimated, or updated, using a weighted least-squares technique to minimize the difference between test frequencies and predicted results. Updated material properties are determined for axial, transverse, and shear moduli in two separate regions of the blade cross section: in the central box, and in the leading and trailing panels. Static FE analyses are then conducted with the updated material parameters to determine changes in effective beam stiffness and buckling loads.

  19. Intercomparison of aerosol optical parameters from WALI and R-MAN510 aerosol Raman lidars in the framework of HyMeX campaign

    NASA Astrophysics Data System (ADS)

    Boytard, Mai-Lan; Royer, Philippe; Chazette, Patrick; Shang, Xiaoxia; Marnas, Fabien; Totems, Julien; Bizard, Anthony; Bennai, Baya; Sauvage, Laurent

    2013-04-01

    The HyMeX program (Hydrological cycle in Mediterranean eXperiment) aims at improving our understanding of hydrological cycle in the Mediterranen and at a better quantification and forecast of high-impact weather events in numerical weather prediction models. The first Special Observation Period (SOP1) took place in September/October 2012. During this period two aerosol Raman lidars have been deployed at Menorca Island (Spain) : one Water-vapor and Aerosol Raman LIdar (WALI) operated by LSCE/CEA (Laboratoire des Sciences du Climat et de l'Environnement/Commissariat à l'Energie Atomique) and one aerosol Raman and dual-polarization lidar (R-Man510) developed and commercialized by LEOSPHERE company. Both lidars have been continuously running during the campaign and have provided information on aerosol and cloud optical properties under various atmospheric conditions (maritime background aerosols, dust events, cirrus clouds...). We will present here the results of intercomparisons between R-Man510, and WALI aerosol lidar systems and collocated sunphotometer measurements. Limitations and uncertainties on the retrieval of extinction coefficients, depolarization ratio, aerosol optical depths and detection of atmospheric structures (planetary boundary layer height, aerosol/cloud layers) will be discussed according atmospheric conditions. The results will also be compared with theoretical uncertainty assessed with direct/inverse model of lidar profiles.

  20. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    NASA Astrophysics Data System (ADS)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jędrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  1. Geotechnical Parameters of Alluvial Soils from in-situ Tests

    NASA Astrophysics Data System (ADS)

    Młynarek, Zbigniew; Stefaniak, Katarzyna; Wierzbicki, Jedrzej

    2012-10-01

    The article concentrates on the identification of geotechnical parameters of alluvial soil represented by silts found near Poznan and Elblag. Strength and deformation parameters of the subsoil tested were identified by the CPTU (static penetration) and SDMT (dilatometric) methods, as well as by the vane test (VT). Geotechnical parameters of the subsoil were analysed with a view to using the soil as an earth construction material and as a foundation for buildings constructed on the grounds tested. The article includes an analysis of the overconsolidation process of the soil tested and a formula for the identification of the overconsolidation ratio OCR. Equation 9 reflects the relation between the undrained shear strength and plasticity of the silts analyzed and the OCR value. The analysis resulted in the determination of the Nkt coefficient, which might be used to identify the undrained shear strength of both sediments tested. On the basis of a detailed analysis of changes in terms of the constrained oedometric modulus M0, the relations between the said modulus, the liquidity index and the OCR value were identified. Mayne's formula (1995) was used to determine the M0 modulus from the CPTU test. The usefullness of the sediments found near Poznan as an earth construction material was analysed after their structure had been destroyed and compacted with a Proctor apparatus. In cases of samples characterised by different water content and soil particle density, the analysis of changes in terms of cohesion and the internal friction angle proved that these parameters are influenced by the soil phase composition (Fig. 18 and 19). On the basis of the tests, it was concluded that the most desirable shear strength parameters are achieved when the silt is compacted below the optimum water content.

  2. Exponential depression as a test of estimated decay parameters

    NASA Astrophysics Data System (ADS)

    Isenberg, Irvin; Small, Enoch W.

    1982-09-01

    A new test for judging the goodness of estimated decay parameters is presented. The test is based on the fact that a convolution is invariant under exponential depression. In the absence of significant error the estimated parameters will then remain constant as the degree of depression is varied over a finite range. In the presence of error, the parameters will vary. Up to now, no test has existed to see if moment index displacement corrects errors to a satisfactory extent in any given analysis. It has always been necessary to have some a priori knowledge of the type of error that limited the analysis. The test presented here removes that requirement. In addition, it is shown that the test performs better than a visual inspection of residual and autocorrelation plots in judging analyses when decays are closely spaced, even in the absence of nonrandom errors. The test is useful in accepting or rejecting analyses, with or without automatic error correction, in helping to discriminate between different models of sample decay, and in tuning pulse fluorometers for optimal performance. The test is, in principle, independent of the method of moments; it may be used with any method which needs only a small amount of computer time, and which is a statistically resistant procedure.

  3. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect

    Fink, J.K.; Thompson, D.H.; Spencer, B.W.; Sehgal, B.R.

    1992-04-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  4. Aerosols released during large-scale integral MCCI tests in the ACE Program

    SciTech Connect

    Fink, J.K.; Thompson, D.H.; Spencer, B.W. ); Sehgal, B.R. )

    1992-01-01

    As part of the internationally sponsored Advanced Containment Experiments (ACE) program, seven large-scale experiments on molten core concrete interactions (MCCIs) have been performed at Argonne National Laboratory. One of the objectives of these experiments is to collect and characterize all the aerosols released from the MCCIs. Aerosols released from experiments using four types of concrete (siliceous, limestone/common sand, serpentine, and limestone/limestone) and a range of metal oxidation for both BWR and PWR reactor core material have been collected and characterized. Release fractions were determined for UO{sup 2}, Zr, the fission-products: BaO, SrO, La{sub 2}O{sub 3}, CeO{sub 2}, MoO{sub 2}, Te, Ru, and control materials: Ag, In, and B{sub 4}C. Release fractions of UO{sub 2} and the fission products other than Te were small in all tests. However, release of control materials was significant.

  5. The Messy Aerosol Submodel MADE3 (v2.0b): Description and a Box Model Test

    NASA Technical Reports Server (NTRS)

    Kaiser, J. C.; Hendricks, J.; Righi, M.; Riemer, N.; Zaveri, R. A.; Metzger, S.; Aquila, Valentina

    2014-01-01

    We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl)chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealized marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HClCl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse particles. MADE3 and PartMC- MOSAIC show substantial differences in the fine particle size distributions (sizes about 2 micrometers) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distribution, and also in terms of aerosol composition. Considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems suitable for application within a global model.

  6. Parameters for Modeling Aerosol Absorption: Measurements in Biomass Burning Smoke, Urban/Industrial Plumes, and NW Pacific Marine Airmasses

    NASA Astrophysics Data System (ADS)

    Kline, J. T.; Huebert, B. J.; Howell, S. G.; Uematsu, M.; Tsuruta, H.

    2003-12-01

    Absorbing aerosols such as elemental carbon (EC) play a large role in the Earth's radiation budget. However, the impact of EC emissions is hard to model accurately because the light absorption per mass of elemental carbon (EC specific absorption, ESA) varies with the source type and the conditions of the combustion that created it. The wavelength dependence of this absorption also varies with the size and nature of the absorbing material. We measured the ESA of ambient aerosol by measuring both light absorption at 7 wavelengths (as the reduction in light transmission through a quartz Aethalometer filter) and EC (by a thermal/chemical method) at Amami Ohshima, Japan as a part of the APEX program in the Spring of 2002. We also measured light scattering at 3 wavelengths so we could compute wavelength-dependent single-scatter albedos. We found that in smoke from sugar-cane burning the absorption varied as the inverse square of the wavelength, while in plumes from Asian mainland population centers it varied as the inverse of wavelength to the first power. We argue that models should therefore use different, wavelength-dependent "constants" for different conditions. Modelers also need to understand the degree to which the parameters they use depend on measurements that can contain large uncertainties.

  7. Predicting Performance on a Firefighter's Ability Test from Fitness Parameters

    ERIC Educational Resources Information Center

    Michaelides, Marcos A.; Parpa, Koulla M.; Thompson, Jerald; Brown, Barry

    2008-01-01

    The purpose of this project was to identify the relationships between various fitness parameters such as upper body muscular endurance, upper and lower body strength, flexibility, body composition and performance on an ability test (AT) that included simulated firefighting tasks. A second intent was to create a regression model that would predict…

  8. 40 CFR 761.389 - Testing parameter requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Testing parameter requirements. 761.389 Section 761.389 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC..., AND USE PROHIBITIONS Comparison Study for Validating a New Performance-Based Decontamination...

  9. A Simple Technique for Estimating Latent Trait Mental Test Parameters

    ERIC Educational Resources Information Center

    Jensema, Carl

    1976-01-01

    A simple and economical method for estimating initial parameter values for the normal ogive or logistic latent trait mental test model is outlined. The accuracy of the method in comparison with maximum likelihood estimation is investigated through the use of Monte-Carlo data. (Author)

  10. 40 CFR 761.389 - Testing parameter requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... variable testing parameters described in this section which may be used in the validation study. The conditions demonstrated in the validation study for these variables shall become the required conditions for... you change one of these variable requirements, change it only in the way listed in this section and...

  11. 40 CFR 761.389 - Testing parameter requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... variable testing parameters described in this section which may be used in the validation study. The conditions demonstrated in the validation study for these variables shall become the required conditions for... you change one of these variable requirements, change it only in the way listed in this section and...

  12. 40 CFR 761.389 - Testing parameter requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... variable testing parameters described in this section which may be used in the validation study. The conditions demonstrated in the validation study for these variables shall become the required conditions for... you change one of these variable requirements, change it only in the way listed in this section and...

  13. Parameter estimation of an air-bearing suspended test table

    NASA Astrophysics Data System (ADS)

    Fu, Zhenxian; Lin, Yurong; Liu, Yang; Chen, Xinglin; Chen, Fang

    2015-02-01

    A parameter estimation approach is proposed for parameter determination of a 3-axis air-bearing suspended test table. The table is to provide a balanced and frictionless environment for spacecraft ground test. To balance the suspension, the mechanical parameters of the table, including its angular inertias and centroid deviation from its rotating center, have to be determined first. Then sliding masses on the table can be adjusted by stepper motors to relocate the centroid of the table to its rotating center. Using the angular momentum theorem and the coriolis theorem, dynamic equations are derived describing the rotation of the table under the influence of gravity imbalance torque and activating torques. To generate the actuating torques, use of momentum wheels is proposed, whose virtue is that no active control is required to the momentum wheels, which merely have to spin at constant rates, thus avoiding the singularity problem and the difficulty of precisely adjusting the output torques, issues associated with control moment gyros. The gyroscopic torques generated by the momentum wheels, as they are forced by the table to precess, are sufficient to activate the table for parameter estimation. Then least-square estimation is be employed to calculate the desired parameters. The effectiveness of the method is validated by simulation.

  14. Impact of the March 2009 dust event in Saudi Arabia on aerosol optical properties, meteorological parameters, sky temperature and emissivity

    NASA Astrophysics Data System (ADS)

    Maghrabi, A.; Alharbi, B.; Tapper, N.

    2011-04-01

    On 10th March 2009 a widespread and severe dust storm event that lasted several hours struck Riyadh, and represented one of the most intense dust storms experienced in Saudi Arabia in the last two decades. This short-lived storm caused widespread and heavy dust deposition, zero visibility and total airport shutdown, as well as extensive damage to buildings, vehicles, power poles and trees across the city of Riyadh. Changes in Meteorological parameters, aerosol optical depth (AOD), Angstrom exponent α, infrared (IR) sky temperature and atmospheric emissivity were investigated before, during, and after the storm. The analysis showed significant changes in all of the above parameters due to this event. Shortly after the storm arrived, air pressure rapidly increased by 4 hPa, temperature decreased by 6 °C, relative humidly increased from 10% to 30%, the wind direction became northerly and the wind speed increased to a maximum of 30 m s -1. AOD at 550 nm increased from 0.396 to 1.71. The Angstrom exponent α rapidly decreased from 0.192 to -0.078. The mean AOD at 550 nm on the day of the storm was 0.953 higher than during the previous clear day, while α was -0.049 in comparison with 0.323 during the previous day. Theoretical simulations using SMART software showed remarkable changes in both spectral and broadband solar radiation components. The global and direct radiation components decreased by 42% and 68%, respectively, and the diffuse components increased by 44% in comparison with the previous clear day. IR sky temperatures and sky emissivity increased by 24 °C and 0.3, respectively, 2 h after the arrival of the storm. The effect of aerosol loading by the storm on IR atmospheric emission was investigated using MODTRAN software. It was found that the effect of aerosols caused an increase of the atmospheric emission in the atmospheric window (8-14 μm) such that the window emissions resembled those of a blackbody and the atmospheric window was almost closed.

  15. Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Massoli, P.; O'Neill, N. T.; Quinn, P. K.; Brooks, S.; Lefer, B.

    2009-08-01

    During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006), the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep) were performed by two multi-wavelength cavity ring-down (CRD) instruments, one located on board the NOAA R/V Ronald H. Brown (RHB) and the other located at the University of Houston, Moody Tower (UHMT). An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD). The σep data were used to extract the extinction Ångström exponent (åep), a measure of the wavelength dependence of σep. There was general agreement between the åep (and to a lesser degree σep measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σep and AOD data to extract the fine mode fraction of extinction (η) and the fine mode effective radius (Reff f). These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution respectively. The results of the analysis are compared to Reff f values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining Reff f agree qualitatively (showing the same temporal trend) and quantitatively (pooled standard deviation=28 nm).

  16. Comparison of in situ and columnar aerosol spectral measurements during TexAQS-GoMACCS 2006: testing parameterizations for estimating aerosol fine mode properties

    NASA Astrophysics Data System (ADS)

    Atkinson, D. B.; Massoli, P.; O'Neill, N. T.; Quinn, P. K.; Brooks, S. D.; Lefer, B.

    2010-01-01

    During the 2006 Texas Air Quality Study and Gulf of Mexico Atmospheric Composition and Climate Study (TexAQS-GoMACCS 2006), the optical, chemical and microphysical properties of atmospheric aerosols were measured on multiple mobile platforms and at ground based stations. In situ measurements of the aerosol light extinction coefficient (σep) were performed by two multi-wavelength cavity ring-down (CRD) instruments, one located on board the NOAA R/V Ronald H. Brown (RHB) and the other located at the University of Houston, Moody Tower (UHMT). An AERONET sunphotometer was also located at the UHMT to measure the columnar aerosol optical depth (AOD). The σep data were used to extract the extinction Ångström exponent (åep), a measure of the wavelength dependence of σep. There was general agreement between the åep (and to a lesser degree σep) measurements by the two spatially separated CRD instruments during multi-day periods, suggesting a regional scale consistency of the sampled aerosols. Two spectral models are applied to the σep and AOD data to extract the fine mode fraction of extinction (η) and the fine mode effective radius (Reff,f). These two parameters are robust measures of the fine mode contribution to total extinction and the fine mode size distribution, respectively. The results of the analysis are compared to Reff,f values extracted using AERONET V2 retrievals and calculated from in situ particle size measurements on the RHB and at UHMT. During a time period when fine mode aerosols dominated the extinction over a large area extending from Houston/Galveston Bay and out into the Gulf of Mexico, the various methods for obtaining Reff,f agree qualitatively (showing the same temporal trend) and quantitatively (pooled standard deviation = 28 nm).

  17. Influence of atmospheric parameters on vertical profiles and horizontal transport of aerosols generated in the surf zone

    NASA Astrophysics Data System (ADS)

    Kusmierczyk-Michulec, J.; Tedeschi, G.; Van Eijk, A. M. J.; Piazzola, J.

    2013-10-01

    The vertical and horizontal transport of aerosols generated over the surf zone is discussed. Experimental data were collected during the second campaign of the Surf Zone Aerosol Experiment that took place in Duck NC (USA) in November 2007. The Empirical Orthogonal Function (EOF) method was used to analyze the vertical concentration gradients, and allowed separating the surf aerosols from aerosols advected from elsewhere. The numerical Marine Aerosol Concentration Model (MACMod) supported the analysis by confirming that the concentration gradients are more pronounced under stable conditions and that aerosol plumes are then more confined to the surface. The model also confirmed the experimental observations made during two boat runs along the offshore wind vector that surf-generated aerosols are efficiently advected out to sea over several tens of kilometers.

  18. The relationship between parameters of static and dynamic stability tests

    PubMed Central

    Karimi, Mohammad Taghi; Solomonidis, Stephan

    2011-01-01

    BACKGROUND: Stability is often described to be static (quiet standing) and dynamic (maintaining a stable position while undertake a prescribed movement). Many researchers have used only static tests to evaluate the stability of normal and handicapped subjects. However, it is important to evaluate the stability of subjects while undertaking various tasks (dynamic stability). It is not currently clear whether static balance can predict dynamic balance or not. Therefore, the aim of this research was to investigate the relationship between parameters of static and dynamic stability tests. METHODS: The current clinical trial study was carried out in the Bioengineering Unit of Strathclyde University during 2008 and 2009. The normal subjects with no history of musculoskeletal disorders from staff and students of the Unit were selected in this study. Twenty-five normal subjects were recruited to participate in this research project. They were asked to stand on a force plate in quiet standing and while undertaking various hand tasks. The functional stability of the subjects was measured while transverse and vertical reaching tasks were undertaken. The correlation between various parameters of stability in quiet standing and functional hand tasks was evaluated using Pearson correlation. RESULTS: There was no significant correlation between static and dynamic stability parameters. The Pearson correlation coefficients for all parameters regarding the static and dynamic tests were less than 0.46. CONCLUSIONS: As there was no correlation between stability parameters in quiet standing and while performing various hand tasks, it is not practical to discuss ability of the subjects to control their balance while undertaking various hand tasks based on static balance ability. PMID:22091270

  19. Translating biological parameters into clinically useful diagnostic tests.

    PubMed

    Arfken, Cynthia L; Carney, Stuart; Boutros, Nash N

    2009-08-01

    Psychiatry has lagged behind other specialties in developing diagnostic laboratory tests for the purpose of confirming or ruling out a diagnosis. Biological research into the pathophysiology of psychiatric disorders has, however, yielded some highly replicable abnormalities that have the potential for development into clinically useful diagnostic tests. To achieve this goal, a process for systematic translation must be developed and implemented. Building on our previous work, we review a proposed process using four clearly defined steps. We conclude that biological parameters currently face challenges in their pathways to becoming diagnostic tests because of both the premature release and premature abandonment of tests. Attention to a systematic translation process aided by these principles may help to avoid these problems.

  20. Modeling aerosol activation in a tropical, orographic, island setting: Sensitivity tests and comparison with observations

    NASA Astrophysics Data System (ADS)

    Russotto, R. D.; Storelvmo, T.; Smith, R. B.

    2013-12-01

    The aerosol, updraft and cloud droplet observations from the 2011 Dominica Experiment (DOMEX) field campaign provide an interesting opportunity to investigate the process of cloud droplet activation in a tropical, orographic, convective setting. This study involves adiabatic parcel model simulations with a state-of-the-art parameterization of droplet activation, which we run with aerosol size distributions and updraft velocities based on DOMEX data. We compare the cloud droplet concentrations predicted by the parameterization with the observations from DOMEX, and run various sensitivity tests to changes in model inputs on the order of their uncertainty, in order to gain insights into what factors are most important in determining the aerosol activation fraction in this setting. Our control simulations overestimated the observed droplet concentrations, especially for the days with strong trade winds, but in most cases these discrepancies could be eliminated by realistic changes in our assumptions. The remaining error could be the result of entrainment of sub-saturated air, precipitation, or advection of pre-existing clouds from upwind. We found strong sensitivities to the mean updraft velocity and to the size distribution and composition of particles in the Aitken mode, the smallest mode including particles below 100 nm. The Aitken mode accounted for 42% to 68% of the simulated droplet concentration in our control simulations, and simulations excluding the Aitken mode underestimated the observed droplet concentrations under realistic assumptions. Droplets from the Aitken mode dominated the changes in the simulated droplet concentrations in our sensitivity tests. The precision of our simulations, and our ability to constrain the role of the Aitken mode, were limited by our lack of knowledge of the composition and size distribution of Aitken mode particles, highlighting the importance of measuring these variables in field campaigns in similar settings.

  1. In vitro dynamic solubility test: influence of various parameters.

    PubMed Central

    Thélohan, S; de Meringo, A

    1994-01-01

    This article discusses the dissolution of mineral fibers in simulated physiological fluids (SPF), and the parameters that affect the solubility measurement in a dynamic test where an SPF runs through a cell containing fibers (Scholze and Conradt test). Solutions simulate either the extracellular fluid (pH 7.6) or the intracellular fluid (pH 4.5). The fibers have various chemical compositions and are either continuously drawn or processed as wool. The fiber solubility is determined by the amount of SiO2 (and occasionally other ions) released in the solution. Results are stated as percentage of the initial silica content released or as dissolution rate v in nm/day. The reproducibility of the test is higher with the less soluble fibers (10% solubility), than with highly soluble fibers (20% solubility). The influence of test parameters, including SPF, test duration, and surface area/volume (SA/V), has been studied. The pH and the inorganic buffer salts have a major influence: industrial glasswool composition is soluble at pH 7.6 but not at pH 4.5. The opposite is true for rock- (basalt) wool composition. For slightly soluble fibers, the dissolution rate v remains constant with time, whereas for highly soluble fibers, the dissolution rate decreases rapidly. The dissolution rates believed to occur are v1, initial dissolution rate, and v2, dissolution rate of the residual fibers. The SA of fibers varies with the mass of the fibers tested, or with the fiber diameter at equal mass. Volume, V, is the chosen flow rate. An increase in the SA/V ratio leads to a decrease in the dissolution rate.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7882964

  2. Atmospheric aerosols parameters behavior and its association with meteorological activities variables over western Indian tropical semi-urban site i.e., Udaipur

    NASA Astrophysics Data System (ADS)

    Vyas, B. M.; Saxenna, Abhishek; Panwar, Chhagan

    2016-05-01

    The present study has been focused to the identify the role of meteorological processes on changing the monthly variation of AOD at 550nm, Angstrom Exponent Coefficient (AEC, 440/670nm) and Cloud Effective Radius (CER, μm) measured during January, 2005 to December 2013 over western Indian location i.e., Udaipur (24.6° N, 73.7° E, 560 m amsl). The monthly variation of AOD 550nm, AEC and during entire study period have shown the strong combined influence of different local surface meteorological parameters in varying amplitude with different nature. The higher values of wind speed, ambient surface temperature, planetary boundary layer, and favorable wind direction coming from desert and oceanic region (W and SW) may be recognize as some of possible factor to exhibit the higher aerosols loading of bigger aerosol size particles in pre-monsoon. These meteorological factors seem also to be plausible responsible factors for drastically reducing the cloud effective radius in pre-monsoon season. In contrary to this, in winter, lower atmospheric aerosols burden and more abundance of fine size particles along with increasing the CER sizes also seem to be influenced and governed by the adverse nature of meteorological conditions such lowering the PBL, T, WS as well as with air pollutants transportation by wind from the N and NE region, of high aerosols loading of fine size particles as anthropogenic aerosols located far away to the observing site.

  3. Laboratory Testing and Calibration of the Nuclei-Mode Aerosol Size Spectrometer

    NASA Technical Reports Server (NTRS)

    Brock, Charles A.

    1999-01-01

    This grant was awarded to complete testing and calibration of a new instrument, the nuclei-mode aerosol size spectrometer (N-MASS), following its use in the WB-57F Aerosol Measurement (WAM) campaign in early 1998. The N-MASS measures the size distribution of particles in the 4-60 nm diameter range with 1-Hz response at typical free tropospheric conditions. Specific tasks to have been completed under the auspices of this award were: 1) to experimentally determine the instrumental sampling efficiency; 2) to determine the effects of varying temperatures and flows on N-MASS performance; and 3) to calibrate the N-MASS at typical flight conditions as operated in WAM. The work outlined above has been completed, and a journal manuscript based on this work and that describes the performance of the N-MASS is in preparation. Following a brief description of the principles of operation of the instrument, the major findings of this study are described.

  4. Construction, Modeling and Testing of a Low-Flow, Large-Diameter Aerosol Flow System for the Study of the Formation and Reactions of Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Ezell, M. J.; Johnson, S. N.; Yu, Y.; Pokkunuri, P.; Perraud, V.; Bruns, E.; Alexander, M.; Zelenyuk, A.; Dabdub, D.; Finlayson-Pitts, B. J.

    2008-12-01

    A unique, high-volume, low-flow, stainless steel aerosol flow system for the study of the formation and reactions of aerosols relevant to the troposphere has been constructed, modeled and experimentally tested. The total flow tube length is 7.3 m which includes a 1.2 m section used for mixing. The flow tube is equipped with ultraviolet lamps for photolysis. The diameter of 0.45 m results in a smaller surface to volume ratio than is found in many other flow systems and reduces the contribution of wall reactions. The latter is also reduced by frequent cleaning of the flow tube walls which is feasible due to the ease of disassembly of the flow tube. Flow systems present a major advantage over chamber studies in that continuous sampling under stable conditions over long periods of time is possible, increasing the amount of sample available for analysis and permitting a wide variety of analytical techniques to be applied simultaneously. In this system, the large volume (1000 L) and low flow speed (2 cm/minute) result in a residence time of nearly an hour; and equally spaced sampling ports allow for time-resolved measurements of aerosol and gas-phase products. The central features of this system have been modeled using computational fluid dynamics software and experimentally probed using inert gases and aerosols. Instrumentation attached directly to this flow system includes a NOx analyzer, an ozone analyzer, relative humidity and temperature probes, a scanning mobility particle sizer (SMPS) spectrometer, an aerodynamic particle sizer (APS) spectrometer, GC-MS, integrating nephelometer, and FTIR. Particles are collected using impactors and filters, and analyzed by a variety of techniques including FTIR, electrospray ionization mass spectrometry (ESI-MS), atmospheric pressure chemical ionization mass spectrometry (APCI-MS), GC-MS, HPLC-UV and HPLC-MS. In addition, for selected studies, an aerosol mass spectrometer (AMS), a single particle mass spectrometer (SPLAT II) and

  5. The MESSy aerosol submodel MADE3 (v2.0b): description and a box model test

    SciTech Connect

    Kaiser, J. C.; Hendricks, J.; Righi, M.; Riemer, N.; Zaveri, R. A.; Metzger, S.; Aquila, V.

    2014-01-01

    We introduce MADE3 (Modal Aerosol Dynamics model for Europe, adapted for global applications, 3rd generation; version: MADE3v2.0b), an aerosol dynamics submodel for application within the MESSy framework (Modular Earth Submodel System). MADE3 builds on the predecessor aerosol submodels MADE and MADE-in. Its main new features are the explicit representation of coarse mode particle interactions both with other particles and with condensable gases, and the inclusion of hydrochloric acid (HCl) / chloride (Cl) partitioning between the gas and condensed phases. The aerosol size distribution is represented in the new submodel as a superposition of nine lognormal modes: one for fully soluble particles, one for insoluble particles, and one for mixed particles in each of three size ranges (Aitken, accumulation, and coarse mode size ranges). In order to assess the performance of MADE3 we compare it to its predecessor MADE and to the much more detailed particle-resolved aerosol model PartMC-MOSAIC in a box model simulation of an idealised marine boundary layer test case. MADE3 and MADE results are very similar, except in the coarse mode, where the aerosol is dominated by sea spray particles. Cl is reduced in MADE3 with respect to MADE due to the HCl / Cl partitioning that leads to Cl removal from the sea spray aerosol in our test case. Additionally, the aerosol nitrate concentration is higher in MADE3 due to the condensation of nitric acid on coarse mode particles. MADE3 and PartMC-MOSAIC show substantial differences in the fine particle size distributions (sizes ≲ 2 μm) that could be relevant when simulating climate effects on a global scale. Nevertheless, the agreement between MADE3 and PartMC-MOSAIC is very good when it comes to coarse particle size distributions (sizes ≳ 2 μm), and also in terms of aerosol composition. Finally, considering these results and the well-established ability of MADE in reproducing observed aerosol loadings and composition, MADE3 seems

  6. Vertical distribution of optical parameters of aerosol, evaluation of rain rate and rain drop size by using the pal system, at guwahati

    NASA Astrophysics Data System (ADS)

    Devi, M.; Barbara, A. K.; Baishya, R.; Takeuchi, N.

    use in practice. Possible errors inherent in such process, has been eliminated by a number of approaches, one of which is by examining convergence of σ -r and β -r profiles at and near to altitudes from where back scatter signal is not received. When necessary, S is adjusted through a software, for obtaining no divergence condition. As a further test, the ratio so obtained is examined with the model output based on the Mie --Scattering theory (Yabuki et al 2002). The figure of S=20-30 received by us is near to the model value (in between urban and maritime) with refractive index N=1.5 (real part) and imaginary part varies between .0000 to .0059, suggesting that in dust free environment, aerosols are of weakly absorbing particles, which in a way supports our observation. The aerosol extinction and backscatter profiles are then presented for different seasons of a year highlighting the seasonal features and associated physical and dynamical aspects. Adopting similar approaches it is found that the lidar ratio in case of dust goes beyond 35 and for cloudy situation it comes down to 20 though subjected to the type of cloud present Reliability of these values is then examined with the model output of Yabuki et al 2002, and model values (urban to maritime) for S>35, correspond to particles with R.I (imaginary part)>0.001, indicating presence of high absorption aerosols and thereby supporting our observation. In case of cloudy atmosphere, S varies with cloud type depending on the reflectivity and absorption effects. The paper explains this by quantifying these parameters specially for low lying clouds as rain bearing clouds over this region lie at heights as low as 250 meters.. Supporting data from radiosonde operated by India Meteorological department are also presented in this connection. The extinction cross-section of pollutants trapped in the PBL layer seen in many winter nights are also profiled and their features are analysed in association with surface and elevated

  7. Arrange and average algorithm for the retrieval of aerosol microphysical parameters from HSRL-2. Comparison with in-situ measurements during DISCOVER-AQ California and Texas (2013)

    NASA Astrophysics Data System (ADS)

    Chemyakin, E.; Sawamura, P.; Mueller, D.; Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Scarino, A. J.; Hair, J. W.; Berkoff, T.; Cook, A. L.; Harper, D. B.; Seaman, S. T.

    2015-12-01

    Although aerosols are only a fairly minor constituent of Earth's atmosphere they are able to affect its radiative energy balance significantly. Light detection and ranging (lidar) instruments have the potential to play a crucial role in atmospheric research as only these instruments provide information about aerosol properties at a high vertical resolution. We are exploring different algorithmic approaches to retrieve microphysical properties of aerosols using lidar. Almost two decades ago we started with inversion techniques based on Tikhonov's regularization that became a reference point for the improvement of retrieval capabilities of inversion algorithms. Recently we began examining the potential of the "arrange and average" scheme, which relies on a look-up table of optical and microphysical aerosol properties. The future combination of these two different inversion schemes may help us to improve the accuracy of the microphysical data products.The novel arrange and average algorithm was applied to retrieve aerosol optical and microphysical parameters using NASA Langley Research Center (LaRC) High Spectral Resolution Lidar (HSRL-2) data. HSRL-2 is the first airborne HSRL system that is able to provide advanced datasets consisting of backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm as input information for aerosol microphysical retrievals. HSRL-2 was deployed on-board NASA LaRC's King Air aircraft during the Deriving Information on Surface Conditions from Column and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) field campaigns over the California Central Valley and Houston. Vertical profiles of aerosol optical properties and size distributions were obtained from in-situ instruments on-board the NASA's P-3B aircraft. As HSRL-2 flew along the same flight track of the P-3B, synergistic measurements and retrievals were obtained by these two independent platforms. We will present an

  8. Characterization of atmospheric aerosols from infrared measurements: simulations, testing, and applications.

    PubMed

    Zasetsky, Alexander Yu; Khalizov, Alexei F; Sloan, James J

    2004-10-10

    An inversion method for the characterization of atmospheric condensed phases from infrared (IR) spectra is described. The method is tested with both synthetic IR spectra and the spectra of particles that flow in a cryogenic flow tube. The method is applied to the IR spectra recorded by the Atmospheric Trace Molecule Spectroscopy instrument carried by the Space Shuttle during three missions in 1992, 1993, and 1994. The volume density and particle size distribution for sulfate aerosol are obtained as a function of altitude. The density and size distribution of ice particles in several cirrus clouds are also retrieved. The probable radius of the ice particles in the high-altitude (10-15-km) cirrus clouds is found to be approximately 6-7 microm.

  9. Optimal configuration and test parameters for the comprehensive test system for geomembrane liners

    SciTech Connect

    Stessel, R.I.

    1997-12-31

    Barriers to contaminant migration are a critical part of waste control engineering. Geomembranes (GMs) form one of the two key types of impermeable layer used in barrier systems. The other key barrier material is clay. Clays benefit from a very long history of geotechnical experience tying a range of laboratory tests, some very simple, to design interpretations in which the engineer may have confidence; GMs do not. The Comprehensive Test System (CTS) has been developed at the University of South Florida to permit testing of geomembrane liners in a manner that is both faster than current chemical-compatibility tests and more representative of exposure conditions. The test employs multi-axial deformation with cyclic loading, and can simultaneously expose the liner to potentially-hostile chemicals. These capabilities have been employed to develop a test protocol that generates a single-number parameter expressive of material strength. The test system has recently undergone upgrades and modifications to improve test reproducibility. In conjunction with the assessment of the changes and their effects, test parameters were evaluated. Data from an investigation will be presented to demonstrate the performance of the system. Key results from the range-finding effort, which was largely qualitative, will be discussed. Two are most important: First, the current commonly-employed strain rate is too fast. Second, it is possible to employ the CTS to produce significant differences without causing failure of the membrane, which is far different from current testing protocols, and should be of far greater interest to designers.

  10. Results of the "carbon conference" international aerosol carbon round robin test stage I

    NASA Astrophysics Data System (ADS)

    Schmid, Heidrun; Laskus, Lothar; Jürgen Abraham, Hans; Baltensperger, Urs; Lavanchy, Vincent; Bizjak, Mirko; Burba, Peter; Cachier, Helene; Crow, Dale; Chow, Judith; Gnauk, Thomas; Even, Arja; ten Brink, H. M.; Giesen, Klaus-Peter; Hitzenberger, Regina; Hueglin, Christoph; Maenhaut, Willy; Pio, Casimiro; Carvalho, Abel; Putaud, Jean-Philippe; Toom-Sauntry, Desiree; Puxbaum, Hans

    An international round robin test on the analysis of carbonaceous aerosols on quartz fiber filters sampled at an urban site was organized by the Vienna University of Technology. Seventeen laboratories participated using nine different thermal and optical methods. For the analysis of total carbon (TC), a good agreement of the values obtained by all laboratories was found (7 and 9% r.s.d.) with only two outliers in the complete data set. In contrast the results of the determination of elemental carbon (EC) in two not pre-extracted samples were highly variable ranging over more than one order of magnitude and the relative standard deviations (r.s.d.) of the means were 36.6 and 45.5%. The laboratories that obtained similar results by using methods which reduce the charring artifact were put together to a new data set in order to approach a "real EC" value. The new data set consisting of the results of 10 laboratories using seven different methods showed 16 and 24% lower averages and r.s.d. of 14 and 24% for the two not pre-extracted samples. Taking the current filters as "equivalents" for urban aerosol samples we conclude that the following methods can be used for the analysis of EC in carbonaceous aerosols: thermal methods with an optical feature to correct for charring during pyrolysis, two-step thermal procedures reducing charring during pyrolysis, the VDI 2465/1 method (removal of OC by solvent extraction and thermodesorption in nitrogen) and the VDI 2465/2 method (combustion of OC and EC at different temperatures) with an additional pre-extraction with a dimethyl formamide (DMF)/toluene mixture. Only thermal methods without any correction for charring during pyrolysis and the VDI 2465/2 method were outside the range of twice the standard deviation of the new data set. For a filter sample pre-extracted with the DMF/toluene mixture the average and r.s.d. from all laboratories (20.7 μgC; 24.4% r.s.d.) was very similar as for the laboratory set reduced to 10

  11. Influence of Fallible Item Parameters on Test Information During Adaptive Testing.

    ERIC Educational Resources Information Center

    Wetzel, C. Douglas; McBride, James R.

    Computer simulation was used to assess the effects of item parameter estimation errors on different item selection strategies used in adaptive and conventional testing. To determine whether these effects reduced the advantages of certain optimal item selection strategies, simulations were repeated in the presence and absence of item parameter…

  12. Simulation test of aerosol generation from vessels in the pre-treatment system of fuel reprocessing

    SciTech Connect

    Fujine, Sachio; Kitamura, Koichiro; Kihara, Takehiro

    1997-08-01

    Aerosol concentration and droplet size are measured in off-gas of vessel under various conditions by changing off-gas flow rate, stirring air flow rate, salts concentration and temperature of nitrate solution. Aerosols are also measured under evaporation and air-lift operation. 4 refs., 6 figs.

  13. Inter-comparison of CALIPSO and CloudSat retrieved profiles of aerosol and cloud microphysical parameters with aircraft profiles over a tropical region

    NASA Astrophysics Data System (ADS)

    Padmakumari, B.; Harikishan, G.; Maheskumar, R. S.

    2016-05-01

    Satellites play a major role in understanding the spatial and vertical distribution of aerosols and cloud microphysical parameters over a large area. However, the inherent limitations in satellite retrievals can be improved through inter-comparisons with airborne platforms. Over the Indian sub-continent, the vertical profiles retrieved from space-borne lidar such as CALIOP (Cloud-Aerosol LIdar with Orthogonal Polarization) on board the satellite CALIPSO and Cloud Profiling Radar (CPR) on board the satellite CloudSat were inter- compared with the aircraft observations conducted during Cloud Aerosol Interactions and Precipitation Enhancement Experiment (CAIPEEX). In the absence of high clouds, both aircraft and CALIOP showed similar features of aerosol layering and water-ice cloud signatures. As CALIOP could not penetrate the thick clouds, the aerosol information below the cloud is missed. While the aircraft could measure high concentrations below the cloud base and above the low clouds in the presence of high clouds. The aircraft derived liquid water content (LWC) and droplet effective radii (Re) showed steady increase from cloud base to cloud top with a variable cloud droplet number concentration (CDNC). While the CloudSat derived LWC, CDNC and Re showed increase from the cloud top to cloud base in contradiction to the aircraft measurements. The CloudSat profiles are underestimated as compared to the corresponding aircraft profiles. Validation of satellite retrieved vertical profiles with aircraft measurements is very much essential over the tropics to improve the retrieval algorithms and to constrain the uncertainties in the regional cloud parameterization schemes.

  14. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    PubMed

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and

  15. Aerosolized Antibiotics.

    PubMed

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  16. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions: Part 1 - general equations, parameters, and terminology

    NASA Astrophysics Data System (ADS)

    Pöschl, U.; Rudich, Y.; Ammann, M.

    2005-04-01

    Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It allows to describe mass transport and chemical reactions at the gas-particle interface and to link aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion correction, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependencies; flexible inclusion/omission of chemical species and physicochemical processes; flexible convolution/deconvolution of species and processes; and full compatibility with traditional resistor model

  17. Optical properties of urban aerosols in the region Bratislava-Vienna I. Methods and tests

    NASA Astrophysics Data System (ADS)

    Kocifaj, M.; Horvath, H.; Jovanović, O.; Gangl, M.

    Aerosol optical data obtained by means of ground-based methods are applied to determine microphysical properties of aerosols in the atmosphere of Vienna-city. The measured aerosol extinction coefficient σA serves as a source of information on the ambient aerosols. A large database of extinction efficiency factors for a set of irregularly shaped as well as the spherical particles of various sizes is pre-calculated and employed in the inversion procedure. The assumed particle models differ in chemical composition and are representative for most typical aerosol systems in the urban atmospheres. All database records are taken into a regularization scheme to solve the inverse problem for aerosol size distribution using measured extinction data. In addition, subsidiary data on spectral sky radiance are successfully incorporated into the mathematical model to retrieve the information on aerosol effective refractive index in the visible. As for Vienna, the aerosol extinction is a decreasing function of wavelength in visible spectrum—it indicates the predominance of sub-micrometer-sized particles in the atmosphere. The surface distribution function s( r)=d S/d r of aerosol particles customarily peaks at radii r≈0.2-0.3 μm, while the volume distribution function v( r)=d V/d r˜ rs( r) has a mode at radii about 0.3-0.4 μm. Analysing size distributions d V/d log( r) for irregularly shaped particles it is shown that the daily profile of this function is smoothly evolving and almost typically accounts for a first mode at radii between 0.8 and 0.9 μm.

  18. Relationship between pumping-test and slug-test parameters: Scale effect or artifact?

    USGS Publications Warehouse

    Butler, J.J.; Healey, J.M.

    1998-01-01

    In most field investigations, information about hydraulic conductivity (K) is obtained through pumping or slug tests. A considerable body of data has been amassed that indicates that the K estimate from a pumping test is, on average, considerably larger than the estimate obtained from a series of slug tests in the same formation. Although these data could be interpreted as indicating a natural underlying scale dependence in K, an alternate explanation is that the slug-test K is artificially low as a result of incomplete well development and, to a much lesser extent, failure to account for vertical anisotropy. Incomplete well development will often result in only the most permeable zones being cleared of drilling debris, with much of the screened interval remaining undeveloped. More cursory development can leave a low-K skin along the entire screened interval. Failure to recognize such conditions can result in a K estimate from a slug test that is much lower than the average K of the formation in the vicinity of the well. By contrast, neither a skin nor vertical anisotropy will have a significant impact on K estimates from pumping tests when semi-log analyses and/or observation wells are used. However, a reasonable estimate of aquifer thickness is required to convert the transmissivity calculated from a pumping test Into an average K for the aquifer. Prior to invoking a natural scale dependence to explain the results of different types of hydraulic tests, head data should be closely examined and serious consideration given to alternate explanations.Pumping and slug tests are the primary means to obtain in situ estimates of the transmissive properties of a formation. Since the duration of most pumping tests is on the order of hours to days, the formation volume that is affected by the average pumping test is considerably larger than that affected by a slug test. These tests can yield different parameter estimates when performed at the same well. In this regard, the

  19. Effect of Supragingival Irrigation with Aerosolized 0.5% Hydrogen Peroxide on Clinical Periodontal Parameters, Markers of Systemic Inflammation, and Morphology of Gingival Tissues in Patients with Periodontitis

    PubMed Central

    Žekonis, Gediminas; Žekonis, Jonas; Gleiznys, Alvydas; Noreikienė, Viktorija; Balnytė, Ingrida; Šadzevičienė, Renata; Narbutaitė, Julija

    2016-01-01

    Background Various studies have shown that non-surgical periodontal treatment is correlated with reduction in clinical parameters and plasma levels of inflammatory markers. The aim of this study was to evaluate the effect of long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide as maintenance therapy followed by non-surgical periodontal treatment on clinical parameters, plasma levels of inflammatory markers, and morphological changes in gingival tissues of patients with periodontitis. Material/Methods In total, 43 patients with chronic periodontitis were randomly allocated to long-term maintenance therapy. The patients’ periodontal status was assessed using clinical parameters of approximal plaque index, modified gingival index, bleeding index, pocket probing depth, and plasma levels of inflammatory markers (high-sensitivity C-reactive protein and white blood cell count) at baseline and after 1, 2, and 3 years. The morphological status of gingival tissues (immediately after supragingival irrigation) was assessed microscopically. Results Complete data were obtained on 34 patients. A highly statistically significant and consistent reduction was observed in all long-term clinical parameters and plasma levels of inflammatory markers. Morphological data showed abundant spherical bubbles in gingival tissues. Conclusions 1. The present study showed that non-surgical periodontal treatment with long-term weekly supragingival irrigations with aerosolized 0.5% hydrogen peroxide improved clinical periodontal status and plasma levels of inflammatory markers and may be a promising method in periodontology. 2. We found that supragingival irrigation with aerosolized 0.5% hydrogen peroxide created large numbers of spherical bubbles in gingival tissues. PMID:27743448

  20. A comparative assessment of cigarette smoke aerosols using an in vitro air-liquid interface cytotoxicity test.

    PubMed

    Thorne, David; Dalrymple, Annette; Dillon, Deborah; Duke, Martin; Meredith, Clive

    2015-01-01

    This study describes the evaluation of a modified air-liquid interface BALB/c 3T3 cytotoxicity method for the assessment of smoke aerosols in vitro. The functionality and applicability of this modified protocol was assessed by comparing the cytotoxicity profiles from eight different cigarettes. Three reference cigarettes, 1R5F, 3R4F and CORESTA Monitor 7 were used to put the data into perspective and five bespoke experimental products were manufactured, ensuring a balanced and controlled study. Manufactured cigarettes were matched for key variables such as nicotine delivery, puff number, pressure drop, ventilation, carbon monoxide, nicotine free dry particulate matter and blend, but significantly modified for vapor phase delivery, via the addition of two different types and quantities of adsorptive carbon. Specifically manufacturing products ensures comparisons can be made in a consistent manner and allows the research to ask targeted questions, without confounding product variables. The results demonstrate vapor-phase associated cytotoxic effects and clear differences between the products tested and their cytotoxic profiles. This study has further characterized the in vitro vapor phase biological response relationship and confirmed that the biological response is directly proportional to the amount of available vapor phase toxicants in cigarette smoke, when using a Vitrocell® VC 10 exposure system. This study further supports and strengthens the use of aerosol based exposure options for the appropriate analysis of cigarette smoke induced responses in vitro and may be especially beneficial when comparing aerosols generated from alternative tobacco aerosol products.

  1. Selectivity Across the Interface: A Test of Surface Activity in the Composition of Organic-Enriched Aerosols from Bubble Bursting.

    PubMed

    Cochran, Richard E; Jayarathne, Thilina; Stone, Elizabeth A; Grassian, Vicki H

    2016-05-01

    Although theories have been developed that describe surface activity of organic molecules at the air-water interface, few studies have tested how surface activity impacts the selective transfer of molecules from solution phase into the aerosol phase during bubble bursting. The selective transfer of a series of organic compounds that differ in their solubility and surface activity from solution into the aerosol phase is quantified experimentally for the first time. Aerosol was produced from solutions containing salts and a series of linear carboxlyates (LCs) and dicarboxylates (LDCs) using a bubble bursting process. Surface activity of these molecules dominated the transport across the interface, with enrichment factors of the more surface-active C4-C8 LCs (55 ± 8) being greater than those of C4-C8 LDCs (5 ± 1). Trends in the estimated surface concentrations of LCs at the liquid-air interface agreed well with their relative concentrations in the aerosol phase. In addition, enrichment of LCs was followed by enrichment of calcium with respect to other inorganic cations and depletion of chloride and sulfate. PMID:27093579

  2. Stimulation of interferons and endorphins/enkephalins by electro-aerosol inhalation? An experimental approach for testing an expanded hypothesis

    NASA Astrophysics Data System (ADS)

    Wehner, A. P.

    1984-03-01

    The biological effects of endorphins/enkephalins and of interferons closely resemble those attributed to air ions and electro-aerosols. Air ions/electro-aerosols have been reported to affect brain functions and feelings of “well-being”; to have sedative and analgesic effects; to be therapeutically effective in certain viral (e.g., upper respiratory) infections; and to have tumor-attenuating effects. It is, therefore, conceivable that endorphins/enkephalins and interferons might be the mediators of these air ion/electro-aerosol effects. An experimental approach for testing this hypothesis is described. It calls for mice to be challenged with a suitable agent and to be exposed under appropriate conditions to a negatively charged aerosol of physiological saline 6 hours/day for up to 3 weeks; for the serial sacrifice of subgroups of these mice; for collecting blood and brains of the sacrificed animals; for the bioassay of the sera for interferon; and for radioimmunoassays of brains for endorphins/enkephalins. Special considerations, necessitated by the nature of the experiment, are discussed.

  3. A comparative assessment of cigarette smoke aerosols using an in vitro air–liquid interface cytotoxicity test

    PubMed Central

    Thorne, David; Dalrymple, Annette; Dillon, Deborah; Duke, Martin; Meredith, Clive

    2015-01-01

    Abstract This study describes the evaluation of a modified air-liquid interface BALB/c 3T3 cytotoxicity method for the assessment of smoke aerosols in vitro. The functionality and applicability of this modified protocol was assessed by comparing the cytotoxicity profiles from eight different cigarettes. Three reference cigarettes, 1R5F, 3R4F and CORESTA Monitor 7 were used to put the data into perspective and five bespoke experimental products were manufactured, ensuring a balanced and controlled study. Manufactured cigarettes were matched for key variables such as nicotine delivery, puff number, pressure drop, ventilation, carbon monoxide, nicotine free dry particulate matter and blend, but significantly modified for vapor phase delivery, via the addition of two different types and quantities of adsorptive carbon. Specifically manufacturing products ensures comparisons can be made in a consistent manner and allows the research to ask targeted questions, without confounding product variables. The results demonstrate vapor-phase associated cytotoxic effects and clear differences between the products tested and their cytotoxic profiles. This study has further characterized the in vitro vapor phase biological response relationship and confirmed that the biological response is directly proportional to the amount of available vapor phase toxicants in cigarette smoke, when using a Vitrocell® VC 10 exposure system. This study further supports and strengthens the use of aerosol based exposure options for the appropriate analysis of cigarette smoke induced responses in vitro and may be especially beneficial when comparing aerosols generated from alternative tobacco aerosol products. PMID:26339773

  4. A comparative assessment of cigarette smoke aerosols using an in vitro air-liquid interface cytotoxicity test.

    PubMed

    Thorne, David; Dalrymple, Annette; Dillon, Deborah; Duke, Martin; Meredith, Clive

    2015-01-01

    This study describes the evaluation of a modified air-liquid interface BALB/c 3T3 cytotoxicity method for the assessment of smoke aerosols in vitro. The functionality and applicability of this modified protocol was assessed by comparing the cytotoxicity profiles from eight different cigarettes. Three reference cigarettes, 1R5F, 3R4F and CORESTA Monitor 7 were used to put the data into perspective and five bespoke experimental products were manufactured, ensuring a balanced and controlled study. Manufactured cigarettes were matched for key variables such as nicotine delivery, puff number, pressure drop, ventilation, carbon monoxide, nicotine free dry particulate matter and blend, but significantly modified for vapor phase delivery, via the addition of two different types and quantities of adsorptive carbon. Specifically manufacturing products ensures comparisons can be made in a consistent manner and allows the research to ask targeted questions, without confounding product variables. The results demonstrate vapor-phase associated cytotoxic effects and clear differences between the products tested and their cytotoxic profiles. This study has further characterized the in vitro vapor phase biological response relationship and confirmed that the biological response is directly proportional to the amount of available vapor phase toxicants in cigarette smoke, when using a Vitrocell® VC 10 exposure system. This study further supports and strengthens the use of aerosol based exposure options for the appropriate analysis of cigarette smoke induced responses in vitro and may be especially beneficial when comparing aerosols generated from alternative tobacco aerosol products. PMID:26339773

  5. Effects of 28 days silicon dioxide aerosol exposure on respiratory parameters, blood biochemical variables and lung histopathology in rats.

    PubMed

    Deb, Utsab; Lomash, Vinay; Raghuvanshi, Suchita; Pant, S C; Vijayaraghavan, R

    2012-11-01

    Inhalation toxicity of silicon dioxide aerosol (150, 300 mg/m(3)) daily over a period of 28 days was carried out in rats. The changes in respiratory variables during the period of exposure were monitored using a computer programme that recognizes the modifications of the breathing pattern. Exposure to the aerosol caused a time dependent decrease in tidal volume, with an increase in respiratory frequency compared to the control. Biochemical variables and histopathological observation were noted at 28th day following the start of exposure. Biochemical markers of silica induced lung injury like plasma alkaline phosphatase, lactate dehydrogenase and angiotensine converting enzyme activities increased in a concentration dependent manner compared to control. Increase in the plasma enzymatic activities indicates endothelial lung damage, increased lung membrane permeability. Histopathological observation of the lungs confirmed concentration dependent granulomatous inflammation, fibrosis and proteinacious degeneration. Aggregates of mononuclear cells with entrapped silica particles circumscribed by fibroblast were observed in 300 mg/m(3) silica aerosol exposed group at higher magnification. Decrease in tidal volume and increase in respiratory frequency might be due to the thickening of the alveolar wall leading to a decreased alveolar volume and lowered elasticity of the lung tissue. The trends in histological and biochemical data are in conformity with the respiratory data in the present study. This study reports for the first time, the changes in respiratory variables during silica aerosol exposure over a period of 28 days.

  6. Aerosols and environmental pollution

    NASA Astrophysics Data System (ADS)

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth’s atmosphere and are central to many environmental issues; ranging from the Earth’s radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  7. Aerosols and environmental pollution.

    PubMed

    Colbeck, Ian; Lazaridis, Mihalis

    2010-02-01

    The number of publications on atmospheric aerosols has dramatically increased in recent years. This review, predominantly from a European perspective, summarizes the current state of knowledge of the role played by aerosols in environmental pollution and, in addition, highlights gaps in our current knowledge. Aerosol particles are ubiquitous in the Earth's atmosphere and are central to many environmental issues; ranging from the Earth's radiative budget to human health. Aerosol size distribution and chemical composition are crucial parameters that determine their dynamics in the atmosphere. Sources of aerosols are both anthropogenic and natural ranging from vehicular emissions to dust resuspension. Ambient concentrations of aerosols are elevated in urban areas with lower values at rural sites. A comprehensive understanding of aerosol ambient characteristics requires a combination of measurements and modeling tools. Legislation for ambient aerosols has been introduced at national and international levels aiming to protect human health and the environment.

  8. Uncertainties in the Item Parameter Estimates and Robust Automated Test Assembly

    ERIC Educational Resources Information Center

    Veldkamp, Bernard P.; Matteucci, Mariagiulia; de Jong, Martijn G.

    2013-01-01

    Item response theory parameters have to be estimated, and because of the estimation process, they do have uncertainty in them. In most large-scale testing programs, the parameters are stored in item banks, and automated test assembly algorithms are applied to assemble operational test forms. These algorithms treat item parameters as fixed values,…

  9. 16 CFR 1211.5 - General testing parameters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... Composite Operational and Cycling Test is to be used for 14 days at temperature extremes of minus 35... temperature of 60 °C (140 °F), or 10 °C (18 °F) greater than the operating temperature of the control... Transient Burst Test, test level 3 is to be used for residential garage door operators. (b) In...

  10. 16 CFR 1211.5 - General testing parameters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Composite Operational and Cycling Test is to be used for 14 days at temperature extremes of minus 35... temperature of 60 °C (140 °F), or 10 °C (18 °F) greater than the operating temperature of the control... Transient Burst Test, test level 3 is to be used for residential garage door operators. (b) In...

  11. 16 CFR 1211.5 - General testing parameters.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... Composite Operational and Cycling Test is to be used for 14 days at temperature extremes of minus 35... temperature of 60 °C (140 °F), or 10 °C (18 °F) greater than the operating temperature of the control... Transient Burst Test, test level 3 is to be used for residential garage door operators. (b) In...

  12. Aerosol distribution apparatus

    DOEpatents

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  13. Generation of a monodispersed aerosol

    NASA Technical Reports Server (NTRS)

    Schenck, H.; Mikasa, M.; Devicariis, R.

    1974-01-01

    The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization.

  14. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    NASA Technical Reports Server (NTRS)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  15. Air pollution of Moscow by the carbon monoxide and aerosols, boundary layer parameters and estimation of the CO sources intensity.

    NASA Astrophysics Data System (ADS)

    Rakitin, V.; Fokeeva, E.; Kuznetsov, R.; Emilenko, A.; Kopeikin, V.

    2009-04-01

    The results of measurements of the carbon monoxide total content, the soot and submicron aerosols content are given for the period 2005-2008 over Moscow. Two identical grating spectrometers of medium resolution (0,2sm-1) are used with appropriate solar tracking systems, one of which is located outside the city at Zvenigorod Scientific Station (ZSS 56oN, 38oE, 60km West from Moscow in the rural zone) and the other one is inside a city center. This method makes possible to determine the characteristics of anthropogenic pollution, urban part of the CO content. Some simultaneously measurements of aerosols content, the CO column and CO background concentrations in Moscow, autumn 2007 are presented. Nephelometer and quartz filters for soot sampling were used for aerosols measurements. Correlations coefficients between aerosols, CO background concentration and urban part of the CO content were obtained. Permanent sounding of boundary layer was carried out using acoustic locator (SODAR) LATAN-3. Applications of SODAR data (profile of wind speed and inversion height) makes possible to forecast of air pollution situations in megacities area. We obtained the correlation coefficients for the urban part of the CO content with the wind speed for cold and warm seasons. Analysis results of measurements demonstrated preeminent influence of the wind in certain boundary layer (up to 500m) upon the CO extension. The intensity of CO sources in Moscow was estimated. The systematization of CO diurnal variations for different meteorological conditions was performed. Comparing our results with the results of the earlier measurements period (1993-2005), we found out that the urban part of the CO content in the surface air layer over the city did not increase in spite of more than tripled number of motor-vehicles in Moscow. So using the applications of this spectroscopic method we can obtain the air pollution trend from the averaged air pollution measured values.

  16. 16 CFR 1211.5 - General testing parameters.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... vibration level of 5g is to be used for the Vibration Test. (6) When a Computational Investigation is... (FMEA); (2) In investigating the performance during the Environmental Stress Tests; and (3) During the... reference was approved by the Director of the Federal Register in accordance with 5 U.S.C. 552(a) and 1...

  17. Bayesian Approaches to Imputation, Hypothesis Testing, and Parameter Estimation

    ERIC Educational Resources Information Center

    Ross, Steven J.; Mackey, Beth

    2015-01-01

    This chapter introduces three applications of Bayesian inference to common and novel issues in second language research. After a review of the critiques of conventional hypothesis testing, our focus centers on ways Bayesian inference can be used for dealing with missing data, for testing theory-driven substantive hypotheses without a default null…

  18. Validation of Cardiovascular Parameters During NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, Steven H.

    2008-01-01

    Microgravity-induced physiological changes, including cardiovascular deconditioning may impair crewmembers f capabilities during exploration missions on the Moon and Mars. The Functional Task Test (FTT), which will be used to assess task performance in short and long duration astronauts, consists of 7 functional tests to evaluate crewmembers f ability to perform activities to be conducted in a partial-gravity environment or following an emergency landing on Earth. The Recovery from Fall/Stand Test (RFST) tests both the subject fs ability to get up from a prone position and orthostatic intolerance. PURPOSE: Crewmembers have never become presyncopal in the first 3 min of quiet stand, yet it is unknown whether 3 min is long enough to cause similar heart rate fluctuations to a 5-min stand. The purpose of this study was to validate and test the reliability of heart rate variability (HRV) analysis of a 3-min quiet stand. METHODS: To determine the validity of using 3 vs. 5-min of standing to assess HRV, 7 healthy subjects remained in a prone position for 2 min, stood up quickly and stood quietly for 6 min. ECG and continuous blood pressure data were recorded. Mean R-R interval and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the complete FTT on separate days, including the RFST with a 3-min stand test. Analysis of variance (ANOVA) was performed on the HRV measures. RESULTS: Spectral HRV measures reflecting autonomic activity were not different (p>0.05) during the 0-3 and 0-5 min segment (mean R-R interval: 738+/-74 ms, 728+/-69 ms; low frequency to high frequency ratio: 6.5+/-2.2, 7.7+/-2.7; normalized high frequency: 0.19+/-0.03, 0.18+/-0.04). The average coefficient of variation for mean R-R interval, systolic and diastolic blood pressures

  19. Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions - Part 1: General equations, parameters, and terminology

    NASA Astrophysics Data System (ADS)

    Pöschl, U.; Rudich, Y.; Ammann, M.

    2007-12-01

    Aerosols and clouds play central roles in atmospheric chemistry and physics, climate, air pollution, and public health. The mechanistic understanding and predictability of aerosol and cloud properties, interactions, transformations, and effects are, however, still very limited. This is due not only to the limited availability of measurement data, but also to the limited applicability and compatibility of model formalisms used for the analysis, interpretation, and description of heterogeneous and multiphase processes. To support the investigation and elucidation of atmospheric aerosol and cloud surface chemistry and gas-particle interactions, we present a comprehensive kinetic model framework with consistent and unambiguous terminology and universally applicable rate equations and parameters. It enables a detailed description of mass transport and chemical reactions at the gas-particle interface, and it allows linking aerosol and cloud surface processes with gas phase and particle bulk processes in systems with multiple chemical components and competing physicochemical processes. The key elements and essential aspects of the presented framework are: a simple and descriptive double-layer surface model (sorption layer and quasi-static layer); straightforward flux-based mass balance and rate equations; clear separation of mass transport and chemical reactions; well-defined and consistent rate parameters (uptake and accommodation coefficients, reaction and transport rate coefficients); clear distinction between gas phase, gas-surface, and surface-bulk transport (gas phase diffusion, surface and bulk accommodation); clear distinction between gas-surface, surface layer, and surface-bulk reactions (Langmuir-Hinshelwood and Eley-Rideal mechanisms); mechanistic description of concentration and time dependences (transient and steady-state conditions); flexible addition of unlimited numbers of chemical species and physicochemical processes; optional aggregation or resolution

  20. The regime of aerosol asymmetry parameter over Europe, Mediterranean and Middle East based on MODIS satellite data: evaluation against surface AERONET measurements

    NASA Astrophysics Data System (ADS)

    Korras-Carraca, M. B.; Hatzianastassiou, N.; Matsoukas, C.; Gkikas, A.; Papadimas, C. D.

    2014-09-01

    Atmospheric particulates are a significant forcing agent for the radiative energy budget of the Earth-atmosphere system. The particulates' interaction with radiation, which defines their climate effect, is strongly dependent on their optical properties. In the present work, we study one of the most important optical properties of aerosols, the asymmetry parameter (gaer), in the region comprised of North Africa, the Arabian peninsula, Europe, and the Mediterranean basin. These areas are of great interest, because of the variety of aerosol types they host, both anthropogenic and natural. Using satellite data from the collection 051 of MODIS (MODerate resolution Imaging Spectroradiometer, Terra and Aqua), we investigate the spatio-temporal characteristics of the asymmetry parameter. We generally find significant spatial variability, with larger values over regions dominated by larger size particles, e.g. outside the Atlantic coasts of north-western Africa, where desert-dust outflow is taking place. The gaer values tend to decrease with increasing wavelength, especially over areas dominated by small particulates. The intra-annual variability is found to be small in desert-dust areas, with maximum values during summer, while in all other areas larger values are reported during the cold season and smaller during the warm. Significant intra-annual and inter-annual variability is observed around the Black Sea. However, the inter-annual trends of gaer are found to be generally small. Although satellite data have the advantage of broad geographical coverage, they have to be validated against reliable surface measurements. Therefore, we compare satellite-based values with gaer values measured at 69 stations of the global surface network AERONET (Aerosol Robotic Network), located within our region of interest. This way, we provide some insight on the quality and reliability of MODIS data. We report generally better agreement at the wavelength of 870 nm (correlation coefficient

  1. The regime of aerosol asymmetry parameter over Europe, the Mediterranean and the Middle East based on MODIS satellite data: evaluation against surface AERONET measurements

    NASA Astrophysics Data System (ADS)

    Korras-Carraca, M. B.; Hatzianastassiou, N.; Matsoukas, C.; Gkikas, A.; Papadimas, C. D.

    2015-11-01

    Atmospheric particulates are a significant forcing agent for the radiative energy budget of the Earth-atmosphere system. The particulates' interaction with radiation, which defines their climate effect, is strongly dependent on their optical properties. In the present work, we study one of the most important optical properties of aerosols, the asymmetry parameter (gaer), over sea surfaces of the region comprising North Africa, the Arabian Peninsula, Europe, and the Mediterranean Basin. These areas are of great interest, because of the variety of aerosol types they host, both anthropogenic and natural. Using satellite data from the collection 051 of MODIS (Moderate Resolution Imaging Spectroradiometer, Terra and Aqua), we investigate the spatiotemporal characteristics of the asymmetry parameter. We generally find significant spatial variability, with larger values over regions dominated by larger size particles, e.g., outside the Atlantic coasts of northwestern Africa, where desert-dust outflow takes place. The gaer values tend to decrease with increasing wavelength, especially over areas dominated by small particulates. The intra-annual variability is found to be small in desert-dust areas, with maximum values during summer, while in all other areas larger values are reported during the cold season and smaller during the warm. Significant intra-annual and inter-annual variability is observed around the Black Sea. However, the inter-annual trends of gaer are found to be generally small. Although satellite data have the advantage of broad geographical coverage, they have to be validated against reliable surface measurements. Therefore, we compare satellite-measured values with gaer values measured at 69 stations of the global surface AERONET (Aerosol Robotic Network), located within our region of interest. This way, we provide some insight on the quality and reliability of MODIS data. We report generally better agreement at the wavelength of 860 nm (correlation

  2. [A simple testing installation for the production of aerosols with constant bacteria-contaminated concentrations].

    PubMed

    Herbst, M; Lehmhus, H; Oldenburg, B; Orlowski, C; Ohgke, H

    1983-04-01

    A simple experimental set for the production and investigation of bacterially contaminated solid-state aerosols with constant concentration is described. The experimental set consists mainly of a fluidized bed-particle generator within a modified chamber for formaldehyde desinfection. The special conditions for the production of a defined concentration of particles and microorganisms are to be found out empirically. In a first application aerosol-sizing of an Andersen sampler is investigated. The findings of Andersen (1) are confirmed with respect to our experimental conditions.

  3. Important Scaling Parameters for Testing Model-Scale Helicopter Rotors

    NASA Technical Reports Server (NTRS)

    Singleton, Jeffrey D.; Yeager, William T., Jr.

    1998-01-01

    An investigation into the effects of aerodynamic and aeroelastic scaling parameters on model scale helicopter rotors has been conducted in the NASA Langley Transonic Dynamics Tunnel. The effect of varying Reynolds number, blade Lock number, and structural elasticity on rotor performance has been studied and the performance results are discussed herein for two different rotor blade sets at two rotor advance ratios. One set of rotor blades were rigid and the other set of blades were dynamically scaled to be representative of a main rotor design for a utility class helicopter. The investigation was con-densities permits the acquisition of data for several Reynolds and Lock number combinations.

  4. Demonstration of the Applicability of Novel Photoacoustic Aerosol Monitor for Optical Absorption Coefficient Determination. Laboratory and Field Test.

    NASA Astrophysics Data System (ADS)

    Ajtai, T.; Schnaiter, M.; Linke, C.; Vragel, M.; Filep, Á.; Fődi, L.; Motika, G.; Bozóki, Z.; Szabó, G.

    2009-04-01

    apportionment studies. The present system was successfully tested both under the laboratory and field circumstances. The results of these studied, demonstrated here, is shown excellent agreements with reference methods and presents the main characteristic performances of the system verifying the potential of Wasul-MuWaPas to characterizing the spectral properties of atmospheric aerosols. These researches were funded by Hungarian Ministry of Economy and Transport NKFP_07_A4_AEROS_EU.

  5. Metabolic parameters for ramp versus step incremental cycle ergometer tests.

    PubMed

    Zuniga, Jorge M; Housh, Terry J; Camic, Clayton L; Bergstrom, Haley C; Traylor, Daniel A; Schmidt, Richard J; Johnson, Glen O

    2012-12-01

    The purpose of this study was to examine mean differences and the patterns of responses for oxygen uptake ([Formula: see text]O(2)), heart rate (HR), and rating of perceived exertion (RPE) for ramp (15 W·min(-1)) versus step (30 W increments every 2 min) incremental cycle ergometer tests. Fourteen subjects (age and body mass of 23.2 ± 3.1 (mean ± SD ) years and 71.1 ± 10.1 kg, respectively) visited the laboratory on separate occasions. Two-way repeated measures ANOVAs with appropriate follow-up procedures, as well as paired t tests, were used to analyze the data. In addition, polynomial regression analyses were used to determine the patterns of responses for each dependent variable for the ramp and step tests. The ramp protocol resulted in lower mean [Formula: see text]O(2) and HR values at the common power outputs than the step protocol with no differences in RPE. The increased amount of work performed during the step (total work = 75.83 kJ) versus ramp (total work = 65.60 kJ) tests at the common power outputs may have contributed to the greater [Formula: see text]O(2) and HR values. The polynomial regression analyses showed that most subjects had the same patterns of responses for the ramp and step incremental tests for HR (86%) and RPE (93%) but different patterns for [Formula: see text]O(2) (71%). The findings from the present study suggested that the protocol selection for an incremental cycle ergometer test can affect the mean values for [Formula: see text]O(2) and HR, as well as the [Formula: see text]O(2) - power output relationship.

  6. Flight test design for CH-47 parameter identification

    NASA Technical Reports Server (NTRS)

    Hall, W. E., Jr.; Vincent, J.

    1978-01-01

    The VTOL Approach and Landing Technology (VALT) program is a significant experimental research program aimed at establishing a data base for rotorcraft operation in a terminal area environment. Work was undertaken to determine helicopter math models suitable for analyzing maneuvers along a VTOL trajectory and to apply these math models to determine the flight test procedures of greatest effectiveness in establishing helicopter dynamic characteristics in this mode of operation. As the principal result of this investigation, a flight test specification is presented for the CH-47 VALT aircraft operating along the specified VTOL trajectory of the VALT program.

  7. Validation of Cardiovascular Parameters during NASA's Functional Task Test

    NASA Technical Reports Server (NTRS)

    Arzeno, N. M.; Stenger, M. B.; Bloomberg, J. J.; Platts, S. H.

    2009-01-01

    Microgravity exposure causes physiological deconditioning and impairs crewmember task performance. The Functional Task Test (FTT) is designed to correlate these physiological changes to performance in a series of operationally-relevant tasks. One of these, the Recovery from Fall/Stand Test (RFST), tests both the ability to recover from a prone position and cardiovascular responses to orthostasis. PURPOSE: Three minutes were chosen for the duration of this test, yet it is unknown if this is long enough to induce cardiovascular responses similar to the operational 5 min stand test. The purpose of this study was to determine the validity and reliability of heart rate variability (HRV) analysis of a 3 min stand and to examine the effect of spaceflight on these measures. METHODS: To determine the validity of using 3 vs. 5 min of standing to assess HRV, ECG was collected from 7 healthy subjects who participated in a 6 min RFST. Mean R-R interval (RR) and spectral HRV were measured in minutes 0-3 and 0-5 following the heart rate transient due to standing. Significant differences between the segments were determined by a paired t-test. To determine the reliability of the 3-min stand test, 13 healthy subjects completed 3 trials of the FTT on separate days, including the RFST with a 3 min stand. Analysis of variance (ANOVA) was performed on the HRV measures. One crewmember completed the FTT before a 14-day mission, on landing day (R+0) and one (R+1) day after returning to Earth. RESULTS VALIDITY: HRV measures reflecting autonomic activity were not significantly different during the 0-3 and 0-5 min segments. RELIABILITY: The average coefficient of variation for RR, systolic (SBP) and diastolic blood pressures during the RFST were less than 8% for the 3 sessions. ANOVA results yielded a greater inter-subject variability (p<0.006) than inter-session variability (p>0.05) for HRV in the RFST. SPACEFLIGHT: Lower RR and higher SBP were observed on R+0 in rest and stand. On R+1

  8. Test verification and design of the bicycle frame parameters

    NASA Astrophysics Data System (ADS)

    Zhang, Long; Xiang, Zhongxia; Luo, Huan; Tian, Guan

    2015-07-01

    Research on design of bicycles is concentrated on mechanism and auto appearance design, however few on matches between the bike and the rider. Since unreasonable human-bike relationship leads to both riders' worn-out joints and muscle injuries, the design of bicycles should focus on the matching. In order to find the best position of human-bike system, simulation experiments on riding comfort under different riding postures are done with the lifemode software employed to facilitate the cycling process as well as to obtain the best position and the size function of it. With BP neural network and GA, analyzing simulation data, conducting regression analysis of parameters on different heights and bike frames, the equation of best position of human-bike system is gained at last. In addition, after selecting testers, customized bikes based on testers' height dimensions are produced according to the size function. By analyzing and comparing the experimental data that are collected from testers when riding common bicycles and customized bicycles, it is concluded that customized bicycles are four times even six times as comfortable as common ones. The equation of best position of human-bike system is applied to improve bikes' function, and the new direction on future design of bicycle frame parameters is presented.

  9. Aerosol characterization with lidar methods

    NASA Astrophysics Data System (ADS)

    Sugimoto, Nobuo; Nishizawa, Tomoaki; Shimizu, Atsushi; Matsui, Ichiro

    2014-08-01

    Aerosol component analysis methods for characterizing aerosols were developed for various types of lidars including polarization-sensitive Mie scattering lidars, multi-wavelength Raman scattering lidars, and multi-wavelength highspectral- resolution lidars. From the multi-parameter lidar data, the extinction coefficients for four aerosol components can be derived. The microphysical parameters such as single scattering albedo and effective radius can be also estimated from the derived aerosol component distributions.

  10. Parameter estimation techniques and application in aircraft flight testing

    NASA Technical Reports Server (NTRS)

    1974-01-01

    Technical papers presented at the symposium by selected representatives from industry, universities, and various Air Force, Navy, and NASA installations are given. The topics covered include the newest developments in identification techniques, the most recent flight-test experience, and the projected potential for the near future.

  11. Tropospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  12. Development of a fungal spore aerosol generator: test with Cladosporium cladosporioides and Penicillium citrinum.

    PubMed

    Lee, Byung Uk; Kim, Young Joong; Lee, Chang Ho; Yun, Sun Hwa; Bae, Gwi-Nam; Ji, Jun-Ho

    2008-04-01

    As the first step to develop efficient means to control fungal spore bioaerosols, we designed, manufactured, and evaluated a fungal spore aerosol generator. We studied the physical and biological properties of the fungal spore bioaerosols on two common fungal species. The results demonstrated that the fungal spore bioaerosol generator effectively produces fungal spore bioaerosols.

  13. Flight test planning and parameter extraction for rotorcraft system identification

    NASA Technical Reports Server (NTRS)

    Wang, J. C.; Demiroz, M. Y.; Talbot, P. D.

    1986-01-01

    The present study is concerned with the mathematical modelling of aircraft dynamics on the basis of an investigation conducted with the aid of the Rotor System Research Aircraft (RSRA). The particular characteristics of RSRA make it possible to investigate aircraft properties which cannot be readily studied elsewhere, for example in the wind tunnel. The considered experiment had mainly the objective to develop an improved understanding of the physics of rotor flapping dynamics and rotor loads in maneuvers. The employed approach is based on a utilization of parameter identification methodology (PID) with application to helicopters. A better understanding of the contribution of the main rotor to the overall aircraft forces and moments is also to be obtained. Attention is given to the mathematical model of a rotorcraft system, an integrated identification method, flight data processing, and the identification of RSRA mathematical models.

  14. Physiological Parameters for Oral Delivery and In vitro Testing

    PubMed Central

    Mudie, Deanna M.; Amidon, Gordon L.; Amidon, Gregory E.

    2010-01-01

    Pharmaceutical solid oral dosage forms must undergo dissolution in the intestinal fluids of the gastrointestinal tract before they can be absorbed and reach the systemic circulation. Therefore, dissolution is a critical part of the drug-delivery process. The rate and extent of drug dissolution and absorption depend on the characteristics of the active ingredient as well as properties of the dosage form. Just as importantly, characteristics of the physiological environment such as buffer species, pH, bile salts, gastric emptying rate, intestinal motility, and hydrodynamics can significantly impact dissolution and absorption. While significant progress has been made since 1970 when the first compendial dissolution test was introduced (USP Apparatus 1), current dissolution testing does not take full advantage of the extensive physiologic information that is available. For quality control purposes, where the question is one of lot-to-lot consistency in performance, using nonphysiologic test conditions that match drug and dosage form properties with practical dissolution media and apparatus may be appropriate. However, where in vitro – in vivo correlations are desired, it is logical to consider and utilize knowledge of the in vivo condition. This publication critically reviews the literature that is relevant to oral human drug delivery. Physiologically relevant information must serve as a basis for the design of dissolution test methods and systems that are more representative of the human condition. As in vitro methods advance in their physiological relevance, better in vitro - in vivo correlations will be possible. This will, in turn, lead to in vitro systems that can be utilized to more effectively design dosage forms that have improved and more consistent oral bioperformance. PMID:20822152

  15. Effects of slip testing parameters on measured coefficient of friction.

    PubMed

    Beschorner, Kurt E; Redfern, Mark S; Porter, William L; Debski, Richard E

    2007-11-01

    Slips and falls are a major cause of injuries in the workplace. Devices that measure coefficient of friction (COF) of the shoe-floor-contaminant interface are used to evaluate slip resistance in various environments. Testing conditions (e.g. loading rate, timing, normal force, speed, shoe angle) are believed to affect COF measurements; however, the nature of that relationship is not well understood. This study examines the effects of normal force (NF), speed, and shoe angle on COF within physiologically relevant ranges. A polyvinyl chloride shoe was tested using a modified industrial robot that could attain high vertical loads and relatively high speeds. Ground reaction forces were measured with a loadcell to compute COF. Experiment #1 measured COF over a range of NF ( approximately 100-500 N) for two shoe angles (10 degrees and 20 degrees ), four speeds (0.05, 0.20, 0.35, and 0.50 m/s), and two contaminants (diluted detergent and diluted glycerol). Experiment #2 further explored speed effect by testing seven speeds (0.01, 0.05, 0.20, 0.35, 0.50, 0.75, and 1.00 m/s) at a given NF (350 N) and shoe angle (20 degrees ) using the same two contaminants. Experiment #1 showed that faster speeds significantly decreased COF, and that a complex interaction existed between NF and shoe angle. Experiment #2 showed that increasing speed decreased COF asymptotically. The results imply that COF is dependent on film thickness separating the shoe and the heel, which is dependent on speed, shoe angle, and NF, consistent with tribological theory. PMID:17196925

  16. Effects of slip testing parameters on measured coefficient of friction.

    PubMed

    Beschorner, Kurt E; Redfern, Mark S; Porter, William L; Debski, Richard E

    2007-11-01

    Slips and falls are a major cause of injuries in the workplace. Devices that measure coefficient of friction (COF) of the shoe-floor-contaminant interface are used to evaluate slip resistance in various environments. Testing conditions (e.g. loading rate, timing, normal force, speed, shoe angle) are believed to affect COF measurements; however, the nature of that relationship is not well understood. This study examines the effects of normal force (NF), speed, and shoe angle on COF within physiologically relevant ranges. A polyvinyl chloride shoe was tested using a modified industrial robot that could attain high vertical loads and relatively high speeds. Ground reaction forces were measured with a loadcell to compute COF. Experiment #1 measured COF over a range of NF ( approximately 100-500 N) for two shoe angles (10 degrees and 20 degrees ), four speeds (0.05, 0.20, 0.35, and 0.50 m/s), and two contaminants (diluted detergent and diluted glycerol). Experiment #2 further explored speed effect by testing seven speeds (0.01, 0.05, 0.20, 0.35, 0.50, 0.75, and 1.00 m/s) at a given NF (350 N) and shoe angle (20 degrees ) using the same two contaminants. Experiment #1 showed that faster speeds significantly decreased COF, and that a complex interaction existed between NF and shoe angle. Experiment #2 showed that increasing speed decreased COF asymptotically. The results imply that COF is dependent on film thickness separating the shoe and the heel, which is dependent on speed, shoe angle, and NF, consistent with tribological theory.

  17. [Parameters of heart rate variability during bicycle ergometry test].

    PubMed

    Parnes, E Ia; Koshkina, E V; Krasnoselskiĭ, M Ia

    2003-01-01

    Short-term (5 min) heart rate variability (HRV) was studied before and during submaximal bicycle exercise tests in 27 patients with ischemic heart disease, 23 patients with hypertension and 9 healthy subjects. Low-frequency (0.04 to 0.15 Hz) and high-frequency (0.15 to 0.40 Hz) power components of HRV were significantly decreased during submaximal exercise. The level of load at which abrupt decrease of low-frequency components below 40 ms(2) occurred possibly reflected individual exercise tolerance. Episodes of myocardial ischemia were associated with pronounced decreases of low - frequency HRV components.

  18. A Sensitivity Study of Radiative Fluxes at the Top of Atmosphere to Cloud-Microphysics and Aerosol Parameters in the Community Atmosphere Model CAM5

    SciTech Connect

    Zhao, Chun; Liu, Xiaohong; Qian, Yun; Yoon, Jin-Ho; Hou, Zhangshuan; Lin, Guang; McFarlane, Sally A.; Wang, Hailong; Yang, Ben; Ma, Po-Lun; Yan, Huiping; Bao, Jie

    2013-11-08

    In this study, we investigated the sensitivity of net radiative fluxes (FNET) at the top of atmosphere (TOA) to 16 selected uncertain parameters mainly related to the cloud microphysics and aerosol schemes in the Community Atmosphere Model version 5 (CAM5). We adopted a quasi-Monte Carlo (QMC) sampling approach to effectively explore the high dimensional parameter space. The output response variables (e.g., FNET) were simulated using CAM5 for each parameter set, and then evaluated using generalized linear model analysis. In response to the perturbations of these 16 parameters, the CAM5-simulated global annual mean FNET ranges from -9.8 to 3.5 W m-2 compared to the CAM5-simulated FNET of 1.9 W m-2 with the default parameter values. Variance-based sensitivity analysis was conducted to show the relative contributions of individual parameter perturbation to the global FNET variance. The results indicate that the changes in the global mean FNET are dominated by those of cloud forcing (CF) within the parameter ranges being investigated. The size threshold parameter related to auto-conversion of cloud ice to snow is confirmed as one of the most influential parameters for FNET in the CAM5 simulation. The strong heterogeneous geographic distribution of FNET variation shows parameters have a clear localized effect over regions where they are acting. However, some parameters also have non-local impacts on FNET variance. Although external factors, such as perturbations of anthropogenic and natural emissions, largely affect FNET variations at the regional scale, their impact is weaker than that of model internal parameters in terms of simulating global mean FNET in this study. The interactions among the 16 selected parameters contribute a relatively small portion of the total FNET variations over most regions of the globe. This study helps us better understand the CAM5 model behavior associated with parameter uncertainties, which will aid the next step of reducing model

  19. A case study of single hygroscopicity parameter and its link to the functional groups and phase transition for urban aerosols in Taipei City

    NASA Astrophysics Data System (ADS)

    Hung, Hui-Ming; Hsu, Chia-Hung; Lin, Wei-Ting; Chen, Yu-Quan

    2016-05-01

    The hygroscopicity, functional groups and phase transitions of urban aerosol particles in Taipei City were studied using a cloud condensation nuclei counter (CCNc) with a scanning mobility particle sizer (SMPS) and an attenuated total reflectance with infrared (ATR-IR) detection technique. With the assumption of larger particles being activated first, the derived single hygroscopicity parameter (κ) exhibited an increasing trend with particle size, i.e., from 0.022 ± 0.01 at 87 ± 10 nm to 0.13 ± 0.03 at 240 ± 20 nm. The collected size-selected particles were characterized using ATR-IR for the functional groups of alkyl, carbonyl, ammonium, sulfate and nitrate, which showed various size dependence patterns, linked to different formation mechanisms. The hygroscopic response based on the ratio (xW_solute) for sample film of absorption by the enhanced water-stretching peak to that by the selected solute showed a better consistency with pure ammonium sulfate for sub-micron size particles. Based on the derived ammonium sulfate volume fraction from IR analysis, the κ received from CCNc measurements was concluded mainly contributed by ammonium sulfate for sub-micrometer particles. The increasing trend of sodium nitrate absorbance at aerosol diameter ≥1 μm was due to a reaction of nitric acid with sea salt particles. The micrometer sized particles were apparent not only in a significantly higher xW_solute than pure sodium nitrate but also had a deliquescence RH of 69 ± 1%, similar to that of sodium nitrate-sodium chloride mixtures. Overall, the organic species in this study exhibited a low hygroscopicity with less than 0.036 of contribution for the overall κ, and the major hygroscopic material of urban aerosols consisted primarily of ammonium sulfate in the sub-micrometer particles and sodium nitrate with sea salt in the coarse particles.

  20. [Aerosol therapy].

    PubMed

    Wildhaber, J H

    1998-08-15

    Aerosol therapy plays a major role in the diagnosis and treatment of various lung diseases. The aim of inhalation therapy is to deposit a reproducible and adequate dose of a specific drug to the airways, in order to achieve a high, local, clinical effect while avoiding serious systemic side effects. To achieve this goal, it is therefore important to have an efficient inhalation device to deliver different medications. However, the currently available therapeutic inhalation devices (nebuliser, pressurised metered-dose inhaler and dry powder inhaler) are not very efficient in aerosol delivery and have several disadvantages. Inhalation devices can be assessed by in vitro studies, filter studies and radiolabelled deposition studies. Several radiolabelled deposition studies have shown that nebulisers and pressurised metered-dose inhalers are not very efficient in aerosol delivery. In children, before 1997, only 0.5% to 15% of the total nebulised or actuated dose from a nebuliser or pressurised metered-dose inhaler actually reached the lungs. These numbers were somewhat improved in adults, 30% of the total nebulised or actuated dose reaching the airways. Aerosol therapy with dry powder inhalers was the most efficient before 1997, 30% of the total dose being deposited in the lungs of adults and children. In 1997, new developments in pressurised metered-dose inhalers much improved their efficiency in aerosol delivery. Lung deposition can be increased by up to 60% with use of a non-electrostatic holding chamber and/or a pressurised metered-dose inhaler with a hydrofluoroalkane propellant possessing superior aerosol characteristics. Several studies comparing the clinical efficiency of different inhalation devices have shown that the choice of an optimal inhalation device is crucial. In addition to the aerosol characteristics, ventilation parameters and airway morphology have an important bearing on deposition patterns. These parameters may be greatly influenced by the

  1. Aerosol typing - key information from aerosol studies

    NASA Astrophysics Data System (ADS)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  2. Intercomparison of observations and model aerosol parameters during two Saharan dust events over the southern United Kingdom

    NASA Astrophysics Data System (ADS)

    Buxmann, Joelle; Adam, Mariana; Ordonez, Carlos; Tilbee, Marie; Smyth, Tim; Claxton, Bernard; Sugier, Jacqueline; Agnew, Paul

    2015-04-01

    Saharan desert dust lifted by convection over the hot desert surface can reach high altitudes and be transported over great distances. In the UK, Saharan dust episodes occur several times a year, usually during the spring. Dust lifted by cyclonic circulation is often blown into the Atlantic and transported to the UK. This can result in a rapid degradation of air quality due to the increase in the levels of particulate matter (PM). The ability to model the transport and deposition of dust remains an important challenge in order to characterize different pollution events. We present a comparison of observed Aerosol Optical Depth (AOD) with modelled AOD from the Met Office Air Quality Unified Model (AQUM), performed for two dust events in March 2014 (at 380nm, 440nm, 870nm and 1020nm). The observations are derived from five sun photometers located in the southern UK at Exeter, Cardington, Bayfordbury, Chilbolton, and Plymouth. Correlations are investigated between model column integrated PM2.5 and PM10, and observed fine and coarse mode AOD from AERONET. Vertical profiles of attenuated backscatter and extinction from the Jenoptik Nimbus ceilometers part of the Met Office Laser Cloud Base Recorder (LCBR) network are investigated as well (see also session AS3.17/GI2.2 Lidar and Applications). The Met Office air quality model AQUM is an on-line meteorology, chemistry and aerosol modelling system. It runs at a resolution of 12km over a domain covering the UK and north-western Europe. Atmospheric composition modelling employs two-way coupling between aerosol and chemistry evolution, with explicit modelling of sulphate, nitrate, black carbon, organic carbon, biomass burning and wind-blown mineral dust aerosol components. Both the model and observations show an increase in AOD during the first period from 12 -13 March 2014. For example AOD levels of up to 0.52 for the 380nm channel were recorded by the sun photometer in Exeter. This is relatively high compared to average

  3. Correlation analysis between pulmonary function test parameters and CT image parameters of emphysema

    NASA Astrophysics Data System (ADS)

    Liu, Cheng-Pei; Li, Chia-Chen; Yu, Chong-Jen; Chang, Yeun-Chung; Wang, Cheng-Yi; Yu, Wen-Kuang; Chen, Chung-Ming

    2016-03-01

    Conventionally, diagnosis and severity classification of Chronic Obstructive Pulmonary Disease (COPD) are usually based on the pulmonary function tests (PFTs). To reduce the need of PFT for the diagnosis of COPD, this paper proposes a correlation model between the lung CT images and the crucial index of the PFT, FEV1/FVC, a severity index of COPD distinguishing a normal subject from a COPD patient. A new lung CT image index, Mirage Index (MI), has been developed to describe the severity of COPD primarily with emphysema disease. Unlike conventional Pixel Index (PI) which takes into account all voxels with HU values less than -950, the proposed approach modeled these voxels by different sizes of bullae balls and defines MI as a weighted sum of the percentages of the bullae balls of different size classes and locations in a lung. For evaluation of the efficacy of the proposed model, 45 emphysema subjects of different severity were involved in this study. In comparison with the conventional index, PI, the correlation between MI and FEV1/FVC is -0.75+/-0.08, which substantially outperforms the correlation between PI and FEV1/FVC, i.e., -0.63+/-0.11. Moreover, we have shown that the emphysematous lesion areas constituted by small bullae balls are basically irrelevant to FEV1/FVC. The statistical analysis and special case study results show that MI can offer better assessment in different analyses.

  4. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    EPA Science Inventory

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  5. The Problem of Bias in Person Parameter Estimation in Adaptive Testing

    ERIC Educational Resources Information Center

    Doebler, Anna

    2012-01-01

    It is shown that deviations of estimated from true values of item difficulty parameters, caused for example by item calibration errors, the neglect of randomness of item difficulty parameters, testlet effects, or rule-based item generation, can lead to systematic bias in point estimation of person parameters in the context of adaptive testing.…

  6. A Note on Noncentrality Parameters for Contrast Tests in a One-Way Analysis of Variance

    ERIC Educational Resources Information Center

    Liu, Xiaofeng Steven

    2010-01-01

    The noncentrality parameter for a contrast test in a one-way analysis of variance is based on the dot product of 2 vectors whose geometric meaning in a Euclidian space offers mnemonic hints about its constituents. Additionally, the noncentrality parameters for a set of orthogonal contrasts sum up to the noncentrality parameter for the omnibus "F"…

  7. A Stepwise Test Characteristic Curve Method to Detect Item Parameter Drift

    ERIC Educational Resources Information Center

    Guo, Rui; Zheng, Yi; Chang, Hua-Hua

    2015-01-01

    An important assumption of item response theory is item parameter invariance. Sometimes, however, item parameters are not invariant across different test administrations due to factors other than sampling error; this phenomenon is termed item parameter drift. Several methods have been developed to detect drifted items. However, most of the…

  8. Characterizing particulate matter emissions from vehicles: chassis-dynamometer tests using a High-Resolution Aerosol Mass Spectrometer

    NASA Astrophysics Data System (ADS)

    Collier, S.; Zhang, Q.; Forestieri, S.; Kleeman, M.; Cappa, C. D.; Kuwayama, T.

    2012-12-01

    During September of 2011 a suite of real-time instruments was used to sample vehicle emissions at the California Air Resources Board Haagen-Schmidt facility in El Monte, CA. A representative fleet of 8 spark ignition gasoline vehicles, a diesel passenger vehicle, a gasoline direct-injection vehicle and an ultra-low emissions vehicle were tested on a chassis dynamometer. The emissions were sampled into the facility's standard CVS tunnel and diluted to atmospherically relevant levels (5-30 μg/m3) while controlling other factors such as relative humidity or background black carbon particulate loading concentrations. An Aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-MS) was among the real-time instruments used and sampled vehicle emissions at 10 second time resolution in order to characterize the non-refractory organic and inorganic particulate matter (PM). PM composition and concentration were tracked throughout the cold start driving cycle which included periods of fast acceleration and high velocity cruise control, meant to recreate typical commuter driving behavior. Variations in inorganic and organic PM composition for a given vehicle throughout the driving cycle as well as for various vehicles with differing emissions loading were characterized. Differences in PM composition for a given vehicle whose emissions are being exposed to differing experimental conditions such as varying relative humidity will also be reported. In conjunction with measurements from a Multi Wavelength Photoacoustic Black Carbon Spectrometer (MWPA-BC) and real-time gas measurements from the CARB facility, we determine the real-time emission ratios of primary organic aerosols (POA) with respect to BC and common combustion gas phase pollutants and compared to different vehicle driving conditions. The results of these tests offer the vehicle emissions community a first time glimpse at the real-time behavior of vehicle PM emissions for a variety of conditions and

  9. [Transformations of parameters in the generalized Poisson distribution for test data analysis].

    PubMed

    Ogasawara, H

    1996-02-01

    The generalized Poisson distribution is a distribution which approximates various forms of mixtures of Poisson distributions. The mean and variance of the generalized Poisson distribution, which are simple functions of the two parameters of the distribution, are more useful than the original parameters in test data analysis. Therefore, we adopted two types of transformations of parameters. The first model has new parameters of mean and standard deviation. The second model contains new parameters of mean and variance/mean. An example indicates that the transformed parameters are convenient to understand the properties of data. PMID:8935832

  10. Multi-wavelength measurements of aerosol optical absorption coefficients using a photoacoustic spectrometer

    NASA Astrophysics Data System (ADS)

    Liu, Qiang; Huang, Hong-Hua; Wang, Yao; Wang, Gui-Shi; Cao, Zhen-Song; Liu, Kun; Chen, Wei-Dong; Gao, Xiao-Ming

    2014-06-01

    The atmospheric aerosol absorption capacity is a critical parameter determining its direct and indirect effects on climate. Accurate measurement is highly desired for the study of the radiative budget of the Earth. A multi-wavelength (405 nm, 532 nm, 780 nm) aerosol absorption meter based on photoacoustic spectroscopy (PAS) invovling a single cylindrical acoustic resonator is developed for measuring the aerosol optical absorption coefficients (OACs). A sensitivity of 1.3 Mm-1 (at 532 nm) is demonstrated. The aerosol absorption meter is successfully tested through measuring the OACs of atmospheric nigrosin and ambient aerosols in the suburbs of Hefei city. The absorption cross section and absorption Ångström exponent (AAE) for ambient aerosol are determined for characterizing the component of the ambient aerosol.

  11. Thermoluminescent aerosol analysis

    NASA Technical Reports Server (NTRS)

    Rogowski, R. S.; Long, E. R., Jr. (Inventor)

    1977-01-01

    A method for detecting and measuring trace amounts of aerosols when reacted with ozone in a gaseous environment was examined. A sample aerosol was exposed to a fixed ozone concentration for a fixed period of time, and a fluorescer was added to the exposed sample. The sample was heated in a 30 C/minute linear temperature profile to 200 C. The trace peak was measured and recorded as a function of the test aerosol and the recorded thermoluminescence trace peak of the fluorescer is specific to the aerosol being tested.

  12. An Approach of Vulnerability Testing for Third-Party Component Based on Condition and Parameter Mutation

    PubMed Central

    Chen, Weihe

    2013-01-01

    The research on component vulnerability testing is critical. In this paper, an approach of vulnerability testing is proposed based on condition mutation and parameter mutation in order to effectively detect the explicit vulnerabilities of third-party components. To start with, the Pre-condition Mutation Algorithm (PCMA) is presented to generate mutants set of the pre-condition and test cases are generated based on these mutants. Then, the Single Parameter Mutated Values (SPMV) procedure is addressed to generate parameter values based on mutation operators of parameter specification. These values are then taken as the input of the Test Case Generation Algorithm based on the Parameter Constraint (TCGPC), which is addressed to generate test case set violating the parameter constraint. The explicit vulnerabilities can be detected by the vulnerability detecting algorithm based on the test cases of condition and parameter mutation. The experiments show that our approach can detect explicit vulnerability faults of third-party components. Furthermore, the proposed approach can detect more vulnerability faults than other related approaches such as condition coverage methods, fuzzy testing method and boundary value method. PMID:24194686

  13. A simple, low cost application of a flight test parameter identification system

    NASA Technical Reports Server (NTRS)

    Clarke, R.; Roskam, J.

    1982-01-01

    The flight test system combines state-of-the-art microprocessor technology and high accuracy instrumentation with parameter identification technology which minimize data and flight time requirements. The system was designed to avoid permanent modifications of the test airplane and allow quick installation. It is capable of longitudinal and lateral-directional stability and control derivative estimation. This paper presents details of this system, calibration and flight test procedures, and the results of the Cessna 172 flight test program. The system has proven easy to install, simple to operate, and capable of accurate estimation of stability and control parameters in the Cessna 172 flight tests.

  14. Multistep triaxial strength tests: Investigating strength parameters and pore pressure effects on Opalinus Clay

    NASA Astrophysics Data System (ADS)

    Gräsle, W.

    Natural variability between rock samples often hampers a detailed analysis of material properties. For the investigation of strength parameters the concept of multistep triaxial strength tests was developed to avoid the impact of sample variability. The limit of linear elastic behavior, shear strength and residual strength were measured at different confining pressure on a single specimen. Appropriate tools for near real time data analysis were developed to facilitate a precise and timely control of the test procedure. This is essential to minimize the problem of sample degradation during the test. The feasibility of the test concept was proven on three samples of Opalinus Clay from the Mont Terri rock laboratory. Each investigated strength parameter displayed a distinct deviation from a linear dependency on confining pressure or mean stress respectively. Instead, curves consisting of two linear branches almost perfectly fit the test results. These results could be explained in the framework of poroelastic theory. Although it is not possible to determine Skempton’s B-parameter ( Skempton, 1954) and the Biot-Willis poroelastic parameter ( Biot and Willis, 1957) separately from multistep strength tests, the product of both parameters can be derived from the test results. Although material anisotropy was found by the test results, numerous simple strength tests ( Gräsle and Plischke, 2010) as well as true triaxial tests ( Naumann et al., 2007) provide a more efficient way to investigate anisotropy.

  15. Design and testing of Electrostatic Aerosol in Vitro Exposure System (EAVES): an alternative exposure system for particles.

    PubMed

    de Bruijne, K; Ebersviller, S; Sexton, K G; Lake, S; Leith, D; Goodman, R; Jetters, J; Walters, G W; Doyle-Eisele, M; Woodside, R; Jeffries, H E; Jaspers, I

    2009-02-01

    Conventional in vitro exposure methods for cultured human lung cells rely on prior suspension of particles in a liquid medium; these have limitations for exposure intensity and may modify the particle composition. Here electrostatic precipitation was used as an effective method for such in vitro exposures. An obsolete electrostatic aerosol sampler was modified to provide a viable environment within the deposition field for human lung cells grown on membranous support. Particle deposition and particle-induced toxicological effects for a variety of particles including standardized polystyrene latex spheres (PSL) and diesel exhaust emission particle mixtures are reported. The Electrostatic Aerosol in Vitro Exposure System (EAVES) efficiently deposited particles from an air stream directly onto cells. Cells exposed to the electric field of the EAVES in clean air or in the presence of charged PSL spheres exhibited minimal cytotoxicity, and their release of inflammatory cytokines was indistinguishable from that of the controls. For the responses tested here, there are no significant adverse effects caused neither by the electric field alone nor by the mildly charged particles. Exposure to diesel exhaust emissions using the EAVES system induced a threefold increase in cytokines and cytotoxicity as compared to the control. Taken together, these data show that the EAVES can be used to expose human lung cells directly to particles without prior collection in media, thereby providing an efficient and effective alternative to the more conventional particle in vitro exposure methods.

  16. Ice nucleation onto Arizona test dust at cirrus temperatures: effect of temperature and aerosol size on onset relative humidity.

    PubMed

    Kanji, Z A; Abbatt, J P D

    2010-01-21

    The University of Toronto Continuous Flow Diffusion Chamber (UT-CFDC) was used to study ice formation onto monodisperse Arizona Test Dust (ATD) particles. The onset relative humidity with respect to ice (RH(i)) was measured as a function of temperature in the range 251-223 K for 100 nm ATD particles. It was found that for 0.1% of the particles to freeze, water saturation was required at all temperatures except 223 K where particles activated at RH(i) below water saturation. At this temperature, where deposition mode freezing is occurring, we find that the larger the particle size, the lower the onset RH(i). We also demonstrate that the total number of particles present may influence the onset RH(i) observed. The surface area for ice activation, aerosol size, and temperature must all be considered when reporting onset values of ice formation onto ATD mineral dust particles. In addition, we calculate nucleation rates and contact angles of ice germs with ATD aerosols which indicate that there exists a range of active sites on the surface with different efficiencies for activating ice formation. PMID:19888714

  17. Estimation of Kalman filter model parameters from an ensemble of tests

    NASA Technical Reports Server (NTRS)

    Gibbs, B. P.; Haley, D. R.; Levine, W.; Porter, D. W.; Vahlberg, C. J.

    1980-01-01

    A methodology for estimating initial mean and covariance parameters in a Kalman filter model from an ensemble of nonidentical tests is presented. In addition, the problem of estimating time constants and process noise levels is addressed. Practical problems such as developing and validating inertial instrument error models from laboratory test data or developing error models of individual phases of a test are generally considered.

  18. The Impact of Variability of Item Parameter Estimators on Test Information Function

    ERIC Educational Resources Information Center

    Zhang, Jinming

    2012-01-01

    The impact of uncertainty about item parameters on test information functions is investigated. The information function of a test is one of the most important tools in item response theory (IRT). Inaccuracy in the estimation of test information can have substantial consequences on data analyses based on IRT. In this article, the major part (called…

  19. Test models for improving filtering with model errors through stochastic parameter estimation

    SciTech Connect

    Gershgorin, B.; Harlim, J. Majda, A.J.

    2010-01-01

    The filtering skill for turbulent signals from nature is often limited by model errors created by utilizing an imperfect model for filtering. Updating the parameters in the imperfect model through stochastic parameter estimation is one way to increase filtering skill and model performance. Here a suite of stringent test models for filtering with stochastic parameter estimation is developed based on the Stochastic Parameterization Extended Kalman Filter (SPEKF). These new SPEKF-algorithms systematically correct both multiplicative and additive biases and involve exact formulas for propagating the mean and covariance including the parameters in the test model. A comprehensive study is presented of robust parameter regimes for increasing filtering skill through stochastic parameter estimation for turbulent signals as the observation time and observation noise are varied and even when the forcing is incorrectly specified. The results here provide useful guidelines for filtering turbulent signals in more complex systems with significant model errors.

  20. Meteorological and Aerosol Sensing with small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Born, J.; Möhler, O.; Haunold, W.; Schrod, J.; Brooks, I.; Norris, S.; Brooks, B.; Hill, M.; Leisner, T.

    2012-04-01

    Unmanned Aerial Systems (UAS) facilitate the monitoring of several meteorological and aerosol parameters with high resolution in space and time. They are small, easy to operate, cost efficient and allow for flexible application during field campaigns. We present two experimental payloads for measurement of relative humidity, temperature, aerosol size distribution and the collection of aerosol samples on board the small UAS SIRIUS II. The payload modules are light weight (<1kg) and can be easily switched between two flights. All sensors can be controlled from the ground and the measured data is recorded by the autopilot together with the position data. The first module contains a sensor package for measurement of relative humidity and temperature and the Compact Lightweight Aerosol Spectrometer Prope (CLASP) for acquisition of aerosol size distributions. CLASP measures aerosol particles with diameters from 0.12μm to 9.25μm in up to 32 channels at a frequency of 10 Hz. The second module also contains a humidity and temperature sensor package and the aerosol sample collection device. The aerosol sampler collects air samples at 2 l/min onto a sample holder. After the flight the ice nuclei on the sample holder are activated in the lab and counted. In August 2012 the complete setup will be used during a measurement campaign at mount "Kleiner Feldberg" close to Frankfurt. Until then we will perform test flights and additional laboratory tests.

  1. Lumped Parameter Modeling for Rapid Vibration Response Prototyping and Test Correlation for Electronic Units

    NASA Technical Reports Server (NTRS)

    Van Dyke, Michael B.

    2013-01-01

    Present preliminary work using lumped parameter models to approximate dynamic response of electronic units to random vibration; Derive a general N-DOF model for application to electronic units; Illustrate parametric influence of model parameters; Implication of coupled dynamics for unit/board design; Demonstrate use of model to infer printed wiring board (PWB) dynamics from external chassis test measurement.

  2. Site-scale variability of streambank fluvial erodibility parameters as measured with a jet erosion test

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The erosion rate of cohesive streambanks is typically modeled using the excess shear stress equation, dependent on two erodibility parameters: critical shear stress and erodibility coefficient. The Jet Erosion Test (JET) has become the most common method for estimating these erodibility parameters ...

  3. The economics and ethics of aerosol geoengineering strategies

    NASA Astrophysics Data System (ADS)

    Goes, Marlos; Keller, Klaus; Tuana, Nancy

    2010-05-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for a different approach: geoengineering climate by injecting aerosol precursors into the stratosphere. Published economic studies typically neglect the risks of aerosol geoengineering due to (i) a potential failure to sustain the aerosol forcing and (ii) due to potential negative impacts associated with aerosol forcings. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcings. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes considerable caveats. For example, the analysis is based on a globally aggregated model and is hence silent on intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of future learning and is based on a simple representation of climate change impacts. We use this integrated assessment model to show three main points. First, substituting aerosol geoengineering for the reduction of greenhouse gas emissions can fail the test of economic efficiency. One key to this finding is that a failure to sustain the aerosol forcing can lead to sizeable and abrupt climatic changes. The monetary damages due to such a discontinuous aerosol geoengineering can dominate the cost-benefit analysis because the monetary damages of climate change are expected to increase with

  4. The regime of aerosol asymmetry parameter and Angstrom exponent over Europe, Mediterranean and Middle East based on MODIS satellite data. Intercomparison of MODIS-Aqua C051 and C006 retrievals

    NASA Astrophysics Data System (ADS)

    Korras-Carraca, Marios Bruno; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Gkikas, Antonis; Papadimas, Christos; Sayers, Andy

    2015-04-01

    Atmospheric aerosols, both natural and anthropogenic, can cause climate change through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In the present work, we study two of the most important optical properties of aerosols, the asymmetry parameter (gaer) and the Angstrom exponent (α). Both gaer and α are related with aerosol size, which is a very important parameter for climate and human health. The study region comprises North Africa, the Arabian peninsula, Europe, and the Mediterranean basin. These areas are of great interest, because of the variety of aerosol types they host, both anthropogenic and natural. Urban, industrial or biomass-burning aerosols are usually fine, while desert dust or sea-salt are basically coarse, making thus possible the establishment of a relationship between the type and the size of aerosols. Using satellite data from the collection 051 of MODIS (MODerate resolution Imaging Spectroradiometer, Aqua), we investigate the spatio-temporal characteristics of the asymmetry parameter and Angstrom exponent. We generally find significant spatial variability, with larger gaer values over regions dominated by larger size particles, e.g. outside the Atlantic coasts of north-western Africa, where desert-dust outflow is taking place. The gaer values tend to decrease with increasing wavelength, especially over areas dominated by small particulates. The intra-annual variability is found to be small in desert-dust areas, with maximum values during summer, while in all other areas larger values are reported during the cold season and smaller during the warm. Significant intra-annual and inter-annual variability is observed around the Black Sea. However, the inter-annual trends of gaer are found to be generally small. The geographical distributions for α (given for the pair of wavelengths 550-865 nm) affirm the conclusions drawn from the asymmetry parameter as regards the aerosol size over

  5. Retrieving the aerosol lidar ratio profile by combining ground- and space-based elastic lidars.

    PubMed

    Feiyue, Mao; Wei, Gong; Yingying, Ma

    2012-02-15

    The aerosol lidar ratio is a key parameter for the retrieval of aerosol optical properties from elastic lidar, which changes largely for aerosols with different chemical and physical properties. We proposed a method for retrieving the aerosol lidar ratio profile by combining simultaneous ground- and space-based elastic lidars. The method was tested by a simulated case and a real case at 532 nm wavelength. The results demonstrated that our method is robust and can obtain accurate lidar ratio and extinction coefficient profiles. Our method can be useful for determining the local and global lidar ratio and validating space-based lidar datasets.

  6. MELCOR 1.8.2 assessment: Aerosol experiments ABCOVE AB5, AB6, AB7, and LACE LA2

    SciTech Connect

    Souto, F.J.; Haskin, F.E.; Kmetyk, L.N.

    1994-10-01

    The MELCOR computer code has been used to model four of the large-scale aerosol behavior experiments conducted in the Containment System Test Facility (CSTF) vessel. Tests AB5, AB6 and AB7 of the ABCOVE program simulate the dry aerosol conditions during a hypothetical severe accident in an LMFBR. Test LA2 of the LACE program simulates aerosol behavior in a condensing steam environment during a postulated severe accident in an LWR with failure to isolate the containment. The comparison of code results to experimental data show that MELCOR is able to correctly predict most of the thermal-hydraulic results in the four tests. MELCOR predicts reasonably well the dry aerosol behavior of the ABCOVE tests, but significant disagreements are found in the aerosol behavior modelling for the LA2 experiment. These results tend to support some of the concerns about the MELCOR modelling of steam condensation onto aerosols expressed in previous works. During these analyses, a limitation in the MELCOR input was detected for the specification of the aerosol parameters for more than one component. A Latin Hypercube Sampling (LHS) sensitivity study of the aerosol dynamic constants is presented for test AB6. The study shows the importance of the aerosol shape factors in the aerosol deposition behavior, and reveals that MELCOR input/output processing is highly labor intensive for uncertainty and sensitivity analyses based on LHS.

  7. Combined sphere-spheroid particle model for the retrieval of the microphysical aerosol parameters via regularized inversion of lidar data

    NASA Astrophysics Data System (ADS)

    Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina

    2016-06-01

    In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.

  8. Dual-parameter radar rainfall measurement from space - A test result from an aircraft experiment

    NASA Technical Reports Server (NTRS)

    Kozu, Toshiaki; Nakamura, Kenji; Meneghini, Robert; Boncyk, Wayne C.

    1991-01-01

    An aircraft experiment has been conducted with a dual-frequency (X/Ka-bands) radar to test various rainfall retrieval methods from space. The authors test a method to derive raindrop size distribution (DSD) parameters from the combination of a radar reflectivity profile and a path-integrated attenuation derived from surface return, which may be available from most spaceborne radars. The estimated DSD parameters are reasonable in that the values generally fall within the range of commonly measured ones and that shifts in DSD parameters appear to be correlated with changes in storm type. The validity of the estimation result is also demonstrated by a consistency check using the Ka-band reflectivity profile which is independent of the DSD estimation process. Although errors may occur in the cases of nonuniform beam filling, these test results indicate the feasibility of the dual-parameter radar measurement from space in achieving a better accuracy in quantitative rainfall remote measurements.

  9. Determining the Accuracy of Aerodynamic Model Parameters Estimated from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.; Klein, Vladislav

    1995-01-01

    An important part of building mathematical models based on measured data is calculating the accuracy associated with statistical estimates of the model parameters. Indeed, without some idea of this accuracy, the parameter estimates themselves have limited value. In this work, an expression for computing quantitatively correct parameter accuracy measures for maximum likelihood parameter estimates with colored residuals is developed and validated. This result is important because experience in analyzing flight test data reveals that the output residuals from maximum likelihood estimation are almost always colored. The calculations involved can be appended to conventional maximum likelihood estimation algorithms. Monte Carlo simulation runs were used to show that parameter accuracy measures from the new technique accurately reflect the quality of the parameter estimates from maximum likelihood estimation without the need for correction factors or frequency domain analysis of the output residuals. The technique was applied to flight test data from repeated maneuvers flown on the F-18 High Alpha Research Vehicle (HARV). As in the simulated cases, parameter accuracy measures from the new technique were in agreement with the scatter in the parameter estimates from repeated maneuvers, while conventional parameter accuracy measures were optimistic.

  10. Aerosol Climate Time Series in ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  11. Atmospheric correction of ocean color imagery: use of the junge power-law aerosol size distribution with variable refractive index to handle aerosol absorption.

    PubMed

    Chomko, R M; Gordon, H R

    1998-08-20

    When strongly absorbing aerosols are present in the atmosphere, the usual two-step procedure of processing ocean color data-(1) atmospheric correction to provide the water-leaving reflectance (rho(w)), followed by (2) relating rho(w) to the water constituents-fails and simultaneous estimation of the ocean and aerosol optical properties is necessary. We explore the efficacy of using a simple model of the aerosol-a Junge power-law size distribution consisting of homogeneous spheres with arbitrary refractive index-in a nonlinear optimization procedure for estimating the relevant oceanic and atmospheric parameters for case 1 waters. Using simulated test data generated from more realistic aerosol size distributions (sums of log-normally distributed components with different compositions), we show that the ocean's pigment concentration (C) can be retrieved with good accuracy in the presence of weakly or strongly absorbing aerosols. However, because of significant differences in the scattering phase functions for the test and power-law distributions, large error is possible in the estimate of the aerosol optical thickness. The positive result for C suggests that the detailed shape of the aerosol-scattering phase function is not relevant to the atmospheric correction of ocean color sensors. The relevant parameters are the aerosol single-scattering albedo and the spectral variation of the aerosol optical depth. We argue that the assumption of aerosol sphericity should not restrict the validity of the algorithm and suggest an avenue for including colored aerosols, e.g., wind-blown dust, in the procedure. A significant advantage of the new approach is that realistic multicomponent aerosol models are not required for the retrieval of C.

  12. Deriving parameters of a fundamental detachment model for cohesive soils from flume and jet erosion tests

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The erosion rate of cohesive soils is commonly quantified using the excess shear stress equation, dependent on two major soil parameters: the critical shear stress and the erodibility coefficient. A submerged jet test (JET – Jet Erosion Test) is one method that has been developed for measuring thes...

  13. Item Parameter Invariance of the Kaufman Adolescent and Adult Intelligence Test across Male and Female Samples

    ERIC Educational Resources Information Center

    Immekus, Jason C.; Maller, Susan J.

    2009-01-01

    The Kaufman Adolescent and Adult Intelligence Test (KAIT[TM]) is an individually administered test of intelligence for individuals ranging in age from 11 to 85+ years. The item response theory-likelihood ratio procedure, based on the two-parameter logistic model, was used to detect differential item functioning (DIF) in the KAIT across males and…

  14. Estimating parameters of aquifer heterogeneity using pumping tests - implications for field applications

    NASA Astrophysics Data System (ADS)

    Zech, Alraune; Arnold, Sven; Schneider, Christoph; Attinger, Sabine

    2015-09-01

    The knowledge of subsurface heterogeneity is a prerequisite to describe flow and transport in porous media. Of particular interest are the variance and the correlation scale of hydraulic conductivity. In this study, we present how these aquifer parameters can be inferred using empirical steady state pumping test data. We refer to a previously developed analytical solution of "effective well flow" and examine its applicability to pumping test data as under field conditions. It is examined how the accuracy and confidence of parameter estimates of variance and correlation length depend on the number and location of head measurements. Simulations of steady state pumping tests in a confined virtual aquifer are used to systematically reduce sampling size while determining the rating of the estimates at each level of data density. The method was then applied to estimate the statistical parameters of a fluvial heterogeneous aquifer at the test site Horkheimer Insel, Germany. We conclude that the "effective well flow" solution is a simple alternative to laboratory investigations to estimate the statistical heterogeneity parameter using steady state pumping tests. However, the accuracy and uncertainty of the estimates depend on the design of the field study. In this regard, our results can help to improve the conceptual design of pumping tests with regard to the parameter of interest.

  15. Retrievals of Extensive and Intensive Aerosol Parameters from Vertical Profiles of Extinction Coefficient Acquired by the MAESTRO Occultation Spectrometer: Case Study of Sarychev Volcano Plumes

    NASA Astrophysics Data System (ADS)

    Saha, A.; O'Neill, N. T.; McElroy, C. T.; Sioris, C.; Zou, J.

    2011-12-01

    The Canadian MAESTRO (Measurement of Aerosol Extinction in the Stratosphere and Troposphere Retrieved by Occultation) instrument aboard the SCISAT-1 Satellite is an aerosol profiling occultation device that is part of the ACE (Atmospheric Chemistry Experiment) mission. This spectrometer produces spectra of aerosol extinction profiles above the upper troposphere. The extinction coefficient spectra permit the discrimination of sub-micron (fine mode) and super-micron (coarse mode) contributions and, in principle, the retrieval of fine mode effective radius. Retrievals applied to lower stratospheric and upper tropospheric aerosol plumes resulting from the eruption of the Sarychev-peak volcano in June of 2009 are presented. Preliminary results indicate that the fine and coarse mode discrimination and the particle sizing capability are coherent with available information on Sarychev aerosols.

  16. The importance of diagnostic test parameters in the interpretation of clinical test findings: The Prone Hip Extension Test as an example

    PubMed Central

    Bruno, Paul

    2011-01-01

    The use of diagnostic tests is a crucial aspect of clinical practice since they assist clinicians in establishing whether a patient has or does not have a particular condition. In order for any clinical test to be used most appropriately, it is essential that several parameters be established regarding the test and that these are made known to clinicians to inform their clinical decision making. These include the test’s sensitivity, specificity, predictive values, and likelihood ratios. This article reviews their importance as well as provides an illustrative example that highlights how knowledge of the parameters for a given test allows clinicians to better interpret their test findings in practice. PMID:21629460

  17. Methods for Quantifying the Uncertainties of LSIT Test Parameters, Test Results, and Full-Scale Mixing Performance Using Models Developed from Scaled Test Data

    SciTech Connect

    Piepel, Gregory F.; Cooley, Scott K.; Kuhn, William L.; Rector, David R.; Heredia-Langner, Alejandro

    2015-05-01

    This report discusses the statistical methods for quantifying uncertainties in 1) test responses and other parameters in the Large Scale Integrated Testing (LSIT), and 2) estimates of coefficients and predictions of mixing performance from models that relate test responses to test parameters. Testing at a larger scale has been committed to by Bechtel National, Inc. and the U.S. Department of Energy (DOE) to “address uncertainties and increase confidence in the projected, full-scale mixing performance and operations” in the Waste Treatment and Immobilization Plant (WTP).

  18. Drug solubility in phospholipid carrier as a predictive parameter for drug recovery in microparticles produced by the aerosol solvent extraction system (ASES) process.

    PubMed

    Sarisuta, Narong; Kunastitchai, Sarinnate; Pichert, Lars; Müller, Bernd W

    2007-09-01

    The solubility of various drugs in a constant ratio of phosphatidylcholine-cholesterol carrier were studied to investigate their influence on drug recovery in drug-lipid microparticles produced by the aerosol solvent extraction system (ASES) process. Solubility of the drugs in such lipid carrier were determined by using differential scanning calorimetry and confirmed by X-ray powder diffraction study. The results showed that drug possessing relatively high solubility in the lipid carrier used could lead to a higher amount of drug recovered in the drug-lipid microparticles produced. However, too high amount of dissolved drug imposed an adverse effect on the solidification of the lipid carrier during ASES processing, which led to partial film formation in the production column and hence a lower yield of microparticles. Such adverse effect was not the case for the drugs with low solubility in the carrier but there was an incomplete recovery of drug in the produced microparticles due to the partial extraction by the supercritical gas instead. The maximum amount of drug recovered in the ASES-prepared microparticles was found to correlate to the solubility of drug in the lipid carrier so that it might be utilized as a predictive parameter for determining the amount of drug to be incorporated into the microparticles.

  19. Development of aerosol retrieval algorithm for Geostationary Environmental Monitoring Spectrometer (GEMS)

    NASA Astrophysics Data System (ADS)

    Kim, Mijin; Kim, Jhoon; Park, Sang Seo; Jeong, Ukkyo; Ahn, Changwoo; Bhartia, Pawan. K.; Torres, Omar; Song, Chang-Keun; Han, Jin-Seok

    2014-05-01

    current algorithm, but advanced cloud removal method such as spectral ratio test can be applied to reduce cloud contamination error and improve retrieval accuracy. Also, simultaneous retrieval of aerosol height with AOD is required. In this study, O4 algorithm was adopted to retrieve aerosol height. The O4 algorithm retrieves aerosol height by using the O4 slant column densities at 477 nm from the DOAS fitting method. The aerosol effective height is proposed for the parameter of aerosol height. Theoretically, the error, which is caused by the variation of aerosol optical properties and instrument condition, ranges from 28% to 57%. Those error values also showed in the several case studies from the OMI observation.

  20. Direct Aerosol Forcing Uncertainty

    DOE Data Explorer

    Mccomiskey, Allison

    2008-01-15

    Understanding sources of uncertainty in aerosol direct radiative forcing (DRF), the difference in a given radiative flux component with and without aerosol, is essential to quantifying changes in Earth's radiation budget. We examine the uncertainty in DRF due to measurement uncertainty in the quantities on which it depends: aerosol optical depth, single scattering albedo, asymmetry parameter, solar geometry, and surface albedo. Direct radiative forcing at the top of the atmosphere and at the surface as well as sensitivities, the changes in DRF in response to unit changes in individual aerosol or surface properties, are calculated at three locations representing distinct aerosol types and radiative environments. The uncertainty in DRF associated with a given property is computed as the product of the sensitivity and typical measurement uncertainty in the respective aerosol or surface property. Sensitivity and uncertainty values permit estimation of total uncertainty in calculated DRF and identification of properties that most limit accuracy in estimating forcing. Total uncertainties in modeled local diurnally averaged forcing range from 0.2 to 1.3 W m-2 (42 to 20%) depending on location (from tropical to polar sites), solar zenith angle, surface reflectance, aerosol type, and aerosol optical depth. The largest contributor to total uncertainty in DRF is usually single scattering albedo; however decreasing measurement uncertainties for any property would increase accuracy in DRF. Comparison of two radiative transfer models suggests the contribution of modeling error is small compared to the total uncertainty although comparable to uncertainty arising from some individual properties.

  1. A TEST OF THERMODYNAMIC EQUILIBRIUM MODELS AND 3-D AIR QUALITY MODELS FOR PREDICTIONS OF AEROSOL NO3-

    EPA Science Inventory

    The inorganic species of sulfate, nitrate and ammonium constitute a major fraction of atmospheric aerosols. The behavior of nitrate is one of the most intriguing aspects of inorganic atmospheric aerosols because particulate nitrate concentrations depend not only on the amount of ...

  2. Metamodel based optimization of material parameters in a finite element simulation of tensile tests

    NASA Astrophysics Data System (ADS)

    Brown, Justin; McKay, Cavendish

    2010-04-01

    We determine the optimum set of parameters for simulating a tensile test of a sample of Zytelnylon resin in a finite element model. Using manufacturer supplied data and initial tensile measurements as starting data, we use a metamodel based optimization scheme to iteratively improve the choice of parameters. The commercial finite element solver LS-DYNA and optimization package LS-Opt are used to assess the quality of the material parameter choice. A map of the response surface is presented to illustrate some challenges with the metamodel based approach.

  3. Relationship between anaerobic parameters provided from MAOD and critical power model in specific table tennis test.

    PubMed

    Zagatto, A M; Gobatto, C A

    2012-08-01

    The aim of this study was to verify the validity of the curvature constant parameter (W'), calculated from 2-parameter mathematical equations of critical power model, in estimating the anaerobic capacity and anaerobic work capacity from a table tennis-specific test. Specifically, we aimed to i) compare constants estimated from three critical intensity models in a table tennis-specific test (Cf); ii) correlate each estimated W' with the maximal accumulated oxygen deficit (MAOD); iii) correlate each W' with the total amount of anaerobic work (W ANAER) performed in each exercise bout performed during the Cf test. Nine national-standard male table tennis players participated in the study. MAOD was 63.0(10.8) mL · kg - 1 and W' values were 32.8(6.6) balls for the linear-frequency model, 38.3(6.9) balls for linear-total balls model, 48.7(8.9) balls for Nonlinear-2 parameter model. Estimated W' from the Nonlinear 2-parameter model was significantly different from W' from the other 2 models (P<0.05). Also, none W' values were significantly correlated with MAOD or W ANAER (r ranged from - 0.58 to 0.51; P>0.13). Thus, W' estimated from the 2-parameter mathematical equations did not correlate with MAOD or W ANAER in table tennis-specific tests, indicating that W' may not provide a strong and valid estimation of anaerobic capacity and anaerobic capacity work. PMID:22562729

  4. [The prognostic value of liver function tests--clinical aspects, laboratory chemical parameters and quantitative function tests].

    PubMed

    Wahlländer, A; Beuers, U

    1990-05-01

    In view of increasing therapeutic possibilities interest focuses on prognosis of liver cirrhosis. Until nowadays studies on prognosis revealed significant importance only for some parameters: Ascites, encephalopathy and portal hypertension as signs of decompensation, bilirubin, albumin and prothrombin time as laboratory indices of decreasing liver function. The commonly used Child-Pugh-score is based on these parameters and allows a reasonable classification of diseased patients. Cholestasis and inflammation seem to be of minor prognostic importance. Assessment of liver function by quantitative tests is desirable (e.g. aminopyrine breath test, bile acids). The prognostic value, however, has not yet been proven in large studies. Use of these tests should therefore be restricted to studies (prognosis, therapy, indication to liver transplantation).

  5. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... through which sample air is flowing during performance of this test. (3) A no-flow filter is a sample filter through which no sample air is intended to flow during performance of this test. (4) A channel is... (CONTINUED) AIR PROGRAMS (CONTINUED) AMBIENT AIR MONITORING REFERENCE AND EQUIVALENT METHODS Procedures...

  6. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Testing Physical (Design) and Performance Characteristics of Reference Methods and Class I and Class II... sample collection filter) differs significantly from that specified for reference method samplers as specified in 40 CFR part 50, appendix L or appendix O, as applicable. The test requirements and...

  7. Estimating free-body modal parameters from tests of a constrained structure

    NASA Technical Reports Server (NTRS)

    Cooley, Victor M.

    1993-01-01

    Hardware advances in suspension technology for ground tests of large space structures provide near on-orbit boundary conditions for modal testing. Further advances in determining free-body modal properties of constrained large space structures have been made, on the analysis side, by using time domain parameter estimation and perturbing the stiffness of the constraints over multiple sub-tests. In this manner, passive suspension constraint forces, which are fully correlated and therefore not usable for spectral averaging techniques, are made effectively uncorrelated. The technique is demonstrated with simulated test data.

  8. Lightning simulator circuit parameters and performance for severe-threat, high-action-integral testing

    NASA Astrophysics Data System (ADS)

    White, R. A.

    The lightning simulator at Sandia National Laboratories was used to subject a number of DOE and military test items to severe levels of simulated lightning. Some example circuits and circuit parameters are discussed in relation to tests made with this crowbarred Mary-generator type simulator. Examples of fast rising, high peak, long duration simulated lightning currents that were produced into full size test items are presented. Peak currents up to 250 kA with 1-(MU)s rise times and action values up to greater than 6 million A(2)s was injected into various test systems.

  9. A testing method for the machine details state by means of the speckle image parameters analysis

    NASA Astrophysics Data System (ADS)

    Malov, A. N.; Pavlov, P. V.; Neupokoeva, A. V.

    2016-08-01

    Non destructive testing method, allowing to define a residual resource of power details of mechanical engineering designs under the analysis of registered speckle-image parameters, it is discussed. The "chessboard" algorithm based on calculation of correlation between the given speckle-image and the a chessboard image is considered. Experimental research results of an offered non destructive testing method are presented. It is established, that to increase in quantity of a power detail tests cycles there is an increase in roughness parameters that conducts to reduction of correlation factor between reference and to resultants the image at the given stage of test. Knowing of correlation factor change dynamics, it is possible to define a residual resource of power details while in exploitation.

  10. Testing new methodologies for short -term earthquake forecasting: Multi-parameters precursors

    NASA Astrophysics Data System (ADS)

    Ouzounov, Dimitar; Pulinets, Sergey; Tramutoli, Valerio; Lee, Lou; Liu, Tiger; Hattori, Katsumi; Kafatos, Menas

    2014-05-01

    We are conducting real-time tests involving multi-parameter observations over different seismo-tectonics regions in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several selected parameters, namely: gas discharge; thermal infrared radiation; ionospheric electron density; and atmospheric temperature and humidity, which we believe are all associated with the earthquake preparation phase. We are testing a methodology capable to produce alerts in advance of major earthquakes (M > 5.5) in different regions of active earthquakes and volcanoes. During 2012-2013 we established a collaborative framework with PRE-EARTHQUAKE (EU) and iSTEP3 (Taiwan) projects for coordinated measurements and prospective validation over seven testing regions: Southern California (USA), Eastern Honshu (Japan), Italy, Greece, Turkey, Taiwan (ROC), Kamchatka and Sakhalin (Russia). The current experiment provided a "stress test" opportunity to validate the physical based earthquake precursor approach over regions of high seismicity. Our initial results are: (1) Real-time tests have shown the presence of anomalies in the atmosphere and ionosphere before most of the significant (M>5.5) earthquakes; (2) False positives exist and ratios are different for each region, varying between 50% for (Southern Italy), 35% (California) down to 25% (Taiwan, Kamchatka and Japan) with a significant reduction of false positives as soon as at least two geophysical parameters are contemporarily used; (3) Main problems remain related to the systematic collection and real-time integration of pre-earthquake observations. Our findings suggest that real-time testing of physically based pre-earthquake signals provides a short-term predictive power (in all three important parameters, namely location, time and magnitude) for the occurrence of major earthquakes in the tested regions and this result encourages testing to continue with a more detailed analysis of

  11. SUBMERGED GRAVEL SCRUBBER DEMONSTRATION AS A PASSIVE AIR CLEANER FOR CONTAINMENT VENTING AND PURGING WITH SODIUM AEROSOLS -- CSTF TESTS AC7 - AC10

    SciTech Connect

    HILLIARD, R K.; MCCORMACK, J D.; POSTMA, A K.

    1981-11-01

    Four large-scale air cleaning tests (AC7 - AC10) were performed in the Containment Systems Test Facility (CS'lF) to demonstrate the performance of a Submerged Gravel Scrubber for cleaning the effluent gas from a vented and purged breeder reactor containment vessel. The test article, comprised of a Submerged Gravel Scrubber (SGS) followed by a high efficiency fiber demister, had a design gas flow rate of 0.47 m{sup 3}/s (1000 ft{sup 3}/min) at a pressure drop of 9.0 kPa (36 in. H{sub 2}O). The test aerosol was sodium oxide, sodium hydroxide, or sodium carbonate generated in the 850-m{sup 3} CSTF vessel by continuously spraying sodium into the air-filled vessel while adding steam or carbon dioxide. Approximately 4500 kg (10,000 lb) of sodium was sprayed over a total period of 100 h during the tests. The SGS/Demister system was shown to be highly efficient (removing ~99.98% of the entering sodium aerosol mass), had a high mass loading capacity, and operated in a passive manner, with no electrical requirement. Models for predicting aerosol capture, gas cooling, and pressure drop are developed and compared with experimental results.

  12. Aerosol Observing System (AOS) Handbook

    SciTech Connect

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  13. All-out Test in Tethered Canoe System can Determine Anaerobic Parameters of Elite Kayakers.

    PubMed

    Messias, L H D; Ferrari, H G; Sousa, F A B; Dos Reis, I G M; Serra, C C S; Gobatto, C A; Manchado-Gobatto, F B

    2015-10-01

    The aims of this study were to use a specific all-out 30-sec tethered test to determine the anaerobic parameters in elite kayakers and verify the relationship between these results and sports performance. Twelve elite slalom kayakers were evaluated. The tethered canoe system was created and used for the all-out 30-sec test application. Measurements of peak force, mean force, minimum force, fatigue index and impulse were performed. Performance evaluation was determined by measuring the time of race in a simulated race containing 24 gates on a white-water course. Blood was collected (25-µl) for analysis of lactate concentration at rest and at 2, 4, 6, 8 and 10-min intervals after both the all-out test and the simulated race. The Pearson product moment correlation shows a inverse and significant relationship of peak force, mean force and impulse with time of race. Blood lactate concentrations after the all-out test and the simulated race peak at same time (4 min). Additionally, no interaction was visualized between time and all-out test/simulated race for blood lactate concentrations (P <0.365). These results suggest a relationship between the parameters of the all-out test and performance. Thus, the tethered canoe system is a useful tool for determining parameters that could be used in training control of slalom kayakers.

  14. Organic aerosols

    SciTech Connect

    Penner, J.E.

    1994-01-01

    Organic aerosols scatter solar radiation. They may also either enhance or decrease concentrations of cloud condensation nuclei. This paper summarizes observed concentrations of aerosols in remote continental and marine locations and provides estimates for the sources of organic aerosol matter. The anthropogenic sources of organic aerosols may be as large as the anthropogenic sources of sulfate aerosols, implying a similar magnitude of direct forcing of climate. The source estimates are highly uncertain and subject to revision in the future. A slow secondary source of organic aerosols of unknown origin may contribute to the observed oceanic concentrations. The role of organic aerosols acting as cloud condensation nuclei (CCN) is described and it is concluded that they may either enhance or decrease the ability of anthropogenic sulfate aerosols to act as CCN.

  15. Plutonium-aerosol emission rates and potential inhalation exposure during cleanup and treatment test at Area 11, Nevada Test Site

    SciTech Connect

    Shinn, J.H.; Homan, D.N.

    1985-08-13

    A Cleanup and Treatment (CAT) test was conducted in 1981 at Area 11, Nevada Test Site. Its purpose was to evaluate the effectiveness of using a large truck-mounted vacuum cleaner similar to those used to clean paved streets for cleaning radiological contamination from the surface of desert soils. We found that four passes with the vehicle removed 97% of the alpha contamination and reduced resuspension by 99.3 to 99.7%. Potential exposure to cleanup workers was slight when compared to natural background exposure. 7 refs., 1 fig., 2 tabs.

  16. Test Anxiety and Item Order: New Parameters for Item Response Theory.

    ERIC Educational Resources Information Center

    Gershon, Richard C.

    Examinees (N=1,233) at the Johnson O'Connor Research Foundation (JOCRF) were administered one of three test forms in which only item order differed. The study was undertaken to determine the validity of the assumption underlying item response theory (IRT) that there are fixed item parameters that can predict performance. The Rasch IRT model was…

  17. Computerized Classification Testing under the One-Parameter Logistic Response Model with Ability-Based Guessing

    ERIC Educational Resources Information Center

    Wang, Wen-Chung; Huang, Sheng-Yun

    2011-01-01

    The one-parameter logistic model with ability-based guessing (1PL-AG) has been recently developed to account for effect of ability on guessing behavior in multiple-choice items. In this study, the authors developed algorithms for computerized classification testing under the 1PL-AG and conducted a series of simulations to evaluate their…

  18. Cassette Sync Recorders. Parameter for Evaluation. Laboratory Test Findings. EPIE Report Number 86e.

    ERIC Educational Resources Information Center

    Educational Products Information Exchange Inst., Stony Brook, NY.

    This quarterly report by the Educational Products Information Exchange (EPIE) analyzes cassette sync recorders, giving parameters for evaluation and laboratory test findings. The report offers evaluations of the compatibility of different models and the standards for audio and cue tones. It also discusses national and international standards, EPIE…

  19. The Prediction of Item Parameters Based on Classical Test Theory and Latent Trait Theory

    ERIC Educational Resources Information Center

    Anil, Duygu

    2008-01-01

    In this study, the prediction power of the item characteristics based on the experts' predictions on conditions try-out practices cannot be applied was examined for item characteristics computed depending on classical test theory and two-parameters logistic model of latent trait theory. The study was carried out on 9914 randomly selected students…

  20. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  1. Municipal solid waste shear strength parameters defined through laboratorial and in situ tests.

    PubMed

    Gomes, Cristina; Lopes, M Lurdes; Oliveira, Paulo J Venda

    2013-11-01

    This paper presents the parameters of municipal solid waste shear strength determined in the laboratory (triaxial tests) and by in situ tests: standard penetration tests (SPT) and cone penetration tests (CPT). The results analyzed here are part of a study carried out on the Santo Tirso landfill (north of Portugal) between 2001 and 2007. The influence of the strain levels, waste composition, and waste age on the shear strength parameters is presented, as well as an attempt to establish some correlations between the SPT and CPT tests and to estimate municipal solid waste (MSW) friction angles from the SPT tests. The results indicate that the aging of the waste, which is characterized by a decrease in fibrous and organic materials and an increase in inert materials and fine fraction, leads to an increase in frictional resistance and to a decrease in cohesion. The results of the SPT and CPT tests indicate higher penetration resistance in older and deeper waste. Estimating the frictional resistance from the SPT test seems to obey an empirical relationship expressed by a power function, which depends on the strain level.

  2. 40 CFR 53.59 - Aerosol transport test for Class I equivalent method samplers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... specified in 40 CFR part 50, appendix L or appendix O, as applicable. The test requirements and performance... specified for a reference method sampler in 40 CFR part 50, appendix L or appendix O, as applicable, such as... electroless nickel coated as specified in § 53.64(d)(2). (6) Filters that are appropriate for use...

  3. Phenols and hydroxy-PAHs (arylphenols) as tracers for coal smoke particulate matter: source tests and ambient aerosol assessments

    SciTech Connect

    Bernd R.T. Simoneit; Xinhui Bi; Daniel R. Oros; Patricia M. Medeiros; Guoying Sheng; Jiamo Fu

    2007-11-01

    Source tests were conducted to analyze and characterize diagnostic key tracers for emissions from burning of coals with various ranks. Coal samples included lignite from Germany, semibituminous coal from Arizona, USA, bituminous coal from Wales, UK and sample from briquettes of semibituminous coal, bituminous coal and anthracite from China. Ambient aerosol particulate matter was also collected in three areas of China and a background area in Corvallis, OR (U.S.) to confirm the presence of tracers specific for coal smoke. The results showed a series of aliphatic and aromatic hydrocarbons and phenolic compounds, including PAHs and hydroxy-PAHs as the major tracers, as well as a significant unresolved complex mixture (UCM) of compounds. The tracers that were found characteristic of coal combustion processes included hydroxy-PAHs and PAHs. Atmospheric ambient samples from Beijing and Taiyuan, cities where coal is burned in northern China, revealed that the hydroxy-PAH tracers were present during the wintertime, but not in cities where coal is not commonly used (e.g., Guangzhou, South China). Thus, the mass of hydroxy-PAHs can be apportioned to coal smoke and the source strength modeled by summing the proportional contents of EC (elemental carbon), PAHs, UCM and alkanes with the hydroxy-PAHs. 36 refs., 2 figs., 3 tabs.

  4. CONTINUED DEVELOPMENT AND TESTING OF A NEW THERMODYNAMIC AEROSOL MODULE FOR URBAN AND REGIONAL AIR QUALITY MODELS. (R824793)

    EPA Science Inventory

    A computationally efficient and rigorous thermodynamic model (ISORROPIA) that predicts the physical state and composition of inorganic atmospheric aerosol is presented. The advantages of this particular model render it suitable for incorporation into urban and regional air qualit...

  5. Subsonic flight test evaluation of a propulsion system parameter estimation process for the F100 engine

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1992-01-01

    Integrated engine-airframe optimal control technology may significantly improve aircraft performance. This technology requires a reliable and accurate parameter estimator to predict unmeasured variables. To develop this technology base, NASA Dryden Flight Research Facility (Edwards, CA), McDonnell Aircraft Company (St. Louis, MO), and Pratt & Whitney (West Palm Beach, FL) have developed and flight-tested an adaptive performance seeking control system which optimizes the quasi-steady-state performance of the F-15 propulsion system. This paper presents flight and ground test evaluations of the propulsion system parameter estimation process used by the performance seeking control system. The estimator consists of a compact propulsion system model and an extended Kalman filter. The extended Laman filter estimates five engine component deviation parameters from measured inputs. The compact model uses measurements and Kalman-filter estimates as inputs to predict unmeasured propulsion parameters such as net propulsive force and fan stall margin. The ability to track trends and estimate absolute values of propulsion system parameters was demonstrated. For example, thrust stand results show a good correlation, especially in trends, between the performance seeking control estimated and measured thrust.

  6. Models of size spectrum of tropospheric aerosol

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    Quality criteria of a model distribution are considered. Information losses due to the nonorthogonality of the spectrum parameter transformation are discussed. Models are compared with a view to approximation accuracy and losses of information. Smerkalov's average tropospheric aerosol spectrum and 271 observed spectra have been used for test. Highest accuracy and lowest losses of information were yielded by a distribution having power asymptotes on both the left and the right sides.

  7. Parameter estimation and tests of General Relativity with GW transients in Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Vitale, Salvatore

    2016-03-01

    The Advanced LIGO observatories have successfully completed their first observation run. Data were collected from September 2015 to January 2016, with a sensitivity a few times better than initial instruments in the hundreds of Hertz band. Bayesian parameter estimation and model selection algorithms can be used to estimate the astrophysical parameters of gravitational-wave sources, as well as to perform tests of General Relativity in its strong-field dynamical regime. In this talk we will describe the methods devised to characterize transient gravitational wave sources and their applications in the advanced gravitational-wave detector era.

  8. Inversion of the anomalous diffraction approximation for variable complex index of refraction near unity. [numerical tests for water-haze aerosol model

    NASA Technical Reports Server (NTRS)

    Smith, C. B.

    1982-01-01

    The Fymat analytic inversion method for retrieving a particle-area distribution function from anomalous diffraction multispectral extinction data and total area is generalized to the case of a variable complex refractive index m(lambda) near unity depending on spectral wavelength lambda. Inversion tests are presented for a water-haze aerosol model. An upper-phase shift limit of 5 pi/2 retrieved an accurate peak area distribution profile. Analytical corrections using both the total number and area improved the inversion.

  9. The NASA-Ames Research Center stratospheric aerosol model. 2. Sensitivity studies and comparison with observatories

    NASA Technical Reports Server (NTRS)

    Toon, O. B.; Turco, R. P.; Hamill, P.; Kiang, C. S.; Whitten, R. C.

    1979-01-01

    Sensitivity tests were performed on a one-dimensional, physical-chemical model of the unperturbed stratospheric aerosols, and model calculations were compared with observations. The tests and comparisons suggest that coagulation controls the particle number mixing ratio, although the number of condensation nuclei at the tropopause and the diffusion coefficient at high altitudes are also important. The sulfur gas source strength and the aerosol residence time are much more important than the supply of condensation nuclei in establishing mass and large particle concentrations. The particle size is also controlled mainly by gas supply and residence time. In situ observations of the aerosols and laboratory measurements of aerosols, parameters that can provide further information about the physics and chemistry of the stratosphere and the aerosols found there are provided.

  10. The role of test parameters on the kinetics and thermodynamics of glass leaching. [None

    SciTech Connect

    Jantzen, C M

    1988-01-01

    The relative durabilities of nuclear waste, natural, and ancient glasses have been assessed by standard laboratory leach tests. Different test conditions result in different glass surface areas (SA), leachant volumes (V), and test durations (t). Leachate concentrations are known to be a parabolic function of the kinetic test parameter SAV/center dot/t. Based on durability experiments of glass monoliths at low (SAV)/center dot/ glass durability has been shown to be a logarithmic function of the thermodynamic hydration free energy, ..delta..G/sub hyd/. The thermodynamic hydration free energy, ..delta..G/sub hyd/, can be calculated from glass composition and solution pH. In the repository environment high effective glass surface areas to solution volume ratios may occur as a result of slow groundwater flow rates. The application of hydration thermodynamics to crushed glass, high (SAV)/center dot/t, durability tests has been demonstrated. The relative contributions of the kinetic test parameters, (SAV)/center dot/t, and the thermodynamic parameter, ..delta..G/sub hyd/, have been shown to define a plane in ..delta..G/sub hyd/-concentration-(SAV)/center dot/t space. At constant test conditions, e.g. constant (SAV/center dot/t, the intersection with this surface indicates that all /delta G//sub hyd/-concentration plots should have similar slopes and predict the same relative durabilities for various glasses as a function of glass composition. Using this approach, the durability of nuclear waste glasses has been interpolated to be -- 10/sup 6/ years and no less than 10/sup 3/ years. 28 refs., 24 figs.

  11. Exhaled Aerosol Pattern Discloses Lung Structural Abnormality: A Sensitivity Study Using Computational Modeling and Fractal Analysis

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua A.; Kim, JongWon; Mckee, Edward; Lin, En-Bing

    2014-01-01

    Background Exhaled aerosol patterns, also called aerosol fingerprints, provide clues to the health of the lung and can be used to detect disease-modified airway structures. The key is how to decode the exhaled aerosol fingerprints and retrieve the lung structural information for a non-invasive identification of respiratory diseases. Objective and Methods In this study, a CFD-fractal analysis method was developed to quantify exhaled aerosol fingerprints and applied it to one benign and three malign conditions: a tracheal carina tumor, a bronchial tumor, and asthma. Respirations of tracer aerosols of 1 µm at a flow rate of 30 L/min were simulated, with exhaled distributions recorded at the mouth. Large eddy simulations and a Lagrangian tracking approach were used to simulate respiratory airflows and aerosol dynamics. Aerosol morphometric measures such as concentration disparity, spatial distributions, and fractal analysis were applied to distinguish various exhaled aerosol patterns. Findings Utilizing physiology-based modeling, we demonstrated substantial differences in exhaled aerosol distributions among normal and pathological airways, which were suggestive of the disease location and extent. With fractal analysis, we also demonstrated that exhaled aerosol patterns exhibited fractal behavior in both the entire image and selected regions of interest. Each exhaled aerosol fingerprint exhibited distinct pattern parameters such as spatial probability, fractal dimension, lacunarity, and multifractal spectrum. Furthermore, a correlation of the diseased location and exhaled aerosol spatial distribution was established for asthma. Conclusion Aerosol-fingerprint-based breath tests disclose clues about the site and severity of lung diseases and appear to be sensitive enough to be a practical tool for diagnosis and prognosis of respiratory diseases with structural abnormalities. PMID:25105680

  12. Temporal parameters of one-trial tolerance to benzodiazepines in four-plate test-retest.

    PubMed

    Petit-Demouliere, Benoit; Bourin, Michel

    2007-11-01

    Anxiolytic-like effect of diazepam is abolished by a previous exposure to four-plate test (FPT). Variations of temporal parameters: interval between trials and duration of Trial 1, with or without electric punishments allow characterizing factors which are responsible for this loss phenomenon. Complete spatial representation of FPT seems to be responsible of this one-trial tolerance, and needs at least a 30s exposure to the apparatus to be completed, with or without punishments.

  13. Dynamic parameters test of Haiyang Nuclear Power Engineering in reactor areas, China

    NASA Astrophysics Data System (ADS)

    Zhou, N.; Zhao, S.; Sun, L.

    2012-12-01

    Haiyang Nuclear Power Project is located in Haiyang city, China. It consists of 6×1000MW AP1000 Nuclear Power generator sets. The dynamic parameters of the rockmass are essential for the design of the nuclear power plant. No.1 and No.2 reactor area are taken as research target in this paper. Sonic logging, single hole and cross-hole wave velocity are carried out respectively on the site. There are four types of rock lithology within the measured depth. They are siltstone, fine sandstone, shale and allgovite. The total depth of sonic logging is 409.8m and 2049 test points. The sound wave velocity of the rocks are respectively 5521 m/s, 5576m/s, 5318 m/s and 5576 m/s. Accroding to the statistic data, among medium weathered fine sandstone, fairly broken is majority, broken and relatively integrity are second, part of integrity. Medium weathered siltstone, relatively integrity is mojority, fairly broken is second. Medium weathered shale, fairly broken is majority, broken and relatively integrity for the next and part of integrity. Slight weathered fine sandstone, siltstone, shale and allgovite, integrity is the mojority, relatively integrity for the next, part of fairly broken.The single hole wave velocity tests are set in two boreholesin No.1 reactor area and No.2 reactor area respectively. The test depths of two holes are 2-24m, and the others are 2-40m. The wave velocity data are calculated at different depth in each holes and dynamic parameters. According to the test statistic data, the wave velocity and the dynamic parameter values of rockmass are distinctly influenced by the weathering degree. The test results are list in table 1. 3 groups of cross hole wave velocity tests are set for No.1 and 2 reactor area, No.1 reactor area: B16, B16-1, B20(Direction:175°, depth: 100m); B10, B10-1, B11(269°, 40m); B21, B21-1, B17(154°, 40m); with HB16, HB10, HB21 as trigger holes; No.2 reactor area: B47, B47-1, HB51(176°, 100m); B40, B40-1, B41(272°, 40m); B42, B42-1, B

  14. Measurements of the effects of humidity on radio-aerosol penetration through ultrafine capillaries

    SciTech Connect

    Cullen, C.

    1996-08-01

    The purpose of this research was to examine the effects of humidity on radio-aerosol penetration through ultrafine capillaries. A number of tests were conducted at relative humidities of 20%, 50%, and 80%, with sampling times of 20, 40, and 60 min. The radio-aerosol consisted of polystyrene particles with a diameter of 0.1 {micro}m. The ultrafine capillaries had a diameter of 250 {micro}m. The data from these tests varied significantly. These results made the identification of radio-aerosol penetration trends inconclusive. The standard deviation for all penetration data ranged from 3% to 30%. The results of this study suggest that a better control of the experimental parameters was needed to obtain more accurate data from experiments associated with radio-aerosol penetration in the presence of moisture. The experimental parameters that may have contributed to the wide variance of data, include aerosol flow, radio-aerosol generation, capillary characteristics, humidity control, and radiation measurements. It was the uncertainty of these parameters that contributed to the poor data which made conclusive deductions about radio-aerosol penetration dependence on humidity difficult. The application of this study is to ultrafine leaks resulting from stress fractures in high-level nuclear waste transportation casks under accident scenarios.

  15. Evaluation of unconfined-aquifer parameters from pumping test data by nonlinear least squares

    USGS Publications Warehouse

    Heidari, M.; Moench, A.

    1997-01-01

    Nonlinear least squares (NLS) with automatic differentiation was used to estimate aquifer parameters from drawdown data obtained from published pumping tests conducted in homogeneous, water-table aquifers. The method is based on a technique that seeks to minimize the squares of residuals between observed and calculated drawdown subject to bounds that are placed on the parameter of interest. The analytical model developed by Neuman for flow to a partially penetrating well of infinitesimal diameter situated in an infinite, homogeneous and anisotropic aquifer was used to obtain calculated drawdown. NLS was first applied to synthetic drawdown data from a hypothetical but realistic aquifer to demonstrate that the relevant hydraulic parameters (storativity, specific yield, and horizontal and vertical hydraulic conductivity) can be evaluated accurately. Next the method was used to estimate the parameters at three field sites with widely varying hydraulic properties. NLS produced unbiased estimates of the aquifer parameters that are close to the estimates obtained with the same data using a visual curve-matching approach. Small differences in the estimates are a consequence of subjective interpretation introduced in the visual approach.

  16. Parameter optimization of Dome A site testing DIMM by data mining

    NASA Astrophysics Data System (ADS)

    Xu, Lingzhe; Pei, Chong

    2012-10-01

    The extreme environment of Antarctic is valuable for astronomical observations. Dome C is proved has excellent seeing and transmission by site testing works. While the higher, colder inland plateau Dome A is widely predicted as even better astronomical site than Dome C. Preliminary site testing developed since the beginning of 2008 shows that Dome A has lower boundary layer and lower precipitable water vapour. Now the automated seeing monitor is urgently needed to quantify the site's optical character which is necessary for the telescope design and deployment. In addition, it has the requirement that DIMM must realize automatic measurement for nearly one year under the case of unmanned intervention during which a great quantity of data will be generated because of the limitation of Dome A. This paper aims at researching how to use the method of mining association rules to automatically analyze observation data, what the relationship between various parameters effecting on optical quality is, and improving the efficiency of telescope observation by parameter optimization. We have modified a commercial telescope with diameter of 35cm to function as site testing DIMM which has been installed at XingLong observation station of National Astronomical Observatories, Chinese Academy of Sciences, acquired long term observation data, and identified that this method is suitable for optimizing the parameters of DIMM system.

  17. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters.

    PubMed

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-21

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis.

  18. Column Selection for Biomedical Analysis Supported by Column Classification Based on Four Test Parameters

    PubMed Central

    Plenis, Alina; Rekowska, Natalia; Bączek, Tomasz

    2016-01-01

    This article focuses on correlating the column classification obtained from the method created at the Katholieke Universiteit Leuven (KUL), with the chromatographic resolution attained in biomedical separation. In the KUL system, each column is described with four parameters, which enables estimation of the FKUL value characterising similarity of those parameters to the selected reference stationary phase. Thus, a ranking list based on the FKUL value can be calculated for the chosen reference column, then correlated with the results of the column performance test. In this study, the column performance test was based on analysis of moclobemide and its two metabolites in human plasma by liquid chromatography (LC), using 18 columns. The comparative study was performed using traditional correlation of the FKUL values with the retention parameters of the analytes describing the column performance test. In order to deepen the comparative assessment of both data sets, factor analysis (FA) was also used. The obtained results indicated that the stationary phase classes, closely related according to the KUL method, yielded comparable separation for the target substances. Therefore, the column ranking system based on the FKUL-values could be considered supportive in the choice of the appropriate column for biomedical analysis. PMID:26805819

  19. 40 CFR 86.094-22 - Approval of application for certification; test fleet selections; determinations of parameters...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification; test fleet selections; determinations of parameters subject to adjustment for certification and...; test fleet selections; determinations of parameters subject to adjustment for certification and... may approve the application and select a test fleet in accordance with § 86.094-24. (b) Disapproval...

  20. ATI TDA 5A aerosol generator evaluation

    SciTech Connect

    Gilles, D.A.

    1998-07-27

    Oil based aerosol ``Smoke`` commonly used for testing the efficiency and penetration of High Efficiency Particulate Air filters (HEPA) and HEPA systems can produce flammability hazards that may not have been previously considered. A combustion incident involving an aerosol generator has caused an investigation into the hazards of the aerosol used to test HEPA systems at Hanford.

  1. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.

    PubMed

    Moran, Richard; Smith, Joshua H; García, José J

    2014-11-28

    The mechanical properties of human brain tissue are the subject of interest because of their use in understanding brain trauma and in developing therapeutic treatments and procedures. To represent the behavior of the tissue, we have developed hyperelastic mechanical models whose parameters are fitted in accordance with experimental test results. However, most studies available in the literature have fitted parameters with data of a single type of loading, such as tension, compression, or shear. Recently, Jin et al. (Journal of Biomechanics 46:2795-2801, 2013) reported data from ex vivo tests of human brain tissue under tension, compression, and shear loading using four strain rates and four different brain regions. However, they do not report parameters of energy functions that can be readily used in finite element simulations. To represent the tissue behavior for the quasi-static loading conditions, we aimed to determine the best fit of the hyperelastic parameters of the hyperfoam, Ogden, and polynomial strain energy functions available in ABAQUS for the low strain rate data, while simultaneously considering all three loading modes. We used an optimization process conducted in MATLAB, calling iteratively three finite element models developed in ABAQUS that represent the three loadings. Results showed a relatively good fit to experimental data in all loading modes using two terms in the energy functions. Values for the shear modulus obtained in this analysis (897-1653Pa) are in the range of those presented in other studies. These energy-function parameters can be used in brain tissue simulations using finite element models. PMID:25446271

  2. Fitted hyperelastic parameters for Human brain tissue from reported tension, compression, and shear tests.

    PubMed

    Moran, Richard; Smith, Joshua H; García, José J

    2014-11-28

    The mechanical properties of human brain tissue are the subject of interest because of their use in understanding brain trauma and in developing therapeutic treatments and procedures. To represent the behavior of the tissue, we have developed hyperelastic mechanical models whose parameters are fitted in accordance with experimental test results. However, most studies available in the literature have fitted parameters with data of a single type of loading, such as tension, compression, or shear. Recently, Jin et al. (Journal of Biomechanics 46:2795-2801, 2013) reported data from ex vivo tests of human brain tissue under tension, compression, and shear loading using four strain rates and four different brain regions. However, they do not report parameters of energy functions that can be readily used in finite element simulations. To represent the tissue behavior for the quasi-static loading conditions, we aimed to determine the best fit of the hyperelastic parameters of the hyperfoam, Ogden, and polynomial strain energy functions available in ABAQUS for the low strain rate data, while simultaneously considering all three loading modes. We used an optimization process conducted in MATLAB, calling iteratively three finite element models developed in ABAQUS that represent the three loadings. Results showed a relatively good fit to experimental data in all loading modes using two terms in the energy functions. Values for the shear modulus obtained in this analysis (897-1653Pa) are in the range of those presented in other studies. These energy-function parameters can be used in brain tissue simulations using finite element models.

  3. Study of parameters affecting the correlation of engine and chassis dynamometers emission tests

    SciTech Connect

    Salem, M.I.; Bata, R.M.

    1996-12-31

    The inventory of exhaust gas emissions data of mobile sources is currently based on vehicle tailpipe testing techniques. However, heavy duty engines are used in numerous applications such as vehicles, boats, power generation units, ... etc. Consequently, engine emissions data based on vehicle tailpipe testing for a given engine is different for non-vehicle applications of that same engine. For this reason Environmental Protection Agency (EPA) engine certification standards are based on engine tests. Finding a correlation between the emissions of engine tests and the emissions of engine in vehicle chassis tests is the subject of this study. Efforts have been underway to study possible parameters affecting this cumbersome correlation of a particular power train configuration. Literature has been surveyed on related topics such as simulating road loads, power train components, and effects of engine accessories. This has been done as an initial step toward developing a correlation between the exhaust gas emission results of Chassis Dynamometer (CD) and Engine Dynamometer (ED) tests for a specific vehicle. This study could be conducted on a specific power train system, using specific testing cycles that will make this correlation possible.

  4. Inversion of solar extinction data from the Apollo-Soyuz Test Project Stratospheric Aerosol Measurement (ASTP/SAM) experiment

    NASA Technical Reports Server (NTRS)

    Pepin, T. J.

    1977-01-01

    The inversion methods are reported that have been used to determine the vertical profile of the extinction coefficient due to the stratospheric aerosols from data measured during the ASTP/SAM solar occultation experiment. Inversion methods include the onion skin peel technique and methods of solving the Fredholm equation for the problem subject to smoothing constraints. The latter of these approaches involves a double inversion scheme. Comparisons are made between the inverted results from the SAM experiment and near simultaneous measurements made by lidar and balloon born dustsonde. The results are used to demonstrate the assumptions required to perform the inversions for aerosols.

  5. Flight Test of Orthogonal Square Wave Inputs for Hybrid-Wing-Body Parameter Estimation

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.; Ratnayake, Nalin A.

    2011-01-01

    As part of an effort to improve emissions, noise, and performance of next generation aircraft, it is expected that future aircraft will use distributed, multi-objective control effectors in a closed-loop flight control system. Correlation challenges associated with parameter estimation will arise with this expected aircraft configuration. The research presented in this paper focuses on addressing the correlation problem with an appropriate input design technique in order to determine individual control surface effectiveness. This technique was validated through flight-testing an 8.5-percent-scale hybrid-wing-body aircraft demonstrator at the NASA Dryden Flight Research Center (Edwards, California). An input design technique that uses mutually orthogonal square wave inputs for de-correlation of control surfaces is proposed. Flight-test results are compared with prior flight-test results for a different maneuver style.

  6. Development and testing of homogenisation methods: moving parameter experiments with ACMANT

    NASA Astrophysics Data System (ADS)

    Domonkos, P.; Efthymiadis, D.

    2013-03-01

    During the European project COST ES0601 (HOME) a new homogenisation method, ACMANT has been developed for the automatic homogenisation of monthly temperatures. ACMANT turned out to be one of the best performing methods during the blind test experiments of HOME. The methodological development of ACMANT has been continued since then, and nowadays ACMANT is likely the best homogenisation method for large and spatially dense temperature datasets. Ensemble moving parameter experiments have been done to obtain more information about the performance of ACMANT. The HOME Benchmark was used as test dataset, thus the results of the latest experiments with ACMANT are comparable with the performance of the other homogenisation methods participated in HOME. The results indicate that the performance of ACMANT is generally not sensitive to its parameterisation, i.e. the change of the performance is generally small for quite a wide range of each parameter. The presented methodology of moving parameter experiments provides results in a fast and easy to evaluate form.

  7. Deducing Electronic Unit Internal Response During a Vibration Test Using a Lumped Parameter Modeling Approach

    NASA Technical Reports Server (NTRS)

    Van Dyke, Michael B.

    2014-01-01

    During random vibration testing of electronic boxes there is often a desire to know the dynamic response of certain internal printed wiring boards (PWBs) for the purpose of monitoring the response of sensitive hardware or for post-test forensic analysis in support of anomaly investigation. Due to restrictions on internally mounted accelerometers for most flight hardware there is usually no means to empirically observe the internal dynamics of the unit, so one must resort to crude and highly uncertain approximations. One common practice is to apply Miles Equation, which does not account for the coupled response of the board in the chassis, resulting in significant over- or under-prediction. This paper explores the application of simple multiple-degree-of-freedom lumped parameter modeling to predict the coupled random vibration response of the PWBs in their fundamental modes of vibration. A simple tool using this approach could be used during or following a random vibration test to interpret vibration test data from a single external chassis measurement to deduce internal board dynamics by means of a rapid correlation analysis. Such a tool might also be useful in early design stages as a supplemental analysis to a more detailed finite element analysis to quickly prototype and analyze the dynamics of various design iterations. After developing the theoretical basis, a lumped parameter modeling approach is applied to an electronic unit for which both external and internal test vibration response measurements are available for direct comparison. Reasonable correlation of the results demonstrates the potential viability of such an approach. Further development of the preliminary approach presented in this paper will involve correlation with detailed finite element models and additional relevant test data.

  8. Nonadiabatic excited-state molecular dynamics: numerical tests of convergence and parameters.

    PubMed

    Nelson, Tammie; Fernandez-Alberti, Sebastian; Chernyak, Vladimir; Roitberg, Adrian E; Tretiak, Sergei

    2012-02-01

    Nonadiabatic molecular dynamics simulations, involving multiple Born-Oppenheimer potential energy surfaces, often require a large number of independent trajectories in order to achieve the desired convergence of the results, and simulation relies on different parameters that should be tested and compared. In addition to influencing the speed of the simulation, the chosen parameters combined with the frequently reduced number of trajectories can sometimes lead to unanticipated changes in the accuracy of the simulated dynamics. We have previously developed a nonadiabatic excited state molecular dynamics methodology employing Tully's fewest switches surface hopping algorithm. In this study, we seek to investigate the impact of the number of trajectories and the various parameters on the simulation of the photoinduced dynamics of distyrylbenzene (a small oligomer of polyphenylene vinylene) within our developed framework. Various user-defined parameters are analyzed: classical and quantum integration time steps, the value of the friction coefficient for Langevin dynamics, and the initial seed used for stochastic thermostat and hopping algorithms. Common approximations such as reduced number of nonadiabatic coupling terms and the classical path approximation are also investigated. Our analysis shows that, at least for the considered molecular system, a minimum of ~400 independent trajectories should be calculated in order to achieve statistical averaging necessary for convergence of the calculated relaxation timescales. PMID:22320726

  9. Estimation of parameters for the elimination of an orally administered test substance with unknown absorption.

    PubMed

    Vogt, Josef A; Denzer, Christian

    2013-04-01

    Assessment of the elimination of an oral test dose based on plasma concentration values requires correction for the effect of gastric release and absorption. Irregular uptake processes should be described 'model independently', which requires estimation of a large number of absorption parameters. To limit the associated computational effort a new approach is developed with a reduced number of unknown parameters. A marginalized and regularized absorption approach (MRA) is defined, which uses for the uptake just one parameter to control rigidity of the uptake curve. For validation, elimination and absorption were reproduced using published IVIVC data and a synthetic data set for comparison with approaches using a 'model-free'--staircase function or mechanistic models to describe absorption. MRA performed almost as accurate as well specified mechanistic models, which gave the best reproduction. MRA demonstrated a 50fold increase in computational efficiency compared to other approaches. The absorption estimated for the IVIVC study demonstrated an in vivo-in vitro correlation comparable to published values. The newly developed MRA approach can be used to efficiently and accurately estimate elimination and absorption with a restricted number of adaptive parameters and with automatic adjustment of the complexity of the uptake.

  10. ELECTRICAL AEROSOL DETECTOR (EAD) MEASUREMENTS AT THE ST. LOUIS SUPERSITE

    EPA Science Inventory

    The Model 3070A Electrical Aerosol Detector (EAD) measures a unique aerosol parameter called total aerosol length. Reported as mm/cm3, aerosol length can be thought of as a number concentration times average diameter, or simply as d1 weighting. This measurement falls between nu...

  11. Remote Sensing of Aerosol and Cloud Properties from Ground Based and Satellite Remote Sensors to Explore Aerosol-Cloud Interaction

    NASA Astrophysics Data System (ADS)

    He, Yuzhe

    test our cloud parameter inversion algorithm against other algorithms. In addition, we illustrate the need to account for aloft aerosols in observations of aerosol cloud interactions. Finally, we describe how the CCNY site may ultimately be used for further improve ground observations of aerosol cloud interactions.

  12. Plutonium-aerosol emission rates and human pulmonary deposition calculations for Nuclear Site 201, Nevada Test Site

    SciTech Connect

    Shinn, J.H.; Homan, D.N.

    1982-06-21

    This study determined the plutonium-aerosol fluxes from the soil to quantify (1) the extent of potential human exposure by deep-lung retention of alpha-emitting particles; (2) the source term should there be any significant, long-term, transport of plutonium aerosols; and (3) the resuspension factor and rate so that, for the first time at any nuclear site, one may calculate how long it will take for wind erosion to carry away a significant amount of the contaminated soil. High-volume air samplers and cascade impactors were used to characterize the plutonium aerosols. Meteorological flux-profile methods were used to calculate dust and plutonium aerosol emission rates. A floorless wind tunnel (10-m long) was used to examine resuspension under steady-state, high wind speed. The resuspension factor was two orders of magnitude lower than the other comparable sites at NTS and elsewhere, and the average resuspension rate of 5.3 x 10/sup -8//d was also very low, so that the half-time for resuspension by wind erosion was about 36,000 y.

  13. Parameter study of the VUV-FEL at the Tesla Test Facility

    SciTech Connect

    Brefeld, W.; Faatz, B.

    1995-12-31

    In this contribution we present a detailed study of the influence of the electron beam and machine parameters on the performance of the TTF VUV FEL, which is in its design stage at DESY. The TTF FEL will be a 6 nm SASE device operating with the beam provided by the Tesla Test Facility superconducting linac, driven by an rf photcathode gun. The FEL output power and saturation length have been assessed with the use of different 2D3-D steady state simulation codes. The parameter range over which the FEL would reach saturation within the specified undulator length of 25 to 30 m have been determined and checked against semi-analytical expressions.

  14. A parameter estimation algorithm for spatial sine testing - Theory and evaluation

    NASA Technical Reports Server (NTRS)

    Rost, R. W.; Deblauwe, F.

    1992-01-01

    This paper presents the theory and an evaluation of a spatial sine testing parameter estimation algorithm that uses directly the measured forced mode of vibration and the measured force vector. The parameter estimation algorithm uses an ARMA model and a recursive QR algorithm is applied for data reduction. In this first evaluation, the algorithm has been applied to a frequency response matrix (which is a particular set of forced mode of vibration) using a sliding frequency window. The objective of the sliding frequency window is to execute the analysis simultaneously with the data acquisition. Since the pole values and the modal density are obtained from this analysis during the acquisition, the analysis information can be used to help determine the forcing vectors during the experimental data acquisition.

  15. Dependence of the source performance on plasma parameters at the BATMAN test facility

    SciTech Connect

    Wimmer, C.; Fantz, U.

    2015-04-08

    The investigation of the dependence of the source performance (high j{sub H{sup −}}, low j{sub e}) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H{sup −}, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H{sup −} density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa)

  16. Dependence of the source performance on plasma parameters at the BATMAN test facility

    NASA Astrophysics Data System (ADS)

    Wimmer, C.; Fantz, U.

    2015-04-01

    The investigation of the dependence of the source performance (high jH-, low je) for optimum Cs conditions on the plasma parameters at the BATMAN (Bavarian Test MAchine for Negative hydrogen ions) test facility is desirable in order to find key parameters for the operation of the source as well as to deepen the physical understanding. The most relevant source physics takes place in the extended boundary layer, which is the plasma layer with a thickness of several cm in front of the plasma grid: the production of H-, its transport through the plasma and its extraction, inevitably accompanied by the co-extraction of electrons. Hence, a link of the source performance with the plasma parameters in the extended boundary layer is expected. In order to characterize electron and negative hydrogen ion fluxes in the extended boundary layer, Cavity Ring-Down Spectroscopy and Langmuir probes have been applied for the measurement of the H- density and the determination of the plasma density, the plasma potential and the electron temperature, respectively. The plasma potential is of particular importance as it determines the sheath potential profile at the plasma grid: depending on the plasma grid bias relative to the plasma potential, a transition in the plasma sheath from an electron repelling to an electron attracting sheath takes place, influencing strongly the electron fraction of the bias current and thus the amount of co-extracted electrons. Dependencies of the source performance on the determined plasma parameters are presented for the comparison of two source pressures (0.6 Pa, 0.45 Pa) in hydrogen operation. The higher source pressure of 0.6 Pa is a standard point of operation at BATMAN with external magnets, whereas the lower pressure of 0.45 Pa is closer to the ITER requirements (p ≤ 0.3 Pa).

  17. Use of In Situ Cloud Condensation Nuclei, Extinction, and Aerosol Size Distribution Measurements to Test a Method for Retrieving Cloud Condensation Nuclei Profiles From Surface Measurements

    NASA Technical Reports Server (NTRS)

    Ghan, Stephen J.; Rissman, Tracey A.; Ellman, Robert; Ferrare, Richard A.; Turner, David; Flynn, Connor; Wang, Jian; Ogren, John; Hudson, James; Jonsson, Haflidi H.; VanReken, Timothy; Flagan, Richard C.; Seinfeld, John H.

    2006-01-01

    If the aerosol composition and size distribution below cloud are uniform, the vertical profile of cloud condensation nuclei (CCN) concentration can be retrieved entirely from surface measurements of CCN concentration and particle humidification function and surface-based retrievals of relative humidity and aerosol extinction or backscatter. This provides the potential for long-term measurements of CCN concentrations near cloud base. We have used a combination of aircraft, surface in situ, and surface remote sensing measurements to test various aspects of the retrieval scheme. Our analysis leads us to the following conclusions. The retrieval works better for supersaturations of 0.1% than for 1% because CCN concentrations at 0.1% are controlled by the same particles that control extinction and backscatter. If in situ measurements of extinction are used, the retrieval explains a majority of the CCN variance at high supersaturation for at least two and perhaps five of the eight flights examined. The retrieval of the vertical profile of the humidification factor is not the major limitation of the CCN retrieval scheme. Vertical structure in the aerosol size distribution and composition is the dominant source of error in the CCN retrieval, but this vertical structure is difficult to measure from remote sensing at visible wavelengths.

  18. Estimation of Handling Qualities Parameters of the Tu-144 Supersonic Transport Aircraft from Flight Test Data

    NASA Technical Reports Server (NTRS)

    Curry, Timothy J.; Batterson, James G. (Technical Monitor)

    2000-01-01

    Low order equivalent system (LOES) models for the Tu-144 supersonic transport aircraft were identified from flight test data. The mathematical models were given in terms of transfer functions with a time delay by the military standard MIL-STD-1797A, "Flying Qualities of Piloted Aircraft," and the handling qualities were predicted from the estimated transfer function coefficients. The coefficients and the time delay in the transfer functions were estimated using a nonlinear equation error formulation in the frequency domain. Flight test data from pitch, roll, and yaw frequency sweeps at various flight conditions were used for parameter estimation. Flight test results are presented in terms of the estimated parameter values, their standard errors, and output fits in the time domain. Data from doublet maneuvers at the same flight conditions were used to assess the predictive capabilities of the identified models. The identified transfer function models fit the measured data well and demonstrated good prediction capabilities. The Tu-144 was predicted to be between level 2 and 3 for all longitudinal maneuvers and level I for all lateral maneuvers. High estimates of the equivalent time delay in the transfer function model caused the poor longitudinal rating.

  19. Results From F-18B Stability and Control Parameter Estimation Flight Tests at High Dynamic Pressures

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Noffz, Gregory K.; Iliff, Kenneth W.

    2000-01-01

    A maximum-likelihood output-error parameter estimation technique has been used to obtain stability and control derivatives for the NASA F-18B Systems Research Aircraft. This work has been performed to support flight testing of the active aeroelastic wing (AAW) F-18A project. The goal of this research is to obtain baseline F-18 stability and control derivatives that will form the foundation of the aerodynamic model for the AAW aircraft configuration. Flight data have been obtained at Mach numbers between 0.85 and 1.30 and at dynamic pressures ranging between 600 and 1500 lbf/sq ft. At each test condition, longitudinal and lateral-directional doublets have been performed using an automated onboard excitation system. The doublet maneuver consists of a series of single-surface inputs so that individual control-surface motions cannot be correlated with other control-surface motions. Flight test results have shown that several stability and control derivatives are significantly different than prescribed by the F-18B aerodynamic model. This report defines the parameter estimation technique used, presents stability and control derivative results, compares the results with predictions based on the current F-18B aerodynamic model, and shows improvements to the nonlinear simulation using updated derivatives from this research.

  20. A modal test of a space-truss for structural parameter identification

    SciTech Connect

    Carne, T.G.; Mayes, R.L.; Levine-West, M.B.

    1992-12-01

    The Jet Propulsion Laboratory is developing a large space-truss to support a micro-precision interferometer. A finite element model will be used to design and place passive and active elements in the truss to suppress vibration. To improve the model`s predictive capability, it is desirable to identify uncertain structural parameters in the model by utilizing experimental modal data. Testing of both the components and the system was performed to obtain the data necessary to identify the structural parameters. Extracting a modal model, absent of bias errors, from measured data requires great care in test design and implementation. Testing procedures that are discussed include: verification of non-constraining shaker attachment, quantification of the non-linear structural response, and the design and effects of suspension systems used to simulate a free structure. In addition to these procedures, the accuracy of the measured frequency response functions are evaluated by comparing functions measured with random excitation, using various frequency resolutions, and with step sine excitation.

  1. A modal test of a space-truss for structural parameter identification

    SciTech Connect

    Carne, T.G.; Mayes, R.L. ); Levine-West, M.B. )

    1992-01-01

    The Jet Propulsion Laboratory is developing a large space-truss to support a micro-precision interferometer. A finite element model will be used to design and place passive and active elements in the truss to suppress vibration. To improve the model's predictive capability, it is desirable to identify uncertain structural parameters in the model by utilizing experimental modal data. Testing of both the components and the system was performed to obtain the data necessary to identify the structural parameters. Extracting a modal model, absent of bias errors, from measured data requires great care in test design and implementation. Testing procedures that are discussed include: verification of non-constraining shaker attachment, quantification of the non-linear structural response, and the design and effects of suspension systems used to simulate a free structure. In addition to these procedures, the accuracy of the measured frequency response functions are evaluated by comparing functions measured with random excitation, using various frequency resolutions, and with step sine excitation.

  2. Testing for homogeneity in meta-analysis I. The one-parameter case: standardized mean difference.

    PubMed

    Kulinskaya, Elena; Dollinger, Michael B; Bjørkestøl, Kirsten

    2011-03-01

    Meta-analysis seeks to combine the results of several experiments in order to improve the accuracy of decisions. It is common to use a test for homogeneity to determine if the results of the several experiments are sufficiently similar to warrant their combination into an overall result. Cochran's Q statistic is frequently used for this homogeneity test. It is often assumed that Q follows a chi-square distribution under the null hypothesis of homogeneity, but it has long been known that this asymptotic distribution for Q is not accurate for moderate sample sizes. Here, we present an expansion for the mean of Q under the null hypothesis that is valid when the effect and the weight for each study depend on a single parameter, but for which neither normality nor independence of the effect and weight estimators is needed. This expansion represents an order O(1/n) correction to the usual chi-square moment in the one-parameter case. We apply the result to the homogeneity test for meta-analyses in which the effects are measured by the standardized mean difference (Cohen's d-statistic). In this situation, we recommend approximating the null distribution of Q by a chi-square distribution with fractional degrees of freedom that are estimated from the data using our expansion for the mean of Q. The resulting homogeneity test is substantially more accurate than the currently used test. We provide a program available at the Paper Information link at the Biometrics website http://www.biometrics.tibs.org for making the necessary calculations.

  3. A New Parameter to Assess Hydromechanical Effect in Single-hole Hydraulic Testing and Grouting

    SciTech Connect

    Rutqvist, Jonny; Fransson, A.; Tsang, C.-F.; Rutqvist, J.; Gustafson, G.

    2007-09-01

    Grouting or filling of the open voids in fractured rock is done by introducing a fluid, a grout, through boreholes under pressure. The grout may be either a Newtonian fluid or a Bingham fluid. The penetration of the grout and the resulting pressure profile may give rise to hydromechanical effects, which depends on factors such as the fracture aperture, pressure at the borehole and the rheological properties of the grout. In this paper, we postulate that a new parameter, {angstrom}, which is the integral of the fluid pressure change in the fracture plane, is an appropriate measure to describe the change in fracture aperture volume due to a change in effective stress. In many cases, analytic expressions are available to calculate pressure profiles for relevant input data and the {angstrom} parameter. The approach is verified against a fully coupled hydromechanical simulator for the case of a Newtonian fluid. Results of the verification exercise show that the new approach is reasonable and that the {angstrom}-parameter is a good measure for the fracture volume change: i.e., the larger the {angstrom}-parameter, the larger the fracture volume change, in an almost linear fashion. To demonstrate the application of the approach, short duration hydraulic tests and constant pressure grouting are studied. Concluded is that using analytic expressions for penetration lengths and pressure profiles to calculate the {angstrom} parameter provides a possibility to describe a complex situation and compare, discuss and weigh the impact of hydromechanical couplings for different alternatives. Further, the analyses identify an effect of high-pressure grouting, where uncontrolled grouting of larger fractures and insufficient (or less-than-expected) sealing of finer fractures is a potential result.

  4. Final Report: Part 1. In-Place Filter Testing Instrument for Nuclear Material Containers. Part 2. Canister Filter Test Standards for Aerosol Capture Rates.

    SciTech Connect

    Brown, Austin Douglas; Runnels, Joel T.; Moore, Murray E.; Reeves, Kirk Patrick

    2014-11-02

    A portable instrument has been developed to assess the functionality of filter sand o-rings on nuclear material storage canisters, without requiring removal of the canister lid. Additionally, a set of fifteen filter standards were procured for verifying aerosol leakage and pressure drop measurements in the Los Alamos Filter Test System. The US Department of Energy uses several thousand canisters for storing nuclear material in different chemical and physical forms. Specialized filters are installed into canister lids to allow gases to escape, and to maintain an internal ambient pressure while containing radioactive contaminants. Diagnosing the condition of container filters and canister integrity is important to ensure worker and public safety and for determining the handling requirements of legacy apparatus. This report describes the In-Place-Filter-Tester, the Instrument Development Plan and the Instrument Operating Method that were developed at the Los Alamos National Laboratory to determine the “as found” condition of unopened storage canisters. The Instrument Operating Method provides instructions for future evaluations of as-found canisters packaged with nuclear material. Customized stainless steel canister interfaces were developed for pressure-port access and to apply a suction clamping force for the interface. These are compatible with selected Hagan-style and SAVY-4000 storage canisters that were purchased from NFT (Nuclear Filter Technology, Golden, CO). Two instruments were developed for this effort: an initial Los Alamos POC (Proof-of-Concept) unit and the final Los Alamos IPFT system. The Los Alamos POC was used to create the Instrument Development Plan: (1) to determine the air flow and pressure characteristics associated with canister filter clogging, and (2) to test simulated configurations that mimicked canister leakage paths. The canister leakage scenarios included quantifying: (A) air leakage due to foreign material (i.e. dust and hair

  5. Testing of an automated online EA-IRMS method for fast and simultaneous carbon content and stable isotope measurement of aerosol samples

    NASA Astrophysics Data System (ADS)

    Major, István; Gyökös, Brigitta; Túri, Marianna; Futó, István; Filep, Ágnes; Hoffer, András; Molnár, Mihály

    2016-04-01

    Comprehensive atmospheric studies have demonstrated that carbonaceous aerosol is one of the main components of atmospheric particulate matter over Europe. Various methods, considering optical or thermal properties, have been developed for quantification of the accurate amount of both organic and elemental carbon constituents of atmospheric aerosol. The aim of our work was to develop an alternative fast and easy method for determination of the total carbon content of individual aerosol samples collected on prebaked quartz filters whereby the mass and surface concentration becomes simply computable. We applied the conventional "elemental analyzer (EA) coupled online with an isotope ratio mass spectrometer (IRMS)" technique which is ubiquitously used in mass spectrometry. Using this technique we are able to measure simultaneously the carbon stable isotope ratio of the samples, as well. During the developing process, we compared the EA-IRMS technique with an off-line catalytic combustion method worked out previously at Hertelendi Laboratory of Environmental Studies (HEKAL). We tested the combined online total carbon content and stable isotope ratio measurement both on standard materials and real aerosol samples. Regarding the test results the novel method assures, on the one hand, at least 95% of carbon recovery yield in a broad total carbon mass range (between 100 and 3000 ug) and, on the other hand, a good reproducibility of stable isotope measurements with an uncertainty of ± 0.2 per mill. Comparing the total carbon results obtained by the EA-IRMS and the off-line catalytic combustion method we found a very good correlation (R2=0.94) that proves the applicability of both preparation method. Advantages of the novel method are the fast and simplified sample preparation steps and the fully automated, simultaneous carbon stable isotope ratio measurement processes. Furthermore stable isotope ratio results can effectively be applied in the source apportionment

  6. 40 CFR 86.001-22 - Approval of application for certification; test fleet selections; determinations of parameters...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification...

  7. 40 CFR 86.001-22 - Approval of application for certification; test fleet selections; determinations of parameters...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification...

  8. 40 CFR 86.001-22 - Approval of application for certification; test fleet selections; determinations of parameters...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification...

  9. 40 CFR 86.001-22 - Approval of application for certification; test fleet selections; determinations of parameters...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... certification; test fleet selections; determinations of parameters subject to adjustment for certification and..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas...; test fleet selections; determinations of parameters subject to adjustment for certification...

  10. The SEGUE Stellar Parameter Pipeline. 1. Description and Initial Validation Tests

    SciTech Connect

    Lee, Young Sun; Beers, Timothy C.; Sivarani, Thirupathi; Allende Prieto, Carlos; Koesterke, Lars; Wilhelm, Ronald; Norris, John e.; Bailer-Jones, Coryn A.L.; Re Fiorentin, Paola; Rockosi, Constance M.; Yanny, Brian; /Fermilab /Rensselaer Poly. /Harvard-Smithsonian Ctr. Astrophys.

    2007-10-01

    The authors describe the development and implementation of the SEGUE (Sloan Extension for Galactic Exploration and Understanding) Stellar Parameter Pipeline (SSPP). The SSPP derives, using multiple techniques, radial velocities and the fundamental stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) for AFGK-type stars, based on medium-resolution spectroscopy and ugriz photometry obtained during the course of the original Sloan Digital Sky Survey (SDSS-I) and its Galactic extension (SDSS-II/SEGUE). the SSPP also provides spectral classification for a much wider range of stars, including stars with temperatures outside of the window where atmospheric parameters can be estimated with the current approaches. This is Paper I in a series of papers on the SSPP; it provides an overview of the SSPP, and initial tests of its performance using multiple data sets. Random and systematic errors are critically examined for the current version of the SSPP, which has been used for the sixth public data release of the SDSS (DR-6).

  11. REMOTE SENSING MEASUREMENTS OF AEROSOL OPTICAL THICKNESS AND CORRELATION WITH IN-SITU AIR QUALITY PARAMETERS DURING A SMOKE HAZE EPISODE IN SOUTHEAST ASIA

    NASA Astrophysics Data System (ADS)

    Chew, B.; Salinas Cortijo, S. V.; Liew, S.

    2009-12-01

    Transboundary smoke haze due to biomass burning is a major environmental problem in Southeast Asia which has not only affected air quality in the source region, but also in the surrounding countries. Air quality monitoring stations and meteorological stations can provide valuable information on the concentrations of criteria pollutants such as sulphur dioxide, nitrogen oxide, carbon monoxide, ozone and particulate mass (PM10) as well as health advisory to the general public during the haze episodes. Characteristics of aerosol particles in the smoke haze such as the aerosol optical thickness (AOT), aerosol size distribution and Angstrom exponent are also measured or retrieved by sun-tracking photometers, such as those deployed in the world-wide AErosol RObotic NETwork (AERONET). However, due to the limited spatial coverage by the air quality monitoring stations and AERONET sites, it is difficult to study and monitor the spatial and temporal variability of the smoke haze during a biomass burning episode, especially in areas without ground-based instrumentation. As such, we combine the standard in-situ measurements of PM10 by air quality monitoring stations with the remote sensing imagery from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board NASA's Terra and Aqua satellites. The columnar AOT is first derived from the MODIS images for regions where PM10 measurements are available. Empirical correlations between AOT and PM10 measurements are then established for 50 sites in both Malaysia and Singapore during the smoke haze episode in 2006. When available, vertical feature information from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) is used to examine the validity of the correlations. Aloft transport of aerosols, which can weaken the correlations between AOT and PM10 measurements, is also identified by CALIPSO and taken into consideration for the analysis. With this integrated approach, we hope to enhance and

  12. A pendulum test as a tool to evaluate viscous friction parameters in the equine fetlock joint.

    PubMed

    Noble, Prisca; Lumay, Geoffroy; Coninx, Marc; Collin, Bernard; Magnée, Adrien; Lecomte-Beckers, Jacqueline; Denoix, Jean M; Serteyn, Didier

    2011-05-01

    An equine fetlock joint pendulum test was studied and the influence of post mortem time and intra-articular lipid solvent on the viscous frictional response examined. Fresh equine digits (group 1, n=6 controls; group 2, n=6 lipid solvent) were mounted on a pendulum tribometer. Assuming that pendular joint damping could be modelled by a harmonic oscillator fluid damping (HOFD), damping time (τ), viscous damping coefficient (c) and friction coefficient (μ) were monitored for 5h under experimental conditions (400N; 20°C). In all experiments, pendular joint damping was found to follow an exponential decay function (R(2)=0.99714), which confirmed that joint damping was fluid. The evolution of τ, c and μ was found to be significantly (P<0.05) different in the two groups, with a decrease in τ and an increase in c and μ that was faster and more prominent in digits from group 2. It was concluded that pendular joint damping could be modelled by a HOFD model. The influence of post mortem time on results suggested that, ideally, joint mechanical properties should only be tested on fresh cadavers at the same post mortem time. Moreover, the addition of lipid solvent was found to be responsible for upper viscous friction parameters and for a reduced damping time, which suggested that articular lubricating ability was compromised. This equine pendulum test could be used to test the efficacy of various bio-lubricant treatments.

  13. A pendulum test as a tool to evaluate viscous friction parameters in the equine fetlock joint.

    PubMed

    Noble, Prisca; Lumay, Geoffroy; Coninx, Marc; Collin, Bernard; Magnée, Adrien; Lecomte-Beckers, Jacqueline; Denoix, Jean M; Serteyn, Didier

    2011-05-01

    An equine fetlock joint pendulum test was studied and the influence of post mortem time and intra-articular lipid solvent on the viscous frictional response examined. Fresh equine digits (group 1, n=6 controls; group 2, n=6 lipid solvent) were mounted on a pendulum tribometer. Assuming that pendular joint damping could be modelled by a harmonic oscillator fluid damping (HOFD), damping time (τ), viscous damping coefficient (c) and friction coefficient (μ) were monitored for 5h under experimental conditions (400N; 20°C). In all experiments, pendular joint damping was found to follow an exponential decay function (R(2)=0.99714), which confirmed that joint damping was fluid. The evolution of τ, c and μ was found to be significantly (P<0.05) different in the two groups, with a decrease in τ and an increase in c and μ that was faster and more prominent in digits from group 2. It was concluded that pendular joint damping could be modelled by a HOFD model. The influence of post mortem time on results suggested that, ideally, joint mechanical properties should only be tested on fresh cadavers at the same post mortem time. Moreover, the addition of lipid solvent was found to be responsible for upper viscous friction parameters and for a reduced damping time, which suggested that articular lubricating ability was compromised. This equine pendulum test could be used to test the efficacy of various bio-lubricant treatments. PMID:20413334

  14. Parameters for a 30 GeV Undulator Test Facility in the FFTB/LCLS

    SciTech Connect

    Krejcik, Patrick

    2001-04-12

    The parameters for a 30 GeV test beam are outlined for use with an undulator in the FFTB tunnel where the LCLS will eventually be housed. It is proposed to use the SLAC linac and damping rings in their present mode of operation for PEP II injection, where 30 GeV beams are also delivered at 10 Hz to the FFTB. High peak currents are obtained with the addition of a second bunch compressor in the linac. In order to minimize the synchrotron radiation induced emittance growth in the bunch compressor it is necessary to locate the new bunch compressor at the low-energy end of the linac, just after the damping rings. The bunch compressor is a duplicate of the LCLS chicane-style bunch compressor. This test beam would provide an exciting possibility to test LCLS undulator sections and provide a unique high-brightness source of incoherent X-rays and begin developing the LCLS experimental station. The facility will also act as a much needed accelerator test bed for the production, diagnostics and tuning of very short bunches in preparation for the LCLS after the photo injector is commissioned.

  15. Identification of groundwater flow parameters using reciprocal data from hydraulic interference tests

    NASA Astrophysics Data System (ADS)

    Marinoni, Marianna; Delay, Frederick; Ackerer, Philippe; Riva, Monica; Guadagnini, Alberto

    2016-08-01

    We investigate the effect of considering reciprocal drawdown curves for the characterization of hydraulic properties of aquifer systems through inverse modeling based on interference well testing. Reciprocity implies that drawdown observed in a well B when pumping takes place from well A should strictly coincide with the drawdown observed in A when pumping in B with the same flow rate as in A. In this context, a critical point related to applications of hydraulic tomography is the assessment of the number of available independent drawdown data and their impact on the solution of the inverse problem. The issue arises when inverse modeling relies upon mathematical formulations of the classical single-continuum approach to flow in porous media grounded on Darcy's law. In these cases, introducing reciprocal drawdown curves in the database of an inverse problem is equivalent to duplicate some information, to a certain extent. We present a theoretical analysis of the way a Least-Square objective function and a Levenberg-Marquardt minimization algorithm are affected by the introduction of reciprocal information in the inverse problem. We also investigate the way these reciprocal data, eventually corrupted by measurement errors, influence model parameter identification in terms of: (a) the convergence of the inverse model, (b) the optimal values of parameter estimates, and (c) the associated estimation uncertainty. Our theoretical findings are exemplified through a suite of computational examples focused on block-heterogeneous systems with increased complexity level. We find that the introduction of noisy reciprocal information in the objective function of the inverse problem has a very limited influence on the optimal parameter estimates. Convergence of the inverse problem improves when adding diverse (nonreciprocal) drawdown series, but does not improve when reciprocal information is added to condition the flow model. The uncertainty on optimal parameter estimates is

  16. Determination of Constant Parameters of Copper as Power-Law Hardening Material at Different Test Conditions

    NASA Astrophysics Data System (ADS)

    Kowser, Md. A.; Mahiuddin, Md.

    2014-11-01

    In this paper a technique has been developed to determine constant parameters of copper as a power-law hardening material by tensile test approach. A work-hardening process is used to describe the increase of the stress level necessary to continue plastic deformation. A computer program is used to show the variation of the stress-strain relation for different values of stress hardening exponent, n and power-law hardening constant, α . Due to its close tolerances, excellent corrosion resistance and high material strength, in this analysis copper (Cu) has been selected as the material. As a power-law hardening material, Cu has been used to compute stress hardening exponent, n and power-law hardening constant, α from tensile test experiment without heat treatment and after heat treatment. A wealth of information about mechanical behavior of a material can be determined by conducting a simple tensile test in which a cylindrical specimen of a uniform cross-section is pulled until it ruptures or fractures into separate pieces. The original cross sectional area and gauge length are measured prior to conducting the test and the applied load and gauge deformation are continuously measured throughout the test. Based on the initial geometry of the sample, the engineering stress-strain behavior (stress-strain curve) can be easily generated from which numerous mechanical properties, such as the yield strength and elastic modulus, can be determined. A universal testing machine is utilized to apply the load in a continuously increasing (ramp) manner according to ASTM specifications. Finally, theoretical results are compared with these obtained from experiments where the nature of curves is found similar to each other. It is observed that there is a significant change of the value of n obtained with and without heat treatment it means the value of n should be determined for the heat treated condition of copper material for their applications in engineering fields.

  17. Validation of Slosh Model Parameters and Anti-Slosh Baffle Designs of Propellant Tanks by Using Lateral Slosh Testing

    NASA Technical Reports Server (NTRS)

    Perez, Jose G.; Parks, Russel A.; Lazor, Daniel R.

    2012-01-01

    The slosh dynamics of propellant tanks can be represented by an equivalent pendulum-mass mechanical model. The parameters of this equivalent model, identified as slosh model parameters, are slosh mass, slosh mass center of gravity, slosh frequency, and smooth-wall damping. They can be obtained by both analysis and testing for discrete fill heights. Anti-slosh baffles are usually needed in propellant tanks to control the movement of the fluid inside the tank. Lateral slosh testing, involving both random testing and free-decay testing, are performed to validate the slosh model parameters and the damping added to the fluid by the anti-slosh baffles. Traditional modal analysis procedures are used to extract the parameters from the experimental data. Test setup of sub-scale test articles of cylindrical and spherical shapes will be described. A comparison between experimental results and analysis will be presented.

  18. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  19. Effects of Ionizing Radiation on Respiratory Function Tests and Blood Parameters in Radiology Staff

    PubMed Central

    Saygin, M; Yasar, S; Kayan, M; Balci, UG; Öngel, K

    2014-01-01

    Aim: To evaluate pulmonary function tests and blood parameters and their relationship with sociodemographic data for radiology staff continuously exposed to ionizing radiation. Subjects and Method: Thirty-eight personnel from Suleyman Demirel University Training and Research Hospital, Radiology Unit, were included in this study. Sociodemographic data were evaluated by a questionnare that was developed by the researchers. Height and weight measurements were performed with a standard scale and meter. Routine blood parameters and spirometric lung function measurements of the cases were recorded. Statistical significances were determined by independent t-test, analysis of variance (ANOVA), bivariate correlation and Kruskal-Wallis tests using SPSS 18.0. Results: The mean age was 32.42 ± 5.5 years; 19 patients (50%) were male and 19 patients (50%) were female. Body mass index (BMI) was calculated as 25.68 ± 0.47 for men and 24.58 ± 1.13 for women. Forced vital capacity (FVC), forced expiratory volume in the 1st second (FEV1), peak expiratory flow (PEF) and maximum mid-expiratory flow (FEF25-75) showed statistically significant differences between gender (p < 0.01). In addition, FEV1 and FEF25-75 also demonstrated statistically negatively significant difference with the type of task (p < 0.05). A statistically significant negative difference was found between FEF25-75 value and time to start smoking (p < 0.05). Among FVC, FEV1, PEF and FEF25-75 values and alcohol usage, statistically significant positive difference was detected (p < 0.05). Statistically significant positive difference was found among FVC, PEF and FEF25-75 values and sports activity (p < 0.05). According to BMI groups, statistically significant positive difference with FVC, FEV1 and PEF values were found (p < 0.05). Statistically significant correlations were found among FVC value and haemoglobin level (Hgb), haematocrit level (Hct) and mean corpuscular volume (MCV), among FEV1 value and Hgb, MCV, among

  20. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    SciTech Connect

    McFarquhar, Greg

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  1. A parametric approach to kinship hypothesis testing using identity-by-descent parameters.

    PubMed

    García-Magariños, Manuel; Egeland, Thore; López-de-Ullibarri, Ignacio; Hjort, Nils L; Salas, Antonio

    2015-11-01

    There is a large number of applications where family relationships need to be determined from DNA data. In forensic science, competing ideas are in general verbally formulated as the two hypotheses of a test. For the most common paternity case, the null hypothesis states that the alleged father is the true father against the alternative hypothesis that the father is an unrelated man. A likelihood ratio is calculated to summarize the evidence. We propose an alternative framework whereby a model and the hypotheses are formulated in terms of parameters representing identity-by-descent probabilities. There are several advantages to this approach. Firstly, the alternative hypothesis can be completely general. Specifically, the alternative does not need to specify an unrelated man. Secondly, the parametric formulation corresponds to the approach used in most other applications of statistical hypothesis testing and so there is a large theory of classical statistics that can be applied. Theoretical properties of the test statistic under the null hypothesis are studied. An extension to trios of individuals has been carried out. The methods are exemplified using simulations and a real dataset of 27 Spanish Romani individuals. PMID:26509786

  2. The economics (or lack thereof) of aerosol geoengineering

    NASA Astrophysics Data System (ADS)

    Goes, M.; Keller, K.; Tuana, N.

    2009-04-01

    Anthropogenic greenhouse gas emissions are changing the Earth's climate and impose substantial risks for current and future generations. What are scientifically sound, economically viable, and ethically defendable strategies to manage these climate risks? Ratified international agreements call for a reduction of greenhouse gas emissions to avoid dangerous anthropogenic interference with the climate system. Recent proposals, however, call for the deployment of a different approach: to geoengineer climate by injecting aerosol precursors into the stratosphere. Published economic studies typically suggest that substituting aerosol geoengineering for abatement of carbon dioxide emissions results in large net monetary benefits. However, these studies neglect the risks of aerosol geoengineering due to (i) the potential for future geoengineering failures and (ii) the negative impacts associated with the aerosol forcing. Here we use a simple integrated assessment model of climate change to analyze potential economic impacts of aerosol geoengineering strategies over a wide range of uncertain parameters such as climate sensitivity, the economic damages due to climate change, and the economic damages due to aerosol geoengineering forcing. The simplicity of the model provides the advantages of parsimony and transparency, but it also imposes severe caveats on the interpretation of the results. For example, the analysis is based on a globally aggregated model and is hence silent on the question of intragenerational distribution of costs and benefits. In addition, the analysis neglects the effects of endogenous learning about the climate system. We show that the risks associated with a future geoengineering failure and negative impacts of aerosol forcings can cause geoenginering strategies to fail an economic cost-benefit test. One key to this finding is that a geoengineering failure would lead to dramatic and abrupt climatic changes. The monetary damages due to this failure can

  3. Aerosol Retrieval and Atmospheric Correction for MERIS Data over Lakes

    NASA Astrophysics Data System (ADS)

    Floricioiu, D.; Rott, H.

    2004-05-01

    One of the objectives of the ENVISAT project AO-164 on "Environmental Research in the Eastern Alps" is the development of algorithms for retrieval of water quality parameters of lakes from MERIS data. In order to test and validate atmospheric correction algorithms and to provide basic data for the development of algorithms for retrieval of limnological parameters and aerosol loadings, several field campaigns were carried out in summer 2003 on the lakes Garda (Italy) and Mondsee (Austria) parallel to MERIS overflights. Field measurements of aerosol optical thickness (AOT) were used as input for atmospheric correction by means of the 6S model, and field spectra measured above the water surface were used to validate the at-surface reflectance derived from MERIS data. The agreement between field and MERIS reflectance spectra is in general good. Some differences are found at short wavelengths which can be attributed to insufficient knowledge of aerosol properties. The sensitivity of the radiative transfer model to changes in AOT and the aerosol model was investigated. For a day with strong variability in the aerosol loading the spatial gradient of AOT was estimated from MERIS data and compared with the temporal evolution of AOT at a field measurement site.

  4. Evaluations of Thin Cirrus Contamination and Screening in Ground Aerosol Observations Using Collocated Lidar Systems

    NASA Technical Reports Server (NTRS)

    Huang, Jingfeng; Hsu, N. Christina; Tsay, Si-Chee; Holben, Brent N.; Welton, Ellsworth J.; Smirnov, Alexander; Jeong, Myeong-Jae; Hansell, Richard A.; Berkoff, Timothy A.

    2012-01-01

    Cirrus clouds, particularly sub visual high thin cirrus with low optical thickness, are difficult to be screened in operational aerosol retrieval algorithms. Collocated aerosol and cirrus observations from ground measurements, such as the Aerosol Robotic Network (AERONET) and the Micro-Pulse Lidar Network (MPLNET), provide us with an unprecedented opportunity to examine the susceptibility of operational aerosol products to thin cirrus contamination. Quality assured aerosol optical thickness (AOT) measurements were also tested against the CALIPSO vertical feature mask (VFM) and the MODIS-derived thin cirrus screening parameters for the purpose of evaluating thin cirrus contamination. Key results of this study include: (1) Quantitative evaluations of data uncertainties in AERONET AOT retrievals are conducted. Although AERONET cirrus screening schemes are successful in removing most cirrus contamination, strong residuals displaying strong spatial and seasonal variability still exist, particularly over thin cirrus prevalent regions during cirrus peak seasons, (2) Challenges in matching up different data for analysis are highlighted and corresponding solutions proposed, and (3) Estimation of the relative contributions from cirrus contamination to aerosol retrievals are discussed. The results are valuable for better understanding and further improving ground aerosol measurements that are critical for aerosol-related climate research.

  5. Validation of Slosh Model Parameters and Anti-Slosh Baffle Designs of Propellant Tanks by Using Lateral Slosh Testing

    NASA Technical Reports Server (NTRS)

    Perez, Jose G.; Parks, Russel, A.; Lazor, Daniel R.

    2012-01-01

    The slosh dynamics of propellant tanks can be represented by an equivalent mass-pendulum-dashpot mechanical model. The parameters of this equivalent model, identified as slosh mechanical model parameters, are slosh frequency, slosh mass, and pendulum hinge point location. They can be obtained by both analysis and testing for discrete fill levels. Anti-slosh baffles are usually needed in propellant tanks to control the movement of the fluid inside the tank. Lateral slosh testing, involving both random excitation testing and free-decay testing, are performed to validate the slosh mechanical model parameters and the damping added to the fluid by the anti-slosh baffles. Traditional modal analysis procedures were used to extract the parameters from the experimental data. Test setup of sub-scale tanks will be described. A comparison between experimental results and analysis will be presented.

  6. Effect of Test Parameters on the Friction Behaviour of Anodized Aluminium Alloy

    PubMed Central

    Khalladi, A.; Elleuch, K.; De-Petris Wery, M.; Ayedi, H. F.

    2014-01-01

    The tribological behaviour of anodic oxide layer formed on Al5754, used in automotive applications, was investigated against test parameters. The friction coefficient under different normal loads, sliding speeds, and oxide thicknesses was studied using a pin on disc tribometer. Results show that the increase of load and sliding speed increase the friction coefficient. The rise of contact pressure and temperature seems to cause changes in wear mechanism. Glow-discharge optical emission spectroscopy (GDOES) was used to investigate the chemical composition of the oxide layer. Morphology and composition of the wear tracks were analyzed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). On the basis of these characterization techniques, a wear mechanism was proposed. The observed mechanical properties can be related to the morphology and the chemical composition of the layer. PMID:27437452

  7. Integrated Sachs-Wolfe effect versus redshift test for the cosmological parameters

    NASA Astrophysics Data System (ADS)

    Kantowski, R.; Chen, B.; Dai, X.

    2015-04-01

    We describe a method using the integrated Sachs-Wolfe (ISW) effect caused by individual inhomogeneities to determine the cosmological parameters H0, Ωm , and ΩΛ, etc. This ISW-redshift test requires detailed knowledge of the internal kinematics of a set of individual density perturbations, e.g., galaxy clusters and/or cosmic voids, in particular their density and velocity profiles, and their mass accretion rates. It assumes the density perturbations are isolated and embedded (equivalently compensated) and makes use of the newly found relation between the ISW temperature perturbation of the cosmic microwave background (CMB) and the Fermat potential of the lens. Given measurements of the amplitudes of the temperature variations in the CMB caused by such clusters or voids at various redshifts and estimates of their angular sizes or masses, one can constrain the cosmological parameters. More realistically, the converse is more likely, i.e., if the background cosmology is sufficiently constrained, measurement of ISW profiles of clusters and voids (e.g., hot and cold spots and rings) can constrain dynamical properties of the dark matter, including accretion, associated with such lenses and thus constrain the evolution of these objects with redshift.

  8. Time-of-Day Effects on EMG Parameters During the Wingate Test in Boys

    PubMed Central

    Souissi, Hichem; Chtourou, Hamdi; Chaouachi, Anis; Chamari, Karim; Souissi, Nizar; Amri, Mohamed

    2012-01-01

    In boys, muscle power and strength fluctuate with time-of-day with morning nadirs and afternoon maximum values. However, the exact underlying mechanisms of this daily variation are not studied yet. Thus, the purpose of this study was to examine the time-of-day effects on electromyographic (EMG) parameters changes during a Wingate test in boys. Twenty-two boys performed a 30-s Wingate test (measurement of muscle power and fatigue) at 07:00 and 17:00-h on separate days. Surface EMG activity was recorded in the Vastus lateralis, rectus femoris and vastus medialis muscles throughout the test and analyzed over a 5-s span. The root-mean-square (RMS) and mean-power-frequency (MPF) were calculated. Neuromuscular efficiency (NME) was estimated from the ratio of power to RMS. Muscle power (8.22 ± 0.92 vs. 8.75 ± 0.99 W·kg-1 for peak power and 6.96 ± 0. 72 vs. 7.31 ± 0.77 W·kg-1 for mean power, p < 0.001) and fatigue (30.27 ± 7.98 vs. 34.5 ± 10. 15 %, p < 0.05) during the Wingate test increased significantly from morning to evening. Likewise, MPF (102.14 ± 18.15 vs. 92.38 ± 12.39 Hz during the first 5-s, p < 0.001) and NME (4.78 ± 1.7 vs. 3.88 ± 0.79 W·mV-1 during the first 5-s, p < 0.001) were higher in the evening than the morning; but no significant time-of-day effect was noticed for RMS. Taken together, these results suggest that peripheral mechanisms are more likely the cause of the child’s diurnal variations of muscle power and fatigue during the Wingate test. Key pointsIn boys, performances during the Wingate test fluctuate with the time-of-day.MPF and NME are higher in the evening during the Wingate cycling test.RMS is unaffected by the time-of-day.The evening improvement in muscle power and fatigue is due to an enhancement of the muscle contractile properties. PMID:24149343

  9. Correlation of cardiopulmonary exercise testing parameters with quality of life in stable COPD patients

    PubMed Central

    Mirdamadi, Mahsa; Safavi, Enayat; Abtahi, Hamidreza; Peiman, Soheil

    2016-01-01

    Background The precise head to head relationships between Cardio-pulmonary exercise testing (CPET) parameters and patients’ daily symptoms/activities and the disease social/emotional impact are less well defined. In this study, the correlation of COPD daily symptoms and quality of life [assessed by St. George’s Respiratory Questionnaire (SGRQ)] and COPD severity index (BODE-index) with CPET parameters were investigated. Methods Symptom-limited CPET was performed in 37 consecutive COPD (GOLD I-III) subjects during non-exacerbation phase. The SGRQ was also completed by each patient. Results SGRQ-score correlated negatively with FEV1 (r=−0.49, P<0.01), predicted maximal work-rate (%WR-max) (r=−0.44, P<0.01), V’O2/WR (r=−0.52, P<0.01) and breathing reserve (r=−0.50, P<0.01). However it did not correlate with Peak-V’O2% predicted (r=−0.27, P=0.10). In 20 (54.1%) subjects in which leg fatigue was the main cause for stopping the test, Peak-V’O2, %WR-max, HR-Reserve and Breathing reserve were higher (P=0.04, <0.01, 0.04 and <0.01 respectively) than the others. There was also a significant correlation between BODE-index and ∆VO2/∆WR (r=−0.64, P<0.001) and breathing-reserve (r=−0.38, P=0.018). Conclusions The observed relationships between CPET parameter and daily subjective complaints in COPD were not strong. Those who discontinued the CPET because of leg fatigue were in the earlier stages of COPD. Significant negative correlation between ∆VO2/∆WR and BODE-index suggests that along with COPD progression, regardless of negative past history, other comorbidities such as cardiac/musculoskeletal problems should be sought. PMID:27621870

  10. Correlation of cardiopulmonary exercise testing parameters with quality of life in stable COPD patients

    PubMed Central

    Mirdamadi, Mahsa; Safavi, Enayat; Abtahi, Hamidreza; Peiman, Soheil

    2016-01-01

    Background The precise head to head relationships between Cardio-pulmonary exercise testing (CPET) parameters and patients’ daily symptoms/activities and the disease social/emotional impact are less well defined. In this study, the correlation of COPD daily symptoms and quality of life [assessed by St. George’s Respiratory Questionnaire (SGRQ)] and COPD severity index (BODE-index) with CPET parameters were investigated. Methods Symptom-limited CPET was performed in 37 consecutive COPD (GOLD I-III) subjects during non-exacerbation phase. The SGRQ was also completed by each patient. Results SGRQ-score correlated negatively with FEV1 (r=−0.49, P<0.01), predicted maximal work-rate (%WR-max) (r=−0.44, P<0.01), V’O2/WR (r=−0.52, P<0.01) and breathing reserve (r=−0.50, P<0.01). However it did not correlate with Peak-V’O2% predicted (r=−0.27, P=0.10). In 20 (54.1%) subjects in which leg fatigue was the main cause for stopping the test, Peak-V’O2, %WR-max, HR-Reserve and Breathing reserve were higher (P=0.04, <0.01, 0.04 and <0.01 respectively) than the others. There was also a significant correlation between BODE-index and ∆VO2/∆WR (r=−0.64, P<0.001) and breathing-reserve (r=−0.38, P=0.018). Conclusions The observed relationships between CPET parameter and daily subjective complaints in COPD were not strong. Those who discontinued the CPET because of leg fatigue were in the earlier stages of COPD. Significant negative correlation between ∆VO2/∆WR and BODE-index suggests that along with COPD progression, regardless of negative past history, other comorbidities such as cardiac/musculoskeletal problems should be sought.

  11. Global Aerosols

    Atmospheric Science Data Center

    2013-04-19

    ... sizes and from multiple sources, including biomass burning, mineral dust, sea salt and regional industrial pollution. A color scale is ... desert source region. Deserts are the main sources of mineral dust, and MISR obtains aerosol optical depth at visible wavelengths ...

  12. Aerosol release and transport program. Semiannual progress report, October 1985-March 1986. Volume 3, No. 1

    SciTech Connect

    Adams, R.E.; Tobias, M.L.

    1986-06-01

    This report summarizes progress for the Aerosol Release and Transport Program sponsored by the Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, Division of Accident Evaluation, for the period October 1985-March 1986. Topics discussed include (1) Aerosol-Moisture Interaction Test (AMIT) experiments 5002 through 5006; (2) efforts to measure the aerodynamic shape factor chi during these experiments; (3) a development test for determining parameters for generating concrete aerosols; (4) data concerning water-vapor generation during plasma torch operation; (5) the use of the ideal gas law in calculating relative humidity; (6) initial comparisons of CONTAIN code results with experimental data for an iron oxide aerosol-steam experiment in the NSPP Facility; (7) pretest predictions using the CONTAIN code for LACE experiment LA-2.

  13. Determination of fiber-matrix interface failure parameters from off-axis tests

    NASA Technical Reports Server (NTRS)

    Naik, Rajiv A.; Crews, John H., Jr.

    1993-01-01

    Critical fiber-matrix (FM) interface strength parameters were determined using a micromechanics-based approach together with failure data from off-axis tension (OAT) tests. The ply stresses at failure for a range of off-axis angles were used as input to a micromechanics analysis that was performed using the personal computer-based MICSTRAN code. FM interface stresses at the failure loads were calculated for both the square and the diamond array models. A simple procedure was developed to determine which array had the more severe FM interface stresses and the location of these critical stresses on the interface. For the cases analyzed, critical FM interface stresses were found to occur with the square array model and were located at a point where adjacent fibers were closest together. The critical FM interface stresses were used together with the Tsai-Wu failure theory to determine a failure criterion for the FM interface. This criterion was then used to predict the onset of ply cracking in angle-ply laminates for a range of laminate angles. Predictions for the onset of ply cracking in angle-ply laminates agreed with the test data trends.

  14. Effect of High-Humidity Testing on Material Parameters of Flexible Printed Circuit Board Materials

    NASA Astrophysics Data System (ADS)

    Lahokallio, Sanna; Saarinen, Kirsi; Frisk, Laura

    2013-09-01

    The tendency of polymers to absorb moisture impairs especially their electrical and mechanical properties. These are important characteristics for printed circuit board (PCB) materials, which should provide mechanical support as well as electrical insulation in many different environments in order to guarantee safe operation for electrical devices. Moreover, the effects of moisture are accelerated at increased temperatures. In this study, three flexible PCB dielectric materials, namely polyimide (PI), fluorinated ethylene-propylene (FEP), and polyethylene terephthalate (PET), were aged over different periods of time in a high-humidity test, in which the temperature was 85°C and relative humidity 85%. After aging, the changes in the structure of the polymers were studied by determining different material parameters such as modulus of elasticity, glass-transition temperature, melting point, coefficient of thermal expansion, water absorption, and crystallinity, and changes in the chemical structure with several techniques including thermomechanical analysis, differential scanning calorimetry, Fourier-transform infrared spectroscopy, moisture analysis, and a precision scale. The results showed that PI was extremely stable under the aging conditions and therefore an excellent choice for electrical applications under harsh conditions. Similarly, FEP proved to be relatively stable under the applied aging conditions. However, its crystallinity increased markedly during aging, and after 6000 h of aging the results indicated oxidation. PET suffered from hydrolysis during the test, leading to its embrittlement after 2000 h of aging.

  15. Tests of a New Drowsiness Characterization and Monitoring System Based on Ocular Parameters.

    PubMed

    François, Clémentine; Hoyoux, Thomas; Langohr, Thomas; Wertz, Jérôme; Verly, Jacques G

    2016-02-01

    Drowsiness is the intermediate state between wakefulness and sleep. It is characterized by impairments of performance, which can be very dangerous in many activities and can lead to catastrophic accidents in transportation or in industry. There is thus an obvious need for systems that are able to continuously, objectively, and automatically estimate the level of drowsiness of a person busy at a task. We have developed such a system, which is based on the physiological state of a person, and, more specifically, on the values of ocular parameters extracted from images of the eye (photooculography), and which produces a numerical level of drowsiness. In order to test our system, we compared the level of drowsiness determined by our system to two references: (1) the level of drowsiness obtained by analyzing polysomnographic signals; and (2) the performance of individuals in the accomplishment of a task. We carried out an experiment in which 24 participants were asked to perform several Psychomotor Vigilance Tests in different sleep conditions. The results show that the output of our system is well correlated with both references. We determined also the best drowsiness level threshold in order to warn individuals before they reach dangerous situations. Our system thus has significant potential for reliably quantifying the level of drowsiness of individuals accomplishing a task and, ultimately, for preventing drowsiness-related accidents. PMID:26840325

  16. Retrievals of atmospheric CO2 from simulated space-borne measurements of backscattered near-infrared sunlight: accounting for aerosol effects.

    PubMed

    Butz, André; Hasekamp, Otto P; Frankenberg, Christian; Aben, Ilse

    2009-06-20

    Retrievals of atmospheric carbon dioxide (CO2) from space-borne measurements of backscattered near-infrared sunlight are hampered by aerosol and cirrus cloud scattering effects. We propose a retrieval approach that allows for the retrieval of a few effective aerosol parameters simultaneously with the CO2 total column by parameterizing particle amount, height distribution, and microphysical properties. Two implementations of the proposed method covering different spectral bands are tested for an ensemble of simulated nadir observations for aerosol (and cirrus) loaded scenes over low- and mid-latitudinal land surfaces. The residual aerosol-induced CO(2) errors are mostly below 1% up to aerosol optical thickness 0.5. The proposed methods also perform convincing for scenes where cirrus clouds of optical thickness 0.1 overlay the aerosol.

  17. Multi-parameter in vitro toxicity testing of crizotinib, sunitinib, erlotinib, and nilotinib in human cardiomyocytes

    SciTech Connect

    Doherty, Kimberly R.; Wappel, Robert L.; Talbert, Dominique R.; Trusk, Patricia B.; Moran, Diarmuid M.; Kramer, James W.; Brown, Arthur M.; Shell, Scott A.; Bacus, Sarah

    2013-10-01

    Tyrosine kinase inhibitors (TKi) have greatly improved the treatment and prognosis of multiple cancer types. However, unexpected cardiotoxicity has arisen in a subset of patients treated with these agents that was not wholly predicted by pre-clinical testing, which centers around animal toxicity studies and inhibition of the human Ether-à-go-go-Related Gene (hERG) channel. Therefore, we sought to determine whether a multi-parameter test panel assessing the effect of drug treatment on cellular, molecular, and electrophysiological endpoints could accurately predict cardiotoxicity. We examined how 4 FDA-approved TKi agents impacted cell viability, apoptosis, reactive oxygen species (ROS) generation, metabolic status, impedance, and ion channel function in human cardiomyocytes. The 3 drugs clinically associated with severe cardiac adverse events (crizotinib, sunitinib, nilotinib) all proved to be cardiotoxic in our in vitro tests while the relatively cardiac-safe drug erlotinib showed only minor changes in cardiac cell health. Crizotinib, an ALK/MET inhibitor, led to increased ROS production, caspase activation, cholesterol accumulation, disruption in cardiac cell beat rate, and blockage of ion channels. The multi-targeted TKi sunitinib showed decreased cardiomyocyte viability, AMPK inhibition, increased lipid accumulation, disrupted beat pattern, and hERG block. Nilotinib, a second generation Bcr-Abl inhibitor, led to increased ROS generation, caspase activation, hERG block, and an arrhythmic beat pattern. Thus, each drug showed a unique toxicity profile that may reflect the multiple mechanisms leading to cardiotoxicity. This study demonstrates that a multi-parameter approach can provide a robust characterization of drug-induced cardiomyocyte damage that can be leveraged to improve drug safety during early phase development. - Highlights: • TKi with known adverse effects show unique cardiotoxicity profiles in this panel. • Crizotinib increases ROS, apoptosis, and

  18. Uncertainties in satellite remote sensing of aerosols and impact on monitoring its long-term trend: a review and perspective

    NASA Astrophysics Data System (ADS)

    Li, Z.; Zhao, X.; Kahn, R.; Mishchenko, M.; Remer, L.; Lee, K.-H.; Wang, M.; Laszlo, I.; Nakajima, T.; Maring, H.

    2009-07-01

    As a result of increasing attention paid to aerosols in climate studies, numerous global satellite aerosol products have been generated. Aerosol parameters and underlining physical processes are now incorporated in many general circulation models (GCMs) in order to account for their direct and indirect effects on the earth's climate, through their interactions with the energy and water cycles. There exists, however, an outstanding problem that these satellite products have substantial discrepancies, that must be lowered substantially for narrowing the range of the estimates of aerosol's climate effects. In this paper, numerous key uncertain factors in the retrieval of aerosol optical depth (AOD) are articulated for some widely used and relatively long satellite aerosol products including the AVHRR, TOMS, MODIS, MISR, and SeaWiFS. We systematically review the algorithms developed for these sensors in terms of four key elements that influence the quality of passive satellite aerosol retrieval: calibration, cloud screening, classification of aerosol types, and surface effects. To gain further insights into these uncertain factors, the NOAA AVHRR data are employed to conduct various tests, which help estimate the ranges of uncertainties incurred by each of the factors. At the end, recommendations are made to cope with these issues and to produce a consistent and unified aerosol database of high quality for both environment monitoring and climate studies.

  19. Control parameters of the martian dune field positions at planetary scale: tests by the MCD

    NASA Astrophysics Data System (ADS)

    allemand, pascal

    2016-04-01

    The surface of Mars is occupied by more than 500 dunes fields mainly located inside impact craters of the south hemisphere and near the north polar cap. The questions of the activity of martian dunes and of the localization of the martian dune fields are not completely solved. It has been demonstrated recently by image observation and image correlation that some of these dune fields are clearly active. The sand flux of one of them has been even estimated. But there is no global view of the degree of activity of each the dune fields. (2)The topography of impact craters in which dune fields are localized is an important factor of their position. But there is no consensus of the effect of global atmospheric circulation on dune field localization. These two questions are addressed using the results of Mars Climate Database 5.2 (MCD) (Millour, 2015; Forget et al., 1999). The wind fields of the MCD have been first validated against the observations made on active dune fields. Using a classical transport law, the Drift Potential (DP) and the Relative Drift Potential (RDP) have been computed for each dune fields. A good correlation exists between the position of dune fields and specific values of these two parameters. The activity of each dune field is estimated from these parameters and tested on some examples by image observations. Finally a map of sand flow has been computed at the scale of the planet. This map shows that sand and dust is trapped in specific regions. These regions correspond to the area of dune field concentration.

  20. A design of experiments test to define critical spray cleaning parameters for Brulin 815 GD and Jettacin cleaners

    NASA Technical Reports Server (NTRS)

    Keen, Jill M.; Evans, Kurt B.; Schiffman, Robert L.; Deweese, C. Darrell; Prince, Michael E.

    1995-01-01

    Experimental design testing was conducted to identify critical parameters of an aqueous spray process intended for cleaning solid rocket motor metal components (steel and aluminum). A two-level, six-parameter, fractional factorial matrix was constructed and conducted for two cleaners, Brulin 815 GD and Diversey Jettacin. The matrix parameters included cleaner temperature and concentration, wash density, wash pressure, rinse pressure, and dishwasher type. Other spray parameters: nozzle stand-off, rinse water temperature, wash and rinse time, dry conditions, and type of rinse water (deionized) were held constant. Matrix response testing utilized discriminating bond specimens (fracture energy and tensile adhesion strength) which represent critical production bond lines. Overall, Jettacin spray cleaning was insensitive to the range of conditions tested for all parameters and exhibited bond strengths significantly above the TCA test baseline for all bond lines tested. Brulin 815 was sensitive to cleaning temperature, but produced bond strengths above the TCA test baseline even at the lower temperatures. Ultimately, the experimental design database was utilized to recommend process parameter settings for future aqueous spray cleaning characterization work.

  1. Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements.

    PubMed

    Perrone, M R; Burlizzi, P

    2016-07-01

    Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å(λ1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but

  2. The MODIS Aerosol Algorithm, Products and Validation

    NASA Technical Reports Server (NTRS)

    Remer, L. A.; Kaufman, Y. J.; Tanre, D.; Mattoo, S.; Chu, D. A.; Martins, J. V.; Li, R.-R.; Ichoku, C.; Levy, R. C.; Kleidman, R. G.

    2003-01-01

    The MODerate resolution Imaging Spectroradiometer (MODIS) aboard both NASA's Terra and Aqua satellites is making near global daily observations of the earth in a wide spectral range. These measurements are used to derive spectral aerosol optical thickness and aerosol size parameters over both land and ocean. The aerosol products available over land include aerosol optical thickness at three visible wavelengths, a measure of the fraction of aerosol optical thickness attributed to the fine mode and several derived parameters including reflected spectral solar flux at top of atmosphere. Over ocean, the aerosol optical thickness is provided in seven wavelengths from 0.47 microns to 2.13 microns. In addition, quantitative aerosol size information includes effective radius of the aerosol and quantitative fraction of optical thickness attributed to the fine mode. Spectral aerosol flux, mass concentration and number of cloud condensation nuclei round out the list of available aerosol products over the ocean. The spectral optical thickness and effective radius of the aerosol over the ocean are validated by comparison with two years of AERONET data gleaned from 133 AERONET stations. 8000 MODIS aerosol retrievals colocated with AERONET measurements confirm that one-standard deviation of MODIS optical thickness retrievals fall within the predicted uncertainty of delta tauapproximately equal to plus or minus 0.03 plus or minus 0.05 tau over ocean and delta tay equal to plus or minus 0.05 plus or minus 0.15 tau over land. 271 MODIS aerosol retrievals co-located with AERONET inversions at island and coastal sites suggest that one-standard deviation of MODIS effective radius retrievals falls within delta r_eff approximately equal to 0.11 microns. The accuracy of the MODIS retrievals suggests that the product can be used to help narrow the uncertainties associated with aerosol radiative forcing of global climate.

  3. Parameters Influencing Baseline HIV-1 Genotypic Tropism Testing Related to Clinical Outcome in Patients on Maraviroc

    PubMed Central

    Sierra, Saleta; Dybowski, J. Nikolai; Pironti, Alejandro; Heider, Dominik; Güney, Lisa; Thielen, Alex; Reuter, Stefan; Esser, Stefan; Fätkenheuer, Gerd; Lengauer, Thomas; Hoffmann, Daniel; Pfister, Herbert; Jensen, Björn; Kaiser, Rolf

    2015-01-01

    Objectives We analysed the impact of different parameters on genotypic tropism testing related to clinical outcome prediction in 108 patients on maraviroc (MVC) treatment. Methods 87 RNA and 60 DNA samples were used. The viral tropism was predicted using the geno2pheno[coreceptor] and T-CUP tools with FPR cut-offs ranging from 1%-20%. Additionally, 27 RNA and 28 DNA samples were analysed in triplicate, 43 samples with the ESTA assay and 45 with next-generation sequencing. The influence of the genotypic susceptibility score (GSS) and 16 MVC-resistance mutations on clinical outcome was also studied. Results Concordance between single-amplification testing compared to ESTA and to NGS was in the order of 80%. Concordance with NGS was higher at lower FPR cut-offs. Detection of baseline R5 viruses in RNA and DNA samples by all methods significantly correlated with treatment success, even with FPR cut-offs of 3.75%-7.5%. Triple amplification did not improve the prediction value but reduced the number of patients eligible for MVC. No influence of the GSS or MVC-resistance mutations but adherence to treatment, on the clinical outcome was detected. Conclusions Proviral DNA is valid to select candidates for MVC treatment. FPR cut-offs of 5%-7.5% and single amplification from RNA or DNA would assure a safe administration of MVC without excluding many patients who could benefit from this drug. In addition, the new prediction system T-CUP produced reliable results. PMID:25970632

  4. GTE_TRACEP_DC8 Parameters 7

    Atmospheric Science Data Center

    2013-02-18

    ... Parameters:  IR Aerosol Scattering Ratio (1064 nm) Composite Tropospheric Ozone Cross-Sections Tropopause heights ... Scattering Ratio (587 nm) Visible Aerosol Depolarization (1064 nm) SCAR-B Block:  SCAR-B Products ...

  5. Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET

    NASA Astrophysics Data System (ADS)

    Chaikovsky, A.; Dubovik, O.; Holben, B.; Bril, A.; Goloub, P.; Tanré, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; Grudo, Y.; Lopatin, A.; Karol, Y.; Lapyonok, T.; Amiridis, V.; Ansmann, A.; Apituley, A.; Allados-Arboledas, L.; Binietoglou, I.; Boselli, A.; D'Amico, G.; Freudenthaler, V.; Giles, D.; Granados-Muñoz, M. J.; Kokkalis, P.; Nicolae, D.; Oshchepkov, S.; Papayannis, A.; Perrone, M. R.; Pietruczuk, A.; Rocadenbosch, F.; Sicard, M.; Slutsker, I.; Talianu, C.; De Tomasi, F.; Tsekeri, A.; Wagner, J.; Wang, X.

    2015-12-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  6. Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET

    NASA Astrophysics Data System (ADS)

    Chaikovsky, Anatoli; Dubovik, Oleg; Holben, Brent; Bril, Andrey; Goloub, Philippe; Tanré, Didier; Pappalardo, Gelsomina; Wandinger, Ulla; Chaikovskaya, Ludmila; Denisov, Sergey; Grudo, Jan; Lopatin, Anton; Karol, Yana; Lapyonok, Tatsiana; Amiridis, Vassilis; Ansmann, Albert; Apituley, Arnoud; Allados-Arboledas, Lucas; Binietoglou, Ioannis; Boselli, Antonella; D'Amico, Giuseppe; Freudenthaler, Volker; Giles, David; José Granados-Muñoz, María; Kokkalis, Panayotis; Nicolae, Doina; Oshchepkov, Sergey; Papayannis, Alex; Perrone, Maria Rita; Pietruczuk, Alexander; Rocadenbosch, Francesc; Sicard, Michaël; Slutsker, Ilya; Talianu, Camelia; De Tomasi, Ferdinando; Tsekeri, Alexandra; Wagner, Janet; Wang, Xuan

    2016-03-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data. The algorithm starts with the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode.The LIRIC software package was implemented and tested at a number of EARLINET stations. Intercomparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLINET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  7. LiDAR DTMs and anthropogenic feature extraction: testing the feasibility of geomorphometric parameters in floodplains

    NASA Astrophysics Data System (ADS)

    Sofia, G.; Tarolli, P.; Dalla Fontana, G.

    2012-04-01

    resolution topography have been proven to be reliable for feasible applications. The use of statistical operators as thresholds for these geomorphic parameters, furthermore, showed a high reliability for feature extraction in mountainous environments. The goal of this research is to test if these morphological indicators and objective thresholds can be feasible also in floodplains, where features assume different characteristics and other artificial disturbances might be present. In the work, three different geomorphic parameters are tested and applied at different scales on a LiDAR DTM of typical alluvial plain's area in the North East of Italy. The box-plot is applied to identify the threshold for feature extraction, and a filtering procedure is proposed, to improve the quality of the final results. The effectiveness of the different geomorphic parameters is analyzed, comparing automatically derived features with the surveyed ones. The results highlight the capability of high resolution topography, geomorphic indicators and statistical thresholds for anthropogenic features extraction and characterization in a floodplains context.

  8. Neutrinos and dark energy after Planck and BICEP2: data consistency tests and cosmological parameter constraints

    SciTech Connect

    Zhang, Jing-Fei; Geng, Jia-Jia; Zhang, Xin E-mail: gengjiajia163@163.com

    2014-10-01

    The detection of the B-mode polarization of the cosmic microwave background (CMB) by the BICEP2 experiment implies that the tensor-to-scalar ratio r should be involved in the base standard cosmology. In this paper, we extend the ΛCDM r+neutrino/dark radiation models by replacing the cosmological constant with the dynamical dark energy with constant w. Four neutrino plus dark energy models are considered, i.e., the wCDM r ∑ m{sub ν}, wCDM r N{sub eff}, wCDM r ∑ m{sub ν} N{sub eff}, and wCDM r N{sub eff} m{sub ν,sterile}{sup eff} models. The current observational data considered in this paper include the Planck temperature data, the WMAP 9-year polarization data, the baryon acoustic oscillation data, the Hubble constant direct measurement data, the Planck Sunyaev-Zeldovich cluster counts data, the Planck CMB lensing data, the cosmic shear data, and the BICEP2 polarization data. We test the data consistency in the four cosmological models, and then combine the consistent data sets to perform joint constraints on the models. We focus on the constraints on the parameters w, ∑ m{sub ν}, N{sub eff}, and m{sub ν,sterile}{sup eff}.

  9. Numerical tests for effects of various parameters in niching genetic algorithm applied to regional waveform inversion

    NASA Astrophysics Data System (ADS)

    Li, Cong; Lei, Jianshe

    2014-10-01

    In this paper, we focus on the influences of various parameters in the niching genetic algorithm inversion procedure on the results, such as various objective functions, the number of the models in each subpopulation, and the critical separation radius. The frequency-waveform integration (F-K) method is applied to synthesize three-component waveform data with noise in various epicentral distances and azimuths. Our results show that if we use a zero-th-lag cross-correlation function, then we will obtain the model with a faster convergence and a higher precision than other objective functions. The number of models in each subpopulation has a great influence on the rate of convergence and computation time, suggesting that it should be obtained through tests in practical problems. The critical separation radius should be determined carefully because it directly affects the multi-extreme values in the inversion. We also compare the inverted results from full-band waveform data and surface-wave frequency-band (0.02-0.1 Hz) data, and find that the latter is relatively poorer but still has a higher precision, suggesting that surface-wave frequency-band data can also be used to invert for the crustal structure.

  10. Numerical tests for effects of various parameters in niching genetic algorithm applied to regional waveform inversion

    NASA Astrophysics Data System (ADS)

    Li, Cong; Lei, Jianshe

    2014-09-01

    In this paper, we focus on the influences of various parameters in the niching genetic algorithm inversion procedure on the results, such as various objective functions, the number of the models in each subpopulation, and the critical separation radius. The frequency-waveform integration (F-K) method is applied to synthesize three-component waveform data with noise in various epicentral distances and azimuths. Our results show that if we use a zero-th-lag cross-correlation function, then we will obtain the model with a faster convergence and a higher precision than other objective functions. The number of models in each subpopulation has a great influence on the rate of convergence and computation time, suggesting that it should be obtained through tests in practical problems. The critical separation radius should be determined carefully because it directly affects the multi-extreme values in the inversion. We also compare the inverted results from full-band waveform data and surface-wave frequency-band (0.02-0.1 Hz) data, and find that the latter is relatively poorer but still has a higher precision, suggesting that surface-wave frequency-band data can also be used to invert for the crustal structure.

  11. Prediction of outcome in breast cancer patients using test parameters from complete blood count

    PubMed Central

    ZHANG, PINGPING; ZONG, YULONG; LIU, MOHAN; TAI, YANHONG; CAO, YUAN; HU, CHENGIIN

    2016-01-01

    The aim of this study was to evaluate the prognostic effect of test parameters from pretreatment complete blood count (CBC) for predicting outcome in breast cancer patients. A total of 162 patients with breast cancer and a long follow-up were enrolled in this study. Red cell indices (RCIs) and neutrophil-lymphocyte ratio (NLR) from CBC prior to treatment, as well as related clinical data, were retrospectively collected. We evaluated the association of RCI and NLR with tumor size, clinical stage, histological grade, estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 status. We further performed survival analysis and Cox multivariate analysis, stratified by RCI and NLR median values, to evaluate their prognostic effects. In the disease-free survival (DFS) analysis, patients in the higher mean corpuscular hemoglobin (MCH) and NLR groups exhibited shorter DFS times compared with those in the lower MCH and NLR groups (P=0.017 for MCH and P=0.039 for NLR). The univariate analysis revealed that both MCH and NLR were significantly associated with DFS. The Cox multivariate analysis demonstrated that only MCH was an independent predictor associated with disease relapse (hazard ratio = 1.975, 95% confidence interval: 1.118–3.487, P=0.019), whereas no index was associated with overall survival. Our results suggest that MCH prior to treatment may be a predictive marker associated with DFS in breast cancer. PMID:27284423

  12. The application of new bioavailability parameters in the bioequivalence testing of antimicrobial agents.

    PubMed

    Wessels, J C; Koeleman, H A; Steyn, H S; Ellis, S M

    1993-11-01

    Two new bioavailability parameters were recently suggested [Koeleman et al. 1991] to define (i) the time that the concentration in the blood stays above a defined minimum effective concentration, te and (ii) the onset of the effect, to. In addition to conventional bioequivalence parameters, the new bioavailabilty parameters (to and te) were calculated in this study and statistically compared for penicillin, chloroquine, oxytetracycline, amoxycillin and flucloxacillin from available bioequivalence data. For oxytetracycline, flucloxacillin and amoxycillin, the conventional bioavailability parameters indicated partial equivalence whereas using the te and to parameters, more realistic indications of the possible extent of the performance of a drug from dosage forms were obtained than with the conventional bioequivalence parameters. The new parameters gave additional information for a better evaluation of the performance of a drug from a dosage form.

  13. Coefficients of an analytical aerosol forcing equation determined with a Monte-Carlo radiation model

    NASA Astrophysics Data System (ADS)

    Hassan, Taufiq; Moosmüller, H.; Chung, Chul E.

    2015-10-01

    Simple analytical equations for global-average direct aerosol radiative forcing are useful to quickly estimate aerosol forcing changes as function of key atmosphere, surface and aerosol parameters. The surface and atmosphere parameters in these analytical equations are the globally uniform atmospheric transmittance and surface albedo, and have so far been estimated from simplified observations under untested assumptions. In the present study, we take the state-of-the-art analytical equation and write the aerosol forcing as a linear function of the single scattering albedo (SSA) and replace the average upscatter fraction with the asymmetry parameter (ASY). Then we determine the surface and atmosphere parameter values of this equation using the output from the global MACR (Monte-Carlo Aerosol Cloud Radiation) model, as well as testing the validity of the equation. The MACR model incorporated spatio-temporally varying observations for surface albedo, cloud optical depth, water vapor, stratosphere column ozone, etc., instead of assuming as in the analytical equation that the atmosphere and surface parameters are globally uniform, and should thus be viewed as providing realistic radiation simulations. The modified analytical equation needs globally uniform aerosol parameters that consist of AOD (Aerosol Optical Depth), SSA, and ASY. The MACR model is run here with the same globally uniform aerosol parameters. The MACR model is also run without cloud to test the cloud effect. In both cloudy and cloud-free runs, the equation fits in the model output well whether SSA or ASY varies. This means the equation is an excellent approximation for the atmospheric radiation. On the other hand, the determined parameter values are somewhat realistic for the cloud-free runs but unrealistic for the cloudy runs. The global atmospheric transmittance, one of the determined parameters, is found to be around 0.74 in case of the cloud-free conditions and around 1.03 with cloud. The surface

  14. Aerosol extinction measurements with CO2-lidar

    NASA Technical Reports Server (NTRS)

    Hagard, Arne; Persson, Rolf

    1992-01-01

    With the aim to develop a model for infrared extinction due to aerosols in slant paths in the lower atmosphere we perform measurements with a CO2-lidar. Earlier measurements with a transmissometer along horizontal paths have been used to develop relations between aerosol extinction and meteorological parameters. With the lidar measurements we hope to develop corresponding relations for altitude profiles of the aerosol extinction in the infrared. An important application is prediction of detection range for infrared imaging systems.

  15. The Impact of Escape Alternative Position Change in Multiple-Choice Test on the Psychometric Properties of a Test and Its Items Parameters

    ERIC Educational Resources Information Center

    Hamadneh, Iyad Mohammed

    2015-01-01

    This study aimed at investigating the impact changing of escape alternative position in multiple-choice test on the psychometric properties of a test and it's items parameters (difficulty, discrimination & guessing), and estimation of examinee ability. To achieve the study objectives, a 4-alternative multiple choice type achievement test…

  16. The diagnostic value of treadmill exercise test parameters for coronary artery disease.

    PubMed

    Sun, Jian Ling; Han, Rong; Guo, Ji Hong; Li, Xiao Ying; Ma, Xian Lin; Wang, Chong Yu

    2013-01-01

    The aim of this study was to determine the diagnostic value of treadmill exercise test (TET) in patients with coronary heart disease (CHD) by comparing the diagnostic conclusions with coronary angiography (CAG). Patients (445) with CHD and suspected CHD underwent TET and CAG, and the corresponding diagnostic conclusions were compared. (1) Out of the 200 cases that had the positive result with TET, 150 cases had been diagnosed CHD by means of CAG; Out of the 245 cases that had the negative result during TET, only 39 cases had been diagnosed CHD by means of CAG. The sensitivity, specificity, positive predictive value, negative predictive value, the false positive incidence, the false negative incidence, and agreement rate in diagnosis of CHD by TET were 79.36, 80.40, 75.00, 84.08, 25.00, 15.92, and 80.00 %, respectively. The patients with multi-vessel disease had a higher positive rate of TET as compared with those with single-vessel disease (P < 0.05). (2) The parameters for 189 cases positive CAG (patients diagnosed CHD by CAG) and 256 cases negative CAG (the control group), including the general exercise time, peak heart rate, and the beginning time of ST depression, were lower than that of control group (P < 0.05). However, the extent of ST depression and duration of ST depression were higher in these patients than in the control group (P < 0.05). (3) 189 cases positive CAG, include 87 cases of single coronary artery and 102 cases of binary or more coronary arteries (the control group). The parameters, including the general exercise time, peak heart rate, and the beginning time of ST depression, were lower than the control group (P < 0.05). However, the extent of ST depression and duration of ST depression were higher in these patients than the control group (P < 0.05). The TET is valuable for noninvasive diagnosis of CHD, especially for patients with multi-vessel disease. PMID:22872585

  17. A Climatology of Global Aerosol Mixtures to Support Sentinel-5P and Earthcare Mission Applications

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Amaridis, V.; Kahn, R. A.

    2015-06-01

    Since constraining aerosol type with satellite remote sensing continues to be a challenge, we present a newly derived global climatology of aerosol mixtures to support atmospheric composition studies that are planned for Sentinel-5P and EarthCARE. The global climatology is obtained via application of iterative cluster analysis to gridded global decadal and seasonal mean values of the aerosol optical depth (AOD) of sulfate, biomass burning, mineral dust and marine aerosol as a proportion of the total AOD at 500nm output from the Goddard Chemistry Aerosol Radiation and Transport (GOCART). For both the decadal and seasonal means, the number of aerosol mixtures (clusters) identified is ≈10. Analysis of the percentage contribution of the component aerosol types to each mixture allowed development of a straightforward naming convention and taxonomy, and assignment of primary colours for the generation of true colour-mixing and easy-to-interpret maps of the spatial distribution of clusters across the global grid. To further help characterize the mixtures, aerosol robotic network (AERONET) Level 2.0 Version 2 inversion products were extracted from each cluster's spatial domain and used to estimate climatological values of key optical and microphysical parameters. The aerosol type climatology represents current knowledge that would be enhanced, possibly corrected, and refined by high temporal and spectral resolution, cloud-free observations produced by Sentinel-5P and EarthCARE instruments. The global decadal mean and seasonal gridded partitions comprise a preliminary reference framework and global climatology that can help inform the choice of components and mixtures in aerosol retrieval algorithms used by instruments such as TROPOMI and ATLID, and to test retrieval results.

  18. Characteristics of aerosol optical depth and Ångström parameters over Mohal in the Kullu Valley of Northwest Himalayan Region, India

    NASA Astrophysics Data System (ADS)

    Sharma, Nand; Kuniyal, Jagdish; Singh, Mahavir; Sharma, Manum; Guleria, Raj

    2011-04-01

    The measurements using a ground based multi wavelength radiometer (MWR) at Mohal (31°54'N, 77°07'E, 1154 m AMSL) in the Kullu valley of Northwestern Himalayan region show that the spectral aerosol optical depth (AOD) and turbidity coefficient, β, are high in summer, moderate in monsoon season, low in winter and lowest in autumn, while wavelength exponent, α, has an opposite trend. Average annual value of AOD at 500 nm is 0.24±0.01, 0.43±0.02, and 0.28±0.02; that of β is 0.14±0.01, 0.22±0.02, and 0.17±0.03; and that of α is 1.06±0.09, 1.16±0.10, and 0.86±0.13, respectively, for clear, hazy and partially clear sky days. The considerably greater value of β on hazy days indicates more coarse particles in mountain haze. The fractional asymmetry factor (AF) is more negative in summer and autumn months. The AOD and β have significantly positive correlation with temperature and wind speed, suggesting high AODs and turbidity on hot and windy days.

  19. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    NASA Technical Reports Server (NTRS)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  20. NEUTRAL INTERSTELLAR HELIUM PARAMETERS BASED ON IBEX-Lo OBSERVATIONS AND TEST PARTICLE CALCULATIONS

    SciTech Connect

    Bzowski, M.; Kubiak, M. A.; Sokol, J. M.; Hlond, M.; Moebius, E.; Bochsler, P.; Leonard, T.; Heirtzler, D.; Kucharek, H.; Schwadron, N. A.; Crew, G. B.; Fuselier, S. A.; McComas, D. J.

    2012-02-01

    Because of its high ionization potential and weak interaction with hydrogen, neutral interstellar helium (NISHe) is almost unaffected at the heliospheric interface with the interstellar medium and freely enters the solar system. This second most abundant species provides some of the best information on the characteristics of the interstellar gas in the local interstellar cloud. The Interstellar Boundary Explorer (IBEX) is the second mission to directly detect NISHe. We present a comparison between recent IBEX NISHe observations and simulations carried out using a well-tested quantitative simulation code. Simulation and observation results compare well for times when measured fluxes are dominated by NISHe (and contributions from other species are small). Differences between simulations and observations indicate a previously undetected secondary population of neutral helium, likely produced by interaction of interstellar helium with plasma in the outer heliosheath. Interstellar neutral parameters are statistically different from previous in situ results obtained mostly from the GAS/Ulysses experiment, but they do agree with the local interstellar flow vector obtained from studies of interstellar absorption: the newly established flow direction is ecliptic longitude 79.{sup 0}2, latitude -5.{sup 0}1, the velocity is {approx}22.8 km s{sup -1}, and the temperature is 6200 K. These new results imply a markedly lower absolute velocity of the gas and thus significantly lower dynamic pressure on the boundaries of the heliosphere and different orientation of the Hydrogen Deflection Plane compared to prior results from Ulysses. A different orientation of this plane also suggests a new geometry of the interstellar magnetic field, and the lower dynamic pressure calls for a compensation by other components of the pressure balance, most likely a higher density of interstellar plasma and strength of interstellar magnetic field.

  1. Multi-modal analysis of aerosol robotic network size distributions for remote sensing applications: dominant aerosol type cases

    NASA Astrophysics Data System (ADS)

    Taylor, M.; Kazadzis, S.; Gerasopoulos, E.

    2014-03-01

    To date, size distributions obtained from the aerosol robotic network (AERONET) have been fit with bi-lognormals defined by six secondary microphysical parameters: the volume concentration, effective radius, and the variance of fine and coarse particle modes. However, since the total integrated volume concentration is easily calculated and can be used as an accurate constraint, the problem of fitting the size distribution can be reduced to that of deducing a single free parameter - the mode separation point. We present a method for determining the mode separation point for equivalent-volume bi-lognormal distributions based on optimization of the root mean squared error and the coefficient of determination. The extracted secondary parameters are compared with those provided by AERONET's Level 2.0 Version 2 inversion algorithm for a set of benchmark dominant aerosol types, including desert dust, biomass burning aerosol, urban sulphate and sea salt. The total volume concentration constraint is then also lifted by performing multi-modal fits to the size distribution using nested Gaussian mixture models, and a method is presented for automating the selection of the optimal number of modes using a stopping condition based on Fisher statistics and via the application of statistical hypothesis testing. It is found that the method for optimizing the location of the mode separation point is independent of the shape of the aerosol volume size distribution (AVSD), does not require the existence of a local minimum in the size interval 0.439 μm ≤ r ≤ 0.992 μm, and shows some potential for optimizing the bi-lognormal fitting procedure used by AERONET particularly in the case of desert dust aerosol. The AVSD of impure marine aerosol is found to require three modes. In this particular case, bi-lognormals fail to recover key features of the AVSD. Fitting the AVSD more generally with multi-modal models allows automatic detection of a statistically significant number of aerosol

  2. A satellite view of the direct effect of aerosols on solar radiation at global scale

    NASA Astrophysics Data System (ADS)

    Hatzianastassiou, Nikolaos; Papadimas, Christos D.; Matsoukas, Christos; Fotiadi, Aggeliki; Benas, Nikolaos; Vardavas, Ilias

    2016-04-01

    Aerosols are a key parameter for better understanding and predicting current and future climate change. They are determining, apart from clouds, patterns of solar radiation through scattering and absorption processes. Especially, under cloud-free skies, aerosols are the major modulator of the solar radiation budget of the Earth-atmosphere system. Although significant improvement has been made as to better understanding the direct radiative effect (DRE) of aerosols, there is still a need for further improvement in our knowledge of the DRE spatial and temporal patterns, in particular with respect to extended spatial and temporal coverage of relevant information. In an ongoing rapidly evolving era of great satellite-based achievements, concerning the knowledge of solar radiation budget and its modulators, and with the great progress in obtaining significant information on key aerosol optical properties needed for modeling DRE, it is a great challenge to use all this new aerosol information and to see what is the new acquired scientific knowledge. The objective of this study is to obtain an improved view of global aerosol DRE effects using contemporary accurate data for the important atmospheric and surface parameters determining the solar radiation budget, with emphasis to state of the art aerosol data. Thus, a synergy is made of different datasets providing the necessary input data and of a detailed spectral radiative transfer model (RTM) to compute spectral globally distributed aerosol DREs. Emphasis is given on using highly accurate and well-tested aerosol optical properties. Spectral information on aerosol optical depth (AOD) is taken from retrieved products of the MODerate resolution Imaging Spectroradiometer (MODIS) instrument, while similar information is taken from MODIS for the aerosol asymmetry parameter (AP) over ocean. Information from MODIS is also taken for the aerosol single scattering albedo (SSA). All this information comes from the latest Collection

  3. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    NASA Technical Reports Server (NTRS)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  4. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    NASA Astrophysics Data System (ADS)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD < 0.3, 30 % for AOD > 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ < 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (< 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by varying the different assumed parameters in the

  5. Unidimensional IRT Item Parameter Estimates across Equivalent Test Forms with Confounding Specifications within Dimensions

    ERIC Educational Resources Information Center

    Matlock, Ki Lynn; Turner, Ronna

    2016-01-01

    When constructing multiple test forms, the number of items and the total test difficulty are often equivalent. Not all test developers match the number of items and/or average item difficulty within subcontent areas. In this simulation study, six test forms were constructed having an equal number of items and average item difficulty overall.…

  6. Optimization of parameters for the inline-injection system at Brookhaven Accelerator Test Facility

    SciTech Connect

    Parsa, Z.; Ko, S.K.

    1995-10-01

    We present some of our parameter optimization results utilizing code PARMLEA, for the ATF Inline-Injection System. The new solenoid-Gun-Solenoid -- Drift-Linac Scheme would improve the beam quality needed for FEL and other experiments at ATF as compared to the beam quality of the original design injection system. To optimize the gain in the beam quality we have considered various parameters including the accelerating field gradient on the photoathode, the Solenoid field strengths, separation between the gun and entrance to the linac as well as the (type size) initial charge distributions. The effect of the changes in the parameters on the beam emittance is also given.

  7. Study on Dynamical Simulation of Railway Vehicle Bogie Parameters Test-bench Electro-hydraulic Servo System

    NASA Astrophysics Data System (ADS)

    Lan, Zhikun; Su, Jian; Xu, Guan; Cao, Xiaoning

    Dynamical mathematical model was established for accurately positioning, fast response and real-time tracing of electro-hydraulic servo control system in railway vehicle bog ie parameters test system with elastic load. The model could precisely control the output of position and force of the hydraulic cylinders. Induction method was proposed in the paper. Dynamical simulation verified the mathematical model by SIMULINK software. Meanwhile the key factors affecting the dynamical characteristics of the system were discussed in detail. Through the simulation results, high precision is obtained in application and the need of real-time control on the railway vehicle bogie parameters test-bench is realized.

  8. Cylindrospermopsis in Lake Erie: Testing its association with other cyanobacterial genera and major limnological parameters

    EPA Science Inventory

    We report the first documented observation of the potentially toxic cyanobacterium Cylindrospermopsis in lake Erie and Sandusky Bay in 2005 and quantify the physical and chemical parameters and the cyanobacterial community composition contemporaneous to its occurrence. We hypothe...

  9. Bayesian parameter inference by Markov chain Monte Carlo with hybrid fitness measures: theory and test in apoptosis signal transduction network.

    PubMed

    Murakami, Yohei; Takada, Shoji

    2013-01-01

    When model parameters in systems biology are not available from experiments, they need to be inferred so that the resulting simulation reproduces the experimentally known phenomena. For the purpose, Bayesian statistics with Markov chain Monte Carlo (MCMC) is a useful method. Conventional MCMC needs likelihood to evaluate a posterior distribution of acceptable parameters, while the approximate Bayesian computation (ABC) MCMC evaluates posterior distribution with use of qualitative fitness measure. However, none of these algorithms can deal with mixture of quantitative, i.e., likelihood, and qualitative fitness measures simultaneously. Here, to deal with this mixture, we formulated Bayesian formula for hybrid fitness measures (HFM). Then we implemented it to MCMC (MCMC-HFM). We tested MCMC-HFM first for a kinetic toy model with a positive feedback. Inferring kinetic parameters mainly related to the positive feedback, we found that MCMC-HFM reliably infer them using both qualitative and quantitative fitness measures. Then, we applied the MCMC-HFM to an apoptosis signal transduction network previously proposed. For kinetic parameters related to implicit positive feedbacks, which are important for bistability and irreversibility of the output, the MCMC-HFM reliably inferred these kinetic parameters. In particular, some kinetic parameters that have experimental estimates were inferred without using these data and the results were consistent with experiments. Moreover, for some parameters, the mixed use of quantitative and qualitative fitness measures narrowed down the acceptable range of parameters.

  10. Estimation Source Parameters of Large-Scale Chemical Surface Explosions and Recent Underground Nuclear Tests

    NASA Astrophysics Data System (ADS)

    Gitterman, Y.; Kim, S.; Hofstetter, R.

    2013-12-01

    Large-scale surface explosions were conducted by the Geophysical Institute of Israel at Sayarim Military Range (SMR), Negev desert: 82 tons of strong HE explosives in August 2009, and 10&100 tons of ANFO explosives in January 2011. The main goal was to provide strong controlled sources in different wind conditions, for calibration of IMS infrasound stations. Numerous dense observations of blast waves were provided by high-pressure, acoustic and seismic sensors at near-source (< 1 km) and close local (1-40 km) distances. The rarely reported Secondary Shock (SS) phenomenon was clearly observed at the all sensors. A novel empirical relationship for the new air-blast parameter - SS time delay - versus distance (both scaled by the cubic root of estimated TNT equivalent charge) was developed and analyzed. The scaled SS delays were found clearly separated for 2009 and 2011 shots, thus demonstrating dependence on the type of explosives with different detonation velocity. Additional acoustic and seismic records from very large (> 2000 tons) ANFO surface shots at White Sands Military Range (WSMR) were analyzed for SS time delay. The Secondary Shocks were revealed on the records in the range 1.5-60 km and showed consistency with the SMR data, thus extending the charge and distance range for the developed SS delay relationship. Obtained results suggest that measured SS delays can provide important information about an explosion source character, and can be used as a new simple cost-effective yield estimator for explosions with known type of explosives. The new results are compared with analogous available data of surface nuclear explosions. Special distinctions in air-blast waves are revealed and analyzed, resulting from the different source phenomenology (energy release). Two underground nuclear explosions conducted by North Korea in 2009 and 2013 were recorded by several stations of Israel Seismic Network. Pronounced minima (spectral nulls) at 1.2-1.3 Hz were revealed in the

  11. Intercomparison of number concentration measurements by various aerosol particle counters

    NASA Astrophysics Data System (ADS)

    Ankilov, A.; Baklanov, A.; Colhoun, M.; Enderle, K.-H.; Gras, J.; Julanov, Yu.; Kaller, D.; Lindner, A.; Lushnikov, A. A.; Mavliev, R.; McGovern, F.; Mirme, A.; O'Connor, T. C.; Podzimek, J.; Preining, O.; Reischl, G. P.; Rudolf, R.; Sem, G. J.; Szymanski, W. W.; Tamm, E.; Vrtala, A. E.; Wagner, P. E.; Winklmayr, W.; Zagaynov, V.

    Total aerosol particle number concentrations, as measured by means of 16 different measurement systems, have been quantitatively compared during an international workshop at the Institute for Experimental Physics of the University of Vienna, Austria, which was coordinated within the Committee on Nucleation and Atmospheric Aerosols (ICCP-IUGG). The range of measuring instruments includes Pollak counters (PCO) in use already for several decades, presently available commercial particle counters, as well as laboratory prototypes. The operation of the instruments considered was based on different measurement principles: (1) adiabatic expansion condensation particle counter, (2) flow diffusion condensation particle counter, (3) turbulent mixing condensation particle counter, (4) laser optical particle counter, and (5) electrostatic particle measurement system. Well-defined test aerosols with various chemical compositions were considered: DEHS, sodium chloride, silver, hydrocarbons, and tungsten oxide. The test aerosols were nearly monodispersed with mean particle diameters between 4 and 520 nm, the particle number concentrations were varied over a range from about 4×10 1 to 7×10 6 cm -3. A few measurements were performed with two-component aerosol mixtures. For simultaneous concentration measurements, the various instruments considered were operated under steady state conditions in a linear flow system. A series of at least 10 single concentration measurements was performed by each individual instrument at each set of test aerosol parameters. The average of the concentration data measured by the various instruments was defined as a common reference. The number concentrations obtained from the various instruments typically agreed within a factor of about two over the entire concentration range considered. The agreement of the measured concentrations is notable considering the various different measurement principles applied in this study, and particularly in view of the

  12. Summary report on 49 L ferrocyanide aerosol tests TO208-1 and TO209-1

    SciTech Connect

    Fauske, H.K.

    1993-06-01

    This report presents the results of the first test conducted in a series of tests directed by Westinghouse Hanford Company (WHC). For the record, Ref.[l] is included as Appendix A. The test discussed in this document, designated as T0127-1, is a ferrocyanide reaction propagation rate determination test conducted under an inert argon atmosphere of 10 atm. abs. (130 psig). The test was conducted in a new 49 L containment volume described in Section 2.0. The test sample was dry In-Farm 1 bottom flow sheet material. The test protocol was similar to that described in Refs.[2 and 3]. However, as requested in Ref.[l] supplemental gas sample taking procedures were prepared and followed as described in Section 4.0 and Appendix B. Test results shoved an inverse reaction propagation velocity of {approx}4 sec/cm. This is about 50% faster than a prior similar test conducted under 1 atm. abs. pressure. For further comparison, this burn velocity of the ferrocyanide test is also about an order-of-magnitude slower than a slow burn gun powder at 1 atm. Pre- and post-test gas samples were taken and have been forwarded to WHC for further analyses. Details of these results are presented in Section 5.0 and comparisons with other similar reaction propagation rate tests are discussed in Section 6.0.

  13. Observational tests of a two parameter power-law class modified gravity in Palatini formalism

    NASA Astrophysics Data System (ADS)

    Baghram, Shant; Movahed, M. Sadegh; Rahvar, Sohrab

    2009-09-01

    CONTEXT: In this work we propose a modified gravity action f(R)=(Rn-R0n)1/n with two free parameters of n and R0 and derive the dynamics of a universe for this action in the Palatini formalism. AIM: We do a cosmological comparison of this model with observed data to find the best parameters of a model in a flat universe. METHOD: To constrain the free parameters of model we use SNIa type Ia data in two sets of gold and union samples, CMB-shift parameter, baryon acoustic oscillation, gas mass fraction in cluster of galaxies, and large-scale structure data. RESULT: The best fit from the observational data results in the parameters of model in the range of n=0.98-0.08+0.08 and ΩM=0.25+0.1-0.1 with one sigma level of confidence where a standard ΛCDM universe resides in this range of solution.

  14. Relation of thromboelastography parameters to conventional coagulation tests used to evaluate the hypercoagulable state of aged fracture patients

    PubMed Central

    Liu, Chen; Guan, Zhao; Xu, Qinzhu; Zhao, Lei; Song, Ying; Wang, Hui

    2016-01-01

    Abstract Fractures are common among aged people, and rapid assessment of the coagulation status is important. The thromboelastography (TEG) test can give a series of coagulation parameters and has been widely used in clinics. In this research, we looked at fracture patients over 60 and compared their TEG results with those of healthy controls. Since there is a paucity of studies comparing TEG assessments with conventional coagulation tests, we aim to clarify the relationship between TEG values and the values given by conventional coagulation tests. Forty fracture patients (27 femur and 13 humerus) over 60 years old were included in the study. The change in their coagulation status was evaluated by TEG before surgery within 4 hours after the fracture. Changes in TEG parameters were analyzed compared with controls. Conventional coagulation test results for the patients, including activated partial thromboplastin time (APTT), international normalized ratio (INR), fibrinogen, and platelets, were also acquired, and correlation analysis was done with TEG parameters, measuring similar aspects of the coagulation cascade. In addition, the sensitivity and specificity of TEG parameters for detecting raised fibrinogen levels were also analyzed. The K (time to 20 mm clot amplitude) and R (reaction time) values of aged fracture patients were lower than controls. The values for angle, maximal amplitude (MA), and coagulation index (CI) were raised compared with controls, indicating a hypercoagulable state. Correlation analysis showed that there were significant positive correlations between fibrinogen and MA/angle, between platelets and MA, and between APTT and R as well. There was significant negative correlation between fibrinogen and K. In addition, K values have better sensitivity and specificity for detecting elevated fibrinogen concentration than angle and MA values. Aged fracture patients tend to be in a hypercoagulable state, and this could be effectively reflected by

  15. Cramer-von Mises and Anderson-Darling goodness of fit tests for extreme value distributions with unknown parameters

    NASA Astrophysics Data System (ADS)

    Laio, Francesco

    2004-09-01

    The use of goodness of fit tests based on Cramer-von Mises and Anderson-Darling statistics is discussed, with reference to the composite hypothesis that a sample of observations comes from a distribution, FH, whose parameters are unspecified. When this is the case, the critical region of the test has to be redetermined for each hypothetical distribution FH. To avoid this difficulty, a transformation is proposed that produces a new test statistic which is independent of FH. This transformation involves three coefficients that are determined using the asymptotic theory of tests based on the empirical distribution function. A single table of coefficients is thus sufficient for carrying out the test with different hypothetical distributions; a set of probability models of common use in extreme value analysis is considered here, including the following: extreme value 1 and 2, normal and lognormal, generalized extreme value, three-parameter gamma, and log-Pearson type 3, in all cases with parameters estimated using maximum likelihood. Monte Carlo simulations are used to determine small sample corrections and to assess the power of the tests compared to alternative approaches.

  16. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    NASA Astrophysics Data System (ADS)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  17. Testing for Lorentz violation: constraints on standard-model-extension parameters via lunar laser ranging.

    PubMed

    Battat, James B R; Chandler, John F; Stubbs, Christopher W

    2007-12-14

    We present constraints on violations of Lorentz invariance based on archival lunar laser-ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies and is currently accurate to the equivalent of a few centimeters (parts in 10(11) of the total distance). By analyzing this LLR data under the standard-model extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz violation. We found no evidence for Lorentz violation at the 10(-6) to 10(-11) level in these parameters. This work constitutes the first LLR constraints on SME parameters.

  18. Testing for Lorentz Violation: Constraints on Standard-Model-Extension Parameters via Lunar Laser Ranging

    SciTech Connect

    Battat, James B. R.; Chandler, John F.; Stubbs, Christopher W.

    2007-12-14

    We present constraints on violations of Lorentz invariance based on archival lunar laser-ranging (LLR) data. LLR measures the Earth-Moon separation by timing the round-trip travel of light between the two bodies and is currently accurate to the equivalent of a few centimeters (parts in 10{sup 11} of the total distance). By analyzing this LLR data under the standard-model extension (SME) framework, we derived six observational constraints on dimensionless SME parameters that describe potential Lorentz violation. We found no evidence for Lorentz violation at the 10{sup -6} to 10{sup -11} level in these parameters. This work constitutes the first LLR constraints on SME parameters.

  19. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    NASA Astrophysics Data System (ADS)

    Penning de Vries, M. J. M.; Beirle, S.; Hörmann, C.; Kaiser, J. W.; Stammes, P.; Tilstra, L. G.; Tuinder, O. N. E.; Wagner, T.

    2015-09-01

    with GACA. Whereas the presented study is of exploratory nature, we show that the developed algorithm is well suited to evaluate climate and atmospheric composition models by including aerosol type and source obtained from measurements into the comparison, instead of focusing on a single parameter, e.g., AOD. The approach could be adapted to constrain the mix of aerosol types during the process of a combined data assimilation of aerosol and trace gas observations.

  20. Aerosol and melt chemistry in the ACE molten core-concrete interaction experiments

    SciTech Connect

    Fink, J.K.; Thompson, D.H.; Spencer, B.W.; Sehgal, B.R.

    1995-01-01

    Experimental results are discussed from the internationally sponsored Advanced Containment Experiments (ACE) Program on the melt behavior and aerosols released during the interaction of molten reactor core material with concrete. A broad range of parameters were addressed in the experimental program: Seven large-scale tests were performed using four types of concrete (siliceous, limestone/sand, serpentine, and limestone) and a range of metal oxidations for both boiling water and pressurized waster reactor core debris. The release aerosols contained mainly constitutents of the concrete. In the tests with metal and limestone/sand siliceous concrete, silicon compounds comprised 50% or more of the aerosol mass. Releases of uranium and low-volatility fission-product elements were small in all tests. Releases of tellurium and neutron absorber materials (silver, indium, and boron from boron carbide) were high.

  1. Aerosol optical absorption measurements with photoacoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Liu, Kun; Wang, Lei; Liu, Qiang; Wang, Guishi; Tan, Tu; Zhang, Weijun; Chen, Weidong; Gao, Xiaoming

    2015-04-01

    Many parameters related to radiative forcing in climate research are known only with large uncertainties. And one of the largest uncertainties in global radiative forcing is the contribution from aerosols. Aerosols can scatter or absorb the electromagnetic radiation, thus may have negative or positive effects on the radiative forcing of the atmosphere, respectively [1]. And the magnitude of the effect is directly related to the quantity of light absorbed by aerosols [2,3]. Thus, sensitivity and precision measurement of aerosol optical absorption is crucial for climate research. Photoacoustic spectroscopy (PAS) is commonly recognized as one of the best candidates to measure the light absorption of aerosols [4]. A PAS based sensor for aerosol optical absorption measurement was developed. A 532 nm semiconductor laser with an effective power of 160 mW was used as a light source of the PAS sensor. The PAS sensor was calibrated by using known concentration NO2. The minimum detectable optical absorption coefficient (OAC) of aerosol was determined to be 1 Mm-1. 24 hours continues measurement of OAC of aerosol in the ambient air was carried out. And a novel three wavelength PAS aerosol OAC sensor is in development for analysis of aerosol wavelength-dependent absorption Angstrom coefficient. Reference [1] U. Lohmann and J. Feichter, Global indirect aerosol effects: a review, Atmos. Chem. Phys. 5, 715-737 (2005) [2] M. Z. Jacobson, Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols, Nature 409, 695-697 (2001) [3] V. Ramanathan and G. Carmichae, Global and regional climate changes due to black carbon, nature geoscience 1, 221-227 (2008) [4] W.P Arnott, H. Moosmuller, C. F. Rogers, T. Jin, and R. Bruch, Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description. Atmos. Environ. 33, 2845-2852 (1999).

  2. Limb darkening and exoplanets: testing stellar model atmospheres and identifying biases in transit parameters

    NASA Astrophysics Data System (ADS)

    Espinoza, Néstor; Jordán, Andrés

    2015-06-01

    Limb darkening is fundamental in determining transit light-curve shapes, and is typically modelled by a variety of laws that parametrize the intensity profile of the star that is being transited. Confronted with a transit light curve, some authors fix the parameters of these laws, the so-called limb darkening coefficients (LDCs), while others prefer to let them float in the light-curve fitting procedure. Which of these is the best strategy, however, is still unclear, as well as how and by how much each of these can bias the retrieved transit parameters. In this work we attempt to clarify those points by first recalculating these LDCs, comparing them to measured values from Kepler transit light curves using an algorithm that takes into account uncertainties in both the geometry of the transit and the parameters of the stellar host. We show there are significant departures from predicted model values, suggesting that our understanding of limb darkening still needs to improve. Then, we show through simulations that if one uses the quadratic limb darkening law to parametrize limb darkening, fixing and fitting the LDCs can lead to significant biases - up to ˜3 and ˜1 per cent in Rp/R*, respectively - which are important for several confirmed and candidate exoplanets. We conclude that, in this case, the best approach is to let the LDCs be free in the fitting procedure. Strategies to avoid biases in data from present and future missions involving high precision measurements of transit parameters are described.

  3. Testing Different Methods for Estimating Uncertainties on Rietveld Refined Parameters Using SrRietveld

    SciTech Connect

    Billinge S. J.; Tian, P.

    2011-12-01

    The advent of fast computing allows more computationally expensive, though possibly more accurate, approaches for estimating uncertainties on Rietveld refined parameters. Here we compare three such methods, using two different refinement programs, FullProf and GSAS. This is facilitated by the use of a new Rietveld refinement package, SrRietveld, that provides Python wrappers for FullProf and GSAS. The refined values on the parameters from two different refinement engines match each other very well. The uncertainty estimates determined using the different methods are also consistent, though FullProf and GSAS estimate the parameter uncertainties slightly differently from each other, which is discussed. More importantly, we find that the refined results are very sensitive to the statistical weights used in the least squares equation. Different weights, for example from uncertain or incorrectly propagated random errors on the data, lead to significantly different refined values. This means that uncertainty estimates on refined parameters should be increased when the random errors on the data are not well known, as for example in many cases where area detectors are used, and care should be taken to propagate errors correctly in any data preprocessing such as normalization by a smoothed spectrum. The computationally expensive bootstrap error estimation methods are facilitated by the use of SrRietveld, but are not required in most cases though may be useful in some cases, for example if the random errors on the data are not well known.

  4. Decomposing predation: testing for parameters that correlate with predatory performance by a social bacterium.

    PubMed

    Mendes-Soares, Helena; Velicer, Gregory J

    2013-02-01

    Predator-prey interactions presumably play major roles in shaping the composition and dynamics of microbial communities. However, little is understood about the population biology of such interactions or how predation-related parameters vary or correlate across prey environments. Myxococcus xanthus is a motile soil bacterium that feeds on a broad range of other soil microbes that vary greatly in the degree to which they support M. xanthus growth. In order to decompose predator-prey interactions at the population level, we quantified five predation-related parameters during M. xanthus growth on nine phylogenetically diverse bacterial prey species. The horizontal expansion rate of swarming predator colonies fueled by prey lawns served as our measure of overall predatory performance, as it incorporates both the searching (motility) and handling (killing and consumption of prey) components of predation. Four other parameters-predator population growth rate, maximum predator yield, maximum prey kill, and overall rate of prey death-were measured from homogeneously mixed predator-prey lawns from which predator populations were not allowed to expand horizontally by swarming motility. All prey species fueled predator population growth. For some prey, predator-specific prey death was detected contemporaneously with predator population growth, whereas killing of other prey species was detected only after cessation of predator growth. All four of the alternative parameters were found to correlate significantly with predator swarm expansion rate to varying degrees, suggesting causal interrelationships among these diverse predation measures. More broadly, our results highlight the importance of examining multiple parameters for thoroughly understanding the population biology of microbial predation.

  5. Comparison of Weibull strength parameters from flexure and spin tests of brittle materials

    NASA Technical Reports Server (NTRS)

    Holland, Frederic A., Jr.; Zaretsky, Erwin V.

    1991-01-01

    Fracture data from five series of four point bend tests of beam and spin tests of flat annular disks were reanalyzed. Silicon nitride and graphite were the test materials. The experimental fracture strengths of the disks were compared with the predicted strengths based on both volume flaw and surface flaw analyses of four point bend data. Volume flaw analysis resulted in a better correlation between disks and beams in three of the five test series than did surface flaw analysis. The Weibull (moduli) and characteristic gage strengths for the disks and beams were also compared. Differences in the experimental Weibull slopes were not statistically significant. It was shown that results from the beam tests can predict the fracture strength of rotating disks.

  6. Validation of Methodology for Estimating Aircraft Unsteady Aerodynamic Parameters from Dynamic Wind Tunnel Tests

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2003-01-01

    A basic problem in flight dynamics is the mathematical formulation of the aerodynamic model for aircraft. This study is part of an ongoing effort at NASA Langley to develop a more general formulation of the aerodynamic model for aircraft that includes nonlinear unsteady aerodynamics and to develop appropriate test techniques that facilitate identification of these models. A methodology for modeling and testing using wide-band inputs to estimate the unsteady form of the aircraft aerodynamic model was developed previously but advanced test facilities were not available at that time to allow complete validation of the methodology. The new model formulation retained the conventional static and rotary dynamic terms but replaced conventional acceleration terms with more general indicial functions. In this study advanced testing techniques were utilized to validate the new methodology for modeling. Results of static, conventional forced oscillation, wide-band forced oscillation, oscillatory coning, and ramp tests are presented.

  7. Identification of absorbing organic (brown carbon) aerosols through Sun Photometry: results from AEROCAN / AERONET stations in high Arctic and urban Locations

    NASA Astrophysics Data System (ADS)

    Kerr, G. H.; Chaubey, J. P.; O'Neill, N. T.; Hayes, P.; Atkinson, D. B.

    2014-12-01

    Light absorbing organic aerosols or brown carbon (BrC) aerosols are prominent species influencing the absorbing aerosol optical depth (AAOD) of the total aerosol optical depth (AOD) in the UV wavelength region. They, along with dust, play an important role in modifying the spectral AAOD and the spectral AOD in the UV region: this property can be used to discriminate BrC aerosols from both weakly absorbing aerosols such as sulfates as well as strongly absorbing aerosols such as black carbon (BC). In this study we use available AERONET inversions (level 1.5) retrieved for the measuring period from 2009 to 2013, for the Arctic region (Eureka, Barrow and Hornsund), Urban/ Industrial regions (Kanpur, Beijing), and the forest regions (Alta Foresta and Mongu), to identify BrC aerosols. Using Dubovik's inversion algorithm results, we analyzed parameters that were sensitive to BrC presence, notably AAOD, AAODBrC estimated using the approach of Arola et al. [2011], the fine-mode-aerosol absorption derivative (αf, abs) and the fine-mode-aerosol absorption 2nd derivative (αf, abs'), all computed at a near UV wavelength (440 nm). Temporal trends of these parameters were investigated for all test stations and compared to available volume sampling surface data as a means of validating / evaluating the sensitivity of ostensible sunphotometer indicators of BrC aerosols to the presence of BrC as measured using independent indicators. Reference: Arola, A., Schuster, G., Myhre, G., Kazadzis, S., Dey, S., and Tripathi, S. N.: Inferring absorbing organic carbon content from AERONET data, Atmos. Chem. Phys., 11, 215-225, doi:10.5194/acp-11-215-2011, 2011

  8. Early growth dynamical implications for the steerability of stratospheric solar radiation management via sulfur aerosol particles

    NASA Astrophysics Data System (ADS)

    Benduhn, François; Schallock, Jennifer; Lawrence, Mark G.

    2016-09-01

    Aerosol growth dynamics may have implications for the steerability of stratospheric solar radiation management via sulfur particles. This paper derives a set of critical initial growth conditions that are analyzed as a function of two key parameters: the initial concentration of the injected sulfuric acid and its dilution rate with the surrounding air. Based upon this analysis, early aerosol growth dynamical regimes may be defined and classified in terms of their likelihood to serve as candidates for the controlled generation of a radiatively effective aerosol. Our results indicate that the regime that fulfills all critical conditions would require that airplane turbines be used to provide sufficient turbulence. The regime's parameter space is narrow and related to steep gradients, thus pointing to potential fine tuning requirements. More research, development, and testing would be required to refine our findings and determine their global-scale implications.

  9. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  10. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1999-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  11. Biological and analytical variations of 16 parameters related to coagulation screening tests and the activity of coagulation factors.

    PubMed

    Chen, Qian; Shou, Weiling; Wu, Wei; Guo, Ye; Zhang, Yujuan; Huang, Chunmei; Cui, Wei

    2015-04-01

    To accurately estimate longitudinal changes in individuals, it is important to take into consideration the biological variability of the measurement. The few studies available on the biological variations of coagulation parameters are mostly outdated. We confirmed the published results using modern, fully automated methods. Furthermore, we added data for additional coagulation parameters. At 8:00 am, 12:00 pm, and 4:00 pm on days 1, 3, and 5, venous blood was collected from 31 healthy volunteers. A total of 16 parameters related to coagulation screening tests as well as the activity of coagulation factors were analyzed; these included prothrombin time, fibrinogen (Fbg), activated partial thromboplastin time, thrombin time, international normalized ratio, prothrombin time activity, activated partial thromboplastin time ratio, fibrin(-ogen) degradation products, as well as the activity of factor II, factor V, factor VII, factor VIII, factor IX, and factor X. All intraindividual coefficients of variation (CVI) values for the parameters of the screening tests (except Fbg) were less than 5%. Conversely, the CVI values for the activity of coagulation factors were all greater than 5%. In addition, we calculated the reference change value to determine whether a significant difference exists between two test results from the same individual.

  12. Effects of stress rate and calculation method on subcritical crack growth parameters deduced from constant stress-rate flexural testing

    PubMed Central

    Griggs, Jason A.; Alaqeel, Samer M.; Zhang, Yunlong; Miller, Amp W.; Cai, Zhuo

    2011-01-01

    Objectives To more efficiently determine the subcritical crack growth (SCG) parameters of dental ceramics, the effects of stressing rate and choice of statistical regression model on estimates of SCG parameters were assessed. Methods Two dental ceramic materials, a veneering material having a single critical flaw population (S) and a framework material having partially concurrent flaw populations (PC), were analyzed using constant stress-rate testing, or “dynamic fatigue”, with a variety of testing protocols. For each material, 150 rectangular beam specimens were prepared and tested in four-point flexure according to ISO6872 and ASTM1368. A full-factorial study was conducted on the following factors: material, stress rate assumed vs. calculated, number of stress rates, and statistical regression method. Results The proportion of specimens for which the statistical models over-estimated reliability was not significantly different based on regression method for Material S (P = 0.96, power = 94%) and was significantly different based on regression method for Material PC (P < 0.001). The standard method resulted in SCG parameters, n and ln B, of 35.9 and -11.1 MPa2s for Material S and 12.4 and 9.61 MPa2s for Material PC. Significance The method of calculation that uses only the median strength value at each stress rate provided the most robust SCG parameter estimates. Using only two stress rates resulted in fatigue parameters comparable to those estimated using four stress rates having the same range. The stress rate of each specimen can be assumed to be the target stress rate with negligible difference in SCG parameter estimates. PMID:21167586

  13. Compensation of kinematic geometric parameters error and comparative study of accuracy testing for robot

    NASA Astrophysics Data System (ADS)

    Du, Liang; Shi, Guangming; Guan, Weibin; Zhong, Yuansheng; Li, Jin

    2014-12-01

    Geometric error is the main error of the industrial robot, and it plays a more significantly important fact than other error facts for robot. The compensation model of kinematic error is proposed in this article. Many methods can be used to test the robot accuracy, therefore, how to compare which method is better one. In this article, a method is used to compare two methods for robot accuracy testing. It used Laser Tracker System (LTS) and Three Coordinate Measuring instrument (TCM) to test the robot accuracy according to standard. According to the compensation result, it gets the better method which can improve the robot accuracy apparently.

  14. Measurement of the PPN parameter γ by testing the geometry of near-Earth space

    NASA Astrophysics Data System (ADS)

    Luo, Jie; Tian, Yuan; Wang, Dian-Hong; Qin, Cheng-Gang; Shao, Cheng-Gang

    2016-06-01

    The Beyond Einstein Advanced Coherent Optical Network (BEACON) mission was designed to achieve an accuracy of 10^{-9} in measuring the Eddington parameter γ , which is perhaps the most fundamental Parameterized Post-Newtonian parameter. However, this ideal accuracy was just estimated as a ratio of the measurement accuracy of the inter-spacecraft distances to the magnitude of the departure from Euclidean geometry. Based on the BEACON concept, we construct a measurement model to estimate the parameter γ with the least squares method. Influences of the measurement noise and the out-of-plane error on the estimation accuracy are evaluated based on the white noise model. Though the BEACON mission does not require expensive drag-free systems and avoids physical dynamical models of spacecraft, the relatively low accuracy of initial inter-spacecraft distances poses a great challenge, which reduces the estimation accuracy in about two orders of magnitude. Thus the noise requirements may need to be more stringent in the design in order to achieve the target accuracy, which is demonstrated in the work. Considering that, we have given the limits on the power spectral density of both noise sources for the accuracy of 10^{-9}.

  15. Method for the Non-linear Identification of Aircraft Parameters by Testing Maneuvers

    NASA Astrophysics Data System (ADS)

    Boguslavskiy, I. A.

    2008-09-01

    In this paper, we describe a variant of a solution for a common problem in applied statistics—we offer a variant method for estimating the parameters of a dynamic system, and observe its magnitudes, which statistically depend on the sequence of states of the system that are not observed. The method is realized by means of the multipolynomial approximations algorithm (the MPA algorithm). The method is validated by applying it to a problem of correction of finite sets of nominal experimental data on which nominal functions are constructed equationsby means of interpolation from the current states of the system. Nominal experimental data are presented on a finite set of points covering the domains of definition of the nominal functions. The nominal equations of motion of the dynamical system are defined by the nominal functions. In this paper, the concrete example of the nominal equations of motion correspond to the longitudinal motion of the aircraft similar of the F-l6 aircraft. The nominal functions are the calculated aerodynamic characteristics. The nominal experimental data are recorded by means of experiments in a wind-tunnel. The outcomes of measurements of the parameters of motion of the aircraft act on inputs for the MPA algorithm on a segment of real flight. The MPA algorithm defines a 32×1-vector of estimates of parameters, which are additive corrections to the nominal experimental data.

  16. Toxicity of atmospheric aerosols on marine phytoplankton

    USGS Publications Warehouse

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  17. GAS-PARTICLE PARTITIONING OF SEMI-VOLATILE ORGANICS ON ORGANIC AEROSOLS USING A PREDICTIVE ACTIVITY COEFFICIENT MODEL: ANALYSIS OF THE EFFECTS OF PARAMETER CHOICES ON MODEL PERFORMANCE. (R826771)

    EPA Science Inventory

    The partitioning of a diverse set of semivolatile organic compounds (SOCs) on a variety of organic aerosols was studied using smog chamber experimental data. Existing data on the partitioning of SOCs on aerosols from wood combustion, diesel combustion, and the Aerosol Modeling for the Global Model Initiative

    NASA Technical Reports Server (NTRS)

    Weisenstein, Debra K.; Ko, Malcolm K. W.

    2001-01-01

    The goal of this project is to develop an aerosol module to be used within the framework of the Global Modeling Initiative (GMI). The model development work will be preformed jointly by the University of Michigan and AER, using existing aerosol models at the two institutions as starting points. The GMI aerosol model will be tested, evaluated against observations, and then applied to assessment of the effects of aircraft sulfur emissions as needed by the NASA Subsonic Assessment in 2001. The work includes the following tasks: 1. Implementation of the sulfur cycle within GMI, including sources, sinks, and aqueous conversion of sulfur. Aerosol modules will be added as they are developed and the GMI schedule permits. 2. Addition of aerosol types other than sulfate particles, including dust, soot, organic carbon, and black carbon. 3. Development of new and more efficient parameterizations for treating sulfate aerosol nucleation, condensation, and coagulation among different particle sizes and types.

  18. CCN activity of aliphatic amine secondary aerosol

    NASA Astrophysics Data System (ADS)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  19. Estimation of Aircraft Unsteady Aerodynamic Parameters from Dynamic Wind Tunnel Testing

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.; Klein, Vladislav

    2001-01-01

    Improved aerodynamic mathematical models, for use in aircraft simulation or flight control design, are required when representing nonlinear unsteady aerodynamics. A key limitation of conventional aerodynamic models is the inability to map frequency and amplitude dependent data into the equations of motion directly. In an effort to obtain a more general formulation of the aerodynamic model, researchers have been led to a parallel requirement for more general testing methods. Testing for a more comprehensive model can lead to a very time consuming number of tests especially if traditional single frequency harmonic testing is attempted. This paper presents an alternative to traditional single frequency forced-oscillation testing by utilizing Schroeder sweeps to efficiently obtain the frequency response of the unsteady aerodynamic model. Schroeder inputs provide signals with a flat power spectrum over a specified frequency band. For comparison, experimental results using the traditional single-frequency inputs are also considered. A method for data analysis to determine an adequate unsteady aerodynamic model is presented. Discussion of associated issues that arise during this type of analysis and comparison of results using traditional single frequency analysis are provided.

  1. Using artificial neural networks to retrieve the aerosol type from multi-spectral lidar data

    NASA Astrophysics Data System (ADS)

    Nicolae, Doina; Belegante, Livio; Talianu, Camelia; Vasilescu, Jeni

    2015-04-01

    Aerosols can influence the microphysical and macrophysical properties of clouds and hence impact the energy balance, precipitation and the hydrological cycle. They have different scattering and absorption properties depending on their origin, therefore measured optical properties can be used to retrieve their physical properties, as well as to estimate their chemical composition. Due to the measurement limitations (spectral, uncertainties, range) and high variability of the aerosol properties with environmental conditions (including mixing during transport), the identification of the aerosol type from lidar data is still not solved. However, ground, airborne and space-based lidars provide more and more observations to be exploited. Since 2000, EARLINET collected more than 20,000 aerosol vertical profiles under various meteorological conditions, concerning local or long-range transport of aerosols in the free troposphere. This paper describes the basic algorithm for aerosol typing from optical data using the benefits of artificial neural networks. A relevant database was built to provide sufficient training cases for the neural network, consisting of synthetic and measured aerosol properties. Synthetic aerosols were simulated starting from the microphysical properties of basic components, internally mixed in various proportions. The algorithm combines the GADS database (Global Aerosol DataSet) to OPAC model (Optical Properties of Aerosol and Clouds) and T-Matrix code in order to compute, in an iterative way, the intensive optical properties of each aerosol type. Both pure and mixed aerosol types were considered, as well as their particular non-sphericity and hygroscopicity. Real aerosol cases were picked up from the ESA-CALIPSO database, as well as EARLINET datasets. Specific selection criteria were applied to identify cases with accurate optical data and validated sources. Cross-check of the synthetic versus measured aerosol intensive parameters was performed in

  2. Development of base pressure similarity parameters for application to space shuttle launch vehicle power-on aerodynamic testing

    NASA Technical Reports Server (NTRS)

    Sulyma, P. R.; Penny, M. M.

    1978-01-01

    A base pressure data correlation study was conducted to define exhaust plume similarity parameters for use in Space Shuttle power-on launch vehicle aerodynamic test programs. Data correlations were performed for single bodies having, respectively, single and triple nozzle configurations and for a triple body configuration with single nozzles on each of the outside bodies. Base pressure similarity parameters were found to differ for the single nozzle and triple nozzle configurations. However, the correlation parameter for each was found to be a strong function of the nozzle exit momentum. Results of the data base evaluation are presented indicating an assessment of all data points. Analytical/experimental data comparisons were made for nozzle calibrations and correction factors derived, where indicated for use in nozzle exit plane data calculations.

  3. Difficulty and Discrimination Parameters of Boston Naming Test Items in a Consecutive Clinical Series

    PubMed Central

    Pedraza, Otto; Sachs, Bonnie C.; Ferman, Tanis J.; Rush, Beth K.; Lucas, John A.

    2011-01-01

    The Boston Naming Test is one of the most widely used neuropsychological instruments; yet, there has been limited use of modern psychometric methods to investigate its properties at the item level. The current study used Item response theory to examine each item's difficulty and discrimination properties, as well as the test's measurement precision across the range of naming ability. Participants included 300 consecutive referrals to the outpatient neuropsychology service at Mayo Clinic in Florida. Results showed that successive items do not necessarily reflect a monotonic increase in psychometric difficulty, some items are inadequate to distinguish individuals at various levels of naming ability, multiple items provide redundant psychometric information, and measurement precision is greatest for persons within a low-average range of ability. These findings may be used to develop short forms, improve reliability in future test versions by replacing psychometrically poor items, and analyze profiles of intra-individual variability. PMID:21593059

  4. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2011-02-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  5. The European aerosol budget in 2006

    NASA Astrophysics Data System (ADS)

    Aan de Brugh, J. M. J.; Schaap, M.; Vignati, E.; Dentener, F.; Kahnert, M.; Sofiev, M.; Huijnen, V.; Krol, M. C.

    2010-09-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension). We observe that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95%) and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%). We observe transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we observe an underestimation of the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match), while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional) aerosol budgets, as presented in the current study.

  6. Test of a new method for seismic indices and granulation parameters extraction

    NASA Astrophysics Data System (ADS)

    Peralta, R. A.; Samadi, R.; Michel, E.

    2015-09-01

    In the framework of the data base project SSI (Stellar Seismic Indices, we have developed and tested a new method aiming at optimizing the simultaneous measurement of both the seismic indices characterizing the oscillations (Δν, νmax) and the indices characterizing the granulation signature. Here, we describe this method which is intended to take advantage of the MLE (maximum likelihood estimate) algorithm combined with the parametrized representation of the red giants pulsation spectrum following the Universal Pattern [6]. We report its performances tested on Monte Carlo simulations.

  7. An Accurate and Generic Testing Approach to Vehicle Stability Parameters Based on GPS and INS

    PubMed Central

    Miao, Zhibin; Zhang, Hongtian; Zhang, Jinzhu

    2015-01-01

    With the development of the vehicle industry, controlling stability has become more and more important. Techniques of evaluating vehicle stability are in high demand. As a common method, usually GPS sensors and INS sensors are applied to measure vehicle stability parameters by fusing data from the two system sensors. Although prior model parameters should be recognized in a Kalman filter, it is usually used to fuse data from multi-sensors. In this paper, a robust, intelligent and precise method to the measurement of vehicle stability is proposed. First, a fuzzy interpolation method is proposed, along with a four-wheel vehicle dynamic model. Second, a two-stage Kalman filter, which fuses the data from GPS and INS, is established. Next, this approach is applied to a case study vehicle to measure yaw rate and sideslip angle. The results show the advantages of the approach. Finally, a simulation and real experiment is made to verify the advantages of this approach. The experimental results showed the merits of this method for measuring vehicle stability, and the approach can meet the design requirements of a vehicle stability controller. PMID:26690154

  8. Evaluating an Online Resourcefulness Training Intervention Pilot Test Using Six Critical Parameters.

    PubMed

    Musil, Carol M; Zauszniewski, Jaclene A; Burant, Christopher J; Toly, Valerie B; Warner, Camille B

    2015-12-01

    Few resources are available to help grandmother caregivers to grandchildren manage their complex family situations that may have immediate and long-term consequences for themselves and their families. Resourcefulness training is an intervention designed to help grandmothers improve their ability to deal with these problems. The purpose of this pilot study was to evaluate the necessity, feasibility, acceptability, fidelity, safety, and effectiveness (i.e., effect sizes) of an online, computer-based resourcefulness training intervention that was adapted from a face-to-face intervention. Twelve grandmothers raising or living with grandchildren participated in the pilot intervention that included (a) watching an instructional video on resourcefulness, (b) completing two online questionnaires over a 6-week time period, and (c) writing in an online journal every day for 4 weeks. Data are evaluated within the context of the six parameters important to intervention development. Qualitative and quantitative results provide initial support for all six parameters. Recommendations to improve aspects of the intervention are discussed. PMID:26738997

  9. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    NASA Astrophysics Data System (ADS)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument

  10. Cross-institute evaluations of inhibitor-resistant PCR reagents for direct testing of aerosol and blood samples containing biological warfare agent DNA.

    PubMed

    Minogue, Timothy D; Rachwal, Phillip A; Trombley Hall, Adrienne; Koehler, Jeffery W; Weller, Simon A

    2014-02-01

    Rapid pathogen detection is crucial for the timely introduction of therapeutics. Two groups (one in the United Kingdom and one in the United States) independently evaluated inhibitor-resistant PCR reagents for the direct testing of substrates. In the United Kingdom, a multiplexed Bacillus anthracis (target) and Bacillus subtilis (internal-control) PCR was used to evaluate 4 reagents against 5 PCR inhibitors and down-selected the TaqMan Fast Virus 1-Step master mix (Life Technologies Inc.). In the United States, four real-time PCR assays (targeting B. anthracis, Brucella melitensis, Venezuelan equine encephalitis virus [VEEV], and Orthopoxvirus spp.) were used to evaluate 5 reagents (plus the Fast Virus master mix) against buffer, blood, and soil samples and down-selected the KAPA Blood Direct master mix (KAPA Biosystems Inc.) with added Platinum Taq (Life Technologies). The down-selected reagents underwent further testing. In the United Kingdom experiments, both reagents were tested against seven contrived aerosol collector samples containing B. anthracis Ames DNA and B. subtilis spores from a commercial formulation (BioBall). In PCR assays with reaction mixtures containing 40% crude sample, an airfield-collected sample induced inhibition of the B. subtilis PCR with the KAPA reagent and complete failure of both PCRs with the Fast Virus reagent. However, both reagents allowed successful PCR for all other samples-which inhibited PCRs with a non-inhibitor-resistant reagent. In the United States, a cross-assay limit-of-detection (LoD) study in blood was conducted. The KAPA Blood Direct reagent allowed the detection of agent DNA (by four PCRs) at higher concentrations of blood in the reaction mixture (2.5%) than the Fast Virus reagent (0.5%), although LoDs differed between assays and reagent combinations. Across both groups, the KAPA Blood Direct reagent was determined to be the optimal reagent for inhibition relief in PCR.

  11. Cross-Institute Evaluations of Inhibitor-Resistant PCR Reagents for Direct Testing of Aerosol and Blood Samples Containing Biological Warfare Agent DNA

    PubMed Central

    Minogue, Timothy D.; Rachwal, Phillip A.; Trombley Hall, Adrienne; Koehler, Jeffery W.

    2014-01-01

    Rapid pathogen detection is crucial for the timely introduction of therapeutics. Two groups (one in the United Kingdom and one in the United States) independently evaluated inhibitor-resistant PCR reagents for the direct testing of substrates. In the United Kingdom, a multiplexed Bacillus anthracis (target) and Bacillus subtilis (internal-control) PCR was used to evaluate 4 reagents against 5 PCR inhibitors and down-selected the TaqMan Fast Virus 1-Step master mix (Life Technologies Inc.). In the United States, four real-time PCR assays (targeting B. anthracis, Brucella melitensis, Venezuelan equine encephalitis virus [VEEV], and Orthopoxvirus spp.) were used to evaluate 5 reagents (plus the Fast Virus master mix) against buffer, blood, and soil samples and down-selected the KAPA Blood Direct master mix (KAPA Biosystems Inc.) with added Platinum Taq (Life Technologies). The down-selected reagents underwent further testing. In the United Kingdom experiments, both reagents were tested against seven contrived aerosol collector samples containing B. anthracis Ames DNA and B. subtilis spores from a commercial formulation (BioBall). In PCR assays with reaction mixtures containing 40% crude sample, an airfield-collected sample induced inhibition of the B. subtilis PCR with the KAPA reagent and complete failure of both PCRs with the Fast Virus reagent. However, both reagents allowed successful PCR for all other samples—which inhibited PCRs with a non-inhibitor-resistant reagent. In the United States, a cross-assay limit-of-detection (LoD) study in blood was conducted. The KAPA Blood Direct reagent allowed the detection of agent DNA (by four PCRs) at higher concentrations of blood in the reaction mixture (2.5%) than the Fast Virus reagent (0.5%), although LoDs differed between assays and reagent combinations. Across both groups, the KAPA Blood Direct reagent was determined to be the optimal reagent for inhibition relief in PCR. PMID:24334660

  12. Aerosol polarization effects on atmospheric correction and aerosol retrievals in ocean color remote sensing.

    PubMed

    Wang, Menghua

    2006-12-10

    The current ocean color data processing system for the Sea-viewing Wide Field-of-View Sensor (SeaWiFS) and the moderate resolution imaging spectroradiometer (MODIS) uses the Rayleigh lookup tables that were generated using the vector radiative transfer theory with inclusion of the polarization effects. The polarization effects, however, are not accounted for in the aerosol lookup tables for the ocean color data processing. I describe a study of the aerosol polarization effects on the atmospheric correction and aerosol retrieval algorithms in the ocean color remote sensing. Using an efficient method for the multiple vector radiative transfer computations, aerosol lookup tables that include polarization effects are generated. Simulations have been carried out to evaluate the aerosol polarization effects on the derived ocean color and aerosol products for all possible solar-sensor geometries and the various aerosol optical properties. Furthermore, the new aerosol lookup tables have been implemented in the SeaWiFS data processing system and extensively tested and evaluated with SeaWiFS regional and global measurements. Results show that in open oceans (maritime environment), the aerosol polarization effects on the ocean color and aerosol products are usually negligible, while there are some noticeable effects on the derived products in the coastal regions with nonmaritime aerosols.

  13. Estimation of genetic parameters and transmitting ability for Minnesota Johne’s milk ELISA test

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A total number of 45,907 results for Johne’s Milk ELISA test were received from Minnesota DHIA, of which 40,177 records were from herds with at least one positive Johne’s cow. Pedigree information was available for 19,304 Holstein cows from AIPL USDA representing 22,694 total records. Milk ELISA opt...

  14. Immunochemical parameters of some commercial conjugates for the fluorescent treponemal antibody-absorption test.

    PubMed

    Hunter, E F; Smith, J F; Lewis, J S; McGrew, B E; Schmale, J D

    1972-06-01

    Fluorescein-labeled anti-human globulins were examined to determine the need for standardization of conjugates used in the fluorescent treponemal antibody-absorption (FTA-ABS) test. Twenty-one of 33 conjugates submitted by commercial manufacturers to the Reagents Control Activity, Venereal Disease Research Laboratory, for evaluation in the FTA-ABS test were available for study. Conjugates, after evaluation in FTA-ABS performance tests, were examined by immunoelectrophoresis, by titration against immunoglobulins G and M (IgG, IgM) with FTA-ABS techniques, and by the biuret protein and fluorescein diacetate methods for determining fluorescein to protein (F/P) ratios. The conjugates were predominately anti-IgG globulin with anti-light-chain activity. Differences were noted in the ability of some conjugates to detect IgM antibody. The F/P ratios of those conjugates that could be determined varied from 2.6 to 17.8 mug of fluorescein per mg of protein. The need to identify and standardize both the immunologic capabilities and the optimum F/P ratio for FTA-ABS test conjugates is presented.

  15. The Information a Test Provides on an Ability Parameter. Research Report. ETS RR-07-18

    ERIC Educational Resources Information Center

    Haberman, Shelby J.

    2007-01-01

    In item-response theory, if a latent-structure model has an ability variable, then elementary information theory may be employed to provide a criterion for evaluation of the information the test provides concerning ability. This criterion may be considered even in cases in which the latent-structure model is not valid, although interpretation of…

  16. Diagnostic Algorithm for Glycogenoses and Myoadenylate Deaminase Deficiency Based on Exercise Testing Parameters: A Prospective Study

    PubMed Central

    Rannou, Fabrice; Uguen, Arnaud; Scotet, Virginie; Le Maréchal, Cédric; Rigal, Odile; Marcorelles, Pascale; Gobin, Eric; Carré, Jean-Luc; Zagnoli, Fabien; Giroux-Metges, Marie-Agnès

    2015-01-01

    Aim Our aim was to evaluate the accuracy of aerobic exercise testing to diagnose metabolic myopathies. Methods From December 2008 to September 2012, all the consecutive patients that underwent both metabolic exercise testing and a muscle biopsy were prospectively enrolled. Subjects performed an incremental and maximal exercise testing on a cycle ergometer. Lactate, pyruvate, and ammonia concentrations were determined from venous blood samples drawn at rest, during exercise (50% predicted maximal power, peak exercise), and recovery (2, 5, 10, and 15 min). Biopsies from vastus lateralis or deltoid muscles were analysed using standard techniques (reference test). Myoadenylate deaminase (MAD) activity was determined using p-nitro blue tetrazolium staining in muscle cryostat sections. Glycogen storage was assessed using periodic acid-Schiff staining. The diagnostic accuracy of plasma metabolite levels to identify absent and decreased MAD activity was assessed using Receiver Operating Characteristic (ROC) curve analysis. Results The study involved 51 patients. Omitting patients with glycogenoses (n = 3), MAD staining was absent in 5, decreased in 6, and normal in 37 subjects. Lactate/pyruvate at the 10th minute of recovery provided the greatest area under the ROC curves (AUC, 0.893 ± 0.067) to differentiate Abnormal from Normal MAD activity. The lactate/rest ratio at the 10th minute of recovery from exercise displayed the best AUC (1.0) for discriminating between Decreased and Absent MAD activities. The resulting decision tree achieved a diagnostic accuracy of 86.3%. Conclusion The present algorithm provides a non-invasive test to accurately predict absent and decreased MAD activity, facilitating the selection of patients for muscle biopsy and target appropriate histochemical analysis. PMID:26207760

  17. A Variation of the F-Test for Determining Statistical Relevance ofParticular Parameters in EXAFS Fits

    SciTech Connect

    Downward, L.; Booth, C.H.; Lukens, W.W.; Bridges, F.

    2006-07-25

    A general problem when fitting EXAFS data is determining whether particular parameters are statistically significant. The F-test is an excellent way of determining relevancy in EXAFS because it only relies on the ratio of the fit residual of two possible models, and therefore the data errors approximately cancel. Although this test is widely used in crystallography (there, it is often called a 'Hamilton test') and has been properly applied to EXAFS data in the past, it is very rarely applied in EXAFS analysis. We have implemented a variation of the F-test adapted for EXAFS data analysis in the RSXAP analysis package, and demonstrate its applicability with a few examples, including determining whether a particular scattering shell is warranted, and differentiating between two possible species or two possible structures in a given shell.

  18. Wich Parameter of the Carbonate System Influences the Boron Isotopic Composition and the Boron Calcium Ratio in Foraminiferal Tests?

    NASA Astrophysics Data System (ADS)

    Kaczmarek, K.; Nehrke, G.; Horn, I.; Langer, G.; Misra, S.; Bijma, J.

    2013-12-01

    We performed culture experiments with the benthic symbiont bearing foraminifer Amphistegina lessonii in order to determine which parameter of the marine carbonate system influences the boron isotopic composition (δ11B) and the boron calcium ratio (B/Ca) in the test. A. lessonii grew for two months in treatments of culture media with decoupled pH-carbonate chemistry. We measured δ11B and B/Ca simultaneously on single tests using a recently new developed mass spectrometric technique. Our results show a clear pH dependence on δ11B. The B/Ca in the shell show a positive correlation with aqueous B(OH)4-/HCO3-.

  19. Underground Test Area Subproject Phase I Data Analysis Task. Volume V - Transport Parameter and Source Term Data Documentation Package

    SciTech Connect

    1996-12-01

    Volume V of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the transport parameter and source term data. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  20. Aerosol Models for the CALIPSO Lidar Inversion Algorithms

    NASA Technical Reports Server (NTRS)

    Omar, Ali H.; Winker, David M.; Won, Jae-Gwang

    2003-01-01

    We use measurements and models to develop aerosol models for use in the inversion algorithms for the Cloud Aerosol Lidar and Imager Pathfinder Spaceborne Observations (CALIPSO). Radiance measurements and inversions of the AErosol RObotic NETwork (AERONET1, 2) are used to group global atmospheric aerosols using optical and microphysical parameters. This study uses more than 105 records of radiance measurements, aerosol size distributions, and complex refractive indices to generate the optical properties of the aerosol at more 200 sites worldwide. These properties together with the radiance measurements are then classified using classical clustering methods to group the sites according to the type of aerosol with the greatest frequency of occurrence at each site. Six significant clusters are identified: desert dust, biomass burning, urban industrial pollution, rural background, marine, and dirty pollution. Three of these are used in the CALIPSO aerosol models to characterize desert dust, biomass burning, and polluted continental aerosols. The CALIPSO aerosol model also uses the coarse mode of desert dust and the fine mode of biomass burning to build a polluted dust model. For marine aerosol, the CALIPSO aerosol model uses measurements from the SEAS experiment 3. In addition to categorizing the aerosol types, the cluster analysis provides all the column optical and microphysical properties for each cluster.

  1. CCN activation of ambient and "synthetic ambient" urban aerosol

    NASA Astrophysics Data System (ADS)

    Burkart, Julia; Reischl, Georg; Steiner, Gerhard; Bauer, Heidi; Leder, Klaus; Kistler, Magda; Puxbaum, Hans; Hitzenberger, R.

    2013-05-01

    In this study, the Cloud Condensation Nuclei (CCN) activation properties of the urban aerosol in Vienna, Austria, were investigated in a long term (11 month) field study. Filter samples of the aerosol below 100 nm were taken in parallel to these measurements, and later used to generate "synthetic ambient" aerosols. Activation parameters of this "synthetic ambient" aerosol were also obtained. Hygroscopicity parameters κ [1] were calculated both for the urban and the "synthetic ambient" aerosol and also from the chemical composition. Average κ for the "synthetic ambient" aerosol ranged from 0.20 to 0.30 with an average value of 0.24, while the κ from the chemical composition of this "synthetic ambient" aerosol was significantly higher (average 0.43). The full results of the study are given elsewhere [2,3].

  2. Application of Aerosol Assimilation System of MODIS Radiances to Regional Chemical Transport Model

    NASA Astrophysics Data System (ADS)

    D'Allura, A.; Charmichael, G. R.; Tang, Y.; Chai, T.; Chung, C. E.; Anderson, T. L.

    2006-12-01

    We present results from an assimilation system of radiances from the MODIS channels that sense atmospheric aerosols over land and ocean on the chemical transport model STEM. A test case is designed to simulate transport of aerosols tracers over the area of interest which includes India, east and south Asia at 50km horizontal resolution. A detailed treatment of the source, transport and deposition of the aerosol species are included. The model simulates five aerosol components: sulfate, organic carbon, black carbon, dust and sea salt. Total AODs at 550nm wavelength over land and ocean and fine mode AODs at 550nm wavelength over ocean are the level 2 aerosol products from Terra MODIS channel four used in this application. The intent of the study is to verify the improvement in the model performances while the initial conditions are corrected using an Optimum Interpolation technique to assimilate the MODIS data. The model results are compared with ground-based measurements of aerosol optical depth (AOD) from the AERONET network. Sensitivity analyses are provided in order to describe the effect of changing in assimilation technique's free parameters. The method is designed to optimize the use of the information provided by fine mode AODs, which are available over ocean, coupled with the total AODs available also over land. Improvements on the model results using this approach are highlighted during specific event where the model has experienced low agreement with observed data. Results are also compared to other assimilations methods.

  3. Advantages of a 3-parameter reduced constitutive model for the measurement of polymers elastic modulus using tensile tests

    NASA Astrophysics Data System (ADS)

    Blaise, A.; André, S.; Delobelle, P.; Meshaka, Y.; Cunat, C.

    2016-04-01

    Exact measurements of the rheological parameters of time-dependent materials are crucial to improve our understanding of their intimate relation to the internal bulk microstructure. Concerning solid polymers and the apparently simple determination of Young's modulus in tensile tests, international standards rely on basic protocols that are known to lead to erroneous values. This paper describes an approach allowing a correct measurement of the instantaneous elastic modulus of polymers by a tensile test. It is based on the use of an appropriate reduced model to describe the behavior of the material up to great strains, together with well-established principles of parameter estimation in engineering science. These principles are objective tools that are used to determine which parameters of a model can be correctly identified according to the informational content of a given data set. The assessment of the methodology and of the measurements is accomplished by comparing the results with those obtained from two other physical experiments, probing the material response at small temporal and length scales, namely, ultrasound measurements with excitation at 5 MHz and modulated nanoindentation tests over a few nanometers of amplitude.

  4. Relationship between fluid bed aerosol generator operation and the aerosol produced

    SciTech Connect

    Carpenter, R.L.; Yerkes, K.

    1980-12-01

    The relationships between bed operation in a fluid bed aerosol generator and aerosol output were studied. A two-inch diameter fluid bed aerosol generator (FBG) was constructed using stainless steel powder as a fluidizing medium. Fly ash from coal combustion was aerosolized and the influence of FBG operating parameters on aerosol mass median aerodynamic diameter (MMAD), geometric standard deviation (sigma/sub g/) and concentration was examined. In an effort to extend observations on large fluid beds to small beds using fine bed particles, minimum fluidizing velocities and elutriation constant were computed. Although FBG minimum fluidizing velocity agreed well with calculations, FBG elutriation constant did not. The results of this study show that the properties of aerosols produced by a FBG depend on fluid bed height and air flow through the bed after the minimum fluidizing velocity is exceeded.

  5. Sample Size under Inverse Negative Binomial Group Testing for Accuracy in Parameter Estimation

    PubMed Central

    Montesinos-López, Osval Antonio; Montesinos-López, Abelardo; Crossa, José; Eskridge, Kent

    2012-01-01

    Background The group testing method has been proposed for the detection and estimation of genetically modified plants (adventitious presence of unwanted transgenic plants, AP). For binary response variables (presence or absence), group testing is efficient when the prevalence is low, so that estimation, detection, and sample size methods have been developed under the binomial model. However, when the event is rare (low prevalence <0.1), and testing occurs sequentially, inverse (negative) binomial pooled sampling may be preferred. Methodology/Principal Findings This research proposes three sample size procedures (two computational and one analytic) for estimating prevalence using group testing under inverse (negative) binomial sampling. These methods provide the required number of positive pools (), given a pool size (k), for estimating the proportion of AP plants using the Dorfman model and inverse (negative) binomial sampling. We give real and simulated examples to show how to apply these methods and the proposed sample-size formula. The Monte Carlo method was used to study the coverage and level of assurance achieved by the proposed sample sizes. An R program to create other scenarios is given in Appendix S2. Conclusions The three methods ensure precision in the estimated proportion of AP because they guarantee that the width (W) of the confidence interval (CI) will be equal to, or narrower than, the desired width (), with a probability of . With the Monte Carlo study we found that the computational Wald procedure (method 2) produces the more precise sample size (with coverage and assurance levels very close to nominal values) and that the samples size based on the Clopper-Pearson CI (method 1) is conservative (overestimates the sample size); the analytic Wald sample size method we developed (method 3) sometimes underestimated the optimum number of pools. PMID:22457714

  6. Impact of aerosol vertical distribution on aerosol direct radiative effect and heating rate in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Pappas, Vasileios; Hatzianastassiou, Nikolaos; Matsoukas, Christos; Koras Carracca, Mario; Kinne, Stefan; Vardavas, Ilias

    2015-04-01

    been presented and its validity has been tested against satellite-based retrievals. A detailed spectral radiative transfer model (RTM), already used in a number of planetary and regional studies, has been used in the present study to calculate the vertically distributed aerosol direct radiative effects (DREs) and the associated aerosol heating/cooling profiles within the troposphere. Specific emphasis is given to assessment of the crucial issue of the differences between modeling the aerosol DREs using either columnar aerosol optical properties, as usually done, or vertically layered information on those properties, which is the state of the art and ideal practice. To address this problem, the following experiment has been performed: the same RTM has been used twice with the same meteorological conditions but in the first run (set1) columnar values for aerosol optical depth (AOD) have been used while using vertically distributed AOD in the second run (set2). In the second run vertically layered information for AOD is considered for 20 layers extending from the surface to 20 km a.m.s.l.. The vertical profile of AOD has been mainly based on ECHAM model. The aerosol DREs are computed at the Earth's surface, at TOA and at various levels in the atmosphere. Apart from AOD, the model also requires single-scattering albedo (SSA) and asymmetry parameter (ASY) in 18 different wavelengths, which are obtained by linear interpolation from the available wavelengths in HAC. The comparison between the obtained two sets of DRE (set1 and set2) reveal small, but notable differences which vary from one place to another. Within the atmosphere, the difference -averaged over the four seasons - ranges from -0.3 to 1.7 Wm-2 with a mean value of 0.32 Wm-2. Given the fact that the average column-integrated DREAtm values for the entire Mediterranean region based on columnar aerosol optical properties is 11.44 Wm-2, there is an average variance of 3.7 %, which locally could get to 14

  7. Global Aerosol Climatology Project: An Update

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.

    1999-01-01

    This paper outlines the methodology of interpreting channe1 1 and 2 AVHRR (Advanced Very High Resolution Radiometer) radiance data over the oceans and describes a detailed analysis of the sensitivity of monthly averages of retrieved aerosol parameters to the assumptions made in different retrieval algorithms. The analysis is based on using real AVHRR data and exploiting accurate numerical techniques for computing single and multiple scattering and spectral absorption of light in the vertically inhomogeneous atmospheric-ocean system. We show that two-channel algorithms can be expected tp provide significantly more biased retrievals of the aerosol optical thickness than one-channel algorithms and that imperfect cloud screening and calibration uncertainties are by far the largest sources of errors in the retrieved aerosol parameters. Both underestimating and overestimating aerosol absorption as well as the potentially strong variability of the real part of the aerosol refractive index may lead to regional and/or seasonal biases in optical thickness retrievals. The Angstrom exponent appears to be the most invariant aerosol size characteristic and should be retrieved along with optical thickness as the second aerosol parameter.

  8. Aerosol deposition in human respiratory-tract casts

    SciTech Connect

    Martonen, T.B.

    1981-09-01

    To assess the health hazard to the human presented by airborne particulate matter in the mining and industrial work environment, information is needed concerning total dose deposition and its distribution. Data has been obtained by depositing monodisperse ammonium fluorscein aerosols in respiratory system simulators consisting of combined human replica larynx casts and single-pathway trachebronchial (TB) tue models. Since they have only two airways in each generation distal to the trachea, airflow rates and patterns could be controlled in a practical manner with rotometers. Larynx configurations correspond to inspiratory flow rates of 15, 30 and 60 lmin. The mass median aerodynamic diameters of the aerosols ranged from 3.0 ..mu..m to 10.6 ..mu..m with geometric standard deviations of 1.11 to 1.16. Total larynx and TB deposition measurements could be expressed in terms of a single parameter, the particle Stokes number. Intrabronchial dose distribution results indicated relatively large tracheal losses, attributed to the laryngeal jet. Some airway bifurcations were sites of enhanced deposition. Such hot spots would indicate very high dosage to epithelial cells of workers' airways and have important implications regarding the establishment of threshold exposure values. Findings are in agreement with aerosol deposition data from replica TB casts. Inhalation exposure tests support the use of the single-pathway TB model as a suitable surrogate in studies of factors affecting aerosol behavior and deposition in the human.

  9. Integrated Analyses of Multiple Worldwide Aerosol Mass Spectrometer Datasets for Improved Understanding of Aerosol Sources and Processes and for Comparison with Global Models

    SciTech Connect

    Zhang, Qi; Jose, Jimenez Luis

    2014-04-28

    composition, concentration, size distribution and (inferred) shape and mixing state in various environments and their regional and seasonal variations within the context of regional and global modeling; and 4) to quantitatively evaluate important processes in various atmospheric environments and during different seasons, focusing on acid-catalyzed SOA formation, new particle growth, and photochemical processes of atmospheric organic aerosols (i.e., SOA production and POA oxidation). We will also examine the correlations and compile the ratios between important pairs of aerosol and gas phase species using region-specific and season-specific correlations and as a function of photochemical age and compare them with the ratios produced by various models. To enable our collaborations with the modelers, we will supply (via a public web interface) AMS data and our analysis results for use in model testing and validation and facilitate the use of the AMS information to constrain calculations of radiative forcing. Model output and AMS measurements and derived parameters will be compared with a focus on regional variability of model/measurement discrepancies and their causes. Finally we will share results, insights and data mining algorithms through peer-reviewed publications, presentations/tutorials at conferences/workshops, and web dissemination of analysis results and in-house developed software packages.

  10. Evaluation of aerosol optical properties of GEOS-Chem over East Asia during the DRAGON-Asia 2012 campaign

    NASA Astrophysics Data System (ADS)

    Jo, D. S.; Park, R.; Kim, J.

    2015-12-01

    A nested version of 3-D chemical transport model (GEOS-Chem v9-01-02) is evaluated over East Asia during the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-Asia 2012 campaign period, focusing on fine-mode aerosol optical depth (fAOD) and single scattering albedo (SSA). Both are important to assess the effect of anthropogenic aerosols on climate. We compare the daily mean simulated optical properties of aerosols with the observations from DRAGON-Asia campaign for March-May, 2012 (provided in level 2.0: cloud screened and quality assured). We find that the model reproduces the observed daily variability of fAOD (R=0.67), but overestimates the magnitude by 30%, which is in general consistent with other global model comparisons from ACCMIP. However, a significant high bias in the model is found compared to the observed SSA at 440 nm, which is important for determining the sign of aerosol radiative forcing. In order to understand causes for this gap we conduct several sensitivity tests by changing source magnitudes and input parameters of aerosols, affecting the aerosol optical properties under various atmospheric conditions, which allows us to reduce the gap and to find the optimal values in the model.

  11. Biological aerosol trigger

    NASA Astrophysics Data System (ADS)

    DeSha, Michael S.

    1999-01-01

    In recent history, manmade and natural events have shown us the every-present need for systems to monitor the troposphere for contaminates. These contaminants may take either a chemical or biological form, which determines the methods we use to monitor them. Monitoring the troposphere for biological contaminants is of particular interest to my organization. Whether manmade or natural, contaminants of a biological origin share similar constituents; typically the aromatic amino acids tryptophan, phenylalanine, and tyrosine. All of these proteinaceous compounds autofluorescence when exposed to UV radiation and this established the basis of the laser-induced fluorescence technique we use to detect biological contaminants. This technique can be employed in either point or remote detection schemes and is a valuable tool for discriminating proteinaceous form non-proteinaceous aerosols. For this particular presentation I am going to describe a breadboard point sensor we designed and fabricated to detect proteinaceous aerosols. Previous point sensor designs relied on convoluted flow paths to concentrate the aerosols into a solution. Other systems required precise beam alignment to evenly distribute the energy irradiating the detector elements. Our objective was to build a simple system where beam alignment is not critical, and the flow is straight and laminar. The breadboard system was developed over a nine- month period and its performance assessed at a recent test at Dugway Proving Grounds in Utah. In addition, we have performed chamber experiments in an attempt to establish a baseline for the systems. The results of these efforts are presented here.

  12. Type of Aerosols Determination Over Malaysia by AERONET Data

    NASA Astrophysics Data System (ADS)

    Lim, H.; Tan, F.; Abdullah, K.; Holben, B. N.

    2013-12-01

    Aerosols are one of the most interesting studies by the researchers due to the complicated of their characteristic and are not yet well quantified. Besides that there still have huge uncertainties associated with changes in Earth's radiation budget. The previous study by other researchers shown a lot of difficulties and challenges in quantifying aerosol influences arise. As well as the heterogeneity from the aerosol loading and properties: spatial, temporal, size, and composition. In this study, we were investigated the aerosol characteristics over two regions with different environmental conditions and aerosol sources contributed. The study sites are Penang and Kuching, Malaysia where ground-based AErosol RObotic NETwork (AERONET) sun-photometer was deployed. The types of the aerosols for both study sites were identified by analyzing aerosol optical depth, angstrom parameter and spectral de-convolution algorithm product from sun-photometer. The analysis was carried out associated with the in-situ meteorological data of relative humidity, visibility and air pollution index. The major aerosol type over Penang found in this study was hydrophobic aerosols. Whereas the hydrophilic type of the aerosols was highly distributed in Kuching. The major aerosol size distributions for both regions were identified in this study. The result also shows that the aerosol optical properties were affected by the types and characteristic of aerosols. Therefore, in this study we generated an algorithm to determine the aerosols in Malaysia by considered the environmental factors. From this study we found that the source of aerosols should always being consider in to retrieve the accurate information of aerosol for air quality study.

  13. Hydrological parameter estimations from a conservative tracer test with variable-density effects at the Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Dafflon, B.; Barrash, W.; Cardiff, M.; Johnson, T. C.

    2011-12-01

    Reliable predictions of groundwater flow and solute transport require an estimation of the detailed distribution of the parameters (e.g., hydraulic conductivity, effective porosity) controlling these processes. However, such parameters are difficult to estimate because of the inaccessibility and complexity of the subsurface. In this regard, developments in parameter estimation techniques and investigations of field experiments are still challenging and necessary to improve our understanding and the prediction of hydrological processes. Here we analyze a conservative tracer test conducted at the Boise Hydrogeophysical Research Site in 2001 in a heterogeneous unconfined fluvial aquifer. Some relevant characteristics of this test include: variable-density (sinking) effects because of the injection concentration of the bromide tracer, the relatively small size of the experiment, and the availability of various sources of geophysical and hydrological information. The information contained in this experiment is evaluated through several parameter estimation approaches, including a grid-search-based strategy, stochastic simulation of hydrological property distributions, and deterministic inversion using regularization and pilot-point techniques. Doing this allows us to investigate hydraulic conductivity and effective porosity distributions and to compare the effects of assumptions from several methods and parameterizations. Our results provide new insights into the understanding of variable-density transport processes and the hydrological relevance of incorporating various sources of information in parameter estimation approaches. Among others, the variable-density effect and the effective porosity distribution, as well as their coupling with the hydraulic conductivity structure, are seen to be significant in the transport process. The results also show that assumed prior information can strongly influence the estimated distributions of hydrological properties.

  14. Prediction of Preeclampsia by First Trimester Combined Test and Simple Complete Blood Count Parameters

    PubMed Central

    Ersoy, Ali Ozgur; Daglar, Korkut; Dikici, Turkan; Biberoglu, Ebru Hacer; Kirbas, Ozgur; Danisman, Nuri

    2015-01-01

    Introduction Preeclampsia is a serious disease which may result in maternal and neonatal mortality and morbidity. Improving the outcome for preeclampsia necessitates early prediction of the disease to identify women at high risk. Measuring blood cell subtype ratios, such as the neutrophil to lymphocyte (NLR) and platelet to lymphocyte (PLR) ratios, might provide prognostic and diagnostic clues to diseases. Aim To investigate hematological changes in early pregnancy, using simple complete blood count (CBC) and blood concentrations of beta-human chorionic gonadotropin (β-hCG) and pregnancy-associated plasma protein-A (PAPP-A) to determine whether these measures are of any value in the prediction and early diagnosis of preeclampsia. Materials and Methods Six hundred fourteen consecutive pregnant women with preeclampsia (288 with mild disease and 326 with severe disease) and 320 uncomplicated pregnant women were included in the study. Blood samples for routine CBC and first trimester screen, which combines PAPP-A and free β-hCG blood concentrations, were analyzed. Results The NLR values were significantly higher in the severe preeclampsia group compared with the control group (p<0.001). We also confirmed that levels of PAPP-A were lower in patients who developed preeclampsia. Conclusion Because measuring CBC parameters, particularly NLR, is fast and easily applicable, they may be used to predict preeclampsia. PMID:26674673

  15. Damage parameter comparison for candidate intense neutron test facilities for fusion materials

    SciTech Connect

    Doran, D.G.; Greenwood, L.R. ); Mann, F.M. )

    1990-07-31

    It is recognized worldwide that an intense source of fusion energy neutrons is needed to evaluate candidate fusion materials. At an International Energy Agency (IEA) workshop held in San Diego in February 1989, an Evaluation Panel recommended that three neutron source concepts be developed further. The panel also recommended that further comparisons were needed of their irradiation environments. In this paper, a comparison is made of damage parameters for beryllium, carbon, silicon, vanadium, iron, copper, molybdenum, and tungsten irradiated in spectra characteristic of di-Li, spallation, and beam-plasma (d-t) neutron sources and in a reference DEMO first wall spectrum. The treatment of neutron-induced displacement reactions is confined to the region below 20 MeV and transmutation reactions to below 50 MeV by the limited availability of calculational tools. The spallation spectrum is relatively soft; less than 2% of the neutrons are above 50 MeV. The transmutation results emphasize the need to define the neutron spectra at low, as well as high, energies; only the DEMO spectrum is adequate in this respect. Recommendations are given for further work to be performed under an international working group. 12 refs., 2 figs., 3 tabs.

  16. Hydro-mechanical constitutive model for unsaturated compacted bentonite-sand mixture (BSM): Laboratory tests, parameter calibrations, modifications, and applications

    NASA Astrophysics Data System (ADS)

    Priyanto, D. G.; Man, A. G.; Blatz, J. A.; Dixon, D. A.

    A bentonite-sand mixture (BSM) is one of the clay-based sealing components proposed for use in a Canadian deep geological repository (DGR) for used nuclear fuel. Numerical modelling to assess the overall design of the proposed DGR requires characterisation of the hydraulic-mechanical (H-M) of each of the components of the sealing system, including the BSM. The BSM currently under consideration is a 50/50 mixture (by dry mass) of bentonite and well-graded silica sand, compacted to a dry density of at least 1.67 Mg/m 3. This paper presents the H-M constitutive model parameters, calibrated for BSM specimens under saturated and unsaturated conditions, based on various laboratory tests. A set of parameters for an elastoplastic model for unsaturated soil, Basic Barcelona Model (BBM), have been determined to simulate the mechanical behaviour of the BSM specimen. A set of parameters for van Genuchten’s Soil-Water Characteristic Curve (SWCC) and Kozeny’s hydraulic permeability model have been determined to simulate the hydraulic behaviour of the BSM specimen. Using a finite element computer code, CODE_BRIGHT, these sets of parameters have been used to simulate H-M processes in BSM specimens during water infiltration under constant volume (CV) and constant mean stress (CMS) boundary conditions. The key features of the selected constitutive models that are different from the laboratory tests of the BSM specimen have been summarised. The functions to improve the capability of the selected constitutive models to match the laboratory test results of the BSM specimen have been proposed.

  17. SEAC4RS Aerosol Radiative Effects and Heating Rates

    NASA Astrophysics Data System (ADS)

    Cochrane, S.; Schmidt, S.; Redemann, J.; Hair, J. W.; Ferrare, R. A.; Segal-Rosenhaimer, M.; LeBlanc, S. E.

    2015-12-01

    We will present (a) aerosol optical properties, (b) aerosol radiative forcing, (c) aerosol and gas absorption and heating rates, and (d) spectral surface albedo for cases from August 19th and 26th of the SEAC4RS mission. This analysis is based on irradiance data from the Solar Spectral Flux Radiometer (SSFR), spectral aerosol optical depth from the Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR), and extinction profiles from the DIAL/High Spectral Resolution Lidar (HSRL). We derive spectrally resolved values of single scattering albedo, asymmetry parameter, and surface albedo from the data, and determine profiles of absorption and heating rate segregated by absorber (aerosol and gas).

  18. A normal and biotransforming model of the human bronchial epithelium for the toxicity testing of aerosols and solubilised substances.

    PubMed

    Prytherch, Zoë C; BéruBé, Kelly A

    2014-12-01

    In this article, we provide an overview of the experimental workflow by the Lung and Particle Research Group at Cardiff University, that led to the development of the two in vitro lung models - the normal human bronchial epithelium (NHBE) model and the lung-liver model, Metabo-Lung™. This work was jointly awarded the 2013 Lush Science Prize. The NHBE model is a three-dimensional, in vitro, human tissue-based model of the normal human bronchial epithelium, and Metabo-Lung involves the co-culture of the NHBE model with primary human hepatocytes, thus permitting the biotransformation of inhaled toxicants in an in vivo-like manner. Both models can be used as alternative test systems that could replace the use of animals in research and development for safety and toxicity testing in a variety of industries (e.g. the pharmaceutical, environmental, cosmetics, and food industries). Metabo-Lung itself is a unique tool for the in vitro detection of toxins produced by reactive metabolites. This 21st century animal replacement model could yield representative in vitro predictions for in vivo toxicity. This advancement in in vitro toxicology relies on filter-well technology that will enable a wide-spectrum of researchers to create viable and economic alternatives for respiratory safety assessment and disease-focused research. PMID:25635646

  19. A normal and biotransforming model of the human bronchial epithelium for the toxicity testing of aerosols and solubilised substances.

    PubMed

    Prytherch, Zoë C; BéruBé, Kelly A

    2014-12-01

    In this article, we provide an overview of the experimental workflow by the Lung and Particle Research Group at Cardiff University, that led to the development of the two in vitro lung models - the normal human bronchial epithelium (NHBE) model and the lung-liver model, Metabo-Lung™. This work was jointly awarded the 2013 Lush Science Prize. The NHBE model is a three-dimensional, in vitro, human tissue-based model of the normal human bronchial epithelium, and Metabo-Lung involves the co-culture of the NHBE model with primary human hepatocytes, thus permitting the biotransformation of inhaled toxicants in an in vivo-like manner. Both models can be used as alternative test systems that could replace the use of animals in research and development for safety and toxicity testing in a variety of industries (e.g. the pharmaceutical, environmental, cosmetics, and food industries). Metabo-Lung itself is a unique tool for the in vitro detection of toxins produced by reactive metabolites. This 21st century animal replacement model could yield representative in vitro predictions for in vivo toxicity. This advancement in in vitro toxicology relies on filter-well technology that will enable a wide-spectrum of researchers to create viable and economic alternatives for respiratory safety assessment and disease-focused research.

  20. Lagrangian model of zooplankton dispersion: numerical schemes comparisons and parameter sensitivity tests

    NASA Astrophysics Data System (ADS)

    Qiu, Zhongfeng; Doglioli, Andrea M.; He, Yijun; Carlotti, Francois

    2011-03-01

    This paper presents two comparisons or tests for a Lagrangian model of zooplankton dispersion: numerical schemes and time steps. Firstly, we compared three numerical schemes using idealized circulations. Results show that the precisions of the advanced Adams-Bashfold-Moulton (ABM) method and the Runge-Kutta (RK) method were in the same order and both were much higher than that of the Euler method. Furthermore, the advanced ABM method is more efficient than the RK method in computational memory requirements and time consumption. We therefore chose the advanced ABM method as the Lagrangian particle-tracking algorithm. Secondly, we performed a sensitivity test for time steps, using outputs of the hydrodynamic model, Symphonie. Results show that the time step choices depend on the fluid response time that is related to the spatial resolution of velocity fields. The method introduced by Oliveira et al. in 2002 is suitable for choosing time steps of Lagrangian particle-tracking models, at least when only considering advection.

  1. Sensitivity of aerosol retrieval to geometrical configuration of ground-based sun/sky-radiometer observations

    NASA Astrophysics Data System (ADS)

    Torres, B.; Dubovik, O.; Toledano, C.; Berjon, A.; Cachorro, V. E.; Lapyonok, T.; Goloub, P.

    2013-03-01

    A sensitivity study of the aerosol optical properties retrieval to the geometrical configuration of the ground-based sky radiometer observations is carried out through the inversion tests. Specifically, the study is focused on the principal plane and almucantar observation, since these geometries are employed in Aeronet (AErosol RObotic NETwork). The following effects has been analyzed with simulated data for both geometries: sensitivity of the retrieval to variability of the observed scattering angle range, uncertainties in the assumptions of the aerosol vertical distribution and surface reflectance, possible instrument pointing errors and the effects of the finite field of view. The synthetic observations of radiometer in the tests were calculated using a previous climatology data of retrieved aerosol over three Aeronet sites: Mongu (Zambia) for biomass burning aerosol, Goddard Space Flight Center (Maryland-USA) for urban aerosol and Solar Village (Saudi Arabia) for desert dust aerosol. The results show that almucantar retrievals, in general, are more reliable than principal plane retrievals in presence of the analyzed error sources. This fact partially can be explained by to practical advantages of almucantar geometry: the symmetry between its left and right branches that helps to eliminate some observational uncertainties and the constant value of optical mass constant during the measurements that makes almucantar observations nearly independent on vertical variability of aerosol. Nevertheless, almucantar retrievals present instabilities at high sun observations due to the reduction of the scattering angle range coverage resulting in decrease of information content. The last part of the study is devoted to identification of possible differences between the aerosol retrieval results obtained from real Aeronet data using both geometries. In particular, we have compared Aeronet retrievals at three different key sites: Mongu (biomass burning), Beijing (urban) and

  2. Radiative Effects of Aerosol in the Marine Environment: Tales from the Two-Column Aerosol Project

    NASA Astrophysics Data System (ADS)

    Berg, L. K.; Fast, J. D.; Barnard, J.; Chand, D.; Chapman, E. G.; Comstock, J. M.; Ferrare, R. A.; Flynn, C. J.; Hair, J. W.; Hostetler, C. A.; Hubbe, J.; Johnson, R.; Kassianov, E.; Kluzek, C.; Laskin, A.; Lee, Y.; Mei, F.; Michalsky, J. J.; Redemann, J.; Rogers, R. R.; Russell, P. B.; Sedlacek, A. J.; Schmid, B.; Shilling, J. E.; Shinozuka, Y.; Springston, S. R.; Tomlinson, J. M.; Wilson, J. M.; Zelenyuk, A.; Berkowitz, C. M.

    2013-12-01

    There is still uncertainty associated with the direct radiative forcing by atmospheric aerosol and its representation in atmospheric models. This is particularly true in marine environments near the coast where the aerosol loading is a function of both naturally occurring and anthropogenic aerosol. These regions are also subject to variable synoptic and thermally driven flows (land-sea breezes) that transport aerosol between the continental and marine environments. The situation is made more complicated due to seasonal changes in aerosol emissions. Given these differences in emissions, we expect significant differences in the aerosol intensive and extensive properties between summer and winter and data is needed to evaluate models over the wide range of conditions. To address this issue, the recently completed Two Column Aerosol Project (TCAP) was designed to measure the key aerosol parameters in two atmospheric columns, one located over Cape Cod, Massachusetts and another approximately 200 km from the coast over the Atlantic Ocean. Measurements included aerosol size distribution, chemical composition, optical properties and vertical distribution. Several aspects make TCAP unique, including the year-long deployment of a suite of surface-based instruments by the US Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility and two aircraft intensive operations periods supported by the ARM Airborne Facility, one conducted in July 2012 and a second in February 2013. The presentation will include a discussion of the impact of the aerosol optical properties and their uncertainty on simulations of the radiation budget within the TCAP domain in the context of both single column and regional scale models. Data from TCAP will be used to highlight a number of important factors, including diurnal variation in aerosol optical depth measured at the surface site, systematic changes in aerosol optical properties (including scattering, absorption, and

  3. Global Atmospheric Aerosol Modeling

    NASA Technical Reports Server (NTRS)

    Hendricks, Johannes; Aquila, Valentina; Righi, Mattia

    2012-01-01

    Global aerosol models are used to study the distribution and properties of atmospheric aerosol particles as well as their effects on clouds, atmospheric chemistry, radiation, and climate. The present article provides an overview of the basic concepts of global atmospheric aerosol modeling and shows some examples from a global aerosol simulation. Particular emphasis is placed on the simulation of aerosol particles and their effects within global climate models.

  4. A System to Create Stable Nanoparticle Aerosols from Nanopowders.

    PubMed

    Ding, Yaobo; Riediker, Michael

    2016-01-01

    Nanoparticle aerosols released from nanopowders in workplaces are associated with human exposure and health risks. We developed a novel system, requiring minimal amounts of test materials (min. 200 mg), for studying powder aerosolization behavior and aerosol properties. The aerosolization procedure follows the concept of the fluidized-bed process, but occurs in the modified volume of a V-shaped aerosol generator. The airborne particle number concentration is adjustable by controlling the air flow rate. The system supplied stable aerosol generation rates and particle size distributions over long periods (0.5-2 hr and possibly longer), which are important, for example, to study aerosol behavior, but also for toxicological studies. Strict adherence to the operating procedures during the aerosolization experiments ensures the generation of reproducible test results. The critical steps in the standard protocol are the preparation of the material and setup, and the aerosolization operations themselves. The system can be used for experiments requiring stable aerosol concentrations and may also be an alternative method for testing dustiness. The controlled aerosolization made possible with this setup occurs using energy inputs (may be characterized by aerosolization air velocity) that are within the ranges commonly found in occupational environments where nanomaterial powders are handled. This setup and its operating protocol are thus helpful for human exposure and risk assessment. PMID:27501179

  5. Effects of psychological stress test on the cardiac response of public safety workers: alternative parameters to autonomic balance

    NASA Astrophysics Data System (ADS)

    Huerta-Franco, M. R.; Vargas-Luna, F. M.; Delgadillo-Holtfort, I.

    2015-01-01

    It is well known that public safety workers (PSW) face many stressful situations that yield them as high-risk population for suffering chronic stress diseases. In this multidisciplinary research the cardiac response to induced psychological stress by a short duration Stroop test was evaluated in 20 female and 19 male PSW, in order to compare traditionally used cardiac response parameters with alternative ones. Electrocardiograms have been recorded using the Eindhoven electrodes configuration for 1 min before, 3 min during and 1 min after the test. Signals analysis has been performed for the heart rate and the power spectra of its variability and of the variability of the amplitude of the R-wave, i.e. the highest peak of the electrocardiographic signal periodic sequence. The results demonstrated that the traditional autonomic balance index shows no significant differences between stages. In contrast, the median of the area of the power spectrum of the R-wave amplitude variability in the frequency region dominated by the autonomous nervous system (0.04-to-0.4 Hz) is the more sensitive parameter. Moreover, this parameter allows to identify gender differences consistent with those encountered in other studies.

  6. Monte Carlo uncertainty assessment of ultrasonic beam parameters from immersion transducers used to non-destructive testing.

    PubMed

    Alvarenga, A V; Silva, C E R; Costa-Félix, R P B

    2016-07-01

    The uncertainty of ultrasonic beam parameters from non-destructive testing immersion probes was evaluated using the Guide to the expression of uncertainty in measurement (GUM) uncertainty framework and Monte Carlo Method simulation. The calculated parameters such as focal distance, focal length, focal widths and beam divergence were determined according to EN 12668-2. The typical system configuration used during the mapping acquisition comprises a personal computer connected to an oscilloscope, a signal generator, axes movement controllers, and a water bath. The positioning system allows moving the transducer (or hydrophone) in the water bath. To integrate all system components, a program was developed to allow controlling all the axes, acquire waterborne signals, and calculate essential parameters to assess and calibrate US transducers. All parameters were calculated directly from the raster scans of axial and transversal beam profiles, except beam divergence. Hence, the positioning system resolution and the step size are principal source of uncertainty. Monte Carlo Method simulations were performed by another program that generates pseudo-random samples for the distributions of the involved quantities. In all cases, there were found statistical differences between Monte Carlo and GUM methods.

  7. Inference of stratospheric aerosol composition and size distribution from SAGE II satellite measurements

    NASA Technical Reports Server (NTRS)

    Wang, Pi-Huan; Mccormick, M. P.; Fuller, W. H.; Yue, G. K.; Swissler, T. J.; Osborn, M. T.

    1989-01-01

    A method for inferring stratospheric aerosol composition and size distribution from the water vapor concentration and aerosol extinction measurements obtained in the Stratospheric Aerosol and Gas Experiment (SAGE) II and the associated temperature from the NMC. The aerosols are assumed to be sulfuric acid-water droplets. A modified Levenberg-Marquardt algorithm is used to determine model size distribution parameters based on the SAGE II multiwavelength aerosol extinctions. It is found that the best aerosol size information is contained in the aerosol radius range between about 0.25 and 0.80 micron.

  8. Aerosol gels

    NASA Technical Reports Server (NTRS)

    Sorensen, Christopher M. (Inventor); Chakrabarti, Amitabha (Inventor); Dhaubhadel, Rajan (Inventor); Gerving, Corey (Inventor)

    2010-01-01

    An improved process for the production of ultralow density, high specific surface area gel products is provided which comprises providing, in an enclosed chamber, a mixture made up of small particles of material suspended in gas; the particles are then caused to aggregate in the chamber to form ramified fractal aggregate gels. The particles should have a radius (a) of up to about 50 nm and the aerosol should have a volume fraction (f.sub.v) of at least 10.sup.-4. In preferred practice, the mixture is created by a spark-induced explosion of a precursor material (e.g., a hydrocarbon) and oxygen within the chamber. New compositions of matter are disclosed having densities below 3.0 mg/cc.

  9. Aerosol hygroscopicity and cloud droplet activation of extracts of filters from biomass burning experiments

    NASA Astrophysics Data System (ADS)

    Carrico, Christian M.; Petters, Markus D.; Kreidenweis, Sonia M.; Collett, Jeffrey L.; Engling, Guenter; Malm, William C.

    2008-04-01

    In this laboratory closure study, we compare sub- and supersaturated water uptake properties for aerosol particles possessing a range of hygroscopicity. Measurements for water sub-saturated conditions used a hygroscopic tandem differential mobility analyzer (HTDMA). Simultaneously, measurements of particle critical supersaturation were conducted on the same sample stream with a continuous flow cloud condensation nuclei (CCN) counter. For these experiments, we used filter-collected samples of biomass smoke generated in the combustion of two common wildland fire fuels, western sagebrush and Alaskan duff core. Extractions of separate sections of the filter were performed using two solvents, ultrapure water and methanol. The extracts were subsequently atomized, producing aerosols having a range of hygroscopic responses. HTDMA and CCN measurements were fit to a single-parameter model of water uptake, in which the fit parameter is denoted κ, the hygroscopicity parameter. Here, for the four extracts we observed mean values of the hygroscopicity parameter of 0.06 < κ < 0.30, similar to the range found previously for numerous pure organic compounds. Particles generated from the aqueous extracts of the filters had consistently larger κ than methanol extracts, while western sagebrush extract aerosols κ exceeded those from Alaskan duff core. HTDMA- and CCN-derived values of κ for each experiment agreed within approximately 20%. Applicability of the κ-parameterization to other multicomponent aerosols relevant to the atmosphere remains to be tested.

  10. Utilizing observations of vegetation patterns to infer ecosystem parameters and test model predictions

    NASA Astrophysics Data System (ADS)

    Penny, G.; Daniels, K. E.; Thompson, S. E.

    2012-12-01

    Periodic vegetation patterns arise globally in arid and semi-arid environments, and are believed to indicate competing positive and negative feedbacks between resource availability and plant uptake at different length scales. The patterns have become the object of two separate research themes, one focusing on observation of ecosystem properties and vegetation morphology, and another focusing on the development of theoretical models and descriptions of pattern behavior. Given the growing body of work in both directions, there is a compelling need to unify both strands of research by bringing together observations of large-scale pattern morphology with predictions made by various models. Previous attempts have employed spectral analysis on pattern images and inverse modeling on one-dimensional transects of patterns images, yet have not made a concerted effort to rigorously confront predictions with observational data in two dimensions. This study makes the first steps towards unification, utilizing high resolution landscape-scale images of vegetation patterns over multiple years at five different locations, including Niger, Central Mexico, Baja California, Texas, and Australia. Initial analyses of the observed patterns reveal considerable departures from the idealized morphologies predicted by models. Pattern wavelengths, while clustered around a local average, vary through space and are frequently altered by pattern defects such as missing or broken bands. While often locally homogeneous, pattern orientation also varies through space, allowing the correlations between landscape features and changes in local pattern morphology to be explored. Stationarity of the pattern can then be examined by comparing temporal changes in morphology with local climatic fluctuations. Ultimately, by identifying homogeneous regions of coherent pattern, inversion approaches can be applied to infer model parameters and build links between observable pattern and landscape features and the

  11. Estimation of hydraulic parameters from an unconfined aquifer test conducted in a glacial outwash deposit, Cape Cod, Massachusetts

    USGS Publications Warehouse

    Moench, A.F.; Garabedian, Stephen P.; LeBlanc, Denis R.

    2000-01-01

    An aquifer test conducted in a sand and gravel, glacial outwash deposit on Cape Cod, Massachusetts was analyzed by means of a model for flow to a partially penetrating well in a homogeneous, anisotropic unconfined aquifer. The model is designed to account for all significant mechanisms expected to influence drawdown in observation piezometers and in the pumped well. In addition to the usual fluid-flow and storage processes, additional processes include effects of storage in the pumped well, storage in observation piezometers, effects of skin at the pumped-well screen, and effects of drainage from the zone above the water table. The aquifer was pumped at a rate of 320 gallons per minute for 72-hours and drawdown measurements were made in the pumped well and in 20 piezometers located at various distances from the pumped well and depths below the land surface. To facilitate the analysis, an automatic parameter estimation algorithm was used to obtain relevant unconfined aquifer parameters, including the saturated thickness and a set of empirical parameters that relate to gradual drainage from the unsaturated zone. Drainage from the unsaturated zone is treated in this paper as a finite series of exponential terms, each of which contains one empirical parameter that is to be determined. It was necessary to account for effects of gradual drainage from the unsaturated zone to obtain satisfactory agreement between measured and simulated drawdown, particularly in piezometers located near the water table. The commonly used assumption of instantaneous drainage from the unsaturated zone gives rise to large discrepancies between measured and predicted drawdown in the intermediate-time range and can result in inaccurate estimates of aquifer parameters when automatic parameter estimation procedures are used. The values of the estimated hydraulic parameters are consistent with estimates from prior studies and from what is known about the aquifer at the site. Effects of

  12. Introducing the aerosol-climate model MAECHAM5-SAM2

    NASA Astrophysics Data System (ADS)

    Hommel, R.; Timmreck, C.; Graf, H. F.

    2009-04-01

    We are presenting a new global aerosol model MAECHAM5-SAM2 to study the aerosol dynamics in the UTLS under background and volcanic conditions. The microphysical core modul SAM2 treats the formation, the evolution and the transport of stratospheric sulphuric acid aerosol. The aerosol size distribution and the weight percentage of the sulphuric acid solution is calculated dependent on the concentrations of H2SO4 and H2O, their vapor pressures, the atmospheric temperature and pressure. The fixed sectional method is used to resolve an aerosol distribution between 1 nm and 2.6 micron in particle radius. Homogeneous nucleation, condensation and evaporation, coagulation, water-vapor growth, sedimentation and sulphur chemistry are included. The module is applied in the middle-atmosphere MAECHAM5 model, resolving the atmosphere up to 0.01 hPa (~80 km) in 39 layers. It is shown here that MAECHAM5-SAM2 well represents in-situ measured size distributions of stratospheric background aerosol in the northern hemisphere mid-latitudes. Distinct differences can be seen when derived integrated aerosol parameters (surface area, effective radius) are compared with aerosol climatologies based on the SAGE II satellite instrument (derived by the University of Oxford and the NASA AMES laboratory). The bias between the model and the SAGE II data increases as the moment of the aerosol size distribution decreases. Thus the modeled effective radius show the strongest bias, followed by the aerosol surface area density. Correspondingly less biased are the higher moments volume area density and the mass density of the global stratospheric aerosol coverage. This finding supports the key finding No. 2 of the SPARC Assessment of Stratospheric Aerosol Properties (2006), where it was shown that during periods of very low aerosol load in the stratosphere, the consistency between in-situ and satellite measurements, which exist in a volcanically perturbed stratosphere, breaks down and significant

  13. Generation and characterization of biological aerosols for laser measurements

    SciTech Connect

    Cheng, Yung-Sung; Barr, E.B.

    1995-12-01

    Concerns for proliferation of biological weapons including bacteria, fungi, and viruses have prompted research and development on methods for the rapid detection of biological aerosols in the field. Real-time instruments that can distinguish biological aerosols from background dust would be especially useful. Sandia National Laboratories (SNL) is developing a laser-based, real-time instrument for rapid detection of biological aerosols, and ITRI is working with SNL scientists and engineers to evaluate this technology for a wide range of biological aerosols. This paper describes methods being used to generate the characterize the biological aerosols for these tests. In summary, a biosafe system has been developed for generating and characterizing biological aerosols and using those aerosols to test the SNL laser-based real-time instrument. Such tests are essential in studying methods for rapid detection of airborne biological materials.

  14. Particle-size dependence of immersion freezing: Investigation of INUIT test aerosol particles with freely suspended water drops.

    NASA Astrophysics Data System (ADS)

    Diehl, Karoline; Debertshäuser, Michael; Eppers, Oliver; Jantsch, Evelyn; Mitra, Subir K.

    2014-05-01

    One goal of the research group INUIT (Ice Nuclei research UnIT) is to investigate the efficiencies of several test ice nuclei under comparable conditions but with different experimental techniques. In the present studies, two methods are used: the Mainz vertical wind tunnel and an acoustic levitator placed inside a cold chamber. In both cases drops are freely levitated, either at their terminal velocity in the wind tunnel updraft or around the nodes of a standing ultrasonic wave in the acoustic levitator. Thus, heat transfer conditions are well approximated, and wall contact effects on freezing as well as electrical charges of the drops are avoided. Drop radii are 370 μm and 1 mm, respectively. In the wind tunnel, drops are investigated at constant temperatures within a certain time period and the onset of freezing is observed directly. In the acoustic levitator, the drop temperature decreases during the experiments and is measured by an in-situ calibrated Infrared thermometer. The onset of freezing is indicated by a rapid rise of the drop surface temperature because of the release of latent heat. Investigated test ice nuclei are Snomax® as a proxy of biological particles and illite NX as well as K-feldspar as represents of mineral dust. The particle concentrations are 1 × 10-12 to 3 × 10-6 g Snomax® per drop and 5 × 10-9 to 5 × 10-5 g mineral dust per drop. Freezing temperatures are between -2 and -18° C in case of Snomax® and between -14 and -26° C in case of mineral dust. The lower the particle masses per drop the lower are the freezing temperatures. For similar particle concentrations in the drops, the median freezing temperatures determined by the two techniques agree well within the measurement errors. With the knowledge of the specific particle surface area of the mineral dusts, the results are interpreted also in terms of particle surface area per drop. Results from the wind tunnel experiments which are performed at constant temperatures indicate

  15. Global Aerosol Distributions Derived From the CALIPSO Observations

    NASA Astrophysics Data System (ADS)

    Kittaka, C.; Winker, D.; Omar, A.; Liu, Z.; Vaughan, M.; Trepte, C.

    2008-12-01

    Since June 2006, CALIPSO continues to provide routine and systematic measurements of lidar backscatter at two wavelengths, 532 and 1064 nm. As an active sensor, the quality of the measurement is nearly insensitive to surface properties allowing quantitative measurements in regions that are problematic to passive sensors. In particular, aerosol and cloud observations in the polar regions and desert areas are possible with the CALIPSO lidar through the different seasons of a year. The CALIPSO level 2 products, which include aerosol and cloud vertical profiles along tracks, reveal, for the first time, the multi-layer structure of aerosols and clouds on a global scale. This allows not only a depiction of aerosols in relation to clouds, but also the investigation of the interaction between aerosols and clouds. In this study, we present global distributions of aerosol in terms of season, layer height, aerosol species, and in relation to clouds using two years of CALIPSO observations. The CALIPSO aerosol extinction data sets under clear sky are evaluated against the AERONET aerosol optical depth (AOD) and the MODIS AOD collection 5 data sets. The agreement and discrepancies from these comparisons are characterized regionally and investigated using other CALIPSO observable and retrieved parameters. Furthermore, aerosols above clouds and in the vicinity of clouds are examined on a global scale. The implications for aerosol radiative forcing are discussed, highlighting the new and interesting aerosol features obtained from CALIPSO observations.

  16. Satellite Remote Sensing of Aerosol Forcing

    NASA Technical Reports Server (NTRS)

    Remer, Lorraine; Kaufman, Yoram; Ramaprasad, Jaya; Procopio, Aline; Levin, Zev

    1999-01-01

    Aerosol and cloud impacts on the earth's climate become a recent hot topic in climate studies. Having near future earth observing satellites, EOS-AM1 (Earth Observing System-AM1), ENVISAT (Environmental Satellites) and ADEOS-2 (Advanced Earth Observation Satellite-2), it will be a good timing to discuss how to obtain and use the microphysical parameters of aerosols and clouds for studying their climate impacts. Center for Climate System Research (CCSR) of the University of Tokyo invites you to 'Symposium on synergy between satellite-remote sensing and climate modeling in aerosol and cloud issues.' Here, we like to discuss the current and future issues in the remote sensing of aerosol and cloud microphysical parameters and their climate modeling studies. This workshop is also one of workshop series on aerosol remote sensing held in 1996, Washington D. C., and Meribel, France in 1999. It should be reminded that NASDA/ADEOS-1 & -2 (National Space Development Agency of Japan/Advanced Earth Observation Satellite-1 & -2) Workshop will be held in the following week (Dec. 6-10, 1999), so that this opportunity will be a perfect period for you to attend two meetings for satellite remote sensing in Japan. A weekend in Kyoto, the old capital of Japan, will add a nice memory to your visiting Japan. *Issues in the symposium: 1) most recent topics in aerosol and cloud remot sensing, and 2) utility of satellite products on climate modeling of cloud-aerosol effects.

  17. Selecting training and test images for optimized anomaly detection algorithms in hyperspectral imagery through robust parameter design

    NASA Astrophysics Data System (ADS)

    Mindrup, Frank M.; Friend, Mark A.; Bauer, Kenneth W.

    2011-06-01

    There are numerous anomaly detection algorithms proposed for hyperspectral imagery. Robust parameter design (RPD) techniques have been applied to some of these algorithms in an attempt to choose robust settings capable of operating consistently across a large variety of image scenes. Typically, training and test sets of hyperspectral images are chosen randomly. Previous research developed a frameworkfor optimizing anomaly detection in HSI by considering specific image characteristics as noise variables within the context of RPD; these characteristics include the Fisher's score, ratio of target pixels and number of clusters. This paper describes a method for selecting hyperspectral image training and test subsets yielding consistent RPD results based on these noise features. These subsets are not necessarily orthogonal, but still provide improvements over random training and test subset assignments by maximizing the volume and average distance between image noise characteristics. Several different mathematical models representing the value of a training and test set based on such measures as the D-optimal score and various distance norms are tested in a simulation experiment.

  18. Aerosol Absorption Above Clouds from Combined OMI and MODIS Hyperspectral Measurements

    NASA Astrophysics Data System (ADS)

    de Graaf, M.; Tilstra, L. G.; Stammes, P.

    2015-06-01

    The aerosol direct effect (DRE) over clouds from combined OMI and MODIS hyperspectral measurements is presented. The radiative effect of UV-absorbing aerosols can be retrieved with high accuracy, using hyperspectral measurements and simulated clean cloud spectra. Since SCIAMACHY was lost in 2012, we use new measurements from OMI and MODIS to continue the observation of aerosol absorption over clouds from space. Each instrument by itself does not provide enough information on both aerosols and clouds, but OMI gives detailed information of UV aerosol absorption, while MODIS’ broadband channels provide cloud information from the SWIR range of the spectrum. OMI and MODIS are flying in formation in the A-Train constellation, providing observations about 8-15 minutes after one another. This creates uncertainties in the observed scene, especially in scenes where convection is strong and cloud parameters change rapidly. However, OMI and MODIS overlap at MODIS’ smallest wavelength band, 469 nm, which can be used to test the matching of the spectra. Furthermore, MODIS provides cloud products at 1 Å~ 1 km resolution, and better, which can be used to test and improve the cloud retrieval algorithmthat was developed for the much larger SCIAMACHY and OMI pixels. Application of this unique method to OMI andMODIS is used to prepare for TROPOMI, which will provide information on both the UV and the SWIR with an unprecedented accuracy and unprecedented spatial resolution.

  19. Simultaneous retrieval of aerosol and surface optical properties from combined airborne- and ground-based direct and diffuse radiometric measurements

    NASA Astrophysics Data System (ADS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2009-12-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer, CAR, and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 μm) and angular range (180°) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  20. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    NASA Technical Reports Server (NTRS)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  1. Separating Dust Mixtures and Other External Aerosol Mixtures Using Airborne High Spectral Resolution Lidar Data

    NASA Astrophysics Data System (ADS)

    Burton, S. P.; Ferrare, R. A.; Vaughan, M.; Hostetler, C. A.; Rogers, R. R.; Hair, J. W.; Cook, A. L.; Harper, D. B.

    2013-12-01

    Knowledge of aerosol type is important for source attribution and for determining the magnitude and assessing the consequences of aerosol radiative forcing. The NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL-1) has acquired considerable datasets of both aerosol extensive parameters (e.g. aerosol optical depth) and intensive parameters (e.g. aerosol depolarization ratio, lidar ratio) that can be used to infer aerosol type. An aerosol classification methodology has been used extensively to classify HSRL-1 aerosol measurements of different aerosol types including dust, smoke, urban pollution, and marine aerosol. However, atmospheric aerosol is frequently not a single pure type, but instead occurs as a mixture of types, and this mixing affects the optical and radiative properties of the aerosol. Here we present a comprehensive and unified set of rules for characterizing external mixtures using several key aerosol intensive parameters: extinction-to-backscatter ratio (i.e. lidar ratio), backscatter color ratio, and depolarization ratio. Our mixing rules apply not just to the scalar values of aerosol intensive parameters, but to multi-dimensional normal distributions with variance in each measurement dimension. We illustrate the applicability of the mixing rules using examples of HSRL-1 data where mixing occurred between different aerosol types, including advected Saharan dust mixed with the marine boundary layer in the Caribbean Sea and locally generated dust mixed with urban pollution in the Mexico City surroundings. For each of these cases we infer a time-height cross section of mixing ratio along the flight track and we partition aerosol extinction into portions attributed to the two pure types. Since multiple aerosol intensive parameters are measured and included in these calculations, the techniques can also be used for cases without significant depolarization (unlike similar work by earlier researchers), and so a third example of a

  2. Comparison of stability and control parameters for a light, single-engine, high-winged aircraft using different flight test and parameter estimation techniques

    NASA Technical Reports Server (NTRS)

    Suit, W. T.; Cannaday, R. L.

    1979-01-01

    The longitudinal and lateral stability and control parameters for a high wing, general aviation, airplane are examined. Estimations using flight data obtained at various flight conditions within the normal range of the aircraft are presented. The estimations techniques, an output error technique (maximum likelihood) and an equation error technique (linear regression), are presented. The longitudinal static parameters are estimated from climbing, descending, and quasi steady state flight data. The lateral excitations involve a combination of rudder and ailerons. The sensitivity of the aircraft modes of motion to variations in the parameter estimates are discussed.

  3. A New WRF-Chem Treatment for Studying Regional Scale Impacts of Cloud-Aerosol Interactions in Parameterized Cumuli

    SciTech Connect

    Berg, Larry K.; Shrivastava, ManishKumar B.; Easter, Richard C.; Fast, Jerome D.; Chapman, Elaine G.; Liu, Ying

    2015-01-01

    A new treatment of cloud-aerosol interactions within parameterized shallow and deep convection has been implemented in WRF-Chem that can be used to better understand the aerosol lifecycle over regional to synoptic scales. The modifications to the model to represent cloud-aerosol interactions include treatment of the cloud dropletnumber mixing ratio; key cloud microphysical and macrophysical parameters (including the updraft fractional area, updraft and downdraft mass fluxes, and entrainment) averaged over the population of shallow clouds, or a single deep convective cloud; and vertical transport, activation/resuspension, aqueous chemistry, and wet removal of aerosol and trace gases in warm clouds. Thesechanges have been implemented in both the WRF-Chem chemistry packages as well as the Kain-Fritsch cumulus parameterization that has been modified to better represent shallow convective clouds. Preliminary testing of the modified WRF-Chem has been completed using observations from the Cumulus Humilis Aerosol Processing Study (CHAPS) as well as a high-resolution simulation that does not include parameterized convection. The simulation results are used to investigate the impact of cloud-aerosol interactions on the regional scale transport of black carbon (BC), organic aerosol (OA), and sulfate aerosol. Based on the simulations presented here, changes in the column integrated BC can be as large as -50% when cloud-aerosol interactions are considered (due largely to wet removal), or as large as +35% for sulfate in non-precipitating conditions due to the sulfate production in the parameterized clouds. The modifications to WRF-Chem version 3.2.1 are found to account for changes in the cloud drop number concentration (CDNC) and changes in the chemical composition of cloud-drop residuals in a way that is consistent with observations collected during CHAPS. Efforts are currently underway to port the changes described here to WRF-Chem version 3.5, and it is anticipated that they

  4. MDIs: physics of aerosol formation.

    PubMed

    Clark, A R

    1996-03-01

    The aerosol clouds produced by metered dose inhalers are very dynamic and dramatic changes in both droplet size and velocity take place within the first few centimeters of the spray plume. It is the interaction of this dynamic cloud with the geometry of the mouth and oropharynx that controls the extent of oral deposition and hence the ability of the MDI to deliver a respiratory therapeutic to the lung. Oral deposition is controlled by inertial mechanisms and in order to develop meaningful in-vitro test methods consideration must be given to both the velocity and droplet size distribution of the cloud. The correct design of the inlet ports used to convey MDI clouds in aerosol sizing instruments is therefore crucial to the development of successful in-vitro methodologies. The use of large sampling chambers or the characterization of residual aerosol droplets is unlikely to produce meaning product comparisons or satisfactory product control data.

  5. Testing life history predictions in a long-lived seabird: a population matrix approach with improved parameter estimation

    USGS Publications Warehouse

    Doherty, P.F.; Schreiber, E.A.; Nichols, J.D.; Hines, J.E.; Link, W.A.; Schenk, G.A.; Schreiber, R.W.

    2004-01-01

    Life history theory and associated empirical generalizations predict that population growth rate (lambda) in long-lived animals should be most sensitive to adult survival; the rates to which lambda is most sensitive should be those with the smallest temporal variances; and stochastic environmental events should most affect the rates to which lambda is least sensitive. To date, most analyses attempting to examine these predictions have been inadequate, their validity being called into question by problems in estimating parameters, problems in estimating the variability of parameters, and problems in measuring population sensitivities to parameters. We use improved methodologies in these three areas and test these life-history predictions in a population of red-tailed tropicbirds (Phaethon rubricauda). We support our first prediction that lambda is most sensitive to survival rates. However the support for the second prediction that these rates have the smallest temporal variance was equivocal. Previous support for the second prediction may be an artifact of a high survival estimate near the upper boundary of 1 and not a result of natural selection canalizing variances alone. We did not support our third prediction that effects of environmental stochasticity (El Ni?o) would most likely be detected in vital rates to which lambda was least sensitive and which are thought to have high temporal variances. Comparative data-sets on other seabirds, within and among orders, and in other locations, are needed to understand these environmental effects.

  6. The detailed aerosol properties derived using GRASP Algorithm from multi-angular polarimetric POLDER/PARASOL observations

    NASA Astrophysics Data System (ADS)

    Dubovik, Oleg; Litvinov, Pavel; Lapyonok, Tatyana; Ducos, Fabrice; Fuertes, David; Huang, Xin; Derimian, Yevgeny; Ovigneur, Bertrand; Descloitres, Jacques

    2015-04-01

    The presentation introduces a new aerosol product derived from multi-angular polarimetric POLDER/PARASOL observations using recently developed GRASP algorithm The GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2011, 2014) derives an extended set of aerosol parameters including detailed particle size distribution, spectral refractive index, single scattering albedo and the fraction of non-spherical particles. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface. The robust performance of algorithm was illustrated in a series of numerical tests and real data case studies. However, the algorithm is significantly slower than conventional look-up-table retrievals because it performs all radiative transfer calculations on-line. This is why the application of the algorithm for processing large volumes of satellite data was considered as unacceptably challenging task. During two last years GRASP algorithm and its operational retrieval environment has been significantly optimized, improved and adapted for processing extended set of observational data. Hence, here we demonstrate the first results of GRASP aerosol products obtained from large data sets of PARASOL/POLDER observations. It should be noted that in addition the core retrieved aerosol and surface parameters GRASP output may include a variety of user-oriented products including values of daily fluxes and aerosol radiative forcing. 1. Dubovik, O., M. Herman, A. Holdak, T. Lapyonok, D. Tanré, J. L. Deuzé, F. Ducos, A. Sinyuk, and A. Lopatin, "Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations", Atmos. Meas. Tech., 4, 975-1018, 2011. 2. Dubovik, O., T. Lapyonok, P. Litvinov, M. Herman, D. Fuertes, F. Ducos, A. Lopatin, A. Chaikovsky, B. Torres, Y. Derimian, X. Huang, M. Aspetsberger, and C. Federspiel "GRASP: a versatile

  7. The Effect of Two Different Cognitive Tests on Gait Parameters during Dual Tasks in Healthy Postmenopausal Women

    PubMed Central

    Kałużny, Krystian; Hagner, Wojciech; Kałużna, Anna; Kochański, Bartosz; Borkowska, Alina; Budzyński, Jacek

    2016-01-01

    Introduction. The paper aims to evaluate the influence of two different demanding cognitive tasks on gait parameters using BTS SMART system analysis. Patients and Methods. The study comprised 53 postmenopausal women aged 64.5 ± 6.7 years (range: 47–79). For every subject, gait analysis using a BTS SMART system was performed in a dual-task study design under three conditions: (I) while walking only (single task), (II) walking while performing a simultaneous simple cognitive task (SCT) (dual task), and (III) walking while performing a simultaneous complex cognitive task (CCT) (dual task). Time-space parameters of gait pertaining to the length of a single support phase, double support phase, gait speed, step length, step width, and leg swing speed were analyzed. Results. Performance of cognitive tests during gait resulted in a statistically significant prolongation of the left (by 7%) and right (by 7%) foot gait cycle, shortening of the length of steps made with the right extremity (by 4%), reduction of speed of swings made with the left (by 11%) and right (by 8%) extremity, and reduction in gait speed (by 6%). Conclusions. Performance of cognitive tests during gait changes its individual pattern in relation to the level of the difficulty of the task. PMID:27022602

  8. A test on a Neuro-Fuzzy algorithm used to reduce continuous gravity records for the effect of meteorological parameters

    NASA Astrophysics Data System (ADS)

    Andò, Bruno; Carbone, Daniele

    2004-05-01

    Gravity measurements are utilized at active volcanoes to detect mass changes linked to magma transfer processes and thus to recognize forerunners to paroxysmal volcanic events. Continuous gravity measurements are now increasingly performed at sites very close to active craters, where there is the greatest chance to detect meaningful gravity changes. Unfortunately, especially when used against the adverse environmental conditions usually encountered at such places, gravimeters have been proved to be affected by meteorological parameters, mainly by changes in the atmospheric temperature. The pseudo-signal generated by these perturbations is often stronger than the signal generated by actual changes in the gravity field. Thus, the implementation of well-performing algorithms for reducing the gravity signal for the effect of meteorological parameters is vital to obtain sequences useful from the volcano surveillance standpoint. In the present paper, a Neuro-Fuzzy algorithm, which was already proved to accomplish the required task satisfactorily, is tested over a data set from three gravimeters which worked continuously for about 50 days at a site far away from active zones, where changes due to actual fluctuation of the gravity field are expected to be within a few microgal. After accomplishing the reduction of the gravity series, residuals are within about 15 μGal peak-to-peak, thus confirming the capabilities of the Neuro-Fuzzy algorithm under test of performing the required task satisfactorily.

  9. Aerosol profiling by calibrated ceilometer data

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2015-04-01

    Recently, networks of automated single-wavelength backscatter lidars ("ceilometers") were implemented, primarily by weather services. As a consequence, the potential of ceilometers to quantitatively determine the spatiotemporal distribution of atmospheric aerosols was investigated, to derive mixing layer heights for air quality studies and to assess optical properties. The main issues are the limited signal-to-noise ratio and the inherent problems of the calibration. We have studied several approaches for calibrating ceilometers, based on different numerical solutions and on auxiliary data of different remote sensing techniques. As a result, the backscatter coefficient can be determined with a relative accuracy of typically 10% and a time resolution in the order of 5 minutes. This parameter is used to estimate the mixing layer height by applying different techniques of averaging and pattern recognition. In this context, it is assumed that aerosols are a good tracer for the thermodynamic stratification of the troposphere. Our algorithm is fully automated and was tested for several commercially available ceilometers. For this purpose, a simplified version for non-calibrated ceilometers, based on the so called range corrected signal, was additionally developed. We used data of the CHM15k-x ceilometer (manufactured by Jenoptik) from more than 5 years of continuous operation by the LMU-MIM in Munich (Germany) to establish climatologies of mixing layer heights (MLH), cloud cover, cloud heights and vertical profiles of the backscatter coefficient. Among others, the mean diurnal cycle and the interannual variability of the MLH for different months were determined. Ceilometer derived MLH were also used to validate different parameterization of chemistry transport models and to validate forecasts of the dispersion of aerosol layers. For the latter applications backscatter coefficients are required. That means, a calibration of the ceilometers is mandatory.

  10. Aerosol mobility size spectrometer

    DOEpatents

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  11. Radiative forcing under mixed aerosol conditions

    NASA Astrophysics Data System (ADS)

    GarcíA, O. E.; Expósito, F. J.; DíAz, J. P.; DíAz, A. M.

    2011-01-01

    The mixture of mineral dust with biomass burning or urban-industrial aerosols presents significant differences in optical properties when compared to those of the individual constituents, leading to different impacts on solar radiation levels. This effect is assessed by estimating the direct radiative forcing (ΔF) of these aerosols from solar flux models using the radiative parameters derived from the Aerosol Robotic Network (AERONET). These data reveal that, in oceanic and vegetative covers (surface albedo (SA) < 0.30), the aerosol effect at the top of atmosphere (TOA) is always cooling the Earth-atmosphere system, regardless of the aerosol type. The obtained average values of ΔF range between -27 ± 15 Wm-2 (aerosol optical depth (AOD) at 0.55 μm, 0.3 ± 0.3) for mineral dust mixed with urban-industrial aerosols, registered in the East Asia region, and -34 ± 18 Wm-2 (AOD = 0.8 ± 0.4) for the mixture of the mineral dust and biomass burning particles, observed in the Central Africa region. In the intermediate SA range (0.30-0.50) the TOA radiative effect depends on the aerosol absorption properties. Thus, aerosols with single scattering albedo at 0.55 μm lower than ˜0.88 lead to a warming of the system, with ΔF of 10 ± 11 Wm-2 for the mixture of mineral dust and biomass burning. Cases with SA > 0.30 are not present in East Asia region. At the bottom of atmosphere (BOA) the maximum ΔF values are associated with the highest AOD levels obtained for the mixture of mineral dust and biomass burning aerosols (-130 ± 44 Wm-2 with AOD = 0.8 ± 0.4 for SA < 0.30).

  12. Critical processes and parameters in the development of accident tolerant fuels drop-in capsule irradiation tests

    DOE PAGES

    Barrett, K. E.; Ellis, K. D.; Glass, C. R.; Roth, G. A.; Teague, M. P.; Johns, J.

    2015-12-01

    The goal of the Accident Tolerant Fuel (ATF) program is to develop the next generation of Light Water Reactor (LWR) fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. An irradiation test series has been defined to assess the performance of proposed ATF concepts under normal LWR operating conditions. The Phase I ATF irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL). Design, analysis, and fabrication processes formore » ATR drop-in capsule experiment preparation are presented in this paper to demonstrate the importance of special design considerations, parameter sensitivity analysis, and precise fabrication and inspection techniques for figure innovative materials used in ATF experiment assemblies. A Taylor Series Method sensitivity analysis approach was used to identify the most critical variables in cladding and rodlet stress, temperature, and pressure calculations for design analyses. The results showed that internal rodlet pressure calculations are most sensitive to the fission gas release rate uncertainty while temperature calculations are most sensitive to cladding I.D. and O.D. dimensional uncertainty. The analysis showed that stress calculations are most sensitive to rodlet internal pressure uncertainties, however the results also indicated that the inside radius, outside radius, and internal pressure were all magnified as they propagate through the stress equation. This study demonstrates the importance for ATF concept development teams to provide the fabricators as much information as possible about the material properties and behavior observed in prototype testing, mock-up fabrication and assembly, and chemical and mechanical testing of the materials that may have been performed in the concept development phase

  13. Critical processes and parameters in the development of accident tolerant fuels drop-in capsule irradiation tests

    SciTech Connect

    Barrett, K. E.; Ellis, K. D.; Glass, C. R.; Roth, G. A.; Teague, M. P.; Johns, J.

    2015-12-01

    The goal of the Accident Tolerant Fuel (ATF) program is to develop the next generation of Light Water Reactor (LWR) fuels with improved performance, reliability, and safety characteristics during normal operations and accident conditions and with reduced waste generation. An irradiation test series has been defined to assess the performance of proposed ATF concepts under normal LWR operating conditions. The Phase I ATF irradiation test series is planned to be performed as a series of drop-in capsule tests to be irradiated in the Advanced Test Reactor (ATR) operated by the Idaho National Laboratory (INL). Design, analysis, and fabrication processes for ATR drop-in capsule experiment preparation are presented in this paper to demonstrate the importance of special design considerations, parameter sensitivity analysis, and precise fabrication and inspection techniques for figure innovative materials used in ATF experiment assemblies. A Taylor Series Method sensitivity analysis approach was used to identify the most critical variables in cladding and rodlet stress, temperature, and pressure calculations for design analyses. The results showed that internal rodlet pressure calculations are most sensitive to the fission gas release rate uncertainty while temperature calculations are most sensitive to cladding I.D. and O.D. dimensional uncertainty. The analysis showed that stress calculations are most sensitive to rodlet internal pressure uncertainties, however the results also indicated that the inside radius, outside radius, and internal pressure were all magnified as they propagate through the stress equation. This study demonstrates the importance for ATF concept development teams to provide the fabricators as much information as possible about the material properties and behavior observed in prototype testing, mock-up fabrication and assembly, and chemical and mechanical testing of the materials that may have been performed in the concept development phase. Special

  14. Balloon profiles of stratospheric NO2 and HNO3 for testing the heterogeneous hydrolysis of N2O5 on sulfate aerosols

    NASA Technical Reports Server (NTRS)

    Webster, C. R.; May, R. D.; Allen, M.; Jaegle, L.; Mccormick, M. P.

    1994-01-01

    Simultaneous in situ measurements of stratospheric NO2, HNO3, HCl, and CH4 from 34 to 24 km were made in August 1992 from Palestine, Texas, using the Balloon-borne Laser In-Situ Sensor (BLISS) tunable diode laser spectrometer. Although the measurements of NO2, HNO3, and NO2/HNO3 agree well with gas-phase model calculations near 34 km where Stratospheric Aerosol and Gas Experiment (SAGE) 2 data show little sulfate aerosol, this is not true at the lower altitudes where SAGE 2 shows high aerosol loadings. At 24 km the BLISS NO2 and HNO3 measurements are 70% lower and 50% higher, respectively, than the gas phase model predictions, with a measured NO2/HNO3 ratio 5 times smaller. When the heterogeneous hydrolysis of N2O5 and ClONO2 on sulfate aerosol of surface area densities matching the SAGE 2 measurements is added to the model, good agreement with the BLISS measurements is found over the whole altitude range.

  15. THE DISTRIBUTION OF CHLORPYRIFOSIN AIR, CARPETING, AND DUST AND ITS REEMISSION FROM CARPETING FOLLOWING THE USE OF TOTAL RELEASE AEROSOLS IN AN INDOOR AIR QUALITY TEST HOUSE

    EPA Science Inventory

    The paper gives results of experiments to explore the relationships between the insecticide chlorpyrifos and its distribution into carpet., carpet dust, and reemission into air. Two total release aerosols containing 0.5% chlorpyrifos were applied in the living room and den of EP...

  16. Hospital washbasin water: risk of Legionella-contaminated aerosol inhalation.

    PubMed

    Cassier, P; Landelle, C; Reyrolle, M; Nicolle, M C; Slimani, S; Etienne, J; Vanhems, P; Jarraud, S

    2013-12-01

    The contamination of aerosols by washbasin water colonized by Legionella in a hospital was evaluated. Aerosol samples were collected by two impingement technologies. Legionella was never detected by culture in all the (aerosol) samples. However, 45% (18/40) of aerosol samples were positive for Legionella spp. by polymerase chain reaction, with measurable concentrations in 10% of samples (4/40). Moreover, immunoassay detected Legionella pneumophila serogroup 1 and L. anisa, and potentially viable bacteria were seen on viability testing. These data suggest that colonized hospital washbasins could represent risks of exposure to Legionella aerosol inhalation, especially by immunocompromised patients.

  17. Evaluation of aerosol contents over astronomical candidate site in Indonesia from meteorological satellite data

    NASA Astrophysics Data System (ADS)

    Hidayat, T.; Dermawan, B.; Mahasena, P.; Abudan, R.; Prabawa, L. D. S.; Az-Zahra, M.

    2015-09-01

    Site selection for modern astronomical observatory is based on various meteorological parameters to determine the quality of the sky above the corresponding sites. Recent study for Indonesian astronomical site selection has indicated that regions of East Nusa Tenggara have favorable meteorological conditions, mostly derived from clear sky fraction. As a further study of comparative site analysis, in this paper, we present an evaluation of aerosol distribution over Indonesia as an important parameter of site quality. The long-term availability of meteorological satellite data is obviously useful to obtain the general trends of the corresponding parameter. It is known that the presence of aerosol in the atmosphere can affect astronomical extinction and, therefore, may influence the quality of observational data. The aerosol data analyzed here are from satellite measurements of TOMS-EP, N7, and OMI-AURA of Level 3, from the period of 1978 to mid-2014. We select several locations in Indonesia and compare them to a candidate site in Timor, to obtain the variation of aerosol distribution over the regions of interest. This result is useful to compare with astronomical observations from site testing.

  18. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  19. AEROSOL AND GAS MEASUREMENT

    EPA Science Inventory

    Measurements provide fundamental information for evaluating and managing the impact of aerosols on air quality. Specific measurements of aerosol concentration and their physical and chemical properties are required by different users to meet different user-community needs. Befo...

  20. Aerodynamic design of gas and aerosol samplers for aircraft

    NASA Technical Reports Server (NTRS)

    Soderman, Paul T.; Hazen, Nathan L.; Brune, William H.

    1991-01-01

    The aerodynamic design of airborne probes for the capture of air and aerosols is discussed. Emphasis is placed on the key parameters that affect proper sampling, such as inlet-lip design, internal duct components for low pressure drop, and exhaust geometry. Inlet designs that avoid sonic flow conditions on the lip and flow separation in the duct are shown. Cross-stream velocities of aerosols are expressed in terms of droplet density and diameter. Flow curvature, which can cause aerosols to cross streamlines and impact on probe walls, can be minimized by means of a proper inlet shape and proper probe orientation, and by avoiding bends upstream of the test section. A NASA panel code called PMARC was used successfully to compute streamlines around aircraft and probes, as well as to compute to local velocity and pressure distributions in inlets. A NACA 1-series inlet with modified lip radius was used for the airborne capture of stratospheric chlorine monoxide at high altitude and high flight speed. The device has a two-stage inlet that decelerates the inflow with little disturbance to the flow through the test section. Diffuser design, exhaust hood design, valve loss, and corner vane geometry are discussed.

  1. Engine Test and Measurements

    NASA Technical Reports Server (NTRS)

    Wey, Chown Chou

    1999-01-01

    Although the importance of aerosols and their precursors are now well recognized, the characterization of current subsonic engines for these emissions is far from complete. Furthermore, since the relationship of engine operating parameters to aerosol emissions is not known, extrapolation to untested and unbuilt engines necessarily remains highly uncertain. 1997 NASA LaRC engine test, as well as the parallel 1997 NASA LaRC flight measurement, attempts to address both issues by expanding measurements of aerosols and aerosol precursors with fuels containing different levels of fuel sulfur content. The specific objective of the 1997 engine test is to obtain a database of sulfur oxides emissions as well as the non-volatile particulate emission properties as a function of fuel sulfur and engine operating conditions. Four diagnostic systems, extractive and non-intrusive (optical), will be assembled for the gaseous and particulate emissions characterization measurements study. NASA is responsible for the extractive gaseous emissions measurement system which contains an array of analyzers dedicated to examining the concentrations of specific gases (NO, NO(x), CO, CO2, O2, THC, SO2) and the smoke number. University of Missouri-Rolla uses the Mobile Aerosol Sampling System to measure aerosol/particulate total concentration, size distribution, volatility and hydration property. Air Force Research Laboratory uses the Chemical Ionization Mass Spectrometer to measure SO2, SO3/H2SO4, and HN03 Aerodyne Research, Inc. uses Infrared Tunable Diode Laser system to measure SO2, SO3, NO, H2O, and CO2.

  2. Identifying Aerosol Type/Mixture from Aerosol Absorption Properties Using AERONET

    NASA Technical Reports Server (NTRS)

    Giles, D. M.; Holben, B. N.; Eck, T. F.; Sinyuk, A.; Dickerson, R. R.; Thompson, A. M.; Slutsker, I.; Li, Z.; Tripathi, S. N.; Singh, R. P.; Zibordi, G.

    2010-01-01

    Aerosols are generated in the atmosphere through anthropogenic and natural mechanisms. These sources have signatures in the aerosol optical and microphysical properties that can be used to identify the aerosol type/mixture. Spectral aerosol absorption information (absorption Angstrom exponent; AAE) used in conjunction with the particle size parameterization (extinction Angstrom exponent; EAE) can only identify the dominant absorbing aerosol type in the sample volume (e.g., black carbon vs. iron oxides in dust). This AAE/EAE relationship can be expanded to also identify non-absorbing aerosol types/mixtures by applying an absorption weighting. This new relationship provides improved aerosol type distinction when the magnitude of absorption is not equal (e.g, black carbon vs. sulfates). The Aerosol Robotic Network (AERONET) data provide spectral aerosol optical depth and single scattering albedo - key parameters used to determine EAE and AAE. The proposed aerosol type/mixture relationship is demonstrated using the long-term data archive acquired at AERONET sites within various source regions. The preliminary analysis has found that dust, sulfate, organic carbon, and black carbon aerosol types/mixtures can be determined from this AAE/EAE relationship when applying the absorption weighting for each available wavelength (Le., 440, 675, 870nm). Large, non-spherical dust particles absorb in the shorter wavelengths and the application of 440nm wavelength absorption weighting produced the best particle type definition. Sulfate particles scatter light efficiently and organic carbon particles are small near the source and aggregate over time to form larger less absorbing particles. Both sulfates and organic carbon showed generally better definition using the 870nm wavelength absorption weighting. Black carbon generation results from varying combustion rates from a number of sources including industrial processes and biomass burning. Cases with primarily black carbon showed

  3. Coarse mode aerosol measurement using a Low Turbulence Inlet

    NASA Astrophysics Data System (ADS)

    Brooke, J.; Bart, M.; Trembath, J.; McQuaid, J. B.; Brooks, B. J.; Osborne, S.

    2012-04-01

    The Sahara desert is a major natural source of global mineral dust emissions (Forster et al., 2007) through the mobilisation and lifting of dust particles into the atmosphere from dust storms. A significant fraction of this dust is in the aerosol coarse mode (Weinzierl et al., 2009). It is highlighted of the difficulty in making accurate and reliable measurements from an aircraft platform, particularly that of coarse mode aerosol (Wendisch et al., 2004). To achieve the measurement of a representative aerosol sample an aerosol inlet, on an aircraft, is required for the delivery of the sample to the instruments making the measurements. Inlet design can modify aerosol size distribution through either underestimating due to aerosol losses or overestimation due to enhancements. The Low Turbulence Inlet (LTI) was designed to improve inlet efficiency. This is achieved by reducing turbulence flow within the tip of the inlet, reducing impaction of particles to the walls of the inlet (Wilson et al., 2004). The LTI further maintains isokinetic sampling flow (free stream velocity, U0 and sampling velocity, U are equal to 1). Dust aerosol over the Sahara desert provides an excellent environment to test and quantify the capabilities of the LTI on the FAAM BAe 146, whilst enabling in-situ dust measurement. The LTI was operated during the Fennec field campaign in June 2011 with 11 flights during the campaign over Mauritania and Mali. We are using the LTI to provide critical information on the sampling characteristics of the inlet used by nearly all aerosol instruments inside the aircraft (AMS, Nephelometer, PSAP, and CCN). Inlet experiments were performed with identical Optical Particle Counters (OPC) connected to the rosemount and LTI with size distribution for each inlet measured and Rosemount enhancements determined. Rosemount inlet enhancements were determined to be 2 to 4 times for particles up to 2.5 µm. A key parameter in aerosol measurement is size distribution, in which

  4. Allometric Growth of Testes in Relation to Age, Body Weight and Selected Blood Parameters in Male Japanese Quail (Coturnix japonica)

    PubMed Central

    Vatsalya, Vatsalya; Arora, Kashmiri L.

    2014-01-01

    The Japanese quail is a very valuable animal model for research in a variety of biological disciplines. The purpose of this study was to characterize and interrelate age-dependent testicular parameters with various blood constituents: blood glucose, plasma proteins and packed cell volume that are developing concurrently in the growing bird. Another objective of the study was to identify selective physioanatomical markers for predicting the testicular growth and the onset of sexual maturity. Male Japanese quail hatchlings were raised in temperature controlled brooders for up to 3 weeks of age under a constant light and then shifted to hanging cages in an air conditioned room set at ~73° F under a 14L: 10D lighting system and ad libitum access to feed and water. Starting d8, a group of 8–10 birds of uniform size and weight were selected randomly at 4-day intervals up to d52 of age for the project. The birds were weighed and blood sampled using the brachial vein and Blood Glucose (BGL), Total Plasma Proteins (PP) and Packed Cell Volume (PCV) levels were measured prior to euthanization. The testes were removed and measured for weight, length, width and Volume (VOL). All the testicular measurements were then correlated with age and body weight. The left testes were larger than the right testes and their differences were evident at d36 of age. Testicular measurements also reflected two distinct growth surges at d28, d32 and d36 of age. Combined Testes Weight (CTW) and Combined Testes Volume (CTV) revealed a strong positive correlation with PCV and PP and a negative correlation with Blood Glucose Level (BGL). Accordingly, these measurements could serve as reliable markers of growth rate and sexual maturation in male Japanese quail. PMID:25243007

  5. Allometric Growth of Testes in Relation to Age, Body Weight and Selected Blood Parameters in Male Japanese Quail (Coturnix japonica).

    PubMed

    Vatsalya, Vatsalya; Arora, Kashmiri L

    2012-01-01

    The Japanese quail is a very valuable animal model for research in a variety of biological disciplines. The purpose of this study was to characterize and interrelate age-dependent testicular parameters with various blood constituents: blood glucose, plasma proteins and packed cell volume that are developing concurrently in the growing bird. Another objective of the study was to identify selective physioanatomical markers for predicting the testicular growth and the onset of sexual maturity. Male Japanese quail hatchlings were raised in temperature controlled brooders for up to 3 weeks of age under a constant light and then shifted to hanging cages in an air conditioned room set at ~73° F under a 14L: 10D lighting system and ad libitum access to feed and water. Starting d8, a group of 8-10 birds of uniform size and weight were selected randomly at 4-day intervals up to d52 of age for the project. The birds were weighed and blood sampled using the brachial vein and Blood Glucose (BGL), Total Plasma Proteins (PP) and Packed Cell Volume (PCV) levels were measured prior to euthanization. The testes were removed and measured for weight, length, width and Volume (VOL). All the testicular measurements were then correlated with age and body weight. The left testes were larger than the right testes and their differences were evident at d36 of age. Testicular measurements also reflected two distinct growth surges at d28, d32 and d36 of age. Combined Testes Weight (CTW) and Combined Testes Volume (CTV) revealed a strong positive correlation with PCV and PP and a negative correlation with Blood Glucose Level (BGL). Accordingly, these measurements could serve as reliable markers of growth rate and sexual maturation in male Japanese quail.

  6. Computer program TRACK_TEST for calculating parameters and plotting profiles for etch pits in nuclear track materials

    NASA Astrophysics Data System (ADS)

    Nikezic, D.; Yu, K. N.

    2006-01-01

    A computer program called TRACK_TEST for calculating parameters (lengths of the major and minor axes) and plotting profiles in nuclear track materials resulted from light-ion irradiation and subsequent chemical etching is described. The programming steps are outlined, including calculations of alpha-particle ranges, determination of the distance along the particle trajectory penetrated by the chemical etchant, calculations of track coordinates, determination of the lengths of the major and minor axes and determination of the contour of the track opening. Descriptions of the program are given, including the built-in V functions for the two commonly employed nuclear track materials commercially known as LR 115 (cellulose nitrate) and CR-39 (poly allyl diglycol carbonate) irradiated by alpha particles. Program summaryTitle of the program:TRACK_TEST Catalogue identifier:ADWT Program obtainable from:CPC Program Library, Queen's University of Belfast, N. Ireland Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADWT Computer:Pentium PC Operating systems:Windows 95+ Programming language:Fortran 90 Memory required to execute with typical data:256 MB No. of lines in distributed program, including test data, etc.: 2739 No. of bytes in distributed program, including test data, etc.:204 526 Distribution format:tar.gz External subprograms used:The entire code must be linked with the MSFLIB library Nature of problem: Fast heavy charged particles (like alpha particles and other light ions etc.) create latent tracks in some dielectric materials. After chemical etching in aqueous NaOH or KOH solutions, these tracks become visible under an optical microscope. The growth of a track is based on the simultaneous actions of the etchant on undamaged regions (with the bulk etch rate V) and along the particle track (with the track etch rate V). Growth of the track is described satisfactorily by these two parameters ( V and V). Several models have been presented in the past describing

  7. Coherent Evaluation of Aerosol Data Products from Multiple Satellite Sensors

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles

    2011-01-01

    Aerosol retrieval from satellite has practically become routine, especially during the last decade. However, there is often disagreement between similar aerosol parameters retrieved from different sensors, thereby leaving users confused as to which sensors to trust for answering important science questions about the distribution, properties, and impacts of aerosols. As long as there is no consensus, and the inconsistencies are not well characterized and understood, there will be no way of developing reliable model inputs and climate data records from satellite aerosol measurements. Fortunately, the Aerosol Robotic Network (AERONET) is providing well-calibrated globally representative ground-based aerosol measurements corresponding to the satellite-retrieved products. Through a recently developed web-based Multi-sensor Aerosol Products Sampling System (MAPSS), we are utilizing the advantages offered by collocated AERONET and satellite products to characterize and evaluate aerosol retrieval from multiple sensors. Indeed, MAPSS and its companion statistical tool AeroStat are facilitating detailed comparative uncertainty analysis of satellite aerosol measurements from Terra-MODIS, Aqua-MODIS, Terra-MISR, Aura-OMI, Parasol-POLDER, and Calipso-CALIOP. In this presentation, we will describe the strategy of the MAPSS system, its potential advantages for the aerosol community, and the preliminary results of an integrated comparative uncertainly analysis of aerosol products from multiple satellite sensors.

  8. Parameter Estimation in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark; Colarco, Peter

    2004-01-01

    In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .

  9. Development and testing of a large, transportable rainfall simulator for plot-scale runoff and parameter estimation

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Cortis, C.; Montaldo, N.; Albertson, J. D.

    2014-04-01

    There is increased interest in the interplay between vegetation conditions and overland flow generation. The literature is unclear on this relationship and there is little quantitative guidance for modeling efforts. Therefore, experimental efforts are needed and these call for a lightweight transportable plot-scale (>10 m2) rainfall simulator that can be deployed quickly and quickly redeployed over various vegetation cover conditions. Accordingly, a variable intensity rainfall simulator and collection system was designed and tested in the laboratory and in the field. The system was tested with three configurations of common pressure washing nozzles producing rainfall intensities of 62, 43, and 32 mm h-1 with uniformity coefficients of 76, 65, and 62, respectively, over a plot of 15.12 m2. Field tests were carried out in on a grassy field with silt-loam soil in Orroli, Sardinia in July and August 2010, and rainfall, soil moisture, and runoff data were collected. The two-term Philip infiltration model was used to find optimal values for the saturated hydraulic conductivity of the soil surface and bulk soil, soil water retention curve slope, and air entry suction head. Optimized hydraulic conductivity values were comparable to both the measured final infiltration rate and literature values for saturated hydraulic conductivity. This inexpensive rainfall simulator can therefore be used to identify field parameters needed for hydrologic modeling.

  10. Development and testing of a large, transportable rainfall simulator for plot-scale runoff and parameter estimation

    NASA Astrophysics Data System (ADS)

    Wilson, T. G.; Cortis, C.; Montaldo, N.; Albertson, J. D.

    2014-10-01

    There is increased interest in the interplay between vegetation conditions and overland flow generation. The literature is unclear on this relationship, and there is little quantitative guidance for modeling efforts. Therefore, experimental efforts are needed, and these call for a lightweight transportable plot-scale (>10 m2) rainfall simulator that can be deployed quickly and quickly redeployed over various vegetation cover conditions. Accordingly, a variable-intensity rainfall simulator and collection system was designed and tested in the laboratory and in the field. The system was tested with three configurations of common pressure washing nozzles producing rainfall intensities of 62, 43, and 32 mm h-1 with uniformity coefficients of 76, 65, and 62%, respectively, over a plot of 15.12 m2. Field tests were carried out on a grassy field with silt-loam soil in Orroli, Sardinia, in July and August 2010, and rainfall, soil moisture, and runoff data were collected. The two-term Philip infiltration model was used to find optimal values for the saturated hydraulic conductivity of the soil surface and bulk soil, soil water retention curve slope, and air entry suction head. Optimized hydraulic conductivity values were similar to both the measured final infiltration rate and literature values for saturated hydraulic conductivity. This inexpensive (less than USD 1000) rainfall simulator can therefore be used to identify field parameters needed for hydrologic modeling.

  11. Improved solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1988-07-19

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  12. Solid aerosol generator

    DOEpatents

    Prescott, Donald S.; Schober, Robert K.; Beller, John

    1992-01-01

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates.

  13. Solid aerosol generator

    DOEpatents

    Prescott, D.S.; Schober, R.K.; Beller, J.

    1992-03-17

    An improved solid aerosol generator used to produce a gas borne stream of dry, solid particles of predetermined size and concentration is disclosed. The improved solid aerosol generator nebulizes a feed solution of known concentration with a flow of preheated gas and dries the resultant wet heated aerosol in a grounded, conical heating chamber, achieving high recovery and flow rates. 2 figs.

  14. Zero-gravity aerosol behavior

    NASA Technical Reports Server (NTRS)

    Edwards, H. W.

    1981-01-01

    The feasibility and scientific benefits of a zero gravity aerosol study in an orbiting laboratory were examined. A macroscopic model was devised to deal with the simultaneous effects of diffusion and coagulation of particles in the confined aerosol. An analytical solution was found by treating the particle coagulation and diffusion constants as ensemble parameters and employing a transformation of variables. The solution was used to carry out simulated zero gravity aerosol decay experiments in a compact cylindrical chamber. The results demonstrate that the limitations of physical space and time imposed by the orbital situation are not prohibitive in terms of observing the history of an aerosol confined under zero gravity conditions. While the absence of convective effects would be a definite benefit for the experiment, the mathematical complexity of the problem is not greatly reduced when the gravitational term drops out of the equation. Since the model does not deal directly with the evolution of the particle size distribution, it may be desirable to develop more detailed models before undertaking an orbital experiment.

  15. Emission factors of fine particles, carbonaceous aerosols and traces gases from road vehicles: Recent tests in an urban tunnel in the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Zhang, Yanli; Wang, Xinming; Li, Guanghui; Yang, Weiqiang; Huang, Zhonghui; Zhang, Zhou; Huang, Xinyu; Deng, Wei; Liu, Tengyu; Huang, Zuzhao; Zhang, Zhanyi

    2015-12-01

    Motor vehicles contribute primarily and secondarily to air quality problems due to fine particle (PM2.5) and ozone (O3) pollution in China's megacities. Characterizing vehicle emission with the rapid change of vehicle numbers and fleet compositions is vital for both bottom-up emission survey and top-down source apportioning. To obtain emission factors (EFs) of PM2.5, carbonaceous aerosols and trace gases for road vehicles, in urban Guangzhou we conducted a field campaign in 2014 in the Zhujiang Tunnel, a heavily burdened tunnel with about 40,000 motor vehicles passing through each of its two separated bores per day. PM2.5 and volatile organic compounds (VOCs) were sampled for offline analysis while trace gases including SO2, NOx and CO were measured online and in situ. An eddy covariance system with an integrated 3-D sonic anemometer was also adopted to measure CO2 and winds inside the tunnel. We recorded an average fleet composition of 61% light-duty gasoline vehicles (LDVs) + 12% heavy-duty diesel vehicles (HDVs) + 27% liquefied petroleum gas vehicles (LPGVs), and EFs of 82.7 ± 28.3, 19.3 ± 4.7 and 13.3 ± 3.3 mg veh-1 km-1, respectively, for PM2.5, organic carbon (OC) and elemental carbon (EC). These EFs were respectively 23.4%, 18.3% and 72.3% lower when compared to that measured in the same tunnel in 2004. EFs of PM2.5, OC and EC were higher at night time (148 ± 126, 29 ± 24 and 21 ± 18 mg veh-1 km-1, respectively) due to significantly elevated fractions of HDVs in the traffic fleets. An average ratio of OC to EC 1.45 from this tunnel study was much higher than that of ∼0.5 in previous tunnel studies. The EFs of SO2, NOx, CO, CO2 and NMHCs for road traffic were also obtained from our tunnel tests, and they were 20.7 ± 2.9, (1.29 ± 0.2)E+03, (3.10 ± 0.68)E+03, (3.90 ± 0.49)E+05, and 448 ± 39 mg veh-1 km-1, respectively.

  16. Aerosol-Cloud Interactions in the South-East Atlantic

    NASA Astrophysics Data System (ADS)

    Andersen, Hendrik; Cermak, Jan

    2014-05-01

    In this contribution, a satellite-based study on aerosol-cloud interactions (ACI) in the South-East Atlantic with explicit consideration of meteorological conditions is presented. Aerosol-Cloud Interactions remain difficult to quantify and contribute the largest uncertainty to global radiative forcing. These uncertainties make them one of the most important factors for anthropogenic climate perturbations. Interactions are highly complex as microphysical and macrostructural cloud adjustments to aerosol perturbations do not transpire in a black box but are highly dependent on a variety of factors like cloud regime, meteorology and aerosol properties. To gain understanding of the processes that govern ACI in order to increase accuracy of climate models and predictions of future changes in the climate system is thus of great importance. This process study uses multiple statistical approaches to untangle the various influences on ACI. Stratocumulus clouds in the South-East Atlantic are investigated over a time span of 10 years using daily Terra MODIS L3 data for aerosol and cloud parameters. Together with ERA-Interim reanalysis data of cloud-relevant meteorological parameters, statistical relationships between aerosol and cloud properties are derived for different weather types on the basis of a kmeans cluster analysis, in addition to bivariate relationships. Also, the influence of aerosol loading on aerosol-cloud relationships is investigated. Relationships between aerosol and cloud microphysical properties are established. Macrostructural cloud adjustments are more ambiguous, as the observed positive relationship between aerosol and cloud liquid water path (LWP) is inconsistent with the Albrecht hypothesis (more cloud water due to drizzle suppression). Adjustments of cloud optical thickness (COT) to aerosol perturbations are negligible as COT is highly dependent on LWP. Strong relationships between aerosol and cloud fraction are identified, but might be spurious and

  17. Aerosol retrieval experiments in the ESA Aerosol_cci project

    NASA Astrophysics Data System (ADS)

    Holzer-Popp, T.; de Leeuw, G.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-03-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013) algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components and their mixing ratios. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data qualitatively by visible analysis of monthly mean AOD maps and quantitatively by comparing global daily gridded satellite data against daily

  18. Simultaneous stratospheric gas and aerosol retrievals from broadband infrared occultation measurements.

    PubMed

    Oshchepkov, Sergey; Sasano, Yasuhiro; Yokota, Tatsuya; Uemura, Nobuyuki; Matsuda, Hisashi; Itou, Yasuhiro; Nakajima, Hideaki

    2005-08-01

    The inversion method for simultaneous gas (O3, NO2, HNO3, N2O, CH4, H2O, CFC-11, CFC-12, N2O5, and ClONO2) and aerosol retrievals from broadband continuous IR spectra of occultation measurements is described. Both gas and aerosol physical modeling with consideration of the multicomponent character of aerosol and polar stratospheric clouds (PSCs) are used to minimize the difference between measured and modeled transmittance spectra under smoothness constraints imposed on particle-size distributions for each PSC component and positive constraints on all gas and aerosol parameters. The method is tested by numerical simulations in which synthetic occultation measurements inherent to the improved limb atmospheric spectrometer are used. The study reveals that the method has significant advantages over other approaches based on offset or gas-window-channel aerosol correction for accurate gas retrievals and provides additional information on the particle-size composition, volume density, and chemical component character of PSCs.

  19. The Measurement of Aerosol Optical Properties using Continuous Wave Cavity Ring-Down Techniques

    NASA Technical Reports Server (NTRS)

    Strawa, Anthony W.; Castaneda, Rene; Owano, Thomas; Baer, Douglas S.; Paldus, Barbara A.; Gore, Warren J. (Technical Monitor)

    2002-01-01

    Large uncertainties in the effects that aerosols have on climate require improved in situ measurements of extinction coefficient and single-scattering albedo. This paper describes the use of continuous wave cavity ring-down (CW-CRD) technology to address this problem. The innovations in this instrument are the use of CW-CRD to measure aerosol extinction coefficient, the simultaneous measurement of scattering coefficient, and small size suitable for a wide range of aircraft applications. Our prototype instrument measures extinction and scattering coefficient at 690 nm and extinction coefficient at 1550 nm. The instrument itself is small (60 x 48 x 15 cm) and relatively insensitive to vibrations. The prototype instrument has been tested in our lab and used in the field. While improvements in performance are needed, the prototype has been shown to make accurate and sensitive measurements of extinction and scattering coefficients. Combining these two