Science.gov

Sample records for aerosol water uptake

  1. Water Uptake and Hygroscopic Growth of Organosulfate Aerosol.

    PubMed

    Estillore, Armando D; Hettiyadura, Anusha P S; Qin, Zhen; Leckrone, Erin; Wombacher, Becky; Humphry, Tim; Stone, Elizabeth A; Grassian, Vicki H

    2016-04-19

    Organosulfates (OS) are important components of secondary organic aerosol (SOA) that have been identified in numerous field studies. This class of compounds within SOA can potentially affect aerosol physicochemical properties such as hygroscopicity because of their polar and hydrophilic nature as well as their low volatility. Currently, there is a dearth of information on how aerosol particles that contain OS interact with water vapor in the atmosphere. Herein we report a laboratory investigation on the hygroscopic properties of a structurally diverse set of OS salts at varying relative humidity (RH) using a Hygroscopicity-Tandem Differential Mobility Analyzer (H-TDMA). The OS studied include the potassium salts of glycolic acid sulfate, hydroxyacetone sulfate, 4-hydroxy-2,3-epoxybutane sulfate, and 2-butenediol sulfate and the sodium salts of benzyl sulfate, methyl sulfate, ethyl sulfate, and propyl sulfate. In addition, mixtures of OS and sodium chloride were also studied. The results showed gradual deliquescence of these aerosol particles characterized by continuous uptake and evaporation of water in both hydration and dehydration processes for the OS, while the mixture showed prompt deliquescence and effloresce transitions, albeit at a lower relative humidity relative to pure sodium chloride. Hygroscopic growth of these OS at 85% RH were also fit to parameterized functional forms. This new information provided here has important implications about the atmospheric lifetime, light scattering properties, and the role of OS in cloud formation. Moreover, results of these studies can ultimately serve as a basis for the development and evaluation of thermodynamic models for these compounds in order to consider their impact on the atmosphere. PMID:26967467

  2. Vertical profiles of cloud condensation nuclei, aerosol hygroscopicity, water uptake, and scattering across the United States

    NASA Astrophysics Data System (ADS)

    Lin, J. J.; Bougiatioti, A.; Nenes, A.; Anderson, B. E.; Beyersdorf, A. J.; Brock, C. A.; Gordon, T. D.; Lack, D.; Law, D. C.; Liao, J.; Middlebrook, A. M.; Richardson, M.; Thornhill, K. L., II; Winstead, E.; Wagner, N. L.; Welti, A.; Ziemba, L. D.

    2014-12-01

    The evolutions of vertical distributions of aerosol chemical, microphysical, hygroscopic, and optical properties present fundamental challenges to the understanding of ground-level air quality and radiative transfer, and few datasets exist to date for evaluation of atmospheric models. Data collected from recent NASA and NOAA field campaigns in the California Central Valley (DISCOVER-AQ), southeast United States (SENEX, SEAC4RS) and Texas (DISCOVER-AQ) allow for a unique opportunity to constrain vertical profiles of climate-relevant aerosol properties. This work presents in-situ aircraft measurements of cloud condensation nuclei (CCN) concentration and derivations of aerosol hygroscopicity, water uptake, and light scattering. Aerosol hygroscopicity is derived from CCN and aerosol measurements. Inorganic water uptake is calculated from aerosol composition using ISORROPIA, a chemical thermodynamic model, while organic water uptake is calculated from organic hygroscopicity. Aerosol scattering closure is performed between scattering from water uptake calculations and in-situ scattering measurements.

  3. Effects of aerosol phase and water uptake for understanding organic aerosol oxidation

    NASA Astrophysics Data System (ADS)

    Fitzgerald, C.; Gallimore, P. J.; Fuller, S.; Lee, J.; Garrascon, V.; Achakulwisut, P.; Björkegren, A.; Spring, D. R.; Pope, F. D.; Kalberer, M.

    2012-04-01

    Oxidation reactions of atmospheric organic aerosols strongly influence many important processes in the atmosphere such as aerosol-cloud interactions or heterogeneous chemistry. We present results of an experimental laboratory study with three organic model aerosol systems (maleic, arachidonic and oleic acid) investigating the effect of particle phase and humidity on the oxidative processing of the particle. Two experimental techniques are combined in this investigation. An electrodynamic balance is used to levitate single particles and assess changes in particle size and mass (due to water uptake and/or loss of volatile oxidation products) and phase (liquid or solid) during and after chemical processing with ozone. An aerosol flow tube was used to investigate the detailed chemical composition of the oxidized aerosol with offline ultra-high resolution mass spectrometry. The role of water (i.e., relative humidity) in the oxidation scheme of the three carboxylic acids is very compound specific and the particle phase has a strong effect on the particle processing. Relative humidity was observed to have a major influence on the oxidation scheme of maleic acid and arachidonic acid, whereas no dependence was observed for the oxidation of oleic acid. In both, maleic acid and arachidonic acid, an evaporation of volatile oxidation products could only be observed when the particle was exposed to high relative humidities. Maleic and arachidonic acid change their phase from liquid to solid upon oxidation or upon changes in humidity and efficient oxidative processing of the particle bulk can only occur when the particle is in liquid form. A detailed oxidation mechanism for maleic acid is presented taking the strong effects of water into account. In contrast, oleic acid is liquid under all conditions at room temperature (dry or elevated humidity, pure or oxidized particle). Thus ozone can easily diffuse into the bulk of the particle irrespective of the oxidation conditions. In

  4. How fast is water uptake on glassy and amorphous aerosol?

    NASA Astrophysics Data System (ADS)

    Bones, D. L.; Lienhard, D. M.; Krieger, U.; Reid, J. P.

    2011-12-01

    Atmospheric aerosol particles are typically complex mixtures of organic and inorganic species with correspondingly complex behaviour in their response to changes in humidity. Indeed, it has been recently recognised that many aerosols exist as highly viscous solutions or as amorphous glasses, rather than a crystalline state, over a wide range of relative humidities (Virtanen, et al. 2010). In this work, we investigate the formation of glassy or highly viscous phases in aqueous sugar aerosols such as sucrose and levoglucosan and aerosols of mixtures of sugars and inorganic compounds, reporting the timescale for the mass transfer of water between the particle and the gas phase with variation in water activity. Optical tweezers are used to trap single aerosol particles and examine the time-dependent response in their size to stepwise changes in RH, which result in the evaporation or condensation of water. The evolving particle size and homogeneity in composition are estimated from the wavelengths of specific resonance modes of the cavity enhanced Raman scattering spectra, deducing size changes with an accuracy of better than 1 nm. The experimental data is compared with a kinetic model of diffusional limited size change (Zobrist, et al. 2011), in which the diffusion of water within the particle bulk limits the rate of water transport between the gas and condensed phases. We report measurements in which ternary mixtures, with varying mole ratios of sucrose and sodium chloride, have allowed us to examine the water transport and response time in particle size over a wide range of bulk viscosities. Changes in size are dramatically hindered at low RH, with time scales approaching 10000s, for both increasing and decreasing RH regimes (Tong, et al. 2011). We also observe a marked relative shift in resonance modes, suggesting initial formation of a layer of water on the surface of the glassy particle and subsequent establishment of a steep concentration gradient within the

  5. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  6. Water uptake of clay and desert dust aerosol particles at sub- and supersaturated water vapor conditions.

    PubMed

    Herich, Hanna; Tritscher, Torsten; Wiacek, Aldona; Gysel, Martin; Weingartner, Ernest; Lohmann, Ulrike; Baltensperger, Urs; Cziczo, Daniel J

    2009-09-28

    Airborne mineral dust particles serve as cloud condensation nuclei (CCN), thereby influencing the formation and properties of warm clouds. It is therefore of atmospheric interest how dust aerosols with different mineralogy behave when exposed to high relative humidity (RH) or supersaturation (SS) with respect to liquid water. In this study the subsaturated hygroscopic growth and the supersaturated cloud condensation nucleus activity of pure clays and real desert dust aerosols were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA) and a cloud condensation nuclei counter (CCNC), respectively. Five different illite, montmorillonite and kaolinite clay samples as well as three desert dust samples (Saharan dust (SD), Chinese dust (CD) and Arizona test dust (ATD)) were investigated. Aerosols were generated both with a wet and a dry disperser. The water uptake was parameterized via the hygroscopicity parameter kappa. The hygroscopicity of dry generated dust aerosols was found to be negligible when compared to processed atmospheric aerosols, with CCNC derived kappa values between 0.00 and 0.02 (the latter corresponds to a particle consisting of 96.7% by volume insoluble material and approximately 3.3% ammonium sulfate). Pure clay aerosols were generally found to be less hygroscopic than natural desert dust particles. The illite and montmorillonite samples had kappa approximately 0.003. The kaolinite samples were less hygroscopic and had kappa=0.001. SD (kappa=0.023) was found to be the most hygroscopic dry-generated desert dust followed by CD (kappa=0.007) and ATD (kappa=0.003). Wet-generated dust showed an increased water uptake when compared to dry-generated samples. This is considered to be an artifact introduced by redistribution of soluble material between the particles. Thus, the generation method is critically important when presenting such data. These results indicate any atmospheric processing of a fresh mineral dust particle which

  7. Size matters in the water uptake and hygroscopic growth of atmospherically relevant multicomponent aerosol particles.

    PubMed

    Laskina, Olga; Morris, Holly S; Grandquist, Joshua R; Qin, Zhen; Stone, Elizabeth A; Tivanski, Alexei V; Grassian, Vicki H

    2015-05-14

    Understanding the interactions of water with atmospheric aerosols is crucial for determining the size, physical state, reactivity, and climate impacts of this important component of the Earth's atmosphere. Here we show that water uptake and hygroscopic growth of multicomponent, atmospherically relevant particles can be size dependent when comparing 100 nm versus ca. 6 μm sized particles. It was determined that particles composed of ammonium sulfate with succinic acid and of a mixture of chlorides typical of the marine environment show size-dependent hygroscopic behavior. Microscopic analysis of the distribution of components within the aerosol particles show that the size dependence is due to differences in the mixing state, that is, whether particles are homogeneously mixed or phase separated, for different sized particles. This morphology-dependent hygroscopicity has consequences for heterogeneous atmospheric chemistry as well as aerosol interactions with electromagnetic radiation and clouds.

  8. On the Water Uptake and CCN Activation of Tropospheric Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rastak, Narges; Pajunoja, Aki; Acosta Navarro, Juan-Camilo; Leong, Yu Jun; Cerully, Kate M.; Nenes, Athanasios; Kirkevåg, Alf; Topping, David; Virtanen, Annele; Riipinen, Ilona

    2016-04-01

    Aerosol particles introduce high uncertainties to radiative climate forcing. If exposed to a given relative humidity (RH), aerosol particles containing soluble material can absorb water and grow in size (hygroscopic growth). If RH is increased further beyond supersaturation (RH >100%) the particles can act as cloud condensation nuclei (CCN). Aerosol particles interactions with water vapour determine to a large extent their influence on climate. Organic aerosols (OA) contribute a large fraction (20-90%) of atmospheric submicron particulate mass, on the other hand they often consist of thousands of compounds with different properties. One of these properties is solubility, which affects the hygroscopic growth and cloud condensation nucleus (CCN) activation of the organic particles. We investigate the hygroscopic behaviour of complex organic aerosols accounting for the distribution of solubilities present in these mixtures. We use the SPARC method to estimate the solubility distributions of isoprene (IP) and monoterpene (MT) SOA based on their chemical composition, as predicted by the Master Chemical Mechanism (MCM). Combining these solubility distributions with the adsorption theory along with the non-ideal behaviour of organic mixtures, we predict the expected hygroscopic growth factors (HGFs), CCN activation behaviour and the related hygroscopicity parameters kappa for these mixtures. The predictions are compared to laboratory measurements as well as field data from MT- and IP-dominated measurement sites. The predicted solubility distributions do a good job in explaining the water uptake of these two mixture types at high relative humidities (RH around 90%), as well as their CCN activation - including the potential differences between the kappa values derived from HGF vs. CCN data. At lower relative humidities, however, the observed water uptake is higher than predicted on solubility alone, particularly for the MT-derived SOA. The data from the low RHs are further

  9. Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs

    NASA Astrophysics Data System (ADS)

    Alfarra, M. R.; Good, N.; Wyche, K. P.; Hamilton, J. F.; Monks, P. S.; Lewis, A. C.; McFiggans, G.

    2013-12-01

    We demonstrate that the water uptake properties derived from sub- and super-saturated measurements of chamber-generated biogenic secondary organic aerosol (SOA) particles are independent of their degree of oxidation, determined using both online and offline methods. SOA particles are formed from the photooxidation of five structurally different biogenic VOCs, representing a broad range of emitted species and their corresponding range of chemical reactivity: α-pinene, β-caryophyllene, limonene, myrcene and linalool. The fractional contribution of mass fragment 44 to the total organic signal (f44) is used to characterise the extent of oxidation of the formed SOA as measured online by an aerosol mass spectrometer. Results illustrate that the values of f44 are dependent on the precursor, the extent of photochemical ageing as well as on the initial experimental conditions. SOA generated from a single biogenic precursor should therefore not be used as a general proxy for biogenic SOA. Similarly, the generated SOA particles exhibit a range of hygroscopic properties, depending on the precursor, its initial mixing ratio and photochemical ageing. The activation behaviour of the formed SOA particles show no temporal trends with photochemical ageing. The average κ values derived from the HTDMA and CCNc are generally found to cover the same range for each precursor under two different initial mixing ratio conditions. A positive correlation is observed between the hygroscopicity of particles of a single size and f44 for α-pinene, β-caryophyllene, linalool and myrcene, but not for limonene SOA. The investigation of the generality of this relationship reveals that α-pinene, limonene, linalool and myrcene are all able to generate particles with similar hygroscopicity (κHTDMA ~0.1) despite f44 exhibiting a relatively wide range of values (~4 to 11%). Similarly, κCCN is found to be independent of f44. The same findings are also true when sub- and super-saturated water uptake

  10. Water uptake is independent of the inferred composition of secondary aerosols derived from multiple biogenic VOCs

    NASA Astrophysics Data System (ADS)

    Alfarra, M. R.; Good, N.; Wyche, K. P.; Hamilton, J. F.; Monks, P. S.; Lewis, A. C.; McFiggans, G. B.

    2013-04-01

    We demonstrate that the water uptake properties derived from sub- and super-saturated measurements of chamber-generated biogenic secondary organic aerosol (SOA) particles are independent of their degree of oxidation determined using both online and offline methods. SOA particles are formed from the photooxidation of five structurally different biogenic VOCs representing a broad range of emitted species and their corresponding range of chemical reactivity: α-pinene, β-caryophyllene, limonene, myrcene and linalool. The fractional contribution of mass fragment 44 to the total organic signal (f44) is used to characterise the extent of oxidation of the formed SOA as measured online by an aerosol mass spectrometer. Results illustrate that the values of f44 are dependent on the precursor, the extent of photochemical ageing as well as on the initial experimental conditions. SOA generated from a single biogenic precursor should therefore not be used as a general proxy for biogenic SOA. Similarly, the generated SOA particles exhibit a range of hygroscopic properties depending on the precursor, its initial mixing ratio and photochemical ageing. The activation behaviour of the formed SOA particles show no temporal trends with photochemical ageing. The average κ values derived from the HTDMA and CCNc are generally found to cover the same range for each precursor under two different initial mixing ratio conditions. A positive correlation is observed between the hygroscopicity of particles of a single size and f44 for α-pinene, β-caryophyllene, linalool and myrcene, but not for limonene SOA. The investigation of the generality of this relationship reveal that α-pinene, limonene, linalool and myrcene are all able to generate particles with similar hygroscopicity (κHTDMA ~0.1) despite f44 exhibiting a relatively wide range of values (~4 to 11%). Similarly, κCCN is found to be independent of f44. The same findings are also true when sub- and super-saturated water uptake

  11. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    NASA Astrophysics Data System (ADS)

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; Rudich, Y.; Marcolli, C.; Luo, B. P.; Bones, D. L.; Reid, J. P.; Lambe, A. T.; Canagaratna, M. R.; Davidovits, P.; Onasch, T. B.; Worsnop, D. R.; Steimer, S. S.; Koop, T.; Peter, T.

    2015-09-01

    New measurements of water diffusion in aerosol particles produced from secondary organic aerosol (SOA) material and from a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH4HSO4, raffinose) indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA droplets suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  12. Viscous organic aerosol particles in the upper troposphere: diffusivity-controlled water uptake and ice nucleation?

    NASA Astrophysics Data System (ADS)

    Lienhard, D. M.; Huisman, A. J.; Krieger, U. K.; Rudich, Y.; Marcolli, C.; Luo, B. P.; Bones, D. L.; Reid, J. P.; Lambe, A. T.; Canagaratna, M. R.; Davidovits, P.; Onasch, T. B.; Worsnop, D. R.; Steimer, S. S.; Koop, T.; Peter, T.

    2015-12-01

    New measurements of water diffusion in secondary organic aerosol (SOA) material produced by oxidation of α-pinene and in a number of organic/inorganic model mixtures (3-methylbutane-1,2,3-tricarboxylic acid (3-MBTCA), levoglucosan, levoglucosan/NH4HSO4, raffinose) are presented. These indicate that water diffusion coefficients are determined by several properties of the aerosol substance and cannot be inferred from the glass transition temperature or bouncing properties. Our results suggest that water diffusion in SOA particles is faster than often assumed and imposes no significant kinetic limitation on water uptake and release at temperatures above 220 K. The fast diffusion of water suggests that heterogeneous ice nucleation on a glassy core is very unlikely in these systems. At temperatures below 220 K, model simulations of SOA particles suggest that heterogeneous ice nucleation may occur in the immersion mode on glassy cores which remain embedded in a liquid shell when experiencing fast updraft velocities. The particles absorb significant quantities of water during these updrafts which plasticize their outer layers such that these layers equilibrate readily with the gas phase humidity before the homogeneous ice nucleation threshold is reached. Glass formation is thus unlikely to restrict homogeneous ice nucleation. Only under most extreme conditions near the very high tropical tropopause may the homogeneous ice nucleation rate coefficient be reduced as a consequence of slow condensed-phase water diffusion. Since the differences between the behavior limited or non limited by diffusion are small even at the very high tropical tropopause, condensed-phase water diffusivity is unlikely to have significant consequences on the direct climatic effects of SOA particles under tropospheric conditions.

  13. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    NASA Astrophysics Data System (ADS)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  14. Water uptake by organic aerosol and its influence on gas/particle partitioning of secondary organic aerosol in the United States

    NASA Astrophysics Data System (ADS)

    Jathar, Shantanu H.; Mahmud, Abdullah; Barsanti, Kelley C.; Asher, William E.; Pankow, James F.; Kleeman, Michael J.

    2016-03-01

    Organic aerosol (OA) is at least partly hygroscopic, i.e., water partitions into the organic phase to a degree determined by the relative humidity (RH), the organic chemical composition, and the particle size. This organic-phase water increases the aerosol mass and provides a larger absorbing matrix while decreasing its mean molecular weight, which can encourage additional condensation of semi-volatile organic compounds. Most regional and global atmospheric models account for water uptake by inorganic salts but do not explicitly account for organic-phase water and its subsequent impact on gas/particle partitioning of semi-volatile OA. In this work, we incorporated the organic-phase water model described by Pankow et al. (2015) into the UCD/CIT air quality model to simulate water uptake by OA and assessed its influence on total OA mass concentrations. The model was run for one summer month over two distinct regions: South Coast Air Basin (SoCAB) surrounding Los Angeles, California and the eastern United States (US). In SoCAB where the OA was dominated by non-hygroscopic primary OA (POA), there was very little organic-phase water uptake (0.1-0.2 μg m-3) and consequently very little enhancement (or growth) in total OA concentrations (OA + organic-phase water): a 3% increase in total OA mass was predicted for a 0.1 increase in relative humidity. In contrast, in the eastern US where secondary OA (SOA) from biogenic sources dominated the OA, substantial organic-phase water uptake and enhancement in total OA concentrations was predicted, even in urban locations. On average, the model predicted a 20% growth in total OA mass for a 0.1 increase in relative humidity; the growth was equivalent to a 250 nm particle with a hygroscopicity parameter (κ) of 0.15. Further, for the same relative humidity, the exact extent of organic-phase water uptake and total OA enhancement was found to be dependent on the particle mixing state. When the source-oriented mixing state of aerosols

  15. Aerosol light-scattering enhancement due to water uptake during TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-02-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility in the framework of the Two-Column Aerosol Project (TCAP) deployed at Cape Cod, Massachusetts, for a~one year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0-180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically-influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically-influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air-masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in-situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine

  16. Aerosol light-scattering enhancement due to water uptake during the TCAP campaign

    NASA Astrophysics Data System (ADS)

    Titos, G.; Jefferson, A.; Sheridan, P. J.; Andrews, E.; Lyamani, H.; Alados-Arboledas, L.; Ogren, J. A.

    2014-07-01

    Aerosol optical properties were measured by the DOE/ARM (US Department of Energy Atmospheric Radiation Measurements) Program Mobile Facility during the Two-Column Aerosol Project (TCAP) campaign deployed at Cape Cod, Massachusetts, for a 1-year period (from summer 2012 to summer 2013). Measured optical properties included aerosol light-absorption coefficient (σap) at low relative humidity (RH) and aerosol light-scattering coefficient (σsp) at low and at RH values varying from 30 to 85%, approximately. Calculated variables included the single scattering albedo (SSA), the scattering Ångström exponent (SAE) and the scattering enhancement factor (f(RH)). Over the period of measurement, f(RH = 80%) had a mean value of 1.9 ± 0.3 and 1.8 ± 0.4 in the PM10 and PM1 fractions, respectively. Higher f(RH = 80%) values were observed for wind directions from 0 to 180° (marine sector) together with high SSA and low SAE values. The wind sector from 225 to 315° was identified as an anthropogenically influenced sector, and it was characterized by smaller, darker and less hygroscopic aerosols. For the marine sector, f(RH = 80%) was 2.2 compared with a value of 1.8 obtained for the anthropogenically influenced sector. The air-mass backward trajectory analysis agreed well with the wind sector analysis. It shows low cluster to cluster variability except for air masses coming from the Atlantic Ocean that showed higher hygroscopicity. Knowledge of the effect of RH on aerosol optical properties is of great importance for climate forcing calculations and for comparison of in situ measurements with satellite and remote sensing retrievals. In this sense, predictive capability of f(RH) for use in climate models would be enhanced if other aerosol parameters could be used as proxies to estimate hygroscopic growth. Toward this goal, we propose an exponential equation that successfully estimates aerosol hygroscopicity as a function of SSA at Cape Cod. Further work is needed to determine if

  17. Phase state of ambient aerosol linked with water uptake and chemical aging in the southeastern US

    NASA Astrophysics Data System (ADS)

    Pajunoja, Aki; Hu, Weiwei; Leong, Yu J.; Taylor, Nathan F.; Miettinen, Pasi; Palm, Brett B.; Mikkonen, Santtu; Collins, Don R.; Jimenez, Jose L.; Virtanen, Annele

    2016-09-01

    During the summer 2013 Southern Aerosol and Oxidant Study (SOAS) field campaign in a rural site in the southeastern United States, the effect of hygroscopicity and composition on the phase state of atmospheric aerosol particles dominated by the organic fraction was studied. The analysis is based on hygroscopicity measurements by a Hygroscopic Tandem Differential Mobility Analyzer (HTDMA), physical phase state investigations by an Aerosol Bounce Instrument (ABI) and composition measurements using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). To study the effect of atmospheric aging on these properties, an OH-radical oxidation flow reactor (OFR) was used to simulate longer atmospheric aging times of up to 3 weeks. Hygroscopicity and bounce behavior of the particles had a clear relationship showing higher bounce at elevated relative humidity (RH) values for less hygroscopic particles, which agrees well with earlier laboratory studies. Additional OH oxidation of the aerosol particles in the OFR increased the O : C and the hygroscopicity resulting in liquefying of the particles at lower RH values. At the highest OH exposures, the inorganic fraction starts to dominate the bounce process due to production of inorganics and concurrent loss of organics in the OFR. Our results indicate that at typical ambient RH and temperature, organic-dominated particles stay mostly liquid in the atmospheric conditions in the southeastern US, but they often turn semisolid when dried below ˜ 50 % RH in the sampling inlets. While the liquid phase state suggests solution behavior and equilibrium partitioning for the SOA particles in ambient air, the possible phase change in the drying process highlights the importance of thoroughly considered sampling techniques of SOA particles.

  18. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    George, I. J.; Matthews, P. S.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2011-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, together known as HOx, play a vital role in atmospheric chemistry by controlling the oxidative capacity of the troposphere. The atmospheric lifetime and concentrations of many trace reactive species, such as volatile organic compounds (VOCs), are determined by HOx radical levels. Therefore, the ability to accurately predict atmospheric HOx concentrations from a detailed knowledge of their sources and sinks is a very useful diagnostic tool to assess our current understanding of atmospheric chemistry. Several recent field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models, where HO2 loss onto aerosols was suggested as a possible missing sink [1, 2]. However, the mechanism on HO2 uptake onto aerosols and its impact on ambient HOx levels are currently not well understood. To improve our understanding of this process, we have conducted laboratory experiments to measure HO2 uptake coefficients onto submicron aerosol particles. The FAGE (Fluorescence Assay by Gas Expansion) technique, a highly sensitive laser induced fluorescence based detection method, was used to monitor HO2 uptake kinetics onto aerosol particles in an aerosol flow tube. The application of the FAGE technique allowed for kinetic experiments to be performed under low HO2 concentrations, i.e. [HO2] < 109 molecules cm-3. HO2 radicals were produced by the photolysis of water vapour in the presence of O2 and aerosol particles were produced either by atomizing dilute salt solutions or by homogeneous nucleation. HO2 uptake coefficients (γ) have been measured for single-component solid and aqueous inorganic salt and organic aerosol particles with a wide range of hygroscopicities. HO2 uptake coefficients on solid particles were below the detection limit (γ < 0.001), whereas on aqueous aerosols uptake coefficients were somewhat larger (γ = 0.001 - 0.008). HO2 uptake coefficients were highest on aerosols

  19. Effect of the secondary organic aerosol coatings on black carbon water uptake, cloud condensation nuclei activity, and particle collapse

    EPA Science Inventory

    The ability of black carbon aerosols to absorb water and act as a cloud condensation nuclei (CCN) directly controls their lifetime in the atmosphere as well as their impact on cloud formation, thus impacting the earth’s climate. Black carbon emitted from most combustion pro...

  20. Uptake of HO2 Radicals Onto Dust Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2013-12-01

    OH and HO2 radicals play an important role in the troposphere by controlling its oxidative capacity and therefore the concentration of many trace species. Several field studies have observed significantly lower concentrations of HO2 radicals than predicted using box models (1,2). HO2 loss onto aerosols has been suggested as a possible sink. Mineral dust has an estimated annual flux of 2000 Tg year-1 (3). However, there has only been one study of HO2 uptake onto Arizona Test Dust (ATD) surfaces (4) and there are currently no published studies for dust aerosols. Therefore, the aim of this study was to measure the HO2 uptake coefficient onto ATD aerosols over a range of humidities and for different HO2 concentrations, as well as investigating the uptake as a function of the exposure time to the aerosol, for which a dependence had been observed for aqueous salt aerosols (5). Uptake coefficients were measured for ATD aerosols at atmospheric pressure and at 291 K using a Fluorescence Assay by Gas Expansion (FAGE) detector combined with a flow tube. HO2 was formed from the photolysis of water vapour and was injected into the flow tube using a moveable injector, which was placed in six different positions along the flow tube. The non stable aerosol output was produced by stirring ATD in a bottle producing a dust cloud which was entrained into a flow. The aerosol number concentration was measured using a Condensation Particle Counter (CPC) and was converted into a surface area using the average radius of one aerosol. The uptake coefficient was then able to be calculated by assuming first order kinetics. The HO2 uptake coefficient was measured at a relative humidity of between 6 and 75% and at initial HO2 concentrations of ~ 0.3 - 1 × 10^9 molecule cm-3. Average uptake coefficients of 0.018 × 0.006 and 0.031 × 0.008 were measured for the higher and lower HO2 concentrations respectively, and the impact investigated using a constrained box model. A time dependence was also

  1. The uptake of HO2 radicals to organic aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, Pascale; Krapf, Manuel; Dommen, Josef; George, Ingrid; Whalley, Lisa; Ingham, Trevor; Baeza-Romero, Maria Teresa; Ammann, Markus; Heard, Dwayne

    2014-05-01

    HOx (OH + HO2) radicals are responsible for the majority of the oxidation in the troposphere and control the concentrations of many trace species in the atmosphere. There have been many field studies where the measured HO2 concentrations have been smaller than the concentration predicted by model calculations [1,2]. The difference has often been attributed to HO2 uptake by aerosols. Organics are a major component of aerosols accounting for 10 - 70 % of their mass [3]. However, there have been very few laboratory studies measuring HO2 uptake onto organic aerosols [4]. Uptake coefficients (γ) were measured for a range of aerosols using a Fluorescence Assay By Gas Expansion (FAGE) detector combined with an aerosol flow tube. HO2 was injected into the flow tube using a moveable injector which allowed first order HO2 decays to be measured along the flow tube both with and without aerosols. Laboratory generated aerosols were made using an atomiser or by homogeneous nucleation. Secondary organic aerosols (SOA) were made using the Paul Scherrer Institute smog chamber and also by means of a Potential Aerosol Mass (PAM) chamber. The total aerosol surface area was then measured using a Scanning Mobility Particle Sizer (SMPS). Experiments were carried out on aerosols containing glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid and squalene. The HO2 uptake coefficients for these species were measured in the range of γ < 0.004 to γ = 0.008 ± 0.004. Humic acid was also studied, however, much larger uptake coefficients (γ = 0.007 - 0.09) were measured, probably due to the fact that these aerosols contained elevated levels of transition metal ions. For humic acid the uptake coefficient was highly dependent on humidity and this may be explained by the liquid water content of the aerosols. Measurements were also performed on copper doped aerosols containing different organics. An uptake coefficient of 0.23 ± 0.07 was measured for copper doped ammonium sulphate

  2. Gas uptake and chemical aging of semisolid organic aerosol particles.

    PubMed

    Shiraiwa, Manabu; Ammann, Markus; Koop, Thomas; Pöschl, Ulrich

    2011-07-01

    Organic substances can adopt an amorphous solid or semisolid state, influencing the rate of heterogeneous reactions and multiphase processes in atmospheric aerosols. Here we demonstrate how molecular diffusion in the condensed phase affects the gas uptake and chemical transformation of semisolid organic particles. Flow tube experiments show that the ozone uptake and oxidative aging of amorphous protein is kinetically limited by bulk diffusion. The reactive gas uptake exhibits a pronounced increase with relative humidity, which can be explained by a decrease of viscosity and increase of diffusivity due to hygroscopic water uptake transforming the amorphous organic matrix from a glassy to a semisolid state (moisture-induced phase transition). The reaction rate depends on the condensed phase diffusion coefficients of both the oxidant and the organic reactant molecules, which can be described by a kinetic multilayer flux model but not by the traditional resistor model approach of multiphase chemistry. The chemical lifetime of reactive compounds in atmospheric particles can increase from seconds to days as the rate of diffusion in semisolid phases can decrease by multiple orders of magnitude in response to low temperature or low relative humidity. The findings demonstrate that the occurrence and properties of amorphous semisolid phases challenge traditional views and require advanced formalisms for the description of organic particle formation and transformation in atmospheric models of aerosol effects on air quality, public health, and climate.

  3. Heterogeneous Uptake of HO2 Radicals onto Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    George, I. J.; Brooks, B.; Goddard, A.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2010-12-01

    The hydroxyl (OH) and hydroperoxyl (HO2) radicals, known collectively as HOx radicals, are the key reactants that control the oxidative capacity of the troposphere and the atmospheric lifetimes and concentrations of most trace reactive species, i.e. NOx, O3 and volatile organic compounds. Therefore, in order to gain an overall understanding of atmospheric chemistry and to predict the fate of atmospheric pollutants, a detailed knowledge of the sources and sinks of HOx species and their steady-state atmospheric concentrations is crucial. To this end, field measurements of atmospheric HOx concentrations have been recently compared to model predictions to gauge our level of understanding of atmospheric chemistry of trace reactive species. Box models incorporating known gas-phase chemistry have significantly overpredicted steady-state HO2 levels in comparison to field observations, suggesting heterogeneous uptake onto aerosols as a possible missing atmospheric sink for HO2 radicals [1-2]. However, relatively few laboratory studies have been performed to determine the kinetic parameters for HO2 loss onto aerosols, and thus the ability to assess the impact of this mechanism on HOx levels is limited. The goal of this laboratory study is to improve our understanding of the tropospheric HOx budget by measuring HO2 uptake kinetics onto aerosol particles. In this work, HO2 radicals were produced by the photolysis of water vapour and the FAGE (Fluorescence Assay by Gas Expansion) technique was used to monitor HO2 loss kinetics onto aerosol particles in an aerosol flow tube setup. FAGE is a highly sensitive laser-induced fluorescence based detection method for HOx radicals that has allowed for kinetic measurements to be performed under low HO2 concentrations minimizing gas-phase HO2 self reaction, i.e. for [HO2] < 109 molecules cm-3. The mass accommodation coefficient was determined by measuring HO2 uptake onto Cu(II)-doped ammonium sulfate aerosols. Reactive uptake coefficients

  4. Uptake of Ambient Organic Gases to Acidic Sulfate Aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, J.; Li, S.

    2009-05-01

    The formation of secondary organic aerosols (SOA) in the atmosphere has been an area of significant interest due to its climatic relevance, its effects on air quality and human health. Due largely to the underestimation of SOA by regional and global models, there has been an increasing number of studies focusing on alternate pathways leading to SOA. In this regard, recent work has shown that heterogeneous and liquid phase reactions, often leading to oligomeric material, may be a route to SOA via products of biogenic and anthropogenic origin. Although oligomer formation in chamber studies has been frequently observed, the applicability of these experiments to ambient conditions, and thus the overall importance of oligomerization reactions remain unclear. In the present study, ambient air is drawn into a Teflon smog chamber and exposed to acidic sulfate aerosols which have been formed in situ via the reaction of SO3 with water vapor. The aerosol composition is measured with a High Resolution Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS), and particle size distributions are monitored with a scanning mobility particle sizer (SMPS). The use of ambient air and relatively low inorganic particle loading potentially provides clearer insight into the importance of heterogeneous reactions. Results of experiments, with a range of sulfate loadings show that there are several competing processes occurring on different timescales. A significant uptake of ambient organic gases to the particles is observed immediately followed by a slow shift towards higher m/z over a period of several hours indicating that higher molecular weight products (possibly oligomers) are being formed through a reactive process. The results suggest that heterogeneous reactions can occur with ambient organic gases, even in the presence of ammonia, which may have significant implications to the ambient atmosphere where particles may be neutralized after their formation.

  5. Measurements of the HO2 uptake coefficients onto single component organic aerosols.

    PubMed

    Lakey, P S J; George, I J; Whalley, L K; Baeza-Romero, M T; Heard, D E

    2015-04-21

    Measurements of HO2 uptake coefficients (γ) were made onto a variety of organic aerosols derived from glutaric acid, glyoxal, malonic acid, stearic acid, oleic acid, squalene, monoethanol amine sulfate, monomethyl amine sulfate, and two sources of humic acid, for an initial HO2 concentration of 1 × 10(9) molecules cm(-3), room temperature and at atmospheric pressure. Values in the range of γ < 0.004 to γ = 0.008 ± 0.004 were measured for all of the aerosols apart from the aerosols from the two sources of humic acid. For humic acid aerosols, uptake coefficients in the range of γ = 0.007 ± 0.002 to γ = 0.09 ± 0.03 were measured. Elevated concentrations of copper (16 ± 1 and 380 ± 20 ppb) and iron (600 ± 30 and 51 000 ± 3000 ppb) ions were measured in the humic acid atomizer solutions compared to the other organics that can explain the higher uptake values measured. A strong dependence upon relative humidity was also observed for uptake onto humic acid, with larger uptake coefficients seen at higher humidities. Possible hypotheses for the humidity dependence include the changing liquid water content of the aerosol, a change in the mass accommodation coefficient or in the Henry's law constant. PMID:25811311

  6. Heterogeneous Uptake of HO2 Radicals onto Submicron Atmospheric Aerosols

    NASA Astrophysics Data System (ADS)

    Matthews, P. S.; George, I. J.; Brooks, B.; Whalley, L. K.; Baeza-Romero, M. T.; Heard, D. E.

    2012-12-01

    OH and HO2 (HOx) radicals are closely coupled and OH is responsible for the majority of the oxidation in the troposphere and controls the concentrations of many trace species. Therefore, it is important to be able to accurately predict HOx concentrations. However, some field measurement studies have reported significantly lower HO2 radical concentrations than calculated by constrained box models using detailed chemical mechanisms. Although the inclusion of halogen chemistry into the mechanisms can explain much of the differences in the marine boundary layer (MBL) (1,2), HO2 uptake by aerosols has been suggested as a possible sink in the MBL (2), the Arctic troposphere (3) and the upper troposphere (4). There have been very few laboratory studies (5,6) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for a variety of atmospherically relevant inorganic and organic aerosols. The measurements were performed using an aerosol flow tube combined with a Fluorescence Assay by Gas Expansion (FAGE) detector. The sensitive FAGE cell allowed low HO2 concentrations (108-109 molecule cm-3) to be injected into the flow tube using a moveable injector. By moving the injector along the flow tube, position dependent HO2 decays were able to be recorded which when plotted against the total aerosol surface area allowed an uptake coefficient to be obtained. The aerosols were generated using an atomiser or by homogeneous nucleation and the total aerosol surface area was measured using a Scanning Mobility Particle Sizer. The HO2 uptake coefficient (γ) was measured at room temperature for dry inorganic salts and dry organics (γ< 0.004), wet inorganic salts and wet organics (γ= 0.002-0.005), wet copper doped ammonium sulfate aerosols (γ= 0.28± 0.05) and ammonium sulfate aerosols doped with different molar amounts of iron (γ= 0.003-0.06). The pH dependence of the HO2 uptake coefficient was investigated, however no

  7. Role of Organic Coatings in Regulating N2O5 Reactive Uptake to Sea Spray Aerosol.

    PubMed

    Ryder, Olivia S; Campbell, Nicole R; Morris, Holly; Forestieri, Sara; Ruppel, Matthew J; Cappa, Christopher; Tivanski, Alexei; Prather, Kimberly; Bertram, Timothy H

    2015-12-01

    Previous laboratory measurements and field observations have suggested that the reactive uptake of N2O5 to sea spray aerosol particles is a complex function of particle chemical composition and phase, where surface active organics can suppress the reactive uptake by up to a factor of 60. To date, there are no direct studies of the reactive uptake of N2O5 to nascent sea spray aerosol that permit assessment of the role that organic molecules present in sea spray aerosol (SSA) may play in suppressing or enhancing N2O5 uptake kinetics. In this study, SSA was generated from ambient seawater and artificial seawater matrices using a Marine Aerosol Reference Tank (MART), capable of producing nascent SSA representative of ambient conditions. The reactive uptake coefficient of N2O5 (γ(N2O5)) on nascent SSA was determined using an entrained aerosol flow reactor coupled to a chemical ionization mass spectrometer for measurement of surface area dependent heterogeneous loss rates. Population averaged measurements of γ(N2O5) for SSA generated from salt water sequentially doped with representative organic molecular mimics, or from ambient seawater, do not deviate statistically from that observed for sodium chloride (γ(N2O5)NaCl = 0.01-0.03) for relative humidity (RH) ranging between 50 and 65%. The results are consistent with measurements made under clean marine conditions at the Scripps Institution of Oceanography Pier and those conducted on nascent SSA generated in the marine aerosol reference tank. The results presented here suggest that organic films present on nascent SSA (at RH greater than 50%) likely do not significantly limit N2O5 reactive uptake.

  8. Aerosol water parameterization: a single parameter framework

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Steil, B.; Abdelkader, M.; Klingmüller, K.; Xu, L.; Penner, J. E.; Fountoukis, C.; Nenes, A.; Lelieveld, J.

    2015-11-01

    We introduce a framework to efficiently parameterize the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute specific coefficient was introduced in Metzger et al. (2012) to accurately parameterize the single solution hygroscopic growth, considering the Kelvin effect - accounting for the water uptake of concentrated nanometer sized particles up to dilute solutions, i.e., from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler-theory). Here we extend the νi-parameterization from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II, ISORROPIA II models as well as textbook examples. We apply our parameterization in EQSAM4clim, the EQuilibrium Simplified Aerosol Model V4 for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show: (i) that the νi-approach enables to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that, e.g., pure ammonium nitrate and mixed ammonium nitrate - ammonium sulfate mixtures can be solved with a simple method, and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.

  9. Aerosol water parameterisation: a single parameter framework

    NASA Astrophysics Data System (ADS)

    Metzger, Swen; Steil, Benedikt; Abdelkader, Mohamed; Klingmüller, Klaus; Xu, Li; Penner, Joyce E.; Fountoukis, Christos; Nenes, Athanasios; Lelieveld, Jos

    2016-06-01

    We introduce a framework to efficiently parameterise the aerosol water uptake for mixtures of semi-volatile and non-volatile compounds, based on the coefficient, νi. This solute-specific coefficient was introduced in Metzger et al. (2012) to accurately parameterise the single solution hygroscopic growth, considering the Kelvin effect - accounting for the water uptake of concentrated nanometer-sized particles up to dilute solutions, i.e. from the compounds relative humidity of deliquescence (RHD) up to supersaturation (Köhler theory). Here we extend the νi parameterisation from single to mixed solutions. We evaluate our framework at various levels of complexity, by considering the full gas-liquid-solid partitioning for a comprehensive comparison with reference calculations using the E-AIM, EQUISOLV II and ISORROPIA II models as well as textbook examples. We apply our parameterisation in the EQuilibrium Simplified Aerosol Model V4 (EQSAM4clim) for climate simulations, implemented in a box model and in the global chemistry-climate model EMAC. Our results show (i) that the νi approach enables one to analytically solve the entire gas-liquid-solid partitioning and the mixed solution water uptake with sufficient accuracy, (ii) that ammonium sulfate mixtures can be solved with a simple method, e.g. pure ammonium nitrate and mixed ammonium nitrate and (iii) that the aerosol optical depth (AOD) simulations are in close agreement with remote sensing observations for the year 2005. Long-term evaluation of the EMAC results based on EQSAM4clim and ISORROPIA II will be presented separately.

  10. Determination of external and internal mixing of organic and inorganic aerosol components from equilibrium water uptake by sub-micrometer particles.

    NASA Astrophysics Data System (ADS)

    Aklilu, Y.; Mozurkewich, M.

    2002-12-01

    The ability of a particle to gain and lose water with changes in relative humidity is fundamental to particle's effectiveness as a cloud condensation nucleus, chemical reactivity, atmospheric residence time and influence on global radiation balance. We describe a method developed to measure particle hygroscopicity over a range of relative humidities (RH) from 50% to 85%. Ambient aerosol particles were dried, monodisperse particles with diameters of usually 50 and 114 nm were selected, and their size distribution following humidification was measured. We measured particle hygroscopicity at Golden Ears Provincial Park and Eagle Ridge Mountain as part of the Pacific 2001 field study in the lower Fraser Valley in August of 2001. The humidified size distributions were sometimes monomodal and sometimes bimodal distribution with less and more hygroscopic peaks. The hygroscopicity of the monomodal particles varied between that of the less and more hygroscopic particles. The less hygroscopic particles were probably almost entirely organic in composition; they had consistent growth curves with wet/dry diameter ratios that increased from 1.04 at 50% relative humidity to 1.09 at 80% RH. These less hygroscopic particles constituted almost all the sampled aerosol at the forested site in Golden Ears Park and during the rainy periods at Eagle Ridge. At other times there were more hygroscopic particles, either as a single mixed mode or as a distinct mode in addition to the less hygroscopic particles. These showed little growth below 70% RH and pronounced growth above 70%. The increased water sorption above 70% RH is likely due to the particles containing (NH4)3H(SO4)2 or (NH4)2(SO4), as these salts deliquesce at 70% and 80% RH, respectively. Since the growth of these particles was less than expected for the pure salts, we conclude that these particles consisted of a mixture of the organic and inorganic components. An estimate of the relative organic fraction was made using the

  11. Do anthropogenic aerosols enhance CO2 uptake by plants?

    NASA Astrophysics Data System (ADS)

    Strada, S.; Unger, N.

    2013-12-01

    Plant productivity (photosynthesis) is tightly connected to the supply of solar radiation and water and to surface temperature. Solar radiation reaching the Earth's surface and the water cycle are strongly modified by anthropogenic aerosols. Aerosols reduce the amount of global radiation and surface temperature, and they modify the partitioning between direct and diffuse radiation. Moreover, they modify cloud radiative properties and lifetime. These aerosols effects may influence Gross Primary Productivity (GPP): (1) by intensifying the diffuse-radiation fertilization effect (i.e. plant productivity is more efficient under diffuse light whose amount may increase due to aerosol loading); (2) by modifying water supply through suppression/enhancement of rainfall; (3) by reducing surface temperature. Among aerosol impacts on GPP, it is unclear if there exists a prevailing one, or if the prevailing impact varies across ecosystems. Feedbacks to GPP from the effects of biogenic secondary organic aerosol (BSOA) formed from vegetation reactive carbon emissions have not been investigated. Moreover, human-made pollution and biomass burning induce high ozone concentrations that simultaneously reduce plant productivity. We apply satellite observations and global model simulations to investigate the spatial pattern in the relationship between aerosols and plant productivity across different ecosystems, and whether plants control their diffuse radiation environment through the reactive carbon emissions. We quantify the correlation between MODIS GPP and: (1) fine-fraction Aerosol Optical Depth from MODIS (fAOD); (2) ozone levels in the middle troposphere from TES. The analysis of satellite data reveals strong positive correlation between GPP and fAOD in temperate and boreal ecosystems, and strong negative correlation in tropical ecosystems. The tropical ecosystem also presents strong negative correlation between GPP and O3. Simulations using Yale-E2 global carbon

  12. Uptake of Elements From Aerosols by Humans ~ A Case Study From Delhi & Bangalore Cities

    NASA Astrophysics Data System (ADS)

    Anand, S.; Yadav, S.; Jain, V. K.

    2006-05-01

    Aerosol research has gained tremendous importance globally due to the cumulative effects of increasing industrialization and urbanization on aerosol production which can have an alarming impact on the climate of the planet as well as the health of its inhabitants. Therefore, there is an increasing need to study aerosols for all of their physicochemical and biological aspects on both local and global scales. World over extensive research has gone into studying the physical and the chemical aspects of aerosols. However, little information is yet available on the health impacts of aerosols particularly in the Asian context. Here we report uptake of various elements that are concentrated in aerosols by the human body in Delhi and Bangalore cities and their possible health effects. In many urban areas, for example in Delhi, inhalable fractions of aerosols are known to have high concentrations of elements such as Cu, Zn, Pb, Ba, Ni and Cr (Yadav and Rajamani 2004). Also aerosols in the North West part of India seem to be particularly enriched in these elements. If so, there is a high possibility of these elements getting into the human system either directly or indirectly through water and food. To determine the concentrations of these elements that are present in significant concentrations in the inhalable fractions of aerosols, human hair and blood samples are used as proxies. Both these regions have contrasting geographic and climatic conditions. Delhi (altitude : 213-305m above MSL) located on the fringes of the Thar desert which supplies considerable amount of dust, is semi-arid with annual rainfall of 60-80 cms & temperatures varying between 1° - 45°. Bangalore (altitude of 900m above MSL) receives a high annual rainfall of 80-100 cms and being located on the fringes of tropical forests of the Sahyadri Mountains (Western Ghats) receives little crustal contribution to the aerosols. Samples from least polluted mountainous areas of Himalayas (Gangothri) and Sahyadri

  13. Clouds and climate: Ability of atmospheric particles to uptake water

    NASA Astrophysics Data System (ADS)

    Farnham, Gabriella Joy Engelhart

    Atmospheric aerosols have significant impacts on human health, visibility and climate. Their interactions with water alter deposition within the human respiratory system, change particle optical properties, and change cloud microphysics by serving as cloud condensation nuclei (CCN). These clouds have a considerable influence on climate by reflecting incoming solar radiation, which provides a negative forcing, or cooling effect on earth's climate due to increased reflectivity. Our current understanding of the interactions of aerosols with clouds and climate is limited; the parameterizations needed for modeling predictions of climate can be aided by constraints from laboratory and in-situ experiments. Much of the uncertainty regarding the water uptake by atmospheric particles resides in organic aerosols. This thesis utilizes smog chamber techniques to study the CCN activity of biogenic secondary organic aerosol (SOA) including isoprene, monoterpene and sesquiterpene precursors. Particular emphasis is placed on comparison to Kohler theory, surface tension, solubility, droplet growth kinetics and volatility. The work also studies the CCN activity of a less controlled mixture of primary aerosol from biomass burning and the potential for transformation in the atmosphere via oxidation. Finally, this dissertation utilizes a dry-ambient aerosol size spectrometer (DAASS) to study the water content of aged atmospheric particles in a remote environment. We find monoterpene and isoprene SOA serve as good CCN. The water soluble component of sesquiterpene SOA has similar properties to those observed for monoterpene SOA meaning that a predictive understanding of SOA CCN may require knowledge of the water soluble fraction, but not its exact speciation. Sesquiterpene SOA CCN activity is particularly sensitive to temperature, suggesting that the CCN active fraction of the SOA is semi-volatile. Biomass burning experiments reveal that the CCN characteristics of primary aerosols

  14. Glyoxal uptake on ammonium sulphate seed aerosol: reaction products and reversibility of uptake under dark and irradiated conditions

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W. H.; Surratt, J. D.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2008-12-01

    Chamber studies of glyoxal uptake onto neutral ammonium sulphate aerosol were performed under dark and irradiated conditions to gain further insight into processes controlling glyoxal uptake onto ambient aerosol. Organic fragments from glyoxal dimers and trimers were observed within the aerosol under dark and irradiated conditions; glyoxal oligomer formation and overall organic growth were found to be reversible under dark conditions. Analysis of high-resolution time-of-flight aerosol mass spectra provides evidence for irreversible formation of carbon-nitrogen (C-N) compounds in the aerosol. These compounds are likely to be imidazoles formed by reaction of glyoxal with the ammonium sulphate seed. To the authors' knowledge, this is the first time C-N compounds resulting from condensed phase reactions with ammonium sulphate seed have been detected in aerosol. Organosulphates were not detected under dark conditions. However, active oxidative photochemistry, similar to that found in cloud processing, was found to occur within aerosol during irradiated experiments. Organosulphates, carboxylic acids, and organic esters were identified within the aerosol. Our study suggests that both C-N compound formation and photochemical processes should be considered in models of secondary organic aerosol formation via glyoxal.

  15. Uptake of 13N-labeled N2O5 to citric acid aerosol particles

    NASA Astrophysics Data System (ADS)

    Grzinic, Goran; Bartels-Rausch, Thorsten; Birrer, Mario; Türler, Andreas; Ammann, Markus

    2013-04-01

    Dinitrogen pentoxide is a significant reactive intermediate in the night time chemistry of nitrogen oxides. Depending on atmospheric conditions it can act either as a NO3 radical reservoir or as a major NOx sink by heterogeneous hydrolysis on aerosol surfaces. As such, it can influence tropospheric ozone production and therefore the oxidative capacity of the atmosphere. Furthermore it's suspected of being a non negligible source of tropospheric Cl, even over continental areas [1,2]. We used the short-lived radioactive tracer 13N delivered by PSI's PROTRAC facility [3] in conjunction with an aerosol flow tube reactor in order to study N2O5 uptake kinetics on aerosol particles. 13NO is mixed with non labeled NO and O3 in a gas reactor where N2O5 is synthesized under dry conditions to prevent hydrolysis on the reactor walls. The resulting N2O5 flow is fed into an aerosol flow tube reactor together with a humidified aerosol flow. By using movable inlets we can vary the length of the aerosol flow tube and thus the reaction time. The gas feed from the reactor is then directed into a narrow parallel plate diffusion denuder system that allows for selective separation of the gaseous species present in the gas phase. Aerosol particles are trapped on a particle filter placed at the end of the denuder system. The activity of 13N labeled species trapped on the denuder plates and in the particle filter can be monitored via scintillation counters. Aerosol uptake measurements were performed with citric acid aerosols in a humidity range of 27-61.5% RH. The results obtained from our measurements have shown that the uptake coefficient increases with humidity from 1.65±0.3x10-3 (~27% RH) to 1.25±0.3x10-2 (45% RH) and 2.00±0.3x10-2 (61.5% RH). Comparison to literature data shows that this is similar to values reported for some polycarboxylic acids (like malonic acid), while being higher than some others [4]. The increase is likely related to the increasing amount of water associated

  16. An Overview of Current Issues in the Uptake of Atmospheric Trace Gasses by Aerosols and Clouds

    SciTech Connect

    Kolb, C. E.; Cox, R. A.; Abbatt, JPD; Ammann, M.; Davis, E. J.; Donaldson, D. J.; Garrett, Bruce C.; George, C.; Griffiths, T.; Hanson, D. R.; Kulmala, M.; McFiggans, Gordon; Poschl, U.; Riipinen, I.; Rossi, M.; Rudich, Yinon; Wagner, P. E.; Winkler, Paul J.; Worsnop, Douglas R.; O'Dowd, C. D.

    2010-11-10

    A workshop was held in the framework of the ACCENT (Atmospheric Composition Change a European Network) Joint Research Programme on Aerosols and the Programme on Access to Laboratory Data. The aim of the workshop was to hold ‘Gordon Conference’ type discussion covering accommodation and reactive uptake of water vapour and trace pollutant gases on condensed phase atmospheric materials. The scope was to review and define the current state of knowledge of accommodation coefficients for water vapour on water droplet and ice surfaces, and uptake of trace gas species on a variety of different surfaces characteristic of the atmospheric condensed phase particulate matter and cloud droplets. Twenty-six scientists participated in this meeting through presentations, discussions and the development of a consensus review. In this review we present an analysis of the state of knowledge on the thermal and mass accommodation coefficient for water vapour on aqueous droplets and ice and a survey of current state-of the-art of reactive uptake of trace gases on a range of liquid and solid atmospheric droplets and particles. The review recommends consistent definitions of the various parameters that are needed for quantitative representation of the range of gas/condensed surface kinetic processes important for the atmosphere and identifies topics that require additional research.

  17. An overview of current issues in the uptake of atmospheric trace gases by aerosols and clouds

    NASA Astrophysics Data System (ADS)

    Kolb, C. E.; Cox, R. A.; Abbatt, J. P. D.; Ammann, M.; Davis, E. J.; Donaldson, D. J.; Garrett, B. C.; George, C.; Griffiths, P. T.; Hanson, D. R.; Kulmala, M.; McFiggans, G.; Pöschl, U.; Riipinen, I.; Rossi, M. J.; Rudich, Y.; Wagner, P. E.; Winkler, P. M.; Worsnop, D. R.; O'Dowd, C. D.

    2010-11-01

    A workshop was held in the framework of the ACCENT (Atmospheric Composition Change - a European Network) Joint Research Programme on "Aerosols" and the Programme on "Access to Laboratory Data". The aim of the workshop was to hold "Gordon Conference" type discussion covering accommodation and reactive uptake of water vapour and trace pollutant gases on condensed phase atmospheric materials. The scope was to review and define the current state of knowledge of accommodation coefficients for water vapour on water droplet and ice surfaces, and uptake of trace gas species on a variety of different surfaces characteristic of the atmospheric condensed phase particulate matter and cloud droplets. Twenty-six scientists participated in this meeting through presentations, discussions and the development of a consensus review. In this review we present an analysis of the state of knowledge on the thermal and mass accommodation coefficient for water vapour on aqueous droplets and ice and a survey of current state-of the-art of reactive uptake of trace gases on a range of liquid and solid atmospheric droplets and particles. The review recommends consistent definitions of the various parameters that are needed for quantitative representation of the range of gas/condensed surface kinetic processes important for the atmosphere and identifies topics that require additional research.

  18. Quartz Crystal Microbalance: Aerosol Viscoelastic Measurement Calibration and Subsiquent H2O Uptake

    NASA Astrophysics Data System (ADS)

    Farland, D. R., Jr.; Gilles, M. K.; Harder, T.; Weis, J.; Mueller, S.

    2015-12-01

    Aerosol particles exposed to various atmospheric relative humidity (RH) levels exhibit hygroscopic properties which are not fully understood. Water adsorption or diffusion depends on particle viscosity in semi-solid to liquid states. This relationship between particle viscosity as a function of RH and the corresponding hygroscopic behavioral response is the purpose of this study. However, reliable techniques for viscosity quantification have been limited. A Quartz Crystal Microbalance with Dissipation (QCM-D) was used for viscosity measurements and to determine phase changes. Prior to studies on field samples, microscope immersion/viscosity standard oils, salt crystals, sugars and alpha-pinene secondary organic aerosol (SOA) surrogates are used for viscosity, RH calibrations, water uptake and phase change measurements. RH was controlled by flowing N2 gas saturated with H2O for RH's between 0-75% RH. For higher RH values, (75-100% RH range) saturated salt solutions were flowed over a gore membrane to protect the QCM sensor from direct contact with the solutions. The viscosity calibration constructed via QTools fitting software illustrates the limitations as well as the ranges of reliability of the QCM viscosity measurements. Deliquescing salt crystals of differing deliquescence relative humidity's (DRH), sugars and alpha-pinene SOA's provided insight into the detection of various phase change behaviors. Water uptake experiments performed on alpha-pinene SOA and sucrose sugar yielded significantly different frequency and dissipation responses than the deliquescing salts. Future work will apply these experimental methods and analysis on aerosol particles collected during the GoAmazon field campaign.

  19. Plant Water Uptake in Drying Soils1

    PubMed Central

    Lobet, Guillaume; Couvreur, Valentin; Meunier, Félicien; Javaux, Mathieu; Draye, Xavier

    2014-01-01

    Over the last decade, investigations on root water uptake have evolved toward a deeper integration of the soil and roots compartment properties, with the goal of improving our understanding of water acquisition from drying soils. This evolution parallels the increasing attention of agronomists to suboptimal crop production environments. Recent results have led to the description of root system architectures that might contribute to deep-water extraction or to water-saving strategies. In addition, the manipulation of root hydraulic properties would provide further opportunities to improve water uptake. However, modeling studies highlight the role of soil hydraulics in the control of water uptake in drying soil and call for integrative soil-plant system approaches. PMID:24515834

  20. Organics Substantially Reduce HO2 Uptake onto Aerosols Containing Transition Metal ions.

    PubMed

    Lakey, Pascale S J; George, Ingrid J; Baeza-Romero, Maria T; Whalley, Lisa K; Heard, Dwayne E

    2016-03-10

    A HO2 mass accommodation coefficient of α = 0.23 ± 0.07 was measured onto submicron copper(II)-doped ammonium sulfate aerosols at a relative humidity of 60 ± 3%, at 293 ± 2 K and at an initial HO2 concentration of ∼ 1 × 10(9) molecules cm(-3) by using an aerosol flow tube coupled to a sensitive fluorescence assay by gas expansion (FAGE) HO2 detection system. The effect upon the HO2 uptake coefficient γ of adding different organic species (malonic acid, citric acid, 1,2-diaminoethane, tartronic acid, ethylenediaminetetraacetic acid (EDTA), and oxalic acid) into the copper(II)-doped aerosols was investigated. The HO2 uptake coefficient decreased steadily from the mass accommodation value to γ = 0.008 ± 0.009 when EDTA was added in a one-to-one molar ratio with the copper(II) ions, and to γ = 0.003 ± 0.004 when oxalic acid was added into the aerosol in a ten-to-one molar ratio with the copper(II). EDTA binds strongly to copper(II) ions, potentially making them unavailable for catalytic destruction of HO2, and could also be acting as a surfactant or changing the viscosity of the aerosol. The addition of oxalic acid to the aerosol potentially forms low-volatility copper-oxalate complexes that reduce the uptake of HO2 either by changing the viscosity of the aerosol or by causing precipitation out of the aerosol forming a coating. It is likely that there is a high enough oxalate to copper(II) ion ratio in many types of atmospheric aerosols to decrease the HO2 uptake coefficient. No observable change in the HO2 uptake coefficient was measured when the other organic species (malonic acid, citric acid, 1,2-diaminoethane, and tartronic acid) were added in a ten-to-one molar ratio with the copper(II) ions.

  1. The water up-take of semisolid SOA particles

    NASA Astrophysics Data System (ADS)

    Pajunoja, A.; Lambe, A. T.; Hakala, J. P.; Rastak, N.; Hao, L.; Paramonov, M.; Hong, J.; Laaksonen, A. J.; Kulmala, M. T.; Massoli, P.; Onasch, T. B.; Donahue, N. M.; Riipinen, I.; Davidovits, P.; Worsnop, D. R.; Petäjä, T.; Virtanen, A.

    2014-12-01

    The dependence of aerosol particle hygroscopicity on particle composition is often represented with the single parameter k commonly used in global models to describe the hygroscopic properties of atmospheric aerosol particles. From the theoretical formulation of k the same value is expected for ideal solutes in both the sub- and supersaturated regimes as typically calculated from hygroscopicity tandem differential mobility analyser (HTDMA) and cloud condensation nuclei counter (CCNc) measurements respectively (i.e. k HGF and kCCN). Yet, a number of recent studies conducted on SOA indicate that the two measurements yield different k values (k HGF < kCCN). There are several studies discussing the behaviour but the underlying reasons are unresolved. To investigate this in more detailed, CCNc and HTDMA measurements were conducted to determine the effects of chemical composition, oxidation level, the phase state and RH on the associated water uptake properties of biogenic SOA particles formed from isoprene, a-pinene, and longifolene precursors. Pure SOA particles by OH and/or O3 oxidation of the gas-phase precursors were formed in a PAM (Potential Aerosol Mass) flow tube reactor. Hygroscopic growth factors (HGF) were measured by Hygroscopicity Tandem Differential Mobility Analyser (HTDMA) at RH range of 50-~95% and CCN activation by CCN counter. To investigate the physical phase of the particles the particle bounced fraction (BF) using an Aerosol Bounce Instrument (ABI) was also measured. SOA oxidation state and composition was measured by a c-ToF-AMS. Based on the measurements we suggest that at subsaturation conditions semi solid SOA particles take up water mostly via surface adsorption resulting a large discrepancy between the kHGF and kCCN values. By calculating the aerosol direct radiative effect (Wm-2) using our results we also show that ambiguity about the κ values has important implications for quantifying the climate effects of SOA in atmospheric models.

  2. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, Anke; Kleidon, Axel; Bechmann, Marcel

    2016-08-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how root water uptake can be evaluated thermodynamically and demonstrate that this evaluation provides additional insights into the factors that impede root water uptake. We derive an expression that relates the energy export at the base of the root system to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We illustrate this thermodynamic formulation using an idealized setup of scenarios with a simple model. In these scenarios, we demonstrate why heterogeneity in soil water distribution and rooting properties affect the impediment of water flow even though the mean soil water content and rooting properties are the same across the scenarios. The effects of heterogeneity can clearly be identified in the thermodynamics of the system in terms of differences in dissipative losses and hydraulic energy, resulting in an earlier start of water limitation in the drying cycle. We conclude that this thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path, which goes beyond resistances and also accounts for the role of heterogeneity in soil water distribution.

  3. Oxidation of a model alkane aerosol by OH radical: the emergent nature of reactive uptake.

    PubMed

    Houle, F A; Hinsberg, W D; Wilson, K R

    2015-02-14

    An accurate description of the evolution of organic aerosol in the Earth's atmosphere is essential for climate models. However, the complexity of multiphase chemical and physical transformations has been challenging to describe at the level required to predict aerosol lifetimes and changes in chemical composition. In this work a model is presented that reproduces experimental data for the early stages of oxidative aging of squalane aerosol by hydroxyl radical (OH), a process governed by reactive uptake of gas phase species onto the particle surface. Simulations coupling free radical reactions and Fickian diffusion are used to elucidate how the measured uptake coefficient reflects the elementary steps of sticking of OH to the aerosol as a result of a gas-surface collision, followed by very rapid abstraction of hydrogen and subsequent free radical reactions. It is found that the uptake coefficient is not equivalent to a sticking coefficient or an accommodation coefficient: it is an intrinsically emergent process that depends upon particle size, viscosity, and OH concentration. An expression is derived to examine how these factors control reactive uptake over a broad range of atmospheric and laboratory conditions, and is shown to be consistent with simulation results. Well-mixed, liquid behavior is found to depend on the reaction conditions in addition to the nature of the organic species in the aerosol particle.

  4. A meta-analysis of particle water uptake reconciliation studies

    NASA Astrophysics Data System (ADS)

    Whitehead, J. D.; Irwin, M.; Allan, J. D.; Good, N.; McFiggans, G.

    2014-11-01

    Water uptake by aerosol particles controls their ability to form cloud droplets, and reconciliation between different techniques for examining cloud condensation nuclei (CCN) properties is important to our understanding of these processes and our ability to measure and predict them. Reconciliation between measurements of sub-saturated and supersaturated aerosol particle water uptake was attempted at a wide range of locations between 2007 and 2013. The agreement in derived number of CCN (NCCN or particle hygroscopicity was mixed across the projects, with some data sets showing poor agreement across all supersaturations and others agreeing within errors for at least some of the supersaturation range. The degree of reconciliation did not seem to depend on the environment in which the measurements were taken. The discrepancies can only be attributable to differences in the chemical behaviour of aerosols and gases in each instrument, leading to under- or overestimated growth factors and/or CCN counts, though poorer reconciliation at lower supersaturations can be attributed to uncertainties in the size distribution at the threshold diameter found at these supersaturations. From a single instrument, the variability in NCCN calculated using particle hygroscopicity or size distribution averaged across a project demonstrates a greater sensitivity to variation in the size distribution than chemical composition in most of the experiments. However, the discrepancies between instruments indicate a strong requirement for reliable quantification of CCN in line with an improved understanding of the physical processes involved in their measurement. Without understanding the reason for discrepancies in the measurements, it is questionable whether quantification of CCN behaviour is meaningful.

  5. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-08-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short lived radioactive tracer method we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar di- and polycarboxylic acids, with uptake coefficients between ~ 3 × 10-4-~ 3 × 10-3 depending on humidity (17-70 % RH). This humidity dependence can be explained by a changing viscosity and, hence, diffusivity in the organic matrix. Since the viscosity of highly concentrated citric acid solutions is not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics may be limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  6. Reactive Uptake Coefficients for NO_3 on Squalane and Squalene Aerosol

    NASA Astrophysics Data System (ADS)

    Lee, L.; Wooldridge, P. J.; Nah, T.; Wilson, K. R.; Cohen, R. C.

    2011-12-01

    Chemical mechanisms leading to production and loss of organic aerosol do not adequately explain ambient observations. Although there has been considerable progress in thinking about production there is less known about chemical reactions that occur on, or within, organic aerosol. Here we focus on understanding mechanisms that will help to understand the potential for NO_3 chemistry to affect aerosol composition. The uptake coefficient for NO_3 reacting with squalane aerosol was measured in a flow tube reactor to be 1.4e-3, independent of the extent of oxidation. In contrast, the uptake coefficient for squalene aerosol increased as the extent of oxidation increased from 0.18 on fresh particles up to 0.82 on particles with a mean oxidation estimated at 2.5 reactions with NO_3. Analysis of aerosol composition using VUV ionization coupled to aerosol mass spectrometry allows direct detection of squalene molecules with as many as 3 NO_3 subunits and also allows detection of polymers containing 2 squalene subunits. The photoionization threshold of squalene-derived products increases with successive addition of NO_3 units. The observations also indicate a well-mixed liquid condensed phase exists even at the highest degree of oxidation.

  7. A thermodynamic formulation of root water uptake

    NASA Astrophysics Data System (ADS)

    Hildebrandt, A.; Kleidon, A.; Bechmann, M.

    2015-12-01

    By extracting bound water from the soil and lifting it to the canopy, root systems of vegetation perform work. Here we describe how the energetics involved in root water uptake can be quantified. The illustration is done using a simple, four-box model of the soil-root system to represent heterogeneity and a parameterization in which root water uptake is driven by the xylem potential of the plant with a fixed flux boundary condition. We use this approach to evaluate the effects of soil moisture heterogeneity and root system properties on the dissipative losses and export of energy involved in root water uptake. For this, we derive an expression that relates the energy export at the root collar to a sum of terms that reflect all fluxes and storage changes along the flow path in thermodynamic terms. We conclude that such a thermodynamic evaluation of root water uptake conveniently provides insights into the impediments of different processes along the entire flow path and explicitly accounting not only for the resistances along the flow path and those imposed by soil drying but especially the role of heterogenous soil water distribution. The results show that least energy needs to be exported and dissipative losses are minimized by a root system if it extracts water uniformly from the soil. This has implications for plant water relations in forests where canopies generate heterogenous input patterns. Our diagnostic in the energy domain should be useful in future model applications for quantifying how plants can evolve towards greater efficiency in their structure and function, particularly in heterogenous soil environments. Generally, this approach may help to better describe heterogeneous processes in the soil in a simple, yet physically-based way.

  8. Water Uptake in PEMFC Catalyst Layers

    SciTech Connect

    Gunterman, Haluna P.; Kwong, Anthony H.; Gostick, Jeffrey T.; Kusoglu, Ahmet; Weber, Adam Z.

    2011-07-01

    Water uptake profiles of proton-exchange-membrane fuel-cell catalyst layers are characterized in the form of capillary-pressure saturation (Pc-S) curves. The curves indicate that the catalyst layers tested are highly hydrophilic and require capillary pressures as low as -80 kPa to eject imbibed water. Comparison of materials made with and without Pt indicates a difference in water ejection and uptake phenomena due to the presence of Pt. The addition of Pt increases the tendency of the catalyst layer to retain water. Dynamic vapor sorption (DVS) is used to characterize the water-vapor sorption onto Nafion, Pt/C, and C surfaces. The DVS results align with the trends found from the Pc-S curves and show an increased propensity for water uptake in the presence of Pt. The effect of the ion in Nafion, sodium or protonated form, is also compared and demonstrates that although the protonation of the Nafion in the catalyst layer also increases hydrophilicity, the effect is not as great as that caused by Pt.

  9. Modelling water uptake efficiency of root systems

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Tron, Stefania; Schröder, Natalie; Bodner, Gernot; Javaux, Mathieu; Vanderborght, Jan; Vereecken, Harry; Schnepf, Andrea

    2016-04-01

    Water uptake is crucial for plant productivity. Trait based breeding for more water efficient crops will enable a sustainable agricultural management under specific pedoclimatic conditions, and can increase drought resistance of plants. Mathematical modelling can be used to find suitable root system traits for better water uptake efficiency defined as amount of water taken up per unit of root biomass. This approach requires large simulation times and large number of simulation runs, since we test different root systems under different pedoclimatic conditions. In this work, we model water movement by the 1-dimensional Richards equation with the soil hydraulic properties described according to the van Genuchten model. Climatic conditions serve as the upper boundary condition. The root system grows during the simulation period and water uptake is calculated via a sink term (after Tron et al. 2015). The goal of this work is to compare different free software tools based on different numerical schemes to solve the model. We compare implementations using DUMUX (based on finite volumes), Hydrus 1D (based on finite elements), and a Matlab implementation of Van Dam, J. C., & Feddes 2000 (based on finite differences). We analyse the methods for accuracy, speed and flexibility. Using this model case study, we can clearly show the impact of various root system traits on water uptake efficiency. Furthermore, we can quantify frequent simplifications that are introduced in the modelling step like considering a static root system instead of a growing one, or considering a sink term based on root density instead of considering the full root hydraulic model (Javaux et al. 2008). References Tron, S., Bodner, G., Laio, F., Ridolfi, L., & Leitner, D. (2015). Can diversity in root architecture explain plant water use efficiency? A modeling study. Ecological modelling, 312, 200-210. Van Dam, J. C., & Feddes, R. A. (2000). Numerical simulation of infiltration, evaporation and shallow

  10. Organics Substantially Reduce HO2 Uptake onto Aerosols Containing Transition Metal ions.

    PubMed

    Lakey, Pascale S J; George, Ingrid J; Baeza-Romero, Maria T; Whalley, Lisa K; Heard, Dwayne E

    2016-03-10

    A HO2 mass accommodation coefficient of α = 0.23 ± 0.07 was measured onto submicron copper(II)-doped ammonium sulfate aerosols at a relative humidity of 60 ± 3%, at 293 ± 2 K and at an initial HO2 concentration of ∼ 1 × 10(9) molecules cm(-3) by using an aerosol flow tube coupled to a sensitive fluorescence assay by gas expansion (FAGE) HO2 detection system. The effect upon the HO2 uptake coefficient γ of adding different organic species (malonic acid, citric acid, 1,2-diaminoethane, tartronic acid, ethylenediaminetetraacetic acid (EDTA), and oxalic acid) into the copper(II)-doped aerosols was investigated. The HO2 uptake coefficient decreased steadily from the mass accommodation value to γ = 0.008 ± 0.009 when EDTA was added in a one-to-one molar ratio with the copper(II) ions, and to γ = 0.003 ± 0.004 when oxalic acid was added into the aerosol in a ten-to-one molar ratio with the copper(II). EDTA binds strongly to copper(II) ions, potentially making them unavailable for catalytic destruction of HO2, and could also be acting as a surfactant or changing the viscosity of the aerosol. The addition of oxalic acid to the aerosol potentially forms low-volatility copper-oxalate complexes that reduce the uptake of HO2 either by changing the viscosity of the aerosol or by causing precipitation out of the aerosol forming a coating. It is likely that there is a high enough oxalate to copper(II) ion ratio in many types of atmospheric aerosols to decrease the HO2 uptake coefficient. No observable change in the HO2 uptake coefficient was measured when the other organic species (malonic acid, citric acid, 1,2-diaminoethane, and tartronic acid) were added in a ten-to-one molar ratio with the copper(II) ions. PMID:26484935

  11. Water uptake by sodium chloride particles coated with insoluble organics: impact of chain length

    NASA Astrophysics Data System (ADS)

    Robinson, C. B.; Zarzana, K. J.; Hasenkopf, C. A.; Tolbert, M. A.

    2011-12-01

    Light extinction by particles is strongly dependent on chemical composition, particle size, and water uptake. Relative humidity affects extinction by causing changes in refractive index and particle size due to hygroscopic growth. The ability of particles to take up water depends on its composition and structure. Organic compounds and inorganic salts are often found to be internally mixed within the same aerosol particle. There is currently a great deal of interest in aqueous particles with an insoluble organic coating. The impact of organic films on particle water uptake is uncertain. Therefore, a systematic study that examines water uptake as a function of the chemical nature, packing structure, and coating thickness is highly desirable. These data are critical to evaluate the aerosol direct effect on climate, which is the most uncertain aspect of future climate change. To determine how tightly packed the organic component is, a range organic compounds with different chain lengths, such as decanoic (C10), myristic (C14), stearic (C18), and docosanoic (C22) acids, were used. Coated aerosols are generated and sized using a TSI constant output atomizer and scanning mobility particle sizer. A cavity ring-down aerosol extinction spectrometer at 532 nm is used to measure the optical growth factor as a function of relative humidity for the internally mixed particles. We explored the relationship between optical growth and packing structure by varying the organic component chain length and working with different coating thicknesses.

  12. Theoretical studies on the coupling interactions in H2SO4···HOO˙···(H2O)n (n = 0-2) clusters: toward understanding the role of water molecules in the uptake of HOO˙ radical by sulfuric acid aerosols.

    PubMed

    Li, Ping; Ma, Zhiying; Wang, Weihua; Zhai, Yazhou; Sun, Haitao; Bi, Siwei; Bu, Yuxiang

    2011-01-21

    A detailed knowledge of coupling interactions among sulfuric acid (H(2)SO(4)), the hydroperoxyl radical (HOO˙), and water molecules (H(2)O) is crucial for the better understanding of the uptake of HOO˙ radicals by sulfuric acid aerosols at different atmospheric humidities. In the present study, the equilibrium structures, binding energies, equilibrium distributions, and the nature of the coupling interactions in H(2)SO(4)···HOO˙···(H(2)O)(n) (n = 0-2) clusters have been systematically investigated at the B3LYP/6-311++G(3df,3pd) level of theory in combination with the atoms in molecules (AIM) theory, natural bond orbital (NBO) method, energy decomposition analyses, and ab initio molecular dynamics. Two binary, five ternary, and twelve tetramer clusters possessing multiple intermolecular H-bonds have been located on their potential energy surfaces. Two different modes for water molecules have been observed to influence the coupling interactions between H(2)SO(4) and HOO˙ through the formations of intermolecular H-bonds with or without breaking the original intermolecular H-bonds in the binary H(2)SO(4)···HOO˙ cluster. It was found that the introduction of one or two water molecules can efficiently enhance the interactions between H(2)SO(4) and HOO˙, implying the positive role of water molecules in the uptake of the HOO˙ radical by sulfuric acid aerosols. Additionally, the coupling interaction modes of the most stable clusters under study have been verified by the ab initio molecular dynamics. PMID:21052607

  13. Water Activity Limits the Hygroscopic Growth Factor of Organic Aerosols

    NASA Astrophysics Data System (ADS)

    Rodriguez, L. I.; Cabrera, J. A.; Golden, D.; Tabazadeh, A.

    2007-12-01

    In this work we study the hygroscopic behavior of organic aerosols, which has important implications for Earth's climate. The hygroscopic growth factor (HGF) is defined as the ratio of the diameter of a spherical particle when it is exposed to dry conditions to that at humid conditions. We present a new formulation to express the HGF of an aerosol particle as a function of water activity (aw) in the aqueous phase. This new formulation matches reported HGFs for common inorganic salts and water-miscible organic particles that are known to deliquesce into aqueous drops at high relative humidities (RH). Many studies use tandem differential mobility analyzers (TDMA) to determine the HGF of organic aerosols. For example, Brooks et al. used a TDMA to measure a HGF of 1.2 for 2 μm phthalic acid (PA) particles at 90% RH (aw= 0.9). However, water activity limits the growth of a particle that can be attributed to water uptake. We have assembled a vapor pressure apparatus to measure aw of aqueous solutions at room temperature. Measured water activities for PA, used in our growth formulation, yield a HGF of ~ 1.0005 for 2 μm PA particles at 90% RH. Comparing our results against Brooks et al. suggests that TDMA experiments may grossly overestimate the HGF of PA particles since water activity limits this growth to below 1.0005. Alternatively, we suggest that the adsorption of a negligible mass of water by a highly porous PA particle can lead to an apparent growth in particle size by changing its morphology. Other studies also use TDMAs to measure HGFs of secondary organic aerosols (SOAs). HGFs reported for SOAs are very similar to PA, suggesting that the observed growth may be due to morphological changes in particle size rather than water uptake as commonly assumed. We built a smog chamber where an organic precursor, such as d-limonene, reacts with nitrogen oxides under UV radiation to produce SOAs. We compare the HGFs for SOAs obtained with our method to those obtained with

  14. Rhizosphere biophysics and root water uptake

    NASA Astrophysics Data System (ADS)

    Carminati, Andrea; Zarebanadkouki, Mohsen; Ahmed, Mutez A.; Passioura, John

    2016-04-01

    The flow of water into the roots and the (putative) presence of a large resistance at the root-soil interface have attracted the attention of plant and soil scientists for decades. Such resistance has been attributed to a partial contact between roots and soil, large gradients in soil matric potential around the roots, or accumulation of solutes at the root surface creating a negative osmotic potential. Our hypothesis is that roots are capable of altering the biophysical properties of the soil around the roots, the rhizosphere, facilitating root water uptake in dry soils. In particular, we expect that root hairs and mucilage optimally connect the roots to the soil maintaining the hydraulic continuity across the rhizosphere. Using a pressure chamber apparatus we measured the relation between transpiration rate and the water potential difference between soil and leaf xylem during drying cycles in barley mutants with and without root hairs. The samples were grown in well structured soils. At low soil moistures and high transpiration rates, large drops in water potential developed around the roots. These drops in water potential recovered very slowly, even after transpiration was severely decreased. The drops in water potential were much bigger in barley mutants without root hairs. These mutants failed to sustain high transpiration rates in dry conditions. To explain the nature of such drops in water potential across the rhizosphere we performed high resolution neutron tomography of the rhizosphere of the barleys with and without root hairs growing in the same soil described above. The tomograms suggested that the hydraulic contact between the soil structures was the highest resistance for the water flow in dry conditions. The tomograms also indicate that root hairs and mucilage improved the hydraulic contact between roots and soil structures. At high transpiration rates and low water contents, roots extracted water from the rhizosphere, while the bulk soil, due its

  15. Analysis of reversibility and reaction products of glyoxal uptake onto ammonium sulfate aerosol

    NASA Astrophysics Data System (ADS)

    Galloway, M. M.; Chhabra, P. S.; Chan, A. W.; Surratt, J. D.; Kwan, A. J.; Wennberg, P. O.; Flagan, R. C.; Seinfeld, J. H.; Keutsch, F. N.

    2009-04-01

    Glyoxal, the smallest alpha-dicarbonyl, is an oxidation product of both biogenic and anthropogenic volatile organic compounds (Fu et al. JGR 113, D15303, 2008). Despite its low molecular weight, its role in secondary organic aerosol (SOA) formation has gained interest and a recent study suggested that it accounts for more than 15% of SOA in Mexico City (Volkamer et al. GRL 34, L19807, 2007). Despite numerous previous studies, questions remain regarding the processes controlling glyoxal uptake onto aerosol, including the role of acid catalysis, degree of reversibility, and identity of aerosol phase reaction products. We present results of chamber aerosol studies (Galloway et al. ACPD 8, 20799, 2008) and laboratory studies of bulk samples aimed at improving the understanding of these processes, in particular formation of oligomers and organosulfates of glyoxal, as well as the formation of imidazoles (carbon-nitrogen containing heterocyclic aromatic compounds) under dark and irradiated conditions. The relevance of these classes of reaction products extends beyond glyoxal, as evidence of oligomers and organosulfates other than those of glyoxal have been found in ambient aerosol (Surratt et al. JPCA 112, 8345, 2008; Denkenberger et al. Environ. Sci. Technol. 41, 5439, 2007). Experiments in which a chamber air mass was diluted after equilibration of glyoxal uptake onto ammonium sulfate seed aerosol (relative humidity 60% and glyoxal mixing ratios of 25-200 ppbv) shows that under these conditions uptake is reversible. The most important condensed phase products are hydrated oligomers of glyoxal, which are also formed reversibly under these conditions. Our studies show that organosulfates were not formed under dark conditions for neutral or acidified aerosol; similarly, Minerath et al. have recently shown that formation of a different class of organosulfates (alkyl sulfates) also proceeds very slowly even under acidic conditions (Environ. Sci. Technol. 42, 4410, 2008). The

  16. Viscosity controls humidity dependence of N2O5 uptake to citric acid aerosol

    NASA Astrophysics Data System (ADS)

    Gržinić, G.; Bartels-Rausch, T.; Berkemeier, T.; Türler, A.; Ammann, M.

    2015-12-01

    The heterogeneous loss of dinitrogen pentoxide (N2O5) to aerosol particles has a significant impact on the night-time nitrogen oxide cycle and therefore the oxidative capacity in the troposphere. Using a 13N short-lived radioactive tracer method, we studied the uptake kinetics of N2O5 on citric acid aerosol particles as a function of relative humidity (RH). The results show that citric acid exhibits lower reactivity than similar dicarboxylic and polycarboxylic acids, with uptake coefficients between ∼ 3 × 10-4-∼ 3 × 10-3 depending on humidity (17-70 % RH). At RH above 50 %, the magnitude and the humidity dependence can be best explained by the viscosity of citric acid as compared to aqueous solutions of simpler organic and inorganic solutes and the variation of viscosity with RH and, hence, diffusivity in the organic matrix. Since the diffusion rates of N2O5 in highly concentrated citric acid solutions are not well established, we present four different parameterizations of N2O5 diffusivity based on the available literature data or estimates for viscosity and diffusivity of H2O. Above 50 % RH, uptake is consistent with the reacto-diffusive kinetic regime whereas below 50 % RH, the uptake coefficient is higher than expected from hydrolysis of N2O5 within the bulk of the particles, and the uptake kinetics is most likely limited by loss on the surface only. This study demonstrates the impact of viscosity in highly oxidized and highly functionalized secondary organic aerosol material on the heterogeneous chemistry of N2O5 and may explain some of the unexpectedly low loss rates to aerosol derived from field studies.

  17. Laboratory Study on Water Uptake by Freshly Emitted Peat Smoke Particles in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Chen, J.; Kuwata, M.; Itoh, M.

    2015-12-01

    Tropical peatland burning activities in Southeast Asia, which can keep smouldering for a long time, have been becoming rather frequent during the last few decades. These combustions have released huge amounts of greenhouse gases and aerosol particles into the atmosphere, contributing large uncertainties to the global radiative forcing estimation. In addition, the gas and aerosol particles emitted from the peat-fire have caused environmental and human health issues. These regional and global impacts are closely tied to water uptake properties of aerosol particles, which alter their physical and chemical characteristics. However, hygroscopic property of peat burning aerosol particles has rarely been investigated. Here, we utilized a self-built Humidified Tandem Differential Mobility Analyzer (HTDMA) to measure diameter growth factors of fresh peat burning particles, which were generated during laboratory peat combustion experiments under controlled conditions. Particle number size distribution and chemical composition were also measured using a Scanning Mobility Particle Sizer (SMPS) and the Time of Flight - Aerosol Chemical Speciation Monitor (ToF-ACSM). Number size distribution demonstrated a bimodal pattern, with the mode diameters in the size ranges of 50-80 nm and 300-500 nm, respectively. The corresponding normalized volume size distribution was unimodal distributed with mode diameter at around 400-600nm. Water uptake of freshly emitted peat smoke aerosol particles was less hygroscopic, probably because fresh peat burning aerosol particles were predominantly composed of organic compounds and sulfates were negligible. The obtained information can be further applied into the studies on the influence of peat burning aerosol particles on regional and global climate.

  18. Tracking the morphology of fulvic acids during water uptake

    NASA Astrophysics Data System (ADS)

    Zelenay, Veronika; Krepelova, Adela; Rudich, Yinon; Huthwelker, Thomas; Ammann, Markus

    2010-05-01

    Atmospheric humic like substances (HULIS) denote a range of oxidized, polyfunctional organic aerosol components widespread in the atmosphere, which show similar extraction behaviour on exchange columns as humic substances. Stemming from oxidation of primary gas phase and particulate organics, from e.g. biomass burning events, the HULIS constitute to a major fraction of the water soluble organic aerosol components in the atmosphere. Highly oxidized organic compounds play an important role in atmospheric processes like cloud formation or modification. Important factors therein are their hygroscopic properties and their microstructure, which influences their optical properties. HULIS somewhat resemble humic substances from terrestrial and aquatic sources, which consist mainly of carboxylic, aromatic and phenolic moieties assembled into hydrogen and van der Waals bonded supermolecular structures. Hence, the Suwannee River fulvic acid (SRFA), a chemically well characterized fulvic acid obtained from the International Humic Substances Society, was used to obtain combined data on hygroscopic properties and microstructural evolution during water uptake. The measurements were performed using x-ray absorption spectroscopy (NEXAFS, near edge x-ray absorption fine structure) in combination with an x-ray microscope (STXM, scanning x-ray transmission microscope) with a spatial resolution of about 30 nm. The measurements were performed at the PolLux beamline (SLS, Paul Scherrer Institut). The NEXAFS spectroscopy provides the possibility to map important chemical functional groups of carbon (as the one mentioned above) and oxygen atoms, and also to quantify the amount of carbon and oxygen atoms. To follow the submicron structure during water uptake a new device - a microreactor - was developed for the STXM. Using this reactor, the samples could be kept in a microenvironment with controlled temperature and humidity from 0 to 95 %. The samples were deposited either as droplets with

  19. Root water uptake under water and salinity stresses

    NASA Astrophysics Data System (ADS)

    Moradi, A. B.; Bauser, H.; Ngo, A.; Kamai, T.; Walker, R.; Hopmans, J. W.

    2013-12-01

    Root uptake of water and nutrients is influenced by root-zone complex and dynamic processes such as soil water status, irrigation, evaporation, and leaching. Plant roots are living and functioning in a dynamic environment that is subjected to extreme changes over relatively short time and small distances. In order to better manage our agricultural resources and cope with increasing constraints of water limitation, environmental concerns and climate change, it is vital to understand plants responses to these changes in their environment. We grew chick pea (Cicer arietinum) plants, in boxes of 30 x 25 x 1 cm dimensions filled with fine sand. Layers of coarse sand (1.5 cm thick) were embedded in the fine-sand media to divide the root growth environment into sections that were hydraulically disconnected from each other. This way, each section could be independently treated with differential levels of water and salinity. The root growth and distribution in the soil was monitored on daily bases using neutron radiography. Daily water uptake was measured by weighing the containers. Changes of soil water content in each section of the containers were calculated from the neutron radiographs. Plants that part of their root system was stressed with drought or salinity showed no change in their daily water uptake rate. The roots in the stressed sections stayed turgid during the stress period and looked healthy in the neutron images. However the uptake rate was severely affected when the soil in the non-stressed section started to dry. The plants were then fully irrigated with water and the water uptake rate recovered to its initial rate shortly after irrigation. The neutron radiographs clearly illustrated the shrinkage and recovery of the roots under stress and the subsequent relief. This cycle was repeated a few times and the same trend could be reproduced. Our results show that plants' response to water- or salinity-stress ranges from full compensation to severe reduction in

  20. Factors Affecting the Uptake and Reactivity of OH with Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Houle, F. A.; Wilson, K. R.; Hinsberg, B.

    2014-12-01

    The uptake of gas phase species onto an aerosol surface is the primary process that governs oxidative aging of aerosols. The complexity of the resulting multiphase chemical and physical transformations has been challenging to describe at the level of accuracy required to predict aerosol lifetimes, chemical composition, phase and other key properties. Stochastic simulations of a modelcoupling free radical reactions and Fickian diffusion that quantitatively reproduces experimental observations areused to examine the early stages of a well-mixed liquid model system, the oxidation of squalane by hydroxyl radical (OH). The results elucidate the physical meaning of the uptake coefficient and reveal internal details of the particle as it undergoes oxidation. The uptake coefficient is not equivalent to an accommodation coefficient: is an intrinsically emergent process that depends upon particle size, viscosity, and OH concentration. Well-mixed, liquid behavior is also found to depend on these systems characteristics. The small particle size creates large instantaneous concentration gradients, leading to dispersal of OH within the top few nanometers and rapid mixing of long-lived peroxy radicals throughout. The implications of these results for connecting laboratory and natural oxidative processes will be discussed.

  1. Uptake of ozone to deliquesced KI and mixed KI/NaCl aerosol particles.

    PubMed

    Rouvière, Aurélie; Sosedova, Yulia; Ammann, Markus

    2010-07-01

    The kinetics of uptake of ozone to deliquesced potassium iodide (KI) aerosol particles has been investigated in an aerosol flow tube at 72-75% relative humidity, room temperature, and atmospheric pressure. The observed loss of ozone was further analyzed in terms of a numeric model to explicitly track the iodide concentration in the particles. This allowed retrieving a value alpha(b) = 0.6 +/- (0.5)(0.4) for the bulk accommodation coefficient (alpha(b)). The second order rate constant in the bulk phase agreed with available literature (k(b) = (1.0 +/- 0.3) x 10(9) M(-1) s(-1)) even for the high ionic strength conditions of the present experiments. As long as iodide remained in excess, the average uptake coefficient was gamma = (1.10 +/- 0.20) x 10(-2). Different experiments were performed where the iodide to chloride ratio, the ozone concentration, and the surface to volume ratio of particles were varied. In combination, the results obtained indicate that uptake was driven by fast bulk accommodation and reaction in the bulk for all conditions investigated. The results further suggest that ozone uptake is not limited by the bulk accommodation coefficient alpha(b) under atmospheric conditions.

  2. Chemical and Physical Properties of Bulk Aerosols Observed During TRACE-P: Evidence of Nitrate Uptake on Dust Particles

    NASA Astrophysics Data System (ADS)

    Jordan, C.; Anderson, B.; Hudgins, C.; Winstead, E.; Thornhill, L.; Talbot, R.; Russo, R.; Scheuer, E.; Seid, G.; Dibb, J.; Fuelberg, H.

    2002-12-01

    Back trajectories and bulk aerosol chemical properties have been used to group aerosol samples measured on the DC-8 during TRACE-P into five source regions. Each of these source region groups was further subdivided into three altitude bins (< 2 km, 2 - 7 km, and > 7 km). The mean chemical signatures, size distributions, and other physical properties (e.g., volatility, single scatter albedo) will be presented for these groups. By combining chemical and physical measurements, the observed aerosol population for each group may be partitioned between black carbon, sea salts, non-sea salt water soluble ions, and dust. Using this approach, we have found that the bulk of the dust emanating from Asia during TRACE-P came from one region. The highest concentrations of pollution species were also found in this region, including particulate nitrate. The presence of gas phase pollutants such as nitric acid co-located with the dust allows for the uptake of gas-phase nitrogen onto the dust surfaces. Results show that in the dust sector at mid-altitudes (2 - 7 km), where the influence of sea salt is reduced compared to lower altitudes, 50% of the total nitrate is in particulate form. This is in contrast to 15% for sectors with little dust.

  3. Isoprene Epoxydiols as Precursors to Secondary Organic Aerosol Formation: Acid-Catalyzed Reactive Uptake Studies with Authentic Compounds

    PubMed Central

    Lin, Ying-Hsuan; Zhang, Zhenfa; Docherty, Kenneth S.; Zhang, Haofei; Budisulistiorini, Sri Hapsari; Rubitschun, Caitlin L.; Shaw, Stephanie L.; Knipping, Eladio M.; Edgerton, Eric S.; Kleindienst, Tadeusz E.; Gold, Avram; Surratt, Jason D.

    2011-01-01

    Isoprene epoxydiols (IEPOX), formed from the photooxidation of isoprene under low-NOx conditions, have recently been proposed as precursors of secondary organic aerosol (SOA) on the basis of mass spectrometric evidence. In the present study, IEPOX isomers were synthesized in high purity (> 99%) to investigate their potential to form SOA via reactive uptake in a series of controlled dark chamber studies followed by reaction product analyses. IEPOX-derived SOA was substantially observed only in the presence of acidic aerosols, with conservative lower-bound yields of 4.7–6.4% for β-IEPOX and 3.4–5.5% for δ-IEPOX, providing direct evidence for IEPOX isomers as precursors to isoprene SOA. These chamber studies demonstrate that IEPOX uptake explains the formation of known isoprene SOA tracers found in ambient aerosols, including 2-methyltetrols, C5-alkene triols, dimers, and IEPOX-derived organosulfates. Additionally, we show reactive uptake on the acidified sulfate aerosols supports a previously unreported acid-catalyzed intramolecular rearrangement of IEPOX to cis- and trans-3-methyltetrahydrofuran-3,4-diols (3-MeTHF-3,4-diols) in the particle phase. Analysis of these novel tracer compounds by aerosol mass spectrometry (AMS) suggests that they contribute to a unique factor resolved from positive matrix factorization (PMF) of AMS organic aerosol spectra collected from low-NOx, isoprene-dominated regions influenced by the presence of acidic aerosols. PMID:22103348

  4. Hospital washbasin water: risk of Legionella-contaminated aerosol inhalation.

    PubMed

    Cassier, P; Landelle, C; Reyrolle, M; Nicolle, M C; Slimani, S; Etienne, J; Vanhems, P; Jarraud, S

    2013-12-01

    The contamination of aerosols by washbasin water colonized by Legionella in a hospital was evaluated. Aerosol samples were collected by two impingement technologies. Legionella was never detected by culture in all the (aerosol) samples. However, 45% (18/40) of aerosol samples were positive for Legionella spp. by polymerase chain reaction, with measurable concentrations in 10% of samples (4/40). Moreover, immunoassay detected Legionella pneumophila serogroup 1 and L. anisa, and potentially viable bacteria were seen on viability testing. These data suggest that colonized hospital washbasins could represent risks of exposure to Legionella aerosol inhalation, especially by immunocompromised patients.

  5. LASE measurements of aerosols and water vapor during TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard A.; Ismail, Syed; Browell, Edward V.; Brackett, Vincent G.; Kooi, Susan A.; Clayton, Marian B.; Melfi, Harvey; Whiteman, David N.; Schwenner, Geary; Evans, Keith D.; Hobbs, Peter V.; Veefkind, J. Pepijn; Russell, Philip B.; Livingston, John M.; Hignett, Philip; Holben, Brent N.; Remer, Lorraine A.

    1998-01-01

    The TARFOX (Tropospheric Aerosol Radiative Forcing Observational Experiment) intensive field campaign was designed to reduce uncertainties in estimates of the effects of anthropogenic aerosols on climate by measuring direct radiative effects and the optical, physical, and chemical properties of aerosols [1]. TARFOX was conducted off the East Coast of the United States between July 10-31, 1996. Ground, aircraft, and satellite-based sensors measured the sensitivity of radiative fields at various atmospheric levels to aerosol optical properties (i.e., optical thickness, phase function, single-scattering albedo) and to the vertical profile of aerosols. The LASE (Lidar Atmospheric Sensing Experiment) instrument, which was flown on the NASA ER-2 aircraft, measured vertical profiles of total scattering ratio and water vapor during a series of 9 flights. These profiles were used in real-time to help direct the other aircraft to the appropriate altitudes for intensive sampling of aerosol layers. We have subsequently used the LASE aerosol data to derive aerosol backscattering and extinction profiles. Using these aerosol extinction profiles, we derived estimates of aerosol optical thickness (AOT) and compared these with measurements of AOT from both ground and airborne sun photometers and derived from the ATSR-2 (Along Track and Scanning Radiometer 2) sensor on ERS-2 (European Remote Sensing Satellite-2). We also used the water vapor mixing ratio profiles measured simultaneously by LASE to derive precipitable water vapor and compare these to ground based measurements.

  6. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  7. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    SciTech Connect

    Turner, David, D.; Ferrare, Richard, A.

    2011-07-06

    The 'Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds' project focused extensively on the analysis and utilization of water vapor and aerosol profiles derived from the ARM Raman lidar at the Southern Great Plains ARM site. A wide range of different tasks were performed during this project, all of which improved quality of the data products derived from the lidar or advanced the understanding of atmospheric processes over the site. These activities included: upgrading the Raman lidar to improve its sensitivity; participating in field experiments to validate the lidar aerosol and water vapor retrievals; using the lidar aerosol profiles to evaluate the accuracy of the vertical distribution of aerosols in global aerosol model simulations; examining the correlation between relative humidity and aerosol extinction, and how these change, due to horizontal distance away from cumulus clouds; inferring boundary layer turbulence structure in convective boundary layers from the high-time-resolution lidar water vapor measurements; retrieving cumulus entrainment rates in boundary layer cumulus clouds; and participating in a field experiment that provided data to help validate both the entrainment rate retrievals and the turbulent profiles derived from lidar observations.

  8. Molecular mechanisms of foliar water uptake in a desert tree

    PubMed Central

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. PMID:26567212

  9. Molecular mechanisms of foliar water uptake in a desert tree.

    PubMed

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-11-12

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants.

  10. Molecular mechanisms of foliar water uptake in a desert tree.

    PubMed

    Yan, Xia; Zhou, Maoxian; Dong, Xicun; Zou, Songbing; Xiao, Honglang; Ma, Xiao-Fei

    2015-01-01

    Water deficits severely affect growth, particularly for the plants in arid and semiarid regions of the world. In addition to precipitation, other subsidiary water, such as dew, fog, clouds and small rain showers, may also be absorbed by leaves in a process known as foliar water uptake. With the severe scarcity of water in desert regions, this process is increasingly becoming a necessity. Studies have reported on physical and physiological processes of foliar water uptake. However, the molecular mechanisms remain less understood. As major channels for water regulation and transport, aquaporins (AQPs) are involved in this process. However, due to the regulatory complexity and functional diversity of AQPs, their molecular mechanism for foliar water uptake remains unclear. In this study, Tamarix ramosissima, a tree species widely distributed in desert regions, was investigated for gene expression patterns of AQPs and for sap flow velocity. Our results suggest that the foliar water uptake of T. ramosissima occurs in natural fields at night when the humidity is over a threshold of 85 %. The diurnal gene expression pattern of AQPs suggests that most AQP gene expressions display a circadian rhythm, and this could affect both photosynthesis and transpiration. At night, the PIP2-1 gene is also upregulated with increased relative air humidity. This gene expression pattern may allow desert plants to regulate foliar water uptake to adapt to extreme drought. This study suggests a molecular basis of foliar water uptake in desert plants. PMID:26567212

  11. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liggio, J.; Staebler, R.; Li, S.-M.

    2015-06-01

    As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) is studied in a smog chamber equipped with a High Resolution Time-of-Flight Aerosol Mass Spectrometer and a Quantum Cascade Laser instrument. A large diversity of nitrogen containing organic (NOC) fragments was observed which were consistent with the reaction of ammonia with carbonyl containing SOA. The uptake coefficients of NH3 to SOA leading to organonitrogen compounds are reported for the first time and were in the range of ∼ 10-3-10-2, decreasing significantly to < 10-5 after 6 h of reaction. At the end of experiments (∼ 6 h) the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt% to the total α-pinene and m-xylene derived SOA, and 4-15 wt% of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen, and a mechanism for medium or long-range transport and dry/wet deposition of atmospheric nitrogen.

  12. Reactive uptake of ammonia to secondary organic aerosols: kinetics of organonitrogen formation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Liggio, J.; Staebler, R.; Li, S.-M.

    2015-12-01

    As a class of brown carbon, organonitrogen compounds originating from the heterogeneous uptake of NH3 by secondary organic aerosol (SOA) have received significant attention recently. In the current work, particulate organonitrogen formation during the ozonolysis of α-pinene and the OH oxidation of m-xylene in the presence of ammonia (34-125 ppb) was studied in a smog chamber equipped with a high resolution time-of-flight aerosol mass spectrometer and a quantum cascade laser instrument. A large diversity of nitrogen-containing organic (NOC) fragments was observed which were consistent with the reactions between ammonia and carbonyl-containing SOA. Ammonia uptake coefficients onto SOA which led to organonitrogen compounds were reported for the first time, and were in the range of ∼ 10-3-10-2, decreasing significantly to < 10-5 after 6 h of reaction. At the end of experiments (~ 6 h) the NOC mass contributed 8.9 ± 1.7 and 31.5 ± 4.4 wt % to the total α-pinene- and m-xylene-derived SOA, respectively, and 4-15 wt % of the total nitrogen in the system. Uptake coefficients were also found to be positively correlated with particle acidity and negatively correlated with NH3 concentration, indicating that heterogeneous reactions were responsible for the observed NOC mass, possibly limited by liquid phase diffusion. Under these conditions, the data also indicate that the formation of NOC can compete kinetically with inorganic acid neutralization. The formation of NOC in this study suggests that a significant portion of the ambient particle associated N may be derived from NH3 heterogeneous reactions with SOA. NOC from such a mechanism may be an important and unaccounted for source of PM associated nitrogen. This mechanism may also contribute to the medium or long-range transport and wet/dry deposition of atmospheric nitrogen.

  13. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  14. Ice crystallization in ultrafine water-salt aerosols: nucleation, ice-solution equilibrium, and internal structure.

    PubMed

    Hudait, Arpa; Molinero, Valeria

    2014-06-01

    Atmospheric aerosols have a strong influence on Earth's climate. Elucidating the physical state and internal structure of atmospheric aqueous aerosols is essential to predict their gas and water uptake, and the locus and rate of atmospherically important heterogeneous reactions. Ultrafine aerosols with sizes between 3 and 15 nm have been detected in large numbers in the troposphere and tropopause. Nanoscopic aerosols arising from bubble bursting of natural and artificial seawater have been identified in laboratory and field experiments. The internal structure and phase state of these aerosols, however, cannot yet be determined in experiments. Here we use molecular simulations to investigate the phase behavior and internal structure of liquid, vitrified, and crystallized water-salt ultrafine aerosols with radii from 2.5 to 9.5 nm and with up to 10% moles of ions. We find that both ice crystallization and vitrification of the nanodroplets lead to demixing of pure water from the solutions. Vitrification of aqueous nanodroplets yields nanodomains of pure low-density amorphous ice in coexistence with vitrified solute rich aqueous glass. The melting temperature of ice in the aerosols decreases monotonically with an increase of solute fraction and decrease of radius. The simulations reveal that nucleation of ice occurs homogeneously at the subsurface of the water-salt nanoparticles. Subsequent ice growth yields phase-segregated, internally mixed, aerosols with two phases in equilibrium: a concentrated water-salt amorphous mixture and a spherical cap-like ice nanophase. The surface of the crystallized aerosols is heterogeneous, with ice and solution exposed to the vapor. Free energy calculations indicate that as the concentration of salt in the particles, the advance of the crystallization, or the size of the particles increase, the stability of the spherical cap structure increases with respect to the alternative structure in which a core of ice is fully surrounded by

  15. Reactive Uptake of Ammonia to Secondary Organic Aerosols: Kinetics of Organonitrogen Formation

    NASA Astrophysics Data System (ADS)

    Liu, Yongchun; Liggio, John; Staebler, Ralf; Li, Shao-Meng

    2015-04-01

    Organonitrogen compounds originating from the heterogeneous uptake of NH3 or amines by secondary organic aerosol (SOA) has received significant attention recently. This is primarily due to its potential contribution to brown carbon (BrC), which can absorb solar radiation and affect climate. In addition, particle phase Organonitrogen species may represent a means of altering regional nitrogen cycles and/or nitrogen deposition patterns though the sequestering of ambient ammonia which is ultimately deposited downwind. Several reduced nitrogen forming heterogeneous reactions have previously been proposed, including Schiff base and/or Mannich reactions between NH3, ammonium salts or amines and organic carbonyl functional groups in particles. In order to assess and model the possible impact of Schiff base, Mannich or other N-forming reactions (via NH3) on the radiative forcing ability of ambient SOA and/or its impact on N-deposition, the kinetics of such heterogeneous reactions are required, and yet remain largely unknown. In the current study, the uptake kinetics of NH3 to form organonitrogen compounds in SOA derived from the ozonolysis of α-pinene and the OH oxidation of m-xylene is reported for the first time from experiments performed in a 9 m3 smog chamber equipped with a High Resolution Time-of-Flight Aerosol Mass Spectrometer. The results demonstrate that particle bound organonitrogen compounds are mainly formed by NH3 uptake onto newly formed SOA (~1 hr), but relatively little onto more aged SOA. The uptake coefficients of NH3 to form organonitrogen compounds (between 0-150 min) are on the order of 10-4-10-3 and are prominently dependent upon particle acidity. Following 6 hours of reaction, the total organonitrogen mass contributed up to 10.0±1.5 wt% and 31.5±4.4 wt% to the total SOA mass from the ozonolysis of α-pinene and OH oxidation of m-xylene. The influence of VOC precursors, seed particle acidity and gaseous NH3 concentration on the obtained uptake

  16. Impeded ice nucleation in glassy and highly viscous aerosol particles: the role of water diffusion

    NASA Astrophysics Data System (ADS)

    Marcolli, C.; Peter, T.; Zobrist, B.; Krieger, U. K.; Luo, B. P.; Soonsin, V.; Pedernera, D. A.; Koop, T.

    2010-05-01

    In situ and remote observations in the upper troposphere have disclosed the existence of water vapor pressures up to and even above water saturation. Under such conditions ice particle formation by homogeneous nucleation is expected to set in followed by ice crystal growth until the supersaturation is consumed. While the highest measured water vapor values might not withstand rigorous quality checks, values up to water saturation seem to be occurring. Since air masses appear to contain sufficient numbers of aerosol particles for cloud formation, the question arises why these aerosols are not successful at nucleating ice. The atmospheric aerosol is a complex mixture of various inorganic and organic components, whereas the organic fraction can represent more than 50% of the total aerosol mass. The homogeneous ice nucleation threshold was established for atmospherically relevant salt solutions and sulfuric acid, but only for a few organic species. The organic aerosol fraction tends to remain liquid instead of crystallizing as the temperature is decreased and, thus, organic aerosol particles may form highly viscous liquids. When the viscosity of such liquids reaches values in the order of 1012 Pa s, the molecular motion becomes so slow, that the sample vitrifies at the glass transition temperature Tg. If aerosol particles were present as glasses, this would influence several physical and chemical processes in the atmosphere significantly: Water uptake from the gas phase would be drastically impeded and ice nucleation inhibited. We investigated the glass transition temperature of a series of aqueous organic solutions such as polyols, sugars and dicarboxylic acids as a function of the solute concentration using a differential scanning calorimeter (DSC). These measurements show that the higher the molar mass of the organic solutes, the higher Tg of their respective solutions at a given water activity. Aerosol particles containing larger (≥150 g mol-1) organic molecules

  17. Organic peroxide and OH formation in aerosol and cloud water: laboratory evidence for this aqueous chemistry

    NASA Astrophysics Data System (ADS)

    Lim, Y. B.; Turpin, B. J.

    2015-06-01

    Aqueous chemistry in atmospheric waters (e.g., cloud droplets or wet aerosols) is well accepted as an atmospheric pathway to produce secondary organic aerosol (SOAaq). Water-soluble organic compounds with small carbon numbers (C2-C3) are precursors for SOAaq and products include organic acids, organic sulfates, and high molecular weight compounds/oligomers. Fenton reactions and the uptake of gas-phase OH radicals are considered to be the major oxidant sources for aqueous organic chemistry. However, the sources and availability of oxidants in atmospheric waters are not well understood. The degree to which OH is produced in the aqueous phase affects the balance of radical and non-radical aqueous chemistry, the properties of the resulting aerosol, and likely its atmospheric behavior. This paper demonstrates organic peroxide formation during aqueous photooxidation of methylglyoxal using ultra high resolution Fourier Transform Ion Cyclotron Resonance electrospray ionization mass spectrometry (FTICR-MS). Organic peroxides are known to form through gas-phase oxidation of volatile organic compounds. They contribute secondary organic aerosol (SOA) formation directly by forming peroxyhemiacetals, and epoxides, and indirectly by enhancing gas-phase oxidation through OH recycling. We provide simulation results of organic peroxide/peroxyhemiacetal formation in clouds and wet aerosols and discuss organic peroxides as a source of condensed-phase OH radicals and as a contributor to aqueous SOA.

  18. Organic aerosol formation from the reactive uptake of isoprene epoxydiols (IEPOX) onto non-acidified inorganic seeds

    NASA Astrophysics Data System (ADS)

    Nguyen, T. B.; Coggon, M. M.; Bates, K. H.; Zhang, X.; Schwantes, R. H.; Schilling, K. A.; Loza, C. L.; Flagan, R. C.; Wennberg, P. O.; Seinfeld, J. H.

    2014-04-01

    The reactive partitioning of cis and trans β-IEPOX was investigated on hydrated inorganic seed particles, without the addition of acids. No organic aerosol (OA) formation was observed on dry ammonium sulfate (AS); however, prompt and efficient OA growth was observed for the cis and trans β-IEPOX on AS seeds at liquid water contents of 40-75% of the total particle mass. OA formation from IEPOX is a kinetically limited process, thus the OA growth continues if there is a reservoir of gas-phase IEPOX. There appears to be no differences, within error, in the OA growth or composition attributable to the cis / trans isomeric structures. Reactive uptake of IEPOX onto hydrated AS seeds with added base (NaOH) also produced high OA loadings, suggesting the pH dependence for OA formation from IEPOX is weak for AS particles. No OA formation, after particle drying, was observed on seed particles where Na+ was substituted for NH4+. The Henry's Law partitioning of IEPOX was measured on NaCl particles (ionic strength ~9 M) to be 3 × 107 M atm-1 (-50 / +100%). A small quantity of OA was produced when NH4+ was present in the particles, but the chloride (Cl-) anion was substituted for sulfate (SO42-), possibly suggesting differences in nucleophilic strength of the anions. Online time-of-flight aerosol mass spectrometry and offline filter analysis provide evidence of oxygenated hydrocarbons, organosulfates, and amines in the particle organic composition. The results are consistent with weak correlations between IEPOX-derived OA and particle acidity or liquid water observed in field studies, as the chemical system is nucleophile-limited and not limited in water or catalyst activity.

  19. Water uptake in barley grain: Physiology; genetics and industrial applications.

    PubMed

    Cu, Suong; Collins, Helen M; Betts, Natalie S; March, Timothy J; Janusz, Agnieszka; Stewart, Doug C; Skadhauge, Birgitte; Eglinton, Jason; Kyriacou, Bianca; Little, Alan; Burton, Rachel A; Fincher, Geoffrey B

    2016-01-01

    Water uptake by mature barley grains initiates germination and is the first stage in the malting process. Here we have investigated the effects of starchy endosperm cell wall thickness on water uptake, together with the effects of varying amounts of the wall polysaccharide, (1,3;1,4)-β-glucan. In the latter case, we examined mutant barley lines from a mutant library and transgenic barley lines in which the (1,3;1,4)-β-glucan synthase gene, HvCslF6, was down-regulated by RNA interference. Neither cell wall thickness nor the levels of grain (1,3;1,4)-β-glucan were significantly correlated with water uptake but are likely to influence modification during malting. However, when a barley mapping population was phenotyped for rate of water uptake into grain, quantitative trait locus (QTL) analysis identified specific regions of chromosomes 4H, 5H and 7H that accounted for approximately 17%, 18% and 11%, respectively, of the phenotypic variation. These data indicate that variation in water uptake rates by elite malting cultivars of barley is genetically controlled and a number of candidate genes that might control the trait were identified under the QTL. The genomics data raise the possibility that the genetic variation in water uptake rates might be exploited by breeders for the benefit of the malting and brewing industries. PMID:26566843

  20. Compensatory Root Water Uptake of Overlapping Root Systems

    NASA Astrophysics Data System (ADS)

    Agee, E.; Ivanov, V. Y.; He, L.; Bisht, G.; Shahbaz, P.; Fatichi, S.; Gough, C. M.; Couvreur, V.; Matheny, A. M.; Bohrer, G.

    2015-12-01

    Land-surface models use simplified representations of root water uptake based on biomass distributions and empirical functions that constrain water uptake during unfavorable soil moisture conditions. These models fail to capture the observed hydraulic plasticity that allows plants to regulate root hydraulic conductivity and zones of active uptake based on local gradients. Recent developments in root water uptake modeling have sought to increase its mechanistic representation by bridging the gap between physically based microscopic models and computationally feasible macroscopic approaches. It remains to be demonstrated whether bulk parameterization of microscale characteristics (e.g., root system morphology and root conductivity) can improve process representation at the ecosystem scale. We employ the Couvreur method of microscopic uptake to yield macroscopic representation in a coupled soil-root model. Using a modified version of the PFLOTRAN model, which represents the 3-D physics of variably saturated soil, we model a one-hectare temperate forest stand under natural and synthetic climatic forcing. Our results show that as shallow soil layers dry, uptake at the tree and stand level shift to deeper soil layers, allowing the transpiration stream demanded by the atmosphere. We assess the potential capacity of the model to capture compensatory root water uptake. Further, the hydraulic plasticity of the root system is demonstrated by the quick response of uptake to rainfall pulses. These initial results indicate a promising direction for land surface models in which significant three-dimensional information from large root systems can be feasibly integrated into the forest scale simulations of root water uptake.

  1. Uptake of Nitrate and Sulfate on Dust Aerosols during TRACE-P

    NASA Technical Reports Server (NTRS)

    Jordan, C. E.; Dibb, J. E.; Anderson, B. E.; Fuelberg, H. E.

    2003-01-01

    Aerosol data collected near Asia on the DC-8 aircraft platform during TRACE-P has been examined for evidence of uptake of NO3(-) and SO4(-) on dust surfaces. Data is compared between a sector where dust was predominant and a sector where dust was less of an influence. Coincident with dust were higher mixing ratios of anthropogenic pollutants. HNO3, SO2, and CO were higher in the dust sector than the nondust sector by factors of 2.7, 6.2, and 1.5, respectively. The colocation of dust and pollution sources allowed for the uptake of NO3(-) and nss-SO4(-) on the coarse dust aerosols, increasing the mixing ratios of these particulates by factors of 5.7 and 2.6 on average. There was sufficient nss-SO4(-) to take up all of the NH4(+) present, with enough excess nss-SO4(-) to also react with dust CaCO3. This suggests that the enhanced NO3(-) was not in fine mode NH4NO3. Particulate NO3(-) (p-NO3(-)) constituted 54% of the total NO3(-), (t-NO3(-)) on average, reaching a maximum of 72% in the dust sector. In the nondust sector, p-NO3(-) contributed 37% to t-NO3(-), likely due to the abundance of sea salts there. In two other sectors where the influence of dust and sea salt were minimal, p-NO3(-), accounted for < 15% of t-NO3(-).

  2. Macroscopic modeling of plant water uptake: soil and root resistances

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dohnal, Michal; Dusek, Jaromir

    2014-05-01

    The macroscopic physically-based plant root water uptake (RWU) model, based on water-potential-gradient formulation (Vogel et al., 2013), was used to simulate the observed soil-plant-atmosphere interactions at a forest site located in a temperate humid climate of central Europe and to gain an improved insight into the mutual interplay of RWU parameters that affects the soil water distribution in the root zone. In the applied RWU model, the uptake rates are directly proportional to the potential gradient and indirectly proportional to the local soil and root resistances to water flow. The RWU algorithm is implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation. The RWU model is defined by four parameters (root length density distribution, average active root radius, radial root resistance, and the threshold value of the root xylem potential). In addition, soil resistance to water extraction by roots is related to soil hydraulic conductivity function and actual soil water content. The RWU model is capable of simulating both the compensatory root water uptake, in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers, and the root-mediated hydraulic redistribution of soil water, contributing to more natural soil moisture distribution throughout the root zone. The present study focusses on the sensitivity analysis of the combined soil water flow and RWU model responses in respect to variations of RWU model parameters. Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154.

  3. Quantitative measurements of root water uptake and root hydraulic conductivities

    NASA Astrophysics Data System (ADS)

    Zarebanadkouki, Mohsen; Javaux, Mathieu; Meunier, Felicien; Couvreur, Valentin; Carminati, Andrea

    2016-04-01

    How is root water uptake distributed along the root system and what root properties control this distribution? Here we present a method to: 1) measure root water uptake and 2) inversely estimate the root hydraulic conductivities. The experimental method consists in using neutron radiography to trace deuterated water (D2O) in soil and roots. The method was applied to lupines grown aluminium containers filled with a sandy soil. When the lupines were 4 weeks old, D2O was locally injected in a selected soil regions and its transport was monitored in soil and roots using time-series neutron radiography. By image processing, we quantified the concentration of D2O in soil and roots. We simulated the transport of D2O into roots using a diffusion-convection numerical model. The diffusivity of the roots tissue was inversely estimated by simulating the transport of D2O into the roots during night. The convective fluxes (i.e. root water uptake) were inversely estimating by fitting the experiments during day, when plants were transpiring, and assuming that root diffusivity did not change. The results showed that root water uptake was not uniform along the roots. Water uptake was higher at the proximal parts of the lateral roots and it decreased by a factor of 10 towards the distal parts. We used the data of water fluxes to inversely estimate the profile of hydraulic conductivities along the roots of transpiring plants growing in soil. The water fluxes in the lupine roots were simulated using the Hydraulic Tree Model by Doussan et al. (1998). The fitting parameters to be adjusted were the radial and axial hydraulic conductivities of the roots. The results showed that by using the root architectural model of Doussan et al. (1998) and detailed information of water fluxes into different root segments we could estimate the profile of hydraulic conductivities along the roots. We also found that: 1) in a tap-rooted plant like lupine water is mostly taken up by lateral roots; (2) water

  4. Modeling root water uptake in soils: opportunities and challenges

    NASA Astrophysics Data System (ADS)

    Javaux, Mathieu; Couvreur, Valentin; Huber, Katrin; Meunier, Félicien; Vanderborght, Jan; Vereecken, Harry

    2016-04-01

    Root water uptake modeling concepts have evolved over time. On one hand, mesoscopic models have been developed, which explicitly represent the fluxes at the soil root interfaces. On the other hand macroscopic approaches were proposed, which embedded root water uptake into a sink term in the macroscopic mass balance equation. Today, new techniques for imaging root architecture, water fluxes and soil properties open new possibilities to the understanding of water depletion in planted soils. Amongst others, architectural hydraulic root and soil models can be used to bridge the scale gap between single root and plant scales. In this talk, several new promising experimental approaches will be presented together with new models and upscaling procedures, possibly paving the way for the future models of root water uptake. Furthermore, open challenges will also be presented.

  5. Water uptake of multicomponent organic mixtures and their influence on hygroscopicity of inorganic salts.

    PubMed

    Wang, Yuanyuan; Jing, Bo; Guo, Yucong; Li, Junling; Tong, Shengrui; Zhang, Yunhong; Ge, Maofa

    2016-07-01

    The hygroscopic behaviors of atmospherically relevant multicomponent water soluble organic compounds (WSOCs) and their effects on ammonium sulfate (AS) and sodium chloride were investigated using a hygroscopicity tandem differential mobility analyzer (HTDMA) in the relative humidity (RH) range of 5%-90%. The measured hygroscopic growth was compared with predictions from the Extended-Aerosol Inorganics Model (E-AIM) and Zdanovskii-Stokes-Robinson (ZSR) method. The equal mass multicomponent WSOCs mixture containing levoglucosan, succinic acid, phthalic acid and humic acid showed gradual water uptake without obvious phase change over the whole RH range. It was found that the organic content played an important role in the water uptake of mixed particles. When organic content was dominant in the mixture (75%), the measured hygroscopic growth was higher than predictions from the E-AIM or ZSR relation, especially under high RH conditions. For mass fractions of organics not larger than 50%, the hygroscopic growth of mixtures was in good agreement with model predictions. The influence of interactions between inorganic and organic components on the hygroscopicity of mixed particles was related to the salt type and organic content. These results could contribute to understanding of the hygroscopic behaviors of multicomponent aerosol particles. PMID:27372129

  6. Plant water relations I: uptake and transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plants, like all living things, are mostly water. Water is the matrix of life, and its availability determines the distribution and productivity of plants on earth. Vascular plants evolved structures that enable them to transport water long distances with little input of energy, but the hollow trach...

  7. Models for root water uptake under deficit irrigation

    NASA Astrophysics Data System (ADS)

    Lazarovitch, Naftali; Krounbi, Leilah; Simunek, Jirka

    2010-05-01

    Modern agriculture, with its dependence on irrigation, fertilizers, and pesticide application, contributes significantly to the water and solute influx through the soil into the groundwater, specifically in arid areas. The quality and quantity of this water as it passes through the vadose zone is influenced primarily by plant roots. Root water uptake is a function of both a physical root parameter, commonly referred to as the root length density, and the soil water status. The location of maximum water uptake in a homogenous soil profile of uniform water content and hydraulic conductivity occurs in the soil layer containing the largest root length density. Under field conditions, in a drying soil, plants are both subject to, and the source of, great spatial variability in the soil water content. The upper soil layers containing the bulk of the root zone are usually the most water depleted, while the deeper regions of the soil profile containing fewer roots are wetter. Changes in the physiological functioning of plants have been shown to result from extended periods of water stress, but the short term effects of water stress on root water uptake are less well understood. While plants can minimize transpiration and the resulting growth rates under limiting conditions to conserve water, many plants maintain a constant potential transpiration rate long after the commencement of the drying process. Compensatory uptake, whereby plants respond to non-uniform, limiting conditions by increasing water uptake from areas in the root zone characterized by more favorable conditions, is one such mechanism by which plants sustain potential transpiration rates in drying soils. The development of models which accurately characterize temporal and spatial root water uptake patterns is important for agricultural resource optimization, upon which subsequent management decisions affecting resource conservation and environmental pollution are based. Numerical simulations of root water

  8. Connecting Water Quality With Air Quality Through Microbial Aerosols

    NASA Astrophysics Data System (ADS)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  9. The uptake of water hardness metals by human hair.

    PubMed

    Evans, A O; Marsh, J M; Wickett, R R

    2011-01-01

    The objective of this work was to examine the variables that influence the interaction between water hardness metals and human hair. Hair extracts various constituents from the tap water used during daily hygiene practices and chemical treatments. Calcium and magnesium metal ions are the most prevalent and give water "hardness." Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was employed to quantify the metal content of hair, which was studied as a function of the following variables: hair condition (oxidative damage), level of water hardness, and water pH. We have demonstrated that these variables impact water hardness metal uptake to varying extents, and the effects are driven primarily by the binding capacity (available anionic sites) of the hair. The condition of the hair, a key representation of the binding capacity, was most influential. Interestingly, water hardness levels had only a small effect on uptake; hair became saturated with notable amounts of water hardness metals even after repeated exposure to soft water. Water pH influenced metal uptake since side chains of hair proteins deprotonate with increasing alkalinity. These insights highlight the importance to the hair care industry of understanding the interaction between water hardness metals and hair.

  10. Mathematical modelling of plant water and nutrient uptake

    NASA Astrophysics Data System (ADS)

    Roose, Tiina

    2010-05-01

    In this presentation I will describe a model of plant water and nutrient uptake and how to translate this model and experimental data from the single root scale to the root branching structure scale. The model starts at the single root scale and describes the water and nutrient movement in the soil using Richards' equation (water uptake) and diffusion-convection equation (nutrient uptake). The water and nutrient uptake in the single root scale model is represented by boundary conditions. In the case of nutrient uptake this has the form of a non-linear Michaelis-Menten uptake law and in the case of water this is given by a soil-xylem pressure difference boundary condition. The flow of water in the xylem is modeled as Poiseuille flow. We solve the single root scale models using the analytic approximate technique of asymptotic expansions similar to Oseen expansions known from fluid dynamics. We will then discuss how to use the analytic expression to estimate the water and nutrient uptake by growing root branching systems. We model the growth of the root system using a dynamic population model to describe the branching and elongation of roots in the branching system. This root branching population model results in a hyperbolic equation similar to age dependent population models and it can be solved fully analytically using the method of characteristics. Thus we have a fully analytic description of the root branching system evolution. We use this branching model to estimate the nutrient uptake in a scenario when the competition between subbranches is small, i.e., as it is in the case of phosphate, potassium and arsenic. We compare our approximate analytic model to a full 3d simulation of the root system phosphate uptake and find that the analytic model almost perfectly reproduces the 3d numerical model. In addition the analytic model can be included in larger field/catchment/climate scale models something which is not practically possible with the numerical simulations

  11. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-03-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid organic aerosols (squalane, brassidic acid and 2-octyldodecanoic acid) are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  12. Artifacts in measuring aerosol uptake kinetics: the roles of time, concentration and adsorption

    NASA Astrophysics Data System (ADS)

    Renbaum, L. H.; Smith, G. D.

    2011-07-01

    In laboratory studies of organic aerosol particles reacting with gas-phase oxidants, high concentrations of radicals are often used to study on the timescale of seconds reactions which may be occurring over days or weeks in the troposphere. Implicit in this approach is the assumption that radical concentration and time are interchangeable parameters, though this has not been established. Here, the kinetics of OH- and Cl-initiated oxidation reactions of model single-component liquid (squalane) and supercooled (brassidic acid and 2-octyldodecanoic acid) organic aerosols are studied by varying separately the radical concentration and the reaction time. Two separate flow tubes with residence times of 2 and 66 s are used, and [OH] and [Cl] are varied by adjusting either the laser photolysis fluence or the radical precursor concentration ([O3] or [Cl2], respectively) used to generate the radicals. It is found that the rates measured by varying the radical concentration and the reaction time are equal only if the precursor concentrations are the same in the two approaches. Further, the rates depend on the concentrations of the precursor species with a Langmuir-type functional form suggesting that O3 and Cl2 saturate the surface of the liquid particles. It is believed that the presence of O3 inhibits the rate of OH reaction, perhaps by reacting with OH radicals or by O3 or intermediate species blocking surface sites, while Cl2 enhances the rate of Cl reaction by participating in a radical chain mechanism. These results have important implications for laboratory experiments in which high concentrations of gas-phase oxidants are used to study atmospheric reactions over short timescales and may explain the variability in recent measurements of the reactive uptake of OH on squalane particles in reactor systems used in this and other laboratories.

  13. Water uptake of internally mixed ammonium sulfate and dicarboxylic acid particles probed by infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2013-05-01

    Tropospheric aerosols are usually mixtures of inorganic and organic compounds in variable proportions, and the relative amount of organic fraction can influence the hygroscopic properties of the particles. Infrared spectra of submicrometer internally mixed dry particles of ammonium sulfate (AS) with various dicarboxylic acids (oxalic, malonic, maleic, glutaric and pimelic) have been measured in an aerosol flow tube at several solute mass ratios. The spectra show a notable broadening in the bandwidth of sulfate ion ν3 vibrational band near 1115 cm-1 with respect to pure AS. We attribute these perturbations, that are biggest at AS/organic acid mass ratio near unity, to intermolecular interactions between inorganic ions and organic acid molecules in the internally mixed solids. The water uptake behavior of internally mixed particles has been measured by recording the infrared integrated absorbance of liquid water as a function of relative humidity (RH). The amount of water present in the particles prior to deliquescence correlates partially with the water solubilities of the dicarboxylic acids, and also with the relative magnitudes of intermolecular interactions in the internally mixed dry solids. Phase change of ammonium sulfate in the internally mixed particles with RH has been spectrally monitored, and it is shown that water uptaken before full deliquescence produces structural changes in the particles that are revealed by their vibrational spectra.

  14. Simulations and field observations of root water uptake in plots with different soil water availability.

    NASA Astrophysics Data System (ADS)

    Cai, Gaochao; Vanderborght, Jan; Couvreur, Valentin; Javaux, Mathieu; Vereecken, Harry

    2015-04-01

    Root water uptake is a main process in the hydrological cycle and vital for water management in agronomy. In most models of root water uptake, the spatial and temporal soil water status and plant root distributions are required for water flow simulations. However, dynamic root growth and root distributions are not easy and time consuming to measure by normal approaches. Furthermore, root water uptake cannot be measured directly in the field. Therefore, it is necessary to incorporate monitoring data of soil water content and potential and root distributions within a modeling framework to explore the interaction between soil water availability and root water uptake. But, most models are lacking a physically based concept to describe water uptake from soil profiles with vertical variations in soil water availability. In this contribution, we present an experimental setup in which root development, soil water content and soil water potential are monitored non-invasively in two field plots with different soil texture and for three treatments with different soil water availability: natural rain, sheltered and irrigated treatment. Root development is monitored using 7-m long horizontally installed minirhizotubes at six depths with three replicates per treatment. The monitoring data are interpreted using a model that is a one-dimensional upscaled version of root water uptake model that describes flow in the coupled soil-root architecture considering water potential gradients in the system and hydraulic conductances of the soil and root system (Couvreur et al., 2012). This model approach links the total root water uptake to an effective soil water potential in the root zone. The local root water uptake is a function of the difference between the local soil water potential and effective root zone water potential so that compensatory uptake in heterogeneous soil water potential profiles is simulated. The root system conductance is derived from inverse modelling using

  15. Uptake of Organic Vapors by Sulfate Aerosols: Physical and Chemical Processes

    NASA Technical Reports Server (NTRS)

    Michelsen, R. R.; Ashbourn, S. F. M.; Iraci, L.T.; Staton, S. J. R.

    2003-01-01

    While it is known that upper tropospheric sulfate particles contain a significant amount of organic matter, both the source of the organic fraction and its form in solution are unknown. These studies explore how the chemical characteristics of the molecules and surfaces in question affect heterogeneous interactions. The solubilities of acetaldehyde [CH3CHO] and ethanol [CH3CH20H] in cold, aqueous sulfuric acid solutions have been measured by Knudsen cell studies. Henry's law solubility coefficients range from 10(exp 2) to 10(exp 5) M/atm for acetaldehyde, and from 10(exp 4) to 10(exp 9) M/atm for ethanol under upper tropospheric conditions (210-240 K, 40-80 wt. % H2S04). The multiple solvation pathways (protonation, enolization, etc.) available to these compounds in acidic aqueous environments will be discussed. Preliminary results from the interaction of acetaldehyde with solutions of formaldehyde in sulfuric acid will be presented as well. The physical and chemical processes that affect organic uptake by aqueous aerosols will be explored, with the aim of evaluating organic species not yet studied in low temperature aqueous sulfuric acid.

  16. Quantifying the Reactive Uptake of OH by Organic Aerosols in aContinuous Flow Stirred Tank Reactor

    SciTech Connect

    Che, Dung L.; Smith, Jared D.; Leone, Stephen R.; Ahmed, Musahid; Wilson, Kevin R.

    2009-03-01

    Here we report a new method for measuring the heterogeneous chemistry of submicron organic aerosol particles using a continuous flow stirred tank reactor. This approach is designed to quantify the real time heterogeneous kinetics, using a relative rate method, under conditions of low oxidant concentration and long reaction times that more closely mimic the real atmosphere. A general analytical expression, which couples the aerosol chemistry with the flow dynamics in the chamber is developed and applied to the heterogeneous oxidation of squalane particles by hydroxyl radicals (OH) in the presence of O2. The particle phase reaction is monitored via photoionization aerosol mass spectrometry and yields a reactive uptake coefficient of 0.51+-0.10, using OH concentrations of 1-7x108 molec cdot cm-3 and reaction times of 1.5+-3 hours. This uptake coefficient is larger than that found for the reaction carried out under high OH concentrations (~;;1x1010 molec cdot cm-3) and short reaction times in a flow tube reactor. This difference suggests that oxidant concentration and reaction time are not interchangeable quantities in reactions of organic aerosols with radicals. In general, this approach provides a new way to examine how the chemical aging of organic particles measured at short reaction times and high oxidant concentrations in flow tubes might differ from the long reaction times and low oxidant levels found in the real atmosphere.

  17. Water uptake in biochars: The roles of porosity and hydrophobicity

    EPA Science Inventory

    We assessed the effects of porosity and hydrophobicity on water uptake by biochars. Biochars were produced from two feedstocks (hazelnut shells and Douglas fir chips) at three production temperatures (370 °C, 500 °C, and 620 °C). To distinguish the effects of porosity from the ...

  18. Metabolic regulation of amino acid uptake in marine waters

    SciTech Connect

    Kirchman, D.L.; Hodson, R.E.

    1986-03-01

    To determine the relationships among the processes of uptake, intracellular pool formation, and incorporation of amino acids into protein, the authors measured the uptake of dipeptides and free amino acids by bacterial assemblages in estuarine and coastal waters of the southeast US. The dipeptide phenylalanyl-phenylalanine (phe-phe) lowered V/sub max/ of phenylalanine uptake when the turnover rate of phenylalanine was relatively high. When the turnover rate was relatively low, phe-phe either had no effect or increased V/sub max/ of phenylalanine uptake. An analytical model was developed and tested to measure the turnover time of the intracellular pool of phenylalanine. The results suggested that the size of the intracellular pool is regulated, which precludes high assimilation rates of both phenylalanine and phe-phe. In waters with relatively low phenylalanine turnover rates, bacterial assemblages appear to have a greater capacity to assimilate phenylalanine and phe-phe simultaneously. Marine bacterial assemblages do not substantially increase the apparent respiration of amino acids when concentrations increase. The authors conclude that sustained increases in uptake rates and mineralization by marine bacterial assemblages in response to an increase in the concentrations of dissolved organic nitrogen is determined by the rate of protein synthesis.

  19. Neutron imaging of root water uptake, transport and hydraulic redistribution

    NASA Astrophysics Data System (ADS)

    Warren, J.; Bilheux, H.; Kang, M.; Voisin, S.; Cheng, C.; Horita, J.; Perfect, E.

    2012-12-01

    Knowledge of plant water fluxes is critical for assessing mechanistic processes linked to biogeochemical cycles, yet resolving root water transport dynamics has been a particularly daunting task. Our objectives were to demonstrate the ability to non-invasively monitor individual root functionality and water fluxes within 1-3-week old Zea mays L. (maize) and Panicum virgatum L. (switchgrass) seedlings using neutron imaging. Seedlings were propagated in a growth chamber adjacent to the HFIR CG1 Beam Line at Oak Ridge National Laboratory in cylindrical or plate-like aluminum chambers containing sand. Seedlings were maintained under fairly dry conditions, with water added only to replace daily evapotranspiration. Plants were placed into the high flux cold neutron beam line and injections of H2O or deuterium oxide (D2O) were tracked through the soil and root systems by collecting consecutive CCD radiographs through time. Water fluxes within the root systems were manipulated by cycling on a growth lamp that altered foliar demand for water and thus internal water potential driving forces. 2D and 3D neutron radiography readily illuminated root structure, root growth, and relative plant and soil water content. 2D pulse-chase irrigation experiments with H2O and D2O, which have different neutron cross sections and thus differences in resulting image contrast, successfully allowed observation of uptake and mass flow of water within the root system. After irrigation there was rapid root water uptake from the newly wetted soil, followed by progressive hydraulic redistribution of water through the root systems to roots terminating in dry soil. Water flux within individual roots responded differentially to foliar illumination based on internal water potential gradients. Using 2D radiography, absolute fluxes of H2O or D2O through the system could not be easily determined since neutron attenuation through the sample was dependent on unknown and dynamic magnitudes of both D and H

  20. A perspective on SOA generated in aerosol water from glyoxal and methylglyoxal and its impacts on climate-relevant aerosol properties

    NASA Astrophysics Data System (ADS)

    Sareen, N.; McNeill, V. F.

    2011-12-01

    In recent years, glyoxal and methylglyoxal have emerged to be potentially important SOA precursors with significant implications for climate-related aerosol properties. Here we will discuss how the chemistry of these and similar organic compounds in aerosol water can affect the aerosol optical and cloud formation properties. Aqueous-phase SOA production from glyoxal and methylglyoxal is a potential source of strongly light-absorbing organics, or "brown carbon". We characterized the kinetics of brown carbon formation from these precursors in mixtures of ammonium sulfate and water using UV-Vis spectrophotometry. This mechanism has been incorporated into a photochemical box model with coupled gas phase-aqueous aerosol chemistry. Methylglyoxal and related compounds also may impact an aerosol's ability to act as a cloud condensation nucleus. We recently showed via pendant drop tensiometry and aerosol chamber studies that uptake of methylglyoxal from the gas phase driven by aqueous-phase oligomerization chemistry is a potentially significant, previously unidentified source of surface-active organic material in aerosols. Results from pendant drop tensiometry showed significantly depressed surface tension in methylglyoxal-ammonium sulfate solutions. We further found that ammonium sulfate particles exposed to gas-phase methylglyoxal in a 3.5 m3 aerosol reaction chamber activate into cloud droplets at sizes up to 15% lower at a given supersaturation than do pure ammonium sulfate particles. The observed enhancement exceeds that predicted based on Henry's Law and our measurements of surface tension depression in bulk solutions, suggesting that surface adsorption of methylglyoxal plays a role in determining CCN activity. Methylglyoxal and similar gas-phase surfactants may be an important and overlooked source of enhanced CCN activity in the atmosphere. To characterize the SOA products formed in these solutions, an Aerosol Chemical Ionization Mass Spectrometer (CIMS) was used

  1. Measuring Uptake Coefficients and Henry's Law Constants of Gas-Phase Species with Models for Secondary Organic Aerosol

    NASA Astrophysics Data System (ADS)

    Fairhurst, M. C.; Waring-Kidd, C.; Ezell, M. J.; Finlayson-Pitts, B. J.

    2014-12-01

    Volatile organic compounds (VOC) are oxidized in the atmosphere and their products contribute to secondary organic aerosol (SOA) formation. These particles have been shown to have effects on visibility, climate, and human health. Current models typically under-predict SOA concentrations from field measurements. Underestimation of these concentrations could be a result of how models treat particle growth. It is often assumed that particles grow via instantaneous thermal equilibrium partitioning between liquid particles and gas-phase species. Recent work has shown that growth may be better represented by irreversible, kinetically limited uptake of gas-phase species onto more viscous, tar-like SOA. However, uptake coefficients for these processes are not known. The goal of this project is to measure uptake coefficients and solubilities for different gases onto models serving as proxies for SOA and determine how they vary based on the chemical composition of the gas and the condensed phase. Experiments were conducted using two approaches: attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy and a flow system coupled to a mass spectrometer. The ATR crystal was coated with the SOA proxy and the gas-phase species introduced via a custom flow system. Uptake of the gas-phase species was characterized by measuring the intensity of characteristic IR bands as a function of time, from which a Henry's law constant and initial estimate of uptake coefficients could be obtained. Uptake coefficients were also measured in a flow system where the walls of the flow tube were coated with the SOA proxy and gas-phase species introduced via a moveable inlet. Uptake coefficients were derived from the decay in gas-phase species measured by mass spectrometry. The results of this work will establish a structure-interaction relationship for uptake of gases into SOA that can be implemented into regional and global models.

  2. Water soluble organic constituents in Arctic aerosols and snow pack

    SciTech Connect

    Li, Shaomeng ); Winchester, J.W. )

    1993-01-08

    Eight water-soluble organic anions were measured in 70 aerosol samples and 10 snow samples at Barrow, Alaska in March-April, 1989. The ranking of the ions in aerosols according to total (coarse + fine aerosol) median concentrations was acetate (44 ng m[sup [minus]3]), oxalate (27), benzoate (23), formate (22), propionate (6), methanesulfonate (5), lactate (4), and pyruvate (4). When added up, the median organic anion mass was 156 ng m[sup [minus]3]. The organic anions/nssSO[sub 4][sup =] mass ratio had a median of 0.18 and 0.07 in the coarse (>1 [mu]m) and fine (<1 [mu]m) size fractions, respectively, but can be very high on occasions. On average, the organic anions made up more than 10% of the water-soluble aerosol mass. A similar ranking in concentration was also found for the organic ions in the snow pack samples. The organic anion/nssSO[sub 4][sup =] mass ratio in these samples was >0.5, substantially higher than in aerosols. 18 refs., 2 tabs.

  3. Scanning Raman lidar measurements of atmospheric water vapor and aerosols

    SciTech Connect

    Ferrare, R.A.; Evans, K.D.; Melfi, S.H.; Whiteman, D.N.

    1995-04-01

    The principal objective of the Department of Energy`s (DOE) Atmospheric Radiation Measurement Program (ARM) is to develop a better understanding of the atmospheric radiative balance in order to improve the parameterization of radiative processes in general circulation models (GCMs) which are used to study climate change. Meeting this objective requires detailed measurements of both water vapor and aerosols since these atmospheric constituents affect the radiation balance directly, through scattering and absorption of solar and infrared radiation, and indirectly, through their roles in cloud formation and dissipation. Over the past several years, we have been investigating how the scanning Raman lidar developed at the NASA/Goddard Space Flight Center (GSFC) can provide the water vapor and aerosol measurements necessary for such modeling. The lidar system has provided frequent, high resolution profiles of atmospheric water vapor and aerosols in nighttime operations during two recent field experiments. The first experiment was ATMIS-11 (Atmospheric Moisture Intercomparison Study) conducted in July-August 1992, and the second was the Convection and Moisture Experiment (CAMEX) conducted during September-October 1993. We present a brief description of the lidar system and examples of the water vapor and aerosol measurements acquired during these experiments.

  4. Laboratory measurements of soot particle density change due to water uptake.

    NASA Astrophysics Data System (ADS)

    Crosbie, E.

    2015-12-01

    Black carbon containing soot particles are an important aerosol subclass owing to their light-absorbing properties. Furthermore, soot particles present challenges with regard to characterization and modeling of their microphysical, chemical, and optical properties, because of their inherent non-spherical, fractal morphology. Aggregation/coagulation of soot adds to the complexity of the particle morphology, while co-emitted organic compounds affect the chemical composition both during emission and though aging, which causes partitioning of secondary organic aerosol. Measurements of soot particles from vehicular and jet engine exhaust plumes have shown that the effective density can vary over a broad range (0.3-1.8 gm-3) and is affected by the fuel burn characteristics (fuel type, fuel equivalence ratio, combustion temperature), the particle size, and the extent of the aggregation. The action of organic coatings and the uptake of particle water, through hygroscopic growth, can cause a dramatic change in the morphology of soot. Restructuring of the fractal morphology into a more compact form has the effect of increasing the effective particle density, thus reducing the particle size, with important implications for the optical and hygroscopic properties. We present measurements of size-resolved particle density from laboratory generated fresh soot particles, under a range of operating conditions. We first filter by particle mass using an aerosol particle mass (APM) centrifugal analyzer and then subject the sample to a pre-humidification cycle in order to initiate particle restructuring. Finally, the sample is dried and the mobility size distribution is measured using a scanning mobility particle sizer (SMPS). A range of particle masses is scanned to determine the density as a function of size and, for each mass set point, a range of relative humidity settings are scanned to determine the extent of restructuring. We discuss the findings in relation to atmospherically

  5. Organosulfate formation during the uptake of pinonaldehyde on acidic sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Liggio, John; Li, Shao-Meng

    2006-07-01

    Organosulfates are observed in studies of pinonaldehyde reactions with acidic sulfate aerosols using aerosol mass spectrometry, during which a significant fraction of the pinonaldehyde reaction products were found to consist of organosulfate compounds that account for 6-51% of the initial SO4= mass. Resultant aerosol mass spectra were consistent with proposed sulfate ester mechanisms, which likely form stable products. The existence of organosulfates was also confirmed in studies of the reaction system in bulk solution. The formation of organosulfates suggests that conventional inorganic SO4= chemical analysis may underestimate total SO4= mass in ambient aerosols.

  6. Aerosol chamber study of optical constants and N2O5 uptake on supercooled H2SO4/H2O/HNO3 solution droplets at polar stratospheric cloud temperatures.

    PubMed

    Wagner, Robert; Naumann, Karl-Heinz; Mangold, Alexander; Möhler, Ottmar; Saathoff, Harald; Schurath, Ulrich

    2005-09-15

    The mechanism of the formation of supercooled ternary H(2)SO(4)/H(2)O/HNO(3) solution (STS) droplets in the polar winter stratosphere, i.e., the uptake of nitric acid and water onto background sulfate aerosols at T < 195 K, was successfully mimicked during a simulation experiment at the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. Supercooled sulfuric acid droplets, acting as background aerosol, were added to the cooled AIDA vessel at T = 193.6 K, followed by the addition of ozone and nitrogen dioxide. N(2)O(5), the product of the gas phase reaction between O(3) and NO(2), was then hydrolyzed in the liquid phase with an uptake coefficient gamma(N(2)O(5)). From this experiment, a series of FTIR extinction spectra of STS droplets was obtained, covering a broad range of different STS compositions. This infrared spectra sequence was used for a quantitative test of the accuracy of published infrared optical constants for STS aerosols, needed, for example, as input in remote sensing applications. The present findings indicate that the implementation of a mixing rule approach, i.e., calculating the refractive indices of ternary H(2)SO(4)/H(2)O/HNO(3) solution droplets based on accurate reference data sets for the two binary H(2)SO(4)/H(2)O and HNO(3)/H(2)O systems, is justified. Additional model calculations revealed that the uptake coefficient gamma(N(2)O(5)) on STS aerosols strongly decreases with increasing nitrate concentration in the particles, demonstrating that this so-called nitrate effect, already well-established from uptake experiments conducted at room temperature, is also dominant at stratospheric temperatures.

  7. Aerosol chamber study of optical constants and N2O5 uptake on supercooled H2SO4/H2O/HNO3 solution droplets at polar stratospheric cloud temperatures.

    PubMed

    Wagner, Robert; Naumann, Karl-Heinz; Mangold, Alexander; Möhler, Ottmar; Saathoff, Harald; Schurath, Ulrich

    2005-09-15

    The mechanism of the formation of supercooled ternary H(2)SO(4)/H(2)O/HNO(3) solution (STS) droplets in the polar winter stratosphere, i.e., the uptake of nitric acid and water onto background sulfate aerosols at T < 195 K, was successfully mimicked during a simulation experiment at the large coolable aerosol chamber AIDA of Forschungszentrum Karlsruhe. Supercooled sulfuric acid droplets, acting as background aerosol, were added to the cooled AIDA vessel at T = 193.6 K, followed by the addition of ozone and nitrogen dioxide. N(2)O(5), the product of the gas phase reaction between O(3) and NO(2), was then hydrolyzed in the liquid phase with an uptake coefficient gamma(N(2)O(5)). From this experiment, a series of FTIR extinction spectra of STS droplets was obtained, covering a broad range of different STS compositions. This infrared spectra sequence was used for a quantitative test of the accuracy of published infrared optical constants for STS aerosols, needed, for example, as input in remote sensing applications. The present findings indicate that the implementation of a mixing rule approach, i.e., calculating the refractive indices of ternary H(2)SO(4)/H(2)O/HNO(3) solution droplets based on accurate reference data sets for the two binary H(2)SO(4)/H(2)O and HNO(3)/H(2)O systems, is justified. Additional model calculations revealed that the uptake coefficient gamma(N(2)O(5)) on STS aerosols strongly decreases with increasing nitrate concentration in the particles, demonstrating that this so-called nitrate effect, already well-established from uptake experiments conducted at room temperature, is also dominant at stratospheric temperatures. PMID:16834200

  8. Cloud water and aerosol studies in a background marine environment

    NASA Astrophysics Data System (ADS)

    Gioda, A.; Mayol-Bracero, O. L.; Reyes-Rodriguez, G.; Santos-Figueroa, G.; Morales-de Jesus, R.; Collett, J.; Decesari, S.; de Aquino Neto, F. R.; Klaus, C.; Bezerra, H.

    2007-12-01

    The study of aerosol and cloud water chemical composition is essential to understand cloud processing of different compounds, determining which species are more efficiently removed and which ones stay longer in the atmosphere and, therefore, are more important for aerosol climate forcing. As part of the Rain In Cumulus over the Ocean Experiment (RICO), cloud water and aerosol samples were collected in Puerto Rico. We present concentrations of water-soluble ions, total and dissolved organic carbon (TOC and DOC), total nitrogen (TN), and the speciation of nitrogen compounds (amino acids) for water and aerosol samples collected at East Peak and Cape San Juan, Puerto Rico. Mass and elemental/organic carbon (EC, OC) concentrations were also determined for the aerosol samples. The results show average concentrations of TOC and TN in cloud water of about 1.1 mg/L and for DOC about 0.9 mg/L. The DOC/TOC ratio averaged 0.78, indicating that most of the organic compounds present are dissolved in the cloud water. TOC was composed mainly of organic acids (47 percent) and TN of inorganic species (80 percent). With respect to the aerosol samples, the average mass concentration of fine particles (Dp < 1.7 um) was 2.4 ug/m3. EC was found at low-to-non detectable levels (< 0.5 ng/m3). The concentrations of OC, DOC, TOC, and TN ranged from 30 to 100 ng/m3. The size distributions showed that OC and TN were mainly present in the fine particle fractions (Dp < 1 um). The predominant ions for both cloud and aerosol samples were Cl- and Na+, the primary components of sea salt. However, when air masses arrived from Northwest Africa or from islands upwind of Puerto Rico there was a decrease in Na+ and Cl- concentrations and an increase in SO42-, NH3+ and Ca2+ concentrations, likely reflecting anthropogenic and crustal sources of these species. Overall, the average concentrations of all species are similar to those typically found in background (remote) environments; however, these

  9. Equilibrium water and solute uptake in silicone hydrogels.

    PubMed

    Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J

    2015-05-01

    Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments.

  10. Does the rhizosphere hydrophobicity limit root water uptake?

    NASA Astrophysics Data System (ADS)

    Zare, Mohsen; Ahmed, Mutez; Kroener, Eva; Carminati, Andrea

    2015-04-01

    The ability of plants to extract water from the soil is influenced by the hydraulic conductivity of roots and their rhizosphere. Recent experiments showed that the rhizosphere turned hydrophobic after drying and it remained dry after rewetting [1]. Our objective was to investigate whether rhizosphere hydrophobicity is a limit to root water uptake after drying. To quantify the effect of rhizosphere hydrophobicity on root water uptake, we used neutron radiography to trace the transport of deuterated water (D2O) in the roots of lupines experiencing a severe, local soil drying. The plants were grown in aluminum containers (30×30×1 cm) filled with sandy soil. The soil was partitioned into nine compartments using three horizontal and three vertical layers of coarse sand (thickness of 1cm) as capillary barrier. When the plants were 28 days old, we let one of the upper lateral compartments dry to a water content of 2-4%, while keeping the other compartments to a water content of 20%. Then we injected 10 ml of D2O in the dry compartment and 10 ml in the symmetric location. The radiographs showed that root water uptake in the soil region that was let dry and then irrigated was 4-8 times smaller than in the wet soil region[2]. In a parallel experiment, we used neutron radiography to monitor the rehydration of lupine roots that were irrigated after a severe drying experiment. Based on root swelling and additional data on the xylem pressure, we calculated the hydraulic conductivity of the root-rhizosphere continuum. We found that the hydraulic conductivity of the root-rhizosphere continuum was initially 5.75×10-14 m s-1and it increased to 4.26×10-12 m s-1after four hours. Both experiments show that rhizosphere hydrophobicity after drying is associated with a reduction in root water uptake and a big decrease in hydraulic conductivity of the soil-root system. [1] Carminati et al (2010) Plant and Soil. Vol. 332: 163-176. [2] Zarebanadkouki and Carmianti (2013) Journal of Plant

  11. Measurements of the HO2 uptake coefficient onto aqueous salt and organic aerosols and interpretation using the kinetic multi-layer model of aerosol surface and bulk chemistry (KM-SUB)

    NASA Astrophysics Data System (ADS)

    Matthews, P. S. J.; Berkemeier, T.; George, I. J.; Whalley, L. K.; Moon, D. R.; Ammann, M.; Baeza-Romero, M. T.; Poeschl, U.; Shiraiwa, M.; Heard, D. E.

    2014-12-01

    HO2 is closely coupled with OH which is responsible for the majority of the oxidation in the troposphere. Therefore, it is important to be able to accurately predict OH and HO2 concentrations. However, many studies have reported a large discrepancy between HO2 radical concentrations measured during field campaigns and predicted by constrained box models using detailed chemical mechanisms (1,2). However, there have been very few laboratory studies (3,4) on HO2 uptake by aerosols and the rates and mechanism is still uncertain. The HO2 uptake coefficients were measured for deliquesced ammonium nitrate and sodium chloride aerosols and copper doped sucrose aerosols. The measurements were performed using an aerosol flow tube coupled to a Fluorescence Assay by Gas Expansion (FAGE) detector. By either placing the HO2 injector in set positions and varying the aerosol concentration or by moving it along the flow tube at given aerosol concentrations, uptake coefficients could be measured. The aerosols were generated using an atomiser and the total aerosol surface area was measured using a SMPS. Larger uptake coefficients were measured at shorter times and lower HO2 concentrations for aqueous salt aerosols. The time dependence was able to be modelled by the KM-SUB model (5) as the HO2 concentration decreases along the flow tube and the HO2 uptake mechanism is known to be a second order reaction. Measurements have shown that at higher HO2 concentrations there was also more H2O2 exiting the injector which could convert back to HO2 if trace amounts of metals are present within the aerosol via Fenton reactions. Preliminary results have shown that the inclusion of a Fenton-like reaction within the KM-SUB model has the potential to explain the apparent HO2 concentration dependence. Finally, the KM-SUB model has been used to demonstrate that the increase in uptake coefficient observed when increasing the relative humidity for copper doped sucrose aerosols could be explained by an

  12. CRISM Limb Observations of Aerosols and Water Vapor

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Wolff, M.J.; Clancy, R.T.; Seelos, F.; Murchie, S.L.

    2009-01-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Here we describe preliminary work on the retrieval of vertical profiles of aerosols and water vapor from the CRISM limb observations. The first full set of CRISM limb observations was taken in July 2009, with subsequent limb observations planned once every two months. Each set of limb observations contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude. Radiative transfer modeling taking account of aerosol scattering in the limb-viewing geometry is used to model the observations. The retrievals show the height to which dust and water vapor extend and the location and height of water ice clouds. Results from the First set of CRISM limb observations (July 2009, Ls=300) show dust aerosol well-mixed to about three scale heights above the surface with thin water ice clouds above the dust near the equator and at mid-northern latitudes. Water vapor is concentrated at high southern latitudes.

  13. Monitoring vegetation water uptake in a semiarid riparian corridor

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Ochoa, C. G.; Leonard, J.

    2015-12-01

    With a changing global climate and growing demand for water throughout the world, responsible and sustainable land and water resource management practices are becoming increasingly important. Accounting for the amount of water used by riparian vegetation is a critical element for better managing water resources in arid and semiarid environments. The objective of this study was to determine water uptake by selected riparian vegetative species in a semiarid riparian corridor in North-Central Oregon. Exo-skin sap flow sensors (Dynamax, Houston, TX, U.S.A.) were used to measure sap flux in red alder (Alnus rubra) trees, the dominant overstory vegetation at the field site. Xylem sap flow data was collected from selected trees at the field site and in a greenhouse setting. Transpiration rates were determined based on an energy balance method, which makes it possible to estimate the mass flow of sap by measuring the velocity of electrical heat pulses through the plant stem. Preliminary field results indicate that red alder tree branches of about 1 inch diameter transpire between 2 and 6 kg of water/day. Higher transpiration rates of up to 7.3 kg of water/day were observed under greenhouse conditions. Streamflow and stream water temperature, vegetation characteristics, and meteorological data were analyzed in conjunction with transpiration data. Results of this study provide insight on riparian vegetation water consumption in water scarce ecosystems. This study is part of an overarching project focused on climate-vegetation interactions and ecohydrologic processes in arid and semiarid landscapes.

  14. Hydraulic root water uptake models: old concerns and new insights

    NASA Astrophysics Data System (ADS)

    Couvreur, V.; Carminati, A.; Rothfuss, Y.; Meunier, F.; Vanderborght, J.; Javaux, M.

    2014-12-01

    Root water uptake (RWU) affects underground water dynamics, with consequences on plant water availability and groundwater recharge. Even though hydrological and climate models are sensitive to RWU parameters, no consensus exists on the modelling of this process. Back in the 1940ies, Van Den Honert's catenary approach was the first to investigate the use of connected hydraulic resistances to describe water flow in whole plants. However concerns such as the necessary computing when architectures get complex made this approach premature. Now that computing power increased dramatically, hydraulic RWU models are gaining popularity, notably because they naturally produce observed processes like compensatory RWU and hydraulic redistribution. Yet major concerns remain. Some are more fundamental: according to hydraulic principles, plant water potential should equilibrate with soil water potential when the plant does not transpire, which is not a general observation when using current definitions of bulk or average soil water potential. Other concerns regard the validation process: water uptake distribution is not directly measurable, which makes it hard to demonstrate whether or not hydraulic models are more accurate than other models. Eventually parameterization concerns exist: root hydraulic properties are not easily measurable, and would even fluctuate on an hourly basis due to processes like aquaporin gating. While offering opportunities to validate hydraulic RWU models, newly developed observation techniques also make us realize the increasing complexity of processes involved in soil-plant hydrodynamics, such as the change of rhizosphere hydraulic properties with soil drying. Surprisingly, once implemented into hydraulic models, these processes do not necessarily translate into more complex emerging behavior at plant scale, and might justify the use of simplified representations of the soil-plant hydraulic system.

  15. Reactive uptake of Isoprene-derived epoxydiols to submicron aerosol particles: implications for IEPOX lifetime and SOA formation

    NASA Astrophysics Data System (ADS)

    Thornton, J. A.; Gaston, C.; Riedel, T.; Zhang, Z.; Gold, A.; Surratt, J. D.

    2014-12-01

    The reactive uptake of isoprene-derived epoxydiols (IEPOX) is thought to be a significant source of atmospheric secondary organic aerosol (SOA). However, the IEPOX reaction probability (γIEPOX) and its dependence upon particle composition remain poorly constrained. We report measurements of γIEPOX for trans-b-IEPOX, the predominant IEPOX isomer, on submicron particles as a function of composition, acidity, and relative humidity (RH). Particle acidity had the strongest effect. γIEPOX is more than 500 times larger on ammonium bisulfate (γ ~ 0.05) than on ammonium sulfate (γ ≤ 1 x 10-4). We could accurately predict γIEPOX using an acid-catalyzed, epoxide ring-opening mechanism and a high Henry's law coefficient (1.6 x 108 M/atm). Suppression of γIEPOX was observed in particles containing both ammonium bisulfate and polyethylene glycol (PEG-300), likely due to diffusion and solubility limitations within a PEG-300 coating, suggesting that IEPOX uptake could be self-limiting. Using the measured uptake kinetics, the predicted atmospheric lifetime of IEPOX is a few hours in the presence of highly acidic particles (pH < 0), but is greater than a day on less acidic particles (pH > 3). We connect these net reactive uptake measurements to chamber studies of the SOA yield from IEPOX multiphase chemistry and discuss the implications of these findings for modeling the anthropogenic influence upon SOA formation from isoprene.

  16. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest.

    PubMed

    Limm, Emily Burns; Simonin, Kevin A; Bothman, Aron G; Dawson, Todd E

    2009-09-01

    Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2-11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials. PMID:19585154

  17. Foliar water uptake: a common water acquisition strategy for plants of the redwood forest.

    PubMed

    Limm, Emily Burns; Simonin, Kevin A; Bothman, Aron G; Dawson, Todd E

    2009-09-01

    Evaluations of plant water use in ecosystems around the world reveal a shared capacity by many different species to absorb rain, dew, or fog water directly into their leaves or plant crowns. This mode of water uptake provides an important water subsidy that relieves foliar water stress. Our study provides the first comparative evaluation of foliar uptake capacity among the dominant plant taxa from the coast redwood ecosystem of California where crown-wetting events by summertime fog frequently occur during an otherwise drought-prone season. Previous research demonstrated that the dominant overstory tree species, Sequoia sempervirens, takes up fog water by both its roots (via drip from the crown to the soil) and directly through its leaf surfaces. The present study adds to these early findings and shows that 80% of the dominant species from the redwood forest exhibit this foliar uptake water acquisition strategy. The plants studied include canopy trees, understory ferns, and shrubs. Our results also show that foliar uptake provides direct hydration to leaves, increasing leaf water content by 2-11%. In addition, 60% of redwood forest species investigated demonstrate nocturnal stomatal conductance to water vapor. Such findings indicate that even species unable to absorb water directly into their foliage may still receive indirect benefits from nocturnal leaf wetting through suppressed transpiration. For these species, leaf-wetting events enhance the efficacy of nighttime re-equilibration with available soil water and therefore also increase pre-dawn leaf water potentials.

  18. Optimising root system hydraulic architectures for water uptake

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Javaux, Mathieu

    2015-04-01

    In this study we started from local hydraulic analysis of idealized root systems to develop a mathematical framework necessary for the understanding of global root systems behaviors. The underlying assumption of this study was that the plant is naturally optimised for the water uptake. The root system is thus a pipe network dedicated to the capture and transport of water. The main objective of the present research is to explain the fitness of major types of root architectures to their environment. In a first step, we developed links between local hydraulic properties and macroscopic parameters of (un)branched roots. The outcome of such an approach were functions of apparent conductance of entire root system and uptake distribution along the roots. We compared our development with some allometric scaling laws for the root water uptake: under the same simplifying assumptions we were able to obtain the same results and even to expand them to more physiological cases. Using empirical data of measured root conductance, we were also able to fit extremely well the data-set with this model. In a second stage we used generic architecture parameters and an existent root growth model to generate various types of root systems (from fibrous to tap). We combined both sides (hydraulic and architecture) then to maximize under a volume constraint either apparent conductance of root systems or the soil volume explored by active roots during the plant growth period. This approach has led to the sensitive parameters of the macroscopic parameters (conductance and location of the water uptake) of each single plant selected for this study. Scientific questions such as: "What is the optimal sowing density of a given hydraulic architecture ?" or "Which plant traits can we change to better explore the soil domain ?" can be also addressed with this approach: some potential applications are illustrated. The next (and ultimate phase) will be to validate our conclusions with real architectures

  19. Measurement of gas/water uptake coefficients for trace gases active in the marine environment

    SciTech Connect

    Davidovits, P. . Dept. of Chemistry); Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E. . Center for Chemical and Environmental Physics)

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean's surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry's law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  20. Supercooling versus crystallization of nitric acid/water aerosols

    SciTech Connect

    Disselkamp, R.S.; Anthony, S.E.; Tolbert, M.A.

    1995-12-31

    Polar Stratospheric Clouds (PSCs) have been implicated in Antarctic and Arctic ozone loss. These clouds are comprised of small particles (diameter {approximately}1 {mu}m) and play two essential roles in perturbing the chemistry of ozone during winter. First, PSCs promote heterogeneous reactions which activate chlorine. Second, PSCs permanently remove nitrogen oxides from the stratosphere due to particle sedimentation. Both PSC reactivity and denitrification depend on the particle phase and composition. In my talk, I will discuss laboratory modeling of PSCs. FTIR spectroscopy was used to investigate the phase and composition of nitric acid/water aerosols at temperatures from 190 to 229 K. Static aerosol samples were generated and probed spectroscopically for time periods of up to 100 minutes. For aerosols containing a molar ratio of 1:1 and 3:1 H{sub 2}O:HNO{sub 3}, extensive supercooling was observed with no crystallization in 100 minutes. However, aerosols containing a molar ratio of 2:1 H{sub 2}O:HNO{sub 3} crystallized readily to nitric acid dehydrate (NAD). The rate of NAD crystallization was found to increase with increasing temperature and will be discussed.

  1. Equilibrium water and solute uptake in silicone hydrogels.

    PubMed

    Liu, D E; Dursch, T J; Oh, Y; Bregante, D T; Chan, S Y; Radke, C J

    2015-05-01

    Equilibrium water content of and solute partitioning in silicone hydrogels (SiHys) are investigated using gravimetric analysis, fluorescence confocal laser-scanning microscopy (FCLSM), and back extraction with UV/Vis-absorption spectrophotometry. Synthesized silicone hydrogels consist of silicone monomer, hydrophilic monomer, cross-linking agent, and triblock-copolymer macromer used as an amphiphilic compatibilizer to prevent macrophase separation. In all cases, immiscibility of the silicone and hydrophilic polymers results in microphase-separated morphologies. To investigate solute uptake in each of the SiHy microphases, equilibrium partition coefficients are obtained for two hydrophilic solutes (i.e., theophylline and caffeine dissolved in aqueous phosphate-buffered saline) and two oleophilic solutes (i.e., Nile Red and Bodipy Green dissolved in silicone oil), respectively. Measured water contents and aqueous-solute partition coefficients increase linearly with increasing solvent-free hydrophilic-polymer volume fraction. Conversely, oleophilic-solute partition coefficients decrease linearly with rising solvent-free hydrophilic-polymer volume fraction (i.e., decreasing hydrophobic silicone-polymer fraction). We quantitatively predict equilibrium SiHy water and solute uptake assuming that water and aqueous solutes reside only in hydrophilic microdomains, whereas oleophilic solutes partition predominately into silicone microdomains. Predicted water contents and solute partition coefficients are in excellent agreement with experiment. Our new procedure permits a priori estimation of SiHy water contents and solute partition coefficients based solely on properties of silicone and hydrophilic homopolymer hydrogels, eliminating the need for further mixed-polymer-hydrogel experiments. PMID:25725471

  2. Discontinuities in hygroscopic growth below and above water saturation for laboratory surrogates of oligomers in organic atmospheric aerosols

    NASA Astrophysics Data System (ADS)

    Hodas, Natasha; Zuend, Andreas; Schilling, Katherine; Berkemeier, Thomas; Shiraiwa, Manabu; Flagan, Richard C.; Seinfeld, John H.

    2016-10-01

    Discontinuities in apparent hygroscopicity below and above water saturation have been observed for organic and mixed organic-inorganic aerosol particles in both laboratory studies and in the ambient atmosphere. However, uncertainty remains regarding the factors that contribute to observations of low hygroscopic growth below water saturation but enhanced cloud condensation nuclei (CCN) activity for a given aerosol population. Utilizing laboratory surrogates for oligomers in atmospheric aerosols, we explore the extent to which such discontinuities are influenced by organic component molecular mass and viscosity, non-ideal thermodynamic interactions between aerosol components, and the combination of these factors. Measurements of hygroscopic growth under subsaturated conditions and the CCN activity of aerosols comprised of polyethylene glycol (PEG) with average molecular masses ranging from 200 to 10 000 g mol-1 and mixtures of PEG with ammonium sulfate (AS) were conducted. Experimental results are compared to calculations of hygroscopic growth at thermodynamic equilibrium conducted with the Aerosol Inorganic Organic Mixtures Functional groups Activity Coefficients (AIOMFAC) model, and the potential influence of kinetic limitations on observed water uptake was further explored through estimations of water diffusivity in the PEG oligomers. Particle-phase behavior, including the prevalence of liquid-liquid phase separation (LLPS), was also modeled with AIOMFAC. Under subsaturated relative humidity (RH) conditions, we observed little variability in hygroscopic growth across PEG systems with different molecular masses; however, an increase in CCN activity with increasing PEG molecular mass was observed. This effect is most pronounced for PEG-AS mixtures, and, in fact, an enhancement in CCN activity was observed for the PEG10000-AS mixture as compared to pure AS, as evidenced by a 15 % reduction in critical activation diameter at a supersaturation of 0.8 %. We also

  3. Impacts of Sulfate Seed Acidity and Water Content on Isoprene Secondary Organic Aerosol Formation.

    PubMed

    Wong, Jenny P S; Lee, Alex K Y; Abbatt, Jonathan P D

    2015-11-17

    The effects of particle-phase water and the acidity of pre-existing sulfate seed particles on the formation of isoprene secondary organic aerosol (SOA) was investigated. SOA was generated from the photo-oxidation of isoprene in a flow tube reactor at 70% relative humidity (RH) and room temperature in the presence of three different sulfate seeds (effloresced and deliquesced ammonium sulfate and ammonium bisulfate) under low NOx conditions. High OH exposure conditions lead to little isoprene epoxydiol (IEPOX) SOA being generated. The primary result is that particle-phase water had the largest effect on the amount of SOA formed, with 60% more SOA formation occurring with deliquesced ammonium sulfate seeds as compared to that on effloresced ones. The additional organic material was highly oxidized. Although the amount of SOA formed did not exhibit a dependence on the range of seed particle acidity examined, perhaps because of the low amount of IEPOX SOA, the levels of high-molecular-weight material increased with acidity. While the uptake of organics was partially reversible under drying, the results nevertheless indicate that particle-phase water enhanced the amount of organic aerosol material formed and that the RH cycling of sulfate particles may mediate the extent of isoprene SOA formation in the atmosphere. PMID:26460477

  4. Uptake of antibiotics from irrigation water by plants.

    PubMed

    Azanu, David; Mortey, Christiana; Darko, Godfred; Weisser, Johan Juhl; Styrishave, Bjarne; Abaidoo, Robert Clement

    2016-08-01

    The capacity of carrot (Daucus corota L.) and lettuce (Lactuca sativa L.), two plants that are usually eaten raw, to uptake tetracycline and amoxicillin (two commonly used antibiotics) from irrigated water was investigated in order to assess the indirect human exposure to antibiotics through consumption of uncooked vegetables. Antibiotics in potted plants that had been irrigated with known concentrations of the antibiotics were extracted using accelerated solvent extraction and analyzed on a liquid chromatograph-tandem mass spectrometer. The plants absorbed the antibiotics from water in all tested concentrations of 0.1-15 mg L(-1). Tetracycline was detected in all plant samples, at concentrations ranging from 4.4 to 28.3 ng/g in lettuce and 12.0-36.8 ng g(-1) fresh weight in carrots. Amoxicillin showed absorption with concentrations ranging from 13.7 ng g(-1) to 45.2 ng g(-1) for the plant samples. The mean concentration of amoxicillin (27.1 ng g(-1)) in all the samples was significantly higher (p = 0.04) than that of tetracycline (20.2 ng g(-1)) indicating higher uptake of amoxicillin than tetracycline. This suggests that the low antibiotic concentrations found in plants could be important for causing antibiotics resistance when these levels are consumed. PMID:27213239

  5. Removal of Sarin Aerosol and Vapor by Water Sprays

    SciTech Connect

    Brockmann, John E.

    1998-09-01

    Falling water drops can collect particles and soluble or reactive vapor from the gas through which they fall. Rain is known to remove particles and vapors by the process of rainout. Water sprays can be used to remove radioactive aerosol from the atmosphere of a nuclear reactor containment building. There is a potential for water sprays to be used as a mitigation technique to remove chemical or bio- logical agents from the air. This paper is a quick-look at water spray removal. It is not definitive but rather provides a reasonable basic model for particle and gas removal and presents an example calcu- lation of sarin removal from a BART station. This work ~ a starting point and the results indicate that further modeling and exploration of additional mechanisms for particle and vapor removal may prove beneficial.

  6. Coupling of methylmercury uptake with respiration and water pumping in freshwater tilapia Oreochromis niloticus.

    PubMed

    Wang, Rui; Wong, Ming-Hung; Wang, Wen-Xiong

    2011-09-01

    The relationships among the uptake of toxic methylmercury (MeHg) and two important fish physiological processes-respiration and water pumping--in the Nile tilapia (Oreochromis niloticus) were explored in the present study. Coupled radiotracer and respirometric techniques were applied to measure simultaneously the uptake rates of MeHg, water, and oxygen under various environmental conditions (temperature, dissolved oxygen level, and water flow). A higher temperature enhanced MeHg influx and the oxygen consumption rate but had no effect on the water uptake, indicating the influence of metabolism on MeHg uptake. The fish showed a high tolerance to hypoxia, and the oxygen consumption rate was not affected until the dissolved oxygen concentration decreased to extremely low levels (below 1 mg/L). The MeHg and water uptake rates increased simultaneously as the dissolved oxygen level decreased, suggesting the coupling of water flux and MeHg uptake. The influence of fish swimming performance on MeHg uptake was also investigated for the first time. Rapidly swimming fish showed significantly higher uptake rates of MeHg, water, and oxygen, confirming the coupling relationships among respiration, water pumping, and metal uptake. Moreover, these results support that MeHg uptake is a rate-limiting process involving energy. Our study demonstrates the importance of physiological processes in understanding mercury bioaccumulation in fluctuating aquatic environments.

  7. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    NASA Astrophysics Data System (ADS)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  8. The importance of aerosol water for air pollution effects on weather and climate

    NASA Astrophysics Data System (ADS)

    Metzger, S.; Lelieveld, J.

    2007-12-01

    We apply a new concept to study air pollution effects on weather and climate, which is based on thermodynamic principles that explain hydration and osmosis - including the required transformation of laboratory based concepts to atmospheric conditions. Under ambient conditions the equilibrium relative humidity (ERH) determines the saturation molality, solute and solvent activities (and activity coefficients), and the aerosol associated water mass, sine the water content is fixed by ERH for a given aerosol concentration and type. As a consequence, aerosol water drives the gas/liquid/solid aerosol partitioning, ambient aerosol size-distributions and directly links aerosol hygroscopic growth into fog, haze and clouds. Various modeling results indicate that a) our new concept is not limited to dilute binary solutions, b) sensitive aerosol properties such as the pH of binary and mixed inorganic/organic salt solutions up to saturation can be computed accurately, and c) that anthropogenic emissions can be directly linked to visibility reduction, cloud formation and climate forcing, if we explicitly account for the aerosol water mass. Our new concept is more explicit than the traditional CCN concept as it abandons the use of ambiguous terms such as "marine" and "continental" aerosols, and refines lumped categories such as mineral dust, biomass burning, sea salt, organic or sulfate aerosols currently used in atmospheric modeling. Despite, our concept is computationally very efficient as it allows solving the whole gas/liquid/solid aerosol partitioning analytically without numerical iterations. It is therefore especially suited for regional high resolution, or global climate applications.

  9. Growth of upper tropospheric aerosols due to uptake of HNO3

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Kokkola, H.; Petzold, A.; Laaksonen, A.

    2004-01-01

    The effect of nitric acid on the equilibrium size distributions of upper tropospheric aerosols is calculated as a function of relative humidity. It is shown that HNO3 concentrations above a few tenths of a ppb can cause substantial increases in haze mode particle concentrations at relative humidities at about 60% and above. The effect can be strongly magnified when letovicite particles are present in addition to sulfuric acid aerosols. This is mainly due to the lowering of the deliquescence RH of letovicite in the presence of gaseous nitric acid at low temperatures. We have also compared equilibrium calculations of the HNO3 effect with observations of increased haze mode concentrations at relative humidities above 50% (Petzold et al., 2000). Nitric acid mixing ratios on the order of 0.5-2 ppb may explain the observed increase of haze mode particles at least partially.

  10. Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake, and hydraulic conductance

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    Growing plant cells increase in volume principally by water uptake into the vacuole. There are only three general mechanisms by which a cell can modulate the process of water uptake: (a) by relaxing wall stress to reduce cell turgor pressure (thereby reducing cell water potential), (b) by modifying the solute content of the cell or its surroundings (likewise affecting water potential), and (c) by changing the hydraulic conductance of the water uptake pathway (this works only for cells remote from water potential equilibrium). Recent studies supporting each of these potential mechanisms are reviewed and critically assessed. The importance of solute uptake and hydraulic conductance is advocated by some recent studies, but the evidence is indirect and conclusions remain controversial. For most growing plant cells with substantial turgor pressure, it appears that reduction in cell turgor pressure, as a consequence of wall relaxation, serves as the major initiator and control point for plant cell enlargement. Two views of wall relaxation as a viscoelastic or a chemorheological process are compared and distinguished.

  11. Role of water states on water uptake and proton transport in Nafion using molecular simulations and bimodal network

    SciTech Connect

    Hwang, Gi Suk; Kaviany, Massoud; Gostick, Jeffrey T.; Kientiz, Brian; Weber, Adam Z.; Kim, Moo Hwan

    2011-04-07

    In this paper, using molecular simulations and a bimodal-domain network, the role of water state on Nafion water uptake and water and proton transport is investigated. Although the smaller domains provide moderate transport pathways, their effectiveness remains low due to strong, resistive water molecules/domain surface interactions. Finally, the water occupancy of the larger domains yields bulk-like water, and causes the observed transition in the water uptake and significant increases in transport properties.

  12. Combined Dial Sounding of Ozone, Water Vapour and Aerosol

    NASA Astrophysics Data System (ADS)

    Trickl, Thomas; Vogelmann, Hannes

    2016-06-01

    Routine high-quality lidar measurements of ozone, water vapour and aerosol at Garmisch-Partenkirchen since 2007 have made possible more comprehensive atmospheric studies and lead to a growing insight concerning the most frequently occurring long-range transport pathways. In this contribution we present as examples results on stratospheric layers travelling in the free troposphere for extended periods of time without eroding. In particular, we present a case of an intrusion layer that subsided over as many as fifteen days and survived the interference by strong Canadian fires. These results impose a challenge on atmospheric modelling that grossly overestimates free-tropospheric mixing.

  13. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher J.; Brune, William H.; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-02-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ˜ 0.1 % upon extraction with pure water and increases to ˜ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Upon extraction of SOA samples from OH photooxidation of isoprene, we also detected OH yields of around ˜ 0.1 %, which increases upon addition of Fe2+. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  14. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, H.; Arangio, A. M.; Lakey, P. S. J.; Berkemeier, T.; Liu, F.; Kampf, C. J.; Pöschl, U.; Shiraiwa, M.

    2015-11-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, limonene) is ~ 0.1 % upon extraction with pure water and increases to ~ 1.5 % in the presence of Fe2+ ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical H2O2 Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  15. Hydroxyl radicals from secondary organic aerosol decomposition in water

    NASA Astrophysics Data System (ADS)

    Tong, Haijie; Arangio, Andrea M.; Lakey, Pascale S. J.; Berkemeier, Thomas; Liu, Fobang; Kampf, Christopher. J.; Pöschl, Ulrich; Shiraiwa, Manabu

    2016-04-01

    We found that ambient and laboratory-generated secondary organic aerosols (SOA) form substantial amounts of OH radicals upon interaction with liquid water, which can be explained by the decomposition of organic hydroperoxides. The molar OH yield from SOA formed by ozonolysis of terpenes (α-pinene, β-pinene, and limonene) is ~ 0.1% upon extraction with pure water, and which increases to ~ 1.5% in the presence of iron ions due to Fenton-like reactions. Our findings imply that the chemical reactivity and aging of SOA particles is strongly enhanced upon interaction with water and iron. In cloud droplets under dark conditions, SOA decomposition can compete with the classical hydrogen peroxide Fenton reaction as the source of OH radicals. Also in the human respiratory tract, the inhalation and deposition of SOA particles may lead to a substantial release of OH radicals, which may contribute to oxidative stress and play an important role in the adverse health effects of atmospheric aerosols.

  16. Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme

    NASA Astrophysics Data System (ADS)

    Berkemeier, Thomas; Huisman, Andrew J.; Ammann, Markus; Shiraiwa, Manabu; Koop, Thomas; Pöschl, Ulrich

    2013-04-01

    Heterogeneous reactions are important to atmospheric chemistry and are therefore an area of intense research. In multiphase systems such as aerosols and clouds, chemical reactions are usually strongly coupled to a complex sequence of mass transport processes and results are often not easy to interpret. Here we present a systematic classification scheme for gas uptake by aerosol or cloud particles which distinguishes two major regimes: a reaction-diffusion regime and a mass-transfer regime. Each of these regimes includes four distinct limiting cases, characterized by a dominant reaction location (surface or bulk) and a single rate-limiting process: chemical reaction, bulk diffusion, gas-phase diffusion or mass accommodation. The conceptual framework enables efficient comparison of different studies and reaction systems, going beyond the scope of previous classification schemes by explicitly resolving interfacial transport processes and surface reactions limited by mass transfer from the gas phase. The use of kinetic multi-layer models instead of resistor model approaches increases the flexibility and enables a broader treatment of the subject, including cases which do not fit into the strict limiting cases typical of most resistor model formulations. The relative importance of different kinetic parameters such as diffusion, reaction rate and accommodation coefficients in this system is evaluated by a quantitative global sensitivity analysis. We outline the characteristic features of each limiting case and discuss the potential relevance of different regimes and limiting cases for various reaction systems. In particular, the classification scheme is applied to three different data sets for the benchmark system of oleic acid reacting with ozone. In light of these results, future directions of research needed to elucidate the multiphase chemical kinetics in this and other reaction systems are discussed. Reference: Berkemeier, T., Huisman, A. J., Ammann, M., Shiraiwa, M

  17. Water adsorption around oxalic acid aggregates: a molecular dynamics simulation of water nucleation on organic aerosols.

    PubMed

    Darvas, Maria; Picaud, Sylvain; Jedlovszky, Pál

    2011-11-28

    The phase behaviour of binary oxalic acid-water mixtures has been investigated by means of computer simulation techniques. Such mixtures play an important role in atmospheric processes, since the hydrogen bonding ability of oxalic acid molecules allows them to form aerosol particles. Water can in turn be readily adsorbed on the surface of such aerosol particles, which results in the formation of small ice grains. These grains are thus considered to be acting as cloud condensation nuclei, giving rise to the formation of ice clouds.

  18. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence.

    PubMed

    Mazzacavallo, Michael G; Kulmatiski, Andrew

    2015-01-01

    Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0-20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20-90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone.

  19. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence.

    PubMed

    Mazzacavallo, Michael G; Kulmatiski, Andrew

    2015-01-01

    Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0-20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20-90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone. PMID:26633177

  20. Modelling Water Uptake Provides a New Perspective on Grass and Tree Coexistence

    PubMed Central

    2015-01-01

    Root biomass distributions have long been used to infer patterns of resource uptake. These patterns are used to understand plant growth, plant coexistence and water budgets. Root biomass, however, may be a poor indicator of resource uptake because large roots typically do not absorb water, fine roots do not absorb water from dry soils and roots of different species can be difficult to differentiate. In a sub-tropical savanna, Kruger Park, South Africa, we used a hydrologic tracer experiment to describe the abundance of active grass and tree roots across the soil profile. We then used this tracer data to parameterize a water movement model (Hydrus 1D). The model accounted for water availability and estimated grass and tree water uptake by depth over a growing season. Most root biomass was found in shallow soils (0–20 cm) and tracer data revealed that, within these shallow depths, half of active grass roots were in the top 12 cm while half of active tree roots were in the top 21 cm. However, because shallow soils provided roots with less water than deep soils (20–90 cm), the water movement model indicated that grass and tree water uptake was twice as deep as would be predicted from root biomass or tracer data alone: half of grass and tree water uptake occurred in the top 23 and 43 cm, respectively. Niche partitioning was also greater when estimated from water uptake rather than tracer uptake. Contrary to long-standing assumptions, shallow grass root distributions absorbed 32% less water than slightly deeper tree root distributions when grasses and trees were assumed to have equal water demands. Quantifying water uptake revealed deeper soil water uptake, greater niche partitioning and greater benefits of deep roots than would be estimated from root biomass or tracer uptake data alone. PMID:26633177

  1. Modeling potato root growth and water uptake under water stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato (Solanum tuberosum L.) growth and yield are sensitive to drought starting at mild stress levels. Accurate simulation of root growth is critical for estimating water and nutrient uptake dynamics of major crops and improving agricultural decision support tools for natural resource management. ...

  2. Uptake of Small Organic Compounds by Sulfuric Acid Aerosols: Dissolution and Reaction

    NASA Technical Reports Server (NTRS)

    Iraci, L. T.; Michelsen, R. R.; Ashbourn, S. F. M.; Staton, S. J. R.

    2003-01-01

    To assess the role of oxygenated volatile organic compounds in the upper troposphere and lower stratosphere, the interactions of a series of small organic compounds with low-temperature aqueous sulfuric acid will be evaluated. The total amount of organic material which may be taken up from the gas phase by dissolution, surface layer formation, and reaction during the particle lifetime will be quantified. Our current results for acetaldehyde uptake on 40 - 80 wt% sulfuric acid solutions will be compared to those of methanol, formaldehyde, and acetone to investigate the relationships between chemical functionality and heterogeneous activity. Where possible, equilibrium uptake will be ascribed to component pathways (hydration, protonation, etc.) to facilitate evaluation of other species not yet studied in low temperature aqueous sulfuric acid.

  3. Water uptake by Bufo melanostictus, as affected by osmotic gradients, vasopressin and temperature

    PubMed Central

    Dicker, S. E.; Elliott, Annie B.

    1967-01-01

    1. The rate of water uptake across the skin was studied in the live toad, Bufo melanostictus. When toads were kept in distilled water at 29° C the uptake of water amounted to 16·9 ± 1·3 μl./cm2/hr; when bathed in sucrose or urea solutions, the water uptake diminished with increasing osmotic pressure. There was no water uptake observed when toads were kept in 200 m-osmolar sucrose or urea. 2. Intramuscular injections of vasopressin increased the rate of water uptake from distilled water. There was a good relation between doses and responses over various time intervals. A dose of 4 m-u. vasopressin/g body wt. doubled the rate of water uptake over a period of 1 hr. The same dose of vasopressin doubled the rate of water uptake when the toads were kept in solutions of sucrose or urea of different osmolarity. 3. The rate of water uptake when the toads were bathed in sodium chloride solutions was consistently 8 μl./cm2/hr greater than when bathed in sucrose or urea solutions of equal osmolarity. There was no water uptake when the sodium chloride solution was 285 m-osmolar. 4. Vasopressin (4 m-u./g) injected intramuscularly doubled the rate of water uptake from sodium chloride solutions of different osmolarity. 5. With solutions of potassium chloride, sodium nitrate, and potassium nitrate, in concentrations up to 150 m-osmoles/l., the rate of water uptake was found to be the same as with solutions of sodium chloride of the same osmolarity. Similarly, it was doubled by injection of vasopressin (4m-u./g). 6. The effect of temperature on the rate of water uptake before and after injection of vasopressin was investigated in toads kept in distilled water, sucrose, or sodium chloride solutions. For temperatures between 20 and 37° C, vasopressin (4 m-u./g) reduced the activation energy involved in the process of water uptake by 4000 cal. 7. The results agree with the view that water uptake follows a diffusion process which is facilitated by vasopressin, possibly as a

  4. Growth of upper tropospheric aerosols due to uptake of HNO3

    NASA Astrophysics Data System (ADS)

    Romakkaniemi, S.; Kokkola, H.; Petzold, A.; Laaksonen, A.

    2004-03-01

    The effect of nitric acid on the equilibrium size distributions of upper tropospheric aerosols is calculated as a function of relative humidity. It is shown that HNO3 concentrations above a few tenths of a ppb can cause substantial increases in haze mode particle concentrations at relative humidities at about 60% and above. The effect can be strongly magnified when letovicite particles are present in addition to sulfuric acid aerosols. Letovicite particles are less acidic than the sulfuric acid particles and so more nitric acid can be absorbed. This effect can be seen even at RH below 50% due to the lowering of the deliquescence RH of letovicite in the presence of gaseous nitric acid at low temperatures. We have also compared equilibrium calculations of the HNO3 effect with observations of increased haze mode concentrations at relative humidities above 50% (Petzold et al., 2000). Nitric acid mixing ratios on the order of 0.5-2ppb may explain the observed increase of haze mode particles at least partially.

  5. Interpretation of Mauna Loa atmospheric transmission relative to aerosols, using photometric precipitable water amounts

    NASA Astrophysics Data System (ADS)

    Dutton, E. G.; Deluisi, J. J.; Austring, A. P.

    1985-06-01

    A parameter depending mostly on total aerosol extinction is derived using precipitable water measurements coinciding with direct broadband solar irradiance measurements in conjunction with an atmospheric transmission model. The atmospheric transmission factor (ATF), independent of the instrument calibration and the extraterrestrial solar constant, is calculated from irradiance measurements. The measured ATF value is then adjusted using precipitable water measurements. Calibrated solar photometrically derived precipitable water amounts observed at MLO are used to analyze the Mauna Loa, Hawaii (MLO) ATF record from 1978 to 1983. It is found that the ATF aerosol residual is approximately equal to the 500 nm aerosol optical depth prior to the eruption of El Chichon and a nonlinear time-dependent relationship between the two values is observed. The spectrally integrated aerosol influence on transmission and the radiation balance perturbations due to aerosols are reflected by the ATF aerosol residuals.

  6. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation.

    PubMed

    Tang, Mingjin; Cziczo, Daniel J; Grassian, Vicki H

    2016-04-13

    Mineral dust aerosol is one of the major types of aerosol present in the troposphere. The molecular level interactions of water vapor with mineral dust are of global significance. Hygroscopicity, light scattering and absorption, heterogneous reactivity and the ability to form clouds are all related to water-dust interactions. In this review article, experimental techniques to probe water interactions with dust and theoretical frameworks to understand these interactions are discussed. A comprehensive overview of laboratory studies of water adsorption, hygroscopicity, cloud condensation, and ice nucleation of fresh and atmspherically aged mineral dust particles is provided. Finally, we relate laboratory studies and theoretical simulations that provide fundemental insights into these processes on the molecular level with field measurements that illustrate the atmospheric significance of these processes. Overall, the details of water interactions with mineral dust are covered from multiple perspectives in this review article. PMID:27015126

  7. Interactions of Water with Mineral Dust Aerosol: Water Adsorption, Hygroscopicity, Cloud Condensation, and Ice Nucleation.

    PubMed

    Tang, Mingjin; Cziczo, Daniel J; Grassian, Vicki H

    2016-04-13

    Mineral dust aerosol is one of the major types of aerosol present in the troposphere. The molecular level interactions of water vapor with mineral dust are of global significance. Hygroscopicity, light scattering and absorption, heterogneous reactivity and the ability to form clouds are all related to water-dust interactions. In this review article, experimental techniques to probe water interactions with dust and theoretical frameworks to understand these interactions are discussed. A comprehensive overview of laboratory studies of water adsorption, hygroscopicity, cloud condensation, and ice nucleation of fresh and atmspherically aged mineral dust particles is provided. Finally, we relate laboratory studies and theoretical simulations that provide fundemental insights into these processes on the molecular level with field measurements that illustrate the atmospheric significance of these processes. Overall, the details of water interactions with mineral dust are covered from multiple perspectives in this review article.

  8. ASSESSMENT OF THE LIQUID WATER CONTENT OF SUMMERTIME AEROSOL IN THE SOUTHEAST UNITED STATES

    EPA Science Inventory

    The concentration of aerosol liquid water mass represents an important parameter for understanding the physical properties of PM2.5 in the atmosphere. Increases in ambient relative humidity can increase aerosol liquid water and thus the composite particle mass and particle volu...

  9. Acute Exposure from RADON-222 and Aerosols in Drinking Water

    NASA Astrophysics Data System (ADS)

    Bernhardt, George Paul, IV

    Radon-222 in water is released when the water is aerated, such as during showering. As a result, a temporary burst of radon-222 can appear as a short term, or acute, exposure. This study looked at homes with radon-222 concentrations in water from 800 picocuries per liter (pCi/l) to 53,000 pCi/l to determine the buildup of radon gas in a bathroom during showering. Samples from the tap and drain, compared to determine the percentage of radon-222 released, showed that between 58% and 88% of radon-222 in the water was released. The resultant radon-222 increase in air, measured with a flow-through detector, ranged from 2 pCi/l to 114 pCi/l in bathrooms due to a 10 to 15 minute shower with water flow rates ranging from 3 l/min to 6 l/min. Significantly, these rates did not fall rapidly but stayed approximately the same for up to 15 minutes after the water flow ceased. In examining exposures, the true danger is in the radon-222 progeny rather than the radon itself. The progeny can be inhaled and deposited in the tracheobronchial passages in the lung. Filter samples of bathroom air measured in a portable alpha spectrometer showed an increase in radon-222 progeny, notably polonium-218 and -214, in the air after showering. These increases were gradual and were on the order of 0.5 pCi/l at the highest level. Tap samples measured in a portable liquid scintillator showed that the progeny are present in the water but are not in true secular equilibrium with the radon-222 in the water. Therefore, the radon-222 does not have to decay to produce progeny since the progeny are already present in the water. A two stage sampler was used to examine the percentage of radiation available in aerosols smaller than 7 microns. Repeated trials showed that up to 85% of the radiation available in the aerosols is contained in the smaller, more respirable particles.

  10. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Coastal redwood (Sequoia sempervirens), the world’s tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, along with potential flow mechanisms and biological significance. Using isotopic labeling...

  11. Chloroform and trichloroethylene uptake from water into human skin in vitro: Kinetics and risk implications

    SciTech Connect

    Bogen, K.T.; Keating, G.A.; Vogel, J.S.

    1995-03-01

    A model recently proposed by the US Environmental Protection Agency (EPA) predicts that short-term dermal uptakes of organic environmental water contaminants are proportional to the square root of exposure time. The model appears to underestimate dermal uptake, based on very limited in vivo uptake data obtained primarily using human subjects. To further assess this model, we examined in vitro dermal uptake kinetics for aqueous organic chemicals using accelerator mass spectrometry (AMS). Specifically, we examined the kinetics of in vitro dermal uptake of {sup 14}C-labeled chloroform and trichloroethylene from dilute (5-ppb) aqueous solutions using full-thickness human cadaver skin exposed for ({le}1 hr).

  12. Nutrient uptake of peanut genotypes under different water regimes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drought is a serious environmental stress limiting growth and productivity in peanut and other crops. Nutrient uptake of peanut is reduced under drought conditions, which reduces yield. The objectives of this study were to investigate nutrient uptake of peanut genotypes in response to drought and ...

  13. Kinetic regimes and limiting cases of gas uptake and heterogeneous reactions in atmospheric aerosols and clouds: a general classification scheme

    NASA Astrophysics Data System (ADS)

    Berkemeier, T.; Huisman, A. J.; Ammann, M.; Shiraiwa, M.; Koop, T.; Pöschl, U.

    2013-07-01

    Heterogeneous reactions are important to atmospheric chemistry and are therefore an area of intense research. In multiphase systems such as aerosols and clouds, chemical reactions are usually strongly coupled to a complex sequence of mass transport processes and results are often not easy to interpret. Here we present a systematic classification scheme for gas uptake by aerosol or cloud particles which distinguishes two major regimes: a reaction-diffusion regime and a mass transfer regime. Each of these regimes includes four distinct limiting cases, characterised by a dominant reaction location (surface or bulk) and a single rate-limiting process: chemical reaction, bulk diffusion, gas-phase diffusion or mass accommodation. The conceptual framework enables efficient comparison of different studies and reaction systems, going beyond the scope of previous classification schemes by explicitly resolving interfacial transport processes and surface reactions limited by mass transfer from the gas phase. The use of kinetic multi-layer models instead of resistor model approaches increases the flexibility and enables a broader treatment of the subject, including cases which do not fit into the strict limiting cases typical of most resistor model formulations. The relative importance of different kinetic parameters such as diffusion, reaction rate and accommodation coefficients in this system is evaluated by a quantitative global sensitivity analysis. We outline the characteristic features of each limiting case and discuss the potential relevance of different regimes and limiting cases for various reaction systems. In particular, the classification scheme is applied to three different datasets for the benchmark system of oleic acid reacting with ozone in order to demonstrate utility and highlight potential issues. In light of these results, future directions of research needed to elucidate the multiphase chemical kinetics in this and other reaction systems are discussed.

  14. Root water uptake model based on water potential gradient with water redistribution via roots: application to coniferous forest site

    NASA Astrophysics Data System (ADS)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir; Tesar, Miroslav

    2013-04-01

    A simple macroscopic vertically distributed plant root water uptake (RWU) model based on traditional water-potential-gradient formulation (Vogel et al., 2013), in which the uptake rates are directly proportional to the potential gradient and indirectly proportional to the local soil and root resistances to water flow, was tested. This RWU modeling approach was implemented in a one-dimensional dual-continuum model of soil water flow based on Richards' equation and used to simulate soil water distribution changes during a vegetation season at a forest site located in a temperate humid climate of central Europe. The main objectives were to test the ability of the presented RWU model to simulate the observed soil-plant-atmosphere interactions, and to examine the differences between empirical and more physically-based RWU modeling approaches (accommodated in the same soil water flow model). The tested RWU model was capable of simulating both the compensatory root water uptake, in situations when reduced uptake from dry layers was compensated for by increased uptake from wetter layers, and the root-mediated hydraulic redistribution of soil water, contributing to more natural soil moisture distribution throughout the root zone. Comparison of the model results with the sap flow observed reveals some limitations related to the quasi-steady-state assumption for the plant xylem and zero transpiration rates prescribed during nights and precipitation. This stated, the model seems to simulate adequately both the regular nightly hydraulic redistribution, due to reduced night transpiration, and the episodic daytime hydraulic redistribution during wet canopy events. The model results were compared to simulations produced using the semi-empirical RWU model of Feddes. Based on both an improved agreement between the observed and simulated soil water pressure responses to daily variations of transpiration, and a more realistic seasonal distribution of the transpiration rate reduction

  15. Investigating water soluble organic aerosols: Sources and evolution

    NASA Astrophysics Data System (ADS)

    Hecobian, Arsineh N.

    Many studies are being conducted on the different properties of organic aerosols (OA-s) as it is first emitted into the atmosphere and the consequent changes in these characteristics as OA-s age and secondary organic aerosol (SOA) is produced and in turn aged. This thesis attempts to address some of the significant and emerging issues that deal with the formation and transformation of water-soluble organic aerosols in the atmosphere. First, a proven method for the measurement of gaseous sulfuric acid, negative ion chemical ionization mass spectrometry (CIMS), has been modified for fast and sensitive measurements of particulate phase sulfuric acid (i.e. sulfate). The modifications implemented on this system have also been the subject of preliminary verifications for measurements of aerosol phase oxalic acid (an organic acid). Second, chemical and physical characteristics of a wide range of biomass-burning plumes intercepted by the NASA DC-8 research aircraft during the three phases of the ARCTAS experiment are presented here. A statistical summary of the emission (or enhancement) ratios relative to carbon monoxide is presented for various gaseous and aerosol species. Extensive investigations of fire plume evolutions were undertaken during the second part of this field campaign. For four distinct Boreal fires, where plumes were intercepted by the aircraft over a wide range of down-wind distances, emissions of various compounds and the effect of aging on them were investigated in detail. No clear evidence of production of secondary compounds (e.g., WSOC and OA) was observed. High variability in emissions between the different plumes may have obscured any clear evidence of changes in the mass of various species with increasing plume age. Also, the lack if tropospheric oxidizing species (e.g., O3 and OH) may have contributed to the lack of SOA formation. Individual intercepts of smoke plumes in this study were segregated by source regions. The normalized excess mixing

  16. Depth of soil water uptake by tropical rainforest trees during dry periods: does tree dimension matter?

    PubMed

    Stahl, Clément; Hérault, Bruno; Rossi, Vivien; Burban, Benoit; Bréchet, Claude; Bonal, Damien

    2013-12-01

    Though the root biomass of tropical rainforest trees is concentrated in the upper soil layers, soil water uptake by deep roots has been shown to contribute to tree transpiration. A precise evaluation of the relationship between tree dimensions and depth of water uptake would be useful in tree-based modelling approaches designed to anticipate the response of tropical rainforest ecosystems to future changes in environmental conditions. We used an innovative dual-isotope labelling approach (deuterium in surface soil and oxygen at 120-cm depth) coupled with a modelling approach to investigate the role of tree dimensions in soil water uptake in a tropical rainforest exposed to seasonal drought. We studied 65 trees of varying diameter and height and with a wide range of predawn leaf water potential (Ψpd) values. We confirmed that about half of the studied trees relied on soil water below 100-cm depth during dry periods. Ψpd was negatively correlated with depth of water extraction and can be taken as a rough proxy of this depth. Some trees showed considerable plasticity in their depth of water uptake, exhibiting an efficient adaptive strategy for water and nutrient resource acquisition. We did not find a strong relationship between tree dimensions and depth of water uptake. While tall trees preferentially extract water from layers below 100-cm depth, shorter trees show broad variations in mean depth of water uptake. This precludes the use of tree dimensions to parameterize functional models.

  17. Tracking Water Diffusion Fronts in a Highly Viscous Aerosol Particle

    NASA Astrophysics Data System (ADS)

    Bastelberger, Sandra; Krieger, Ulrich; Peter, Thomas

    2016-04-01

    Field measurements indicate that atmospheric secondary aerosol particles can be present in a highly viscous, glassy state [1]. In contrast to liquid state particles, the gas phase equilibration is kinetically limited and governed by condensed phase diffusion. In recent water diffusion experiments on highly viscous single aerosol particles levitated in an electrodynamic balance (EDB) we observed a characteristic shift behavior of the Mie whispering gallery modes (WGM) indicative of the changing radial structure of the particle, thus providing us with an experimental method to track the diffusion process inside the particle. When a highly viscous, homogeneous particle is exposed to an abrupt increase in relative humidity, the rapid gas phase diffusion and strong concentration dependence of the diffusion coefficient in the condensed phase lead to extremely steep water concentration gradients inside the particle, reminiscent of diffusion fronts. The resulting quasi step-like concentration profile motivates the introduction of a simple core-shell model describing the morphology of the non-equilibrium particle during humidification. The subsequent particle growth and reduction of the shell refractive index can be observed as red and blueshift behavior of the WGM, respectively. The shift pattern can be attributed to a core-shell radius ratio and particle radius derived from model calculations [2]. If supplemented with growth information obtained from the WGM redshift and thermodynamic equilibrium data, we can infer a comprehensive picture of the time evolution of the diffusion fronts in the framework of our core-shell model. The measured time dependent concentration profile is then compared with simulations solving the non-linear diffusion equation [3] [1] Virtanen, A., et al., Nature, 467, 824-827, 2010 [2] Kaiser, T., Schweiger, G., Computers in Physics, Vol. 7, No. 6, 682-686, Nov/Dec 1993 [3] Zobrist, B., Soonsin, V., Luo, B.P., Peter, T. et al., Phys. Chem. Chem

  18. 45Ca uptake from water by snails (Lymnaea vulgaris) in control and detergent-polluted samples.

    PubMed

    Misra, V; Lal, H; Viswanathan, P N; Murti, C R

    1984-02-01

    A biostatic assay method involving 45Ca uptake into shells and tissues of snails (Lymnaea vulgaris) in 72 hr was developed to follow the effect of detergent-polluted water on ecosystems. There was a marked decrease in the 45Ca uptake by shells and tissues of linear alkyl benzene sulfonate-exposed animals as compared to controls. No change in 45Ca uptake was observed in dead shells, thereby excluding the possibility of passive exchange.

  19. Controls on tree water uptake and information storage in tree rings

    NASA Astrophysics Data System (ADS)

    Blume, Theresa; Simard, Sonia; Heidbüchel, Ingo; Güntner, Andreas; Heinrich, Ingo

    2016-04-01

    Controls on tree water uptake are investigated in various forest stands in the northeastern German lowlands by a multi-method approach. This approach combines sapflow and dendrometer measurements as well as tree-ring analyses with soil moisture derived root water uptake rates. The latter method has the advantage that it provides depth distributions of root water uptake and thus additional information allowing for a more detailed analysis of the relationship between water availability and water uptake. High resolution climatic data makes it possible to investigate the site specific interplay between atmospheric demand and water availability on the one hand and tree response and adaptation on the other hand. The comparison of spatio-temporal patterns of these responses with concurrent tree growth as well as tree-ring analyses enables a first matching of actual and "archived" patterns and thus an estimate of how much of this information is stored in tree rings.

  20. Characterization of cadmium uptake by the water lily Nymphaea aurora.

    PubMed

    Schor-Fumbarov, Tamar; Keilin, Zvika; Tel-Or, Elisha

    2003-01-01

    This study characterizes cadmium (Cd) uptake by the waterlily Nymphaea aurora, (Nymphaeaceae) in two systems: a model hydroponic Cd solution and heavily polluted sludge from two sites in Israel. The uptake of Cd from hydroponic solution resulted in Cd storage in petioles and laminae of Nymphaea, as well as in the roots. The pH of the solution affected Cd solubility and availability, with pH 5.5 yielding maximum Cd content in the plant (140 mg Cd per g DW). Cd uptake was reduced by the addition of EDTA to the hydroponic growth medium, although EDTA enhanced heavy metal uptake by terrestrial plants. Nymphaea efficiently reduced the concentration of Cd in heavy metal polluted urban and industrial sludge and the amount of Cd uptake was enhanced by the addition of KCl to the sludge and by adjustment of the pH to 5.5. The inherent growth patterns of Nymphaea plants allowed Cd uptake by the shoot and root, and resulted in maximum contact between the various plant parts and the growth media. Thus, Nymphaea has potential as an optimal, highly effective phytoremediation tool for the removal of Cd from polluted waste sources.

  1. Secondary Organic Aerosol Formation from 2-Methyl-3-Buten-2-ol Photooxidation: Evidence of Acid-Catalyzed Reactive Uptake of Epoxides

    SciTech Connect

    Zhang, Haofei; Zhang, Zhenfa; Cui, Tianqu; Lin, Ying-Hsuan; Bhathela, Neil A.; Ortega, John; Worton, David; Goldstein, Allen H.; Guenther, Alex B.; Jimenez, Jose L.; Gold, Avram; Surratt, Jason D.

    2014-04-08

    Secondary organic aerosol (SOA) formation from 2-methyl-3-buten-2-ol (MBO) photooxidation has recently been observed in both field and laboratory studies. Similar to isoprene, MBO-derived SOA increases with elevated aerosol acidity in the absence of nitric oxide; therefore, an epoxide intermediate, (3,3-dimethyloxiran-2-yl)methanol (MBO epoxide) was synthesized and tentatively proposed here to explain this enhancement. In the present study, the potential of the synthetic MBO epoxide to form SOA via reactive uptake was systematically examined. SOA was observed only in the presence of acidic aerosols. Major SOA constituents, 2,3-dihydroxyisopentanol (DHIP) and MBO-derived organosulfate isomers, were chemically characterized in both laboratory-generated SOA and in ambient fine aerosols collected from the BEACHON-RoMBAS field campaign during summer 2011, where MBO emissions are substantial. Our results support epoxides as potential products of MBO photooxidation leading to formation of atmospheric SOA and suggest that reactive uptake of epoxides may generally explain acid enhancement of SOA observed from other biogenic hydrocarbons.

  2. Decreasing Aerosol Water Is Consistent with OC Trends in the Southeast U.S.

    PubMed

    Nguyen, Thien Khoi V; Capps, Shannon L; Carlton, Annmarie G

    2015-07-01

    Water is a ubiquitous and abundant component of atmospheric aerosols. It influences light scattering, the hydrological cycle, atmospheric chemistry, and secondary particulate matter (PM) formation. Despite the critical importance of aerosol liquid water, mass concentrations are not well-known. Using speciated ion and meteorological data from the Southeastern Aerosol Research and Characterization network, we employ the thermodynamic model ISORROPIAv2.1 to estimate water mass concentrations and evaluate trends from 2001 to 2012 in urban and rural locations. The purpose of this study is to better understand the historical trends of aerosol liquid water in the southeast U.S. in the context of improved air quality and recently noted reductions in particulate organic carbon (OC). Aerosol water mass concentrations decrease by ∼79% from 2001 to 2012 in the region. Decreases are more prominent in rural than in urban areas. Fractional contribution of water to PM also decreases during the same time period, and this is consistent with recently noted improvements in visibility. These findings agree with the hypotheses that aerosol liquid water facilitates formation of biogenic secondary organic aerosol (SOA) and that biogenically derived SOA is modulated in the presence of anthropogenic perturbations. PMID:26030084

  3. Influence of root-water-uptake parameterization on simulated heat transport in a structured forest soil

    NASA Astrophysics Data System (ADS)

    Votrubova, Jana; Vogel, Tomas; Dohnal, Michal; Dusek, Jaromir

    2015-04-01

    Coupled simulations of soil water flow and associated transport of substances have become a useful and increasingly popular tool of subsurface hydrology. Quality of such simulations is directly affected by correctness of its hydraulic part. When near-surface processes under vegetation cover are of interest, appropriate representation of the root water uptake becomes essential. Simulation study of coupled water and heat transport in soil profile under natural conditions was conducted. One-dimensional dual-continuum model (S1D code) with semi-separate flow domains representing the soil matrix and the network of preferential pathways was used. A simple root water uptake model based on water-potential-gradient (WPG) formulation was applied. As demonstrated before [1], the WPG formulation - capable of simulating both the compensatory root water uptake (in situations when reduced uptake from dry layers is compensated by increased uptake from wetter layers), and the root-mediated hydraulic redistribution of soil water - enables simulation of more natural soil moisture distribution throughout the root zone. The potential effect on heat transport in a soil profile is the subject of the present study. [1] Vogel T., M. Dohnal, J. Dusek, J. Votrubova, and M. Tesar. 2013. Macroscopic modeling of plant water uptake in a forest stand involving root-mediated soil-water redistribution. Vadose Zone Journal, 12, 10.2136/vzj2012.0154. The research was supported by the Czech Science Foundation Project No. 14-15201J.

  4. Cloud-Aerosol Interactions: Retrieving Aerosol Ångström Exponents from Calipso Measurements of Opaque Water Clouds

    NASA Astrophysics Data System (ADS)

    Vaughan, Mark; Liu, Zhaoyan; Hu, Yong-Xiang; Powell, Kathleen; Omar, Ali; Rodier, Sharon; Hunt, William; Kar, Jayanta; Tackett, Jason; Getzewich, Brian; Lee, Kam-Pui

    2016-06-01

    Backscatter and extinction from water clouds are well-understood, both theoretically and experimentally, and thus changes to the expected measurement of layer-integrated attenuated backscatter can be used to infer the optical properties of overlying layers. In this paper we offer a first look at a new retrieval technique that uses CALIPSO measurements of opaque water clouds to derive optical depths and Ångström exponents for overlying aerosol layers.

  5. Predicting perchlorate uptake in greenhouse lettuce from perchlorate, nitrate and chloride irrigation water concentrations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Perchlorate (ClO4-) has been detected in edible leafy vegetables irrigated with Colorado River water. The primary concern has been the ClO4- concentration in lettuce. There has been a limited number of studies on ClO4- uptake but the interactive effect of other anions on ClO4- uptake is not known in...

  6. Thermodynamics of water condensation on a primary marine aerosol coated by surfactant organic molecules.

    PubMed

    Djikaev, Yuri S; Ruckenstein, Eli

    2014-10-23

    A large subset of primary marine aerosols can be initially (immediately upon formation) treated using an "inverted micelle" model. We study the thermodynamics of heterogeneous water condensation on such a marine aerosol. Its hydrophobic organic coating can be processed by chemical reactions with atmospheric species; this enables the marine aerosol to serve as a nucleating center for water condensation. The most probable pathway of such "aging" involves atmospheric hydroxyl radicals that abstract hydrogen atoms from organic molecules coating the aerosol (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). Taking these two reactions into account, we derive an expression for the free energy of formation of an aqueous droplet on a marine aerosol. The model is illustrated by numerical calculations. The results suggest that the formation of aqueous droplets on marine aerosols is most likely to occur via Köhler activation rather than via nucleation. The model allows one to determine the threshold parameters necessary for the Köhler activation of such aerosols. Numerical results also corroborate previous suggestions that one can omit some chemical species of aerosols (and other details of their chemical composition) in investigating aerosol effects on climate.

  7. Foliar water uptake of Tamarix ramosissima from an atmosphere of high humidity.

    PubMed

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants. PMID:24982964

  8. Foliar Water Uptake of Tamarix ramosissima from an Atmosphere of High Humidity

    PubMed Central

    Li, Shuang; Xiao, Hong-lang; Zhao, Liang; Zhou, Mao-Xian; Wang, Fang

    2014-01-01

    Many species have been found to be capable of foliar water uptake, but little research has focused on this in desert plants. Tamarix ramosissima was investigated to determine whether its leaves can directly absorb water from high humidity atmosphere and, if they can, to understand the magnitude and importance of foliar water uptake. Various techniques were adopted to demonstrate foliar water uptake under submergence or high atmospheric humidity. The mean increase in leaf water content after submergence was 29.38% and 20.93% for mature and tender leaves, respectively. In the chamber experiment, obvious reverse sap flow occurred when relative humidity (RH) was persistently above 90%. Reverse flow was recorded first in twigs, then in branches and stems. For the stem, the percentage of negative sap flow rate accounting for the maximum value of sap flow reached 10.71%, and its amount accounted for 7.54% of diurnal sap flow. Small rainfall can not only compensate water loss of plant by foliar uptake, but also suppress transpiration. Foliar uptake can appear in the daytime under certain rainfall events. High atmospheric humidity is beneficial for enhancing the water status of plants. Foliar uptake should be an important strategy of water acquisition for desert plants. PMID:24982964

  9. Investigation of mainstream smoke aerosol of the argileh water pipe.

    PubMed

    Shihadeh, A

    2003-01-01

    A first-generation smoking machine and protocol have been developed in order to study the mainstream smoke aerosol and elucidate thermal-fluid processes of the argileh water pipe. Results using a common mo'assel tobacco mixture show that, contrary to popular perceptions, the mainstream smoke contains significant amounts of nicotine, "tar" and heavy metals. With a standard smoking protocol of 100 puffs of 3 s duration spaced at 30-s intervals, the following results were obtained in a single smoking session: 2.25 mg nicotine, 242 mg nicotine-free dry particulate matter (NFDPM), and relative to the smoke of a single cigarette, high levels of arsenic, chromium and lead. It was found that increasing puff frequency increased the NFDPM but had little effect on nicotine delivery, while removing the water from the bowl increased by several-fold the nicotine, but had little effect on NFDPM. It was also found that the charcoal disk heat source contributed less than 2% of total particulate matter (TPM), and that characteristic temperatures of the tobacco varied from 450 degrees C nearest the heat source to 50 degrees C furthest away, indicating that the NFDPM is likely a result of devolatilization rather than chemical reaction, and will thus differ significantly in composition from that of cigarette smoke.

  10. Water uptake efficiency of a maize plant - A simulation case study

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Leitner, Daniel; Bodner, Gernot; Javaux, Mathieu; Schnepf, Andrea

    2014-05-01

    Water uptake by plant roots is a complex mechanism controlled by biological and physical properties of the soil-plant-atmosphere system and affects a major component of the water cycle, transpiration. This uptake of water by plants is one of the major factors of plant development. Since water uptake occurs at the roots, root architecture and hydraulic properties both play a crucial role in plant productivity. A fundamental understanding of the main processes of water uptake will enable better breeding of drought resistant plants and the improvement of irrigation strategies. In this work we analyzed the differences of root water uptake between idealized genotypes of a plant using mathematical modelling The numerical simulations were performed by the R-SWMS software (Javaux et al., 2008). The model describes 3-D water movement in soil by solving Richard's equation with a sink term representing root uptake. Water flow within the root xylem network and between soil and root is modelled based on water pressure gradients and calculated according to Doussan's model. The sink term is calculated by integration of local uptakes within rooted representative elementary volumes of soil. The plant water demand is described by a boundary condition at the base of the shoot. We compare the water uptake efficiency of three types of root system architectures of a maize plant. Two are actual architectures from genotypes showing significant differences regarding the internodal distance, the root growth rate and the insertion angle of their primary roots. The third one is an ideotype according to Lynch of the maize plant designed to perform better in one dry environment. We generated with RootBox five repetitions of these three root systems with the same total root volume and simulated two drought scenarios at the flowering stage (lack of water at the top or at the bottom of the soil domain). We did these simulations for two distinct distributions of local conductivities of root

  11. Detecting spatio-temporal controls on depth distributions of root water uptake using soil moisture patterns

    NASA Astrophysics Data System (ADS)

    Blume, Theresa; Heidbüchel, Ingo; Simard, Sonia; Güntner, Andreas; Weiler, Markus

    2016-04-01

    Landscape scale soil moisture patterns show a pronounced shift when plants become active during the growing season. Soil moisture patterns are then not only controlled by soils, topography and related abiotic site characteristics as well as site characteristic throughfall patterns but also by root water uptake. In this study root water uptake from different soil depths is estimated based on diurnal fluctuations in soil moisture content and was investigated with a setup of 15 field sites in a forest in northeastern Germany. These sites cover different topographic positions and forest stands. Vegetation types include pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 5 soil moisture and soil temperature profiles, matric potential, piezometers and sapflow sensors as well as standard climate data. The resulting comprehensive data set of depth distributed root water uptake shows differences in overall amounts as well as in uptake depth distributions between different forest stands, but also related to slope position and thus depth to groundwater. Temporal dynamics of signal strength within the profile suggest a locally shifting spatial distribution of root water uptake depending on water availability. The relative contributions of the different depths to overall root water uptake shift as the summer progresses. However, the relationship of these depth resolved uptake rates to overall soil water availability varies considerably between tree species. This unique data set of depth specific contributions to root water uptake down to a depth of 2 m allows a much more detailed analysis of tree response to water availability than the more common transpiration estimates generated by sapflow or eddy flux measurements.

  12. Developing a Suitable Model for Water Uptake for Biodegradable Polymers Using Small Training Sets.

    PubMed

    Valenzuela, Loreto M; Knight, Doyle D; Kohn, Joachim

    2016-01-01

    Prediction of the dynamic properties of water uptake across polymer libraries can accelerate polymer selection for a specific application. We first built semiempirical models using Artificial Neural Networks and all water uptake data, as individual input. These models give very good correlations (R (2) > 0.78 for test set) but very low accuracy on cross-validation sets (less than 19% of experimental points within experimental error). Instead, using consolidated parameters like equilibrium water uptake a good model is obtained (R (2) = 0.78 for test set), with accurate predictions for 50% of tested polymers. The semiempirical model was applied to the 56-polymer library of L-tyrosine-derived polyarylates, identifying groups of polymers that are likely to satisfy design criteria for water uptake. This research demonstrates that a surrogate modeling effort can reduce the number of polymers that must be synthesized and characterized to identify an appropriate polymer that meets certain performance criteria. PMID:27200091

  13. Developing a Suitable Model for Water Uptake for Biodegradable Polymers Using Small Training Sets

    PubMed Central

    Valenzuela, Loreto M.; Knight, Doyle D.; Kohn, Joachim

    2016-01-01

    Prediction of the dynamic properties of water uptake across polymer libraries can accelerate polymer selection for a specific application. We first built semiempirical models using Artificial Neural Networks and all water uptake data, as individual input. These models give very good correlations (R2 > 0.78 for test set) but very low accuracy on cross-validation sets (less than 19% of experimental points within experimental error). Instead, using consolidated parameters like equilibrium water uptake a good model is obtained (R2 = 0.78 for test set), with accurate predictions for 50% of tested polymers. The semiempirical model was applied to the 56-polymer library of L-tyrosine-derived polyarylates, identifying groups of polymers that are likely to satisfy design criteria for water uptake. This research demonstrates that a surrogate modeling effort can reduce the number of polymers that must be synthesized and characterized to identify an appropriate polymer that meets certain performance criteria. PMID:27200091

  14. Plant nitrogen uptake drives responses of productivity to nitrogen and water addition in a grassland

    PubMed Central

    Lü, Xiao-Tao; Dijkstra, Feike A.; Kong, De-Liang; Wang, Zheng-Wen; Han, Xing-Guo

    2014-01-01

    Increased atmospheric nitrogen (N) deposition and altered precipitation regimes have profound impacts on ecosystem functioning in semiarid grasslands. The interactions between those two factors remain largely unknown. A field experiment with N and water additions was conducted in a semiarid grassland in northern China. We examined the responses of aboveground net primary production (ANPP) and plant N use during two contrasting hydrological growing seasons. Nitrogen addition had no impact on ANPP, which may be accounted for by the offset between enhanced plant N uptake and decreased plant nitrogen use efficiency (NUE). Water addition significantly enhanced ANPP, which was largely due to enhanced plant aboveground N uptake. Nitrogen and water additions significantly interacted to affect ANPP, plant N uptake and N concentrations at the community level. Our observations highlight the important role of plant N uptake and use in mediating the effects of N and water addition on ANPP. PMID:24769508

  15. Size Effect of Silica Shell on Gas Uptake Kinetics in Dry Water.

    PubMed

    Li, Yong; Zhang, Diwei; Bai, Dongsheng; Li, Shujing; Wang, Xinrui; Zhou, Wei

    2016-07-26

    Two kinds of dry water (DW) particles are prepared by mixing water and hydrophobic silica particles with nanometer or micrometer dimensions, and the two DW particles are found to have similar size distributions regardless of the size of the silica shell. The CO2 uptake kinetics of DW with nanometer (nanoshell) and micrometer shells (microshell) are measured, and both uptake rate and capacity show the obvious size effect of the silica shell. The DW with a microshell possesses a larger uptake capacity, whereas the DW with a nanoshell has a faster uptake rate. By comparing the uptake kinetics of soluble NH3 and CO2 further, we found that the microshell enhances the stability and the dispersion degree of DW and the nanoshell offers a shorter path for the transit of guest gas into the water core. Furthermore, molecular dynamics simulation is introduced to illustrate the nanosize effect of the silica shell on the initial step of the gas uptake. It is found that the concentration of gas molecules close to the silica shell is higher than that in the bulk water core. With the increase in the size of the silica shell, the amount of CO2 in the silica shell decreases, and it is easier for the gas uptake to reach steady state. PMID:27350177

  16. Comparing the mechanism of water condensation and evaporation in glassy aerosol

    PubMed Central

    Bones, David L.; Reid, Jonathan P.; Lienhard, Daniel M.; Krieger, Ulrich K.

    2012-01-01

    Atmospheric models generally assume that aerosol particles are in equilibrium with the surrounding gas phase. However, recent observations that secondary organic aerosols can exist in a glassy state have highlighted the need to more fully understand the kinetic limitations that may control water partitioning in ambient particles. Here, we explore the influence of slow water diffusion in the condensed aerosol phase on the rates of both condensation and evaporation, demonstrating that significant inhibition in mass transfer occurs for ultraviscous aerosol, not just for glassy aerosol. Using coarse mode (3–4 um radius) ternary sucrose/sodium chloride/aqueous droplets as a proxy for multicomponent ambient aerosol, we demonstrate that the timescale for particle equilibration correlates with bulk viscosity and can be ≫103 s. Extrapolation of these timescales to particle sizes in the accumulation mode (e.g., approximately 100 nm) by applying the Stokes-Einstein equation suggests that the kinetic limitations imposed on mass transfer of water by slow bulk phase diffusion must be more fully investigated for atmospheric aerosol. Measurements have been made on particles covering a range in dynamic viscosity from < 0.1 to > 1013 Pa s. We also retrieve the radial inhomogeneities apparent in particle composition during condensation and evaporation and contrast the dynamics of slow dissolution of a viscous core into a labile shell during condensation with the slow percolation of water during evaporation through a more homogeneous viscous particle bulk. PMID:22753520

  17. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement. PMID:25321266

  18. Compact airborne Raman lidar for profiling aerosol, water vapor and clouds.

    PubMed

    Liu, Bo; Wang, Zhien; Cai, Yong; Wechsler, Perry; Kuestner, William; Burkhart, Matthew; Welch, Wayne

    2014-08-25

    A compact airborne Raman lidar system, which can perform water vapor and aerosol measurements both during nighttime and daytime is described. The system design, setup and the data processing methods are described in the paper. The Raman lidar was tested on University of Wyoming King Air research aircraft (UWKA) during the Wyoming King Air PBL Exploratory Experiment (KAPEE) in 2010. An observation showing clouds, aerosols and a dry line is presented to illustrate the lidar detection capabilities. Comparisons of the water vapor and aerosol measurements using the Raman lidar and other in situ airborne instruments show good agreement.

  19. Measurement of gas/water uptake coefficients for trace gases active in the marine environment. [Annual report

    SciTech Connect

    Davidovits, P.; Worsnop, D.W.; Zahniser, M.S.; Kolb, C.E.

    1992-02-01

    Ocean produced reduced sulfur compounds including dimethylsulfide (DMS), hydrogen sulfide (H{sub 2}S), carbon disulfide (CS{sub 2}), methyl mercaptan (CH{sub 3}CH) and carbonyl sulfide (OCS) deliver a sulfur burden to the atmosphere which is roughly equal to sulfur oxides produced by fossil fuel combustion. These species and their oxidation products dimethyl sulfoxide (DMSO), dimethyl sulfone (DMSO{sub 2}) and methane sulfonic acid (MSA) dominate aerosol and CCN production in clean marine air. Furthermore, oxidation of reduced sulfur species will be strongly influenced by NO{sub x}/O{sub 3} chemistry in marine atmospheres. The multiphase chemical processes for these species must be understood in order to study the evolving role of combustion produced sulfur oxides over the oceans. We have measured the chemical and physical parameters affecting the uptake of reduced sulfur compounds, their oxidation products, ozone, and nitrogen oxides by the ocean`s surface, and marine clouds, fogs, and aerosols. These parameters include: gas/surface mass accommodation coefficients; physical and chemically modified (effective) Henry`s law constants; and surface and liquid phase reaction constants. These parameters are critical to understanding both the interaction of gaseous trace species with cloud and fog droplets and the deposition of trace gaseous species to dew covered, fresh water and marine surfaces.

  20. CONVERGING PATTERNS OF UPTAKE AND HYDRAULIC REDISTRIBUTION OF SOIL WATER IN CONTRASTING WOODY VEGETATION TYPES

    EPA Science Inventory

    We used concurrent measurements of soil water content and soil water potential (Ysoil) to assess the effects of Ysoil on uptake and hydraulic redistribution (HR) of soil water by roots during seasonal drought cycles in six sites characterized by different types and amounts of woo...

  1. Airborne Sunphotometry of Aerosol Optical Depth and Columnar Water Vapor During ACE-Asia

    NASA Technical Reports Server (NTRS)

    Redemann, Jens; Schmid, B.; Russell, P. B.; Livingston, J. M.; Eilers, J. A.; Ramirez, S. A.; Kahn, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    During the Intensive Field Campaign (IFC) of the Aerosol Characterization Experiment - Asia (ACE-Asia), March-May 2001, the 6-channel NASA Ames Airborne Tracking Sunphotometer (AATS-6) operated during 15 of the 19 research flights aboard the NCAR C- 130, while its 14-channel counterpart (AATS- 14) was flown successfully on all 18 research flights of a Twin Otter aircraft operated by the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS), Monterey, CA. ACE-Asia was the fourth in a series of aerosol characterization experiments and focused on aerosol outflow from the Asian continent to the Pacific basin. Each ACE was designed to integrate suborbital and satellite measurements and models so as to reduce the uncertainty in calculations of the climate forcing due to aerosols. The Ames Airborne Tracking Sunphotometers measured solar beam transmission at 6 (380-1021 nm, AATS-6) and 14 wavelengths (353-1558 nm, AATS-14) respectively, yielding aerosol optical depth (AOD) spectra and column water vapor (CWV). Vertical differentiation in profiles yielded aerosol extinction and water vapor concentration. The wavelength dependence of AOD and extinction indicates that supermicron dust was often a major component of the aerosol. Frequently this dust-containing aerosol extended to high altitudes. For example, in data flights analyzed to date 34 +/- 13% of full-column AOD(525 nm) was above 3 km. In contrast, only 10 +/- 4% of CWV was above 3 km. In this paper, we will show first sunphotometer-derived results regarding the spatial variation of AOD and CWV, as well as the vertical distribution of aerosol extinction and water vapor concentration. Preliminary comparison studies between our AOD/aerosol extinction data and results from: (1) extinction products derived using in situ measurements and (2) AOD retrievals using the Multi-angle Imaging Spectro-Radiometer (MISR) aboard the TERRA satellite will also be presented.

  2. Sources of Water-soluble Organic Aerosol in the Southeastern United States - Evidence of SOA Formed Through Heterogeneous Reactions

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Weber, R. J.

    2010-12-01

    . Weber (2010), Water-soluble organic aerosol material and the light-absorption characteristics of aqueous extracts measured over the southeastern United States, Atm. Chem. Phys., 10, 5965-5977. Hennigan, C. J., M. H. Bergin, J. E. Dibb, and R. J. Weber (2008a), Enhanced secondary organic aerosol formation due to water uptake by fine particles, Geophys. Res. Lett., 35, L18801, 18810.11029/12008GL035046. Hennigan, C. J., M. H. Bergin, and R. J. Weber (2008b), Correlations between water-soluble organic aerosol and water vapor: A synergistic effect from biogenic emissions?, Environ. Sci. Tech., 42(24), 9079-9085. Hennigan, C. J., et al. (2008c), On the volatility and production mechanisms of newly formed nitrate and water soluble organic aerosol in Mexico City, Atm. Chem. Phys., 8, 3761-3768. Hennigan, C. J., M. H. Bergin, A. G. Russell, A. Nenes, and R. J. Weber (2009), Gas/particle partitioning of water-soluble organic aerosol in Atlanta, Atm. Chem. Phys., 9, 3613-3628. Zhang, X., A. Hecobian, M. Zheng, N. Frank, and R. J. Weber (2010), Biomass buring impact on PM2.5 over the southeastern U.S.: Intgrating chemically speciated FRM filter measurements, MODIS fire counts and PMF analysis, Atm. Chem. Phys., 10, 6839-6853.

  3. A Series RCL Circuit Theory for Analyzing Non-Steady-State Water Uptake of Maize Plants

    PubMed Central

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-01-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths. PMID:25335512

  4. A series RCL circuit theory for analyzing non-steady-state water uptake of maize plants.

    PubMed

    Zhuang, Jie; Yu, Gui-Rui; Nakayama, Keiichi

    2014-01-01

    Understanding water uptake and transport through the soil-plant continuum is vital for ecosystem management and agricultural water use. Plant water uptake under natural conditions is a non-steady transient flow controlled by root distribution, plant configuration, soil hydraulics, and climatic conditions. Despite significant progress in model development, a mechanistic description of transient water uptake has not been developed or remains incomplete. Here, based on advanced electrical network theory (RLC circuit theory), we developed a non-steady state biophysical model to mechanistically analyze the fluctuations of uptake rates in response to water stress. We found that the non-steady-state model captures the nature of instantaneity and hysteresis of plant water uptake due to the considerations of water storage in plant xylem and coarse roots (capacitance effect), hydraulic architecture of leaf system (inductance effect), and soil-root contact (fuse effect). The model provides insights into the important role of plant configuration and hydraulic heterogeneity in helping plants survive an adverse environment. Our tests against field data suggest that the non-steady-state model has great potential for being used to interpret the smart water strategy of plants, which is intrinsically determined by stem size, leaf size/thickness and distribution, root system architecture, and the ratio of fine-to-coarse root lengths.

  5. Influence of organic films on the evaporation and condensation of water in aerosol.

    PubMed

    Davies, James F; Miles, Rachael E H; Haddrell, Allen E; Reid, Jonathan P

    2013-05-28

    Uncertainties in quantifying the kinetics of evaporation and condensation of water from atmospheric aerosol are a significant contributor to the uncertainty in predicting cloud droplet number and the indirect effect of aerosols on climate. The influence of aerosol particle surface composition, particularly the impact of surface active organic films, on the condensation and evaporation coefficients remains ambiguous. Here, we report measurements of the influence of organic films on the evaporation and condensation of water from aerosol particles. Significant reductions in the evaporation coefficient are shown to result when condensed films are formed by monolayers of long-chain alcohols [C(n)H(2n+1)OH], with the value decreasing from 2.4 × 10(-3) to 1.7 × 10(-5) as n increases from 12 to 17. Temperature-dependent measurements confirm that a condensed film of long-range order must be formed to suppress the evaporation coefficient below 0.05. The condensation of water on a droplet coated in a condensed film is shown to be fast, with strong coherence of the long-chain alcohol molecules leading to islanding as the water droplet grows, opening up broad areas of uncoated surface on which water can condense rapidly. We conclude that multicomponent composition of organic films on the surface of atmospheric aerosol particles is likely to preclude the formation of condensed films and that the kinetics of water condensation during the activation of aerosol to form cloud droplets is likely to remain rapid.

  6. Results of a combined model of root system growth and soil water uptake: evaluating the significance of root system architecture to plant water uptake

    NASA Astrophysics Data System (ADS)

    Bouda, M.; Saiers, J. E.

    2012-12-01

    Root system hydraulic architecture is a key determinant of plants' ability to withdraw water from the soil, satisfying transpirational demand. Presently, the representation of this component of the hydrological cycle in large-scale models is generally very simplistic, even though transpiration accounts for much of the terrestrial heat and water surface fluxes, and exercises control over photosynthetic uptake of CO2. In order to address this gap, we have developed a modelling approach that relies on several components. The first is RootGrow, original MATLAB code that simulates the stochastic growth of a root system as a function of an intrinsic set of parameters as well as its environment. We ran RootGrow coupled to the second component, a finite-element 3D simulation of the physics of water transport in the soil and root system using COMSOL, resulting in a combined model of root system development and water uptake. Model results show that root system architecture can affect water uptake by two separate mechanisms: (a) root system geometry determines the distribution of absorbing surface area throughout the soil domain, and (b) root system topology affects the water potential at the absorbing surfaces. In this study we sample the model's parameter space to demonstrate over what ranges of physically meaningful parameters (including hydraulic conductivity of plant tissues, soil type, and soil moisture level) these mechanisms significantly affect root systems' water withdrawal rate. The two mechanisms identified and our quantitative results will form the basis of a third component in this approach: developing simple analytical relationships characterising water uptake as a function of root system architecture that can be used in Ecosystem Demography Model v2.1 (ED2), a large-scale Dynamic Vegetation Model, based on a method of upscaling individual-based models of plant ecology.

  7. Uptake of calcium and magnesium by human scalp hair from waters of different geographic locations.

    PubMed

    Noble, R E

    1999-10-01

    The uptake of Ca2+ and Mg2+ by human scalp hair from waters of 24 different locations throughout the world was determined. The uptake was found to vary markedly depending on the initial total hardness and pH of the water. Water of high initial total hardness and/or high initial pH were found, in general, to result in more hair adsorption of these alkaline earth cations. When hair is washed with these differing waters, varying effects are then found in the eventual coiffure.

  8. Response of North Pacific eastern subtropical mode water to greenhouse gas versus aerosol forcing

    NASA Astrophysics Data System (ADS)

    Li, Xiang; Luo, Yiyong

    2016-04-01

    Mode water is a distinct water mass characterized by a near vertical homogeneous layer or low potential vorticity, and is considered essential for understanding ocean climate variability. Based on the output of GFDL CM3, this study investigates the response of eastern subtropical mode water (ESTMW) in the North Pacific to two different single forcings: greenhouse gases (GHGs) and aerosol. Under GHG forcing, ESTMW is produced on lighter isopycnal surfaces and is decreased in volume. Under aerosol forcing, in sharp contrast, it is produced on denser isopycnal surfaces and is increased in volume. The main reason for the opposite response is because surface ocean-to-atmosphere latent heat flux change over the ESTMW formation region shoals the mixed layer and thus weakens the lateral induction under GHG forcing, but deepens the mixed layer and thus strengthens the lateral induction under aerosol forcing. In addition, local wind changes are also favorable to the opposite response of ESTMW production to GHG versus aerosol.

  9. Estimating plant water uptake source depths with optimized stable water isotope labeling

    NASA Astrophysics Data System (ADS)

    Seeger, Stefan; Weiler, Markus

    2016-04-01

    Depth profiles of pore water stable isotopes in soils in conjunction with measurements of stable water isotopes (SWI) in plant transpiration allow the estimation of the contributions of different soil depths to plant water uptake (PWU).
 However, SWI depth profiles that result from the variations of SWI in natural precipitation may lead to highly ambiguous results, i.e. the same SWI signature in transpiration could result from different PWU patterns or SWI depth profiles. The aim of this study was to find an optimal stable water isotope depth profile to estimate plant water uptake patterns and to compare different PWU source depth estimation methods. We used a new soil water transport model including fractionation effects of SWI and exchange between the vapor and liquid phase to simulate different irrigation scenarios. Different amounts of water with differing SWI signatures (glacier melt water, summer precipitation water, deuterated water) were applied in order to obtain a wide variety of SWI depth profiles. Based on these simulated SWI depth profiles and a set of hypothetical PWU patterns, the theoretical SWI signatures of the respective plant transpiration were computed. In the next step, two methods - Bayesian isotope mixing models (BIMs) and optimization of a parametric distribution function (beta function) - were used to estimate the PWU patterns from the different SWI depth profiles and their respective SWI signatures in the resulting transpiration. Eventually, the estimated and computed profiles were compared to find the best SWI depth profile and the best method. The results showed, that compared to naturally occurring SWI depth profiles, the application of multiple, in terms of SWI, distinct labeling pulses greatly improves the possible spatial resolution and at the same time reduces the uncertainty of PWU estimates.
 For the PWU patterns which were assumed for this study, PWU pattern estimates based on an optimized parametric distribution function

  10. Improving macroscopic modeling of the effect of water and osmotic stresses on root water uptake.

    NASA Astrophysics Data System (ADS)

    Jorda Guerra, Helena; Vanderborght, Jan

    2015-04-01

    Accurate modeling of water and salt stresses on root water uptake is critical for predicting impacts of global change and climate variability on crop production and soil water balances. Soil-hydrological models use reduction functions to represent the effect of osmotic stress in transpiration. However, these functions, which were developed empirically, present limitations in relation to the time and spatial scale at which they need to be used, fail to include compensation processes and do not agree on how water and salt stresses interact. This research intends to develop a macroscopic reduction function for water and osmotic stresses based on biophysical knowledge. Simulation experiments are conducted for a range of atmospheric conditions, soil and plant properties, irrigation water quality and scheduling using a 3-D physically-based model that resolves flow and transport to individual root segments and that couples flow in the soil and root system (Schröder et al., 2013). The effect of salt concentrations on water flow in the soil-root system is accounted for by including osmotic water potential gradients between the solution at the soil root interface and the root xylem sap in the hydraulic gradient between the soil and root. In a first step, simulation experiments are carried out in a soil volume around a single root segment. We discuss how the simulation setup can be defined so as to represent: (i) certain characteristics of the root system such as rooting depth and root length density, (ii) plant transpiration rate, (iii) leaching fraction of the irrigation, and (iii) salinity of the irrigation water. The output of these simulation experiments gives a first insight in the effect of salinity on transpiration and on the relation between the bulk salinity in the soil voxel, which is used in macroscopic salt stress functions of models that do not resolve processes at the root segment scale, and the salinity at the soil-root interface, which determines the actual

  11. Condensational growth and trace species scavenging in stratospheric sulfuric acid/water aerosol droplets

    NASA Technical Reports Server (NTRS)

    Tompson, Robert V., Jr.

    1991-01-01

    Stratospheric aerosols play a significant role in the environment. The composition of aerosols is believed to be a liquid solution of sulfuric acid and water with numerous trace species. Of these trace species, ozone in particular was recognized as being very important in its role of shielding the environment from harmful ultraviolet radiation. Also among the trace species are HCl and ClONO2, the so called chlorine reservoir species and various oxides of nitrogen. The quantity of stratospheric aerosol and its particle size distribution determines, to a large degree, the chemistry present in the stratosphere. Aerosols experience 3 types of growth: nucleation, condensation, and coagulation. The application of condensation investigations to the specific problem of stratospheric aerosols is discussed.

  12. Influence of aqueous chemistry on the chemical composition of fog water and interstitial aerosol in Fresno

    NASA Astrophysics Data System (ADS)

    Kim, Hwajin; Ge, Xinlei; Collier, Sonya; Xu, Jianzhong; Sun, Yele; Wang, Youliang; Herckes, Pierre; Zhang, Qi

    2015-04-01

    A measurement study was conducted in the Central Valley (Fresno) of California in January 2010, during which radiation fog events were frequently observed. Fog plays important roles in atmospheric chemistry by scavenging aerosol particles and trace gases and serving as a medium for various aqueous-phase reactions. Understanding the effects of fog on the microphysical and chemical processing of aerosol particles requires detailed information on their chemical composition. In this study, we characterized the chemical composition of fog water and interstitial aerosol particles to study the effects of fog processing on aerosol properties. Fog water samples were collected during the 2010 Fresno campaigns with a Caltech Active Strand Cloud water Collector (CASCC) while interstitial submicron aerosols were characterized in real time with an Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and a scanning Mobility Particle Sizer (SMPS). The fog water samples were later analyzed using the HR-ToF-AMS, ion chromatography, and a total carbon analyzer. The chemical composition and characteristics of interstitial particles during the fog events were compared to those of dissolved inorganic and organic matter in fog waters. Compared to interstitial aerosols, fog water is composed of a higher fraction of ammonium nitrate and oxygenated organics, due to aqueous formation of secondary aerosol species as well as enhanced gas-to-particle partitioning of water soluble species under water rich conditions. Sulfate is formed most efficiently in fog water although its contribution to total dissolved mass is relatively low. The HR-ToF-AMS mass spectra of organic matter in fog water (FOM) are very similar to that of oxygenated organic aerosols (OOA) derived from positive matrix factorization (PMF) of the HR-ToF-AMS spectra of ambient aerosol (r2 = 0.96), but FOM appears to contain a large fraction of acidic functional groups than OOA. FOM is also enriched of

  13. Modeling Foliar Uptake in Colocasia Esculenta Using High Resolution Maps of Leaf Water Isotopes

    NASA Astrophysics Data System (ADS)

    Sinkler, C. J.; Gerlein-Safdi, C.; Caylor, K. K.

    2014-12-01

    The uptake of carbon dioxide by vegetation is a major sink of CO2 and a factor that will determine future climate. Some studies predict a decrease in CO2 uptake from vegetation because of a general drying of the Amazon Basin. Because of the tight linkage between water availability and plant carbon uptake, a comprehensive model of plant water use at the individual scale is necessary to build a complete carbon budget at the global scale. Foliar uptake of non-meteoric water is a common process used by plants to alleviate water stress. However the occurrence of this process in tropical ecosystems, as well as its interaction with other physiological parameters, is not well understood. We present a model of leaf water balance that includes foliar uptake. The isotopic composition of the different sources as well as the leaf water are also included. The model is tested against a series of experiments on Colocasia esculenta, under two different water availability conditions: drought and artificial dew. The artificial dew is spiked with stable isotopes of water (δ18O = 8.56 permil, δ2H = 709.7 permil) that allow us to trace the partition of dew uptake within a leaf. We create high-resolution maps of the distribution of isotopes in one half of each leaf using a Picarro IM-CRDS. The maps show a clear enrichment due to foliar uptake for the artificial dew treatment. The water in the second half of the leaf is extracted by cryogenic extraction and analyzed using both IRIS and IRMS for quality control of the IM-CRDS data. Soil water is collected for isotope analysis and water content measurement. Finally, stomatal conductance data collected every two days shows no significant decrease due to either treatment over the course of the experiment. We conclude that foliar uptake of dew water is an important water acquisition mechanism for C. esculenta, even under high soil water content conditions, and we propose guidelines for further improvement of models of leaf-scale water

  14. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    SciTech Connect

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-19

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  15. Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications

    NASA Astrophysics Data System (ADS)

    Sun, Baichuan; Chakraborty, Anutosh

    2014-05-01

    This Letter presents a thermodynamic formulation to calculate the amount of water vapor uptakes on various adsorbents such as zeolites, metal organic frameworks, and silica gel for the development of an advanced adsorption chiller. This formalism is developed from the rigor of the partition distribution function of each water vapor adsorptive site on adsorbents and the condensation approximation of adsorptive water molecules and is validated with experimental data. An interesting and useful finding has been established that the proposed model is thermodynamically connected with the pore structures of adsorbent materials, and the water vapor uptake highly depends on the isosteric heat of adsorption at zero surface coverage and the adsorptive sites of the adsorbent materials. Employing the proposed model, the thermodynamic trends of water vapor uptakes on various adsorbents can be estimated.

  16. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called direct effect , aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called indirect effects, whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will discuss

  17. Aerosol-Water Cycle Interaction: A New Challenge in Monsoon Climate Research

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.

    2006-01-01

    Long recognized as a major environmental hazard, aerosol is now known to have strong impacts on both regional and global climate. It has been estimated that aerosol may reduce by up to 10% of the seasonal mean solar radiation reaching the earth surface, producing a global cooling effect that opposes global warming (Climate Change 2001). This means that the potential perils that humans have committed to global warming may be far greater than what we can detect at the present. As a key component of the Earth climate system, the water cycle is profoundly affected by the presence of aerosols in the atmosphere. Through the so-called "direct effect", aerosol scatters and/or absorbs solar radiation, thus cooling the earth surface and changing the horizontal and vertical radiational heating contrast in the atmosphere. The heating contrast drives anomalous atmospheric circulation, resulting in changes in convection, clouds, and rainfall. Another way aerosol can affect the water cycle is through the so-called "indirect effects", whereby aerosol increases the number of cloud condensation nuclei, prolongs life time of clouds, and inhibits the growth of cloud drops to raindrops. This leads to more clouds, and increased reflection of solar radiation, and further cooling at the earth surface. In monsoon regions, the response of the water cycle to aerosol forcing is especially complex, not only because of presence of diverse mix of aerosol species with vastly different radiative properties, but also because the monsoon is strongly influenced by ocean and land surface processes, land use, land change, as well as regional and global greenhouse warming effects. Thus, sorting out the impacts of aerosol forcing, and interaction with the monsoon water cycle is a very challenging problem. In this talk, I will offer some insights into how aerosols may impact the Asian monsoon based on preliminary results from satellite observations and climate model experiments. Specifically, I will

  18. Using thermodynamics to assess biotic and abiotic impediments to root water uptake

    NASA Astrophysics Data System (ADS)

    Bechmann, Marcel; Hildebrandt, Anke; Kleidon, Axel

    2016-04-01

    Root water uptake has been the subject of extensive research, dealing with understanding the processes limiting transpiration and understanding strategies of plants to avoid water stress. Many of those studies use models of water flow from the soil through the plant into the atmosphere to learn about biotic and abiotic factors affecting plant water relations. One important question in this context is to identify those processes that are most limiting to water transport, and specifically whether these processes lie within the plant or the soil? Here, we propose to use a thermodynamic formulation of root water uptake to answer this question. The method allows us to separate the energy exported at the root collar into a sum of energy fluxes related to all processes along the flow path, notably including the effect of increasing water retention in drier soils. Evaluation of the several contributions allows us to identify and rank the processes by how much these impede water flow from the soil to the atmosphere. The application of this approach to a complex 3-dimensional root water uptake model reveals insights on the role of root versus soil resistances to limit water flow. We investigate the efficiency of root water uptake in an ensemble of root systems with varying root hydraulic properties. While root morphology is kept the same, root radial and axial resistances are artificially varied. Starting with entirely young systems (uptake roots, high radial, low axial conductance) we increasingly add older roots (transport roots, high axial, low radial conductance) to improve transport within root systems. This yields a range of root hydraulic architectures, where the extremes are limited either by radial uptake capacity or low capacity to transport water along the root system. We model root water uptake in this range of root systems with a 3-dimensional root water uptake model in two different soils, applying constant flux boundary conditions in a dry down experiment and

  19. Perchlorate uptake in spinach as related to perchlorate, nitrate and chloride concentrations in irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Several studies have reported on the detection of perchlorate in edible leafy vegetables irrigated with Colorado River water. However, there is no information on spinach as related to perchlorate in irrigation water nor on the effect of other anions on perchlorate uptake. A greenhouse perchlorate up...

  20. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration.

    PubMed

    Beyer, Marco; Lau, Steffen; Knoche, Moritz

    2005-01-01

    Water uptake and transpiration were studied through the surface of intact sweet cherry (Prunus avium L.) fruit, exocarp segments (ES) and cuticular membranes (CM) excised from the cheek of sweet cherry fruit and astomatous CM isolated from Schefflera arboricola (Hayata) Hayata, Citrus aurantium L., and Stephanotis floribunda Brongn. leaves or from Lycopersicon esculentum Mill. and Capsicum annuum L. var. annuum Fasciculatum Group fruit. ES and CM were mounted in diffusion cells. Water (deionized) uptake into intact sweet cherry fruit, through ES or CM interfacing water as a donor and a polyethyleneglycol (PEG 6000, osmotic pressure 2.83 MPa)-containing receiver was determined gravimetrically. Transpiration was quantified by monitoring weight loss of a PEG 6000-containing donor (2.83 MPa) against dry silica as a receiver. The permeability coefficients for osmotic water uptake and transpiration were calculated from the amount of water taken up or transpired per unit surface area and time, and the driving force for transport. Permeability during osmotic water uptake was markedly higher than during transpiration in intact sweet cherry fruit (40.2-fold), excised ES of sweet cherry fruit (12.5- to 53.7-fold) and isolated astomatous fruit and leaf CM of a range of species (on average 23.0-fold). Partitioning water transport into stomatal and cuticular components revealed that permeability of the sweet cherry fruit cuticle for water uptake was 11.9-fold higher and that of stomata 56.8-fold higher than the respective permeability during transpiration. Increasing water vapor activity in the receiver from 0 to 1 increased permeability during transpiration across isolated sweet cherry fruit CM about 2.1-fold. Permeability for vapor uptake from saturated water vapor into a PEG 6000 receiver solution was markedly lower than from liquid water, but of similar magnitude to the permeability during self-diffusion of (3)H(2)O in the absence of osmotica. The energy of activation for

  1. Studies on water transport through the sweet cherry fruit surface: IX. Comparing permeability in water uptake and transpiration.

    PubMed

    Beyer, Marco; Lau, Steffen; Knoche, Moritz

    2005-01-01

    Water uptake and transpiration were studied through the surface of intact sweet cherry (Prunus avium L.) fruit, exocarp segments (ES) and cuticular membranes (CM) excised from the cheek of sweet cherry fruit and astomatous CM isolated from Schefflera arboricola (Hayata) Hayata, Citrus aurantium L., and Stephanotis floribunda Brongn. leaves or from Lycopersicon esculentum Mill. and Capsicum annuum L. var. annuum Fasciculatum Group fruit. ES and CM were mounted in diffusion cells. Water (deionized) uptake into intact sweet cherry fruit, through ES or CM interfacing water as a donor and a polyethyleneglycol (PEG 6000, osmotic pressure 2.83 MPa)-containing receiver was determined gravimetrically. Transpiration was quantified by monitoring weight loss of a PEG 6000-containing donor (2.83 MPa) against dry silica as a receiver. The permeability coefficients for osmotic water uptake and transpiration were calculated from the amount of water taken up or transpired per unit surface area and time, and the driving force for transport. Permeability during osmotic water uptake was markedly higher than during transpiration in intact sweet cherry fruit (40.2-fold), excised ES of sweet cherry fruit (12.5- to 53.7-fold) and isolated astomatous fruit and leaf CM of a range of species (on average 23.0-fold). Partitioning water transport into stomatal and cuticular components revealed that permeability of the sweet cherry fruit cuticle for water uptake was 11.9-fold higher and that of stomata 56.8-fold higher than the respective permeability during transpiration. Increasing water vapor activity in the receiver from 0 to 1 increased permeability during transpiration across isolated sweet cherry fruit CM about 2.1-fold. Permeability for vapor uptake from saturated water vapor into a PEG 6000 receiver solution was markedly lower than from liquid water, but of similar magnitude to the permeability during self-diffusion of (3)H(2)O in the absence of osmotica. The energy of activation for

  2. [CO2-gas exchange of mosses following water vapour uptake].

    PubMed

    Lange, O L

    1969-03-01

    The CO2-gas exchange of dry mosses which were exposed to air of high water vapour content has been followed. Some moss species behave as do lichens and aerophilic green algae: they are able to take up enough water vapour to make a rather high photosynthetic activity possible. Other species lack this ability. They need liquid water for reactivation of photosynthesis, as do poikilohydric ferns and phanerogams. In this respect too the mosses are located between the real thallophytes and the cormophytes. From this point of view they are useful objects for studying the relationships between water vapour reactivation, morphological organisation and ecological capability.

  3. [CO2-gas exchange of mosses following water vapour uptake].

    PubMed

    Lange, O L

    1969-03-01

    The CO2-gas exchange of dry mosses which were exposed to air of high water vapour content has been followed. Some moss species behave as do lichens and aerophilic green algae: they are able to take up enough water vapour to make a rather high photosynthetic activity possible. Other species lack this ability. They need liquid water for reactivation of photosynthesis, as do poikilohydric ferns and phanerogams. In this respect too the mosses are located between the real thallophytes and the cormophytes. From this point of view they are useful objects for studying the relationships between water vapour reactivation, morphological organisation and ecological capability. PMID:24504355

  4. The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols

    NASA Astrophysics Data System (ADS)

    Trainic, M.; Riziq, A. A.; Lavi, A.; Flores, J. M.; Rudich, Y.

    2011-07-01

    The heterogeneous reaction between gas phase glyoxal and ammonium sulfate (AS) aerosols, a proxy for inorganic atmospheric aerosol, was studied in terms of the dependence of the optical, physical and chemical properties of the product aerosols on initial particle size and ambient RH. The reactions were studied under different relative humidity (RH) conditions, varying from dry conditions (~20 % RH) and up to 90 % RH, covering conditions prevalent in many atmospheric environments. At λ = 355 nm, the reacted aerosols demonstrate a substantial growth in optical extinction cross section, as well as in mobility diameter under a broad range of RH values (35-90 %). The ratio of the product aerosol to seed aerosol geometric cross section reached up to ~3.5, and the optical extinction cross-section up to ~250. The reactions show a trend of increasing physical and optical growth with decreasing seed aerosol size, from 100nm to 300 nm, as well as with decreasing RH values from 90 % to ~40 %. Optically inactive aerosols, at the limit of the Mie range (100 nm diameter) become optically active as they grow due to the reaction. AMS analyses of the reaction of 300 nm AS at RH values of 50 %, 75 % and 90 % show that the main products of the reaction are glyoxal oligomers, formed by acetal formation in the presence of AS. In addition, imidazole formation, which is a minor channel, is observed for all reactions, yielding a product which absorbs at λ = 290 nm, with possible implications on the radiative properties of the product aerosols. The ratio of absorbing substances (C-N compounds, including imidazoles) increases with increasing RH value. A core/shell model used for the investigation of the optical properties of the reaction products of AS 300nm with gas phase glyoxal, shows that the refractive index (RI) of the reaction products are in the range between 1.57-1.71 for the real part and between 0-0.02 for the imaginary part of the RI at 355 nm. The observed increase in the

  5. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard A.; Browell, Edward V.; Kooi, Susan A.; Dunion, Jason P.; Heymsfield, Gerry; Notari, Anthony; Butler, Carolyn F.; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Chen, Gao; Anderson, Bruce

    2010-01-01

    LASE (Lidar Atmospheric Sensing Experiment) on-board the NASA DC-8 measured high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern North Atlantic during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment. These measurements were used to study African easterly waves (AEWs), tropical cyclones (TCs), and the Saharan Air Layer(s) (SAL). Interactions between the SAL and tropical air were observed during the early stages of the TC development. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on AEWs and TCs. Examples of profile measurements of aerosol scattering ratios, aerosol extinction coefficients, aerosol optical thickness, water vapor mixing ratios, RH, and temperature are presented to illustrate their characteristics in SAL, convection, and clear air regions. LASE data suggest that the SAL suppresses low-altitude convection at the convection-SAL interface region. Mid-level convection associated with the AEW and transport are likely responsible for high water vapor content observed in the southern regions of the SAL on August 20, 2008. This interaction is responsible for the transfer of about 7 x 10(exp 15) J latent heat energy within a day to the SAL. Measurements of lidar extinction-to-backscatter ratios in the range 36+/-5 to 45+/-5 are within the range of measurements from other lidar measurements of dust. LASE aerosol extinction and water vapor profiles are validated by comparison with onboard in situ aerosol measurements and GPS dropsonde water vapor soundings, respectively.

  6. Sensitivity of the remote sensing reflectance of ocean and coastal waters to uncertainties in aerosol characteristics

    NASA Astrophysics Data System (ADS)

    Seidel, F. C.; Garay, M. J.; Zhai, P.; Kalashnikova, O. V.; Diner, D. J.

    2015-12-01

    Remote sensing is a powerful tool for optical oceanography and limnology to monitor and study ocean, coastal, and inland water ecosystems. However, the highly spatially and temporally variable nature of water conditions and constituents, as well as atmospheric conditions are challenging factors, especially for spaceborne observations.Here, we study the quantitative impact of uncertainties in the spectral aerosol optical and microphysical properties, namely aerosol optical depth (AOD), spectral absorption, and particle size, on the remote sensing reflectance (Rrs) of simulated typical open ocean and coastal waters. Rrs is related to the inherent optical properties of the water column and is a fundamental parameter in ocean optics retrievals. We use the successive order of scattering (SOS) method to perform radiative transfer calculations of the coupled system of atmosphere and water. The optics of typical open ocean and coastal waters are simulated with bio-optical models. We derive sensitivities by comparing spectral SOS calculations of Rrs with a reference aerosol model against similar calculations performed using a different aerosol model. One particular focus of this study lies on the impact of the spectral absorption of dust and brown carbon, or similar particles with greater absorption at short wavelengths on Rrs. The results are presented in terms of the minimum expected error in Rrs due to the choice of an incorrect aerosol model during the atmospheric correction of ocean color remote sensing data from space. This study is independent of errors related to observational data or retrieval techniques.The results are relevant for quantifying requirements of aerosol retrievals to derive accurate Rrs from spaceborne observations, such as NASA's future Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission.

  7. Amorphous and crystalline aerosol particles interacting with water vapor: conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations

    NASA Astrophysics Data System (ADS)

    Mikhailov, E.; Vlasenko, S.; Martin, S. T.; Koop, T.; Pöschl, U.

    2009-12-01

    Interactions with water are crucial for the properties, transformation and climate effects of atmospheric aerosols. Here we present a conceptual framework for the interaction of amorphous aerosol particles with water vapor, outlining characteristic features and differences in comparison to crystalline particles. We used a hygroscopicity tandem differential mobility analyzer (H-TDMA) to characterize the hydration and dehydration of crystalline ammonium sulfate, amorphous oxalic acid and amorphous levoglucosan particles (diameter ~100 nm, relative humidity 5-95% at 298 K). The experimental data and accompanying Köhler model calculations provide new insights into particle microstructure, surface adsorption, bulk absorption, phase transitions and hygroscopic growth. The results of these and related investigations lead to the following conclusions: (1) Many organic substances, including carboxylic acids, carbohydrates and proteins, tend to form amorphous rather than crystalline phases upon drying of aqueous solution droplets. Depending on viscosity and microstructure, the amorphous phases can be classified as glasses, rubbers, gels or viscous liquids. (2) Amorphous organic substances tend to absorb water vapor and undergo gradual deliquescence and hygroscopic growth at lower relative humidity than their crystalline counterparts. (3) In the course of hydration and dehydration, certain organic substances can form rubber- or gel-like structures (supramolecular networks) and undergo transitions between swollen and collapsed network structures. (4) Organic gels or (semi-)solid amorphous shells (glassy, rubbery, ultra-viscous) with low molecular diffusivity can kinetically limit the uptake and release of water and may influence the hygroscopic growth and activation of aerosol particles as cloud condensation nuclei (CCN) and ice nuclei (IN). Moreover, (semi-)solid amorphous phases may influence the uptake of gaseous photo-oxidants and the chemical transformation and aging of

  8. Bark water uptake promotes localized hydraulic recovery in coastal redwood crown.

    PubMed

    Mason Earles, J; Sperling, Or; Silva, Lucas C R; McElrone, Andrew J; Brodersen, Craig R; North, Malcolm P; Zwieniecki, Maciej A

    2016-02-01

    Coastal redwood (Sequoia sempervirens), the world's tallest tree species, rehydrates leaves via foliar water uptake during fog/rain events. Here we examine if bark also permits water uptake in redwood branches, exploring potential flow mechanisms and biological significance. Using isotopic labelling and microCT imaging, we observed that water entered the xylem via bark and reduced tracheid embolization. Moreover, prolonged bark wetting (16 h) partially restored xylem hydraulic conductivity in isolated branch segments and whole branches. Partial hydraulic recovery coincided with an increase in branch water potential from about -5.5 ± 0.4 to -4.2 ± 0.3 MPa, suggesting localized recovery and possibly hydraulic isolation. As bark water uptake rate correlated with xylem osmotic potential (R(2)  = 0.88), we suspect a symplastic role in transferring water from bark to xylem. Using historical weather data from typical redwood habitat, we estimated that bark and leaves are wet more than 1000 h per year on average, with over 30 events being sufficiently long (>24 h) to allow for bark-assisted hydraulic recovery. The capacity to uptake biologically meaningful volumes of water via bark and leaves for localized hydraulic recovery throughout the crown during rain/fog events might be physiologically advantageous, allowing for relatively constant transpiration.

  9. Arsenic Uptake by Muskmelon (Cucumis melo) Plants from Contaminated Water.

    PubMed

    Hettick, Bryan E; Cañas-Carrell, Jaclyn E; Martin, Kirt; French, Amanda D; Klein, David M

    2016-09-01

    Arsenic is a carcinogenic element that occurs naturally in the environment. High levels of arsenic are found in water in some parts of the world, including Texas. The aims of this study were to determine the distribution of arsenic in muskmelon (Cucumis melo) plants accumulated from arsenic spiked water and to observe effects on plant biomass. Plants were grown and irrigated using water spiked with variable concentrations of arsenic. Inductively coupled plasma mass spectrometry was used to quantify arsenic in different parts of the plant and fruit. Under all conditions tested in this study, the highest concentrations of arsenic were found in the leaves, soil, and roots. Arsenic in the water had no significant effect on plant biomass. Fruits analyzed in this study had arsenic concentrations of 101 μg/kg or less. Consuming these fruits would result in less arsenic exposure than drinking water at recommended levels. PMID:27460822

  10. Investigation of the kinetics of water uptake into partially saturated shales

    NASA Astrophysics Data System (ADS)

    Roshan, H.; Andersen, M. S.; Rutlidge, H.; Marjo, C. E.; Acworth, R. I.

    2016-04-01

    Several processes have been proposed to describe the low recovery of hydraulic fracturing fluid in unconventional shale reservoirs which has caused both technical and environmental concerns. This study describes novel hydraulic experiments to quantitatively investigate the kinetics of water uptake into partially saturated shale through investigating the pressure response of injecting fluids (NaCl, KCl, MgCl2, and CaCl2 with different ionic concentrations) into crushed and sieved shale fragments. The results of the study indicate that the cumulative water uptake under pressure is likely to be controlled by three processes: surface hydration, capillary hydration including advective flow, and osmotic hydration. Each of these processes is a function of the differences between the in situ pore fluid and the injection fluid (solution chemistry and concentration) and the shale physicochemical properties, in particular the contact surface area, pore diameter, and the Cation Exchange Capacity (CEC). The uptake is not instantaneous, but is diffusion limited, with the rate governed by a number of kinetic processes. Uptake proceeds in three stages, each associated with a different process: (1) predominantly surface hydration, (2) predominantly capillary hydration and finally, (3) predominantly osmotic hydration. It was also shown that shale can take up a significant amount of water compared to its available solid volume. However, contrary to the conventional understanding, the increase in salinity of the injection fluid does not necessarily lead to reduced water uptake into shales, but is dependent on the type and concentration of cations within the shale and injecting fluid.

  11. CNR-IMAA lidar systems for aerosol, clouds, and water vapour study

    NASA Astrophysics Data System (ADS)

    Pappalardo, G.; Amodeo, A.; Boselli, A.; Cornacchia, C.; D'Amico, G.; Madonna, F.; Mona, L.; Pandolfi, M.

    2005-10-01

    At CNR-IMAA located in Tito Scalo (40°36'N, 15°44'E, 760 m a.s.l.), two lidar systems are systematically operational: the first is devoted to tropospheric aerosol characterization, in the framework of EARLINET, and the second performs water vapour measurements. The aerosol lidar system provides independent measurements of aerosol extinction and backscatter coefficient at 355 nm and at 532 nm, aerosol backscatter profiles at 1064 nm and particles depolarization ratio at 532 nm. The Raman lidar for the water vapor allows the vertical profiling of the water vapour mixing ratio with high spatial and temporal resolution up to the tropopause. The system has been calibrated by means of intensive measurement campaign of simultaneous and co-located radiosonde launches. CNR-IMAA is also provided with a DIAL mobile system for pollutants 3-dimensional spatial distribution. Besides these lidar systems, the CNR-IMAA ground based facility for Earth Observation includes ancillary instruments: a radiosounding system for PTU, ozone and wind measurements; a Sun photometer operative since December 2004 in the framework of AERONET; a 12 channels microwave radiometer for continuous measurements of temperature, relative humidity and water vapor, operative since February 2004; a ceilometer for continuous cloud cover monitoring. Lidar systems together with these ancillary instruments make the CNR-IMAA a heavily instrumented experimental site for integrated observations of aerosols, clouds and water vapor to be used for climatological studies and for the validation of satellite data.

  12. Vertical Distribution of Dust and Water Ice Aerosols from CRISM Limb-geometry Observations

    NASA Technical Reports Server (NTRS)

    Smith, Michael Doyle; Wolff, Michael J.; Clancy, Todd; Kleinbohl, Armin; Murchie, Scott L.

    2013-01-01

    [1] Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on board the Mars Reconnaissance Orbiter provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb enables the vertical distribution of both dust and water ice aerosols to be retrieved. More than a dozen sets of CRISM limb observations have been taken so far providing pole-to-pole cross sections, spanning more than a full Martian year. Radiative transfer modeling is used to model the observations taking into account multiple scattering from aerosols and the spherical geometry of the limb observations. Both dust and water ice vertical profiles often show a significant vertical structure for nearly all seasons and latitudes that is not consistent with the well-mixed or Conrath-v assumptions that have often been used in the past for describing aerosol vertical profiles for retrieval and modeling purposes. Significant variations are seen in the retrieved vertical profiles of dust and water ice aerosol as a function of season. Dust typically extends to higher altitudes (approx. 40-50km) during the perihelion season than during the aphelion season (<20km), and the Hellas region consistently shows more dust mixed to higher altitudes than other locations. Detached water ice clouds are common, and water ice aerosols are observed to cap the dust layer in all seasons.

  13. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment.

  14. Aerosol absorption measurement at SWIR with water vapor interference using a differential photoacoustic spectrometer.

    PubMed

    Zhu, Wenyue; Liu, Qiang; Wu, Yi

    2015-09-01

    Atmospheric aerosol plays an important role in atmospheric radiation balance through absorbing and scattering the solar radiation, which changes local weather and global climate. Accurate measurement is highly requested to estimate the radiative effects and climate effects of atmospheric aerosol. Photoacoustic spectroscopy (PAS) technique, which observes the aerosols on their natural suspended state and is insensitive to light scattering, is commonly recognized as one of the best candidates to measure the optical absorption coefficient (OAC) of aerosols. In the present work, a method of measuring aerosol OAC at the wavelength where could also be absorbed by water vapor was proposed and corresponding measurements of the absorption properties of the atmospheric aerosol at the short wave infrared (SWIR, 1342 nm) wavelength were carried out. The spectrometer was made up of two high performance homemade photoacoustic cells. To improve the sensitivity, several methods were presented to control the noise derived from gas flow and vibration from the sampling pump. Calibration of the OAC and properties of the system were also studied in detail. Using the established PAS instrument, measurement of the optical absorption properties of the atmospheric aerosol were carried out in laboratory and field environment. PMID:26368414

  15. Water Uptake, Diameter Change, and Nonlinear Diffusion in Tree Stems

    PubMed Central

    Parlange, Jean-Yves; Turner, Neil C.; Waggoner, Paul E.

    1975-01-01

    A diffusion model for phloem swelling and contraction is proposed in which the rate of water movement changes markedly with moisture content. Good agreement between the actual swelling of the phloem of cotton stems and that predicted by the model was obtained. This result implies that water moves more readily into the phloem when it becomes wetter. This model also explains the lag of shrinkage of pine stems behind the water potential of the foliage and predicts that the lag is related to the thickness of the phloem. PMID:16659060

  16. Sources of secondary organic aerosols in the Pearl River Delta region in fall: Contributions from the aqueous reactive uptake of dicarbonyls

    NASA Astrophysics Data System (ADS)

    Li, Nan; Fu, Tzung-May; Cao, Junji; Lee, Shuncheng; Huang, Xiao-Feng; He, Ling-Yan; Ho, Kin-Fai; Fu, Joshua S.; Lam, Yun-Fat

    2013-09-01

    We used the regional air quality model CMAQ to simulate organic aerosol (OA) concentrations over the Pearl River Delta region (PRD) and compared model results to measurements. Our goals were (1) to evaluate the potential contribution of the aqueous reactive uptake of dicarbonyls (glyoxal and methylglyoxal) as a source of secondary organic aerosol (SOA) in an urban environment, and (2) to quantify the sources of SOA in the PRD in fall. We improved the representation of dicarbonyl gas phase chemistry in CMAQ, as well as added SOA formation via the irreversible uptake of dicarbonyls by aqueous aerosols and cloud droplets, characterized by a reactive uptake coefficient γ = 2.9 × 10-3 based on laboratory studies. Our model results were compared to aerosol mass spectrometry (AMS) measurements in Shenzhen during a photochemical smog event in fall 2009. Including the new dicarbonyl SOA source in CMAQ led to an increase in the simulated mean SOA concentration at the sampling site from 4.1 μg m-3 to 9.0 μg m-3 during the smog event, in better agreement with the mean observed oxygenated OA (OOA) concentration (8.0 μg m-3). The simulated SOA reproduced the variability of observed OOA (r = 0.89). Moreover, simulated dicarbonyl SOA was highly correlated with simulated sulfate (r = 0.72), consistent with the observed high correlation between OOA and sulfate (r = 0.84). Including the dicarbonyl SOA source also increased the mean simulated concentrations of total OA from 8.2 μg m-3 to 13.1 μg m-3, closer to the mean observed OA concentration (16.5 μg m-3). The remaining difference between the observed and simulated OA was largely due to impacts from episodic biomass burning emissions, but the model did not capture this variability. We concluded that, for the PRD in fall and outside of major biomass burning events, 75% of the total SOA was biogenic. Isoprene was the most important precursor, accounting for 41% of the total SOA. Aromatics accounted for 13% of the total SOA

  17. Water uptake by a maize root system - An explicit numerical 3-dimensional simulation.

    NASA Astrophysics Data System (ADS)

    Leitner, Daniel; Schnepf, Andrea; Klepsch, Sabine; Roose, Tiina

    2010-05-01

    Water is one of the most important resources for plant growth and function. An accurate modelling of the unsaturated flow is not only substantial to predict water uptake but also important to describe nutrient movement regarding water saturation and transport. In this work we present a model for water uptake. The model includes the simultaneous flow of water inside the soil and inside the root network. Water saturation in the soil volume is described by the Richards equation. Water flow inside the roots' xylem is calculated using the Poiseuille law for water flow in a cylindrical tube. The water saturation in the soil as well as water uptake of the root system is calculated numerically in three dimensions. We study water uptake of a maize plant in a confined pot under different supply scenarios. The main improvement of our approach is that the root surfaces act as spatial boundaries of the soil volume. Therefore water influx into the root is described by a surface flux instead of a volume flux, which is commonly given by an effective sink term. For the numerical computation we use the following software: The 3-dimensional maize root architecture is created by a root growth model based on L-Systems (Leitner et al 2009). A mesh of the surrounding soil volume is created using the meshing software DistMesh (Persson & Strang 2004). Using this mesh the partial differential equations are solved with the finite element method using Comsol Multiphysics 3.5a. Modelling results are related to accepted water uptake models from literature (Clausnitzer & Hopmans 1994, Roose & Fowler 2004, Javaux et al 2007). This new approach has several advantages. By considering the individual roots it is possible to analyse the influence of overlapping depletion zones due to inter root competition. Furthermore, such simulations can be used to estimate the influence of simplifying assumptions that are made in the development of effective models. The model can be easily combined with a nutrient

  18. Real-time spatial analysis of root water uptake in rhizotrons

    NASA Astrophysics Data System (ADS)

    Lobet, G.; Javaux, M.; Pages, L.; Chaumont, F.; Draye, X.

    2009-04-01

    Nowadays, drought is a major constraint on crop production and becomes increasingly prevalent. The availability of water for plants defines constraints for stomatal conductance (which affects photosynthesis and yield) and is critical at several sensitive phenological stages, such as flowering and grain filling (some may have irreversible effects). It is therefore important to improve the capacity of plants to use and uptake water in various environmental conditions. The availability of water is defined by (i) soil exploration (root architecture), (ii) conductivity of individual root segments and (iii) quantity and capacity of bulk-to-rhizosphere water flow. These factors must be considered simultaneously if we aim at tailoring root architecture to improve water stress tolerance. We propose a combination of tools based on thin 2D rhizotrons that allows both root architecture and soil water content to be monitored. This experimental platform is combined with two models. One generates a 3D root system with hydraulic conductivities of individual roots as a function of age, type… The second model (R-SWMS) simulates root water uptake and soil water transfer, based on 3D root and soil hydraulic properties. This platform is used to study how various aspects of root systems dynamics (such as regulation by aquaporins or ABA, root architecture) interfere with root water uptake using a quantitative approach.

  19. [Effects of water deficit and nitrogen fertilization on winter wheat growth and nitrogen uptake].

    PubMed

    Qi, You-Ling; Zhang, Fu-Cang; Li, Kai-Feng

    2009-10-01

    Winter wheat plants were cultured in vitro tubes to study their growth and nitrogen uptake under effects of water deficit at different growth stages and nitrogen fertilization. Water deficit at any growth stages could obviously affect the plant height, leaf area, dry matter accumulation, and nitrogen uptake. Jointing stage was the most sensitive stage of winter wheat growth to water deficit, followed by flowering stage, grain-filling stage, and seedling stages. Rewatering after the water deficit at seedling stage had a significant compensation effect on winter wheat growth, and definite compensation effect was observed on the biomass accumulation and nitrogen absorption when rewatering was made after the water deficit at flowering stage. Under the same nitrogen fertilization levels, the nitrogen accumulation in root with water deficit at seedling, jointing, flowering, and grain-filling stages was reduced by 25.82%, 55.68%, 46.14%, and 16.34%, and the nitrogen accumulation in aboveground part was reduced by 33.37%, 51.71%, 27.01%, and 2.60%, respectively, compared with no water deficit. Under the same water deficit stages, the nitrogen content and accumulation of winter wheat decreased with decreasing nitrogen fertilization level, i. e., 0.3 g N x kg(-1) FM > 0.2 g N x kg(-1) FM > 0.1 g N x kg(-1) FM. Nitrogen fertilization had obvious regulation effect on winter wheat plant growth, dry matter accumulation, and nitrogen uptake under water stress.

  20. Uptake, Translocation, and Metabolism of Phenols by Submerged Rooted Macrophyte, Water Milfoil (Myriophyllum elatinoides).

    PubMed

    Ando, Daisuke; Fujisawa, Takuo; Katagi, Toshiyuki

    2015-06-01

    Shoot and root uptakes of (14)C-labeled phenol (1), 4-nitrophenol (2), 4-cyanophenol (3), 4-hydroxybenzamide (4), and 4-hydroxybenzoic acid (5) by Myriophyllum elatinoides were individually examined with water or sediment treatments using the sequestered chamber. Shoot uptake of each (14)C-phenol dissolved in water amounted to 21.0% (1), 14.3% (2), 12.8% (3), 4.2% (4) and 41.7% (5) of the applied radioactivity (AR) after 96 h without significant (14)C translocation from shoot to root (≤0.9% AR), and the major metabolite produced was the glucose conjugate. On the other hand, root uptake of (14)C-phenols from sediment was much slower/smaller (≤6.6% AR), and (14)C transportation from root to shoot was scarcely observed, except for compound 5 (≤1.5% AR). For the water treatment, a kinetic analysis on uptake/metabolism was conducted using the assumed compartment. Good correlation was observed between lipophilicity and shoot uptake rate constants, and the electronic state of the hydroxyl group (σ, σ(-), or EHOMO(OH)) and the transformation rate constant of glucosidation.

  1. The relationship between water concentrations and individual uptake of chloroform: a simulation study.

    PubMed

    Whitaker, Heather J; Nieuwenhuijsen, Mark J; Best, Nicola G

    2003-05-01

    We simulated the relationship between water chloroform concentrations and chloroform uptake in pregnant women to assess the potential extent of exposure measurement error in epidemiologic studies of the health effects of exposure to water disinfection by-products. Data from the literature were used to assign statistical distributions to swimming pool chloroform concentrations, frequency and duration of swimming, showering and bathing, and average tap water consumption. Measured increases in blood chloroform concentrations after these activities were used to estimate average uptake per microgram per liter chloroform in the water, per minute spent in the activity or per liter consumed. Given average tap water chloroform concentrations from a U.K. epidemiologic study, an average daily uptake over 90 days was simulated for 300,000 mothers. The correlation between simulated uptakes and home tap chloroform concentration was 0.6. Mothers who swam regularly received far greater doses than did nonswimmers. Results suggest there will be considerable attenuation in risk estimates and/or power loss in epidemiologic studies if the putative agent is chloroform.

  2. A Comparative Study of Iron Uptake Rates and Mechanisms amongst Marine and Fresh Water Cyanobacteria: Prevalence of Reductive Iron Uptake

    PubMed Central

    Lis, Hagar; Kranzler, Chana; Keren, Nir; Shaked, Yeala

    2015-01-01

    In this contribution, we address the question of iron bioavailability to cyanobacteria by measuring Fe uptake rates and probing for a reductive uptake pathway in diverse cyanobacterial species. We examined three Fe-substrates: dissolved inorganic iron (Fe') and the Fe-siderophores Ferrioxamine B (FOB) and FeAerobactin (FeAB). In order to compare across substrates and strains, we extracted uptake rate constants (kin = uptake rate/[Fe-substrate]). Fe' was the most bioavailable Fe form to cyanobacteria, with kin values higher than those of other substrates. When accounting for surface area (SA), all strains acquired Fe' at similar rates, as their kin/SA were similar. We also observed homogeneity in the uptake of FOB among strains, but with 10,000 times lower kin/SA values than Fe'. Uniformity in kin/SA suggests similarity in the mechanism of uptake and indeed, all strains were found to employ a reductive step in the uptake of Fe' and FOB. In contrast, different uptake pathways were found for FeAB along with variations in kin/SA. Our data supports the existence of a common reductive Fe uptake pathway amongst cyanobacteria, functioning alone or in addition to siderophore-mediated uptake. Cyanobacteria combining both uptake strategies benefit from increased flexibility in accessing different Fe-substrates. PMID:25768677

  3. The effects of hemicelluloses and lignin removal on water uptake behavior of hemp fibers.

    PubMed

    Pejic, Biljana M; Kostic, Mirjana M; Skundric, Petar D; Praskalo, Jovana Z

    2008-10-01

    This study investigated the individual influences of hemicelluloses and lignin removal on the water uptake behavior of hemp fibers. Hemp fibers with different content of either hemicelluloses or lignin were obtained by chemical treatment with 17.5% sodium hydroxide or 0.7% sodium chlorite. Various tests (capillary rise method, moisture sorption, water retention power) were applied to evaluate the change in water uptake of modified hemp fibers. The obtained results show that when the content of either hemicelluloses or lignin is reduced progressively by chemical treatment, the capillary properties of hemp fibers are improved, i.e. capillary rise height of modified fibers is increased up to 2.7 times in relation to unmodified fibers. Furthermore, hemicelluloses removal increases the moisture sorption and decreases the water retention values of hemp fibers, while lignin removal decreases the moisture sorption and increases the water retention ability of hemp fibers.

  4. Influence of soil structure on unsaturated water flow including root uptake

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Anna; Neuweiler, Insa; van der Zee, Sjoerd; Helmig, Rainer

    2010-05-01

    The development of effective irrigation strategies is of great importance as the scarcity of water during extended dry periods in aride areas leads to limited water uptake by roots and thus to restricted growth and eventually to wilting of plants. To approach this goal a broad understanding of the factors which influence the distribution of the water potential and the interactions with root uptake is crucial. Soil structure is supposed to have a large impact on water flow especially under dry conditions when the variability of soil parameters is increased. For field applications, predictions of the water flow are needed for large scales where the scarcity of measurements leads to a high level of uncertainty about the detailed distribution of soil parameters. Thus stochastic methods in which heterogeneity of soil is described by a random parameter field are used. In this presentation, the interrelation of root uptake and heterogeneity is analyzed using numerical simulations. Random parameter fields with Gaussian and non-Gaussian dependence were parameterized according to the Las Cruces Trench Site dataset and used as input for the numerical model. Transpiration is considered in a macroscopic way as a sink term with a prescribed potential extraction rate at each node, determined by the density distribution of the plants and with restricted uptake due to unfavorable conditions as lack of water and oxygen (modeled according to the Feddes - Function). With this basic model, water flow in two dimensional random fields has been investigated under dry conditions. It was observed that dry spots - regions in which roots dry up to the wilting point form when the structure shows isolated high extreme values in conductivity. In these dry regions, roots take up a decreased amount of water such that the total potential demand is not met anymore. This seems rather unrealistic as sufficient water is available at other locations of the domain. Thus two other approaches are analyzed

  5. Lung inflammation in coal miners assessed by uptake of 67Ga-citrate and clearance of inhaled 99mTc-labeled diethylenetriamine pentaacetate aerosol

    SciTech Connect

    Susskind, H.; Rom, W.N. )

    1992-07-01

    The authors compared the diffuse lung uptake of 67Ga-citrate, an index of inflammatory lung activity, with the lung clearance of inhaled 99mTc-labeled diethylenetriamine pentaacetate (DTPA) aerosol, an index of pulmonary epithelial permeability, in a group of 19 West Virginia coal miners whose pulmonary status was compatible with coal worker's pneumoconiosis. 99mTc-DTPA clearance alone and 67Ga-citrate uptake alone were measured in nine and five additional subjects, respectively. The objective of this study was to determine if increased 99mTc-DTPA lung clearance was caused by inflammation at the lung epithelial surfaces. Subjects inhaled approximately 150 microCi (approximately 5.6 MBq) of 99mTc-DTPA aerosol, and quantitative gamma camera images of the lungs were acquired at 1-min increments for 25 min. Regions of interest (ROI) were selected to include (1) both lungs; (2) each individual lung; and (3) the upper, middle, and lower thirds of each lung. 99mTc-DTPA clearance was determined from the slopes of the respective time-activity plots for the different ROI. Each subject was intravenously administered 50 miCroCk (1.9 MBq)/kg 67Ga-citrate 48 to 72 h before imaging the body between neck and pelvis. The extent of 67Ga-citrate lung uptake was expressed as the gallium index (GI). Mean radioaerosol clearance half-time (T1/2) for the six nonsmoking coal miners (60.6 +/- 16.0 min) was significantly shorter (p less than 0.001) than for the nonsmoking control group (123.8 +/- 28.7 min). T1/2 for the 12 smoking miners (18.4 +/- 10.2 min) was shorter than for the smoking control group (33.1 +/- 17.8 min), but the difference did not attain statistical significance.

  6. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    PubMed

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature. PMID:25686209

  7. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.

    PubMed

    Arangio, Andrea M; Slade, Jonathan H; Berkemeier, Thomas; Pöschl, Ulrich; Knopf, Daniel A; Shiraiwa, Manabu

    2015-05-14

    Multiphase reactions of OH radicals are among the most important pathways of chemical aging of organic aerosols in the atmosphere. Reactive uptake of OH by organic compounds has been observed in a number of studies, but the kinetics of mass transport and chemical reaction are still not fully understood. Here we apply the kinetic multilayer model of gas-particle interactions (KM-GAP) to experimental data from OH exposure studies of levoglucosan and abietic acid, which serve as surrogates and molecular markers of biomass burning aerosol (BBA). The model accounts for gas-phase diffusion within a cylindrical coated-wall flow tube, reversible adsorption of OH, surface-bulk exchange, bulk diffusion, and chemical reactions at the surface and in the bulk of the condensed phase. The nonlinear dependence of OH uptake coefficients on reactant concentrations and time can be reproduced by KM-GAP. We find that the bulk diffusion coefficient of the organic molecules is approximately 10(-16) cm(2) s(-1), reflecting an amorphous semisolid state of the organic substrates. The OH uptake is governed by reaction at or near the surface and can be kinetically limited by surface-bulk exchange or bulk diffusion of the organic reactants. Estimates of the chemical half-life of levoglucosan in 200 nm particles in a biomass burning plume increase from 1 day at high relative humidity to 1 week under dry conditions. In BBA particles transported to the free troposphere, the chemical half-life of levoglucosan can exceed 1 month due to slow bulk diffusion in a glassy matrix at low temperature.

  8. The optical, physical and chemical properties of the products of glyoxal uptake on ammonium sulfate seed aerosols

    NASA Astrophysics Data System (ADS)

    Trainic, M.; Abo Riziq, A.; Lavi, A.; Flores, J. M.; Rudich, Y.

    2011-09-01

    The heterogeneous reaction between gas phase glyoxal and ammonium sulfate (AS) aerosols, a proxy for inorganic atmospheric aerosol, was studied in terms of the dependence of the optical, physical and chemical properties of the product aerosols on initial particle size and ambient relative humidity (RH). Our experiments imitate an atmospheric scenario of a dry particle hydration at ambient RH conditions in the presence of glyoxal gas followed by efflorescence due to decrease of the ambient RH. The reactions were studied under different RH conditions, starting from dry conditions (~20% RH) and up to 90% RH, covering conditions prevalent in many atmospheric environments, and followed by consequent drying of the reacted particles before their analysis by the aerosol mass spectrometer (AMS), cavity ring down (CRD) and scanning mobility particle sizer (SMPS) systems. At λ = 355 nm, the reacted aerosols demonstrate a substantial growth in optical extinction cross section, as well as in mobility diameter under a broad range of RH values (35-90%). The ratio of the product aerosol to seed aerosol geometric cross section reached up to ~3.5, and the optical extinction cross-section up to ~250. The reactions show a trend of increasing physical and optical growth with decreasing seed aerosol size, from 100 nm to 300 nm, as well as with decreasing RH values from 90% to ~40%. Optically inactive aerosols, at the limit of the Mie range (100 nm diameter) become optically active as they grow due to the reaction. AMS analyses of the reaction of 300 nm AS at RH values of 50%, 75% and 90% show that the main products of the reaction are glyoxal oligomers, formed by acetal formation in the presence of AS. In addition, imidazole formation, which is a minor channel, is observed for all reactions, yielding a product which absorbs at λ = 290 nm, with possible implications on the radiative properties of the product aerosols. The ratio of absorbing substances (C-N compounds, including

  9. Measurements of iodine uptake in falling water droplets

    SciTech Connect

    Hyder, M.L.

    1989-12-31

    The removal of gaseous iodine from air by water sprays was measured, using both ordinary water and a solution buffered to a pH near 9.5 with a carbonate mixture. The results were compared to the theoretical predictions of the I2WASH computer code. In all experiments, using both large and small spray droplets, the solution at the higher pH was approximately three times as effective at absorbing iodine from the air. This agrees with the predictions of the computer model for the smaller droplets studied. The computer code predicts no pH effect for large drops, probably because it assumes a well-mixed drop, and mixing during the fall time is too slow.

  10. Modified conceptual model for compensated root water uptake - A simulation study

    NASA Astrophysics Data System (ADS)

    Peters, Andre

    2016-03-01

    Modeling root water uptake within the macroscopic approach is usually done by introducing a sink term in the Richards equation. This sink term represents potential water uptake reduced by a so-called stress reduction factor accounting for stress due to high suctions, oxygen deficit or salinity. Since stress in some parts of the soil can be compensated by enhanced water uptake in less stressed parts, several compensation models have been suggested. One of them is the empirical model of Jarvis, which is often applied due to its mathematical elegance and simplicity. However, it has been discussed that under certain conditions and assumptions this model might predict too high transpiration rates, which are not in agreement with the assumed stress reduction function. The aim of this paper is (i) to analyze these inconsistencies and (ii) to introduce a simple constraint for transpiration in a way as if the complete water would be taken form the location with highest uptake rate in the uncompensated case. Transpiration from 50 cm deep soils with hydraulic functions representing different textures, ranging from a clay loam to a coarse sand, was simulated with the original and the modified model using HYDRUS-1D. Root distribution was assumed to be uniform or linearly decreasing with depth. In case of the fine textured soils and uniform root density, the original model predicted transpiration equal to potential transpiration even when the complete root domain was already heavily stressed if the maximum enhancement factor for uptake was 2. These results are not in agreement with the original meaning of the stress reduction function. The modification eliminates the inconsistencies by limiting transpiration to a maximum value based on the highest uncompensated uptake rate in the root zone. It does neither increase the mathematical complexity nor require any additional parameters.

  11. CART Raman Lidar Aerosol and Water Vapor Measurements in the Vicinity of Clouds

    NASA Technical Reports Server (NTRS)

    Clayton, Marian B.; Ferrare, Richard A.; Turner, David; Newsom, Rob; Sivaraman, Chitra

    2008-01-01

    Aerosol and water vapor profiles acquired by the Raman lidar instrument located at the Climate Research Facility (CRF) at Southern Great Plains (SGP) provide data necessary to investigate the atmospheric variability in the vicinity of clouds near the top of the planetary boundary layer (PBL). Recent CARL upgrades and modifications to the routine processing algorithms afforded the necessarily high temporal and vertical data resolutions for these investigations. CARL measurements are used to investigate the behavior of aerosol backscattering and extinction and their correlation with water vapor and relative humidity.

  12. Airborne water vapor DIAL system and measurements of water and aerosol profiles

    NASA Technical Reports Server (NTRS)

    Higdon, Noah S.; Browell, Edward V.

    1991-01-01

    The Lidar Applications Group at NASA Langley Research Center has developed a differential absorption lidar (DIAL) system for the remote measurement of atmospheric water vapor (H2O) and aerosols from an aircraft. The airborne H2O DIAL system is designed for extended flights to perform mesoscale investigations of H2O and aerosol distributions. This DIAL system utilizes a Nd:YAG-laser-pumped dye laser as the off-line transmitter and a narrowband, tunable Alexandrite laser as the on-line transmitter. The dye laser has an oscillator/amplifier configuration which incorporates a grating and prism in the oscillator cavity to narrow the output linewidth to approximately 15 pm. This linewidth can be maintained over the wavelength range of 725 to 730 nm, and it is sufficiently narrow to satisfy the off-line spectral requirements. In the Alexandrite laser, three intracavity tuning elements combine to produce an output linewidth of 1.1 pm. These spectral devices include a five-plate birefringent tuner, a 1-mm thick solid etalon and a 1-cm air-spaced etalon. A wavelength stability of +/- 0.35 pm is achieved by active feedback control of the two Fabry-Perot etalons using a frequency stabilized He-Ne laser as a wavelength reference. The three tuning elements can be synchronously scanned over a 150 pm range with microprocessor-based scanning electronics. Other aspects of the DIAL system are discussed.

  13. Influence of aerosol estimation on coastal water products retrieved from HICO images

    NASA Astrophysics Data System (ADS)

    Patterson, Karen W.; Lamela, Gia

    2011-06-01

    The Hyperspectral Imager for the Coastal Ocean (HICO) is a hyperspectral sensor which was launched to the International Space Station in September 2009. The Naval Research Laboratory (NRL) has been developing the Coastal Water Signatures Toolkit (CWST) to estimate water depth, bottom type and water column constituents such as chlorophyll, suspended sediments and chromophoric dissolved organic matter from hyperspectral imagery. The CWST uses a look-up table approach, comparing remote sensing reflectance spectra observed in an image to a database of modeled spectra for pre-determined water column constituents, depth and bottom type. In order to successfully use this approach, the remote sensing reflectances must be accurate which implies accurately correcting for the atmospheric contribution to the HICO top of the atmosphere radiances. One tool the NRL is using to atmospherically correct HICO imagery is Correction of Coastal Ocean Atmospheres (COCOA), which is based on Tafkaa 6S. One of the user input parameters to COCOA is aerosol optical depth or aerosol visibility, which can vary rapidly over short distances in coastal waters. Changes to the aerosol thickness results in changes to the magnitude of the remote sensing reflectances. As such, the CWST retrievals for water constituents, depth and bottom type can be expected to vary in like fashion. This work is an illustration of the variability in CWST retrievals due to inaccurate aerosol thickness estimation during atmospheric correction of HICO images.

  14. Discrimination of water, ice and aerosols by light polarisation in the CLOUD experiment

    NASA Astrophysics Data System (ADS)

    Nichman, L.; Fuchs, C.; Järvinen, E.; Ignatius, K.; Höppel, N. F.; Dias, A.; Heinritzi, M.; Simon, M.; Tröstl, J.; Wagner, A. C.; Wagner, R.; Williamson, C.; Yan, C.; Bianchi, F.; Connolly, P. J.; Dorsey, J. R.; Duplissy, J.; Ehrhart, S.; Frege, C.; Gordon, H.; Hoyle, C. R.; Kristensen, T. B.; Steiner, G.; Donahue, N. M.; Flagan, R.; Gallagher, M. W.; Kirkby, J.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Stratmann, F.; Tomé, A.

    2015-11-01

    Cloud microphysical processes involving the ice phase in tropospheric clouds are among the major uncertainties in cloud formation, weather and General Circulation Models (GCMs). The simultaneous detection of aerosol particles, liquid droplets, and ice crystals, especially in the small cloud-particle size range below 50 μm, remains challenging in mixed phase, often unstable ice-water phase environments. The Cloud Aerosol Spectrometer with Polarisation (CASPOL) is an airborne instrument that has the ability to detect such small cloud particles and measure their effects on the backscatter polarisation state. Here we operate the versatile Cosmics-Leaving-OUtdoor-Droplets (CLOUD) chamber facility at the European Organisation for Nuclear Research (CERN) to produce controlled mixed phase and other clouds by adiabatic expansions in an ultraclean environment, and use the CASPOL to discriminate between different aerosols, water and ice particles. In this paper, optical property measurements of mixed phase clouds and viscous Secondary Organic Aerosol (SOA) are presented. We report observations of significant liquid - viscous SOA particle polarisation transitions under dry conditions using CASPOL. Cluster analysis techniques were subsequently used to classify different types of particles according to their polarisation ratios during phase transition. A classification map is presented for water droplets, organic aerosol (e.g., SOA and oxalic acid), crystalline substances such as ammonium sulphate, and volcanic ash. Finally, we discuss the benefits and limitations of this classification approach for atmospherically relevant concentration and mixtures with respect to the CLOUD 8-9 campaigns and its potential contribution to Tropical Troposphere Layer (TTL) analysis.

  15. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies

    USGS Publications Warehouse

    Buchwalter, D.B.; Jenkins, J.J.; Curtis, L.R.

    2003-01-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5??C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  16. Temperature influences on water permeability and chlorpyrifos uptake in aquatic insects with differing respiratory strategies.

    PubMed

    Buchwalter, David B; Jenkins, Jeffrey J; Curtis, Lawrence R

    2003-11-01

    Aquatic insects have evolved diverse respiratory strategies that range from breathing atmospheric air to breathing dissolved oxygen. These strategies result in vast morphological differences among taxa in terms of exchange epithelial surface areas that are in direct contact with the surrounding water that, in turn, affect physiological processes. This paper examines the effects of acute temperature shifts on water permeability and chlorpyrifos uptake in aquatic insects with different respiratory strategies. While considerable differences existed in water permeability among the species tested, acute temperature shifts raised water influx rates similarly in air-breathing and gill-bearing taxa. This contrasts significantly with temperature-shift effects on chlorpyrifos uptake. Temperature shifts of 4.5 degrees C increased 14C-chlorpyrifos accumulation rates in the gill-bearing mayfly Cinygma sp. and in the air-breathing hemipteran Sigara washingtonensis. However, the temperature-induced increase in 14C-chlorpyrifos uptake after 8 h of exposure was 2.75-fold higher in Cinygma than in Sigara. Uptake of 14C-chlorpyrifos was uniformly higher in Cinygma than in Sigara in all experiments. These findings suggest that organisms with relatively large exchange epithelial surface areas are potentially more vulnerable to both osmoregulatory distress as well as contaminant accumulation. Temperature increases appear more likely to impact organisms that have relatively large exchange epithelial surface areas, both as an individual stressor and in combination with additional stressors such as contaminants.

  17. Aircraft observations of water-soluble dicarboxylic acids in the aerosols over China

    NASA Astrophysics Data System (ADS)

    Zhang, Yan-Lin; Kawamura, Kimitaka; Qing Fu, Ping; Boreddy, Suresh K. R.; Watanabe, Tomomi; Hatakeyama, Shiro; Takami, Akinori; Wang, Wei

    2016-05-01

    Vertical profiles of dicarboxylic acids, related organic compounds and secondary organic aerosol (SOA) tracer compounds in particle phase have not yet been simultaneously explored in East Asia, although there is growing evidence that aqueous-phase oxidation of volatile organic compounds may be responsible for the elevated organic aerosols (OA) in the troposphere. Here, we found consistently good correlation of oxalic acid, the most abundant individual organic compounds in aerosols globally, with its precursors as well as biogenic-derived SOA compounds in Chinese tropospheric aerosols by aircraft measurements. Anthropogenically derived dicarboxylic acids (i.e., C5 and C6 diacids) at high altitudes were 4-20 times higher than those from surface measurements and even occasionally dominant over oxalic acid at altitudes higher than 2 km, which is in contrast to the predominance of oxalic acid previously reported globally including the tropospheric and surface aerosols. This indicates an enhancement of tropospheric SOA formation from anthropogenic precursors. Furthermore, oxalic acid-to-sulfate ratio maximized at altitudes of ˜ 2 km, explaining aqueous-phase SOA production that was supported by good correlations with predicted liquid water content, organic carbon and biogenic SOA tracers. These results demonstrate that elevated oxalic acid and related SOA compounds from both the anthropogenic and biogenic sources may substantially contribute to tropospheric OA burden over polluted regions of China, implying aerosol-associated climate effects and intercontinental transport.

  18. Raman lidar profiling of water vapor and aerosols over the ARM SGP Site

    SciTech Connect

    Ferrare, R.A.

    2000-01-09

    The authors have developed and implemented automated algorithms to retrieve profiles of water vapor mixing ratio, aerosol backscattering, and aerosol extinction from Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) Raman Lidar data acquired during both daytime and nighttime operations. The Raman lidar sytem is unique in that it is turnkey, automated system designed for unattended, around-the-clock profiling of water vapor and aerosols. These Raman lidar profiles are important for determining the clear-sky radiative flux, as well as for validating the retrieval algorithms associated with satellite sensors. Accurate, high spatial and temporal resolution profiles of water vapor are also required for assimilation into mesoscale models to improve weather forecasts. The authors have also developed and implemented routines to simultaneously retrieve profiles of relative humidity. These routines utilize the water vapor mixing ratio profiles derived from the Raman lidar measurements together with temperature profiles derived from a physical retrieval algorithm that uses data from a collocated Atmospheric Emitted Radiance Interferometer (AERI) and the Geostationary Operational Environmental Satellite (GOES). These aerosol and water vapor profiles (Raman lidar) and temperature profiles (AERI+GOES) have been combined into a single product that takes advantage of both active and passive remote sensors to characterize the clear sky atmospheric state above the CART site.

  19. Root type matters: measurements of water uptake by seminal, crown and lateral roots of maize

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez Ali; Zarebanadkouki, Mohsen; Kaestner, Anders; Carminati, Andrea

    2016-04-01

    Roots play a key role in water acquisition and are a significant component of plant adaptation to different environmental conditions. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of root water uptake in mature maize. We used neutron radiography to image the spatial distribution of maize roots and trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers filled with a sandy soil that was kept homogeneously wet throughout the experiment. When the plants were five weeks-old, we injected D2O into selected soil regions. The transport of D2O was simulated using a diffusion-convection numerical model. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The model was initially developed and tested with two weeks-old maize (Ahmed et. al. 2015), for which we found that water was mainly taken up by lateral roots and the water uptake of the seminal roots was negligible. Here, we used this method to measure root water uptake in a mature maize root system. The root architecture of five weeks-old maize consisted of primary and seminal roots with long laterals and crown (nodal) roots that emerged from the above ground part of the plant two weeks after planting. The crown roots were thicker than the seminal roots and had fewer and shorter laterals. Surprisingly, we found that the water was mainly taken up by the crown roots and their laterals, while the lateral roots of seminal roots, which were the main location of water uptake of younger plants, stopped to take up water. Interestingly, we also found that in contrast to the seminal roots, the crown roots were able to take up water also from their distal segments. We conclude that for the two weeks

  20. Modeling Aerosol Effects on Clouds and Precipitation: Insights from CalWater 2015

    NASA Astrophysics Data System (ADS)

    Leung, L. R.; Lim, K. S. S.; Fan, J.; Prather, K. A.; DeMott, P. J.; Spackman, J. R.; Ralph, F. M.

    2015-12-01

    The CalWater 2015 field campaign took place in northern California from mid January through early March of 2015. The field campaign, including collaborations between CalWater 2 and ACAPEX, aims to improve understanding and modeling of large-scale dynamics and cloud and precipitation processes associated with atmospheric rivers (ARs) and aerosol-cloud interactions that influence precipitation variability and extremes in the western U.S. An observational strategy was employed using land and offshore assets to monitor (1) the evolution and structure of ARs from near their regions of development, (2) long range transport of aerosols in eastern North Pacific and potential interactions with ARs, and (3) how aerosols from long-range transport and local sources influence cloud and precipitation in the U.S. During the field campaign, an AR developed in the Northeast Pacific Ocean in early February and made landfall in northern California. In-situ aerosol and cloud measurements from the G-1 aircraft; remote sensing data of clouds and aerosols; and meteorological measurements from aircraft, ship, and ground-based instruments collected from February 5 - 8, 2015 are analyzed to characterize the large-scale environment and cloud and precipitation forming processes. Modeling experiments are designed using a regional model for simulations with a cloud resolving limited area domain and quasi-global coarser resolution domain to evaluate the impacts of aerosols on clouds and precipitation, and to explore the relative contributions of long-range transported and regional aerosols that interacted with the clouds before, during, and after AR landfall. Preliminary results will be discussed in the context of the field data as well as a multi-year simulation of the climatological contributions of long-range transported dust during AR landfall in California.

  1. Techniques of Validation of Aerosol and Water Vapor Retrievals From MODIS

    NASA Technical Reports Server (NTRS)

    Ichoku, Charles; Chu, Allen; Mattoo, Shana; Kaufman, Yoram; Remer, Lorraine; Tanre, Didier; Slutsker, Ilya; Holben, Brent N.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Aerosols are extremely important for global climate studies and modeling in the quest to characterize the global radiation budget and forcing. The physical characteristics, composition, abundance, and spatial distribution and dynamics of aerosols are still very poorly known. Aerosol column optical thickness and other parameters as well as column precipitable water vapor amount are some of the main atmospheric parameters retrieved from the MODIS instrument on board the Terra satellite. To ensure the reliability of these parameters, we have embarked on a very massive validation effort. This involves cross correlation between the retrievals from the satellite data and those obtained from sunphotometer measurements at a large number of ground stations spread throughout the globe. Notable among these ground stations is a large network of over 100 stations coordinated under the Aerosol Robotic Network (AERONET) project. Whereas MODIS retrieves the aerosol parameters throughout the globe once or twice a day during the daytime, the ground measurements cover only discrete locations of the earth, though the retrievals are done several times a day. We have devised a method to. match the MODIS and ground retrievals through spatial statistics for the MODIS data and temporal statistics for the ground data. This has produced good comparisons and has enabled the validation of MODIS aerosol and water vapor retrievals at over 100 discrete locations in various parts of the earth both over the land and over the ocean. Currently, the validation statistical data is produced routinely by the MODIS aerosol group and is even available not only for validation but also for use by the science community for short and long term studies at various parts of the earth. One important advantage is that the system can be expanded to incorporate more locations where ground measurements and other studies may be conducted at any time during the lifetime of MODIS.

  2. Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Liger-Belair, G.; Koch, B. P.; Flerus, R.; Kattner, G.; Harir, M.; Kanawati, B.; Lucio, M.; Tziotis, D.; Hertkorn, N.; Gebefügi, I.

    2012-04-01

    Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by absorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of Organic primary aerosols, i.e. the transfer of dissolved organic matter from the marine surface into the atmosphere, was studied. We present a molecular level description of this phenomenon using the high resolution analytical tools of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR). Our experiments confirm the chemoselective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of compounds enriched in the aerosol phase were CHO and CHOS molecular series, smaller molecules of higher aliphaticity and lower oxygen content, and typical surfactants. A non-targeted metabolomics analysis demonstrated that many of these molecules corresponded to homologous series of oxo-, hydroxy-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of sea spray production leaves a selective biological signature of the surface water in the corresponding aerosol that may be transported into higher altitudes up to the lower atmosphere, thus contributing to the formation of secondary organic aerosol on a global scale or transported laterally with

  3. Quantifying relationships between rooting traits and water uptake under drought in Mediterranean barley and durum wheat.

    PubMed

    Carvalho, Pedro; Azam-Ali, Sayed; Foulkes, M John

    2014-05-01

    In Mediterranean regions drought is the major factor limiting spring barley and durum wheat grain yields. This study aimed to compare spring barley and durum wheat root and shoot responses to drought and quantify relationships between root traits and water uptake under terminal drought. One spring barley (Hordeum vulgare L. cv. Rum) and two durum wheat Mediterranean cultivars (Triticum turgidum L. var durum cvs Hourani and Karim) were examined in soil-column experiments under well watered and drought conditions. Root system architecture traits, water uptake, and plant growth were measured. Barley aerial biomass and grain yields were higher than for durum wheat cultivars in well watered conditions. Drought decreased grain yield more for barley (47%) than durum wheat (30%, Hourani). Root-to-shoot dry matter ratio increased for durum wheat under drought but not for barley, and root weight increased for wheat in response to drought but decreased for barley. The critical root length density (RLD) and root volume density (RVD) for 90% available water capture for wheat were similar to (cv. Hourani) or lower than (cv. Karim) for barley depending on wheat cultivar. For both species, RVD accounted for a slightly higher proportion of phenotypic variation in water uptake under drought than RLD.

  4. A comparative study of water uptake by and transport through ionomeric fuel cell membranes

    SciTech Connect

    Zawodzinski, T.A.Jr.; Springer, T.E.; Davey, J.; Jestel, R.; Lopez, C.; Valerio, J.; Gottesfeld, S. . Electronics Materials and Device Research)

    1993-07-01

    Water uptake and transport parameters measured at 30 C for several available perfluorosulfonic acid membranes are compared. The water sorption characteristics, diffusion coefficient of water, electroosmotic drag, and protonic conductivity were determined for Nafion 117, Membrane C, and Dow XUS 13204.10 developmental fuel cell membrane. The diffusion coefficient and conductivity of each of these membranes were determined as functions of membrane water content. Experimental determination of transport parameters, enables one to compare membranes without the skewing effects of extensive features such as membrane thickness which contributes in a nonlinear fashion to performance in polymer electrolyte fuel cells.

  5. Aerosol water soluble organic nitrogen and carbon over the remote Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Pollard, Liam; Baker, Alex; Jickels, Tim

    2014-05-01

    Nitrogen is a limiting or co-limiting nutrient in large parts of the world's oceans particularly in oligotrophic regions such as gyres. In the open ocean there are two pathways by which new nutrient nitrogen can enter the oligotrophic system: biological nitrogen fixation and atmospheric deposition. Aerosol matter contributes to the latter route via dry and wet deposition, therefore it is important to understand and quantify the nitrogen containing material in aerosols and establish its major sources. Until recently, the organic nitrogen component of aerosol nitrogen was largely ignored, however, it is now known to contribute between 25-30 % of total water soluble nitrogen in aerosols, globally. This organic nitrogen is known to be chemically complex, shows high spatial and temporal variability and a large proportion of it has been shown to be bioavailable. It is important that this material is further quantified and characterised (including its carbon component) to determine its biogeochemical impact. Data gathered from fine and coarse mode aerosol samples collected on three Atlantic cruises (AMT21, AMT22 and ANT26-4) will be presented. Bulk and water soluble organic carbon and nitrogen data will be shown alongside major ion and inorganic nitrogen data. Potential sources of organic nitrogen and carbon material will be evaluated using a combination of inter-component correlations with known tracers and air-parcel back trajectories, allowing estimates of the anthropogenic impact on nutrient deposition to the remote Atlantic Ocean to be made.

  6. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    PubMed

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-06

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  7. Attribution of the United States "warming hole": aerosol indirect effect and precipitable water vapor.

    PubMed

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20(th) century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. "warming hole"). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the "warming hole". We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed "warming hole" can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  8. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    NASA Astrophysics Data System (ADS)

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-11-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. ``warming hole''). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the ``warming hole''. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed ``warming hole'' can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin.

  9. Attribution of the United States “warming hole”: Aerosol indirect effect and precipitable water vapor

    PubMed Central

    Yu, Shaocai; Alapaty, Kiran; Mathur, Rohit; Pleim, Jonathan; Zhang, Yuanhang; Nolte, Chris; Eder, Brian; Foley, Kristen; Nagashima, Tatsuya

    2014-01-01

    Aerosols can influence the climate indirectly by acting as cloud condensation nuclei and/or ice nuclei, thereby modifying cloud optical properties. In contrast to the widespread global warming, the central and south central United States display a noteworthy overall cooling trend during the 20th century, with an especially striking cooling trend in summertime daily maximum temperature (Tmax) (termed the U.S. “warming hole”). Here we used observations of temperature, shortwave cloud forcing (SWCF), longwave cloud forcing (LWCF), aerosol optical depth and precipitable water vapor as well as global coupled climate models to explore the attribution of the “warming hole”. We find that the observed cooling trend in summer Tmax can be attributed mainly to SWCF due to aerosols with offset from the greenhouse effect of precipitable water vapor. A global coupled climate model reveals that the observed “warming hole” can be produced only when the aerosol fields are simulated with a reasonable degree of accuracy as this is necessary for accurate simulation of SWCF over the region. These results provide compelling evidence of the role of the aerosol indirect effect in cooling regional climate on the Earth. Our results reaffirm that LWCF can warm both winter Tmax and Tmin. PMID:25373416

  10. Some results of water vapor, ozone and aerosol balloon borne measurements during EASOE

    NASA Astrophysics Data System (ADS)

    Khattatov, V.; Yushkov, V.; Khaplanov, M.; Zaitzev, I.; Rosen, J.; Kjome, N.

    As part of the European Arctic Stratospheric Ozone Experiment (EASOE) in the northern winter of 1991/92, regular measurements of the vertical distribution of ozone and aerosols were carried out from two Russian polar stations, Heiss Island (81N, 58E) and Dikson Island (73N, 81E). In addition measurements of the vertical distribution of water vapor and aerosols were made from Esrange (68N, 21E), near Kiruna in Sweden. The instruments used were electrochemical ozone sondes (ECC-4A), a fluorescence hygrometer, and the University of Wyoming backscattersonde. Following the eruption of Mt.Pinatubo, in the Philippines, in June 1991, volcanic aerosol had reached Arctic latitudes at altitudes below 19 km by September. At all three sites it was observed on every flight. Polar stratospheric clouds were encountered above the volcanic aerosol on two flights from Esrange. There were no indications of dehydration in the Arctic stratosphere. On all flights the minimum mixing ratio of water vapor was observed 2 to 3 km above the tropopause. Total ozone was much lower than the climatological mean, over Dikson Island from the January 27, and over Heiss Island from mid-February, until the end of EASOE. Ozone profiles over these stations showed rapid increases in partial pressure immediately above the peak values of backscatter ratio when the volcanic aerosol was especially dense.

  11. Water Uptake along the Length of Grapevine Fine Roots: Developmental anatomy, tissue specific aquaporin expression, and pathways of water transport

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To better understand water uptake patterns in root systems of woody perennial crops, we detailed the developmental anatomy and hydraulic physiology along the length of grapevine fine roots- from the tip to secondary growth zones. Our characterization included localization of suberized structures an...

  12. Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry.

    PubMed

    Berkemeier, Thomas; Steimer, Sarah S; Krieger, Ulrich K; Peter, Thomas; Pöschl, Ulrich; Ammann, Markus; Shiraiwa, Manabu

    2016-05-14

    Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols. To demonstrate and quantify how moisture-induced phase changes can affect the gas uptake and chemical transformation of organic matter, we apply a kinetic multi-layer model to a comprehensive experimental data set of ozone uptake by shikimic acid. The bulk diffusion coefficients were determined to be 10(-12) cm(2) s(-1) for ozone and 10(-20) cm(2) s(-1) for shikimic acid under dry conditions, increasing by several orders of magnitude with increasing relative humidity (RH) due to phase changes from amorphous solid over semisolid to liquid. Consequently, the reactive uptake of ozone progresses through different kinetic regimes characterised by specific limiting processes and parameters. At high RH, ozone uptake is driven by reaction throughout the particle bulk; at low RH it is restricted to reaction near the particle surface and kinetically limited by slow diffusion and replenishment of unreacted organic molecules. Our results suggest that the chemical reaction mechanism involves long-lived reactive oxygen intermediates, likely primary ozonides or O atoms, which may provide a pathway for self-reaction and catalytic destruction of ozone at the surface. Slow diffusion and ozone destruction can effectively shield reactive organic molecules in the particle bulk from degradation. We discuss the potential non-orthogonality of kinetic parameters, and show how this problem can be solved by using comprehensive experimental data sets to constrain the kinetic model, providing mechanistic insights into the coupling of transport, phase changes, and chemical reactions of multiple species in complex systems. PMID:27095585

  13. Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry.

    PubMed

    Berkemeier, Thomas; Steimer, Sarah S; Krieger, Ulrich K; Peter, Thomas; Pöschl, Ulrich; Ammann, Markus; Shiraiwa, Manabu

    2016-05-14

    Heterogeneous and multiphase reactions of ozone are important pathways for chemical ageing of atmospheric organic aerosols. To demonstrate and quantify how moisture-induced phase changes can affect the gas uptake and chemical transformation of organic matter, we apply a kinetic multi-layer model to a comprehensive experimental data set of ozone uptake by shikimic acid. The bulk diffusion coefficients were determined to be 10(-12) cm(2) s(-1) for ozone and 10(-20) cm(2) s(-1) for shikimic acid under dry conditions, increasing by several orders of magnitude with increasing relative humidity (RH) due to phase changes from amorphous solid over semisolid to liquid. Consequently, the reactive uptake of ozone progresses through different kinetic regimes characterised by specific limiting processes and parameters. At high RH, ozone uptake is driven by reaction throughout the particle bulk; at low RH it is restricted to reaction near the particle surface and kinetically limited by slow diffusion and replenishment of unreacted organic molecules. Our results suggest that the chemical reaction mechanism involves long-lived reactive oxygen intermediates, likely primary ozonides or O atoms, which may provide a pathway for self-reaction and catalytic destruction of ozone at the surface. Slow diffusion and ozone destruction can effectively shield reactive organic molecules in the particle bulk from degradation. We discuss the potential non-orthogonality of kinetic parameters, and show how this problem can be solved by using comprehensive experimental data sets to constrain the kinetic model, providing mechanistic insights into the coupling of transport, phase changes, and chemical reactions of multiple species in complex systems.

  14. Seed Anatomy and Water Uptake in Relation to Seed Dormancy in Opuntia tomentosa (Cactaceae, Opuntioideae)

    PubMed Central

    Orozco-Segovia, A.; Márquez-Guzmán, J.; Sánchez-Coronado, M. E.; Gamboa de Buen, A.; Baskin, J. M.; Baskin, C. C.

    2007-01-01

    Background and Aims There is considerable confusion in the literature concerning impermeability of seeds with ‘hard’ seed coats, because the ability to take up (imbibe) water has not been tested in most of them. Seeds of Opuntia tomentosa were reported recently to have a water-impermeable seed coat sensu lato (i.e. physical dormancy), in combination with physiological dormancy. However, physical dormancy is not known to occur in Cactaceae. Therefore, the aim of this study was to determine if seeds of O. tomentosa are water-permeable or water-impermeable, i.e. if they have physical dormancy. Methods The micromorphology of the seed coat and associated structures were characterized by SEM and light microscopy. Permeability of the seed-covering layers was assessed by an increase in mass of seeds on a wet substrate and by dye-tracking and uptake of tritiated water by intact versus scarified seeds. Key Results A germination valve and a water channel are formed in the hilum–micropyle region during dehydration and ageing in seeds of O. tomentosa. The funicular envelope undoubtedly plays a role in germination of Opuntia seeds via restriction of water uptake and mechanical resistance to expansion of the embryo. However, seeds do not exhibit any of three features characteristic of those with physical dormancy. Thus, they do not have a water-impermeable layer(s) of palisade cells (macrosclereids) or a water gap sensu stricto and they imbibe water without the seed coat being disrupted. Conclusions Although dormancy in seeds of this species can be broken by scarification, they have physiological dormancy only. Further, based on information in the literature, it is concluded that it is unlikely that any species of Opuntia has physical dormancy. This is the first integrative study of the anatomy, dynamics of water uptake and dormancy in seeds of Cactaceae subfamily Opuntioideae. PMID:17298989

  15. Tracking the diurnal signal of plant water uptake through the hydrologic system

    NASA Astrophysics Data System (ADS)

    Blume, Theresa; Hassler, Sibylle; Heidbüchel, Ingo; Weiler, Markus; Simard, Sonia; Güntner, Andreas; Heinrich, Ingo

    2015-04-01

    Plant water uptake during summer is characterized by strong diurnal fluctuations. As a result a diurnal sink term is imposed on catchment storage, affecting the unsaturated zone, sometimes the saturated zone and even streamflow. Detecting this signal and understanding its propagation through the hydrological system may help to better quantify eco-hydrological connectivity. The extent and strength of the propagation of this signal from plant to soil to ground- and stream water was investigated with a unique setup of 46 field sites in Luxemburg and 15 field sites in Germany. These sites cover a range of geologies, soils, topographies and types of vegetation. Vegetation types include grassland, pine forest (young and old) and different deciduous forest stands. Available data at all sites includes information at high temporal resolution from 3-5 soil moisture profiles, matrix potential, piezometers and sapflow sensors (as proxy for plant water uptake) as well as standard climate data. At sites with access to a stream, discharge or water level is also recorded. Signal strength (amplitude of diurnal fluctuations) can thus be traced through the system and gives an indication of the physical sphere of influence of plant water uptake i.e. the "eco-hydro-connectivity". Temporal dynamics of signal strength furthermore suggest a shifting spatial distribution of root water uptake with time. The analysis of time lags (or phase shifts) between daily fluctuations in temperature, radiation, sapflow, soil water, groundwater and streamflow gives further insights into the processes driving and propagating these signals and inter-site comparison allows for the investigation of local controls.

  16. Speciation and water soluble fraction of iron in aerosols from various sources

    NASA Astrophysics Data System (ADS)

    Takahashi, Y.; Kurisu, M.; Uematsu, M.

    2015-12-01

    Iron (Fe) is an essential micronutrient and has been identified as a limiting factor for phytoplankton growth in high-nitrate low-chlorophyll (HNLC) regions of the ocean. In the North Pacific, three sources of iron (Fe) transported via. atmosphere can be suggested: (i) mineral dust from East Asia, (ii) anthropogenic Fe, and (iii) aerosols from volcanic origin. Considering these different sources, Fe can be found and transported in a variety of chemical forms, both water-soluble and -insoluble. It is generally believed that only the soluble fraction of Fe can be considered as bioavailable for phytoplankton. To assess the biogeochemical impact of the atmospheric input, attempt was made to determine Fe species by X-ray absorption spectroscopy (XAS) and its water solubility, in particular to compare the three sources. Iron species, chemical composition, and soluble Fe concentration in aerosol collected at Tsukuba (Japan) through a year were investigated to compare the contributions of mineral dust and anthropogenic components. It was found that the concentration of soluble Fe in aerosol is correlated with those of sulfate and oxalate which originate from anthropogenic sources, suggesting that soluble Fe is mainly derived from anthropogenic sources. XAS analysis showed that main Fe species in aerosols in Tsukuba were illite, ferrihydrite, hornblende, and Fe(III) sulfate. Moreover, soluble Fe fraction is closely correlated with that of Fe(III) sulfate. In spite of supply of high concentrations of Fe in mineral dust from East Asia, it was found that anthropogenic fraction is important due to its high water solubility by the presence of Fe(III) sulfate. Marine aerosol samples originated from volcanic ash were collected in the western North Pacific during KH-08-2 cruise (August, 2008). XAS analysis suggested that Fe species of volcanic ashes changed during the long-range transport, while dissolution experiment showed that Fe solubility of the marine aerosol is larger than

  17. Raman lidar and sun photometer measurements of aerosols and water vapor during the ARM RCS experiment

    NASA Technical Reports Server (NTRS)

    Ferrare, R. A.; Whiteman, D. N.; Melfi, S. H.; Evans, K. D.; Holben, B. N.

    1995-01-01

    The first Atmospheric Radiation Measurement (ARM) Remote Cloud Study (RCS) Intensive Operations Period (IOP) was held during April 1994 at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site near Lamont, Oklahoma. This experiment was conducted to evaluate and calibrate state-of-the-art, ground based remote sensing instruments and to use the data acquired by these instruments to validate retrieval algorithms developed under the ARM program. These activities are part of an overall plan to assess general circulation model (GCM) parameterization research. Since radiation processes are one of the key areas included in this parameterization research, measurements of water vapor and aerosols are required because of the important roles these atmospheric constituents play in radiative transfer. Two instruments were deployed during this IOP to measure water vapor and aerosols and study their relationship. The NASA/Goddard Space Flight Center (GSFC) Scanning Raman Lidar (SRL) acquired water vapor and aerosol profile data during 15 nights of operations. The lidar acquired vertical profiles as well as nearly horizontal profiles directed near an instrumented 60 meter tower. Aerosol optical thickness, phase function, size distribution, and integrated water vapor were derived from measurements with a multiband automatic sun and sky scanning radiometer deployed at this site.

  18. Modelling Nitrate uptake in river networks using the new mHM water quality model

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqiang; Sinha, Sumit; Samaniego, Luis; Kumar, Rohini; Jomaa, Seifeddine; Rode, Michael

    2016-04-01

    To understand the spatial distribution and temporal dynamics of nitrate uptake in river networks under different land use are critical for the protection of river ecosystem and drinking water supply. To this end, distributed grid-based hydrological water quality models are required. The multi-scale Hydrological Model (mHM) was integrated with the nitrate transport and reaction (NTR) routines. The main equations of NTR routines were introduced from the HYPE (Hydrological Predictions for the Environment) model, which has been fully verified in the literature. The new coupled mHM model with the NTR routines is able to calculate the hydrographs at any point and also the distribution of state variables, which makes it possible to present the distribution of inorganic nitrogen uptake in the whole river network. First, the model is successfully calibrated and validated in the Selke catchment (463 km2) using three gauging stations during the period of 1994-2004 in terms of hydrographs and inorganic nitrogen concentrations. Then, the model performance for in-stream Nitrate uptake predictions are presented and analyzed temporally and spatially, considering the Selke river network characteristics. Particularly, how much the land use affects the amount and the intra-annual dynamics of in-stream uptake are discussed using one forest-dominant sub-catchment (Meisdorf, where forest share is about 72%) with another agriculture-dominant sub-catchment (Hausneindorf, where agriculture share is about 76%). In addition, the seasonal variation of model in-stream nitrate uptake predictions are compared with calculated values using the nitrate assimilatory uptake approach generated from high frequency sensor measurements.

  19. Water nucleation properties of chaparral fire aerosol particles

    SciTech Connect

    Hudson, J.G.; Rogers, C.F.; Hallett, J.

    1989-05-01

    In December, 1986, planned and prescribed forest management burns took place at Lodi Canyon, on the north side of the Los Angeles Basin, California. These fires involved a mixture of species of small trees and shrubs, including scrub oak, chamise, and mountain mahogany, known collectively as ''chaparral'' in the Western US. Over a period of about two weeks, about 200 hectares of chaparral were consumed. This prescribed burn presented an opportunity for three days of airborne measurements of aerosol properties including total particle or condensation nuclei (CN) concentrations and cloud condensation nuclei (CCN) concentrations. This study is in coordination with other efforts conducted simultaneously; here the emphasis will be on the airborne CN and CCN measurements and on related studies conducted on a laboratory scale. In this study, we distinguish between CCN and the total aerosol particle population as gauged by the CN count. CCN and CN concentrations and CCN/CN ratios will be presented for the airborne measurements and for laboratory measurements employing a similar fuel. Ancillary ion chromatography (IC) and scanning electron microscopy (SEM) information will also be presented for the laboratory-scale chaparral burn. 11 refs., 4 figs., 4 tabs.

  20. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development.

    PubMed

    Hepworth, Christopher; Turner, Carla; Landim, Marcela Guimaraes; Cameron, Duncan; Gray, Julie E

    2016-01-01

    Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development. PMID:27275842

  1. Influence of tragacanth gum in egg white based bioplastics: Thermomechanical and water uptake properties.

    PubMed

    López-Castejón, María Luisa; Bengoechea, Carlos; García-Morales, Moisés; Martínez, Inmaculada

    2016-11-01

    This study aims to extend the range of applications of tragacanth gum by studying its incorporation into bioplastics formulation, exploring the influence that different gum contents (0-20wt.%) exert over the thermomechanical and water uptake properties of bioplastics based on egg white albumen protein (EW). The effect of plasticizer nature was also evaluated through the modification of the water/glycerol ratio within the plasticizer fraction (fixed at 40wt.%). The addition of tragacanth gum generally yielded an enhancement of the water uptake capacity, being doubled at the highest content. Conversely, presence of tragacanth gum resulted in a considerable decrease in the bioplastic mechanical properties: both tensile strength and maximum elongation were reduced up to 75% approximately when compared to the gum-free system. Ageing of selected samples was also studied, revealing an important effect of storage time when tragacanth gum is present, possibly due to its hydrophilic character.

  2. Influence of tragacanth gum in egg white based bioplastics: Thermomechanical and water uptake properties.

    PubMed

    López-Castejón, María Luisa; Bengoechea, Carlos; García-Morales, Moisés; Martínez, Inmaculada

    2016-11-01

    This study aims to extend the range of applications of tragacanth gum by studying its incorporation into bioplastics formulation, exploring the influence that different gum contents (0-20wt.%) exert over the thermomechanical and water uptake properties of bioplastics based on egg white albumen protein (EW). The effect of plasticizer nature was also evaluated through the modification of the water/glycerol ratio within the plasticizer fraction (fixed at 40wt.%). The addition of tragacanth gum generally yielded an enhancement of the water uptake capacity, being doubled at the highest content. Conversely, presence of tragacanth gum resulted in a considerable decrease in the bioplastic mechanical properties: both tensile strength and maximum elongation were reduced up to 75% approximately when compared to the gum-free system. Ageing of selected samples was also studied, revealing an important effect of storage time when tragacanth gum is present, possibly due to its hydrophilic character. PMID:27516250

  3. Balancing Water Uptake and Loss through the Coordinated Regulation of Stomatal and Root Development

    PubMed Central

    Hepworth, Christopher; Turner, Carla; Landim, Marcela Guimaraes; Cameron, Duncan; Gray, Julie E.

    2016-01-01

    Root development is influenced by nutrient and water availabilities. Plants are able to adjust many attributes of their root in response to environmental signals including the size and shape of the primary root, lateral roots and root hairs. Here we investigated the response of roots to changes in the levels of leaf transpiration associated with altered stomatal frequency. We found that plants with high stomatal density and conductance produce a larger rooting area and as a result have enhanced phosphate uptake capacity whereas plants with low stomatal conductance produce a smaller root. Manipulating the growth environment of plants indicated that enhanced root growth is most likely a result of an increased demand for water rather than phosphate. Plants manipulated to have an increase or reduction in root hair growth show a reduction or increase respectively, in stomatal conductance and density. Our results demonstrate that plants can balance their water uptake and loss through coordinated regulation of both stomatal and root development. PMID:27275842

  4. Effects of cell cycle on the uptake of water soluble quantum dots by cells

    NASA Astrophysics Data System (ADS)

    Zheng, Shen; Chen, Ji-Yao; Wang, Jun-Yong; Zhou, Lu-Wei; Peng, Qian

    2011-12-01

    Quantum dots (QDs) with excellent optical properties have become powerful candidates for cell imaging. Although numerous reports have studied the uptake of QDs by cells, little information exists on the effects of cell cycle on the cellular QD uptake. In this report, the effects of cell cycle on the uptake of water soluble thiol-capped CdTe QDs by the human cervical carcinoma Hela cell line, human hepatocellular carcinoma QGY7701 cell line, and human embryonic kidney 293T cell line were studied by means of laser scanning confocal microscopy and flow cytometry. All three cell lines show to take up CdTe QDs via endocytosis. After arresting cells at specific phases with pharmacological agents, the cells in G2/M phase take up the most CdTe QDs, probably due to an increased membrane expansion during mitosis; whereas the cells in G1 phase do the least. A mathematical physics model was built to calculate the relative uptake rates of CdTe QDs by cells in different phases of the cell cycle, with the result as the uptake rate in G2/M phase is 2-4 times higher than that in G1 phase for these three cell lines. The results obtained from this study may provide the information useful for intracellular delivery of QDs.

  5. Neutron radiography for the study of water uptake in painting canvases and preparation layers

    NASA Astrophysics Data System (ADS)

    Boon, J. J.; Hendrickx, R.; Eijkel, G.; Cerjak, I.; Kaestner, A.; Ferreira, E. S. B.

    2015-11-01

    Easel paintings on canvas are subjected to alteration mechanisms triggered or accelerated by moisture. For the study of the spatial distribution and kinetics of such interactions, a moisture exposure chamber was designed and built to perform neutron radiography experiments. Multilayered sized and primed canvas samples were prepared for time-resolved experiments in the ICON cold neutron beamline. The first results show that the set-up gives a good contrast and sufficient resolution to visualise the water uptake in the layers of canvas, size and priming. The results allow, for the first time, real-time visualisation of the interaction of water vapour with such layered systems. This offers important new opportunities for relevant, spatially and time-resolved material behaviour studies and opens the way towards numerical modelling of the process. These first results show that cellulose fibres and glue sizing have a much stronger water uptake than the chalk-glue ground. Additionally, it shows that the uptake rate is not uniform throughout the thickness of the sized canvas. With prolonged moisture exposure, a higher amount of water is accumulating at the lower edge of the canvas weave suggesting a decrease in permeability in the sized canvas with increased water content.

  6. Computational screening of iodine uptake in zeolitic imidazolate frameworks in a water-containing system.

    PubMed

    Yuan, Yue; Dong, Xiuqin; Chen, Yifei; Zhang, Minhua

    2016-08-17

    Iodine capture is of great environmental significance due to the high toxicity and volatility of I2. Here we conduct a systematic computational investigation of iodine adsorption in zeolitic imidazolate frameworks (ZIFs) by adopting the grand canonical Monte Carlo (GCMC) simulation and the density functional theory (DFT) method. The results confirm the vital structural factors for iodine adsorption at 298 K and moderate pressures including metal sites, organic linkers, symmetry, and topology types. The uptake will be enhanced by active metal sites, the simple imidazolate linker and single asymmetric linkers with polar functional groups. The symmetry effect is stronger than the surface properties. Meanwhile low steric hindrance is more beneficial than polar functional groups to iodine adsorption. The specific topology types like mer bringing large surface areas and large diameter cages result in high iodine capacities. Iodine molecules tend to locate in cages with large diameters and aggregates along the sides of cages. In contrast, water prefers small diameter cages. In hydrophilic materials, water has a negative impact on iodine uptake due to its similar adsorption sites to iodine. The selectivity of iodine over water increases with increasing water content due to the large diameter cages of ZIFs. This work proves that ZIFs can be identified as efficient and economical adsorbents with high diversity for iodine in a water-containing system. Furthermore, it provides comprehensive insights into key structural factors for iodine uptake and separation in silver-free porous solids. PMID:27499079

  7. Water uptake, ionic conductivity and swelling properties of anion-exchange membrane

    SciTech Connect

    Duan, QJ; Ge, SH; Wang, CY

    2013-12-01

    Water uptake, ionic conductivity and dimensional change of the anion-exchange membrane made by Tokuyama Corporation (A201 membrane) are investigated at different temperatures and water activities. Specifically, the amount of water taken up by membranes exposed to water vapor and membranes soaked in liquid water is determined. The water uptake of the A201 membrane increases with water content as well as temperature. In addition, water sorption data shows Schroeder's paradox for the AEMs investigated. The swelling properties of the A201 membrane exhibit improved dimensional stability compared with Nafion membrane. Water sorption of the A201 membrane occurs with a substantial negative excess volume of mixing. The threshold value of hydrophilic fraction in the A201 membrane for ionic conductivity is around 0.34, above which, the conductivity begins to rise quickly. This indicates that a change in the connectivity of the hydrophilic domains occurs when hydrophilic fraction approaches 0.34. (C) 2013 Elsevier B.V. All rights reserved.

  8. How to bridge the gap between local root water uptake processes and macroscopic hydrological models?

    NASA Astrophysics Data System (ADS)

    Javaux, M.; Couvreur, V.; Vereecken, H.; Vanderborght, J.

    2013-12-01

    Modeling root water uptake in hydrological models remains challenging given the scale gap between the local uptake processes and the model resolutions. When Richards equation is used, root water uptake is modeled with a sink-term spatially resolved at the grid element scale (~cm...m), much larger than the root segment scale (~mm). Typically this sink-term contains four functions: (i) a root resistance function, (ii) a soil resistance function, (iii) a stress function and (iv) a compensation function. Thanks to novel detailed 3-D and 1-D models that contain the current knowledge on soil and root water flow, we propose improvements for the four functions used in macroscopic sink terms, which respect biophysical principles. We show that (1) root resistance may be well defined by the root length density but only for relatively wet soil and no limiting xylem conductance; (2) soil resistance cannot be neglected, in particular in the rhizosphere where specific process may occur, which alter the soil hydraulic properties and thereby affect uptake and the stress functions; (3) stress and compensation are two different processes not linked to each other; (4) compensation occurs as soon as there is a heterogeneous distribution of the soil water potential around the root system; (5) stress function should be defined as a maximal actual transpiration in function of an integrated or root-sensed averaged water head rather than in terms of local water heads; and (6) non linearity in the stress function is expected to arise from evolution with pressure heads or time of the hydraulic resistances in the soil-plant system.

  9. Frequency dependent complex refractive indices of supercooled liquid water and ice determined from aerosol extinction spectra.

    PubMed

    Zasetsky, A Y; Khalizov, A F; Earle, M E; Sloan, J J

    2005-03-31

    Complex refractive indices of supercooled liquid water at 240, 253, 263, and 273 K, and ice at 200, 210, and 235 K in the mid infrared from 460 to 4000 cm(-1) are reported. The results were obtained from the extinction spectra of small (micron-size) aerosol particles, recorded using the cryogenic flow tube technique. An improved iterative procedure for retrieving complex refractive indices from extinction measurements is described. The refractive indices of ice determined in the present study are in good agreement with data reported earlier. The temperature region and range of states covered in the present work are relevant to the study of upper tropospheric and stratospheric aerosols and clouds.

  10. Clearing of a polydisperse water aerosol by a laser pulse in the diffusive-convective regime

    SciTech Connect

    Kucherov, Arkadii N

    2006-04-30

    The propagation of an IR laser pulse through a water aerosol layer (fog, clouds) is studied. The relative motion of the beam and medium, the diffraction spread, thermal self-action of the laser beam, absorption and scattering of radiation by particles, evaporation of particles (aerosol clearing), and the size distribution of particles were taken into account. The propagation problem was solved numerically at a macroscopic scale of the order of the beam transverse size, and the action of radiation on drops was considered at a microscopic scale of the order of the particle radius. A satisfactory agreement was obtained between theoretical and experimental results. (interaction of laser radiation with matter)

  11. Water-soluble material on aerosols collected within volcanic eruption clouds ( Fuego, Pacaya, Santiaguito, Guatamala).

    USGS Publications Warehouse

    Smith, D.B.; Zielinski, R.A.; Rose, W.I.; Huebert, B.J.

    1982-01-01

    In Feb. and March of 1978, filter samplers mounted on an aircraft were used to collect the aerosol fraction of the eruption clouds from three active Guatemalan volcanoes (Fuego, Pacaya, and Santiaguito). The elements dissolved in the aqueous extracts represent components of water-soluble material either formed directly in the eruption cloud or derived from interaction of ash particles and aerosol components of the plume. Calculations of enrichment factors, based upon concentration ratios, showed the elements most enriched in the extracts relative to bulk ash composition were Cd, Cu, V, F, Cl, Zn, and Pb.-from Authors

  12. On the role of particle inorganic mixing state in the reactive uptake of N2O5 to ambient aerosol particles.

    PubMed

    Ryder, Olivia S; Ault, Andrew P; Cahill, John F; Guasco, Timothy L; Riedel, Theran P; Cuadra-Rodriguez, Luis A; Gaston, Cassandra J; Fitzgerald, Elizabeth; Lee, Christopher; Prather, Kimberly A; Bertram, Timothy H

    2014-01-01

    The rates of heterogeneous reactions of trace gases with aerosol particles are complex functions of particle chemical composition, morphology, and phase state. Currently, the majority of model parametrizations of heterogeneous reaction kinetics focus on the population average of aerosol particle mass, assuming that individual particles have the same chemical composition as the average state. Here we assess the impact of particle mixing state on heterogeneous reaction kinetics using the N2O5 reactive uptake coefficient, γ(N2O5), and dependence on the particulate chloride-to-nitrate ratio (nCl(-)/nNO3(-)). We describe the first simultaneous ambient observations of single particle chemical composition and in situ determinations of γ(N2O5). When accounting for particulate nCl(-)/nNO3(-) mixing state, model parametrizations of γ(N2O5) continue to overpredict γ(N2O5) by more than a factor of 2 in polluted coastal regions, suggesting that chemical composition and physical phase state of particulate organics likely control γ(N2O5) in these air masses. In contrast, direct measurement of γ(N2O5) in air masses of marine origin are well captured by model parametrizations and reveal limited suppression of γ(N2O5), indicating that the organic mass fraction of fresh sea spray aerosol at this location does not suppress γ(N2O5). We provide an observation-based framework for assessing the impact of particle mixing state on gas-particle interactions.

  13. Variability in Vertical Profiles of Water Vapor Associated with African Aerosol over the Tropical Atlantic

    NASA Astrophysics Data System (ADS)

    Huang, J.; Zhang, C.; Prospero, J. M.

    2007-12-01

    We used four years (2003-2006) of MODIS aerosol optical depth and concurrent AIRS profiled water vapor to explore how the vertical distribution of water vapor may systematically change with outbreaks of African aerosol over the tropical Atlantic Ocean. The first step was to look for a relationship in the Barbados region using in-situ Barbados dust record and the profiled relative humidity from meteorological soundings. We extended the study to the synoptic scale in the West Indies using the MODIS and AIRS products. In the tropical Atlantic, preliminary results indicate that water vapor at 850-1000 hPa is significantly less in July on dusty days than clean days over the northeastern tropical Atlantic [5-25N, 30-20W] where African dust is predominant. In contrast, over the southeastern tropical Atlantic [15S-0, 5W-10E], where African biomass burning smoke prevails, water vapor at 600-1000 hPa is significantly higher in August on smoky days than clean days. Additionally, in January when African mixed aerosol (dust and smoke) is anomalously high over the equatorial eastern tropical Atlantic [5S-5N, 15W-5E], less water vapor is observed at two levels: 925-1000 hPa and 500-600 hPa. It is hypothesized that these results are associated with the non-hygroscopic nature of African dust, the hygroscopic properties of African smoke, and their transport pathways over the tropical Atlantic. These results are useful in the design and diagnostics of model simulations of climate effects of aerosols such as aerosol related precipitation change.

  14. Aerosols and water vapor dynamics over the Kingdom of Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Farahat, Ashraf; El-Askary, Hesham; Al-Shaibani, Abdulaziz; Dogan, Umran

    2014-05-01

    The Kingdom of Saudi Arabia contains a vast desert area and the home of some of the largest deserts worldwide. This nature subjects the area to numerous dust storms. This is in addition to local emissions transported from industrial activities. The Arabian Peninsula dust storms have a major impact on air quality and affects dust cycle around the world. The nature of dust also affects air, ground traffics, and human health. Aerosols play a pivotal role in global climate change through their effects on the hydrological cycle and solar energy budget. Recently there have been some trials to study the nature of dust over the kingdom using satellite remote sensing and modeling to investigate the impact of aerosols of natural and anthropogenic origins from both local emissions and long-range transport on the air quality and atmospheric composition, yet a lot more needs to be done. In this study, data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board of Terra and Aqua satellites are used to analyze aerosols properties over the thirteen provinces of the Kingdom of Saudi Arabia from April 2003 to January 2012. This analysis will help to characterize aerosol and cloud properties, and the seasonal hydrological factors to establish the relative contributions of aerosols derived from different regions to the different Saudi provinces and their impacts on local atmospheric composition and air quality. During this period, we have examined possible nature and anthropogenic/natural aerosols/dust sources. The analysis is based on important parameters including the aerosol optical depth (AOD), fine mode fraction (FMF), cloud properties including cloud top temperature (CTT), cloud top pressure (CTP) and the water vapor column. Correlation between water vapor and AOD was observed over three provinces which could be a result of pollution aerosols rather than dust and is, hence, acting as cloud condensation nuclei (CCN). Increasing anomalous aerosols pattern

  15. Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances From the SeaWiFS and MODIS Sensors Over the Chesapeake Bay Area (Case 2 Water)

    NASA Astrophysics Data System (ADS)

    Ahmad, Z.; Kwiatkowska, E. J.; Franz, B. A.; McClain, C. R.

    2007-12-01

    Presently, a suite of 12 aerosol models are used for atmospheric correction purposes to retrieve normalized water-leaving radiances in the visible bands of the SeaWiFS and MODIS sensors. These aerosol models are based on Shettle and Fenn's models (1979) of tropospheric and oceanic aerosols. Over most of the open oceans of the world (case 1 water), the atmospheric correction algorithm has been shown to work reasonably well. However, over case 2 waters, (for example Chesapeake Bay) the algorithm often yields negative water- leaving radiances, particularly, in the blue bands of the two sensors. In addition, over the coastal areas, the retrieved aerosol optical thickness (AOT) in the 865/869 bands are often higher than the in situ AERONET retrievals. Our analysis of the AERONET data show that Shettle and Fenn's aerosol models are not representative of the aerosols generally found over the coastal region of the Eastern United States. We show that use of wrong aerosol models often results in negative water-leaving radiances. Also, the backscattering of the solar irradiance in the near IR bands by phytoplankton and non-algal suspended particles results in overestimation of AOT. Based on the AERONET data, we have developed a set of new aerosol models for the atmospheric correction over Chesapeake Bay. Results from the new aerosol models, including comparison of satellite-derived AOT and the AERONET in the visible and near IR bands, will be presented.

  16. Determination of the relative uptake of ground vs. surface water by Populus deltoides during phytoremediation

    USGS Publications Warehouse

    Clinton, B.D.; Vose, J.M.; Vroblesky, D.A.; Harvey, G.J.

    2004-01-01

    The use of plants to remediate polluted groundwater is becoming an attractive alternative to more expensive traditional techniques. In order to adequately assess the effectiveness of the phytoremediation treatment, a clear understanding of water-use habits by the selected plant species is essential. We examined the relative uptake of surface water (i.e., precipitation) vs. groundwater by mature Populus deltoides by applying irrigation water at a rate equivalent to a 5-cm rain event. We used stable isotopes of hydrogen (D) and oxygen (18O) to identify groundwater and surface water (irrigation water) in the xylem sap water. Pretreatment isotopic ratios of both deuterium and 18O, ranked from heaviest to lightest, were irrigation water > groundwater > xylem sap. The discrepancy in preirrigation isotopic signatures between groundwater and xylem sap suggests that in the absence of a surface source of water (i.e., between rain events) there is an unknown amount of water being extracted from sources other than groundwater (i.e., soil surface water). We examined changes in volumetric soil water content (%), total hourly sapflux rates, and trichloroethene (TCE) concentrations. Following the irrigation treatment, volumetric soil water increased by 86% and sapflux increased by as much as 61%. Isotopic signatures of the xylem sap became substantially heavier following irrigation, suggesting that the applied irrigation water was quickly taken up by the plants. TCE concentrations in the xylem sap were diluted by an average of 21% following irrigation; however, dilution was low relative to the increase in sapflux. Our results show that water use by Populus deltoides is variable. Hence, studies addressing phytoremediation effectiveness must account for the relative proportion of surface vs. groundwater uptake.

  17. Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling.

    PubMed

    Laur, Joan; Hacke, Uwe G

    2014-07-01

    Conifer needles have been reported to absorb water under certain conditions. Radial water movement across needle tissues is likely influenced by aquaporin (AQP) water channels. Foliar water uptake and AQP localization in Picea glauca needles were studied using physiological and microscopic methods. AQP expression was measured using quantitative real-time PCR. Members of the AQP gene family in spruce were identified using homology search tools. Needles of drought-stressed plants absorbed water when exposed to high relative humidity (RH). AQPs were present in the endodermis-like bundle sheath, in phloem cells and in the transfusion parenchyma of needles. Up-regulation of AQPs in high RH coincided with embolism repair in stem xylem. The present study also provides the most comprehensive functional and phylogenetic analysis of spruce AQPs to date. Thirty putative complete AQP sequences were found. Our findings are consistent with the hypothesis that AQPs facilitate radial water movement from the needle epidermis towards the vascular tissue. Foliar water uptake may occur in late winter when needles are covered by melting snow and may provide a water source for embolism repair before the beginning of the growing season.

  18. Exploring Picea glauca aquaporins in the context of needle water uptake and xylem refilling.

    PubMed

    Laur, Joan; Hacke, Uwe G

    2014-07-01

    Conifer needles have been reported to absorb water under certain conditions. Radial water movement across needle tissues is likely influenced by aquaporin (AQP) water channels. Foliar water uptake and AQP localization in Picea glauca needles were studied using physiological and microscopic methods. AQP expression was measured using quantitative real-time PCR. Members of the AQP gene family in spruce were identified using homology search tools. Needles of drought-stressed plants absorbed water when exposed to high relative humidity (RH). AQPs were present in the endodermis-like bundle sheath, in phloem cells and in the transfusion parenchyma of needles. Up-regulation of AQPs in high RH coincided with embolism repair in stem xylem. The present study also provides the most comprehensive functional and phylogenetic analysis of spruce AQPs to date. Thirty putative complete AQP sequences were found. Our findings are consistent with the hypothesis that AQPs facilitate radial water movement from the needle epidermis towards the vascular tissue. Foliar water uptake may occur in late winter when needles are covered by melting snow and may provide a water source for embolism repair before the beginning of the growing season. PMID:24702644

  19. Evaluation of Daytime Measurements of Aerosols and Water Vapor made by an Operational Raman Lidar over the Southern Great Plains

    NASA Technical Reports Server (NTRS)

    Ferrare, Richard; Turner, David; Clayton, Marian; Schmid, Beat; Covert, David; Elleman, Robert; Orgren, John; Andrews, Elisabeth; Goldsmith, John E. M.; Jonsson, Hafidi

    2006-01-01

    Raman lidar water vapor and aerosol extinction profiles acquired during the daytime over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site in northern Oklahoma (36.606 N, 97.50 W, 315 m) are evaluated using profiles measured by in situ and remote sensing instruments deployed during the May 2003 Aerosol Intensive Operations Period (IOP). The automated algorithms used to derive these profiles from the Raman lidar data were first modified to reduce the adverse effects associated with a general loss of sensitivity of the Raman lidar since early 2002. The Raman lidar water vapor measurements, which are calibrated to match precipitable water vapor (PWV) derived from coincident microwave radiometer (MWR) measurements were, on average, 5-10% (0.3-0.6 g/m(exp 3) higher than the other measurements. Some of this difference is due to out-of-date line parameters that were subsequently updated in the MWR PWV retrievals. The Raman lidar aerosol extinction measurements were, on average, about 0.03 km(exp -1) higher than aerosol measurements derived from airborne Sun photometer measurements of aerosol optical thickness and in situ measurements of aerosol scattering and absorption. This bias, which was about 50% of the mean aerosol extinction measured during this IOP, decreased to about 10% when aerosol extinction comparisons were restricted to aerosol extinction values larger than 0.15 km(exp -1). The lidar measurements of the aerosol extinction/backscatter ratio and airborne Sun photometer measurements of the aerosol optical thickness were used along with in situ measurements of the aerosol size distribution to retrieve estimates of the aerosol single scattering albedo (omega(sub o)) and the effective complex refractive index. Retrieved values of omega(sub o) ranged from (0.91-0.98) and were in generally good agreement with omega(sub o) derived from airborne in situ measurements of scattering and absorption. Elevated aerosol

  20. Physicochemical Characterization of Lake Spray Aerosol Generated from Great Lakes Water Samples

    NASA Astrophysics Data System (ADS)

    Ault, A. P.; Axson, J. L.; May, N.; Pratt, K.

    2014-12-01

    Wave breaking across bodies of water releases particles into the air which can impact climate and human health. Similar to sea spray aerosols formed through marine wave breaking, freshwater lakes generate lake spray aerosol (LSA). LSA can impact climate directly through scattering/absorption and indirectly through cloud nucleation. In addition, these LSA are suggested to impact human health through inhalation of these particles during algal bloom periods characterized by toxic cyanobacteria. Few studies have been conducted to assess the physical and chemical properties of freshwater LSA. Herein, we discuss constructing a LSA generation system and preliminary physical and chemical characterization of aerosol generated from water samples collected at various sites across Lake Erie, Lake Huron, Lake Superior, and Lake Michigan. Information on aerosol size distributions, number concentrations, and chemical composition will be discussed as a function of lake water blue-green algae concentration, dissolved organic carbon concentration, temperature, conductivity, and dissolved oxygen concentration. These studies represent a first step towards evaluating the potential for LSA to impact climate and health in the Great Lakes region.

  1. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    SciTech Connect

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias R.; Gilles, Marry K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-25

    Atmospheric ice formation induced by particles with complex chemical and physical properties through heterogeneous nucleation is not well understood. Heterogeneous ice nucleation and water uptake by ambient particles collected from urban environments in Los Angeles and Mexico City are presented. Using a vapour controlled cooling system equipped with an optical microscopy, the range of onset conditions for ice nucleation and water uptake by the collected particles was determined as a function of temperature (200{273 K) and relative humidity with respect to ice (RHice) up to water saturation. Three distinctly different types of authentic atmospheric particles were investigated including soot particles associated with organics/inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn containing inorganic particles apportioned to anthropogenic emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption ne structure spectroscopy (STXM/NEXAFS). Above 230 K, signicant differences in water uptake and immersion freezing effciencies of the different particle types were observed. Below 230 K, the particles exhibited high deposition ice nucleation effciencies and formed ice at RHice values well below homogeneous ice nucleation limits. The data show that the chemical composition of these eld{collected particles plays an important role in determining water uptake and immersion freezing. Heterogeneous ice nucleation rate coeffcients, cumulative ice nuclei (IN) spectrum, and IN activated fraction for deposition ice nucleation are derived. The presented ice nucleation data demonstrate that anthropogenic and marine particles comprising of various chemical and physical properties exhibit distinctly different ice

  2. Aerosol and Earth's Climate: A Perspective from Energy and Water Cycles

    NASA Astrophysics Data System (ADS)

    Li, Z.

    2014-12-01

    Aerosol particles can affect virtually all meteorological variables due to their direct and indirect effects by altering Earth's energy and water cycles. Heavy loading of aerosols reduce the amount of solar radiation reaching ground, that could lower surface temperature, reduce ocean-land contrast and thus affect monsoon system, whereas solar energy absorbed by aerosols alters atmospheric stability to have a feedback effect on atmospheric dynamics. By altering cloud microphysics and macrophysics, aerosols can also change cloud properties and precipitation frequency and amount. All of these can influence regional weather and climate in a dramatically. We have analyzed ample data from long-term routine measurements, intensive field experiments and global satellite products to study, together with some modeling studies, to study the impact of aerosol on global and regional climate. Particular attention will be given to the findings from our experiments as EAST-AIRE and EAST-AIRC, and DOE ARM Mobile Facility deployment in China where severe air pollution seems to have significantly impeded upon the regional climate and its long-term changes in terms of temperature, precipitation, thunderstorm, fog, atmospheric circulation, etc.

  3. The Role of Organic Oxidation State and Liquid-Liquid Phase Separations on the Reactive Uptake of N2O5 to Aerosol Particles

    NASA Astrophysics Data System (ADS)

    Gaston, C.; Thornton, J. A.

    2013-12-01

    We present laboratory measurements of N2O5(g) reactive uptake coefficients, γ(N2O5), onto mixed organic/inorganic submicron particles using organic compounds with a variety of oxidation states (e.g., atomic O:C ratios) and molecular weights. The organic mass fraction, organic molecular composition, and relative humidity were varied to assess the importance of organic mass, oxidation state, and particle phase on the N2O5(g) uptake coefficient. At a constant relative humidity, mixtures of organic components with a low oxidation state (e.g., O:C < 0.5) and ammonium bisulfate (ABS) were found to significantly suppress the uptake of N2O5(g) compared to pure inorganic components even when the organic mass fraction was small (e.g., ≤ 15%); the observed behavior was most consistent with the formation of an organic coating (i.e. phase separation). As the water content of the particles increased, the effect of organic coatings became less pronounced, presumably due to incorporation of water into the organic phase or to an eventual transition into a single mixed system. In contrast, highly oxygenated organic components had a smaller impact on N2O5(g) uptake even as the water content of the particles changed, consistent with these highly soluble components not exhibiting phase separations. Notably, at constant relative humidity the reactive uptake coefficient of mixtures of ABS and poly(ethylene glycol), PEG, decreased nearly linearly as the PEG mass fraction increased. These measurements were found to mimic, with striking similarity, observations of N2O5 uptake onto ambient particles as a function of organic mass fraction. We use the measurements of reactive uptake coefficients across a range of particle types and humidities to improve upon N2O5 reactivity parameterizations for use in atmospheric models that incorporate organic coatings. Our findings suggest that a decrease in N2O5 diffusion and/or solubility in the organic layer, by up to 97% compared to uncoated

  4. The effects of smoke aerosols, land-use change and water vapor reduction on the shortwave radiative budget over the Amazônia

    NASA Astrophysics Data System (ADS)

    Sena, Elisa; Artaxo, Paulo; Correia, Alexandre

    2014-05-01

    due to surface albedo change is much higher than the annual impact due to aerosol emissions. The influence of deforestation in the atmospheric water vapor content, and its impact in the shortwave radiative budget, was assessed using water vapor column measurements obtained by AERONET sunphotometers. It was observed that the column water vapor is on average smaller by about 0.35 cm (around 10% of the total column water vapor) over deforested areas compared to forested areas. The effect of reducing atmospheric water vapor column contributes to an increase in the upward shortwave radiative flux at the TOA. The large radiative forcing values obtained in this work indicate that deforestation could have strong implications on convection, cloud development and the ratio of direct and diffuse radiation, which impacts the carbon uptake by the forest, therefore, changing the photosynthetic rate.

  5. Visualization of root water uptake: quantification of deuterated water transport in roots using neutron radiography and numerical modeling.

    PubMed

    Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea

    2014-10-01

    Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems.

  6. Visualization of Root Water Uptake: Quantification of Deuterated Water Transport in Roots Using Neutron Radiography and Numerical Modeling[C

    PubMed Central

    Zarebanadkouki, Mohsen; Kroener, Eva; Kaestner, Anders; Carminati, Andrea

    2014-01-01

    Our understanding of soil and plant water relations is limited by the lack of experimental methods to measure water fluxes in soil and plants. Here, we describe a new method to noninvasively quantify water fluxes in roots. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into roots. The results showed that (1) the radial transport of D2O from soil to the roots depended similarly on diffusive and convective transport and (2) the axial transport of D2O along the root xylem was largely dominated by convection. To quantify the convective fluxes from the radiographs, we introduced a convection-diffusion model to simulate the D2O transport in roots. The model takes into account different pathways of water across the root tissue, the endodermis as a layer with distinct transport properties, and the axial transport of D2O in the xylem. The diffusion coefficients of the root tissues were inversely estimated by simulating the experiments at night under the assumption that the convective fluxes were negligible. Inverse modeling of the experiment at day gave the profile of water fluxes into the roots. For a 24-d-old lupine (Lupinus albus) grown in a soil with uniform water content, root water uptake was higher in the proximal parts of lateral roots and decreased toward the distal parts. The method allows the quantification of the root properties and the regions of root water uptake along the root systems. PMID:25189533

  7. Relating Aerosol Mass and Optical Depth in the Summertime Continental Boundary Layer

    NASA Astrophysics Data System (ADS)

    Brock, C. A.; Wagner, N.; Middlebrook, A. M.; Attwood, A. R.; Washenfelder, R. A.; Brown, S. S.; McComiskey, A. C.; Gordon, T. D.; Welti, A.; Carlton, A. G.; Murphy, D. M.

    2014-12-01

    Aerosol optical depth (AOD), the column-integrated ambient aerosol light extinction, is determined from satellite and ground-based remote sensing measurements. AOD is the parameter most often used to validate earth system model simulations of aerosol mass. Relating aerosol mass to AOD, however, is problematic due to issues including aerosol water uptake as a function of relative humidity (RH) and the complicated relationship between aerosol physicochemical properties and light extinction. Measurements of aerosol microphysical, chemical, and optical properties help to constrain the relationship between aerosol mass and optical depth because aerosol extinction at ambient RH is a function of the abundance, composition and size distribution of the aerosol. We use vertical profiles of humidity and dry aerosol extinction observed in the southeastern United States (U.S.) to examine the relationship between submicron aerosol mass concentration and extinction at ambient RH. We show that the κ-Köhler parameterization directly, and without additional Mie calculations, describes the change in extinction with varying RH as a function of composition for both aged aerosols typical of the polluted summertime continental boundary layer and the biomass burning aerosols we encountered. We calculate how AOD and the direct radiative effect in the eastern U.S. have likely changed due to trends in aerosol composition in recent decades. We also examine the sensitivity of AOD to the RH profile and to aerosol composition, size distribution and abundance.

  8. Water uptake properties of internally mixed sodium halide and succinic acid particles

    NASA Astrophysics Data System (ADS)

    Miñambres, Lorena; Méndez, Estíbaliz; Sánchez, María N.; Castaño, Fernando; Basterretxea, Francisco J.

    2011-10-01

    Sea salt aerosols include appreciable fractions of organic material, that can affect properties such as hygroscopicity, phase transition or chemical reactivity. Although sodium chloride is the major component of marine salt, bromide and iodide ions tend to accumulate onto particle surfaces and influence their behaviour. The hygroscopic properties of internally mixed submicrometric particles composed of succinic acid (SA) and NaX (where X = F, Cl, Br or I) have been studied by infrared absorption spectroscopy in an aerosol flow cell at ambient temperature for different relative succinic acid/NaX compositions. The results show that deliquescence relative humidities of SA/NaF and SA/NaCl are equal to those of the pure sodium halides. SA/NaBr particles, on the other hand, deliquesce at lower relative humidities than pure NaBr particles, the effect being more marked as the SA/NaBr mass ratio approaches unity. The SA/NaI system behaves as a non-deliquescent system, absorbing liquid water at all relative humidities, as in pure NaI. Succinic acid phase in the particles has been spectroscopically monitored at given values of both RH and SA/NaX solute mass ratio. The different hygroscopic properties as the halogen ion is changed can be rationalized in terms of simple thermodynamic arguments and can be attributed to the relative contributions of ion-molecule interactions in the solid particles. The observed behaviour is of interest for tropospheric sea salt aerosols mixed with organic acids.

  9. /sup 45/Ca uptake from water by snails (Lymnaea vulgaris) in control and detergent-polluted samples

    SciTech Connect

    Misra, V.; Lal, H.; Viswanathan, P.N.; Murti, C.R.

    1984-02-01

    A biostatic assay method involving /sup 45/Ca uptake into shells and tissues of snails (Lymnaea vulgaris) in 72 hr was developed to follow the effect of detergent-polluted water on ecosystems. There was a marked decrease in the /sup 45/Ca uptake by shells and tissues of linear alkyl benzene sulfonate-exposed animals as compared to controls. No change in /sup 45/Ca uptake was observed in dead shells, thereby excluding the possibility of passive exchange.

  10. Water uptake by two river red gum ( Eucalyptus camaldulensis) clones in a discharge site plantation in the Western Australian wheatbelt

    NASA Astrophysics Data System (ADS)

    Marshall, John K.; Morgan, Anne L.; Akilan, Kandia; Farrell, Richard C. C.; Bell, David T.

    1997-12-01

    The heat-pulse technique was used to estimate year-long water uptake in a discharge zone plantation of 9-year-old clonal Eucalyptus camaldulensis Dehnh. near Wubin, Western Australia. Water uptake matched rainfall closely during weter months but exceeded rainfall as the dry season progressed. Average annual water uptake (1148 mm) exceeded rainfall (432 mm) by about 2.7 fold and approached 56% of pan evaporation for the area. The data suggest that at least 37% (i.e. ( {1}/{2.7}) × 100 ) of the lower catchment discharge zone should be planted to prevent the rise of groundwater. Water uptake varied with soil environment, season and genotype. Upslope trees used more water than did downslope trees. Water uptake was higher in E. camaldulensis clone M80 than in clone M66 until late spring. The difference reversed as summer progressed. Both clones, however, have the potential to dry out the landscape when potential evapotranspiration exceeds rainfall. This variation in water uptake within the species indicates the potential for manipulating plantation uptake by matching tree characteristics to site characteristics. Controlled experiments on the heat-pulse technique indicated accuracy errors of approximately 10%. This, combined with the ability to obtain long-term, continuous data and the superior logistics of use of the heat-pulse technique, suggests that results obtained by it would be much more reliable than those achieved by the ventilated chamber technique.

  11. Uptake and Reactions of Formaldehyde, Acetaldehyde, Acetone, Propanal and Ethanol in Sulfuric Acid solutions at 200-240 K: Implications for upper tropospheric aerosol composition

    NASA Astrophysics Data System (ADS)

    Iraci, L. T.; Williams, M. B.; Axson, J.; Michelsen, R.

    2007-12-01

    The production of light absorbing, organic material in aerosol that is normally considered to be transparent in the UV and visible wavelength regions has significant implications for biogeochemical cycling and climate modelling. Production mechanisms likely involve carbonyl compounds such as formaldehyde, acetone, acetaldehyde and propanal that are present in significant quantities in the upper troposphere (UT). In this study, we have performed experiments focusing on a class of acid catalyzed carbonyl reactions, the formation of acetals. R2C=O + 2R'OH --> R2C(OR')2 + H2O Using a Knudsen cell apparatus, we have measured the rate of uptake of formaldehyde, acetaldehyde, acetone, propanal, and ethanol into sulfuric acid solutions ranging between 40-70 wt% of acid, containing 0-0.1 M of ethanol, acetone or formaldehyde at temperatures of 220-250 K. For all reactant pairs, the aldol condensation path, including self reaction, should be insignificant at the acidities studied. Evidence for reaction between organics was observed for all pairs, except those involving propanal which were likely limited by the very low solubility. We attribute enhanced uptake to the formation of acetals, such as 1,1-diethoxyethane and 2,2- diethoxypropane, among others. Enhanced uptake was observed to proceed on timescales > 1 hour and sometimes shows complex dependence on acidity that is likely related to speciation of the individual carbonyls in acidic solution. The acetal products do not absorb in the visible but are less volatile than parent molecules, allowing for accumulation in sulfuric acid particles, and enhanced uptake. Cross reactions of carbonyls with alcohols in sulfuric acid medium have not been previously measured, yet methanol and ethanol show high solubility and are present at significant concentrations in the UT. Thus even at slow reaction rates, the acetal reaction has ample starting material and proceeds under conditions common to the UT. We will present results for the

  12. Impacts of Stabilized Criegee Intermediates, surface uptake processes and higher aromatic secondary organic aerosol yields on predicted PM2.5 concentrations in the Mexico City Metropolitan Zone

    NASA Astrophysics Data System (ADS)

    Ying, Qi; Cureño, Iris V.; Chen, Gang; Ali, Sajjad; Zhang, Hongliang; Malloy, Meagan; Bravo, Humberto A.; Sosa, Rodolfo

    2014-09-01

    The Community Multiscale Air Quality Model (CMAQ) with the SAPRC-99 gas phase photochemical mechanism and the AERO5 aerosol module was applied to model gases and particulate matter (PM) concentrations in the Mexico City Metropolitan Zone (MCMZ) and the surrounding regions for March 2006 using the official 2006 emission inventories, along with emissions from biogenic sources, biomass burning, windblown dust, the Tula Industrial Complex and the Popocatépetl volcano. The base case model was capable of reproducing the observed hourly concentrations of O3 and attaining CO, NO2 and NOx performance similar to previous modeling studies. Although the base case model performance of hourly PM2.5 and PM10 meets the model performance criteria, under-prediction of high PM2.5 concentrations in late morning indicates that secondary PM, such as sulfate and secondary organic aerosol (SOA), might be under-predicted. Several potential pathways to increase SOA and secondary sulfate were investigated, including Stabilized Criegee Intermediates (SCIs) from ozonolysis reactions of unsaturated hydrocarbons and their reactions with SO2, the reactive uptake processes of SO2, glyoxal and methylglyoxal on particle surface and higher SOA formation due to higher mass yields of aromatic SOA precursors. Averaging over the entire episode, the glyoxal and methylglyoxal reactive uptake and higher aromatics SOA yields contribute to ∼0.9 μg m-3 and ∼1.25 μg m-3 of SOA, respectively. Episode average SOA in the MCMZ reaches ∼3 μg m-3. The SCI pathway increases PM2.5 sulfate by 0.2-0.4 μg m-3 or approximately 10-15%. The relative amount of sulfate increase due to SCI agrees with previous studies in summer eastern US. Surface SO2 uptake significantly increases sulfate concentration in MCMZ by 1-3 μg m-3 or approximately 50-60%. The higher SOA and sulfate leads to improved PM2.5 and PM10 model performance.

  13. Nitrogen uptake by size-fractionated phytoplankton populations in Antarctic surface waters

    SciTech Connect

    Probyn, T.A.; Painting, S.J.

    1985-11-01

    Nitrogen uptake experiments in surface waters off the coast between Cape Ann and Mawson indicate that reduced nitrogen (ammonium and urea) supplied an average of 58% of phytoplankton requirements. Size-fractionation studies provided evidence for nitrogen resource partitioning between the algae of different size classes at three of the five stations. On average, regenerated production amounted to 62% for the nanoplankton and 75% for the picoplankton.

  14. Mesoscopic aspects of root water uptake modeling - Hydraulic resistances and root geometry interpretations in plant transpiration analysis

    NASA Astrophysics Data System (ADS)

    Vogel, Tomas; Votrubova, Jana; Dusek, Jaromir; Dohnal, Michal

    2016-02-01

    In the context of soil water flow modeling, root water uptake is often evaluated based on water potential difference between the soil and the plant (the water potential gradient approach). Root water uptake rate is modulated by hydraulic resistance of both the root itself, and the soil in the root vicinity. The soil hydraulic resistance is a function of actual soil water content and can be assessed assuming radial axisymmetric water flow toward a single root (at the mesoscopic scale). In the present study, three approximate solutions of mesoscopic root water uptake - finite difference approximation, steady-state solution, and steady-rate solution - are examined regarding their ability to capture the pressure head variations in the root vicinity. Insignificance of their differences when implemented in the macroscopic soil water flow model is demonstrated using the critical root water uptake concept. Subsequently, macroscopic simulations of coupled soil water flow and root water uptake are presented for a forest site under temperate humid climate. Predicted soil water pressure heads and actual transpiration rates are compared with observed data. Scenario simulations illustrate uncertainties associated with estimates of root geometrical and hydraulic properties. Regarding the actual transpiration prediction, the correct characterization of active root system geometry and hydraulic properties seems far more important than the choice of a particular mesoscopic model.

  15. The Formation and Aerosol Uptake of Isoprene Nitrooxyhydroxyepoxide (INHE), a Newly Identified Product from the RO2 + HO2 Pathway of Isoprene NO3 Oxidation

    NASA Astrophysics Data System (ADS)

    Schwantes, R.; Teng, A.; Nguyen, T.; Coggon, M. M.; Zhang, X.; Schilling-Fahnestock, K.; Crounse, J.; St Clair, J. M.; Seinfeld, J.; Wennberg, P. O.

    2014-12-01

    Isoprene (C5H8) reacts with the nitrate radical (NO3) during the night to produce a peroxy nitrate radical (RO2). This RO2 can react with nitrogen oxides (i.e., NO, NO2, or NO3) and other RO2 radicals to form isoprene nitrates or with the hydroperoxyl radical (HO2) to form nitrooxyhydroperoxide (INP). Both model and field studies have found that in the ambient atmosphere much of the RO2 radical reacts with HO2. More specifically, during the 2013 SOAS field campaign, INP was one of the main species that increased at sunset suggesting the RO2 + HO2 pathway from NO3 oxidation is important in the southeastern US and similar areas. However, chamber studies so far have been run under conditions that optimize RO2 + NO3 reactions and/or RO2 + RO2 reactions. In this work, we present a new way to run NO3 oxidation chamber experiments that optimize for the RO2 + HO2 pathway creating a more atmospherically relevant product distribution. The gas phase formation of INP and subsequent oxidation products were monitored using a chemical ionization mass spectrometer (CIMS). Because isoprene nitrates formed from NO3 oxidation react slowly with ozone (O3) and NO3, many of these nitrates will remain in the atmosphere until the sun rises and hydroxyl radical (OH) begins to form. Results from these chamber experiments suggest that OH will react with INP to form nitrooxyhydroxyepoxide (INHE), a newly identified product from INP. We suspect INHE could be important for Secondary Organic Aerosol (SOA) production due to its similarity to isoprene epoxydiol (IEPOX), a product from isoprene OH oxidation that has been shown to be a significant SOA precursor. We studied the uptake of INHE onto various seed types, and found that as expected INHE rapidly partitions to highly acidic seed aerosol due to an acid catalyzed ring opening. A time-of-flight aerosol mass spectrometer (ToF-AMS) was used to understand the chemical composition of the aerosol produced from the various seed types.

  16. Electro-Osmosis and Water Uptake in Polymer Electrolytes in Equilibrium with Water Vapor at Low Temperatures

    SciTech Connect

    Gallagher, K. G.; Pivovar, B. S.; Fuller, T. F.

    2009-01-01

    Water uptake and electro-osmosis are investigated to improve the understanding and aid the modeling of water transport in proton-exchange membrane fuel cells (PEMFCs) below 0 C. Measurements of water sorption isotherms show a significant reduction in the water capacity of polymer electrolytes below 0 C. This reduced water content is attributed to the lower vapor pressure of ice compared to supercooled liquid water. At -25 C, 1100 equivalent weight Nafion in equilibrium with vapor over ice has 8 moles of water per sulfonic acid group. Measurements of the electro-osmotic drag coefficient for Nafion and both random and multiblock copolymer sulfonated poly(arylene ether sulfone) (BPSH) chemistries are reported for vapor equilibrated samples below 0 C. The electro-osmotic drag coefficient of BPSH chemistries is found to be {approx}0.4, and that of Nafion is {approx}1. No significant temperature effect on the drag coefficient is found. The implication of an electro-osmotic drag coefficient less than unity is discussed in terms of proton conduction mechanisms. Simulations of the ohmically limited current below 0 C show that a reduced water uptake below 0 C results in a significant decrease in PEMFC performance.

  17. Model for a surface film of fatty acids on rain water and aerosol particles

    NASA Astrophysics Data System (ADS)

    Seidl, Winfried

    Organic compounds with polar groups can form films on the water surface which lower the surface tension and may hinder the transport of water vapor and trace gases through the interface. A model is presented which describes in detail surface films formed by fatty acids. The model has been applied to measured concentrations of fatty acids on rain water and atmospheric aerosol particles. In most cases only a diluted film has been calculated which does not affect their physical and chemical properties. The exception was a clean region in the western USA, where the fatty acid concentrations are sufficiently high to form a dense film on atmospheric aerosol particles. An algorithm for the identification of the sources of fatty acids was developed. It showed leaf abrasion or biomass burning as a major source of fatty acids in the western USA.

  18. Simultaneous monitoring of electrical capacitance and water uptake activity of plant root system

    NASA Astrophysics Data System (ADS)

    Cseresnyés, Imre; Takács, Tünde; Füzy, Anna; Rajkai, Kálmán

    2014-10-01

    Pot experiments were designed to test the applicability of root electrical capacitance measurement for in situ monitoring of root water uptake activity by growing cucumber and bean cultivars in a growth chamber. Half of the plants were inoculated with Funneliformis mosseae arbuscular mycorrhizal fungi, while the other half served as non-infected controls. Root electrical capacitance and daily transpiration were monitored during the whole plant ontogeny. Phenology-dependent changes of daily transpiration (related to root water uptake) and root electrical capacitance proved to be similar as they showed upward trends from seedling emergence to the beginning of flowering stage, and thereafter decreased continuously during fruit setting. A few days after arbuscular mycorrhizal fungi-colonization, daily transpiration and root electrical capacitance of infected plants became significantly higher than those of non-infected counterparts, and the relative increment of the measured parameters was greater for the more highly mycorrhizal-dependent bean cultivar compared to that of cucumber. Arbuscular mycorrhizal fungi colonization caused 29 and 69% relative increment in shoot dry mass for cucumbers and beans, respectively. Mycorrhization resulted in 37% increase in root dry mass for beans, but no significant difference was observed for cucumbers. Results indicate the potential of root electrical capacitance measurements for monitoring the changes and differences of root water uptake rate.

  19. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2011-11-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  20. Heterogeneous ice nucleation and water uptake by field-collected atmospheric particles below 273 K

    NASA Astrophysics Data System (ADS)

    Wang, Bingbing; Laskin, Alexander; Roedel, Tobias; Gilles, Mary K.; Moffet, Ryan C.; Tivanski, Alexei V.; Knopf, Daniel A.

    2012-09-01

    Ice formation induced by atmospheric particles through heterogeneous nucleation is not well understood. Onset conditions for heterogeneous ice nucleation and water uptake by particles collected in Los Angeles and Mexico City were determined as a function of temperature (200-273 K) and relative humidity with respect to ice (RHice). Four dominant particle types were identified including soot associated with organics, soot with organic and inorganics, inorganic particles of marine origin coated with organic material, and Pb/Zn-containing particles apportioned to emissions relevant to waste incineration. Single particle characterization was provided by micro-spectroscopic analyses using computer controlled scanning electron microscopy with energy dispersive analysis of X-rays (CCSEM/EDX) and scanning transmission X-ray microscopy with near edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Above 230 K, significant differences in onsets of water uptake and immersion freezing of different particle types were observed. Below 230 K, particles exhibited high deposition ice nucleation efficiencies and formed ice atRHicewell below homogeneous ice nucleation limits. The data suggest that water uptake and immersion freezing are more sensitive to changes in particle chemical composition compared to deposition ice nucleation. The data demonstrate that anthropogenic and marine influenced particles, exhibiting various chemical and physical properties, possess distinctly different ice nucleation efficiencies and can serve as efficient IN at atmospheric conditions typical for cirrus and mixed-phase clouds.

  1. MISR research-aerosol-algorithm refinements for dark water retrievals

    NASA Astrophysics Data System (ADS)

    Limbacher, J. A.; Kahn, R. A.

    2014-11-01

    We explore systematically the cumulative effect of many assumptions made in the Multi-angle Imaging SpectroRadiometer (MISR) research aerosol retrieval algorithm with the aim of quantifying the main sources of uncertainty over ocean, and correcting them to the extent possible. A total of 1129 coincident, surface-based sun photometer spectral aerosol optical depth (AOD) measurements are used for validation. Based on comparisons between these data and our baseline case (similar to the MISR standard algorithm, but without the "modified linear mixing" approximation), for 558 nm AOD < 0.10, a high bias of 0.024 is reduced by about one-third when (1) ocean surface under-light is included and the assumed whitecap reflectance at 672 nm is increased, (2) physically based adjustments in particle microphysical properties and mixtures are made, (3) an adaptive pixel selection method is used, (4) spectral reflectance uncertainty is estimated from vicarious calibration, and (5) minor radiometric calibration changes are made for the 672 and 866 nm channels. Applying (6) more stringent cloud screening (setting the maximum fraction not-clear to 0.50) brings all median spectral biases to about 0.01. When all adjustments except more stringent cloud screening are applied, and a modified acceptance criterion is used, the Root-Mean-Square-Error (RMSE) decreases for all wavelengths by 8-27% for the research algorithm relative to the baseline, and is 12-36% lower than the RMSE for the Version 22 MISR standard algorithm (SA, with no adjustments applied). At 558 nm, 87% of AOD data falls within the greater of 0.05 or 20% of validation values; 62% of the 446 nm AOD data, and > 68% of 558, 672, and 866 nm AOD values fall within the greater of 0.03 or 10%. For the Ångström exponent (ANG), 67% of 1119 validation cases for AOD > 0.01 fall within 0.275 of the sun photometer values, compared to 49% for the SA. ANG RMSE decreases by 17% compared to the SA, and the median absolute error drops by

  2. Water Uptake and Carbon Assimilation in Maize at Elevated and ambient CO2: Modeling and Measurement.

    NASA Astrophysics Data System (ADS)

    Timlin, Dennis; Chun, Jong-Ahn; Kim, Soo-Hyung; Yang, Yang; Fleisher, David; Reddy, Vangimalla

    2013-04-01

    Potential transpiration in crops is dependent on both plant and environmental properties. Carbon dioxide content of the atmosphere is linked to potential transpiration because CO2 diffuses onto water saturated surfaces within plant stomata. At high CO2 concentrations, CO2 diffuses rapidly into stomata and therefore stomata do not have to remain open to the atmosphere for long periods of time. This results in lower transpiration rates per unit CO2 assimilated at elevated CO2 concentrations. The objective of this study was to measure CO2 assimilation and water uptake by maize under different irrigation regimes and two CO2 concentrations. The data were then used to evaluate the ability of the maize model MaizSim to simulate the effects of water stress and CO2 on water use and photosynthesis. MaizSim uses a Farquhar type photosynthesis model coupled a Ball-Berry stomatal control model. Non-linear beta functions are used to estimate the effects of temperature on growth and development processes. The experimental data come from experiments in outdoor, sunlit growth chambers at the USDA-ARS Beltsville Agricultural Research Center. The eight treatments comprised two levels of carbon dioxide concentrations (400 and 800 ppm) and four levels of water stress (well-watered control, mild, moderate, and severe). The water stress treatments were applied at both CO2 levels. Water contents were monitored hourly by a Time Domain Reflectometry (TDR) system. The model simulated higher water contents at the same time after applying water stress at the high CO2 treatment than for the low CO2 treatment as was found in the measured data. Measurement of water uptake by roots and carbon assimilation rates in the chambers will be addressed.

  3. Measurements of water uptake of maize roots: the key function of lateral roots

    NASA Astrophysics Data System (ADS)

    Ahmed, M. A.; Zarebanadkouki, M.; Kroener, E.; Kaestner, A.; Carminati, A.

    2014-12-01

    Maize (Zea mays L.) is one of the most important crop worldwide. Despite its importance, there is limited information on the function of different root segments and root types of maize in extracting water from soils. Therefore, the aim of this study was to investigate locations of root water uptake in maize. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maizes were grown in aluminum containers (40×38×1 cm) filled with a sandy soil. When the plants were 16 days old, we injected D2O into selected soil regions containing primary, seminal and lateral roots. The experiments were performed during the day (transpiring plants) and night (not transpiring plants). The transport of D2O into roots was simulated using a new convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusional permeability and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Water uptake occurred primarily in lateral roots. Lateral roots had the highest diffusional permeability (9.4×10-7), which was around six times higher that the diffusional permeability of the old seminal segments (1.4×10-7), and two times higher than the diffusional permeability of the young seminal segments (4.7×10-7). The radial flow of D2O into the lateral (6.7×10-5 ) was much higher than in the young seminal roots (1.1×10-12). The radial flow of D2O into the old seminal was negligible. We concluded that the function of the primary and seminal roots was to collect water from the lateral roots and transport it to the shoot. A maize root system with lateral roots branching from deep primary and seminal roots would be

  4. The influence of small aerosol particles on the properties of water and ice clouds.

    PubMed

    Choularton, T W; Bower, K N; Weingartner, E; Crawford, I; Coe, H; Gallagher, M W; Flynn, M; Crosier, J; Connolly, P; Targino, A; Alfarra, M R; Baltensperger, U; Sjogren, S; Verheggen, B; Cozic, J; Gysel, M

    2008-01-01

    In this paper, results are presented of the influence of small organic- and soot-containing particles on the formation of water and ice clouds. There is strong evidence that these particles have grown from nano particle seeds produced by the combustion of oil products. Two series of field experiments are selected to represent the observations made. The first is the CLoud-Aerosol Characterisation Experiment (CLACE) series of experiments performed at a high Alpine site (Jungfraujoch), where cloud was in contact with the ground and the measuring station. Both water and ice clouds were examined at different times of the year. The second series of experiments is the CLOud Processing of regional Air Pollution advecting over land and sea (CLOPAP) series, where ageing pollution aerosol from UK cities was observed, from an airborne platform, to interact with warm stratocumulus cloud in a cloud-capped atmospheric boundary layer. Combining the results it is shown that aged pollution aerosol consists of an internal mixture of organics, sulfate, nitrate and ammonium, the organic component is dominated by highly oxidized secondary material. The relative contributions and absolute loadings of the components vary with location and season. However, these aerosols act as Cloud Condensation Nuclei (CCN) and much of the organic material, along with the other species, is incorporated into cloud droplets. In ice and mixed phase cloud, it is observed that very sharp transitions (extending over just a few metres) are present between highly glaciated regions and regions consisting of supercooled water. This is a unique finding; however, aircraft observations in cumulus suggest that this kind of structure may be found in these cloud types too. It is suggested that this sharp transition is caused by ice nucleation initiated by oxidised organic aerosol coated with sulfate in more polluted regions of cloud, sometimes enhanced by secondary ice particle production in these regions.

  5. Reactive uptake of NO3 on pure water and ionic solutions

    NASA Astrophysics Data System (ADS)

    Rudich, Yinon; Talukdar, Ranajit K.; Ravishankara, A. R.; Fox, R. W.

    1996-09-01

    The reactive uptake coefficients (γ) of NO3 onto pure water and dilute solutions of NaCl, NaBr, and NaNO2 were measured using a wetted-wall flow-tube setup combined with a long-path absorption cell for the detection of NO3. The measured γ values were in the range 1.5 × 10-4 - 6 × 10-3, depending on the salt concentration in the water. By measuring γ as a function of salt concentration, HD�򉾊.5 for NO3 in water was determined to be (1.9 ± 0.4) × 10-3 M atm-1 cm s-0.5 at 273 K, assuming that the rate coefficient for the reaction of NO3 with Cl- is 2.76 × 106 M-1 s-1 at 273 K. The Henry's law coefficient for NO3 in water is estimated to be 0.6 ± 0.3 M atm-1, assuming that the diffusion coefficient of NO3 in water is D�� = (1.0 ± 0.5) × 10-5 cm2 s-1. Uptake of NO3 on pure water is interpreted as due to reaction of NO3(aq) with H2O(��) to produce HNO3 and OH in the liquid phase. Implications of these findings to the chemistry of NO3 in the troposphere are also discussed.

  6. Improvement of GOCI Yonsei Aerosol retrieval algorithm and validation during DRAGON campaign: Surface reflectance issue according to land, clear water and turbid water

    NASA Astrophysics Data System (ADS)

    Kim, Jhoon; Choi, Myungje; Lee, Jaehwa

    2015-04-01

    Aerosol optical properties (AOPs) over East Asia are retrieved hourly from the first Geostationary Ocean Color Imager (GOCI). GOCI Yonsei aerosol retrieval (YAER) algorithm was developed and improved continuously. Final products of GOCI YAER are aerosol optical depth (AOD), fine-mode fraction (FMF), single scattering albedo (SSA), Angstrom exponent (AE) and aerosol type in high spatial and temporal resolution. Previous aerosol retrieval algorithm over ocean adopts surface reflectance using cox and munk technique as fixed wind speed or the minimum reflectivity technique for continuous characteristics between ocean and land. This study adopt cox and munk technique using real time ECMWF wind speed data over clear water and the minimum reflectivity technique over turbid water. For detecting turbid water, TOA reflectance of 412, 660, and 865nm was used. Over the turbid water, TOA reflectance at 660nm increases more than 412 and 865nm. It also shows more sensitivity over turbid water than dust aerosol. We evaluated the accuracy of GOCI aerosol products using ground-based AERONET Level 2.0 products from total 38 East Asia sites and satellite-based MODIS-Aqua aerosol C6 products. The period of assessment is 3 months from March to May, 2012. Comparison results show that a correlation coefficient between the AODs at 550 nm of AERONET and GOCI is 0.884. Comparison results over ocean between GOCI and MODIS DT algorithm shows good agreement as R = 0.915.

  7. Reduced deep soil water uptake through forest conversion to pasture in Amazonia

    SciTech Connect

    Jipp, P.H.; Nepstad, D.C. Woods Hole Research Center, MA )

    1993-06-01

    Forests of eastern Amazonia are being replaced by pastures and secondary forests. We measured soil water storage and flux in adjacent forest and pasture ecosystems using Time Domain Reflectometry sensors installed in the walls of deep (9-m) shafts. The forest withdrew 597+/-25 mm of soil water stored below 1 m depth during the 1991 dry season (Jun-Dec), 1.7 times more than the pasture. Uptake from the bottom of the forest soil profile continued even after rainfall resumed in early 1992. The hydrologic impacts of tropical deforestation may be most severe for evergreen forests with deep rooting zones in areas of seasonal drought.

  8. Examination of the potential impacts of dust and pollution aerosol acting as cloud nucleating aerosol on water resources in the Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Jha, Vandana

    In this study we examine the cumulative effect of dust acting as cloud nucleating aerosol (cloud condensation nuclei (CCN), giant cloud condensation nuclei (GCCN), and ice nuclei (IN)) along with anthropogenic aerosol pollution acting primarily as CCN, over the entire Colorado Rocky Mountains from the months of October to April in the year 2004-2005; the snow year. This ˜6.5 months analysis provides a range of snowfall totals and variability in dust and anthropogenic aerosol pollution. The specific objectives of this research is to quantify the impacts of both dust and pollution aerosols on wintertime precipitation in the Colorado Mountains using the Regional Atmospheric Modeling System (RAMS). In general, dust enhances precipitation primarily by acting as IN, while aerosol pollution reduces water resources in the CRB via the so-called "spill-over" effect, by enhancing cloud droplet concentrations and reducing riming rates. Dust is more episodic and aerosol pollution is more pervasive throughout the winter season. Combined response to dust and aerosol pollution is a net reduction of water resources in the CRB. The question is by how much are those water resources affected? Our best estimate is that total winter-season precipitation loss for for the CRB the 2004-2005 winter season due to the combined influence of aerosol pollution and dust is 5,380,00 acre-feet of water. Sensitivity studies for different cases have also been run for the specific cases in 2004-2005 winter season to analyze the impact of changing dust and aerosol ratios on precipitation in the Colorado River Basin. The dust is varied from 3 to 10 times in the experiments and the response is found to be non monotonic and depends on various environmental factors. The sensitivity studies show that adding dust in a wet system increases precipitation when IN affects are dominant. For a relatively dry system high concentrations of dust can result in over-seeding the clouds and reductions in precipitation

  9. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Menzel, W. Paul; Kaufman, Yoram J.; Tanre, Didier; Gao, Bo-Cai; Platnick, Steven; Ackerman, Steven A.; Remer, Lorraine A.; Pincus, Robert; Hubanks, Paul A.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is an earth-viewing sensor that flies on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS scans a swath width of 2330 km that is sufficiently wide to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. MODIS provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to en- able advanced studies of land, ocean, and atmospheric properties. Twenty-six bands are used to derive atmospheric properties such as cloud mask, atmospheric profiles, aerosol properties, total precipitable water, and cloud properties. In this paper we describe each of these atmospheric data products, including characteristics of each of these products such as file size, spatial resolution used in producing the product, and data availability.

  10. Silicone Membranes to Inhibit Water Uptake into Thermoset Polyurethane Shape-Memory Polymer Conductive Composites

    PubMed Central

    Yu, Ya-Jen; Infanger, Stephen; Grunlan, Melissa A.; Maitland, Duncan J.

    2014-01-01

    Electroactive shape memory polymer (SMP) composites capable of shape actuation via resistive heating are of interest for various biomedical applications. However, water uptake into SMPs will produce a depression of the glass transition temperature (Tg) resulting in shape recovery in vivo. While water actuated shape recovery may be useful, it is foreseen to be undesirable during early periods of surgical placement into the body. Silicone membranes have been previously reported to prevent release of conductive filler from an electroactive polymer composite in vivo. In this study, a silicone membrane was used to inhibit water uptake into a thermoset SMP composite containing conductive filler. Thermoset polyurethane (PU) SMPs were loaded with either 5 wt% carbon black (CB) or 5 wt% carbon nanotubes (CNT) and subsequently coated with either an Al2O3- or silica-filled silicone membrane. It was observed that the silicone membranes, particularly the silica-filled membrane, reduced the rate of water absorption (37 °C) and subsequent Tg depression versus uncoated composites. In turn, this led to a reduction in the rate of recovery of the permanent shape when exposed to water at 37 °C. PMID:25663711

  11. Understanding the Effects of Compression and Constraints on Water Uptake of Fuel-Cell Membranes

    SciTech Connect

    Kusoglu, Ahmet; Kienitz, Brian L.; Weber, Adam Z.

    2011-01-01

    Accurate characterization of polymer-electrolyte fuel cells (PEFCs) requires understanding the impact of mechanical and electrochemical loads on cell components. An essential aspect of this relationship is the effect of compression on the polymer membrane?s water-uptake behavior and transport properties. However, there is limited information on the impact of physical constraints on membrane properties. In this paper, we investigate both theoretically and experimentally how the water uptake of Nafion membrane changes under external compression loads. The swelling of a compressed membrane is modeled by modifying the swelling pressure in the polymer backbone which relies on the changes in the microscopic volume of the polymer. The model successfully predicts the water content of the compressed membrane measured through in-situ swelling-compression tests and neutron imaging. The results show that external mechanical loads could reduce the water content and conductivity of the membrane, especially at lower temperatures, higher humidities, and in liquid water. The modeling framework and experimental data provide valuable insight for the swelling and conductivity of constrained and compressed membranes, which are of interest in electrochemical devices such as batteries and fuel cells.

  12. Reactions of Volatile Furandiones, Aldehydes and Water Vapor in Secondary Organic Aerosol Formation and in Gas Chromatography Analysis

    NASA Astrophysics Data System (ADS)

    Koehler, C. A.; Fillo, J. D.; Ries, K. A.; Sanchez, J. T.; de Haan, D. O.

    2004-05-01

    Volatile furandiones and aldehydes are important atmospheric oxidation products of simple aromatic compounds found in gasoline. A mechanism of secondary organic aerosol formation by furandiones was identified using particle chamber observations and FTIR measurements of model condensed phases. Growth of inorganic seed aerosol was monitored by scanning mobility particle sizing in the presence of humidity and high concentrations of 2,5-furandione (maleic anhydride), 3-methyl-2,5-furandione (citraconic anhydride), benzaldehyde, and trans-cinnamaldehyde. Particle growth began when the gas-phase saturation level of each organic compound (relative to its pure liquid) and water vapor, when summed together, reached a threshold near one. This threshold implies that equilibrium is established between the gas phase and a newly formed, mixed condensed phase containing both organic compounds and water. This equilibrium appears to be governed by Raoult's Law, where the vapor pressure of each component is reduced proportionally to its mole fraction in the condensed phase. However, bulk liquid phase experiments showed that these organics are immiscible with water at the mole fractions expected in the particle phase in our chamber experiments. Thus, non-reactive condensation of these compounds into a mixed organic / aqueous phase is ruled out. Instead, we show that reactions between furandiones and water produce unusually strong dicarboxylic acids: cis-methylbutenedioic acid (citraconic acid) and cis-butenedioic acid (maleic acid). Bulk phase pH microprobe and FTIR attenuated total reflectance measurements demonstrated that an aqueous phase is rapidly acidified during exposure to furandiones. In addition, the presence of furandiones also greatly increased benzaldehyde solubility. This solubility increase has two causes. First, the entry of maleate (or methylmaleate) ions into the water layer lowers the polarity of the phase. Second, the increase in acidity may enhance reactivity at

  13. Elemental distribution and uptake by watercress (Nasturtium aquaticum) as a function of water quality.

    PubMed

    Kisten, Kimona; Gounden, Denisha; Moodley, Roshila; Jonnalagadda, Sreekantha B

    2015-01-01

    Watercress (Nasturtium aquaticum), is an edible plant commonly found in Southern Africa, which grows both in terrestrial and aquatic environments. The elemental concentrations in the plant and surrounding water (growth solution) were investigated to determine the plants nutritional value and to establish impact of water quality on elemental uptake by the plant. The concentrations in the leaves, roots and water were analyzed at eight different sites along the east coast of KwaZulu-Natal, South Africa (30.0000° S, 25.0000° E). Elemental concentrations in the leaves/roots (μg g(-1), dry mass) and water exchangeable/total (μg L(-1)) at Verulam (situated in the northern part of KwaZulu-Natal) were: As (1.2/7.5 and 0.053/0.09), Ca (18272/26091 and 0.336/7.15), Cd (0.9/0.8 and 0.004/0.01), Co (37.2/34 and 0/0), Cr (7/35 and 0.003/0.03), Cu (3/19 and 0.016/0.16), Fe (528/4308 and 0.375/0.6), Mg (3444/1141 and 6.4/7), Mn (110/667 and 0/0), Ni (20/63 and 0/0.01), Pb (16/17 and 0.01/0.02), Se (28/11 and 0.003/0.01) and Zn (102/116 and 0.099/0.36). Elemental uptake was controlled by the plant but water quality did have an impact on uptake. Concentrations of metals in the leaves were in decreasing order of Ca > Mg > Fe > Mn > Zn > Cu > Cr > Ni > Pb > Se > Cd > As > Co. The watercress plant was found to be a rich source of essential elements especially Fe and Cr and contained low concentrations of the toxic metals investigated thereby making it safe for human consumption. PMID:25844866

  14. Elemental distribution and uptake by watercress (Nasturtium aquaticum) as a function of water quality.

    PubMed

    Kisten, Kimona; Gounden, Denisha; Moodley, Roshila; Jonnalagadda, Sreekantha B

    2015-01-01

    Watercress (Nasturtium aquaticum), is an edible plant commonly found in Southern Africa, which grows both in terrestrial and aquatic environments. The elemental concentrations in the plant and surrounding water (growth solution) were investigated to determine the plants nutritional value and to establish impact of water quality on elemental uptake by the plant. The concentrations in the leaves, roots and water were analyzed at eight different sites along the east coast of KwaZulu-Natal, South Africa (30.0000° S, 25.0000° E). Elemental concentrations in the leaves/roots (μg g(-1), dry mass) and water exchangeable/total (μg L(-1)) at Verulam (situated in the northern part of KwaZulu-Natal) were: As (1.2/7.5 and 0.053/0.09), Ca (18272/26091 and 0.336/7.15), Cd (0.9/0.8 and 0.004/0.01), Co (37.2/34 and 0/0), Cr (7/35 and 0.003/0.03), Cu (3/19 and 0.016/0.16), Fe (528/4308 and 0.375/0.6), Mg (3444/1141 and 6.4/7), Mn (110/667 and 0/0), Ni (20/63 and 0/0.01), Pb (16/17 and 0.01/0.02), Se (28/11 and 0.003/0.01) and Zn (102/116 and 0.099/0.36). Elemental uptake was controlled by the plant but water quality did have an impact on uptake. Concentrations of metals in the leaves were in decreasing order of Ca > Mg > Fe > Mn > Zn > Cu > Cr > Ni > Pb > Se > Cd > As > Co. The watercress plant was found to be a rich source of essential elements especially Fe and Cr and contained low concentrations of the toxic metals investigated thereby making it safe for human consumption.

  15. Hydraulic resistance of a plant root to water-uptake: A slender-body theory.

    PubMed

    Chen, Kang Ping

    2016-05-01

    A slender-body theory for calculating the hydraulic resistance of a single plant root is developed. The work provides an in-depth discussion on the procedure and the assumptions involved in calculating a root׳s internal hydraulic resistance as well as the physical and the mathematical aspects of the external three-dimensional flow around the tip of a root in a saturated soil and how this flow pattern enhances uptake and reduces hydraulic resistance. Analytical solutions for the flux density distribution on the stele-cortex interface, local water-uptake profile inside the stele core, the overall water-uptake at the base of the stele, and the total hydraulic resistance of a root are obtained in the slender-body limit. It is shown that a key parameter controlling a root's hydraulic resistance is the dimensionless axial conductivity in the stele, which depends on the permeabilities of the stele and the cortex as well as the root's radial and axial dimensions. Three-dimensional tip effect reduces a root's hydraulic resistance by as much as 36% when compared to the radial flow theory of Landsberg and Fowkes. In addition, the total hydraulic resistance cannot be generally decomposed into the direct sum of a radial resistance and an axial resistance.

  16. Hydraulic resistance of a plant root to water-uptake: A slender-body theory.

    PubMed

    Chen, Kang Ping

    2016-05-01

    A slender-body theory for calculating the hydraulic resistance of a single plant root is developed. The work provides an in-depth discussion on the procedure and the assumptions involved in calculating a root׳s internal hydraulic resistance as well as the physical and the mathematical aspects of the external three-dimensional flow around the tip of a root in a saturated soil and how this flow pattern enhances uptake and reduces hydraulic resistance. Analytical solutions for the flux density distribution on the stele-cortex interface, local water-uptake profile inside the stele core, the overall water-uptake at the base of the stele, and the total hydraulic resistance of a root are obtained in the slender-body limit. It is shown that a key parameter controlling a root's hydraulic resistance is the dimensionless axial conductivity in the stele, which depends on the permeabilities of the stele and the cortex as well as the root's radial and axial dimensions. Three-dimensional tip effect reduces a root's hydraulic resistance by as much as 36% when compared to the radial flow theory of Landsberg and Fowkes. In addition, the total hydraulic resistance cannot be generally decomposed into the direct sum of a radial resistance and an axial resistance. PMID:26920247

  17. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean.

    PubMed

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-03-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d(-1) (~10 nmol l(-1 )d(-1)). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (≤20 m), contain a microbial population that uses a relatively high amount of carbon (0.3-10 nmol l(-1 )d(-1)), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04-0.68 nmol l(-1 )d(-1). Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air-sea exchange scientists. PMID:23178665

  18. Gradients in microbial methanol uptake: productive coastal upwelling waters to oligotrophic gyres in the Atlantic Ocean.

    PubMed

    Dixon, Joanna L; Sargeant, Stephanie; Nightingale, Philip D; Colin Murrell, J

    2013-03-01

    Methanol biogeochemistry and its importance as a carbon source in seawater is relatively unexplored. We report the first microbial methanol carbon assimilation rates (k) in productive coastal upwelling waters of up to 0.117±0.002 d(-1) (~10 nmol l(-1 )d(-1)). On average, coastal upwelling waters were 11 times greater than open ocean northern temperate (NT) waters, eight times greater than gyre waters and four times greater than equatorial upwelling (EU) waters; suggesting that all upwelling waters upon reaching the surface (≤20 m), contain a microbial population that uses a relatively high amount of carbon (0.3-10 nmol l(-1 )d(-1)), derived from methanol, to support their growth. In open ocean Atlantic regions, microbial uptake of methanol into biomass was significantly lower, ranging between 0.04-0.68 nmol l(-1 )d(-1). Microbes in the Mauritanian coastal upwelling used up to 57% of the total methanol for assimilation of the carbon into cells, compared with an average of 12% in the EU, and 1% in NT and gyre waters. Several methylotrophic bacterial species were identified from open ocean Atlantic waters using PCR amplification of mxaF encoding methanol dehydrogenase, the key enzyme in bacterial methanol oxidation. These included Methylophaga sp., Burkholderiales sp., Methylococcaceae sp., Ancylobacter aquaticus, Paracoccus denitrificans, Methylophilus methylotrophus, Methylobacterium oryzae, Hyphomicrobium sp. and Methylosulfonomonas methylovora. Statistically significant correlations for upwelling waters between methanol uptake into cells and both chlorophyll a concentrations and methanol oxidation rates suggest that remotely sensed chlorophyll a images, in these productive areas, could be used to derive total methanol biological loss rates, a useful tool for atmospheric and marine climatically active gas modellers, and air-sea exchange scientists.

  19. Marine sediment tolerances for remote sensing of atmospheric aerosols over water

    NASA Technical Reports Server (NTRS)

    Whitlock, C. H.

    1982-01-01

    In surveying the literature, it is pointed out that there is a need to quantify the turbidity below which reflectance from the water column is negligible in comparison with atmospheric effects to allow the monitoring of aerosol optical depth over water bodies. Data that partially satisfy this need are presented. Laboratory measurements of reflectance upwelled from the water column are given for mixtures with various types of sediment at wavelengths between 400 and 1600 nm. The results of the study described here are a quantitative endorsement of the recommendations of Morell and Gordon (1980).

  20. Factors influencing the uptake of nutrients in streams within the New York City water-supply source areas.

    NASA Astrophysics Data System (ADS)

    Newbold, D.; Kaplan, L.; Bott, T.; Jackson, J.; Aufdenkampe, A.; Dow, C.

    2005-05-01

    The uptake of nutrients was measured in each of ten streams within the water supply source areas for New York City, once each year between 2000 and 2002. Uptake lengths were estimated from the conservative-tracer-corrected downstream attenuation of short-term (1-2 h) nutrient releases. Uptake lengths correlated with stream size and were converted to uptake velocities (Vf) for further analysis. Vf of phosphate, with a mean of 0.018 mm/s, fit Michaelis-Menten uptake kinetics with a half-saturation of 7 μg/L background phosphate. Vf of ammonium, with a mean of 0.58 mm/s, did not correlate with background ammonium concentration, but fit an uptake curve that used total dissolved nitrogen as the substrate, with a half-saturation of 1 mg/L. Vf of glucose and arabinose were not related to background concentrations. Vf for all four nutrients correlated with community respiration (CR) from diel oxygen variation. For phosphorus uptake, however, CR was collinear with background phosphorus. Vf for ammonium correlated with the macroinvertebrate-based Water Quality Score and Vf for both ammonium and phosphate correlated with some molecular tracers of anthropogenic sources. These results point to nutrient uptake as a sensitive integrator of water quality, ecosystem metabolism, and community structure.

  1. Simulation of the Flame Propagation in a Methane-Air Mixture in the Presence of Water Aerosol

    NASA Astrophysics Data System (ADS)

    Krainov, A. Yu.

    2015-01-01

    We have formulated a physicomathematical model of the flame propagation in a combustible gas containing water aerosol based on the thermal-diffusion model of the laminar flame propagation in a gas and taking into account the processes of heat and mass transfer between the phase and liquid drops. Computational-theoretical studies of the influence of water aerosol characteristics on the flame velocity in a lean methane-air mixture have been made. Comparison of the results of calculations with experimental data has shown that there is good agreement between them. Comparison of the efficiency of using water aerosol and inert gas to stop the spread of fire has shown that there exists a limiting size of the dispersed phase above which the efficiency of using water aerosol and inert powders to stop the spread of fire becomes equal.

  2. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    NASA Technical Reports Server (NTRS)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  3. Influence of salinity on PAH Uptake from water soluble fraction of crude oil in Tilapia mossambica.

    PubMed

    Shukla, P; Gopalani, M; Ramteke, D S; Wate, S R

    2007-12-01

    Accidents during marine transport and offshore production facilities often are responsible for oil spills in the open sea. In few cases, these oil slicks drift towards the shore and further into the estuaries, which serve as an important spawning and nursing grounds for many fish species. This study examined the role of salinity in the uptake and accumulation of toxic PAH from crude oil in select somatic and reproductive organs of Tilapia mossambica. Our results showed significantly (ANOVA, p < 0.01) lower PAH solubility in higher salinity waters and its uptake by fish. The differences were largest with the low molecular weight (LMW) two (naphthalenes) and three (phenanthrene) ring compounds as compared with higher molecular weight (HMW) compounds such as pyrene (four ringed).

  4. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments.

    PubMed

    Ma, Ying; Song, Xianfang

    2016-04-15

    Fertilization and water both affect root water uptake in the nutrient and water cycle of the Soil-Plant-Atmosphere-Continuum (SPAC). In this study, dual stable isotopes (D and (18)O) were used to determine seasonal variations in water uptake patterns of summer maize under different fertilization treatments in Beijing, China during 2013-2014. The contributions of soil water at different depths to water uptake were quantified by the MixSIAR Bayesian mixing model. Water uptake was mainly sourced from soil water in the 0-20cm depth at the seeding (67.7%), jointing (60.5%), tasseling (47.5%), dough (41.4%), and harvest (43.9%) stages, and the 20-50cm depth at the milk stage (32.8%). Different levels of fertilization application led to considerable differences in the proportional contribution of soil water at 0-20cm (6.0-58.5%) and 20-50cm (6.1-26.3%). There was little difference of contributions in the deep layers (50-200cm) among treatments in 2013, whereas differences were observed in 50-90cm at the milk stage and 50-200cm at the dough stage during 2014. The main water uptake depth was concentrated in the upper soil layers (0-50cm) during the wet season (2013), whereas a seasonal drought in 2014 promoted the contribution of soil water in deep layers. The contribution of soil water was significantly and positively correlated with the proportions of root length (r=0.753, p<0.01). The changes of soil water distribution were consistent with the seasonal variation in water uptake patterns. The present study identified water sources for summer maize under varying fertilization treatments and provided scientific implications for fertilization and irrigation management.

  5. Hexachlorobenzene uptake by fathead minnows and macroinvertebrates in recirculating sediment/water systems

    SciTech Connect

    Schuytema, G.S.; Krawczyk, D.F.; Griffis, W.L.; Nebeker, A.V.; Robideaux, M.L.

    1990-01-01

    Fathead minnow (Pimephales promelas), the worm, Lumbriculus variegatus, and the amphipods Hyalella azteca and Gammarus lacustris were exposed to hexachlorobenzene (HCB) in water with and without a bed of HCB-spiked sediment. Water HCB concentrations were maintained by recirculation through HCB-packed columns. Recirculating HCB-bound particulates and possibly eroded HCB particulates were an added source of HCB in addition to the sediment bed. Significant bioaccumulation of HCB in animal tissues was observed in water-only and water-sediment exposures. The presence of the HCB-spiked sediment did not result in a significant increase in the uptake of HCB by the organisms, but there was a substantial increase in sediment HCB levels over time. Higher tissue HCB levels in aquaria without sediment suggest that the sediment was a more efficient sink for HCB than the organisms.

  6. CalWater 2015 — Atmospheric Rivers and Aerosol Impacts on Precipitation

    NASA Astrophysics Data System (ADS)

    Spackman, J. R.; Ralph, F. M.; Prather, K. A.; Cayan, D.; DeMott, P. J.; Dettinger, M. D.; Doyle, J. D.; Fairall, C. W.; Leung, L. R.; Rosenfeld, D.; Rutledge, S. A.; Waliser, D. E.; White, A. B.

    2015-12-01

    The CalWater 2015 field experiment was conducted between January and March and consisted of more than fifty science flights, a major research cruise, and continuous ground-based observations coordinated to study phenomena driving the incidence of extreme precipitation events and the variability of water supply along the West Coast of the United States. CalWater 2015 examined key processes linked to (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major winter storms, and (2) aerosols, originating from local sources as well as from remote continents, within and between storms and their modulating effects on precipitation on the U.S. West Coast. As part of a large interagency field effort including NOAA, DOE, NASA, NSF, and the Naval Research Laboratory, four research aircraft from three government agencies were deployed in coordination with the oceangoing NOAA Ronald H. Brown and were equipped with meteorological and chemical observing systems in near-shore regions of California and the eastern Pacific. At the same time, ground-based measurements from NOAA's HydroMeteorological Testbed (HMT) network on the U.S. West Coast and a major NSF-supported observing site for aerosols and microphysics at Bodega Bay, California provided continuous near surface-level meteorological and chemical observations, respectively, during CalWater 2015. The DOE-sponsored ARM Cloud Aerosol and Precipitation Experiment (ACAPEX) was executed in close coordination with NOAA and NASA facilities and deployed airborne and ship-based observing systems. This presentation summarizes the objectives, implementation strategy, data acquisitions, and some preliminary results from CalWater 2015 addressing science gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic

  7. Online Measurements of Water-Soluble Iron in Ambient Aerosols: A new Technique

    NASA Astrophysics Data System (ADS)

    Rastogi, N.; Oakes, M.; Weber, R. J.; Majestic, B. J.; Shafer, M. M.; Snyder, D. C.; Schauer, J. J.

    2008-05-01

    Water-soluble iron, i.e. Fe(II) (hereafter, WS-Fe), is a redox active metal that can act as a catalyst in the production of reactive oxygen species (ROS). In atmospheric aerosol particles, WS-Fe may significantly impact human health and the atmospheric oxidative capacity. Further, WS-Fe acts as a critical nutrient for marine organisms and has been hypothesized to limit phytoplankton productivity in high nitrate, low-chlorophyll ocean regions. In order to assess the role of aerosol WS-Fe on human health, atmospheric chemistry and ocean biogeochemistry, it is necessary to understand its major sources, transport, transformation processes and sinks. Filter-based measurements with several (6-24) hours integration time are predominately used to quantify WS-Fe in aerosols but provide limited insight into acute exposures that could be higher than daily averages, or sources having high temporal variability. Generally, mineral dust and its processing with acidic pollutants, is considered the dominant source of WS-Fe, however, recent studies have reported combustion emissions are also a possible source. A time-resolved data set may help in identifying WS-Fe sources, atmospheric transformations and possible sinks. We have developed a new system for online quantitative analyses of WS-Fe present in ambient aerosols with a 12-minute integration time. It mainly consists of Particle-Into-Liquid Sampler (PILS), a liquid waveguide capillary cell (LWCC) and a portable UV-Visible spectrophotometer. The complete system is automated so that first the liquid sample (water-extract of ambient aerosols from PILS) is mixed with ferrozine (complexing reagent) by pumping them simultaneously (10:1) through a serpentine reactor and a 100 turn mixing coil using a peristaltic pump. After holding the mixed solution in the mixing coil for three minutes, the sample is pumped through the LWCC and held there for two minutes to acquire the absorbance of the solution at 562 nm (for Fe

  8. IMPACT OF AEROSOL LIQUID WATER ON SECONDARY ORGANIC AEROSOL YIELDS OF IRRADIATED TOLUENE/PROPYLENE/NOX/(NH4)2SO4/AIR MIXUTRES

    EPA Science Inventory

    Laboratory experiments were conducted to assess whether the presence of liquid water on pre-existing submicron ammonium sulfate aerosols affects yields of condensible organic compounds. Toluene/propylene/NOX/air mixtures were irradiated in the presence of submicron ammonium su...

  9. Raman lidar system for the measurement of water vapor and aerosols in the earth's atmosphere

    NASA Technical Reports Server (NTRS)

    Whiteman, D. N.; Melfi, S. H.; Ferrare, R. A.

    1992-01-01

    A nighttime operating Raman lidar system that is designed for the measurement of high vertical and temporal resolution profiles of the water vapor mixing ratio and the aerosol backscattering ratio is described. The theory of the measurements is presented. Particular attention is given to operational problems that have been solved during the development of the system. Data are presented from Sept. 1987 and described in their meteorological context.

  10. Tropical intercontinental optical measurement network of aerosol, precipitable water and total column ozone

    NASA Technical Reports Server (NTRS)

    Holben, B. N.; Tanre, D.; Reagan, J. A.; Eck, T. F.; Setzer, A.; Kaufman, Y. A.; Vermote, E.; Vassiliou, G. D.; Lavenu, F.

    1992-01-01

    A new generation of automatic sunphotometers is used to systematically monitor clear sky total column aerosol concentration and optical properties, precipitable water and total column ozone diurnally and annually in West Africa and South America. The instruments are designed to measure direct beam sun, solar aureole and sky radiances in nine narrow spectral bands from the UV to the near infrared on an hourly basis. The instrumentation and the algorithms required to reduce the data for subsequent analysis are described.

  11. Fluorescent water-soluble organic aerosols in the High Arctic atmosphere

    PubMed Central

    Fu, Pingqing; Kawamura, Kimitaka; Chen, Jing; Qin, Mingyue; Ren, Lujie; Sun, Yele; Wang, Zifa; Barrie, Leonard A.; Tachibana, Eri; Ding, Aijun; Yamashita, Youhei

    2015-01-01

    Organic aerosols are ubiquitous in the earth’s atmosphere. They have been extensively studied in urban, rural and marine environments. However, little is known about the fluorescence properties of water-soluble organic carbon (WSOC) or their transport to and distribution in the polar regions. Here, we present evidence that fluorescent WSOC is a substantial component of High Arctic aerosols. The ratios of fluorescence intensity of protein-like peak to humic-like peak generally increased from dark winter to early summer, indicating an enhanced contribution of protein-like organics from the ocean to Arctic aerosols after the polar sunrise. Such a seasonal pattern is in agreement with an increase of stable carbon isotope ratios of total carbon (δ13CTC) from −26.8‰ to −22.5‰. Our results suggest that Arctic aerosols are derived from a combination of the long-range transport of terrestrial organics and local sea-to-air emission of marine organics, with an estimated contribution from the latter of 8.7–77% (mean 45%). PMID:25920042

  12. New Examination of the Traditional Raman Lidar Technique II: Temperature Dependence Aerosol Scattering Ratio and Water Vapor Mixing Ratio Equations

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.; Abshire, James B. (Technical Monitor)

    2002-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman water vapor signal and the lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here we use those results to derive the temperature dependent forms of the equations for the aerosol scattering ratio, aerosol backscatter coefficient, extinction to backscatter ratio and water vapor mixing ratio. Pertinent analysis examples are presented to illustrate each calculation.

  13. Conductivity and water uptake of aromatic-based proton exchange membrane electrolytes

    SciTech Connect

    Kopitzke, R.W.; Linkous, C.A.; Anderson, H.R.; Nelson, G.L.

    2000-05-01

    Water uptake and proton conductivity as a function of temperature were determined for three aromatic-based, sulfonic acid-bearing polymers, plus the perfluoroalkyl sulfonic acid Nafion{reg_sign} 117. Water uptake of submerged, equilibrated samples ranged from less than five water molecules per acid group for a high equivalent weight, sulfonated polyethersulfone to almost fifty waters per acid for a low equivalent weight, sulfonated polyetheretherketone. The most conductive aromatic-based polymer, sulfonated polyphenylquinoxaline (S-PPQ), had a room temperature conductivity of 9.8 x 10{sup {minus}3} S/cm, about an order of magnitude less than that of a perfluoroalkyl sulfonic acid under identical conditions. The slope of the S-PPQ Arrhenius conductivity plot was sufficiently steep that at 180 C, the proton conductivity, 1.3 x 10{sup {minus}1} S/cm, was only a factor of two lower than that of Nafion under similar conditions. The lower conductivity of the aromatic-based sulfonic acid polymers can be attributed to chain rigidity, lack of ion channels, and lower acidity.

  14. Mathematical modelling study for water uptake of steadily growing plant root

    NASA Astrophysics Data System (ADS)

    Chu, Jiaqing; Jiao, Weiping; Xu, Jianjun

    2008-02-01

    The root system of plant is a vitally important organ for living plant. One of the major functions of the root system is uptaking water and nutrients from the soil. The present paper analyzes the whole process of water uptake from soil by a steadily growing plant with a single slender root. We start from the basic principles of physics and fluid-dynamics, consider the structure characteristics of the water transport channel formed by the tiny xylems tubes inside plant, and establish a simplified coherent mathematical model to describe the water transport in the complete system consisting of soil, individual plant, including root, stem and leaves-atmosphere, on the basis of the plant physiology. Moreover, we resolve the proposed mathematical model for a simple artificial plant model under a variety of conditions, in terms of the numerical approach as well as analytical approach. It is shown that the results obtained by both approaches are in very good agreement; the theoretical predictions are qualitatively consistent with the practical experiences very well. The simplified mathematical model established in the present paper may provide a basis for the further investigations on the more sophisticated mathematical model.

  15. Root attributes affecting water uptake of rice (Oryza sativa) under drought

    PubMed Central

    Henry, Amelia

    2012-01-01

    Lowland rice roots have a unique physiological response to drought because of their adaptation to flooded soil. Rice root attributes that facilitate growth under flooded conditions may affect rice response to drought, but the relative roles of root structural and functional characteristics for water uptake under drought in rice are not known. Morphological, anatomical, biochemical, and molecular attributes of soil-grown rice roots were measured to investigate the genotypic variability and genotype×environment interactions of water uptake under variable soil water regimes. Drought-resistant genotypes had the lowest night-time bleeding rates of sap from the root system in the field. Diurnal fluctuation predominated as the strongest source of variation for bleeding rates in the field and root hydraulic conductivity (Lp r) in the greenhouse, and was related to expression trends of various PIP and TIP aquaporins. Root anatomy was generally more responsive to drought treatments in drought-resistant genotypes. Suberization and compaction of sclerenchyma layer cells decreased under drought, whereas suberization of the endodermis increased, suggesting differential roles of these two cell layers for the retention of oxygen under flooded conditions (sclerenchyma layer) and retention of water under drought (endodermis). The results of this study point to the genetic variability in responsiveness to drought of rice roots in terms of morphology, anatomy, and function. PMID:22791828

  16. Pore Distribution and Water Uptake in a Cenosphere-Cement Paste Composite Material

    NASA Astrophysics Data System (ADS)

    Baronins, J.; Setina, J.; Sahmenko, G.; Lagzdina, S.; Shishkin, A.

    2015-11-01

    Alumina silicate cenospheres (CS) is a significant waste material from power plants that use a coal. Use CS as Portland cement replacement material gives opportunity to control physical and mechanical properties and makes a product lighter and more cost-effective. In the frame of this study, Portland cement paste samples were produced by adding CS in the concentration range from 0 to 40 volume %. Water uptake of hardened samples was checked and pore size distribution by using the mercury porosimetry was determined. In a cold climate where the temperature often falls below 0 °C, it is important to avoid the amount of micrometer sized pores in the final structure and to decrease water absorption capacity of material. In winter conditions, water fills such pores and causes additional stresses to their walls by expansion while freezing. It was found that generally water uptake capacity for cement paste samples decreased up to 20% by increasing the concentration of CS up to 40 volume %, at the same time, the volume of micrometer sized opened pores increases.

  17. Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface.

    PubMed

    Bernard, F; Ciuraru, R; Boréave, A; George, C

    2016-08-16

    In this study, we evaluated photosensitized chemistry at the air-sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1-10 mg L(-1)) as a proxy for dissolved organic matter, and nonanoic acid (0.1-10 mM), a fatty acid proxy which formed an organic film at the air-water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm(-3), illustrating the production of unsaturated compounds by chemical reactions at the air-water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air-sea interface in the production of atmospheric organic aerosol from photosensitized origins. PMID:27434860

  18. Simultaneous analysis of the equilibrium hygroscopicity and water transport kinetics of liquid aerosol.

    PubMed

    Davies, James F; Haddrell, Allen E; Rickards, Andrew M J; Reid, Jonathan P

    2013-06-18

    We demonstrate that the equilibrium hygroscopic response of an aerosol droplet and the kinetics of water condensation and evaporation can be retrieved with high accuracy, even close to saturation, through comparative measurements of probe and sample aerosol droplets. The experimental methodology is described and is based on an electrodynamic balance with a newly designed trapping chamber. Through use of a probe aerosol, composed of either pure water or a sodium chloride solution of known concentration, the gas-phase relative humidity (RH) can be accurately measured with an uncertainty of typically <0.005. By fast manipulation of the airflows into the chamber, a step-change in RH over a time scale of <0.5 s can be achieved. Using this approach, the kinetics of mass transfer are studied using the comparative procedure, and results are compared to theoretical mass flux predictions. The time-dependent measured mass fluxes for sodium chloride, ammonium sulfate, sorbitol, and galactose are used to calculate droplet water activities as a function of the droplet growth factor, allowing retrieval of a hygroscopic growth curve in a matter of seconds. Comparisons with both new and established thermodynamic predictions of hygroscopicity, as well as to optical tweezers measurements, are presented, demonstrating good agreement within the experimental uncertainties. PMID:23662676

  19. Mobile multi-wavelength polarization Raman lidar for water vapor, cloud and aerosol measurement.

    PubMed

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Liu, Jintao; Zhang, Kailin; Qin, Shengguang; Hua, Dengxin; Gao, Fei; Liu, Liping

    2015-12-28

    Aiming at the detection of atmospheric water vapor mixing ratio, depolarization ratio, backscatter coefficient, extinction coefficient and cloud information, the Water vapor, Cloud and Aerosol Lidar (WACAL) is developed by the lidar group at Ocean University of China. The lidar consists of transmitter, receiver, data acquisition and auxiliary system. For the measurement of various atmospheric physical properties, three channels including Raman channel, polarization channel and infrared channel are integrated in WACAL. The integration and working principle of these channels are introduced in details. The optical setup, the housekeeping of the system and the data retrieval routines are also presented. After the completion of the construction of the lidar, the WACAL system was installed in Ocean University of China (36.165°N, 120.5°E), Qingdao for the measurement of atmosphere during 2013 and 2014. The measurement principles and some case studies corresponding to various atmospheric physical properties are provided. Finally, the result of one continuous measurement example operated on 13 June 2014 is presented. The WACAL can measure the aerosol and cloud optical properties as well as the water vapor mixing ratio. It is useful for studying the direct and indirect effects of the aerosol on the climate change.

  20. Radiative Forcing at the Surface by Clouds, Aerosols, and Water Vapor Over Tropical Oceans

    NASA Astrophysics Data System (ADS)

    Key, E.; Minnett, P.; Szczodrak, G.; Caniaux, G.; Voss, K.; Bourras, D.

    2007-12-01

    Data from recent campaigns conducted in the tropical Atlantic and Indian Oceans provide thorough testbeds for determining the contribution of clouds, aerosols, and water vapor to surface radiative forcing, with particular focus on areas of extreme SST gradients. Oceanographic cruises conducted during the African Monsoon Multidisciplinary Analysis included sampling monsoon onset in the Gulf of Guinea, which was characterized nearshore by rain and haze, the latter being a combination of water vapor and continental and pollution aerosols. Offshore and nearer to the equatorial cold tongue, the ITCZ was the dominant northern hemisphere cloud feature, while drier, cooler air masses existed south of the equator. The R/V Ronald H. Brown, operating a north-south transect along 23 W, encountered both atmospheric tropical wave conditions as well as dry Saharan Air Layers. In the Indian Ocean, the N/O Le Suroit occupied a point station near a positive SST anomaly to observe the onset of convection associated with the MJO and strong diurnal warming signatures. Combining radiative and turbulent flux data with measured and modeled profiles of the marine and atmospheric boundary layer, the evolution and interaction of the total air-sea column is observed. Particular emphasis is placed on the radiative forcing of clouds, aerosols, and water vapor on the sea surface skin temperature, towards the improvement of current diurnal warming models, which simplify atmospheric radiative effects into a general cloud parameter.

  1. Photosensitized Formation of Secondary Organic Aerosols above the Air/Water Interface.

    PubMed

    Bernard, F; Ciuraru, R; Boréave, A; George, C

    2016-08-16

    In this study, we evaluated photosensitized chemistry at the air-sea interface as a source of secondary organic aerosols (SOA). Our results show that, in addition to biogenic emissions, abiotic processes could also be important in the marine boundary layer. Photosensitized production of marine secondary organic aerosol was studied in a custom-built multiphase atmospheric simulation chamber. The experimental chamber contained water, humic acid (1-10 mg L(-1)) as a proxy for dissolved organic matter, and nonanoic acid (0.1-10 mM), a fatty acid proxy which formed an organic film at the air-water interface. Dark secondary reaction with ozone after illumination resulted in SOA particle concentrations in excess of 1000 cm(-3), illustrating the production of unsaturated compounds by chemical reactions at the air-water interface. SOA numbers via photosensitization alone and in the absence of ozone did not exceed background levels. From these results, we derived a dependence of SOA numbers on nonanoic acid surface coverage and dissolved organic matter concentration. We present a discussion on the potential role of the air-sea interface in the production of atmospheric organic aerosol from photosensitized origins.

  2. The impact of mucilage exudate on root water uptake - Numerical study

    NASA Astrophysics Data System (ADS)

    Schwartz, N.; Carminati, A.; Javaux, M.

    2015-12-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudates and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. We simulate wetting and drying cycles and examine the impact of various rhizosphere processes on water content distribution and root water uptake (RWU). For wetting, the model predict that after infiltration the rate of change in the rhizosphere water content is lower than in the bulk soil (due to non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. For drying, the high water holding capacity of the rhizosphere, and the non-equilibrium between water content and water potential delay the onset of stress. Furthermore, when continues drying-wetting setup is examined, rhizosphere properties results in a lower fluctuation of the water content around the root. Overall, the model presented here is the first attempt to include rhizosphere specific processes within a detailed soil-plant water flow model. The model provides a tool to examine the impact of different rhizosphere processes on water dynamics and RWU under different irrigation practices.

  3. The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection.

    PubMed

    Prendergast, Kelly A; Counoupas, Claudio; Leotta, Lisa; Eto, Carolina; Bitter, Wilbert; Winter, Nathalie; Triccas, James A

    2016-05-17

    Defining the function and protective capacity of mycobacterial antigens is crucial for progression of tuberculosis (TB) vaccine candidates to clinical trials. The Ag85B protein is expressed by all pathogenic mycobacteria and is a component of multiple TB vaccines under evaluation in humans. In this report we examined the role of the BCG Ag85B protein in host cell interaction and vaccine-induced protection against virulent Mycobacterium tuberculosis infection. Ag85B was required for macrophage infection in vitro, as BCG deficient in Ag85B expression (BCG:(Δ85B)) was less able to infect RAW 264.7 macrophages compared to parental BCG, while an Ag85B-overexpressing BCG strain (BCG:(oex85B)) demonstrated improved uptake. A similar pattern was observed in vivo after intradermal delivery to mice, with significantly less BCG:(Δ85B) present in CD64(hi)CD11b(hi) macrophages compared to BCG or BCG:(oex85B). After vaccination of mice with BCG:(Δ85B) or parental BCG and subsequent aerosol M. tuberculosis challenge, similar numbers of activated CD4(+) and CD8(+) T cells were detected in the lungs of infected mice for both groups, suggesting the reduced macrophage uptake observed by BCG:(Δ85B) did not alter host immunity. Further, vaccination with both BCG:(Δ85B) and parental BCG resulted in a comparable reduction in pulmonary M. tuberculosis load. These data reveal an unappreciated role for Ag85B in the interaction of mycobacteria with host cells and indicates that single protective antigens are dispensable for protective immunity induced by BCG. PMID:27060378

  4. The Ag85B protein of the BCG vaccine facilitates macrophage uptake but is dispensable for protection against aerosol Mycobacterium tuberculosis infection.

    PubMed

    Prendergast, Kelly A; Counoupas, Claudio; Leotta, Lisa; Eto, Carolina; Bitter, Wilbert; Winter, Nathalie; Triccas, James A

    2016-05-17

    Defining the function and protective capacity of mycobacterial antigens is crucial for progression of tuberculosis (TB) vaccine candidates to clinical trials. The Ag85B protein is expressed by all pathogenic mycobacteria and is a component of multiple TB vaccines under evaluation in humans. In this report we examined the role of the BCG Ag85B protein in host cell interaction and vaccine-induced protection against virulent Mycobacterium tuberculosis infection. Ag85B was required for macrophage infection in vitro, as BCG deficient in Ag85B expression (BCG:(Δ85B)) was less able to infect RAW 264.7 macrophages compared to parental BCG, while an Ag85B-overexpressing BCG strain (BCG:(oex85B)) demonstrated improved uptake. A similar pattern was observed in vivo after intradermal delivery to mice, with significantly less BCG:(Δ85B) present in CD64(hi)CD11b(hi) macrophages compared to BCG or BCG:(oex85B). After vaccination of mice with BCG:(Δ85B) or parental BCG and subsequent aerosol M. tuberculosis challenge, similar numbers of activated CD4(+) and CD8(+) T cells were detected in the lungs of infected mice for both groups, suggesting the reduced macrophage uptake observed by BCG:(Δ85B) did not alter host immunity. Further, vaccination with both BCG:(Δ85B) and parental BCG resulted in a comparable reduction in pulmonary M. tuberculosis load. These data reveal an unappreciated role for Ag85B in the interaction of mycobacteria with host cells and indicates that single protective antigens are dispensable for protective immunity induced by BCG.

  5. A global survey of aerosol-liquid water cloud overlap based on four years of CALIPSO-CALIOP data

    NASA Astrophysics Data System (ADS)

    Devasthale, A.; Thomas, M. A.

    2010-09-01

    The presence of aerosols over highly reflective liquid water cloud tops poses a big challenge in simulating their radiative impacts. Particularly, absorbing aerosols, such as smoke, may have significant impact in such situations and even change the sign of net radiative forcing. Until now, it was not possible to obtain information on such overlap events realistically from the existing passive satellite sensors. However, the CALIOP instrument onboard NASA's CALIPSO satellite allows us to examine these events with an unprecedented accuracy. Using four years of collocated CALIPSO 5 km Aerosol and Cloud Layer Version 3 Products (June 2006-May 2010), we quantify, for the first time, the macrophysical characteristics of overlapping aerosol and water cloud layers globally. We investigate seasonal variability in these characteristics over six latitude bands to understand the hemispheric differences. We compute a) the percentage cases when such overlap is seen globally and seasonally when all aerosol types are included (AAO case) in the analysis, b) the joint histograms of aerosol layer base height and cloud layer top height, and c) the joint histograms of aerosol and cloud geometrical thicknesses in such overlap cases. We also investigate frequency of smoke aerosol-cloud overlap (SAO case). The results show a distinct seasonality in overlap frequency in both AAO and SAO cases. Globally, the frequency is highest during JJA months in AAO case, while for the SAO case, it is highest in SON months. The seasonal mean overlap frequency can regionally exceed 20% in AAO case and 10% in SAO case. There is a tendency that the vertical separation between aerosol and cloud layers increases from high to low latitude regions in the both hemispheres. In about 5-10% cases the vertical distance between aerosol and cloud layers is less than 100 m, while about in 45-60% cases it less than a kilometer in the annual means for different latitudinal bands. The frequency of occurrence of thicker

  6. A simple non-invasive field based method for examining and parameterizing root-water-uptake models

    NASA Astrophysics Data System (ADS)

    Yang, y.; Guan, h.; Huston, J.; Wang, h.; Ewenz, C.; Shang, s.; Simmons, C.

    2012-04-01

    A simple non-invasive field based method for directly parameterizing root-water-uptake models is proposed. Stem psychrometers and sap flow meters are used to measure stem water potential and plant transpiration rate continuously and simultaneously. Predawn stem water potential is selected as a surrogate for root-zone soil water potential to examine and parameterize the root water-uptake water stress response functions. The method is applied to two drooping sheoak (Allocasuarina verticillata) trees for a period of 80 days, covering both a dry season and a wet season. The result indicates that the S-shape function is more appropriate than the Feddes piecewise linear function for drooping sheoak to explain the effect of soil moisture stress on its root water uptake performance. Besides, the water stress function was found to be not only the function of soil moisture, but also dependent on the atmospheric demand. As the result, the S-shape water stress function is corrected considering the effect of atmospheric conditions. The soil moisture modeling results indicated that the proposed method is capable in correctly choosing and calibrating the root-water-uptake models. In addition, the S-shape water stress function with atmospheric correction performed better than the classical S-shape function in modeling both root zone soil water potential and plant transpiration rate.

  7. Spatial separation of individual substances in effloresced crystals of ternary ammonium sulphate/dicarboxylic acid/water aerosols.

    PubMed

    Treuel, Lennart; Sandmann, Alice; Zellner, Reinhard

    2011-04-18

    This work examines the crystals resulting from the efflorescence of internally mixed aqueous aerosols comprising ammonium sulphate and different dicarboxylic acids. Most studies on the deliquescence of aerosols use previously effloresced aerosols in their experiments. However, during efflorescence a highly supersaturated solution crystallises in a kinetically controlled way unlike the case of thermodynamically controlled crystallisation. Herein the distribution of individual substances within the effloresced crystals is investigated using Raman scanning experiments. The data presented show an intriguingly complex behaviour of these ternary and quarternary aerosols. A spatial separation of substances in the crystals resulting from the efflorescence of previously internally mixed ternary salt/dicarboxylic acid/water aerosol droplets is demonstrated and mechanistic aspects are discussed. PMID:21472958

  8. Vertical Distribution of Aerosols and Water Vapor Using CRISM Limb Observations

    NASA Astrophysics Data System (ADS)

    Smith, M. D.; Wolff, M. J.; Clancy, R. T.; CRISM Science; Operations Teams

    2011-12-01

    Near-infrared spectra taken in a limb-viewing geometry by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on-board the Mars Reconnaissance Orbiter (MRO) provide a useful tool for probing atmospheric structure. Specifically, the observed radiance as a function of wavelength and height above the limb allows the vertical distribution of both dust and ice aerosols to be retrieved. These data serve as an important supplement to the aerosol profiling provided by the MRO/MCS instrument allowing independent validation and giving additional information on particle physical and scattering properties through multi-wavelength studies. A total of at least ten CRISM limb observations have been taken so far covering a full Martian year. Each set of limb observations nominally contains about four dozen scans across the limb giving pole-to-pole coverage for two orbits at roughly 100 and 290 W longitude over the Tharsis and Syrtis/Hellas regions, respectively. At each longitude, limb scans are spaced roughly 10 degrees apart in latitude, with a vertical spatial resolution on the limb of roughly 800 m. Radiative transfer modeling is used to model the observations. We compute synthetic CRISM limb spectra using a discrete-ordinates radiative transfer code that accounts for multiple scattering from aerosols and accounts for spherical geometry of the limb observations by integrating the source functions along curved paths in that coordinate system. Retrieved are 14-point vertical profiles for dust and water ice aerosols with resolution of 0.4 scale heights between one and six scale heights above the surface. After the aerosol retrieval is completed, the abundances of CO2 (or surface pressure) and H2O gas are retrieved by matching the depth of absorption bands at 2000 nm for carbon dioxide and at 2600 nm for water vapor. In addition to the column abundance of water vapor, limited information on its vertical structure can also be retrieved depending on the signal available

  9. Detection and quantification of water-based aerosols using active open-path FTIR.

    PubMed

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-04-28

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25-3.6%wt) and (3) aqueous ethylene glycol (0.47-2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R(2) = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880-1150 cm(-1) and the ammonium sulfate load in the LOS (R(2) = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations.

  10. Detection and quantification of water-based aerosols using active open-path FTIR

    NASA Astrophysics Data System (ADS)

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-04-01

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25–3.6%wt) and (3) aqueous ethylene glycol (0.47–2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R2 = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880–1150 cm‑1 and the ammonium sulfate load in the LOS (R2 = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations.

  11. Effect of water uptake on morphology of polymerized ionic liquid block copolymers and random copolymers

    NASA Astrophysics Data System (ADS)

    Wang, Tsen-Shan; Ye, Yuesheng; Elabd, Yossef; Winey, Karen

    2012-02-01

    Dynamic studies of polymer morphology probe how the physical properties of polymerized ionic liquids are affected by the environment, such as temperature or moisture. For a series of poly(methyl methacrylate-b-1-[2-(methacryloyloxy)ethyl]-3-Butylimidazolium X^-) block and random copolymers with hydrophilic counterions (X^- = Br^-, HCO3^-, OH^-), the introduction of water vapor to the system can swell the ionic liquid block, causing enlarged hydrophilic domains and swollen channels for ion conduction. This expected expansion of ionic liquid domains in humid environments can be used to intelligently design these copolymers for use in technological applications. The effect of water vapor exposure in these imidazolium-based acrylate polymers is studied by small-angle X-ray scattering. These morphology results will be discussed alongside complementary studies of water uptake and ion conductivity.

  12. Measurements of water uptake of maize roots: insights for traits that influence water transport from the soil

    NASA Astrophysics Data System (ADS)

    Ahmed, Mutez A.; Zarebanadkouki, Mohsen; Kroener, Eva; Carminati, Andrea

    2015-04-01

    Water availability is a primary constraint to the global crop production. Although maize (Zea mays L.) is one of the most important crops worldwide, there is limited information on the function of different root segments and types in extracting water from soils. Aim of this study was to investigate the location of water uptake in maize roots. We used neutron radiography to: 1) image the spatial distribution of maize roots in soil and 2) trace the transport of injected deuterated water (D2O) in soil and roots. Maize plants were grown in aluminum containers (40×38×1 cm) filled with sandy soil. The soil was partitioned into different compartments using 1-cm-thick layers of coarse sand. When the plants were two weeks-old we injected D2O into selected soil compartments. The experiments were performed during the day (transpiring plants) and night (non transpiring plants). The transport of D2O into roots was simulated using a convection-diffusion numerical model of D2O transport into roots. By fitting the observed D2O transport we quantified the diffusion coefficient and the water uptake of the different root segments. The maize root architecture consisted of a primary root, 4-5 seminal roots and many lateral roots connected to the primary and seminal roots. Laterals emerged from the proximal 15 cm of the primary and seminal roots. Both during day and night measurements, D2O entered more quickly into lateral roots than into primary and seminal roots. The quick transport of D2O into laterals was caused by the small radius of lateral roots. The diffusion coefficient of lateral roots (4.68×10-7cm2s-1)was similar to that of the distal segments of seminal roots (4.72×10-7cm2s-1) and higher than of the proximal segments (1.42×10-7cm2s-1). Water uptake of lateral roots (1.64×10-5cms-1)was much higher than that of the distal segments of seminal roots (1.18×10-12cms-1). Water uptake of the proximal seminal segments was negligible. We conclude that the function of lateral

  13. Bulk, surface properties and water uptake mechanisms of salt/acid amorphous composite systems.

    PubMed

    Bianco, Stefano; Tewes, Frederic; Tajber, Lidia; Caron, Vincent; Corrigan, Owen I; Healy, Anne Marie

    2013-11-01

    Developing amorphous pharmaceuticals can be desirable due to advantageous biopharmaceutical properties. Low glass transition temperature (Tg) amorphous drugs can be protected from crystallisation by mixing with high Tg excipients, such as polymers, or with salt forms. However, both polymers and salts can enhance the water uptake. The aim of this study was to formulate physico-chemically stable amorphous materials, by co-processing different proportions of sulfathiazole and its sodium salt to produce an optimum ratio, characterised by the best physical stability and lowest hygroscopicity. Both sulfathiazole and salt amorphised upon spray drying. At room temperature, sulfathiazole crystallised within 1h at <5% relative humidity while the salt deliquesced when exposed to ambient humidity conditions. In the case of composite systems, FTIR spectroscopy, thermal and surface analysis suggested interactions with an acid:salt stoichiometry of 1:2. Increasing proportions of salt raised the Tg, enhancing the storage stability, however this was opposed by an enhanced hygroscopicity. The water uptake mechanism within the different amorphous systems, analysed by fitting the water sorption isotherms with the Young and Nelson equation, was dependent on the ratio employed, with the salt and the acid facilitating absorption and adsorption, respectively. Tuning the properties of amorphous salt/acid composites by optimising the ratio appears potentially promising to improve the physical stability of amorphous formulations. PMID:23948137

  14. Is It Possible to Distinguish Between Dust and Salt Aerosol Over Waters with Unknown Chlorophyll Concentrations Using Spectral Remote Sensing?

    NASA Technical Reports Server (NTRS)

    Levy, R. C.; Kaufman, Y. J.

    1999-01-01

    Atmospheric aerosol has uncertain impacts on the global climate system, as well as on atmospheric and bio-geo-chemical processes of regional and local scales. EOS-MODIS is one example of a satellite sensor designed to improve understanding of the aerosols' type, size and distribution at all temporal and spatial scales. Ocean scientists also plan to use data from EOS-MODIS to assess the temporal and spatial coverage of in-water chlorophyll. MODIS is the first sensor planned to observe the combined ocean-atmosphere system with a wide spectral range (from 410 to 2200 nm). Dust aerosol and salt aerosol have similar spectral signals for wavelengths longer than 550 nm, but because dust selectively absorbs blue light, they have divergent signals in the blue wavelength regions (412 to 490 nm). Chlorophyll also selectively absorbs blue radiation, so that varying chlorophyll concentrations produces a highly varying signal in the blue regions, but less variability in the green, and almost no signal in the red to mid-infrared regions. Thus, theoretically, it may be difficult to differentiate dust and salt in the presence of unknown chlorophyll in the ocean. This study attempts to address the cases in which aerosol and chlorophyll signals can and cannot be separated. For the aerosol spectra, we use the aerosol lookup table from the operational MODIS aerosol-over-ocean algorithm, and for chlorophyll spectra, we use the SeaBAM data set (created for SeaWiFS). We compare the signals using Principal Component Analysis and attempt to retrieve both chlorophyll and aerosol properties using a variant of the operational MODIS aerosol-over-ocean algorithm. Results show that for small optical depths, less than 0.5, it is not possible to differentiate between dust and salt and to determine the chlorophyll concentration at the same time. For larger aerosol optical depths, the chlorophyll signals are comparatively insignificant, and we can hope to distinguish between dust and salt.

  15. Joint retrieval of aerosol and water-leaving radiance from multispectral, multiangular and polarimetric measurements over ocean

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Dubovik, Oleg; Zhai, Peng-Wang; Diner, David J.; Kalashnikova, Olga V.; Seidel, Felix C.; Litvinov, Pavel; Bovchaliuk, Andrii; Garay, Michael J.; van Harten, Gerard; Davis, Anthony B.

    2016-07-01

    An optimization approach has been developed for simultaneous retrieval of aerosol properties and normalized water-leaving radiance (nLw) from multispectral, multiangular, and polarimetric observations over ocean. The main features of the method are (1) use of a simplified bio-optical model to estimate nLw, followed by an empirical refinement within a specified range to improve its accuracy; (2) improved algorithm convergence and stability by applying constraints on the spatial smoothness of aerosol loading and Chlorophyll a (Chl a) concentration across neighboring image patches and spectral constraints on aerosol optical properties and nLw across relevant bands; and (3) enhanced Jacobian calculation by modeling and storing the radiative transfer (RT) in aerosol/Rayleigh mixed layer, pure Rayleigh-scattering layers, and ocean medium separately, then coupling them to calculate the field at the sensor. This approach avoids unnecessary and time-consuming recalculations of RT in unperturbed layers in Jacobian evaluations. The Markov chain method is used to model RT in the aerosol/Rayleigh mixed layer and the doubling method is used for the uniform layers of the atmosphere-ocean system. Our optimization approach has been tested using radiance and polarization measurements acquired by the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) over the AERONET USC_SeaPRISM ocean site (6 February 2013) and near the AERONET La Jolla site (14 January 2013), which, respectively, reported relatively high and low aerosol loadings. Validation of the results is achieved through comparisons to AERONET aerosol and ocean color products. For comparison, the USC_SeaPRISM retrieval is also performed by use of the Generalized Retrieval of Aerosol and Surface Properties algorithm (Dubovik et al., 2011). Uncertainties of aerosol and nLw retrievals due to random and systematic instrument errors are analyzed by truth-in/truth-out tests with three Chl a concentrations, five aerosol loadings

  16. "Concordia res parvae crescunt" or how different approaches can be combined to decrypt root water uptake

    NASA Astrophysics Data System (ADS)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Javaux, Mathieu; Lobet, Guillaume

    2015-04-01

    In this study, we developed a new operation pipe showing that the combined use of computer models and in vivo experiments allows one a better analysis of the water fluxes in the soil-plant system and can help researchers to decrypt the root water uptake dynamics. From an experimental point of view, we monitored in 2D the evolution of soil water content around roots of transpiring maize plants using a light transmission imaging (LTI) technique on a rhizotron. Subsequently, we digitized the entire root system in order to create an input file for the model RSWMS (HYDRUS-like model for soil-plant water transfers). In the other hand, we performed a global sensitivity analysis of the modeled experiment to highlight the plant parameters that can be measured thanks to such a procedure. Then fitting the simulated changes of distributed Sink term in Richards equation to experimental data enabled us to depict the local radial and axial conductivities. The use of the RSWMS model in association with experimental data gave us an insight on the water potential distribution in the plant and fluxes by and through individual segments during the entire duration of the experiment. Finally, this analysis can be optimized by changing the timing and/or types of measurements included in the protocol in order to maximize the information content of the experiment. A validation of the results can also take place: the optimized conductivities of the root segments are indeed sensitive to a global conductance measurement and to other root water uptake experiments. In the future, this experimental set-up will enable us to compare genotypes hydraulic architectures in order to answer questions such as: which genotype is the best adapted to avoid a drought stress occurring at a certain time in a given environment?

  17. Concentrations and composition of aerosols and particulate matter in surface waters along the transatlantic section

    NASA Astrophysics Data System (ADS)

    Nemirovskaya, I. A.; Lisitzin, A. P.; Novigatsky, A. N.; Redzhepova, Z. U.; Dara, O. M.

    2016-07-01

    Along the transatlantic section from Ushuaia to Gdańsk (March 26-May 7, 2015; cruise 47 of R/V Akademik Ioffe), data were obtained on the concentrations of aerosols in the near-water layer of the atmosphere and of particulate matter in surface waters, as well as of organic compounds within the considered matter (Corg, chlorophyll a, lipids, and hydrocarbons). The concentrations of aerosols amounted to 1237-111 739 particles/L for the fraction of 0.3-1 μm and to 0.02-34.4 μg/m2/day for the matter collected by means of the network procedure. The distribution of aerosols is affected by circumcontinental zoning and by the fluxes from arid areas of African deserts. The maximum concentration of the treated compounds were found in the river-sea frontal area (the runoff of the Colorado River, Argentina), as well as when nearing the coasts, especially in the English Channel.

  18. Photochemical Formation of Aerosol in Planetary Atmospheres: Photon and Water Mediated Chemistry of SO_2

    NASA Astrophysics Data System (ADS)

    Kroll, Jay A.; Donaldson, D. J.; Vaida, Veronica

    2016-06-01

    Sulfur compounds have been observed in a number of planetary atmospheres throughout our solar system. Our current understanding of sulfur chemistry explains much of what we observe in Earth's atmosphere. However, several discrepancies between modeling and observations of the Venusian atmosphere show there are still problems in our fundamental understanding of sulfur chemistry. This is of particular concern due to the important role sulfur compounds play in the formation of aerosols, which have a direct impact on planetary climates, including Earth's. We investigate the role of water complexes in the hydration of sulfur oxides and dehydration of sulfur acids and will present spectroscopic studies to document such effects. I will present recent work investigating mixtures of SO_2 and water that generate large quantities of aerosol when irradiated with solar UV light, even in the absence of traditional OH chemistry. I will discuss a proposed mechanism for the formation of sulfurous acid (H_2SO_3) and present recent experimental work that supports this proposed mechanism. Additionally, the implications that photon-induced hydration of SO_2 has for aerosol formation in the atmosphere of earth as well as other planetary atmospheres will be discussed.

  19. Aerosol - cloud - water vapor relations for cloud systems of different heights

    NASA Astrophysics Data System (ADS)

    Stathopoulos, Stavros; Kourtidis, Konstantinos; Georgoulias, Aristeidis

    2016-04-01

    Here we examine the annual and seasonal aerosol - cloud relations over three major urban clusters of China, for different cloud heights and atmospheric water vapor amounts, using a decade of Aerosol Optical Depth at 550nm (AOD), Cloud Cover (CC), Cloud Optical Depth (COD), Water Vapor (WV) and Cloud Top Pressure (CTP) data from the MODIS instrument. Over all regions (spanning from temperate to tropical monsoon climates) and for all seasons, CC is found to increase with AOD, WV and cloud height. Aerosols, at low WV environments and under constant cloud height, have less impact on CC than at high WV environments. In addition, AOD has a varying influence on COD depending on CTP. Finally, COD is found to increase with height for low and middle height clouds, and with increasing AOD, especially at low AOD, the latter being in line with the expected first indirect effect. This research has been financed under the FP7 Programme MarcoPolo (Grand Number 606953, Theme SPA.2013.3.2-01).

  20. LASE Measurements of Water Vapor, Aerosol, and Cloud Distributions in Saharan Air Layers and Tropical Disturbances

    NASA Technical Reports Server (NTRS)

    Ismail, Syed; Ferrare, Richard; Browell, Edward; Kooi, Susan; Notari, Anthony; Butler, Carolyn; Burton, Sharon; Fenn, Marta; Krishnamurti, T. N.; Dunion, Jason; Heymsfield, Gerry; Anderson, Bruce

    2008-01-01

    LASE (Lidar Atmospheric Sensing Experiment) onboard the NASA DC-8 was used to measure high resolution profiles of water vapor and aerosols, and cloud distributions in 14 flights over the eastern Atlantic region during the NAMMA (NASA African Monsoon Multidisciplinary Analyses) field experiment, which was conducted from August 15 to September 12, 2006. These measurements were made in conjunction with flights designed to study African Easterly Waves (AEW), Tropical Disturbances (TD), and Saharan Aerosol Layers (SALs) as well as flights performed in clear air and convective regions. As a consequence of their unique radiative properties and dynamics, SAL layers have a significant influence in the development of organized convection associated with TD. Interactions of the SAL with tropical air during early stages of the development of TD were observed. These LASE measurements represent the first simultaneous water vapor and aerosol lidar measurements to study the SAL and its impact on TDs and hurricanes. Seven AEWs were studied and four of these evolved into tropical storms and three did not. Three out of the four tropical storms evolved into hurricanes.

  1. Atmospheric pressure flow reactor / aerosol mass spectrometer studies of tropospheric aerosol nucleat and growth kinetics. Final report, June, 2001

    SciTech Connect

    Worsnop, Douglas R.

    2001-06-01

    The objective of this program was to determine the mechanisms and rates of growth and transformation and growth processes that control secondary aerosol particles in both the clear and polluted troposphere. The experimental plan coupled an aerosol mass spectrometer (AMS) with a chemical ionization mass spectrometer to provide simultaneous measurement of condensed and particle phases. The first task investigated the kinetics of tropospheric particle growth and transformation by measuring vapor accretion to particles (uptake coefficients, including mass accommodation coefficients and heterogeneous reaction rate coefficients). Other work initiated investigation of aerosol nucleation processes by monitoring the appearance of submicron particles with the AMS as a function of precursor gas concentrations. Three projects were investigated during the program: (1) Ozonolysis of oleic acid aerosols as model of chemical reactivity of secondary organic aerosol; (2) Activation of soot particles by measurement deliquescence in the presence of sulfuric acid and water vapor; (3) Controlled nucleation and growth of sulfuric acid aerosols.

  2. A mobile remote sensing laboratory for water vapor, trace gas, aerosol, and wind speed measurements

    SciTech Connect

    Slaughter, D.; White, W.; Tulloch, W.; DeSlover, D.

    1993-03-19

    The Lawrence Livermore National Laboratory has developed a mobile field laboratory for remote measurement of atmospheric processes and observables that are important in global climate change, dispersal of hazardous materials, and atmospheric pollution. Specific observables of interest are water vapor, trace gases, aerosol size and density, wind, and temperature. The goal is to study atmospheric processes continuously for extended periods in remote field locations. This laboratory has just reached field ready status with sensors for aerosol and trace gas measurement based on established techniques. A development program is underway to enhance the sensor suite with several new techniques and instruments that are expected to significantly extend the state of the art in remote trace gas analysis. The new sensors will be incorporated into the lab during the next two years.

  3. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS)

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Kaufman, Yoram J.; Menzel, W. Paul; Tanre, Didier D.

    1992-01-01

    The authors describe the status of MODIS-N and its companion instrument MODIS-T (tilt), a tiltable cross-track scanning spectrometer with 32 uniformly spaced channels between 0.410 and 0.875 micron. They review the various methods being developed for the remote sensing of atmospheric properties using MODIS, placing primary emphasis on the principal atmospheric applications of determining the optical, microphysical, and physical properties of clouds and aerosol particles from spectral reflection and thermal emission measurements. In addition to cloud and aerosol properties, MODIS-N will be used for determining the total precipitable water vapor and atmospheric stability. The physical principles behind the determination of each of these atmospheric products are described, together with an example of their application to aircraft and/or satellite measurements.

  4. Water Vapor, Cloud and Aerosol Properties on the Tibetan Plateau Using Multi-Lidar Measurements

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Dai, Guangyao; Wang, Dongxiang; Zhai, Xiaochun; Song, Xiaoquan

    2016-06-01

    The 3rd Tibetan Plateau atmospheric expedition experiment campaign were operated in the Tibetan Plateau during July and August 2014 by utilizing the Water vapor, Cloud and Aerosol Lidar (WVCAL), Coherent Doppler Wind Lidar and ceilometer VAISALA CL31. The observation was carried out in Nagqu area (31.5°N, 92.05°E), which is 4508 meters above the mean sea level. Water vapor mixing ratio, cloud height, vertical wind speed and vertical water vapor flux was measured by these lidars. The inversion methods of data products of lidars are described in details in this paper. Furthermore, the clouds heights measured by lidar and ceilometer were compared to verify the performance of the lidar. Finally, the case studies of water vapor mixing ratio, water vapor flux and cloud height and statistics were provided.

  5. The effect of water uptake on the mechanical properties of low-k organosilicate glass

    NASA Astrophysics Data System (ADS)

    Guo, X.; Jakes, J. E.; Nichols, M. T.; Banna, S.; Nishi, Y.; Shohet, J. L.

    2013-08-01

    Water uptake in porous low-k dielectrics has become a significant challenge for both back-end-of-line integration and circuit reliability. The influence of absorbed water on the mechanical properties of plasma-enhanced chemical-vapor-deposited organosilicate glasses (SiCOH) was investigated with nanoindentation. The roles of physisorbed (α-bonded) and chemisorbed (β-bonded) water were examined separately through annealing at different temperatures. Nanoindentation measurements were performed on dehydrated organosilicate glass during exposure to varying humidity conditions. The elastic modulus and hardness for as-deposited SiCOH are intimately linked to the nature and concentration of the absorbed water in the dielectric. Under mild-annealing conditions, the water-related film mechanical property changes were shown to be reversible. The mechanical properties of UV-cured SiCOH were also shown to depend on absorbed water, but to a lesser extent because UV curing depopulates the hydrophilic chemical groups in SiCOH. High-load indentation tests showed that in-diffusion of water in the film/substrate interface can degrade the hardness of SiCOH/Si film stacks significantly, while not significantly changing the elastic modulus.

  6. Influence of water availability on carbon uptake of two Mediterranean Holm oak forests

    NASA Astrophysics Data System (ADS)

    Magno, Ramona; Gioli, Beniamino; Primo Vaccari, Francesco; Canfora, Eleonora

    2010-05-01

    In the last decades changes in precipitation pattern were registered at global level as a consequence of temperature rise, with an increase in the intensity of precipitation events in many regions of the world. but also more intense and longer drought in others, and in particular in the Mediterranean basin. Climate changes can have direct influence on biological phenomena, like the earlier onset of spring and the lengthening of the growing season, playing a key role for the carbon fixation and for the amount of CO2 exchanged by the biosphere with the atmosphere. The impact of water availability variation on ecosystem functioning and carbon fluxes differs from species to species and depends on the period of occurrence. Mediterranean-type ecosystems (MTEs), which are mostly water and temperature-limited biomes and suffered prolonged and exacerbated human pressure, are particularly sensitive to changes in climate, as suggested by the observed decrease in plant productivity following recent heat waves and droughts events. Water availability for this region seems to be a crucial constraint for the net carbon assimilation, and biomes evolving in particularly negative soil and climatic conditions could be the most affected by changes in rainfall pattern. In this view a comparison between carbon uptake of two Holm oak (Quercus ilex L.) forests of Central Italy (Castelporziano-Rome and Lecceto-Siena), measured by eddy covariance technique, was done to analyze the possible adaptation to rainfall decrease. The two ecosystems are characterized by different soil water content of the upper soil layers, by the occurrence of a shallow water table in Castelporziano forest and by a strongly different net ecosystem exchange rate (NEE), with -360 gCm-2year-1 for Lecceto and -875 gCm-2year-1 for Castelporziano. The water supply of Lecceto was mostly driven by rainfall, reaching minimum values under 5% in particularly dry periods and increasing the carbon sink of the ecosystem after

  7. OH- Initiated Heterogeneous Oxidation of Saturated Organic Aerosols in the Presence of SO2: Uptake Kinetics and Product Identification.

    NASA Astrophysics Data System (ADS)

    Richards-Henderson, N. K.; Ward, M.; Goldstein, A. H.; Wilson, K. R.

    2014-12-01

    Gas-phase oxidation mechanisms for organic gases are often used as a starting point to understand heterogeneous oxidation. The reaction of a simple alkane hydrocarbon by OH proceeds through hydrogen abstraction and under ambient conditions leads to peroxy radical (RO2) formation. RO2 can further react to form: (1) smaller molecular weight products (i.e. fragmentation) via alkoxy radical formation and dissociation and/or (2) higher molecular weight products with oxygenated functional groups (i.e. functionalization). The ability to perturb these two pathways (functionalization vs. fragmentation) is critical for understanding the detailed reaction mechanism that control atmospheric aging chemistry of particles. At high temperatures the presence of sulfur dioxide (SO2) during organic-OH gas-phase oxidation enhances the fragmentation pathway leading to increased alkoxy formation. It is unknown if a comparative affect occurs at room temperature during a heterogeneous reaction. We used the heterogeneous reaction of OH radicals with sub-micron squalane particles in the presence and absence of SO2 as a model system to explore changes in individual mechanistic pathways. Detailed kinetic measurements were made in a flow tube reactor using a vacuum ultraviolet (VUV) photoionization aerosol mass spectrometer and oxidation products are identified from samples collected on quartz filters using thermal desorption two-dimensional chromatographic separation and ionization by either VUV (10.5 eV) or electron impact (70 eV), with detection by high resolution time of flight mass spectrometry (GCxGC-VUV/EI-HRTOFMS). In the presence of SO2 the yields of alcohols were enhanced compared to without SO2, suggesting that the alkoxy formation pathway was dominant. The results from this work will provide an experimentally-confirmed kinetic framework that could be used to model atmospheric aging mechanisms.

  8. Algorithms and sensitivity analyses for stratospheric aerosol and gas experiment II water vapor retrieval

    SciTech Connect

    Chu, W.P.; Thomason, L.W.; Buglia, J.J.; McCormick, M.P.; McMaster, L.M. ); Chiou, E.W.; Larsen, J.C. ); Rind, D. ); Oltmans, S. )

    1993-03-20

    This paper provides a detailed description of the current operational inversion algorithm for the retrieval of water vapor vertical profiles from the Stratospheric Aerosol and Gas Experiment II (SAGE II) occultation data at the 0.94-[mu]m wavelength channel. This algorithm is different from the algorithm used for the retrieval of the other species such as aerosol, ozone, and nitrogen dioxide because of the nonlinear relationship between the concentration versus the broad band absorption characteristics of water vapor. Included in the discussion of the retrieval algorithm are problems related to the accuracy of the computational scheme, accuracy of the removal of other interfering species, and the expected uncertainty of the retrieved profile. A comparative analysis on the computational schemes used for the calculation of the water vapor transmission at the 0.94-[mu]m wavelength region is presented. Analyses are also presented on the sensitivity of the retrievals to interferences from the other species which contribute to the total signature as observed at the 0.94-[mu]m wavelength channel on SAGE II instrument. Error analyses of the SAGE II water vapor retrieval is shown, indicating that good quality water vapor data are being produced by the SAGE II measurements. 27 refs., 10 figs., 1 tab.

  9. Water uptake by trees of coastal forested wetlands in Guadeloupe, French West Indies.

    NASA Astrophysics Data System (ADS)

    Bompy, Felix; Lambs, Luc; Dulormne, Maguy; Imbert, Daniel

    2013-04-01

    In the Caribbean islands, coastal wetlands comprise two main ecosystems: the mangrove forest and the freshwater swamp forest dominated by the legume Pterocarpus officinalis. These forest ecosystems make an interface between sea and land, providing significant ecological and socioeconomic functions. During the last centuries, human activities have modified the hydrologic connections of these wetlands by digging canals to drain waterlogged soils and by cutting forests to promote cattle grazing and waterfowl hunting. Peat formation is associated to the highest water-table levels. The thickest peat deposits occur seaward as a result of the Holocene marine transgression into Pleistocene coastal plains and estuaries. Landward, soils overlay volcanic or calcareous bedrocks and are mainly clayey. Such differences in soil formation and physical characteristics (especially porosity) confer to the system its hydraulic properties. Furthermore, the dual origin of water (tides and watershed runoff) gives way to a complex pattern of groundwater salinity. In five forest stands of Guadeloupe wetlands, we have traced water uptake using the stable isotopes of water (d18O and dD). Preliminary results reveal that evapo-transpiration process in the swamp forest is compensated by fresh groundwater coming out from springs scattered around and inside the forest. In the mangrove forest, the highest evaporation rates are located in the Avicennia pure stand and the mixed scrub stand; the mixed tall stand is located where fresh and salt water melt. Measurement of xylem sap also suggests that mangrove trees uptake groundwater where salinity is the lowest. The low tidal range and the absence of large watershed, like in most wetlands of Caribbean islands, certainly explain the poor hydro-dynamics and resilience of the system.

  10. Ice Phase Transitions by Atmospheric Aerosol Particles of Varied Composition

    NASA Astrophysics Data System (ADS)

    DeMott, P. J.; Prenni, A. J.; Archuleta, C. A.; Kreidenweis, S. M.; Cziczo, D. J.; Murphy, D. M.; Thomson, D. S.

    2001-12-01

    This paper describes laboratory and field study measurements of water uptake and ice nucleation by surrogate and real atmospheric aerosol particles. Laboratory measurements of water uptake are made using a humidified tandem differential mobility analyzer (HTDMA) and a cloud condensation nucleus (CCN) instrument operating at 20 to 30 \\deg C. Measurements of ice nucleation are made using a continuous flow ice-thermal diffusion chamber (CFDC) operated to -60 \\deg C for relevance toward understanding cirrus cloud formation. Extending earlier laboratory studies of single composition aerosols, we are investigating water uptake and ice nucleation rates and mechanisms by mixed aerosols of various types, including sulfate-nitrate, sulfate-organic, mineral oxide-sulfate and black carbon-sulfate types. Methodologies will be described and results will be summarized. Field measurements are planned to study heterogeneous and homogeneous ice nucleation by free tropospheric aerosols at a high altitude laboratory. The field study will include measurements of the compositions of aerosols that activate ice formation by homogeneous and heterogeneous ice nucleation mechanisms. This aspect of the study will be facilitated by interfacing the CFDC to the PALMS (Particle Analysis by Laser Mass Spectrometry) instrument. This combined instrument system was tested in the laboratory to quantify sampling efficiencies and validate specificity for sampling ice nucleus aerosol particles. Initial field data, if available at conference time, will be compared and contrasted with the results obtained for laboratory surrogate particles.

  11. Salt uptake and water loss in hams with different water contents at the lean surface and at different salting temperatures.

    PubMed

    Garcia-Gil, Núria; Muñoz, Israel; Santos-Garcés, Eva; Arnau, Jacint; Gou, Pere

    2014-01-01

    The salt uptake homogeneity is crucial in assuring quality in dry-cured hams. The aim of this study was to evaluate the effect of the water contents at the lean surface before salting and of the temperature during salting on the salt uptake. Pieces of loin stored at 3°C for 3 days before salting absorbed less salt through a surface that has been dried during storage. A group of raw hams were subjected to different pre-salting storage times (0, 3 and 6 days) and another group subjected to different set room temperatures during salting (-1.0, 0.5 and 4.0°C). The duration of storage before salting and the temperature during salting had a negative and a positive effect on the average salt absorption, respectively. The most important effects appeared after 6 days of storage and at 4°C. No significant differences in salt uptake homogeneity were found between storage times and between salting temperatures. PMID:23896138

  12. Plant uptake of elements in soil and pore water: field observations versus model assumptions.

    PubMed

    Raguž, Veronika; Jarsjö, Jerker; Grolander, Sara; Lindborg, Regina; Avila, Rodolfo

    2013-09-15

    Contaminant concentrations in various edible plant parts transfer hazardous substances from polluted areas to animals and humans. Thus, the accurate prediction of plant uptake of elements is of significant importance. The processes involved contain many interacting factors and are, as such, complex. In contrast, the most common way to currently quantify element transfer from soils into plants is relatively simple, using an empirical soil-to-plant transfer factor (TF). This practice is based on theoretical assumptions that have been previously shown to not generally be valid. Using field data on concentrations of 61 basic elements in spring barley, soil and pore water at four agricultural sites in mid-eastern Sweden, we quantify element-specific TFs. Our aim is to investigate to which extent observed element-specific uptake is consistent with TF model assumptions and to which extent TF's can be used to predict observed differences in concentrations between different plant parts (root, stem and ear). Results show that for most elements, plant-ear concentrations are not linearly related to bulk soil concentrations, which is congruent with previous studies. This behaviour violates a basic TF model assumption of linearity. However, substantially better linear correlations are found when weighted average element concentrations in whole plants are used for TF estimation. The highest number of linearly-behaving elements was found when relating average plant concentrations to soil pore-water concentrations. In contrast to other elements, essential elements (micronutrients and macronutrients) exhibited relatively small differences in concentration between different plant parts. Generally, the TF model was shown to work reasonably well for micronutrients, whereas it did not for macronutrients. The results also suggest that plant uptake of elements from sources other than the soil compartment (e.g. from air) may be non-negligible.

  13. New Examination of the Traditional Raman Lidar Technique II: Evaluating the Ratios for Water Vapor and Aerosols

    NASA Technical Reports Server (NTRS)

    Whiteman, David N.

    2003-01-01

    In a companion paper, the temperature dependence of Raman scattering and its influence on the Raman and Rayleigh-Mie lidar equations was examined. New forms of the lidar equation were developed to account for this temperature sensitivity. Here those results are used to derive the temperature dependent forms of the equations for the water vapor mixing ratio, aerosol scattering ratio, aerosol backscatter coefficient, and extinction to backscatter ratio (Sa). The error equations are developed, the influence of differential transmission is studied and different laser sources are considered in the analysis. The results indicate that the temperature functions become significant when using narrowband detection. Errors of 5% and more can be introduced in the water vapor mixing ratio calculation at high altitudes and errors larger than 10% are possible for calculations of aerosol scattering ratio and thus aerosol backscatter coefficient and extinction to backscatter ratio.

  14. The partitioning of water uptake between growth forms in a Neotropical savanna: do herbs exploit a third water source niche?

    PubMed

    Rossatto, D R; da Silveira Lobo Sternberg, L; Franco, A C

    2013-01-01

    In addition to trees and grasses, the savannas of central Brazil are characterised by a diverse herbaceous dicot flora. Here we tested whether the coexistence of a highly diversified assemblage of species resulted in stratification or strong overlap in the use of soil water resources. We measured oxygen and hydrogen isotope ratios of stem water from herbs, grasses and trees growing side by side, as well as the isotopic composition of water in soil profile, groundwater and rainfall, and predawn (Ψ(pd)) and midday (Ψ(md)) leaf water potentials. We used a stable isotope mixing model to estimate vertical partitioning of soil water by the three growth forms. Grasses relied on shallow soil water (5-50 cm) and were strongly anisohydric. Ψ(pd) and Ψ(md) decreased significantly from the wet to the dry season. Trees extracted water from deeper regions of the soil profile (60-120 cm) and were isohydric. Ψ(pd) and Ψ(md) did not change from the wet to the dry season. Herbs overlapped with grasses in patterns of water extraction in the dry season (between 10 and 40 cm), but they took up water at soil depths intermediate (70-100 cm) to those of trees and grasses during the wet season. They showed seasonal changes in Ψ(pd) but not in Ψ(md). We conclude that vertical partitioning of soil water may have contributed to coexistence of these three growth forms and resulted in a more complex pattern of soil water extraction than the two-compartment model of soil water uptake currently used to explain the structure and function of tropical savanna ecosystems. PMID:22672316

  15. Characteristics of the water-soluble components of aerosol particles in Hefei, China.

    PubMed

    Deng, Xue-liang; Shi, Chun-e; Wu, Bi-wen; Yang, Yuan-jian; Jin, Qi; Wang, Hong-lei; Zhu, Song; Yu, Caixia

    2016-04-01

    Size-classified daily aerosol mass concentrations and concentrations of water-soluble inorganic ions were measured in Hefei, China, in four representative months between September 2012 and August 2013. An annual average mass concentration of 169.09 μg/m(3) for total suspended particulate (TSP) was measured using an Andersen Mark-II cascade impactor. The seasonal average mass concentration was highest in winter (234.73 μg/m(3)) and lowest in summer (91.71 μg/m(3)). Water-soluble ions accounted for 59.49%, 32.90%, 48.62% and 37.08% of the aerosol mass concentration in winter, spring, summer, and fall, respectively, which indicated that ionic species were the primary constituents of the atmospheric aerosols. The four most abundant ions were NO3(-), SO4(2-), Ca(2+) and NH4(+). With the exception of Ca(2+), the mass concentrations of water-soluble ions were in an intermediate range compared with the levels for other Chinese cities. Sulfate, nitrate, and ammonium were the dominant fine-particle species, which were bimodally distributed in spring, summer and fall; however, the size distribution became unimodal in winter, with a peak at 1.1-2.1 μm. The Ca(2+) peak occurred at approximately 4.7-5.8 μm in all seasons. The cation to anion ratio was close to 1.4, which suggested that the aerosol particles were alkalescent in Hefei. The average NO3(-)/SO4(2-) mass ratio was 1.10 in Hefei, which indicated that mobile source emissions were predominant. Significant positive correlation coefficients between the concentrations of NH4(+) and SO4(2-), NH4(+) and NO3(-), SO4(2-) and NO3(-), and Mg(2+) and Ca(2+) were also indicated, suggesting that aerosol particles may be present as (NH4)2SO4, NH4HSO4, and NH4NO3. PMID:27090692

  16. Evaluation of CALIOP 532-nm Aerosol Optical Depth Over Opaque Water Clouds

    NASA Technical Reports Server (NTRS)

    Liu, Z.; Winker, D.; Omar, A.; Vaughan, M.; Kar, J.; Trepte, C.; Hu, Y.; Schuster, G.

    2015-01-01

    With its height-resolved measurements and near global coverage, the CALIOP lidar onboard the CALIPSO satellite offers a new capability for aerosol retrievals in cloudy skies. Validation of these retrievals is difficult, however, as independent, collocated and co-temporal data sets are generally not available. In this paper, we evaluate CALIOP aerosol products above opaque water clouds by applying multiple retrieval techniques to CALIOP Level 1 profile data and comparing the results. This approach allows us to both characterize the accuracy of the CALIOP above-cloud aerosol optical depth (AOD) and develop an error budget that quantifies the relative contributions of different error sources. We focus on two spatial domains: the African dust transport pathway over the tropical North Atlantic and the African smoke transport pathway over the southeastern Atlantic. Six years of CALIOP observations (2007-2012) from the northern hemisphere summer and early fall are analyzed. The analysis is limited to cases where aerosol layers are located above opaque water clouds so that a constrained retrieval technique can be used to directly retrieve 532 nm aerosol optical depth and lidar ratio. For the moderately dense Sahara dust layers detected in the CALIOP data used in this study, the mean/median values of the lidar ratios derived from a constrained opaque water cloud (OWC) technique are 45.1/44.4 +/- 8.8 sr, which are somewhat larger than the value of 40 +/- 20 sr used in the CALIOP Level 2 (L2) data products. Comparisons of CALIOP L2 AOD with the OWC-retrieved AOD reveal that for nighttime conditions the L2 AOD in the dust region is underestimated on average by approx. 26% (0.183 vs. 0.247). Examination of the error sources indicates that errors in the L2 dust AOD are primarily due to using a lidar ratio that is somewhat too small. The mean/median lidar ratio retrieved for smoke is 70.8/70.4 +/- 16.2 sr, which is consistent with the modeled value of 70 +/- 28 sr used in the

  17. Water uptake and growth of cucumber plants (Cucumis sativus L.) under control of dissolved O2 concentration in hydroponics.

    PubMed

    Yoshida, S; Kitano, M; Eguchi, H

    1996-12-01

    Dissolved O2 concentration ([O2]) in nutrient solution was controlled at 0.01, 0.10 and 0.20 mM with accuracy of +/- 0.005 mM in a newly developed hydroponic system, and the effects of [O2] on water uptake and growth of cucumber plants (Cucumis sativus L.) were analyzed. For evaluating water uptake rate under the control of [O2], water flux at the stem base was measured on-line with +/-5% in accuracy, 1 mg s-1 in resolution and 1 min in time constant by heat flux control (HFC) method. Water uptake rate was drastically increased by lighting to the plant at each [O2], and water uptake per day was depressed in proportion to decrease in [O2]. In the plants grown for 10 days, leaf area, fresh weight and dry weight of leaves decreased at lower [O2], while stem length and number of leaves were scarcely affected. These facts suggest that membrane permeability of root cells reduces at lower [O2] through respiration-dependent processes, and growth is inhibited through leaf turgor loss caused by the depressed water uptake of roots in O2-deficient nutrient solution in hydroponics.

  18. The uptake of nickel and chromium from irrigation water by potatoes, carrots and onions.

    PubMed

    Stasinos, Sotiris; Zabetakis, Ioannis

    2013-05-01

    Heavy metals, in general, can migrate from polluted soil and/or irrigation water to tuber plants, leading, after chronic consumption, to health problems. The scope of this study was to investigate the uptake of chromium and nickel by carrots (Daucus carrota), onions (Allium cepa) and potatoes (Solanum tuberosum) in a greenhouse experiment simulating the open-field irrigation conditions in the two biggest tuber producing regions of Greece (Asopos river in Viotia and Messapia in Evia). The study included cultivation of tubers for a period of approximately 4 months in six irrigation lines, each one provided by a water solution containing different levels of Cr(VI) and Ni(II) ranging from 0μg/l (control) to 250μg/l. The soil used was obtained from a certified organic greenhouse. Uptake of Cr was observed in onion leaves between 0 and 10μg/l water concentrations (+109.2 percent, p=0.006), 0μg/l and 20μg/l (+47.5 percent, p=0.006), 0μg/l and 50μg/l (+202.8 percent, p=0.006), 0μg/l and 100μg/l (+89.9 percent, p=0.028), 0μg/l and 250μg/l (+61.3 percent, p=0.009). Uptake of Ni was observed: (a) in onion leaves between 0 and 250μg/l water concentrations (+90.2 percent, p=0.076), (b) in onion shoots between 0 and 10μg/l (+39.1 percent, p=0.045), 0 and 250μg/l (+55 percent, p=0.047) and (c) in potatoes between 0 and 20μg/l (+28.1 percent, p=0.083). Our results suggest that irrigation water containing Cr and Ni can cross-contaminate onions and potatoes cultivated in a soil never previously polluted, anthropogenically, with heavy metals. No such results were found for carrots.

  19. Stable isotopes reveal ecotypic variation of water uptake patterns in Aleppo pine

    NASA Astrophysics Data System (ADS)

    Ferrio, Juan Pedro; Lucabaugh, Devon; Chambel, Regina; Voltas, Jordi

    2014-05-01

    Aleppo pine (Pinus halepensis Mill.) has a large natural distribution range that encompasses a multitude of thermal and moisture conditions found in the Mediterranean basin. We hypothesized that due to the recurrent incidences of drought stress and high temperatures that occur at varying degrees along its distribution range, populations of Aleppo pine have undergone ecotypic differentiation in soil water uptake patterns. This study analyzed stable isotopic compositions (δ18O and δ2H) of xylem water to identify adaptive divergence associated to the pattern of soil water consumption by roots of Aleppo pine populations originating from the Mediterranean region. The results from this study show that genetic diversity in the extraction pattern of soil water can be found among populations and ecological regions of Aleppo pine under common garden conditions. However, the ability to detect such differences depended on the period of the year examined. In particular, data collection in full summer (end of July) proved to be the most adequate in revealing genetic divergence among populations, while end of spring and, to a lesser extent, end of summer, were less successful for this purpose. Both water uptake patterns (as estimated by δ18O and δ2H) and above-ground growth, exhibited significant relationships with both climatic and geographical variables. This suggests that the underlying variation among populations can be explained by certain characteristics at origin. In addition, we used a bayesian mixing model (SIAR package for R) that incorporated isotopic signatures from xylem and soil water in order to determine the predominant soil layer of water source consumption at the aforementioned periods of the growing season, where water availably ranged from lowest to highest. This allowed us to gain some understanding of Aleppo pines' differential reaction to drought, at the intraspecific level, across the fluctuating conditions of the growing season by comparing the

  20. Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols

    NASA Astrophysics Data System (ADS)

    Schmitt-Kopplin, P.; Liger-Belair, G.; Koch, B. P.; Flerus, R.; Kattner, G.; Harir, M.; Kanawati, B.; Lucio, M.; Tziotis, D.; Hertkorn, N.; Gebefügi, I.

    2011-12-01

    Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by adsorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of primary marine aerosols, i.e., the transfer of dissolved organic matter from the marine surface into the atmosphere was studied, and we present a molecular level description of this phenomenon using high resolution analytical tools (Fourier transform ion cyclotron resonance = FT-ICR MS and NMR). We could experimentally confirm the chemo-selective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of concentrated compounds were CHO and CHOS type of molecules, smaller molecules of higher aliphaticity and lower oxygen content and typical surfactants. A non-targeted mass spectrometric analysis of the samples showed that many of these molecules correspond to homologous series of oxo-, hydroxyl-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of production of sea spray leaves a specific biological signature of the surface water in the corresponding lower atmosphere that can be transported laterally in the context of global cycling.

  1. Uptake and physiological response of crop plants irrigated with water containing RDX and TNT

    SciTech Connect

    Simini, M.; Checkai, R.T.

    1995-12-31

    Regulatory agencies have expressed concern about possible bioconcentration of TNT (2,4,6-trinitrotoluene) and RDX (cyclotrimethylenetrinitramine) in food and forage crops irrigated with contaminated groundwater. Field and home-garden crops grown in site-collected soil were irrigated with water containing RDX and TNT to simulate field conditions at Cornhusker Army Ammunition Plant (CAAP), Nebraska. Pots were watered in an environment-controlled greenhouse to field capacity throughout the life-cycle of each crop with 2, 20, and 100 ppb RDX; 2, 100, and 800 ppb TNT; 100 ppb RDX + 800 ppb TNT; or uncontaminated water in response to evapo-transpirative demand. Uptake of RDX in lettuce leaves, corn stover, and alfalfa shoots was positively correlated with treatment level, however, concentrations of RDX in these crops were generally equal to or below soil loading concentrations. RDX was not significantly (p = 0.05) taken up into tomato fruit, bush bean seeds and pods, radish roots, and soybean seeds. TNT was not significantly take up into tissues of any of the crops analyzed in this study. Yield and biomass of tomato fruit, bush bean fruit, corn stover, and soybean seeds were significantly (p = 0.05) less when irrigated with the RDX + TNT treatment compared to controls. Lettuce leaf, radish root, and alfalfa shoot yield and biomass were unaffected by treatment level. For site-specific criteria used in this study, RDX and TNT did not bioconcentrate in edible plant tissues. This is the first controlled study to investigate uptake of RDX and TNT in crops irrigated with water containing explosives concentrations commonly found in contaminated groundwater.

  2. A global survey of aerosol-liquid water cloud overlap based on four years of CALIPSO-CALIOP data

    NASA Astrophysics Data System (ADS)

    Devasthale, A.; Thomas, M. A.

    2011-02-01

    Simulating the radiative impacts of aerosols located above liquid water clouds presents a significant challenge. In particular, absorbing aerosols, such as smoke, may have significant impact in such situations and even change the sign of net radiative forcing. It is not possible to reliably obtain information on such overlap events from existing passive satellite sensors. However, the CALIOP instrument onboard NASA's CALIPSO satellite allows us to examine these events with unprecedented accuracy. Using four years of collocated CALIPSO 5 km Aerosol and Cloud Layer Version 3 Products (June 2006-May 2010), we quantify, for the first time, the characteristics of overlapping aerosol and water cloud layers globally. We investigate seasonal variability in these characteristics over six latitude bands to understand the hemispheric differences when all aerosol types are included in the analysis (the AAO case). We also investigate frequency of smoke aerosol-cloud overlap (the SAO case). Globally, the frequency is highest during the JJA months in the AAO case, while for the SAO case, it is highest in the SON months. The seasonal mean overlap frequency can regionally exceed 20% in the AAO case and 10% in the SAO case. In about 5-10% cases the vertical distance between aerosol and cloud layers is less than 100 m, while about in 45-60% cases it less than a kilometer in the annual means for different latitudinal bands. In about 70-80% cases, aerosol layers are less than a kilometer thick, while in about 18-22% cases they are 1-2 km thick. The frequency of aerosol layers 2-3 km thick is about 4-5% in the tropical belts during overlap events. Over the regions where high aerosol loadings are present, the overlap frequency can be up to 50% higher when quality criteria on aerosol/cloud feature detection are relaxed. Over the polar regions, more than 50% of the overlapping aerosol layers have optical thickness less than 0.02, but the contribution from the relatively optically thicker

  3. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    NASA Astrophysics Data System (ADS)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 μg/m3-12.6 μg/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 μg/m3 to 9.3 μg/m3 and 3.1 μg/m3 to 6.4 μg /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these

  4. Case Study of Water-Soluble Metal Containing Organic Constituents of Biomass Burning Aerosol

    SciTech Connect

    Chang-Graham, Alexandra L.; Profeta, Luisa T. M.; Johnson, Timothy J.; Yokelson, Robert J.; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Finally, further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  5. Comparison of Aerosol Optical Properties and Water Vapor Among Ground and Airborne Lidars and Sun Photometers During TARFOX

    NASA Technical Reports Server (NTRS)

    Ferrare, R.; Ismail, S.; Browell, E.; Brackett, V.; Clayton, M.; Kooi, S.; Melfi, S. H.; Whiteman, D.; Schwemmer, G.; Evans, K.

    2000-01-01

    We compare aerosol optical thickness (AOT) and precipitable water vapor (PWV) measurements derived from ground and airborne lidars and sun photometers during the Tropospheric Aerosol Radiative Forcing Observational Experiment. Such comparisons are important to verify the consistency between various remote sensing measurements before employing them in any assessment of the impact of aerosols on the global radiation balance. Total scattering ratio and extinction profiles measured by the ground-based NASA Goddard Space Flight Center scanning Raman lidar system, which operated from Wallops Island, Virginia (37.86 deg N, 75.51 deg W); are compared with those measured by the Lidar Atmospheric Sensing Experiment (LASE) airborne lidar system aboard the NASA ER-2 aircraft. Bias and root-mean-square differences indicate that these measurements generally agreed within about 10%. Aerosol extinction profiles and estimates of AOT are derived from both lidar measurements using a value for the aerosol extinction/backscattering ratio S(sub a) = 60 sr for the aerosol extinction/backscattering ratio, which was determined from the Raman lidar measurements. The lidar measurements of AOT are found to be generally within 25% of the AOT measured by the NASA Ames Airborne Tracking Sun Photometer (AATS-6). However, during certain periods the lidar and Sun photometer measurements of AOT differed significantly, possibly because of variations in the aerosol physical characteristics (e.g., size, composition) which affect S(sub a). Estimates of PWV, derived from water vapor mixing ratio profiles measured by LASE, are within 5-10% of PWV derived from the airborne Sun photometer. Aerosol extinction profiles measured by both lidars show that aerosols were generally concentrated in the lowest 2-3 km.

  6. CalWater 2 - Precipitation, Aerosols, and Pacific Atmospheric Rivers Experiment

    NASA Astrophysics Data System (ADS)

    Spackman, Ryan; Ralph, Marty; Prather, Kim; Cayan, Dan; DeMott, Paul; Dettinger, Mike; Fairall, Chris; Leung, Ruby; Rosenfeld, Daniel; Rutledge, Steven; Waliser, Duane; White, Allen

    2014-05-01

    Emerging research has identified two phenomena that play key roles in the variability of the water supply and the incidence of extreme precipitation events along the West Coast of the United States. These phenomena include the role of (1) atmospheric rivers (ARs) in delivering much of the precipitation associated with major storms along the U.S. West Coast, and (2) aerosols—from local sources as well as those transported from remote continents—and their modulating effects on western U.S. precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of extreme precipitation and its effects, including the provision of beneficial water supply. This presentation summarizes science gaps associated with (1) the evolution and structure of ARs including cloud and precipitation processes and air-sea interaction, and (2) aerosol interaction with ARs and the impact on precipitation, including locally-generated aerosol effects on orographic precipitation along the U.S. West Coast. Observations are proposed for multiple winter seasons as part of a 5-year broad interagency vision referred to as CalWater 2 to address these science gaps (http://esrl.noaa.gov/psd/calwater). In the near term, a science investigation is being planned including a targeted set of aircraft and ship-based measurements and associated evaluation of data in near-shore regions of California and in the eastern Pacific for an intensive observing period between January 2015 and March 2015. DOE's Atmospheric Radiation Measurement (ARM) program and NOAA are coordinating on deployment of airborne and ship-borne facilities for this period in a DOE-sponsored study called ACAPEX (ARM Cloud Aerosol and Precipitation Experiment) to complement CalWater 2. The motivation for this major study is based on findings that have emerged in the last few years from airborne and ground-based studies including CalWater and NOAA's HydroMeterology Testbed

  7. Unraveling the hydrodynamics of split root water uptake experiments using CT scanned root architectures and three dimensional flow simulations

    PubMed Central

    Koebernick, Nicolai; Huber, Katrin; Kerkhofs, Elien; Vanderborght, Jan; Javaux, Mathieu; Vereecken, Harry; Vetterlein, Doris

    2015-01-01

    Split root experiments have the potential to disentangle water transport in roots and soil, enabling the investigation of the water uptake pattern of a root system. Interpretation of the experimental data assumes that water flow between the split soil compartments does not occur. Another approach to investigate root water uptake is by numerical simulations combining soil and root water flow depending on the parameterization and description of the root system. Our aim is to demonstrate the synergisms that emerge from combining split root experiments with simulations. We show how growing root architectures derived from temporally repeated X-ray CT scanning can be implemented in numerical soil-plant models. Faba beans were grown with and without split layers and exposed to a single drought period during which plant and soil water status were measured. Root architectures were reconstructed from CT scans and used in the model R-SWMS (root-soil water movement and solute transport) to simulate water potentials in soil and roots in 3D as well as water uptake by growing roots in different depths. CT scans revealed that root development was considerably lower with split layers compared to without. This coincided with a reduction of transpiration, stomatal conductance and shoot growth. Simulated predawn water potentials were lower in the presence of split layers. Simulations showed that this was related to an increased resistance to vertical water flow in the soil by the split layers. Comparison between measured and simulated soil water potentials proved that the split layers were not perfectly isolating and that redistribution of water from the lower, wetter compartments to the drier upper compartments took place, thus water losses were not equal to the root water uptake from those compartments. Still, the layers increased the resistance to vertical flow which resulted in lower simulated collar water potentials that led to reduced stomatal conductance and growth. PMID

  8. Asian industrial lead inputs to the North Pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols.

    PubMed

    Gallon, Céline; Ranville, Mara A; Conaway, Christopher H; Landing, William M; Buck, Clifton S; Morton, Peter L; Flegal, A Russell

    2011-12-01

    Recent trends of atmospheric lead deposition to the North Pacific were investigated with analyses of lead in aerosols and surface waters collected on the fourth Intergovernmental Oceanographic Commission Contaminant Baseline Survey from May to June, 2002. Lead concentrations of the aerosols varied by 2 orders of magnitude (0.1-26.4 pmol/m(3)) due in part to variations in dust deposition during the cruise. The ranges in lead aerosol enrichment factors relative to iron (1-119) and aluminum (3-168) were similar, evidencing the transport of Asian industrial lead aerosols across the North Pacific. The oceanic deposition of some of those aerosols was substantiated by the gradient of lead concentrations of North Pacific waters, which varied 3-fold (32.7-103.5 pmol/kg), were highest along with the Asian margin of the basin, and decreased eastward. The hypothesized predominance of Asian industrial lead inputs to the North Pacific was further corroborated by the lead isotopic composition of ocean surface waters ((206)Pb/(207)Pb = 1.157-1.169; (208)Pb/(206)Pb = 2.093-2.118), which fell within the range of isotopic ratios reported in Asian aerosols that are primarily attributed to Chinese industrial lead emissions.

  9. Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma

    PubMed Central

    Alves Junior, Clodomiro; de Oliveira Vitoriano, Jussier; da Silva, Dinnara Layza Souza; de Lima Farias, Mikelly; de Lima Dantas, Nadjamara Bandeira

    2016-01-01

    The effect of plasma applied to mulungu (Erythrina velutina) seeds was studied to verify its influence on the germination, water absorption, wettability and structure of the seeds. The plasma jet used in this study was produced by dielectric barrier discharge (DBD) in a helium gas flow of 0.03 L/s at a distance of 13 mm for 60 s. The plasma treatment significantly affected the seed germination rate, which was approximately 5% higher than that of the untreated group. Micropyle and hilum contributed a greater proportion to uptake. When sealed in the hilar or micropyle regions the amount of water absorbed into the seed decreased approximately 75% compared to the unsealed seed. This difference suggests that these two regions together act cooperatively in the water absorption. However, when plasma treated seed was blocked in the micropyle region, water absorption was higher higher than in seeds blocked hilum. This difference suggests that the plasma treatment changed the wettability of the hilum more effectively than it changed the micropyle. These results indicate that plasma can significantly change the hydrophilicity, water absorption and percentage of seed germination in E. velutina. PMID:27670654

  10. Water uptake mechanism and germination of Erythrina velutina seeds treated with atmospheric plasma

    NASA Astrophysics Data System (ADS)

    Alves Junior, Clodomiro; de Oliveira Vitoriano, Jussier; da Silva, Dinnara Layza Souza; de Lima Farias, Mikelly; de Lima Dantas, Nadjamara Bandeira

    2016-09-01

    The effect of plasma applied to mulungu (Erythrina velutina) seeds was studied to verify its influence on the germination, water absorption, wettability and structure of the seeds. The plasma jet used in this study was produced by dielectric barrier discharge (DBD) in a helium gas flow of 0.03 L/s at a distance of 13 mm for 60 s. The plasma treatment significantly affected the seed germination rate, which was approximately 5% higher than that of the untreated group. Micropyle and hilum contributed a greater proportion to uptake. When sealed in the hilar or micropyle regions the amount of water absorbed into the seed decreased approximately 75% compared to the unsealed seed. This difference suggests that these two regions together act cooperatively in the water absorption. However, when plasma treated seed was blocked in the micropyle region, water absorption was higher higher than in seeds blocked hilum. This difference suggests that the plasma treatment changed the wettability of the hilum more effectively than it changed the micropyle. These results indicate that plasma can significantly change the hydrophilicity, water absorption and percentage of seed germination in E. velutina.

  11. Uptake of microcontaminants by crops irrigated with reclaimed water and groundwater under real field greenhouse conditions.

    PubMed

    Calderón-Preciado, Diana; Matamoros, Víctor; Savé, Robert; Muñoz, Pere; Biel, Carme; Bayona, J M

    2013-06-01

    The use of reclaimed water for agricultural irrigation has emerged as a new strategy for coping with water scarcity in semiarid countries. However, the incorporation of the organic microcontaminants in such water into the diet through crop uptake poses a potential risk to human health. This paper aims to assess the presence of organic microcontaminants in different crops irrigated with groundwater and reclaimed water (secondary or tertiary effluents) in a greenhouse experiment. The determination of microcontaminants in water and vegetation samples was performed by solid-phase extraction and matrix solid-phase dispersion procedure with GC-MS/MS, respectively. The presence of nitrates in the groundwater used for irrigation increased biomass production by a higher proportion than the harvest index. The concentration of microcontaminants in lettuce, carrots, and green beans ranged from less than the limit of quantitation to 571 ng g(-1) (fresh weight). Tributyl phosphate and butylated hydroxyanisole exhibited the highest concentration levels in crops. The concentration and frequency of detection of microcontaminants were lower in green bean pods than in green bean roots and leaves. Although the concentrations were generally low, the simultaneous presence of a variety of microcontaminants should be taken into consideration when assessing the risk to human health.

  12. Water dynamics in the rhizosphere - a new model of coupled water uptake and mucilage exudation

    NASA Astrophysics Data System (ADS)

    Kroener, Eva; Holz, Maire; Ahmed, Mutez; Zarebanadkouki, Mohsen; Bittelli, Marco; Carminati, Andrea

    2016-04-01

    The flow of water from soil to plant roots is affected by the narrow region of soil close to the roots, the so-called rhizosphere. The rhizosphere is influenced by mucilage, a polymeric gel exuded by roots that alters the hydraulic properties of the rhizosphere. Here we present a model that accounts for: (a) an increase in equilibrium water retention curve caused by the water holding capacity of mucilage, (b) a reduction of hydraulic conductivity at a given water content due to the higher viscosity of mucilage and (c) the swelling and shrinking dynamics by decoupling water content and water potential and introducing a non-equilibrium water retention curve. The model has been tested for mixtures of soil and mucilage and we applied it to simulate observations of previous experiments with real plants growing in soil that show evidences of altered hydraulic dynamics in the rhizosphere. Furthermore we present results about how the parameters of the model depend on soil texture and root age. Finally we couple our hydraulic model to a diffusion model of mucilage into the soil. Opposed to classical solute transport models here the water flow in the rhizosphere is affected by the concentration distribution of mucilage.

  13. Water dynamics in the rhizosphere - a new model of coupled water uptake and mucilage exudation

    NASA Astrophysics Data System (ADS)

    Kroener, E.

    2015-12-01

    The flow of water from soil to plant roots is affected by the narrow region of soil close to the roots, the so called rhizosphere. The rhizosphere is influenced by mucilage, a polymeric gel exuded by roots that alters the hydraulic properties of the rhizosphere. Here we present a model that accounts for: (a) an increase in equilibrium water retention curve caused by the water holding capacity of mucilage, (b) a reduction of hydraulic conductivity at same water content due to the higher viscosity of mucilage and (c) the swelling and shrinking dynamics by decoupling water content and water potential and introducing a non-equilibrium water retention curve. The model has been tested for mixtures of soil and mucilage and we applied it to simulate observations of previous experiments with real plants growing in soil that show evidences of altered hydraulic dynamics in the rhizosphere. Furthermore we presen results about how the parameters of the model depend on soil texture and root age. Finally we couple our hydraulic model to a diffusion model of mucilage into the soil. Opposed to classical solute transport experiments the water flow in the rhizosphere is affected by the concentration distribution of mucilage.

  14. Seasonal differences in aerosol water may reconcile AOT and surface mass measurements in the Southeast U.S.

    NASA Astrophysics Data System (ADS)

    Nguyen, T. K. V.; Ghate, V. P.; Carlton, A. M. G.

    2015-12-01

    Summertime aerosol optical thickness (AOT) in the Southeast U.S. is high and sharply enhanced (2-3 times) compared to wintertime AOT. This seasonal pattern is unique to the Southeast U.S. and is of particular interest because temperatures there have not warmed over the past 100 years, contrasting with trends in other U.S. regions. Some investigators hypothesize the Southeast temperature trend is due to secondary organic aerosols (SOA) formed from interactions of biogenic volatile organic compounds (BVOCs) and anthropogenic emissions that create a cooling haze. However, aerosol measurements made at the surface do not exhibit strong seasonal differences in mass or organic fraction to support this hypothesis. In this work, we attempt to reconcile the spatial and temporal distribution of AOT over the U.S. with surface mass measurements by examining trends in particle-phase liquid water, an aerosol constituent that effectively scatters radiation and is removed from aerosols in mass measurements at routine surface monitoring sites. We employ the thermodynamic model ISORROPIA (v2.1) to estimate surface and aloft aerosol water mass concentrations at locations of Interagency Monitoring of Protected Visual Environments (IMPROVE) sites using measured speciated ion mass concentrations and NCEP North American Regional Reanalysis (NARR) meteorological data. Results demonstrate strong seasonal differences in aerosol water in the eastern compared to the western part of the U.S., consistent with geographic patterns in AOT. The highest mean regional seasonal difference from 2000 to 2007 is 5.5 μg m-3 and occurs the Southeast, while the lowest is 0.44 μg m-3 and occurs in the dry Mountain West. Our findings suggest 1) similarity between spatial trends in aerosol water in the U.S. and previously published AOT data from the MODIS-TERRA instrument and 2) similar interannual trends in mean aerosol water and previously published interannual AOT trends from MISR, MODIS-TERRA, MODIS

  15. Size-dependent uptake of nitrate and ammonium as a function of light in well-mixed temperate coastal waters

    NASA Astrophysics Data System (ADS)

    Maguer, Jean-François; L'Helguen, Stéphane; Caradec, Julien; Klein, Cécile

    2011-10-01

    The effect of light on nitrate ( NO) and ammonium ( NH) uptake by natural communities was investigated in relation to cell size (<10 and >10 μm) in the well-mixed coastal waters of the English Channel. Nitrogen (N) uptake kinetics as a function of irradiance were assessed using 15N tracer techniques, for a seasonal cycle of populations collected at 50% and 1% light penetration depth. The nitrogen uptake responses to irradiance can be represented by the formulation used to describe the photosynthesis versus irradiance relationships and modified by the addition of a dark uptake parameter. The response curves of two size fractions of phytoplankton collected at 50% and 1% of incident light did not differ significantly, which suggested that the physiological characteristics of N uptake were not affected by the light intensity at which the phytoplankton assemblages were sampled. The kinetics parameters indicated that the NO uptake system was more strongly dependent on light than the NH uptake system. They also showed that N uptake was less limited by the light intensity in the small size fraction than it was in the large size fraction. At the mean light intensity in the water column, kinetics analysis predicted a NH uptake that was on average 1.8 (±0.6) and 2.4 (±1.0) times greater than the NO uptake, for <10 and >10 μm size fractions, respectively. The kinetics also predicted, at the in situ mean light intensity, that the mean ability to take up nitrogen was twice as high (1.8±0.5) for the small than for the large cells when the N substrate was NH and more than twice as high (2.6±1.5) when the substrate was NO. These results added to our understanding of the light effect on N uptake processes in well-mixed waters, and can largely explain the phytoplankton production, mainly regenerated and dominated by small cells, that has been observed in these waters.

  16. Artificial primary marine aerosol production: a laboratory study with varying water temperature, salinity, and succinic acid concentration

    NASA Astrophysics Data System (ADS)

    Zábori, J.; Matisāns, M.; Krejci, R.; Nilsson, E. D.; Ström, J.

    2012-11-01

    Primary marine aerosols are an important component of the climate system, especially in the remote marine environment. With diminishing sea-ice cover, better understanding of the role of sea spray aerosol on climate in the polar regions is required. As for Arctic Ocean water, laboratory experiments with NaCl water confirm that a few degrees change in the water temperature (Tw) gives a large change in the number of primary particles. Small particles with a dry diameter between 0.01 μm and 0.25 μm dominate the aerosol number density, but their relative dominance decreases with increasing water temperature from 0 °C where they represent 85-90% of the total aerosol number to 10 °C, where they represent 60-70% of the total aerosol number. This effect is most likely related to a change in physical properties and not to modification of sea water chemistry. A change of salinity between 15 g kg-1 and 35 g kg-1 did not influence the shape of a particle number size distribution. Although the magnitude of the size distribution for a water temperature change between 0 °C and 16 °C changed, the shape did not. An experiment where succinic acid was added to a NaCl water solution showed, that the number concentration of particles with 0.010 μm < Dp < 4.5 μm decreased on average by 10% when the succinic acid concentration in NaCl water at a water temperature of 0 °C was increased from 0 μmol L-1 to 94 μmol L-1. A shift to larger sizes in the particle number size distribution is observed from pure NaCl water to Arctic Ocean water. This is likely a consequence of organics and different inorganic salts present in Arctic Ocean water in addition to the NaCl.

  17. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    NASA Astrophysics Data System (ADS)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  18. LASE measurements of water vapor, aerosol, and cloud distribution in hurricane environments and their role in hurricane development

    NASA Technical Reports Server (NTRS)

    Mahoney, M. J.; Ismail, S.; Browell, E. V.; Ferrare, R. A.; Kooi, S. A.; Brasseur, L.; Notari, A.; Petway, L.; Brackett, V.; Clayton, M.; Halverson, J.; Rizvi, S.; Krishn, T. N.

    2002-01-01

    LASE measures high resolution moisture, aerosol, and cloud distributions not available from conventional observations. LASE water vapor measurements were compared with dropsondes to evaluate their accuracy. LASE water vapor measurements were used to assess the capability of hurricane models to improve their track accuracy by 100 km on 3 day forecasts using Florida State University models.

  19. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.

    PubMed

    Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G

    2014-04-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems.

  20. Use of Gold Nanoparticles to Detect Water Uptake in Vascular Plants

    PubMed Central

    Hwang, Bae Geun; Ahn, Sungsook; Lee, Sang Joon

    2014-01-01

    Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants. PMID:25502567

  1. Use of gold nanoparticles to detect water uptake in vascular plants.

    PubMed

    Hwang, Bae Geun; Ahn, Sungsook; Lee, Sang Joon

    2014-01-01

    Direct visualization of water-conducting pathways and sap flows in xylem vessels is important for understanding the physiology of vascular plants and their sap ascent. Gold nanoparticles (AuNPs) combined with synchrotron X-ray imaging technique is a new promising tool for investigating plant hydraulics in opaque xylem vessels of vascular plants. However, in practical applications of AuNPs for real-time quantitative visualization of sap flows, their interaction with a vascular network needs to be verified in advance. In this study, the effect of AuNPs on the water-refilling function of xylem vessels is experimentally investigated with three monocot species. Discrepancy in the water uptakes starts to appear at about 20 min to 40 min after the supply of AuNP solution to the test plant by the possible gradual accumulation of AuNPs on the internal structures of vasculature. However conclusively, it is observed that the water-refilling speeds in individual xylem vessels are virtually unaffected by hydrophilically surface-modified AuNPs (diameter ∼20 nm). Therefore, the AuNPs can be effectively used as flow tracers in the xylem vessels in the first 20∼30 min without any physiological barrier. As a result, AuNPs are found to be useful for visualizing various fluid dynamic phenomena occurring in vascular plants.

  2. Uptake of water via branches helps timberline conifers refill embolized xylem in late winter.

    PubMed

    Mayr, Stefan; Schmid, Peter; Laur, Joan; Rosner, Sabine; Charra-Vaskou, Katline; Dämon, Birgit; Hacke, Uwe G

    2014-04-01

    Xylem embolism is a limiting factor for woody species worldwide. Conifers at the alpine timberline are exposed to drought and freeze-thaw stress during winter, which induce potentially lethal embolism. Previous studies indicated that timberline trees survive by xylem refilling. In this study on Picea abies, refilling was monitored during winter and spring seasons and analyzed in the laboratory and in situ experiments, based on hydraulic, anatomical, and histochemical methods. Refilling started in late winter, when the soil was frozen and soil water not available for the trees. Xylem embolism caused up to 86.2% ± 3.1% loss of conductivity and was correlated with the ratio of closed pits. Refilling of xylem as well as recovery in shoot conductance started in February and corresponded with starch accumulation in secondary phloem and in the mesophyll of needles, where we also observed increasing aquaporin densities in the phloem and endodermis. This indicates that active, cellular processes play a role for refilling even under winter conditions. As demonstrated by our experiments, water for refilling was thereby taken up via the branches, likely by foliar water uptake. Our results suggest that refilling is based on water shifts to embolized tracheids via intact xylem, phloem, and parenchyma, whereby aquaporins reduce resistances along the symplastic pathway and aspirated pits facilitate isolation of refilling tracheids. Refilling must be taken into account as a key process in plant hydraulics and in estimating future effects of climate change on forests and alpine tree ecosystems. PMID:24521876

  3. On the reactive uptake of gaseous PAH molecules by micron-sized atmospheric water droplets

    NASA Astrophysics Data System (ADS)

    Raja, S.; Valsaraj, K. T.

    2006-10-01

    A falling droplet reactor was used to study the heterogeneous oxidation of gaseous PAH molecules adsorbed on a 92 μm diameter water droplet by ozone. The dynamic partition constant for the PAH between the droplet and air and the first-order surface rate constant was measured. The increase in uptake with ozone concentration was due to increased mass transfer via surface reaction of co-adsorbed ozone and PAH. The surface rate constant was rationalized through the Langmuir-Hinshelwood mechanism. The rate constant was smaller for phenanthrene than naphthalene. The main reaction products identified in the aqueous phase indicated the peroxidic route for surface reaction of ozone with PAH. The heterogeneous reaction rate of ozone with adsorbed phenanthrene at the air-water interface of a 92-μm droplet was estimated to be 9300 times larger than the homogeneous reaction of ozone with phenanthrene in the gas phase and it was 76 times larger than the homogeneous oxidation by hydroxyl radical in the gas phase. For naphthalene that is more volatile, however, the homogeneous reaction with hydroxyl was more important. Increased organic carbon added to the droplet increased both the partition constant for phenanthrene and surface reaction with ozone. The partition constant for a droplet formed from actual fog water was much larger than for pure distilled water.

  4. Uptake and distribution of bisphenol A and nonylphenol in vegetable crops irrigated with reclaimed water.

    PubMed

    Lu, Jian; Wu, Jun; Stoffella, Peter J; Wilson, P Chris

    2015-01-01

    The potential uptake and distribution of bisphenol A (BPA) and nonylphenol (NP) (from reclaimed irrigation water) in edible crops was investigated. BPA and NP were spiked into simulated reclaimed water at environmentally relevant concentrations. Two crops (lettuce, Lactuca sativa and tomato, Lycopersicon esculentum) were grown hydroponically in a greenhouse using the spiked irrigation water under two irrigation exposure scenarios (overhead foliar exposure and subsurface root exposure). BPA concentrations in tomato fruit were 26.6 ± 5.8 (root exposure) and 18.3 ± 3.5 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 80.6 ± 23.1 (root exposure) and 128.9 ± 17.4 (foliar exposure) μg kg(-1). NP concentrations in tomato fruit were 46.1 ± 6.6 (root exposure) and 24.6 ± 6.4 (foliar exposure) μg kg(-1), while concentrations in lettuce leaves were 144.1 ± 9.2 (root exposure) and 195.0 ± 16.9 (foliar exposure) μg kg(-1). BPA was relatively mobile in lettuce plants regardless of exposure route. Limited mobility was observed for NP in both crops and BPA in tomatoes. The estimated daily intake of BPA and NP through consumption of vegetables irrigated with reclaimed water ranged from 8.9-62.9 to 11.9-95.1 μg, respectively, depending on the exposure route.

  5. Detection and quantification of water-based aerosols using active open-path FTIR

    PubMed Central

    Kira, Oz; Linker, Raphael; Dubowski, Yael

    2016-01-01

    Aerosols have a leading role in many eco-systems and knowledge of their properties is critical for many applications. This study suggests using active Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy for quantifying water droplets and solutes load in the atmosphere. The OP-FTIR was used to measure water droplets, with and without solutes, in a 20 m spray tunnel. Three sets of spraying experiments generated different hydrosols clouds: (1) tap water only, (2) aqueous ammonium sulfate (0.25–3.6%wt) and (3) aqueous ethylene glycol (0.47–2.38%wt). Experiment (1) yielded a linear relationship between the shift of the extinction spectrum baseline and the water load in the line-of-sight (LOS) (R2 = 0.984). Experiment (2) also yielded a linear relationship between the integrated extinction in the range of 880–1150 cm−1 and the ammonium sulfate load in the LOS (R2 = 0.972). For the semi-volatile ethylene glycol (experiment 3), present in the gas and condense phases, quantification was much more complex and two spectral approaches were developed: (1) according to the linear relationship from the first experiment (determination error of 8%), and (2) inverse modeling (determination error of 57%). This work demonstrates the potential of the OP-FTIR for detecting clouds of water-based aerosols and for quantifying water droplets and solutes at relatively low concentrations. PMID:27121498

  6. New real-time technique to measure the size distribution of water-insoluble aerosols.

    PubMed

    Greenwald, Roby; Bergin, Michael H; Carrico, Christian M; Grant, Don

    2005-07-01

    To date, there has been much research into the size distribution of ambient atmospheric aerosols, particularly either the total aerosol population or water-soluble ionic species such as sulfate or nitrate. Meanwhile, there have been virtually no size-resolved measurements of water-insoluble aerosols (WIA). This has been due to a lack of practical measurement technology rather than a reflection of the importance of WIA to climate and health. Particle solubility influences the planetary radiation balance both directly and indirectly: solubility influences both the amount of hygroscopic growth (and thus light scattering) that occurs as a function of relative humidity and the ability of particles to serve as cloud condensation nuclei (and thus the lifetime and albedo of clouds). Also, recent information suggests that WIA may be harmful to human health. To address these concerns, a new real-time technique has been developed to measure the size-resolved concentration of WIA. This technique involves the entrainment of particles into a liquid stream and measurement of the WIA size distribution using a liquid optical particle counter. The time resolution of this instrumentation is approximately 4 min (depending on flow rate) and is capable of sizing and counting insoluble particles with diameters of 0.25-2.0 microm at atmospheric concentrations as low as 0.1 cm(-3). Laboratory characterization using polystyrene latex spheres shows agreement within +/-5% of the liquid stream and air stream particle concentrations when adjusted for flow rate. The instrumentation was field-tested at a rural site on the edge of the metro-Atlanta urban area. During this test, the WIA concentration averaged 5% of the total particle concentration between 0.25 and 2.0 microm but reached as high as 35%.

  7. A Novel Experimental Technique to Monitor the Time-Dependent Water and Ions Uptake when Shale Interacts with Aqueous Solutions

    NASA Astrophysics Data System (ADS)

    AL-Bazali, Talal

    2013-09-01

    The time-dependent water and ions uptake when shale interacts with aqueous solutions is quantified using a combination of immersion and gravimetric techniques. Results show that when shale interacts with salt solutions, water uptake into shale goes through three distinct stages; water movement out of shale (due to chemical osmosis), water movement into shale (due to diffusion osmosis) and stationary state (equilibrium stage). This work shows that chemical osmosis dominates water movement in early times while diffusion osmosis takes over later. In addition, it is shown that the amount of water movement due to chemical osmosis depends on the chemical potential gradient while the amount of water movement due to diffusion osmosis is highly related to the ionic concentration imbalance. In addition, the amount of ions uptake into shale at equilibrium is shown to depend on the type and concentration of salt solution. Furthermore, this work shows that potassium ion has a strengthening effect on shale while sodium and calcium ions have a weakening effect on shale. Results also show that the shale's compressive strength alteration is greatly influenced by the type and concentration of the salt solution. Furthermore, the shale's compressive strength alteration is shown to be time dependent and correlates very well with the time-dependent flux of water and ions. Finally, it is shown that chemical osmosis and diffusion osmosis take place simultaneously when shale interacts with water-based muds. The overall impact on shale stability is governed by the net water flow resulting from chemical osmosis and diffusion osmosis.

  8. Water soluble ions in aerosols (TSP) : Characteristics, sources and seasonal variation over the central Himalayas, Nepal

    NASA Astrophysics Data System (ADS)

    Tripathee, Lekhendra; Kang, Shichang; Zhang, Qianggong; Rupakheti, Dipesh

    2016-04-01

    Atmspheric pollutants transported from South Asia could have adverse impact on the Himalayan ecosystems. Investigation of aerosol chemistry in the Himalayan region in Nepal has been limited on a temporal and spatial scale to date. Therefore, the water-soluble ionic composition of aerosol using TSP sampler was investigated for a year period from April 2013 to March 2014 at four sites Bode, Dhunche, Lumbini and Jomsom characterized as an urban, rural, semi-urban and remote sites in Nepal. During the study period, the highest concentration of major cation was Ca2+ with an average concentration of 8.91, 2.17, 7.85 and 6.42 μg m-3 and the highest concentration of major anion was SO42- with an average of 10.96, 4.06, 6.85 and 3.30 μg m-3 at Bode, Dhunche, Lumbini and Jomsom respectively. The soluble ions showed the decrease in concentrations from urban to the rural site. Correlations and PCA analysis suggested that that SO42-, NO3- and NH4+ were derived from the anthropogenic sources where as the Ca2+ and Mg2+ were from crustal sources. Our results also suggest that the largest acid neutralizing agent at our sampling sites in the central Himalayas are Ca2+ followed by NH4+. Seasonal variations of soluble ions in aerosols showed higher concentrations during pre-monsoon and winter (dry-periods) due to limited precipitation amount and lower concentrations during the monsoon which can be explained by the dilution effect, higher the precipitation lower the concentration. K+ which is regarded as the tracer of biomss burning had a significant peaks during pre-monsoon season when the forest fires are active around the regions. In general, the results of this study suggests that the atmospheric chemistry is influenced by natural and anthropogenic sources. Thus, soluble ionic concentrations in aerosols from central Himalayas, Nepal can provide a useful database to assess atmospheric environment and its impacts on human health and ecosystem in the southern side of central

  9. Determination of the sources and impacts of aerosols on clouds and orographic precipitation during CalWater

    NASA Astrophysics Data System (ADS)

    Prather, K. A.; Suski, K.; Cazorla, A.; Cahill, J. F.; Creamean, J.; Collins, D. B.; Ralph, F. M.; Cayan, D. R.; Rosenfeld, D.; DeMott, P. J.; Sullivan, R. C.; Comstock, J. M.; Leung, L.; Tomlinson, J. M.; Roberts, G. C.; Nenes, A.; Lin, J. J.

    2011-12-01

    Climate projections for the remainder of this century for the U.S. Southwest, including parts of California, suggest a drying trend (reductions ~ 10 -15 %). Thus, understanding factors which could potentially influence the amount and type of precipitation is critical to future water resources in California. Previous studies suggest aerosols transported from the Central Valley into the mountains may be reducing the amount of orographic precipitation in the Sierra Nevada mountain range, the key region for water storage in the snowpack. CalWater, which commenced in the Winter of 2009, is an ongoing multi-year, multi-agency field campaign to investigate the primary sources of aerosols influencing clouds and precipitation in this region. Single particle measurements, used in both ground as well as PNNL G1 aircraft measurements, in the recent campaign provide insight into the sources of aerosols impacting the clouds and precipitation. Biomass burning, Central Valley pollution, long range transported Asian dust and pollution, locally generated newly formed particles, and marine aerosols all show strong impacts on the cloud microphysical properties. This presentation will provide a brief overview of the objective and key findings from CalWater measurements of aerosols, precipitation, clouds, and meteorology conducted from 2009-2011 in this region.

  10. Comparison of aerosol behavior during sodium fires in CSTF with the HAA-3B code. [LMFBR

    SciTech Connect

    Postma, A.K.; Owen, R.K.

    1980-03-01

    Four large-scale tests using sodium fire aerosol sources have been carried out in the Containment System Test Facility (CSTF). Two of the tests employed pool fires and two used spray fires as the aerosol source. Because the CSTF containment vessel is approximately half-scale (20.3 m in height) of a typical reactor building, the CSTF results have provided a large-scale proof test of the HAA-3B Code. For the two pool fire tests, the measured and predicted airborne concentrations were in good agreement when the aerosol source term was based on post-test measurements of aerosol formation, accounting for water vapor uptake.

  11. An improved approach for remotely sensing water stress impacts on forest C uptake.

    PubMed

    Sims, Daniel A; Brzostek, Edward R; Rahman, Abdullah F; Dragoni, Danilo; Phillips, Richard P

    2014-09-01

    Given that forests represent the primary terrestrial sink for atmospheric CO2 , projections of future carbon (C) storage hinge on forest responses to climate variation. Models of gross primary production (GPP) responses to water stress are commonly based on remotely sensed changes in canopy 'greenness' (e.g., normalized difference vegetation index; NDVI). However, many forests have low spectral sensitivity to water stress (SSWS) - defined here as drought-induced decline in GPP without a change in greenness. Current satellite-derived estimates of GPP use a vapor pressure deficit (VPD) scalar to account for the low SWSS of forests, but fail to capture their responses to water stress. Our objectives were to characterize differences in SSWS among forested and nonforested ecosystems, and to develop an improved framework for predicting the impacts of water stress on GPP in forests with low SSWS. First, we paired two independent drought indices with NDVI data for the conterminous US from 2000 to 2011, and examined the relationship between water stress and NDVI. We found that forests had lower SSWS than nonforests regardless of drought index or duration. We then compared satellite-derived estimates of GPP with eddy-covariance observations of GPP in two deciduous broadleaf forests with low SSWS: the Missouri Ozark (MO) and Morgan Monroe State Forest (MMSF) AmeriFlux sites. Model estimates of GPP that used VPD scalars were poorly correlated with observations of GPP at MO (r(2) = 0.09) and MMSF (r(2) = 0.38). When we included the NDVI responses to water stress of adjacent ecosystems with high SSWS into a model based solely on temperature and greenness, we substantially improved predictions of GPP at MO (r(2) = 0.83) and for a severe drought year at the MMSF (r(2) = 0.82). Collectively, our results suggest that large-scale estimates of GPP that capture variation in SSWS among ecosystems could improve predictions of C uptake by forests under drought.

  12. On the application of Open-Path Fourier Transform Infra-Red spectroscopy to measure aerosols: Observations of water droplets

    SciTech Connect

    Hashmonay, R.A.; Yost, M.G.

    1999-04-01

    This paper proposes the application of Open-Path Fourier Transform Infra-Red (OP-FTIR) spectroscopy to measure aerosols. A preliminary experiment conducted in a standard shower chamber generated a condensed water aerosol cloud. The OP-FTIR beam acquired spectra through the cloud of water droplets. The authors matched calculated extinction spectra to measured extinction in the spectral range between 500 and 5,000 wavenumbers by using Mie theory for spherical particles. The results indicate that size distribution parameters may be retrieved from OP-FTIR spectra acquired over a 1 km optical path with reasonable detection limits on the order of 10 {micro}g{center_dot}m{sup {minus}3} for aerosols with optical properties equivalent to water.

  13. Foliar uptake of fog water and transport belowground alleviates drought effects in the cloud forest tree species, Drimys brasiliensis (Winteraceae).

    PubMed

    Eller, Cleiton B; Lima, Aline L; Oliveira, Rafael S

    2013-07-01

    Foliar water uptake (FWU) is a common water acquisition mechanism for plants inhabiting temperate fog-affected ecosystems, but the prevalence and consequences of this process for the water and carbon balance of tropical cloud forest species are unknown. We performed a series of experiments under field and glasshouse conditions using a combination of methods (sap flow, fluorescent apoplastic tracers and stable isotopes) to trace fog water movement from foliage to belowground components of Drimys brasiliensis. In addition, we measured leaf water potential, leaf gas exchange, leaf water repellency and growth of plants under contrasting soil water availabilities and fog exposure in glasshouse experiments to evaluate FWU effects on the water and carbon balance of D. brasiliensis saplings. Fog water diffused directly through leaf cuticles and contributed up to 42% of total foliar water content. FWU caused reversals in sap flow in stems and roots of up to 26% of daily maximum transpiration. Fog water transported through the xylem reached belowground pools and enhanced leaf water potential, photosynthesis, stomatal conductance and growth relative to plants sheltered from fog. Foliar uptake of fog water is an important water acquisition mechanism that can mitigate the deleterious effects of soil water deficits for D. brasiliensis.

  14. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation

    NASA Astrophysics Data System (ADS)

    Grossiord, Charlotte; Gessler, Arthur; Granier, André; Berger, Sigrid; Bréchet, Claude; Hentschel, Rainer; Hommel, Robert; Scherer-Lorenzen, Michael; Bonal, Damien

    2014-11-01

    Interactions between tree species in forests can be beneficial to ecosystem functions and services related to the carbon and water cycles by improving for example transpiration and productivity. However, little is known on below- and above-ground processes leading to these positive effects. We tested whether stratification in soil water uptake depth occurred between four tree species in a 10-year-old temperate mixed species plantation during a dry summer. We selected dominant and co-dominant trees of European beech, Sessile oak, Douglas fir and Norway spruce in areas with varying species diversity, competition intensity, and where different plant functional types (broadleaf vs. conifer) were present. We applied a deuterium labelling approach that consisted of spraying labelled water to the soil surface to create a strong vertical gradient of the deuterium isotope composition in the soil water. The deuterium isotope composition of both the xylem sap and the soil water was measured before labelling, and then again three days after labelling, to estimate the soil water uptake depth using a simple modelling approach. We also sampled leaves and needles from selected trees to measure their carbon isotope composition (a proxy for water use efficiency) and total nitrogen content. At the end of the summer, we found differences in the soil water uptake depth between plant functional types but not within types: on average, coniferous species extracted water from deeper layers than did broadleaved species. Neither species diversity nor competition intensity had a detectable influence on soil water uptake depth, foliar water use efficiency or foliar nitrogen concentration in the species studied. However, when coexisting with an increasing proportion of conifers, beech extracted water from progressively deeper soil layers. We conclude that complementarity for water uptake could occur in this 10-year-old plantation because of inherent differences among functional groups (conifers

  15. Hypersensitivity Pneumonitis-like Granulomatous Lung Disease with Nontuberculous Mycobacteria from Exposure to Hot Water Aerosols

    PubMed Central

    Sood, Akshay; Sreedhar, Rajgopal; Kulkarni, Pradeep; Nawoor, Abdur Ray

    2007-01-01

    Objective Human activities associated with aerosol-generating hot water sources are increasingly popular. Recently, a hypersensitivity pneumonitis (HP)-like granulomatous lung disease, with non-tuberculous mycobacteria from exposure to hot water aerosols from hot tubs/spas, showers, and indoor swimming pools, has been described in immunocompetent individuals (also called “hot tub lung”). Our objective in this study was to examine four additional cases of hot tub lung and compare these cases with others reported in the English print literature on this disease. Data sources and extraction We retrospectively reviewed all cases (n = 4) of presumptively diagnosed hot tub lung in immunocompetent individuals at the various physician practices in Springfield, Illinois, during 2001–2005. In addition, we searched MEDLINE for cases of hot tub lung described in the literature. Data synthesis We summarized the clinical presentation and investigations of four presumptive cases and reviewed previously reported cases of hot tub lung. Conclusions There is a debate in the literature whether hot tub lung is an HP or a direct infection of the lung by nontuberculous mycobacteria. Primary prevention of this disease relies on ventilation and good use practices. Secondary prevention of this disease requires education of both the general public and clinicians to allow for the early diagnosis of this disease. PMID:17384775

  16. Uncertainties in the measurements of water-soluble organic nitrogen in the aerosol

    NASA Astrophysics Data System (ADS)

    Matsumoto, Kiyoshi; Yamato, Koki

    2016-11-01

    In order to evaluate the positive and negative artifacts in the measurements of the water-soluble organic nitrogen (WSON) in the aerosols by filter sampling, comparative experiments between the filter sampling and denuder-filter sampling were conducted during both the warm and cold seasons. The results suggest that the traditional filter sampling underestimates the concentrations of the particulate WSON due to its volatilization loss, but this effect on the ratio of the WSON to the water-soluble total nitrogen (WSTN) was small probably because inorganic nitrogen species were also lost during the filter sampling. Approximately 32.5% of the WSON in the PM2.5 was estimated to be lost during the filter sampling. The denuder-filter sampling also demonstrated the existence of the WSON in the gas phase with approximately quarter concentrations of the WSON in the PM2.5. On the other hand, the filter sampling would overestimate the gaseous WSON concentration due to the loss of the WSON from the aerosol collection filter.

  17. Organic aerosols associated with the generation of reactive oxygen species (ROS) by water-soluble PM2.5.

    PubMed

    Verma, Vishal; Fang, Ting; Xu, Lu; Peltier, Richard E; Russell, Armistead G; Ng, Nga Lee; Weber, Rodney J

    2015-04-01

    We compare the relative toxicity of various organic aerosol (OA) components identified by an aerosol mass spectrometer (AMS) based on their ability to generate reactive oxygen species (ROS). Ambient fine aerosols were collected from urban (three in Atlanta, GA and one in Birmingham, AL) and rural (Yorkville, GA and Centerville, AL) sites in the Southeastern United States. The ROS generating capability of the water-soluble fraction of the particles was measured by the dithiothreitol (DTT) assay. Water-soluble PM extracts were further separated into the hydrophobic and hydrophilic fractions using a C-18 column, and both fractions were analyzed for DTT activity and water-soluble metals. Organic aerosol composition was measured at selected sites using a high-resolution time-of-flight AMS. Positive matrix factorization of the AMS spectra resolved the organic aerosol into isoprene-derived OA (Isop_OA), hydrocarbon-like OA (HOA), less-oxidized oxygenated OA, (LO-OOA), more-oxidized OOA (MO-OOA), cooking OA (COA), and biomass burning OA (BBOA). The association of the DTT activity of water-soluble PM2.5 (WS_DTT) with these factors was investigated by linear regression techniques. BBOA and MO-OOA were most consistently linked with WS_DTT, with intrinsic water-soluble activities of 151 ± 20 and 36 ± 22 pmol/min/μg, respectively. Although less toxic, MO-OOA was most widespread, contributing to WS_DTT activity at all sites and during all seasons. WS_DTT activity was least associated with biogenic secondary organic aerosol. The OA components contributing to WS_DTT were humic-like substances (HULIS), which are abundantly emitted in biomass burning (BBOA) and include highly oxidized OA from multiple sources (MO-OOA). Overall, OA contributed approximately 60% to the WS_DTT activity, with the remaining probably from water-soluble metals, which were mostly associated with the hydrophilic WS_DTT fraction. PMID:25748105

  18. The effect of soil surface sealing on vegetation water uptake along a dry climatic gradient

    NASA Astrophysics Data System (ADS)

    Sela, Shai; Svoray, Tal; Assouline, Shmuel

    2015-09-01

    Soil surface sealing is a widespread natural process occurring frequently in bare soil areas between vegetation patches. The low hydraulic conductivity that characterizes the seal layer reduces both infiltration and evaporation fluxes from the soil, and thus has the potential to affect local vegetation water uptake (VWU). This effect is investigated here using experimental data, 2-D physically based modeling, and a long-term climatic data set from three dry sites presenting a climatic gradient in the Negev Desert, Israel. The Feddes VWU parameters for the dominant shrub at the study site (Sarcopoterium spinosum) were acquired using lysimeter experiments. The results indicate that during the season surface sealing could either increase or decrease VWU depending on initial soil water content, rainfall intensity, and the duration of the subsequent drying intervals. These factors have a marked effect on interannual variability of the seal layer effect on VWU, which on average was found to be 26% higher under sealed conditions than in the case of unsealed soil surfaces. The seal layer was found to reduce the period where the vegetation was under water stress by 31% compared with unsealed conditions. This effect was more pronounced for seasons with total rainfall depth higher than 10 cm/yr, and was affected by interseasonal climatic variability. These results shed light on the importance of surface sealing in dry environments and its contribution to the resilience of woody vegetation.

  19. Water uptake, priming, drying and storage effects in Cassia excelsa Schrad seeds.

    PubMed

    Jeller, H; Perez, S C; Raizer, J

    2003-02-01

    The aims of this study were to evaluate the effects of osmotic potential on the water uptake curve in Cassia excelsa seeds and use the results to analyze the effects of dehydration and storage on primed seed germination. Seeds were imbibed in distilled water and polyethylene glicol (PEG 6000) osmotic solutions at -0.2, -0.4, and -0.6 MPa, at 20 degrees C. The radicle emergence and seed moisture content were evaluated at 6-hour intervals during 240 hours. Afterwards, seeds were primed in distilled water and PEG 6000 solutions at -0.2, -0.4, and -0.6 MPa for 48, 72, 96, and 168 hours at 20 degrees C, followed by air drying and storage for 15 days at 5 degrees C. The lower the osmotic potential, the higher the time required for priming. The osmoconditioning yields benefits with PEG solutions at 0.0 and -0.2 MPa; seed improvements were maintained during storage for 15 days at 5 degrees C, but were reverted by seed drying.

  20. Carbon uptake in low dissolved inorganic carbon environments: the effect of limited carbon availability on photosynthetic organisms in thermal waters

    NASA Astrophysics Data System (ADS)

    Myers, K. D.; Omelon, C. R.; Bennett, P.

    2010-12-01

    Photosynthesis is the primary carbon fixation process in thermal waters below 70°C, but some hydrothermal waters have extremely low dissolved inorganic carbon (DIC), potentially limiting the growth of inorganic carbon fixing organisms such as algae and cyanobacteria. To address the issue of how carbon is assimilated by phototrophs in these environments, we conducted experiments to compare inorganic carbon uptake mechanisms by two phylogenetically distinct organisms collected from geographically distinct carbon limited systems: the neutral pH geothermal waters of El Tatio, Chile, and the acidic geothermal waters of Tantalus Creek in Norris Geyser Basin, Yellowstone National Park. Discharge waters at El Tatio have low total DIC concentrations (2 to 6 ppm) found mainly as HCO3-; this is in contrast to even lower measured DIC values in Tantalus Creek (as low as 0.13 ppm) that, due to a measured pH of 2.5, exists primarily as CO2. Cyanobacteria and algae are innately physiologically plastic, and we are looking to explore the possibility that carbon limitation in these environments is extreme enough to challenge that plasticity and lead to a suite of carbon uptake adaptations. We hypothesize that these microorganisms utilize adaptive modes of Ci uptake that allow them to survive under these limiting conditions. Cyanobacteria (primarily Synechococcus spp.) isolated from El Tatio can utilize either passive CO2 uptake or active HCO3- uptake mechanisms, in contrast to the eukaryotic alga Cyanidium spp. from Tantalus Creek, which is restricted to an energy-dependent CO2 uptake mechanism. To test this hypothesis, we conducted pH drift experiments (Omelon et al., 2008) to examine changes in pH and [DIC] under a range of pH and [DIC] culture conditions. This work provides baseline information upon which we will begin to investigate the effects of low [DIC] on the growth of phototrophs collected from these and other less carbon limited systems.

  1. Modelling orange tree root water uptake active area by minimally invasive ERT data and transpiration measurements

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Boaga, Jacopo; Perri, Maria Teresa; Consoli, Simona; Cassiani, Giorgio

    2015-04-01

    The comprehension of the hydrological processes involving plant root dynamics is crucial for implementing water saving measures in agriculture. This is particular urgent in areas, like those Mediterranean, characterized by scarce water availability. The study of root water dynamics should not be separated from a more general analysis of the mass and energy fluxes transferred in the soil-plant-atmosphere continuum. In our study, in order to carry this inclusive approach, minimal invasive 3D time-lapse electrical resistivity tomography (ERT) for soil moisture estimation was combined with plant transpiration fluxes directly measured with Sap Flow (SF) techniques and Eddy Covariance methods, and volumetric soil moisture measurements by TDR probes. The main objective of this inclusive approach was to accurately define root-zone water dynamics and individuate the root-area effectively active for water and nutrient uptake process. The monitoring was carried out in Eastern Sicily (south Italy) in summers 2013 and 2014, within an experimental orange orchard farm. During the first year of experiment (October 2013), ERT measurements were carried out around the pertinent volume of one fully irrigated tree, characterized by a vegetation ground cover of 70%; in the second year (June 2014), ERT monitoring was conducted considering a cutting plant, thus to evaluate soil water dynamics without the significant plant transpiration contribution. In order to explore the hydrological dynamics of the root zone volume surrounded by the monitored tree, the resistivity data acquired during the ERT monitoring were converted into soil moisture content distribution by a laboratory calibration based on the soil electrical properties as a function of moisture content and pore water electrical conductivity. By using ERT data in conjunction with the agro-meteorological information (i.e. irrigation rates, rainfall, evapotranspiration by Eddy Covariance, transpiration by Sap Flow and soil moisture

  2. Maintenance of water uptake and reduced water loss contribute to water stress tolerance of Spiraea alba Du Roi and Spiraea tomentosa L.

    PubMed Central

    Stanton, Kelly M; Mickelbart, Michael V

    2014-01-01

    Two primarily eastern US native shrubs, Spiraea alba Du Roi and Spiraea tomentosa L., are typically found growing in wet areas, often with standing water. Both species have potential for use in the landscape, but little is known of their environmental requirements, including their adaptation to water stress. Two geographic accessions of each species were evaluated for their response to water stress under greenhouse conditions. Above-ground biomass, water relations and gas exchange were measured in well-watered and water stress treatments. In both species, water stress resulted in reduced growth, transpiration and pre-dawn water potential. However, both species also exhibited the ability to osmotically adjust to lower soil water content, resulting in maintained midday leaf turgor potential in all accessions. Net CO2 assimilation was reduced only in one accession of S. alba, primarily due to large reductions in stomatal conductance. S. tomentosa lost a larger proportion of leaves than S. alba in response to water stress. The primary water stress tolerance strategies of S. alba and S. tomentosa appear to be the maintenance of water uptake and reduced water loss. PMID:26504542

  3. Perfluoroalkyl acid uptake in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa) irrigated with reclaimed water.

    PubMed

    Blaine, Andrea C; Rich, Courtney D; Sedlacko, Erin M; Hyland, Katherine C; Stushnoff, Cecil; Dickenson, Eric R V; Higgins, Christopher P

    2014-12-16

    Using reclaimed water to irrigate food crops presents an exposure pathway for persistent organic contaminants such as perfluoroalkyl acids (PFAAs) to enter the human food chain. This greenhouse study used reclaimed water augmented with varying concentrations (0.2-40 μg/L) of PFAAs, including perfluorocarboxylates (C3F7COO(-) to C8F17COO(-)) and perfluorosulfonates (C4F9SO2O(-), C6F13SO2O(-), C8F17SO2O(-)), to investigate potential uptake and concentration-response trends in lettuce (Lactuca sativa) and strawberry (Fragaria ananassa). In addition, studies were conducted to evaluate the role of soil organic carbon concentrations on plant uptake of PFAAs. PFAA concentrations in lettuce leaves and strawberry fruit were measured for each aqueous PFAA concentration applied. PFAA plant concentrations increased linearly with the aqueous concentration for all PFAAs, with PFCAs bioaccumulating to a greater degree than PFSAs in the edible portions of the tested plants. Chain-length-dependency trends were evident in both lettuce shoot and strawberry fruit, with decreasing concentrations associated with increasing chain length. Perfluorobutanoate (PFBA) and perfluoropentanoate (PFPeA), both short-chain PFAAs (<8 carbon chain length), accumulated the most compared with other PFAAs tested in the edible parts of both lettuce and strawberry. PFAA concentrations in strawberry root and shoot were also measured at selected PFAA aqueous concentrations (0.4, 4, and 40 μg/L). Short-chain perfluorocarboxylates were the dominant fraction in the strawberry fruit and shoot compartments, whereas a more even distribution of all PFAAs appeared in the root compartment. Lettuce grown in soils with varying organic carbon contents (0.4%, 2%, 6%) was used to assess the impact of organic carbon sorption on PFAA bioaccumulation. The lettuce grown in soil with the 6% organic carbon content had the lowest bioaccumulation of PFAAs. Bioaccumulation factors for lettuce were correlated to carbon chain

  4. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    SciTech Connect

    Melfi, S.H.; Whiteman, D.; Ferrare, R.; Evans, K.; Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E.

    1992-07-01

    The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kansas. The main objective of FIRE [First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment] was to study the development and radiative characteristics of cirrus clouds. The SPECTRE [Spectral Radiation Experiment] project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments. A ground-based Raman Lidar was deployed at Coffeyville, Kansas from November 12 until December 7, 1991. During the campaign, the lidar operated during 14 observation periods. The periods ranged in length from 3.5 hours to 12 hours for a total operating time of approximately 119 hours. During each of the operational periods the lidar obtained vertical profiles of water vapor mixing ratio and aerosol scattering ratio once every minute with vertical resolution of 75 meters from near the earth`s surface to an altitude of 9--10 km for water vapor and higher for aerosols. Several balloon-sondes were launched during each operational period providing an independent measurement of humidity with altitude. For each operational period, the 1-minute profiles of water vapor mixing ratio and aerosol scattering ratio are composited to give a color- coded time-height display of water vapor and aerosol scattering, respectively.

  5. Raman lidar measurements of water vapor and aerosol/clouds during the FIRE/SPECTRE field campaign

    SciTech Connect

    Melfi, S.H.; Whiteman, D. . Goddard Space Flight Center); Ferrare, R. ); Evans, K. ); Goldsmith, J.E.M.; Lapp, M.; Bisson, S.E. )

    1992-01-01

    The FIRE/SPECTRE field campaign was conducted during November- December 1991 in Coffeyville, Kansas. The main objective of FIRE (First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment) was to study the development and radiative characteristics of cirrus clouds. The SPECTRE (Spectral Radiation Experiment) project was designed to acquire the necessary atmospheric observations to compare radiative measurements with radiative transfer theory, with special emphasis on understanding the water vapor spectral continuum. A complete understanding of water vapor, its distribution with height, and its temporal variation was important for both experiments. A ground-based Raman Lidar was deployed at Coffeyville, Kansas from November 12 until December 7, 1991. During the campaign, the lidar operated during 14 observation periods. The periods ranged in length from 3.5 hours to 12 hours for a total operating time of approximately 119 hours. During each of the operational periods the lidar obtained vertical profiles of water vapor mixing ratio and aerosol scattering ratio once every minute with vertical resolution of 75 meters from near the earth's surface to an altitude of 9--10 km for water vapor and higher for aerosols. Several balloon-sondes were launched during each operational period providing an independent measurement of humidity with altitude. For each operational period, the 1-minute profiles of water vapor mixing ratio and aerosol scattering ratio are composited to give a color- coded time-height display of water vapor and aerosol scattering, respectively.

  6. Estimating relationships among water use, nitrogen uptake and biomass production in a short-rotation woody crop plantation

    NASA Astrophysics Data System (ADS)

    Ouyang, Y.

    2015-12-01

    Short-rotation woody crop has been identified as one of the best feedstocks for bioenergy production due to their fast-growth rates. However, the biomass production, nutrient uptake, and water use efficiency under adverse environmental condition are still poorly understood. In this study, a computer model was developed to undertake these issues using STELLA (Structural Thinking and Experiential Learning Laboratory with Animation) software. Two simulation scenarios were employed: one was to quantify the mechanisms of water use, nitrogen uptake and biomass production in a eucalypt plantation under the normal soil conditions, the other was to estimate the same mechanisms under the wet and dry soil conditions. In general, the rates of evaporation, transpiration, evapotranspiration (ET), and root water uptake were in the following order: ET > root uptake > leaf transpiration > soil evaporation. A profound discrepancy in water use was observed between the wet and dry soil conditions. Leaching of nitrate-N and soluble organic N depended not only on soil N content but also on rainfall rate and duration. The yield of biomass from the eucalypt was primarily regulated by water availability in a fertilized plantation.

  7. Mobile Multiwavelength Polarization Raman Lidar for Water Vapor, Cloud and Aerosol Measurement

    NASA Astrophysics Data System (ADS)

    Wu, Songhua; Song, Xiaoquan; Liu, Bingyi; Dai, Guangyao; Zhang, Kailin; Qin, Shengguang; G