Science.gov

Sample records for aerosol-derived airway morphometry

  1. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM CHILDHOOD TO ADULT LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHOMETRY

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  2. DEVELOPMENT OF THE HUMAN LUNG MEASURED BY AEROSOL-DERIVED AIRWAY MORPHEMETRY (ADAM).

    EPA Science Inventory

    We measured, in vivo, the airspace calibers of the small airways and alveoli by ADAM in the lungs of children of ages 6 to 18 years and adults aged 18 to 80 years. ADAM utilizes the gravitational settling time of inhaled monodisperse particles to infer the vertical distance to th...

  3. High-resolution airway morphometry from polyurethane casts

    NASA Astrophysics Data System (ADS)

    Neufeld, Gordon R.; Vargas, John; Hoford, John D.; Craft, Jeanne; Shroff, Sunil; McRae, Karen M.

    1995-05-01

    An airway cast was made and imbedded in a solid polyurethane block of a contrasting color. The block was sequentially milled and photographed. The sequential photographs were scanned to create an image database which was analyzed on VIDA; a multidimensional image analysis software package. The technique shows promise as a semi-automated process for generating a high resolution morphometric database from airway casts.

  4. DEVELOPMENT OF THE SMALL AIRWAYS AND ALVEOLI FROM DHILDHOOD TO ADULT

    EPA Science Inventory

    Understanding the human development of pulmonary airspaces is important for calculating the dose from exposure to inhaled materials as a function of age. We have measured, in vivo, the airspace caliber of the small airways and alveoli by aerosol-derived airway morphometry (ADAM) ...

  5. Lung morphometry changes in prevention of airway remodeling by protocatechuic aldehyde in asthmatic mice

    PubMed Central

    Zhang, Jiankai; Ma, Mulan; Qin, Dongyun; Huang, Jianping; Cui, Xiaojun; Wu, Yongfu; Yang, Huiling; Fu, Hui; Liao, Cui

    2015-01-01

    Airway remodeling can lead to irreversible airflow obstruction and persistent airway hyper-responsiveness, which is the pathological basis of refractory asthma. To investigate the preventive effect of protocatechuic aldehyde on airway remodeling in asthmatic mice by lung morphometry methods. BALB/c mice were used to establish model of airway remodeling by ovalbumin (OVA) inhalation. Bronchoalveolar lavage fluid (BALF) were collected for eosinophils (EOS) count and detection of interleukin 4 (IL-4), interleukin-13 (IL-13) and interferon (IFN-γ) content. The left lung pathological sections were performed HE, AB-PAS and Masson staining. The epithelial lamina thickness of the left main bronchus (Re), the smooth muscle layer thickness (Rm), the number of goblet cells and goblet cell area percentage (%Ac) and gas side of the road and vascular collagen deposition (%Aco, %Avc) situation were measured. Protocatechuic aldehyde gavage made the reduction of BALF EOS count. IL-4 and IL-13 levels also decreased, while the IFN-γ level increased. The left main bronchus Re, Rm, goblet cell count, Ac% and Aco% and Avc% reduced. Protocatechuic aldehyde can significantly control airway inflammation and prevent airway remodeling. PMID:26221226

  6. Rat airway morphometry measured from in situ MRI-based geometric models

    PubMed Central

    Oakes, Jessica M.; Scadeng, Miriam; Breen, Ellen C.; Marsden, Alison L.

    2012-01-01

    Rodents have been widely used to study the environmental or therapeutic impact of inhaled particles. Knowledge of airway morphometry is essential in assessing geometric influence on aerosol deposition and in developing accurate lung models of aerosol transport. Previous morphometric studies of the rat lung performed ex situ provided high-resolution measurements (50–125 μm). However, it is unclear how the overall geometry of these casts might have differed from the natural in situ appearance. In this study, four male Wistar rat (268 ± 14 g) lungs were filled sequentially with perfluorocarbon and phosphate-buffered saline before being imaged in situ in a 7-T magnetic resonance (MR) scanner at a resolution of 0.2 × 0.2 × 0.27 mm. Airway length, diameter, gravitational, bifurcation, and rotational angles were measured for the first four airway generations from 3D geometric models built from the MR images. Minor interanimal variability [expressed by the relative standard deviation RSD (=SD/mean)] was found for length (0.18 ± 0.07), diameter (0.15 ± 0.15), and gravitational angle (0.12 ± 0.06). One rat model was extended to 16 airway generations. Organization of the airways using a diameter-defined Strahler ordering method resulted in lower interorder variability than conventional generation-based grouping for both diameter (RSD = 0.12 vs. 0.42) and length (0.16 vs. 0.67). Gravitational and rotational angles averaged 82.9 ± 37.9° and 53.6 ± 24.1°, respectively. Finally, the major daughter branch bifurcated at a smaller angle (19.3 ± 14.6°) than the minor branch (60.5 ± 19.4°). These data represent the most comprehensive set of rodent in situ measurements to date and can be used readily in computational studies of lung function and aerosol exposure. PMID:22461437

  7. Tissue optical clearing, three-dimensional imaging, and computer morphometry in whole mouse lungs and human airways.

    PubMed

    Scott, Gregory D; Blum, Emily D; Fryer, Allison D; Jacoby, David B

    2014-07-01

    In whole adult mouse lung, full identification of airway nerves (or other cellular/subcellular objects) has not been possible due to patchy distribution and micron-scale size. Here we describe a method using tissue clearing to acquire the first complete image of three-dimensional (3D) innervation in the lung. We then created a method to pair analysis of nerve (or any other colabeled epitope) images with identification of 3D tissue compartments and airway morphometry by using fluorescent casting and morphometry software (which we designed and are making available as open-source). We then tested our method to quantify a sparse heterogeneous nerve population by examining visceral pleural nerves. Finally, we demonstrate the utility of our method in human tissue to image full thickness innervation in irregular 3D tissue compartments and to quantify sparse objects (intrinsic airway ganglia). Overall, this method can uniquely pair the advantages of whole tissue imaging and cellular/subcellular fluorescence microscopy.

  8. Mammalian sperm morphometry.

    PubMed Central

    Gage, M J

    1998-01-01

    Understanding the adaptive significance of sperm form and function has been a challenge to biologists because sperm are highly specialized cells operating at a microscopic level in a complex environment. A fruitful course of investigation has been to use the comparative approach. This comparative study attempts to address some fundamental questions of the evolution of mammalian sperm morphometry. Data on sperm morphometry for 445 mammalian species were collated from published sources. I use contemporary phylogenetic analysis to control for the inherent non-independence of species and explore relationships between the morphometric dimensions of the three essential spermatozoal components: head, mid-piece and flagellum. Energy for flagellar action is metabolized by the mitochondrial-dense mid-piece and these combine to propel the sperm head, carrying the male haplotype, to the ovum. I therefore search for evolutionary associations between sperm morphometry and body mass, karyotype and the duration of oestrus. In contrast to previous findings, there is no inverse correlation between body weight and sperm length. Sperm mid-piece and flagellum lengths are positively associated with both head length and area, and the slopes of these relationships are discussed. Flagellum length is positively associated with mid-piece length but, in contrast to previous research and after phylogenetic control, I find no relationship between flagellum length and the volume of the mitochondrial sheath. Sperm head dimensions are not related to either genome mass or chromosome number, and there are no relationships between sperm morphometry and the duration of oestrus. PMID:9474794

  9. Two-dimensional airway analysis using probabilistic neural networks

    NASA Astrophysics Data System (ADS)

    Tan, Jun; Zheng, Bin; Park, Sang Cheol; Pu, Jiantao; Sciurba, Frank C.; Leader, Joseph K.

    2010-03-01

    Although 3-D airway tree segmentation permits analysis of airway tree paths of practical lengths and facilitates visual inspection, our group developed and tested an automated computer scheme that was operated on individual 2-D CT images to detect airway sections and measure their morphometry and/or dimensions. The algorithm computes a set of airway features including airway lumen area (Ai), airway cross-sectional area (Aw), the ratio (Ra) of Ai to Aw, and the airway wall thickness (Tw) for each detected airway section depicted on the CT image slice. Thus, this 2-D based algorithm does not depend on the accuracy of 3-D airway tree segmentation and does not require that CT examination encompasses the entire lung or reconstructs contiguous images. However, one disadvantage of the 2-D image based schemes is the lack of the ability to identify the airway generation (Gb) of the detected airway section. In this study, we developed and tested a new approach that uses 2-D airway features to assign a generation number to an airway. We developed and tested two probabilistic neural networks (PNN) based on different sets of airway features computed by our 2-D based scheme. The PNNs were trained and tested on 12 lung CT examinations (8 training and 4 testing). The accuracy for the PNN that utilized Ai and Ra for identifying the generation of airway sections varies from 55.4% - 100%. The overall accuracy of the PNN for all detected airway sections that are spread over all generations is 76.7%. Interestingly, adding wall thickness feature (Tw) to PNN did not improve identification accuracy. This preliminary study demonstrates that a set of 2-D airway features may be used to identify the generation number of an airway with reasonable accuracy.

  10. The relation of airway size to lung function

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Sciurba, Frank C.; Fuhrman, Carl R.; Bon, Jessica M.; Park, Sang C.; Pu, Jiantao; Gur, David

    2008-03-01

    Chronic obstructive pulmonary disease may cause airway remodeling, and small airways are the mostly likely site of associated airway flow obstruction. Detecting and quantifying airways depicted on a typical computed tomography (CT) images is limited by spatial resolution. In this study, we examined the association between lung function and airway size. CT examinations and spirometry measurement of forced expiratory volume in one second as a percent predicted (FEV I%) from 240 subjects were used in this study. Airway sections depicted in axial CT section were automatically detected and quantified. Pearson correlation coefficients (PCC) were computed to compare lung function across three size categories: (1) all detected airways, (2) the smallest 50% of detected airways, and (3) the largest 50% of detected airways using the CORANOVA test. The mean number of all airways detected per subject was 117.4 (+/- 40.1) with mean size ranging from 20.2 to 50.0 mm2. The correlation between lung function (i.e., FEV I) and airway morphometry associated with airway remodeling and airflow obstruction (i.e., lumen perimeter and wall area as a percent of total airway area) was significantly stronger for smaller compared to larger airways (p < 0.05). The PCCs between FEV I and all airways, the smallest 50%, and the largest 50% were 0.583, 0.617, 0.523, respectively, for lumen perimeter and -0.560, -0.584, and -0.514, respectively, for wall area percent. In conclusion, analyzing a set of smaller airways compared to larger airways may improve detection of an association between lung function and airway morphology change.

  11. Mindboggling morphometry of human brains

    PubMed Central

    Bao, Forrest S.; Giard, Joachim; Stavsky, Eliezer; Lee, Noah; Rossa, Brian; Reuter, Martin; Chaibub Neto, Elias

    2017-01-01

    Mindboggle (http://mindboggle.info) is an open source brain morphometry platform that takes in preprocessed T1-weighted MRI data and outputs volume, surface, and tabular data containing label, feature, and shape information for further analysis. In this article, we document the software and demonstrate its use in studies of shape variation in healthy and diseased humans. The number of different shape measures and the size of the populations make this the largest and most detailed shape analysis of human brains ever conducted. Brain image morphometry shows great potential for providing much-needed biological markers for diagnosing, tracking, and predicting progression of mental health disorders. Very few software algorithms provide more than measures of volume and cortical thickness, while more subtle shape measures may provide more sensitive and specific biomarkers. Mindboggle computes a variety of (primarily surface-based) shapes: area, volume, thickness, curvature, depth, Laplace-Beltrami spectra, Zernike moments, etc. We evaluate Mindboggle’s algorithms using the largest set of manually labeled, publicly available brain images in the world and compare them against state-of-the-art algorithms where they exist. All data, code, and results of these evaluations are publicly available. PMID:28231282

  12. Atlas warping for brain morphometry

    NASA Astrophysics Data System (ADS)

    Machado, Alexei M. C.; Gee, James C.

    1998-06-01

    In this work, we describe an automated approach to morphometry based on spatial normalizations of the data, and demonstrate its application to the analysis of gender differences in the human corpus callosum. The purpose is to describe a population by a reduced and representative set of variables, from which a prior model can be constructed. Our approach is rooted in the assumption that individual anatomies can be considered as quantitative variations on a common underlying qualitative plane. We can therefore imagine that a given individual's anatomy is a warped version of some referential anatomy, also known as an atlas. The spatial warps which transform a labeled atlas into anatomic alignment with a population yield immediate knowledge about organ size and shape in the group. Furthermore, variation within the set of spatial warps is directly related to the anatomic variation among the subjects. Specifically, the shape statistics--mean and variance of the mappings--for the population can be calculated in a special basis, and an eigendecomposition of the variance performed to identify the most significant modes of shape variation. The results obtained with the corpus callosum study confirm the existence of substantial anatomical differences between males and females, as reported in previous experimental work.

  13. The Phillips airway.

    PubMed

    Haridas, R P; Wilkinson, D J

    2012-07-01

    The Phillips airway was developed by George Ramsay Phillips. There is no known original description of the airway and the earliest known reference to it is from 1919. The airway and its modifications are described.

  14. Blockage of upper airway

    MedlinePlus

    ... Airway obstruction - acute upper Images Throat anatomy Choking Respiratory system References Cukor J, Manno M. Pediatric respiratory emergencies: upper airway obstruction and infections. In: Marx ...

  15. CT based computerized identification and analysis of human airways: A review

    SciTech Connect

    Pu Jiantao; Gu Suicheng; Liu Shusen; Zhu Shaocheng; Wilson, David; Siegfried, Jill M.; Gur, David

    2012-05-15

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  16. CT based computerized identification and analysis of human airways: a review.

    PubMed

    Pu, Jiantao; Gu, Suicheng; Liu, Shusen; Zhu, Shaocheng; Wilson, David; Siegfried, Jill M; Gur, David

    2012-05-01

    As one of the most prevalent chronic disorders, airway disease is a major cause of morbidity and mortality worldwide. In order to understand its underlying mechanisms and to enable assessment of therapeutic efficacy of a variety of possible interventions, noninvasive investigation of the airways in a large number of subjects is of great research interest. Due to its high resolution in temporal and spatial domains, computed tomography (CT) has been widely used in clinical practices for studying the normal and abnormal manifestations of lung diseases, albeit there is a need to clearly demonstrate the benefits in light of the cost and radiation dose associated with CT examinations performed for the purpose of airway analysis. Whereas a single CT examination consists of a large number of images, manually identifying airway morphological characteristics and computing features to enable thorough investigations of airway and other lung diseases is very time-consuming and susceptible to errors. Hence, automated and semiautomated computerized analysis of human airways is becoming an important research area in medical imaging. A number of computerized techniques have been developed to date for the analysis of lung airways. In this review, we present a summary of the primary methods developed for computerized analysis of human airways, including airway segmentation, airway labeling, and airway morphometry, as well as a number of computer-aided clinical applications, such as virtual bronchoscopy. Both successes and underlying limitations of these approaches are discussed, while highlighting areas that may require additional work.

  17. Comparative Minicolumnar Morphometry of Three Distinguished Scientists

    ERIC Educational Resources Information Center

    Casanova, Manuel F.; Switala, Andrew E.; Trippe, Juan; Fitzgerald, Michael

    2007-01-01

    It has been suggested that the cell minicolumn is the smallest module capable of information processing within the brain. In this case series, photomicrographs of six regions of interests (Brodmann areas 4, 9, 17, 21, 22, and 40) were analyzed by computerized image analysis for minicolumnar morphometry in the brains of three distinguished…

  18. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: theoretical background.

    PubMed

    Sukstanskii, A L; Yablonskiy, D A

    2008-02-01

    MRI-based study of (3)He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the (3)He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients-longitudinal (D(L)) and transverse (D(T)) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D(L) and D(T) and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D(L) and D(T) on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry-evaluation of the geometrical parameters of acinar airways from hyperpolarized (3)He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of (3)He ADC on the experimentally-controllable diffusion time, Delta. If Delta is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.

  19. Association between lung function and airway wall density

    NASA Astrophysics Data System (ADS)

    Leader, J. Ken; Zheng, Bin; Fuhrman, Carl R.; Tedrow, John; Park, Sang C.; Tan, Jun; Pu, Jiantao; Drescher, John M.; Gur, David; Sciurba, Frank C.

    2009-02-01

    Computed tomography (CT) examination is often used to quantify the relation between lung function and airway remodeling in chronic obstructive pulmonary disease (COPD). In this preliminary study, we examined the association between lung function and airway wall computed attenuation ("density") in 200 COPD screening subjects. Percent predicted FVC (FVC%), percent predicted FEV1 (FEV1%), and the ratio of FEV1 to FVC as a percentage (FEV1/FVC%) were measured post-bronchodilator. The apical bronchus of the right upper lobe was manually selected from CT examinations for evaluation. Total airway area, lumen area, wall area, lumen perimeter and wall area as fraction of the total airway area were computed. Mean HU (meanHU) and maximum HU (maxHU) values were computed across pixels assigned membership in the wall and with a HU value greater than -550. The Pearson correlation coefficients (PCC) between FVC%, FEV1%, and FEV1/FVC% and meanHU were -0.221 (p = 0.002), -0.175 (p = 0.014), and -0.110 (p = 0.123), respectively. The PCCs for maxHU were only significant for FVC%. The correlations between lung function and the airway morphometry parameters were slightly stronger compared to airway wall density. MeanHU was significantly correlated with wall area (PCC = 0.720), airway area (0.498) and wall area percent (0.611). This preliminary work demonstrates that airway wall density is associated with lung function. Although the correlations in our study were weaker than a recent study, airway wall density initially appears to be an important parameter in quantitative CT analysis of COPD.

  20. Triggers of airway inflammation.

    PubMed

    Kerrebijn, K F

    1986-01-01

    Most asthmatics have hyperresponsive airways. This makes them more sensitive than non-asthmatics to bronchoconstricting environmental exposures which, in their turn, may enhance responsiveness. Airway inflammation is considered to be a key determinant of airway hyperresponsiveness: the fact that chronic airway inflammation in cystic fibrosis does not lead to airway hyperresponsiveness of any importance indicates, however, that the role of airway inflammation is complex and incompletely elucidated. The main inducers of airway inflammation are viral infections, antigens, occupational stimuli and pollutants. Although exercise, airway cooling and hyper- or hypotonic aerosols are potent stimuli of bronchoconstriction, it is questionable if airway inflammation is involved in their mode of action. Each of the above-mentioned stimuli is discussed, with emphasis laid on the relation of symptoms to mechanisms.

  1. Emergency airway puncture

    MedlinePlus

    ... support for only a very short period of time. Alternative Names Needle cricothyrotomy Images Emergency airway puncture Cricoid cartilage Emergency airway puncture - series References Hebert RB, Bose S, Mace SE. Cricothyrotomy and ...

  2. Upper airway biopsy

    MedlinePlus

    ... upper airway Images Upper airway test Bronchoscopy Throat anatomy References Yung RC, Boss EF. Tracheobronchial endoscopy. In: Flint PW, Haughey BH, Lund LJ, et al, eds. Cummings Otolaryngology: Head & Neck Surgery. 5th ed. Philadelphia, PA: Elsevier Mosby; ...

  3. Validation of the conceptual anatomical model of the lung airway.

    PubMed

    Fleming, John S; Sauret, Veronique; Conway, Joy H; Martonen, Ted B

    2004-01-01

    The conceptual anatomical model of the lung airway considers each lung volume divided into ten concentric shells. It specifies the volume of each airway generation in each shell, using Weibel morphometry. This study updates and validates the model and evaluates the errors obtained when using it to estimate inhaled aerosol deposition per generation from spatial imaging data. A comparison of different airway models describing the volume per generation, including data from CT images of a lung cast and a human subject, was performed. A revised version of the conceptual model was created, using the average volume per generation from these data. The new model was applied to derive the aerosol deposition per generation from 24 single photon emission computed tomography (SPECT) studies. Analysis errors were assessed by applying the same calculations but using airway models based on the minimum and maximum volumes per generation. The mean shell position of each generation in the average model was not significantly different from either CT model. However there were differences between the volumes per generation of the different models. The root mean square differences between bronchial airways deposition fraction (generations 2-8) obtained from the maximum and minimum models compared to the new average model was 0.66 percentage points (14%). For the conducting airways deposition fraction (generations 2-15) this was 1.66 percentage points (12%). The conceptual model is consistent with CT measurements of airway geometry. The errors resulting from using a generic airway model to interpret 3D radionuclide image data have been defined.

  4. Careers in Airway Science.

    ERIC Educational Resources Information Center

    Federal Aviation Administration (DOT), Washington, DC.

    The Federal Aviation Administration (FAA) has initiated the Airway Science curriculum as a method of preparing the next generation of aviation technicians and managers. This document: (1) discusses the FAA's role in the Airway Science program; (2) describes some of the career fields that FAA offers to Airway Science graduates (air traffic control…

  5. Quantitative assessment of lung microstructure in healthy mice using an MR-based 3He lung morphometry technique

    PubMed Central

    Osmanagic, E.; Sukstanskii, A. L.; Quirk, J. D.; Woods, J. C.; Pierce, R. A.; Conradi, M. S.; Weibel, E. R.

    2010-01-01

    The recently developed technique of lung morphometry using hyperpolarized 3He diffusion magnetic resonance (MR) (Yablonskiy DA, Sukstanskii AL, Woods JC, Gierada DS, Quirk JD, Hogg JC, Cooper JD, Conradi MS. J Appl Physiol 107: 1258–1265, 2009) permits in vivo study of lung microstructure at the alveolar level. Originally proposed for human lungs, it also has the potential to study small animals. The technique relies on theoretical developments in the area of gas diffusion in lungs linking the diffusion attenuated MR signal to the lung microstructure. To adapt this technique to small animals, certain modifications in MR protocol and data analysis are required, reflecting the smaller size of mouse alveoli and acinar airways. This is the subject of the present paper. Herein, we established empirical relationships relating diffusion measurements to geometrical parameters of lung acinar airways with dimensions typical for mice and rats by using simulations of diffusion in the airways. We have also adjusted the MR protocol to acquire data with much shorter diffusion times compared with humans to accommodate the substantially smaller acinar airway length. We apply this technique to study mouse lungs ex vivo. Our MR-based measurements yield mean values of lung surface-to-volume ratio of 670 cm−1, alveolar density of 3,200 per mm3, alveolar depth of 55 μm, and mean chord length of 62 μm, all consistent with published data obtained histologically in mice by unbiased methods. The proposed technique can be used for in vivo experiments, opening a door for longitudinal studies of lung morphometry in mice and other small animals. PMID:20798272

  6. Brain Morphometry using MRI in Schizophrenia Patients

    NASA Astrophysics Data System (ADS)

    Abanshina, I.; Pirogov, Yu.; Kupriyanov, D.; Orlova, V.

    2010-01-01

    Schizophrenia has been the focus of intense neuroimaging research. Although its fundamental pathobiology remains elusive, neuroimaging studies provide evidence of abnormalities of cerebral structure and function in patients with schizophrenia. We used morphometry as a quantitative method for estimation of volume of brain structures. Seventy eight right-handed subjects aged 18-45 years were exposed to MRI-examination. Patients were divided into 3 groups: patients with schizophrenia, their relatives and healthy controls. The volumes of interested structures (caudate nucleus, putamen, ventricles, frontal and temporal lobe) were measured using T2-weighted MR-images. Correlations between structural differences and functional deficit were evaluated.

  7. Aging-related changes in respiratory system mechanics and morphometry in mice.

    PubMed

    Elliott, Jonathan E; Mantilla, Carlos B; Pabelick, Christina M; Roden, Anja C; Sieck, Gary C

    2016-07-01

    Previous work investigating respiratory system mechanics in mice has reported an aging-related increase in compliance and mean linear intercept (Lm). However, these changes were assessed using only a young (2-mo-old) and old (20- and 26-mo-old) group yet were interpreted to reflect a linear evolution across the life span. Therefore, to investigate respiratory system mechanics and lung morphometry across a more complete spectrum of ages, we utilized 2 (100% survival, n = 6)-, 6 (100% survival, n = 12)-, 18 (90% survival, n = 12)-, 24 (75% survival, n = 12)-, and 30 (25% survival, n = 12)-mo-old C57BL/6 mice. We found a nonlinear aging-related decrease in respiratory system resistance and increase in dynamic compliance and hysteresis between 2- and 24-mo-old mice. However, in 30-mo-old mice, respiratory system resistance increased, and dynamic compliance and hysteresis decreased relative to 24-mo-old mice. Respiratory system impedance spectra were measured between 1-20.5 Hz at positive end-expiratory pressures (PEEP) of 1, 3, 5, and 7 cmH2O. Respiratory system resistance and reactance at each level of PEEP were increased and decreased, respectively, only in 2-mo-old animals. No differences in the respiratory system impedance spectra were observed in 6-, 18-, 24-, and 30-mo-old mice. Additionally, lungs were fixed following tracheal instillation of 4% paraformaldehyde at 25 cmH2O and processed for Lm and airway collagen deposition. There was an aging-related increase in Lm consistent with emphysematous-like changes and no evidence of increased airway collagen deposition. Accordingly, we demonstrate nonlinear aging-related changes in lung mechanics and morphometry in C57BL/6 mice.

  8. Deformation-based brain morphometry in rats.

    PubMed

    Gaser, Christian; Schmidt, Silvio; Metzler, Martin; Herrmann, Karl-Heinz; Krumbein, Ines; Reichenbach, Jürgen R; Witte, Otto W

    2012-10-15

    Magnetic resonance imaging (MRI)-based morphometry provides in vivo evidence for macro-structural plasticity of the brain. Experiments on small animals using automated morphometric methods usually require expensive measurements with ultra-high field dedicated animal MRI systems. Here, we developed a novel deformation-based morphometry (DBM) tool for automated analyses of rat brain images measured on a 3-Tesla clinical whole body scanner with appropriate coils. A landmark-based transformation of our customized reference brain into the coordinates of the widely used rat brain atlas from Paxinos and Watson (Paxinos Atlas) guarantees the comparability of results to other studies. For cross-sectional data, we warped images onto the reference brain using the low-dimensional nonlinear registration implemented in the MATLAB software package SPM8. For the analysis of longitudinal data sets, we chose high-dimensional registrations of all images of one data set to the first baseline image which facilitate the identification of more subtle structural changes. Because all deformations were finally used to transform the data into the space of the Paxinos Atlas, Jacobian determinants could be used to estimate absolute local volumes of predefined regions-of-interest. Pilot experiments were performed to analyze brain structural changes due to aging or photothrombotically-induced cortical stroke. The results support the utility of DBM based on commonly available clinical whole-body scanners for highly sensitive morphometric studies on rats.

  9. Reproducibility in Nerve Morphometry: Comparison between Methods and among Observers

    PubMed Central

    Bilego Neto, Antônio Paulo da Costa; Silveira, Fernando Braga Cassiano; Rodrigues da Silva, Greice Anne; Sanada, Luciana Sayuri; Fazan, Valéria Paula Sassoli

    2013-01-01

    We investigated the reproducibility of a semiautomated method (computerized with manual intervention) for nerve morphometry (counting and measuring myelinated fibers) between three observers with different levels of expertise and experience with the method. Comparisons between automatic (fully computerized) and semiautomated morphometric methods performed by the same computer software using the same nerve images were also performed. Sural nerves of normal adult rats were used. Automatic and semiautomated morphometry of the myelinated fibers were made through the computer software KS-400. Semiautomated morphometry was conducted by three independent observers on the same images, using the semiautomated method. Automatic morphometry overestimated the myelin sheath area, thus overestimating the myelinated fiber size and underestimating the axon size. Fiber distributions overestimation was of 0.5 μm. For the semiautomated morphometry, no differences were found between observers for myelinated fiber and axon size distributions. Overestimation of the myelin sheath size of normal fibers by the fully automatic method might have an impact when morphometry is used for diagnostic purposes. We suggest that not only semiautomated morphometry results can be compared between different centers in clinical trials but it can also be performed by more than one investigator in one single experiment, being a reliable and reproducible method. PMID:23841086

  10. Controversies in Pediatric Perioperative Airways

    PubMed Central

    Klučka, Jozef; Štourač, Petr; Štoudek, Roman; Ťoukálková, Michaela; Harazim, Hana; Kosinová, Martina

    2015-01-01

    Pediatric airway management is a challenge in routine anesthesia practice. Any airway-related complication due to improper procedure can have catastrophic consequences in pediatric patients. The authors reviewed the current relevant literature using the following data bases: Google Scholar, PubMed, Medline (OVID SP), and Dynamed, and the following keywords: Airway/s, Children, Pediatric, Difficult Airways, and Controversies. From a summary of the data, we identified several controversies: difficult airway prediction, difficult airway management, cuffed versus uncuffed endotracheal tubes for securing pediatric airways, rapid sequence induction (RSI), laryngeal mask versus endotracheal tube, and extubation timing. The data show that pediatric anesthesia practice in perioperative airway management is currently lacking the strong evidence-based medicine (EBM) data that is available for adult subpopulations. A number of procedural steps in airway management are derived only from adult populations. However, the objective is the same irrespective of patient age: proper securing of the airway and oxygenation of the patient. PMID:26759809

  11. Analysis of RPE morphometry in human eyes

    PubMed Central

    Bhatia, Shagun K.; Rashid, Alia; Chrenek, Micah A.; Zhang, Qing; Bruce, Beau B.; Klein, Mitchel; Boatright, Jeffrey H.; Jiang, Yi; Grossniklaus, Hans E.

    2016-01-01

    Purpose To describe the RPE morphometry of healthy human eyes regarding age and topographic location using modern computational methods with high accuracy and objectivity. We tested whether there were regional and age-related differences in RPE cell area and shape. Methods Human cadaver donor eyes of varying ages were dissected, and the RPE flatmounts were immunostained for F-actin with AF635-phalloidin, nuclei stained with propidium iodide, and imaged with confocal microscopy. Image analysis was performed using ImageJ (NIH) and CellProfiler software. Quantitative parameters, including cell density, cell area, polygonality of cells, number of neighboring cells, and measures of cell shape, were obtained from these analyses to characterize individual and groups of RPE cells. Measurements were taken from selected areas spanning the length of the temporal retina through the macula and the mid-periphery to the far periphery. Results Nineteen eyes from 14 Caucasian donors of varying ages ranging from 29 to 80 years were used. Along a horizontal nasal to temporal meridian, there were differences in several cell shape and size characteristics. Generally, the cell area and shape was relatively constant and regular except in the far periphery. In the outer third of the retina, the cell area and shape differed from the inner two-thirds statistically significantly. In the macula and the far periphery, an overall decreasing trend in RPE cell density, percent hexagonal cells, and form factor was observed with increasing age. We also found a trend toward increasing cell area and eccentricity with age in the macula and the far periphery. When individuals were divided into two age groups, <60 years and ≥60 years, there was a higher cell density, lower cell area, lower eccentricity, and higher form factor in the younger group in the macula and the far periphery (p<0.05 for all measurements). No statistically significant differences in RPE morphometry between age groups were found

  12. Volcano morphometry and volume scaling on Venus

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-01-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  13. Volcano morphometry and volume scaling on Venus

    NASA Astrophysics Data System (ADS)

    Garvin, J. B.; Williams, R. S., Jr.

    1994-03-01

    A broad variety of volcanic edifices have been observed on Venus. They ranged in size from the limits of resolution of the Magellan SAR (i.e., hundreds of meters) to landforms over 500 km in basal diameter. One of the key questions pertaining to volcanism on Venus concerns the volume eruption rate or VER, which is linked to crustal productivity over time. While less than 3 percent of the surface area of Venus is manifested as discrete edifices larger than 50 km in diameter, a substantial component of the total crustal volume of the planet over the past 0.5 Ga is related to isolated volcanoes, which are certainly more easily studied than the relatively diffusely defined plains volcanic flow units. Thus, we have focused our efforts on constraining the volume productivity of major volcanic edifices larger than 100 km in basal diameter. Our approach takes advantage of the topographic data returned by Magellan, as well as our database of morphometric statistics for the 20 best known lava shields of Iceland, plus Mauna Loa of Hawaii. As part of this investigation, we have quantified the detailed morphometry of nearly 50 intermediate to large scale edifices, with particular attention to their shape systematics. We found that a set of venusian edifices which include Maat, Sapas, Tepev, Sif, Gula, a feature at 46 deg S, 215 deg E, as well as the shield-like structure at 10 deg N, 275 deg E are broadly representative of the approx. 400 volcanic landforms larger than 50 km. The cross-sectional shapes of these 7 representative edifices range from flattened cones (i.e., Sif) similar to classic terrestrial lava shields such as Mauna Loa and Skjaldbreidur, to rather dome-like structures which include Maat and Sapas. The majority of these larger volcanoes surveyed as part of our study displayed cross-sectional topographies with paraboloidal shaped, in sharp contrast with the cone-like appearance of most simple terrestrial lava shields. In order to more fully explore the

  14. High-throughput morphometric analysis of pulmonary airways in MSCT via a mixed 3D/2D approach

    NASA Astrophysics Data System (ADS)

    Ortner, Margarete; Fetita, Catalin; Brillet, Pierre-Yves; Pr"teux, Françoise; Grenier, Philippe

    2011-03-01

    Asthma and COPD are complex airway diseases with an increased incidence estimated for the next decade. Today, the mechanisms and relationships between airway structure/physiology and the clinical phenotype and genotype are not completely understood. We thus lack the tools to predict disease progression or therapeutic responses. One of the main causes is our limited ability to assess the complexity of airway diseases in large populations of patients with appropriate controls. Multi-slice computed tomography (MSCT) imaging opened the way to the non-invasive assessment of airway physiology and structure, but the use of such technology in large cohorts requires a high degree of automation of the measurements. This paper develops an investigation framework and the associated image quantification tools for high-throughput analysis of airways in MSCT. A mixed approach is proposed, combining 3D and cross-section measurements of the airway tree where the user-interaction is limited to the choice of the desired analysis patterns. Such approach relies on the fully-automated segmentation of the 3D airway tree, caliber estimation and visualization based on morphologic granulometry, central axis computation and tree segment selection, cross-section morphometry of airway lumen and wall, and bronchus longitudinal shape analysis for stenosis/bronciectasis detection and measure validation. The developed methodology has been successfully applied to a cohort of 96 patients from a multi-center clinical study of asthma control in moderate and persistent asthma.

  15. Puma (Puma concolor) epididymal sperm morphometry

    PubMed Central

    Cucho, Hernán; Alarcón, Virgilio; Ordóñez, César; Ampuero, Enrique; Meza, Aydee; Soler, Carles

    2016-01-01

    The Andean puma (Puma concolor) has not been widely studied, particularly in reference to its semen characteristics. The aim of the present study was to define the morphometry of puma sperm heads and classify their subpopulations by cluster analysis. Samples were recovered postmortem from two epididymides from one animal and prepared for morphological observation after staining with the Hemacolor kit. Morphometric data were obtained from 581 spermatozoa using a CASA-Morph system, rendering 13 morphometric parameters. The principal component (PC) analysis was performed followed by cluster analysis for the establishment of subpopulations. Two PC components were obtained, the first related to size and the second to shape. Three subpopulations were observed, corresponding to elongated and intermediate-size sperm heads and acrosomes, to large heads with large acrosomes, and to small heads with short acrosomes. In conclusion, puma spermatozoa showed no uniform sperm morphology but three clear subpopulations. These results should be used for future work in the establishment of an adequate germplasm bank of this species. PMID:27678466

  16. Puma (Puma concolor) epididymal sperm morphometry.

    PubMed

    Cucho, Hernán; Alarcón, Virgilio; Ordóñez, César; Ampuero, Enrique; Meza, Aydee; Soler, Carles

    2016-01-01

    The Andean puma (Puma concolor) has not been widely studied, particularly in reference to its semen characteristics. The aim of the present study was to define the morphometry of puma sperm heads and classify their subpopulations by cluster analysis. Samples were recovered postmortem from two epididymides from one animal and prepared for morphological observation after staining with the Hemacolor kit. Morphometric data were obtained from 581 spermatozoa using a CASA-Morph system, rendering 13 morphometric parameters. The principal component (PC) analysis was performed followed by cluster analysis for the establishment of subpopulations. Two PC components were obtained, the first related to size and the second to shape. Three subpopulations were observed, corresponding to elongated and intermediate-size sperm heads and acrosomes, to large heads with large acrosomes, and to small heads with short acrosomes. In conclusion, puma spermatozoa showed no uniform sperm morphology but three clear subpopulations. These results should be used for future work in the establishment of an adequate germplasm bank of this species.

  17. On the morphometry of terrestrial shield volcanoes

    NASA Astrophysics Data System (ADS)

    Grosse, Pablo; Kervyn, Matthieu

    2016-04-01

    Shield volcanoes are described as low angle edifices that have convex up topographic profiles and are built primarily by the accumulation of lava flows. This generic view of shields' morphology is based on a limited number of monogenetic shields from Iceland and Mexico, and a small set of large oceanic islands (Hawaii, Galapagos). Here, the morphometry of over 150 monogenetic and polygenetic shield volcanoes, identified inthe Global Volcanism Network database, are analysed quantitatively from 90-meter resolution DEMs using the MORVOLC algorithm. An additional set of 20 volcanoes identified as stratovolcanoes but having low slopes and being dominantly built up by accumulation of lava flows are documented for comparison. Results show that there is a large variation in shield size (volumes range from 0.1 to >1000 km3), profile shape (height/basal width ratios range from 0.01 to 0.1), flank slope gradients, elongation and summit truncation. Correlation and principal component analysis of the obtained quantitative database enables to identify 4 key morphometric descriptors: size, steepness, plan shape and truncation. Using these descriptors through clustering analysis, a new classification scheme is proposed. It highlights the control of the magma feeding system - either central, along a linear structure, or spatially diffuse - on the resulting shield volcano morphology. Genetic relationships and evolutionary trends between contrasted morphological end-members can be highlighted within this new scheme. Additional findings are that the Galapagos-type morphology with a central deep caldera and steep upper flanks are characteristic of other shields. A series of large oceanic shields have slopes systematically much steeper than the low gradients (<4-8°) generally attributed to large Hawaiian-type shields. Finally, the continuum of morphologies from flat shields to steeper complex volcanic constructs considered as stratovolcanoes calls for a revision of this oversimplified

  18. Upper airway radiographs in infants with upper airway insufficiency.

    PubMed Central

    Tonkin, S L; Davis, S L; Gunn, T R

    1994-01-01

    Upper airway measurements in nine infants considered to be at risk of upper airway insufficiency, six of whom presented after an apnoeic episode, were compared with measurements taken in two age groups of healthy infants. Paired, inspiratory and expiratory, lateral upper airway radiographs were obtained while the infants were awake and breathing quietly. The radiographs of all nine infants demonstrated narrowing in the oropharyngeal portion of the airway during inspiration and in six infants there was ballooning of the upper airway during expiration. Seven of the nine infants subsequently experienced recurrent apnoeic episodes which required vigorous stimulation to restore breathing. Experience suggests that respiratory phase timed radiographs are a useful adjunct to the evaluation of infants who are suspected of having upper airway dysfunction. They provide information regarding both the dimensions and compliance of the upper airway as well as the site of any restriction. Images PMID:8048825

  19. Supraglottic airway devices in children

    PubMed Central

    Ramesh, S; Jayanthi, R

    2011-01-01

    Modern anaesthesia practice in children was made possible by the invention of the endotracheal tube (ET), which made lengthy and complex surgical procedures feasible without the disastrous complications of airway obstruction, aspiration of gastric contents or asphyxia. For decades, endotracheal intubation or bag-and-mask ventilation were the mainstays of airway management. In 1983, this changed with the invention of the laryngeal mask airway (LMA), the first supraglottic airway device that blended features of the facemask with those of the ET, providing ease of placement and hands-free maintenance along with a relatively secure airway. The invention and development of the LMA by Dr. Archie Brain has had a significant impact on the practice of anaesthesia, management of the difficult airway and cardiopulmonary resuscitation in children and neonates. This review article will be a brief about the clinical applications of supraglottic airways in children. PMID:22174464

  20. DNA fragmentation and sperm head morphometry in cat epididymal spermatozoa.

    PubMed

    Vernocchi, Valentina; Morselli, Maria Giorgia; Lange Consiglio, Anna; Faustini, Massimo; Luvoni, Gaia Cecilia

    2014-10-15

    Sperm DNA fragmentation is an important parameter to assess sperm quality and can be a putative fertility predictor. Because the sperm head consists almost entirely of DNA, subtle differences in sperm head morphometry might be related to DNA status. Several techniques are available to analyze sperm DNA fragmentation, but they are labor-intensive and require expensive instrumentations. Recently, a kit (Sperm-Halomax) based on the sperm chromatin dispersion test and developed for spermatozoa of different species, but not for cat spermatozoa, became commercially available. The first aim of the present study was to verify the suitability of Sperm-Halomax assay, specifically developed for canine semen, for the evaluation of DNA fragmentation of epididymal cat spermatozoa. For this purpose, DNA fragmentation indexes (DFIs) obtained with Sperm-Halomax and terminal deoxynucleotidyl transferase-mediated nick-end labeling (TUNEL) were compared. The second aim was to investigate whether a correlation between DNA status, sperm head morphology, and morphometry assessed by computer-assisted semen analysis exists in cat epididymal spermatozoa. No differences were observed in DFIs obtained with Sperm-Halomax and TUNEL. This result indicates that Sperm-Halomax assay provides a reliable evaluation of DNA fragmentation of epididymal feline spermatozoa. The DFI seems to be independent from all the measured variables of sperm head morphology and morphometry. Thus, the evaluation of the DNA status of spermatozoa could effectively contribute to the completion of the standard analysis of fresh or frozen semen used in assisted reproductive technologies.

  1. Effect of Perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates

    SciTech Connect

    Joad, Jesse P. Kott, Kayleen S.; Bric, John M.; Peake, Janice L.; Pinkerton, Kent E.

    2009-02-01

    Infants exposed to second hand smoke (SHS) experience more problems with wheezing. This study was designed to determine if perinatal SHS exposure increases intrinsic and/or in vivo airway responsiveness to methacholine and whether potential structural/cellular alterations in the airway might explain the change in responsiveness. Pregnant rhesus monkeys were exposed to filtered air (FA) or SHS (1 mg/m{sup 3} total suspended particulates) for 6 h/day, 5 days/week starting at 50 days gestational age. The mother/infant pairs continued the SHS exposures postnatally. At 3 months of age each infant: 1) had in vivo lung function measurements in response to inhaled methacholine, or 2) the right accessory lobe filled with agarose, precision-cut to 600 {mu}m slices, and bathed in increasing concentrations of methacholine. The lumenal area of the central airway was determined using videomicrometry followed by fixation and histology with morphometry. In vivo tests showed that perinatal SHS increases baseline respiratory rate and decreases responsiveness to methacholine. Perinatal SHS did not alter intrinsic airway responsiveness in the bronchi. However in respiratory bronchioles, SHS exposure increased airway responsiveness at lower methacholine concentrations but decreased it at higher concentrations. Perinatal SHS did not change eosinophil profiles, epithelial volume, smooth muscle volume, or mucin volume. However it did increase the number of alveolar attachments in bronchi and respiratory bronchioles. In general, as mucin increased, airway responsiveness decreased. We conclude that perinatal SHS exposure alters in vivo and intrinsic airway responsiveness, and alveolar attachments.

  2. Effect of perinatal secondhand tobacco smoke exposure on in vivo and intrinsic airway structure/function in non-human primates.

    PubMed

    Joad, Jesse P; Kott, Kayleen S; Bric, John M; Peake, Janice L; Pinkerton, Kent E

    2009-02-01

    Infants exposed to second hand smoke (SHS) experience more problems with wheezing. This study was designed to determine if perinatal SHS exposure increases intrinsic and/or in vivo airway responsiveness to methacholine and whether potential structural/cellular alterations in the airway might explain the change in responsiveness. Pregnant rhesus monkeys were exposed to filtered air (FA) or SHS (1 mg/m(3) total suspended particulates) for 6 h/day, 5 days/week starting at 50 days gestational age. The mother/infant pairs continued the SHS exposures postnatally. At 3 months of age each infant: 1) had in vivo lung function measurements in response to inhaled methacholine, or 2) the right accessory lobe filled with agarose, precision-cut to 600 mum slices, and bathed in increasing concentrations of methacholine. The lumenal area of the central airway was determined using videomicrometry followed by fixation and histology with morphometry. In vivo tests showed that perinatal SHS increases baseline respiratory rate and decreases responsiveness to methacholine. Perinatal SHS did not alter intrinsic airway responsiveness in the bronchi. However in respiratory bronchioles, SHS exposure increased airway responsiveness at lower methacholine concentrations but decreased it at higher concentrations. Perinatal SHS did not change eosinophil profiles, epithelial volume, smooth muscle volume, or mucin volume. However it did increase the number of alveolar attachments in bronchi and respiratory bronchioles. In general, as mucin increased, airway responsiveness decreased. We conclude that perinatal SHS exposure alters in vivo and intrinsic airway responsiveness, and alveolar attachments.

  3. Operative endoscopy of the airway

    PubMed Central

    Walters, Dustin M.

    2016-01-01

    Airway endoscopy has long been an important and useful tool in the management of thoracic diseases. As thoracic specialists have gained experience with both flexible and rigid bronchoscopic techniques, the technology has continued to evolve so that bronchoscopy is currently the foundation for diagnosis and treatment of many thoracic ailments. Airway endoscopy plays a significant role in the biopsy of tumors within the airways, mediastinum, and lung parenchyma. Endoscopic methods have been developed to treat benign and malignant airway stenoses and tracheomalacia. And more recently, techniques have been conceived to treat end-stage emphysema and prolonged air leaks in select patients. This review describes the abundant uses of airway endoscopy, as well as technical considerations and limitations of the current technologies. PMID:26981263

  4. Global airway disease beyond allergy.

    PubMed

    Hellings, Peter W; Prokopakis, Emmanuel P

    2010-03-01

    Besides the anatomic continuity of the upper and lower airways, inflammation in one part of the airway influences the homeostasis of the other. The mechanisms underlying this interaction have been studied primarily in allergic disease, showing systemic immune activation, induction of inflammation at a distance, and a negative impact of nasal inflammation on bronchial homeostasis. In addition to allergy, other inflammatory conditions of the upper airways are associated with lower airway disease. Rhinosinusitis is frequently associated with asthma and chronic obstructive pulmonary disease. The impairment of purification, humidification, and warming up of the inspired air by the nose in rhinosinusitis may be responsible in part for bronchial pathology. The resolution of sinonasal inflammation via medical and/or surgical treatment is responsible for the beneficial effect of the treatment on bronchial disease. This article provides a comprehensive overview of the current knowledge of upper and lower airway communication beyond allergic disease.

  5. Recurrent airway obstruction: a review.

    PubMed

    Pirie, R S

    2014-05-01

    Recurrent airway obstruction is a widely recognised airway disorder, characterised by hypersensitivity-mediated neutrophilic airway inflammation and lower airway obstruction in a subpopulation of horses when exposed to suboptimal environments high in airborne organic dust. Over the past decade, numerous studies have further advanced our understanding of different aspects of the disease. These include clarification of the important inhaled airborne agents responsible for disease induction, improving our understanding of the underlying genetic basis of disease susceptibility and unveiling the fundamental immunological mechanisms leading to establishment of the classic disease phenotype. This review, as well as giving a clinical overview of recurrent airway obstruction, summarises much of the work in these areas that have culminated in a more thorough understanding of this debilitating disease.

  6. The airway microbiome and disease.

    PubMed

    Marsland, Benjamin J; Yadava, Koshika; Nicod, Laurent P

    2013-08-01

    Although traditionally thought to be sterile, accumulating evidence now supports the concept that our airways harbor a microbiome. Thus far, studies have focused upon characterizing the bacterial constituents of the airway microbiome in both healthy and diseased lungs, but what perhaps provides the greatest impetus for the exploration of the airway microbiome is that different bacterial phyla appear to dominate diseased as compared with healthy lungs. As yet, there is very limited evidence supporting a functional role for the airway microbiome, but continued research in this direction is likely to provide such evidence, particularly considering the progress that has been made in understanding host-microbe mutualism in the intestinal tract. In this review, we highlight the major advances that have been made discovering and describing the airway microbiome, discuss the experimental evidence that supports a functional role for the microbiome in health and disease, and propose how this emerging field is going to impact clinical practice.

  7. Monogenean anchor morphometry: systematic value, phylogenetic signal, and evolution

    PubMed Central

    Soo, Oi Yoon Michelle; Tan, Wooi Boon; Lim, Lee Hong Susan

    2016-01-01

    Background. Anchors are one of the important attachment appendages for monogenean parasites. Common descent and evolutionary processes have left their mark on anchor morphometry, in the form of patterns of shape and size variation useful for systematic and evolutionary studies. When combined with morphological and molecular data, analysis of anchor morphometry can potentially answer a wide range of biological questions. Materials and Methods. We used data from anchor morphometry, body size and morphology of 13 Ligophorus (Monogenea: Ancyrocephalidae) species infecting two marine mugilid (Teleostei: Mugilidae) fish hosts: Moolgarda buchanani (Bleeker) and Liza subviridis (Valenciennes) from Malaysia. Anchor shape and size data (n = 530) were generated using methods of geometric morphometrics. We used 28S rRNA, 18S rRNA, and ITS1 sequence data to infer a maximum likelihood phylogeny. We discriminated species using principal component and cluster analysis of shape data. Adams’s Kmult was used to detect phylogenetic signal in anchor shape. Phylogeny-correlated size and shape changes were investigated using continuous character mapping and directional statistics, respectively. We assessed morphological constraints in anchor morphometry using phylogenetic regression of anchor shape against body size and anchor size. Anchor morphological integration was studied using partial least squares method. The association between copulatory organ morphology and anchor shape and size in phylomorphospace was used to test the Rohde-Hobbs hypothesis. We created monogeneaGM, a new R package that integrates analyses of monogenean anchor geometric morphometric data with morphological and phylogenetic data. Results. We discriminated 12 of the 13 Ligophorus species using anchor shape data. Significant phylogenetic signal was detected in anchor shape. Thus, we discovered new morphological characters based on anchor shaft shape, the length between the inner root point and the outer root

  8. Putting the Squeeze on Airway Epithelia

    PubMed Central

    Park, Jin-Ah; Fredberg, Jeffrey J.

    2015-01-01

    Asthma is characterized by chronic inflammation, airway hyperresponsiveness, and progressive airway remodeling. The airway epithelium is known to play a critical role in the initiation and perpetuation of these processes. Here, we review how excessive epithelial stress generated by bronchoconstriction is sufficient to induce airway remodeling, even in the absence of inflammatory cells. PMID:26136543

  9. Airway complications after lung transplantation.

    PubMed

    Machuzak, Michael; Santacruz, Jose F; Gildea, Thomas; Murthy, Sudish C

    2015-01-01

    Airway complications after lung transplantation present a formidable challenge to the lung transplant team, ranging from mere unusual images to fatal events. The exact incidence of complications is wide-ranging depending on the type of event, and there is still evolution of a universal characterization of the airway findings. Management is also wide-ranging. Simple observation or simple balloon bronchoplasty is sufficient in many cases, but vigilance following more severe necrosis is required for late development of both anastomotic and nonanastomotic airway strictures. Furthermore, the impact of coexisting infection, rejection, and medical disease associated with high-level immunosuppression further complicates care.

  10. Gene Delivery to the Airway

    PubMed Central

    Keiser, Nicholas W.; Engelhardt, John F.

    2013-01-01

    This unit describes generation of and gene transfer to several commonly used airway models. Isolation and transduction of primary airway epithelial cells are first described. Next, the preparation of polarized airway epithelial monolayers is outlined. Transduction of these polarized cells is also described. Methods are presented for generation of tracheal xenografts as well as both ex vivo and in vivo gene transfer to these xenografts. Finally, a method for in vivo gene delivery to the lungs of rodents is included. Methods for evaluating transgene expression are given in the support protocols. PMID:23853081

  11. United airway disease: current perspectives

    PubMed Central

    Giavina-Bianchi, Pedro; Aun, Marcelo Vivolo; Takejima, Priscila; Kalil, Jorge; Agondi, Rosana Câmara

    2016-01-01

    Upper and lower airways are considered a unified morphological and functional unit, and the connection existing between them has been observed for many years, both in health and in disease. There is strong epidemiologic, pathophysiologic, and clinical evidence supporting an integrated view of rhinitis and asthma: united airway disease in the present review. The term “united airway disease” is opportune, because rhinitis and asthma are chronic inflammatory diseases of the upper and lower airways, which can be induced by allergic or nonallergic reproducible mechanisms, and present several phenotypes. Management of rhinitis and asthma must be jointly carried out, leading to better control of both diseases, and the lessons of the Allergic Rhinitis and Its Impact on Asthma initiative cannot be forgotten. PMID:27257389

  12. Apoptosis and the Airway Epithelium

    PubMed Central

    White, Steven R.

    2011-01-01

    The airway epithelium functions as a barrier and front line of host defense in the lung. Apoptosis or programmed cell death can be elicited in the epithelium as a response to viral infection, exposure to allergen or to environmental toxins, or to drugs. While apoptosis can be induced via activation of death receptors on the cell surface or by disruption of mitochondrial polarity, epithelial cells compared to inflammatory cells are more resistant to apoptotic stimuli. This paper focuses on the response of airway epithelium to apoptosis in the normal state, apoptosis as a potential regulator of the number and types of epithelial cells in the airway, and the contribution of epithelial cell apoptosis in important airways diseases. PMID:22203854

  13. Extraglottic airway devices: A review

    PubMed Central

    Ramaiah, Ramesh; Das, Debasmita; Bhananker, Sanjay M; Joffe, Aaron M

    2014-01-01

    Extraglottic airway devices (EAD) have become an integral part of anesthetic care since their introduction into clinical practice 25 years ago and have been used safely hundreds of millions of times, worldwide. They are an important first option for difficult ventilation during both in-hospital and out-of-hospital difficult airway management and can be utilized as a conduit for tracheal intubation either blindly or assisted by another technology (fiberoptic endoscopy, lightwand). Thus, the EAD may be the most versatile single airway technique in the airway management toolbox. However, despite their utility, knowledge regarding specific devices and the supporting data for their use is of paramount importance to patient's safety. In this review, number of commercially available EADs are discussed and the reported benefits and potential pitfalls are highlighted. PMID:24741502

  14. A new removable airway stent

    PubMed Central

    Amundsen, Tore; Sørhaug, Sveinung; Leira, Håkon Olav; Tyvold, Stig Sverre; Langø, Thomas; Hammer, Tommy; Manstad-Hulaas, Frode; Mattsson, Erney

    2016-01-01

    Background Malignant airway obstruction is a feared complication and will most probably occur more frequently in the future because of increasing cancer incidence and increased life expectancy in cancer patients. Minimal invasive treatment using airway stents represents a meaningful and life-saving palliation. We present a new removable airway stent for improved individualised treatment. Methods To our knowledge, the new airway stent is the world's first knitted and uncovered self-expanding metal stent, which can unravel and be completely removed. In an in vivo model using two anaesthetised and spontaneously breathing pigs, we deployed and subsequently removed the stents by unravelling the device. The procedures were executed by flexible bronchoscopy in an acute and a chronic setting – a ‘proof-of-principle’ study. Results The new stent was easily and accurately deployed in the central airways, and it remained fixed in its original position. It was easy to unravel and completely remove from the airways without clinically significant complications. During the presence of the stent in the chronic study, granulation tissue was induced. This tissue disappeared spontaneously with the removal. Conclusions The new removable stent functioned according to its purpose and unravelled easily, and it was completely removed without significant technical or medical complications. Induced granulation tissue disappeared spontaneously. Further studies on animals and humans are needed to define its optimal indications and future use. PMID:27608269

  15. Human airway ciliary dynamics

    PubMed Central

    Thompson, Kristin; Knowles, Michael R.; Davis, C. William

    2013-01-01

    Airway cilia depend on precise changes in shape to transport the mucus gel overlying mucosal surfaces. The ciliary motion can be recorded in several planes using video microscopy. However, cilia are densely packed, and automated computerized systems are not available to convert these ciliary shape changes into forms that are useful for testing theoretical models of ciliary function. We developed a system for converting planar ciliary motions recorded by video microscopy into an empirical quantitative model, which is easy to use in validating mathematical models, or in examining ciliary function, e.g., in primary ciliary dyskinesia (PCD). The system we developed allows the manipulation of a model cilium superimposed over a video of beating cilia. Data were analyzed to determine shear angles and velocity vectors of points along the cilium. Extracted waveforms were used to construct a composite waveform, which could be used as a standard. Variability was measured as the mean difference in position of points on individual waveforms and the standard. The shapes analyzed were the end-recovery, end-effective, and fastest moving effective and recovery with mean (± SE) differences of 0.31(0.04), 0.25(0.06), 0.50(0.12), 0.50(0.10), μm, respectively. In contrast, the same measures for three different PCD waveforms had values far outside this range. PMID:23144323

  16. Airway Hydration and COPD

    PubMed Central

    Ghosh, Arunava; Boucher, R.C.; Tarran, Robert

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the prevalent causes of worldwide mortality and encompasses two major clinical phenotypes, i.e., chronic bronchitis (CB) and emphysema. The most common cause of COPD is chronic tobacco inhalation. Research focused on the chronic bronchitic phenotype of COPD has identified several pathological processes that drive disease initiation and progression. For example, the lung’s mucociliary clearance (MCC) system performs the critical task of clearing inhaled pathogens and toxic materials from the lung. MCC efficiency is dependent on: (i) the ability of apical plasma membrane ion channels such as the cystic fibrosis transmembrane conductance regulator (CFTR) and the epithelial Na+ channel (ENaC) to maintain airway hydration; (ii) ciliary beating; and, (iii) appropriate rates of mucin secretion. Each of these components is impaired in CB and likely contributes to the mucus stasis/accumulation seen in CB patients. This review highlights the cellular components responsible for maintaining MCC and how this process is disrupted following tobacco exposure and with CB. We shall also discuss existing therapeutic strategies for the treatment of chronic bronchitis and how components of the MCC can be used as biomarkers for the evaluation of tobacco or tobacco-like-product exposure. PMID:26068443

  17. Efficacy of Surgical Airway Plasty for Benign Airway Stenosis

    PubMed Central

    Takahama, Makoto; Nakajima, Ryu; Kimura, Michitaka; Inoue, Hidetoshi; Yamamoto, Ryoji

    2015-01-01

    Background: Long-term patency is required during treatment for benign airway stenosis. This study investigated the effectiveness of surgical airway plasty for benign airway stenosis. Methods: Clinical courses of 20 patients, who were treated with surgical plasty for their benign airway stenosis, were retrospectively investigated. Results: Causes of stenosis were tracheobronchial tuberculosis in 12 patients, post-intubation stenosis in five patients, malacia in two patients, and others in one patient. 28 interventional pulmonology procedures and 20 surgical plasty were performed. Five patients with post-intubation stenosis and four patients with tuberculous stenosis were treated with tracheoplasty. Eight patients with tuberculous stenosis were treated with bronchoplasty, and two patients with malacia were treated with stabilization of the membranous portion. Anastomotic stenosis was observed in four patients, and one to four additional treatments were required. Performance status, Hugh–Jones classification, and ventilatory functions were improved after surgical plasty. Outcomes were fair in patients with tuberculous stenosis and malacia. However, efficacy of surgical plasty for post-intubation stenosis was not observed. Conclusion: Surgical airway plasty may be an acceptable treatment for tuberculous stenosis. Patients with malacia recover well after surgical plasty. There may be untreated patients with malacia who have the potential to benefit from surgical plasty. PMID:26567879

  18. Airway management in emergency situations.

    PubMed

    Dörges, Volker

    2005-12-01

    Securing and monitoring the airway are among the key requirements of appropriate therapy in emergency patients. Failures to secure the airways can drastically increase morbidity and mortality of patients within a very short time. Therefore, the entire range of measures needed to secure the airway in an emergency, without intermediate ventilation and oxygenation, is limited to 30-40 seconds. Endotracheal intubation is often called the 'gold standard' for airway management in an emergency, but multiple failed intubation attempts do not result in maintaining oxygenation; instead, they endanger the patient by prolonging hypoxia and causing additional trauma to the upper airways. Thus, knowledge and availability of alternative procedures are also essential in every emergency setting. Given the great variety of techniques available, it is important to establish a well-planned, methodical protocol within the framework of an algorithm. This not only facilitates the preparation of equipment and the training of personnel, it also ensures efficient decision-making under time pressure. Most anaesthesia-related deaths are due to hypoxaemia when difficulty in securing the airway is encountered, especially in obstetrics during induction of anaesthesia for caesarean delivery. The most commonly occurring adverse respiratory events are failure to intubate, failure to recognize oesophageal intubation, and failure to ventilate. Thus, it is essential that every anaesthesiologist working on the labour and delivery ward is comfortable with the algorithm for the management of failed intubation. The algorithm for emergency airway management describing the sequence of various procedures has to be adapted to internal standards and to techniques that are available.

  19. Gill morphometry of the red drum, Sciaenops ocellatus.

    PubMed

    Don Stevens, E

    1992-08-01

    The structure and morphometry of the gills of the marine teleost, red drum, have been studied. The present analysis of gas exchange area of fish gills is one of the most intensive and the results are compared to less intense averaging methods. Based on the gill area estimates, red drum falls into the category of a fish of intermediate activity. Its gill clearly has an exchange area less than that of the tunas, but is slightly greater than that of trout or bass. The three components that contribute to total exchange area (filament length, lamellar density, and area of individual lamellae) are not all greater in species with a greater total exchange area. The best correlate is total filament length.

  20. Investigations of Martian Impact Crater Morphologies and Morphometries

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.

    2002-01-01

    We have made substantial progress towards completion of the original objectives and are continuing to include new data from the Mars Global Surveyor MOC and TES instruments as they become available (the MOLA instrument has ceased operation as of 2002). The project funding has been used to provide salary support to the PI and several undergraduate students, cover publication charges for two papers, reimburse travel expenses to conferences and workshops incurred by the PI and students, and cover a number of other expenses such as software upgrades and production costs of slides and color prints. This study is revising the PI's Catalog of Large Martian Impact Craters with information obtained from MGS and is utilizing data in the revised Catalog to investigate which planetary factors (such as location, elevation, terrain type, etc.) primarily affect the formation of specific ejecta morphologies and morphometries.

  1. New experimental results in atlas-based brain morphometry

    NASA Astrophysics Data System (ADS)

    Gee, James C.; Fabella, Brian A.; Fernandes, Siddharth E.; Turetsky, Bruce I.; Gur, Ruben C.; Gur, Raquel E.

    1999-05-01

    In a previous meeting, we described a computational approach to MRI morphometry, in which a spatial warp mapping a reference or atlas image into anatomic alignment with the subject is first inferred. Shape differences with respect to the atlas are then studied by calculating the pointwise Jacobian determinant for the warp, which provides a measure of the change in differential volume about a point in the reference as it transforms to its corresponding position in the subject. In this paper, the method is used to analyze sex differences in the shape and size of the corpus callosum in an ongoing study of a large population of normal controls. The preliminary results of the current analysis support findings in the literature that have observed the splenium to be larger in females than in males.

  2. Nonspecific airway reactivity in a mouse model of asthma

    SciTech Connect

    Collie, D.D.; Wilder, J.A.; Bice, D.E.

    1995-12-01

    Animal models are indispensable for studies requiring an intact immune system, especially for studying the pathogenic mechanisms in atopic diseases, regulation of IgE production, and related biologic effects. Mice are particularly suitable and have been used extensively for such studies because their immune system is well characterized. Further, large numbers of mutants or inbred strains of mice are available that express deficiencies of individual immunologic processes, inflammatory cells, or mediator systems. By comparing reactions in such mice with appropriate control animals, the unique roles of individual cells or mediators may be characterized more precisely in the pathogenesis of atopic respiratory diseases including asthma. However, given that asthma in humans is characterized by the presence of airway hyperresponsiveness to specific and nonspecific stimuli, it is important that animal models of this disease exhibit similar physiologic abnormalities. In the past, the size of the mouse has limited its versatility in this regard. However, recent studies indicate the feasibility of measuring pulmonary responses in living mice, thus facilitating the physiologic evaluation of putative mouse models of human asthma that have been well charcterized at the immunologic and patholigic level. Future work will provide details of the morphometry of the methacholine-induced bronchoconstriction and will further seek to determine the relationship between cigarette smoke exposure and the development of NS-AHR in the transgenic mouse model.

  3. The Airway Microbiome at Birth

    PubMed Central

    Lal, Charitharth Vivek; Travers, Colm; Aghai, Zubair H.; Eipers, Peter; Jilling, Tamas; Halloran, Brian; Carlo, Waldemar A.; Keeley, Jordan; Rezonzew, Gabriel; Kumar, Ranjit; Morrow, Casey; Bhandari, Vineet; Ambalavanan, Namasivayam

    2016-01-01

    Alterations of pulmonary microbiome have been recognized in multiple respiratory disorders. It is critically important to ascertain if an airway microbiome exists at birth and if so, whether it is associated with subsequent lung disease. We found an established diverse and similar airway microbiome at birth in both preterm and term infants, which was more diverse and different from that of older preterm infants with established chronic lung disease (bronchopulmonary dysplasia). Consistent temporal dysbiotic changes in the airway microbiome were seen from birth to the development of bronchopulmonary dysplasia in extremely preterm infants. Genus Lactobacillus was decreased at birth in infants with chorioamnionitis and in preterm infants who subsequently went on to develop lung disease. Our results, taken together with previous literature indicating a placental and amniotic fluid microbiome, suggest fetal acquisition of an airway microbiome. We speculate that the early airway microbiome may prime the developing pulmonary immune system, and dysbiosis in its development may set the stage for subsequent lung disease. PMID:27488092

  4. Cellular morphometry of the bronchi of human and dog lungs

    SciTech Connect

    Robbins, E.S.

    1992-09-01

    Quantitative data of the human bronchial epithelial cells at possible risk for malignant transformation in lung cancer is crucial for accurate radon dosimetry and risk analysis. The locations and other parameters of the nuclei which may be damaged by [alpha] particles must be determined and compared in different airway generations, among smokers, non-smokers and ex-smokers, between men and women and in people of different ages. This proposal includes extended morphometric studies on electron micrographs of human epithelium of defined airway generations and in parallel on electron micrographs of the dog bronchial lining. The second part of this proposal describes studies to quantitate the cycling bronchial epithelial population(s) using proliferation markers and immunocytochemistry on frozen and paraffin sections and similar labeling of isolated bronchial epithelial cells sorted flow cytometry.

  5. Cystic Fibrosis Transmembrane Conductance Regulator in Sarcoplasmic Reticulum of Airway Smooth Muscle. Implications for Airway Contractility

    PubMed Central

    Cook, Daniel P.; Rector, Michael V.; Bouzek, Drake C.; Michalski, Andrew S.; Gansemer, Nicholas D.; Reznikov, Leah R.; Li, Xiaopeng; Stroik, Mallory R.; Ostedgaard, Lynda S.; Abou Alaiwa, Mahmoud H.; Thompson, Michael A.; Prakash, Y. S.; Krishnan, Ramaswamy; Meyerholz, David K.; Seow, Chun Y.

    2016-01-01

    Rationale: An asthma-like airway phenotype has been described in people with cystic fibrosis (CF). Whether these findings are directly caused by loss of CF transmembrane conductance regulator (CFTR) function or secondary to chronic airway infection and/or inflammation has been difficult to determine. Objectives: Airway contractility is primarily determined by airway smooth muscle. We tested the hypothesis that CFTR is expressed in airway smooth muscle and directly affects airway smooth muscle contractility. Methods: Newborn pigs, both wild type and with CF (before the onset of airway infection and inflammation), were used in this study. High-resolution immunofluorescence was used to identify the subcellular localization of CFTR in airway smooth muscle. Airway smooth muscle function was determined with tissue myography, intracellular calcium measurements, and regulatory myosin light chain phosphorylation status. Precision-cut lung slices were used to investigate the therapeutic potential of CFTR modulation on airway reactivity. Measurements and Main Results: We found that CFTR localizes to the sarcoplasmic reticulum compartment of airway smooth muscle and regulates airway smooth muscle tone. Loss of CFTR function led to delayed calcium reuptake following cholinergic stimulation and increased myosin light chain phosphorylation. CFTR potentiation with ivacaftor decreased airway reactivity in precision-cut lung slices following cholinergic stimulation. Conclusions: Loss of CFTR alters porcine airway smooth muscle function and may contribute to the airflow obstruction phenotype observed in human CF. Airway smooth muscle CFTR may represent a therapeutic target in CF and other diseases of airway narrowing. PMID:26488271

  6. [Orthodontics and the upper airway].

    PubMed

    Cobo Plana, J; de Carlos Villafranca, F; Macías Escalada, E

    2004-03-01

    One of the general aims of orthodontic treatment and of the combination of orthodontics and orthognathic surgery is to achieve good occlusion and aesthetic improvement, especially in cases of severe dentoskeletal deformities. However, on many occasions, the parameters of the upper airways are not taken into account when the aims of conventional treatment are fulfilled. Patients with obstructive alterations during sleep represent for the orthodontist a type of patient who differs from the normal; for them, treatment should include the objective of improving oxygen saturation. Here, functional considerations should outweigh purely aesthetic ones. It is important, when making an orthodontic, surgical or combined diagnosis for a patient, to bear in mind the impact that treatment may have on the upper airways. Good aesthetics should never be achieved for some of our patients at the expense of diminishing the capacity of their upper airways.

  7. Airway Assessment for Office Sedation/Anesthesia.

    PubMed

    Rosenberg, Morton B; Phero, James C

    2015-01-01

    Whenever a patient is about to receive sedation or general anesthesia, no matter what the technique, the preoperative assessment of the airway is one of the most important steps in ensuring patient safety and positive outcomes. This article, Part III in the series on airway management, is directed at the ambulatory office practice and focuses on predicting the success of advanced airway rescue techniques.

  8. Comments to Role of upper airway ultrasound in airway management.

    PubMed

    Lien, Wan-Ching

    2017-01-01

    Tracheal ultrasound can be an alternative diagnostic tool in airway management, besides traditional confirmatory methods such as capnography and auscultation. The standard image is a hyperechoic air-mucosa (A-M) interface with a reverberation artifact posteriorly (comet-tail artifact). If the second A-M interface appears, which we call a "double-tract sign," esophageal intubation is considered.

  9. The Lung Microbiome and Airway Disease.

    PubMed

    Lynch, Susan V

    2016-12-01

    A growing body of literature has demonstrated relationships between the composition of the airway microbiota (mixed-species communities of microbes that exist in the respiratory tract) and critical features of immune response and pulmonary function. These studies provide evidence that airway inflammatory status and capacity for repair are coassociated with specific taxonomic features of the airway microbiome. Although directionality has yet to be established, the fact that microbes are known drivers of inflammation and tissue damage suggests that in the context of chronic inflammatory airway disease, the composition and, more importantly, the function, of the pulmonary microbiome represent critical factors in defining airway disease outcomes.

  10. Airway nerves: in vitro electrophysiology.

    PubMed

    Fox, Alyson

    2002-06-01

    Recording the activity of single airway sensory fibres or neuronal cell bodies in vitro has allowed detailed characterisation of fibre types and membrane properties. Fibre types can be identified by their conduction velocities and further studied by the application of drugs to their receptive field. C-fibres are sensitive to mechanical stimuli and a range of irritant chemicals (bradykinin, capsaicin, low pH, platelet-activating factor), whereas Adelta-fibres are relatively insensitive to chemical stimuli and appear to correlate to the rapidly adapting receptors identified in airways in vivo. Their site of origin also differs: upper airway C-fibres arise predominantly from the jugular ganglion and Adelta-fibres from the jugular and nodose ganglia. Intracellular recording from cell bodies in the ganglia has revealed a calcium-dependent potassium current common to many putative C-fibre cell bodies. This slow after hyperpolarisation current may be inhibited by stimuli that excite and sensitise C-fibres - this could be an important mechanism underlying the sensitisation of C-fibres in airway irritability.

  11. Airway malacia in children with achondroplasia.

    PubMed

    Dessoffy, Kimberly E; Modaff, Peggy; Pauli, Richard M

    2014-02-01

    This study was undertaken to assess the frequency of airway malacia in infants and young children with achondroplasia, a population well known to be at risk for a variety of respiratory problems. We also wished to evaluate what, if any, contribution airway malacia makes to the complex respiratory issues that may be present in those with achondroplasia. Retrospective chart review of all infants and young children with achondroplasia who were assessed through the Midwest Regional Bone Dysplasia Clinics from 1985 through 2012 (n = 236) was completed. Records of comprehensive clinical examinations, polysomnographic assessments, and airway visualization were reviewed and abstracted using a data collection form. Analyses were completed comparing the group with and those without evidence for airway malacia. Thirteen of 236 patients (5.5%) were found to have airway malacia. Most of those affected had lower airway involvement (9/13). The presence of airway malacia was correlated with an increased occurrence of obstructive sleep apnea as well as need for oxygen supplementation, airway surgeries and tracheostomy placement. Although estimates of the frequency of airway malacia in the general population are limited, its frequency in children with achondroplasia appears to be much higher than any published general population estimate. The presence of airway malacia appears to confound other breathing abnormalities in this population and results in the need for more invasive airway treatments.

  12. Native Small Airways Secrete Bicarbonate

    PubMed Central

    Quinton, Paul M.

    2014-01-01

    Since the discovery of Cl− impermeability in cystic fibrosis (CF) and the cloning of the responsible channel, CF pathology has been widely attributed to a defect in epithelial Cl− transport. However, loss of bicarbonate (HCO3−) transport also plays a major, possibly more critical role in CF pathogenesis. Even though HCO3− transport is severely affected in the native pancreas, liver, and intestines in CF, we know very little about HCO3− secretion in small airways, the principle site of morbidity in CF. We used a novel, mini-Ussing chamber system to investigate the properties of HCO3− transport in native porcine small airways (∼ 1 mm φ). We assayed HCO3− transport across small airway epithelia as reflected by the transepithelial voltage, conductance, and equivalent short-circuit current with bilateral 25-mM HCO3− plus 125-mM NaGlu Ringer’s solution in the presence of luminal amiloride (10 μM). Under these conditions, because no major transportable anions other than HCO3− were present, we took the equivalent short-circuit current to be a direct measure of active HCO3− secretion. Applying selective agonists and inhibitors, we show constitutive HCO3− secretion in small airways, which can be stimulated significantly by β-adrenergic– (cAMP) and purinergic (Ca2+) -mediated agonists, independently. These results indicate that two separate components for HCO3− secretion, likely via CFTR- and calcium-activated chloride channel–dependent processes, are physiologically regulated for likely roles in mucus clearance and antimicrobial innate defenses of small airways. PMID:24224935

  13. Sarcoidosis of the upper and lower airways.

    PubMed

    Morgenthau, Adam S; Teirstein, Alvin S

    2011-12-01

    Sarcoidosis is a systemic granulomatous disease of undetermined etiology characterized by a variable clinical presentation and disease course. Although clinical granulomatous inflammation may occur within any organ system, more than 90% of sarcoidosis patients have lung disease. Sarcoidosis is considered an interstitial lung disease that is frequently characterized by restrictive physiologic dysfunction on pulmonary function tests. However, sarcoidosis also involves the airways (large and small), causing obstructive airways disease. It is one of a few interstitial lung diseases that affects the entire length of the respiratory tract - from the nose to the terminal bronchioles - and causes a broad spectrum of airways dysfunction. This article examines airway dysfunction in sarcoidosis. The anatomical structure of the airways is the organizational framework for our discussion. We discuss sarcoidosis involving the nose, sinuses, nasal passages, larynx, trachea, bronchi and small airways. Common complications of airways disease, such as, atelectasis, fibrosis, bullous leions, bronchiectasis, cavitary lesions and mycetomas, are also reviewed.

  14. Dog sperm head morphometry: its diversity and evolution

    PubMed Central

    Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos

    2017-01-01

    Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds’ sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics. PMID:27751991

  15. Voxel-based morphometry in autopsy proven PSP and CBD.

    PubMed

    Josephs, Keith A; Whitwell, Jennifer L; Dickson, Dennis W; Boeve, Bradley F; Knopman, David S; Petersen, Ronald C; Parisi, Joseph E; Jack, Clifford R

    2008-02-01

    The aim of this study was to compare the patterns of grey and white matter atrophy on MRI in autopsy confirmed progressive supranuclear palsy (PSP) and corticobasal degeneration (CBD), and to determine whether the patterns vary depending on the clinical syndrome. Voxel-based morphometry was used to compare patterns of atrophy in 13 PSP and 11 CBD subjects and 24 controls. PSP and CBD subjects were also subdivided into those with a dominant dementia or extrapyramidal syndrome. PSP subjects showed brainstem atrophy with involvement of the cortex and underlying white matter. Frontoparietal grey and subcortical grey matter atrophy occurred in CBD. When subdivided, PSP subjects with an extrapyramidal syndrome had more brainstem atrophy and less cortical atrophy than CBD subjects with an extrapyramidal syndrome. PSP subjects with a dementia syndrome had more subcortical white matter atrophy than CBD subjects with a dementia syndrome. These results show regional differences between PSP and CBD that are useful in predicting the underlying pathology, and help to shed light on the in vivo distribution of regional atrophy in PSP and CBD.

  16. Dog sperm head morphometry: its diversity and evolution.

    PubMed

    Soler, Carles; Alambiaga, Ana; Martí, Maria A; García-Molina, Almudena; Valverde, Anthony; Contell, Jesús; Campos, Marcos

    2017-01-01

    Dogs have been under strong artificial selection as a consequence of their relationship with man. Differences between breeds are evident that could be reflected in seminal characteristics. The present study was to evaluate differences in sperm head morphometry between seven well-defined breeds of dog: the British Bulldog, Chihuahua, German Shepherd, Labrador Retriever, Spanish Mastiff, Staffordshire Terrier, and Valencian Rat Hunting dog. Semen samples were obtained by masturbation and smears stained with Diff-Quik. Morphometric analysis (CASA-Morph) produced four size and four shape parameters. Length, Ellipticity, and Elongation showed higher differences between breeds. MANOVA revealed differences among all breeds. Considering the whole dataset, principal component analysis (PCA) showed that PC1 was related to head shape and PC2 to size. Procluster analysis showed the British Bulldog to be the most isolated breed, followed by the German Shepherd. The PCA breed by breed showed the Chihuahua, Labrador Retriever, Spanish Mastiff, and Staffordshire Terrier to have PC1 related to shape and PC2 to size, whereas the British Bulldog, Valencia Rat Hunting dog, and German Shepherd had PC1 related to size and PC2 to shape. The dendrogram for cluster groupings and the distance between them showed the British Bulldog to be separated from the rest of the breeds. Future work on dog semen must take into account the large differences in the breeds' sperm characteristics. The results provide a base for future work on phylogenetic and evolutionary studies of dogs, based on their seminal characteristics.

  17. Voxel Based Morphometry in Optical Coherence Tomography: Validation & Core Findings

    PubMed Central

    Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.

    2016-01-01

    Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype. PMID:27199503

  18. Shape Classification Using Wasserstein Distance for Brain Morphometry Analysis

    PubMed Central

    Su, Zhengyu; Zeng, Wei; Wang, Yalin; Lu, Zhong-Lin; Gu, Xianfeng

    2015-01-01

    Brain morphometry study plays a fundamental role in medical imaging analysis and diagnosis. This work proposes a novel framework for brain cortical surface classification using Wasserstein distance, based on uniformization theory and Riemannian optimal mass transport theory. By Poincare uniformization theorem, all shapes can be conformally deformed to one of the three canonical spaces: the unit sphere, the Euclidean plane or the hyperbolic plane. The uniformization map will distort the surface area elements. The area-distortion factor gives a probability measure on the canonical uniformization space. All the probability measures on a Riemannian manifold form the Wasserstein space. Given any 2 probability measures, there is a unique optimal mass transport map between them, the transportation cost defines the Wasserstein distance between them. Wasserstein distance gives a Riemannian metric for the Wasserstein space. It intrinsically measures the dissimilarities between shapes and thus has the potential for shape classification. To the best of our knowledge, this is the first work to introduce the optimal mass transport map to general Riemannian manifolds. The method is based on geodesic power Voronoi diagram. Comparing to the conventional methods, our approach solely depends on Riemannian metrics and is invariant under rigid motions and scalings, thus it intrinsically measures shape distance. Experimental results on classifying brain cortical surfaces with different intelligence quotients demonstrated the efficiency and efficacy of our method. PMID:26221691

  19. Airway remodeling in asthma: what really matters.

    PubMed

    Fehrenbach, Heinz; Wagner, Christina; Wegmann, Michael

    2017-03-01

    Airway remodeling is generally quite broadly defined as any change in composition, distribution, thickness, mass or volume and/or number of structural components observed in the airway wall of patients relative to healthy individuals. However, two types of airway remodeling should be distinguished more clearly: (1) physiological airway remodeling, which encompasses structural changes that occur regularly during normal lung development and growth leading to a normal mature airway wall or as an acute and transient response to injury and/or inflammation, which ultimately results in restoration of a normal airway structures; and (2) pathological airway remodeling, which comprises those structural alterations that occur as a result of either disturbed lung development or as a response to chronic injury and/or inflammation leading to persistently altered airway wall structures and function. This review will address a few major aspects: (1) what are reliable quantitative approaches to assess airway remodeling? (2) Are there any indications supporting the notion that airway remodeling can occur as a primary event, i.e., before any inflammatory process was initiated? (3) What is known about airway remodeling being a secondary event to inflammation? And (4), what can we learn from the different animal models ranging from invertebrate to primate models in the study of airway remodeling? Future studies are required addressing particularly pheno-/endotype-specific aspects of airway remodeling using both endotype-specific animal models and "endotyped" human asthmatics. Hopefully, novel in vivo imaging techniques will be further advanced to allow monitoring development, growth and inflammation of the airways already at a very early stage in life.

  20. Integrated care pathways for airway diseases (AIRWAYS-ICPs).

    PubMed

    Bousquet, J; Addis, A; Adcock, I; Agache, I; Agusti, A; Alonso, A; Annesi-Maesano, I; Anto, J M; Bachert, C; Baena-Cagnani, C E; Bai, C; Baigenzhin, A; Barbara, C; Barnes, P J; Bateman, E D; Beck, L; Bedbrook, A; Bel, E H; Benezet, O; Bennoor, K S; Benson, M; Bernabeu-Wittel, M; Bewick, M; Bindslev-Jensen, C; Blain, H; Blasi, F; Bonini, M; Bonini, S; Boulet, L P; Bourdin, A; Bourret, R; Bousquet, P J; Brightling, C E; Briggs, A; Brozek, J; Buhl, R; Bush, A; Caimmi, D; Calderon, M; Calverley, P; Camargos, P A; Camuzat, T; Canonica, G W; Carlsen, K H; Casale, T B; Cazzola, M; Cepeda Sarabia, A M; Cesario, A; Chen, Y Z; Chkhartishvili, E; Chavannes, N H; Chiron, R; Chuchalin, A; Chung, K F; Cox, L; Crooks, G; Crooks, M G; Cruz, A A; Custovic, A; Dahl, R; Dahlen, S E; De Blay, F; Dedeu, T; Deleanu, D; Demoly, P; Devillier, P; Didier, A; Dinh-Xuan, A T; Djukanovic, R; Dokic, D; Douagui, H; Dubakiene, R; Eglin, S; Elliot, F; Emuzyte, R; Fabbri, L; Fink Wagner, A; Fletcher, M; Fokkens, W J; Fonseca, J; Franco, A; Frith, P; Furber, A; Gaga, M; Garcés, J; Garcia-Aymerich, J; Gamkrelidze, A; Gonzales-Diaz, S; Gouzi, F; Guzmán, M A; Haahtela, T; Harrison, D; Hayot, M; Heaney, L G; Heinrich, J; Hellings, P W; Hooper, J; Humbert, M; Hyland, M; Iaccarino, G; Jakovenko, D; Jardim, J R; Jeandel, C; Jenkins, C; Johnston, S L; Jonquet, O; Joos, G; Jung, K S; Kalayci, O; Karunanithi, S; Keil, T; Khaltaev, N; Kolek, V; Kowalski, M L; Kull, I; Kuna, P; Kvedariene, V; Le, L T; Lodrup Carlsen, K C; Louis, R; MacNee, W; Mair, A; Majer, I; Manning, P; de Manuel Keenoy, E; Masjedi, M R; Melen, E; Melo-Gomes, E; Menzies-Gow, A; Mercier, G; Mercier, J; Michel, J P; Miculinic, N; Mihaltan, F; Milenkovic, B; Molimard, M; Momas, I; Montilla-Santana, A; Morais-Almeida, M; Morgan, M; N'Diaye, M; Nafti, S; Nekam, K; Neou, A; Nicod, L; O'Hehir, R; Ohta, K; Paggiaro, P; Palkonen, S; Palmer, S; Papadopoulos, N G; Papi, A; Passalacqua, G; Pavord, I; Pigearias, B; Plavec, D; Postma, D S; Price, D; Rabe, K F; Radier Pontal, F; Redon, J; Rennard, S; Roberts, J; Robine, J M; Roca, J; Roche, N; Rodenas, F; Roggeri, A; Rolland, C; Rosado-Pinto, J; Ryan, D; Samolinski, B; Sanchez-Borges, M; Schünemann, H J; Sheikh, A; Shields, M; Siafakas, N; Sibille, Y; Similowski, T; Small, I; Sola-Morales, O; Sooronbaev, T; Stelmach, R; Sterk, P J; Stiris, T; Sud, P; Tellier, V; To, T; Todo-Bom, A; Triggiani, M; Valenta, R; Valero, A L; Valiulis, A; Valovirta, E; Van Ganse, E; Vandenplas, O; Vasankari, T; Vestbo, J; Vezzani, G; Viegi, G; Visier, L; Vogelmeier, C; Vontetsianos, T; Wagstaff, R; Wahn, U; Wallaert, B; Whalley, B; Wickman, M; Williams, D M; Wilson, N; Yawn, B P; Yiallouros, P K; Yorgancioglu, A; Yusuf, O M; Zar, H J; Zhong, N; Zidarn, M; Zuberbier, T

    2014-08-01

    The objective of Integrated Care Pathways for Airway Diseases (AIRWAYS-ICPs) is to launch a collaboration to develop multi-sectoral care pathways for chronic respiratory diseases in European countries and regions. AIRWAYS-ICPs has strategic relevance to the European Union Health Strategy and will add value to existing public health knowledge by: 1) proposing a common framework of care pathways for chronic respiratory diseases, which will facilitate comparability and trans-national initiatives; 2) informing cost-effective policy development, strengthening in particular those on smoking and environmental exposure; 3) aiding risk stratification in chronic disease patients, using a common strategy; 4) having a significant impact on the health of citizens in the short term (reduction of morbidity, improvement of education in children and of work in adults) and in the long-term (healthy ageing); 5) proposing a common simulation tool to assist physicians; and 6) ultimately reducing the healthcare burden (emergency visits, avoidable hospitalisations, disability and costs) while improving quality of life. In the longer term, the incidence of disease may be reduced by innovative prevention strategies. AIRWAYSICPs was initiated by Area 5 of the Action Plan B3 of the European Innovation Partnership on Active and Healthy Ageing. All stakeholders are involved (health and social care, patients, and policy makers).

  1. Soft Tissue Morphometry of the Malleus–Incus Complex from Micro-CT Imaging

    PubMed Central

    Sim, Jae Hoon

    2008-01-01

    The malleus–incus complex (MIC) is unique to mammalian hearing. To develop a comprehensive biomechanical MIC model for the human middle ear, measurements regarding its anatomical features are a necessity. Micro-scale X-ray computed tomography (micro-CT) imaging, which is known to be a suitable method for imaging high-density tissue such as middle-ear ossicles and surrounding bones, is used in this study to determine the three-dimensional (3-D) morphometry of the soft tissue attachments of the MIC. The MIC morphometry is based on their 3-D reconstruction from micro-CT image slices with resolutions ranging from 10 to 20 μm. The suspensory ligament and tendon attachments of the malleus and the incus as well as the incudomalleal joint (IMJ), are quantified in terms of dimensions, positions, and orientations for four human cadaver temporal bones. The malleus principal frame, the incus principal frame, and the MIC principle frame are calculated and the morphometry is reported in relation to each of these frames for the first time. The resulting values show significant variation across ear samples, suggesting that models of the MIC should be based on individual anatomy. The IMJ morphometry dimensions appear to be proportional to the ossicular mass. The micro-CT imaging modality is a nondestructive and relatively fast method for obtaining soft tissue morphometry and provides accurate anatomical features in relation to the principal axes of bones. PMID:18311579

  2. Generation of Pig Airways using Rules Developed from the Measurements of Physical Airways

    PubMed Central

    Azad, Md Khurshidul; Mansy, Hansen A.

    2017-01-01

    Background A method for generating bronchial tree would be helpful when constructing models of the tree for benchtop experiments as well as for numerical modeling of flow or sound propagation in the airways. Early studies documented the geometric details of the human airways that were used to develop methods for generating human airway tree. However, methods for generating animal airway tree are scarcer. Earlier studies suggested that the morphology of animal airways can be significantly different from that of humans. Hence, using algorithms for the human airways may not be accurate in generating models of animal airway geometry. Objective The objective of this study is to develop an algorithm for generating pig airway tree based on the geometric details extracted from the physical measurements. Methods In the current study, measured values of branch diameters, lengths and bifurcation angles and rotation of bifurcating planes were used to develop an algorithm that is capable of generating a realistic pig airway tree. Results The generation relations between parent and daughter branches were found to follow certain trends. The diameters and the length of different branches were dependent on airway generations while the bifurcation angles were primarily dependent on bifurcation plane rotations. These relations were sufficient to develop rules for generating a model of the pig large airways. Conclusion The results suggested that the airway tree generated from the algorithm can provide an approximate geometric model of pig airways for computational and benchtop studies. PMID:28255517

  3. Recent trends in airway management

    PubMed Central

    Karlik, Joelle; Aziz, Michael

    2017-01-01

    Tracheal intubation remains a life-saving procedure that is typically not difficult for experienced providers in routine conditions. Unfortunately, difficult intubation remains challenging to predict and intubation conditions may make the event life threatening. Recent technological advances aim to further improve the ease, speed, safety, and success of intubation but have not been fully investigated. Video laryngoscopy, though proven effective in the difficult airway, may result in different intubation success rates in various settings and in different providers’ hands. The rescue surgical airway remains a rarely used but critical skill, and research continues to investigate optimal techniques. This review highlights some of the new thoughts and research on these important topics. PMID:28299194

  4. Morphology and digitally aided morphometry of the human paracentral lobule.

    PubMed

    Spasojević, Goran; Malobabic, Slobodan; Pilipović-Spasojević, Olivera; Djukić-Macut, Nataša; Maliković, Aleksandar

    2013-02-01

    The human paracentral lobule, the junction of the precentral and postcentral gyri at the medial hemispheric surface, contains several important functional regions, and its variable morphology requires exact morphological and quantitativedata. In order to obtain precise data we investigated the morphology of the paracentral lobule and quantified its visible (extrasulcal) surface. This surface corresponds to commonly used magnetic resonance imaging scout images. We studied 84 hemispheres of adult persons (42 brains; 26 males and 16 females; 20-65 years) fixed in neutral formalin for at least 4 weeks. The medial hemispheric surface was photographed at standard distance and each digital photo was calibrated. Using the intercommissural line system (commissura anterior-commissura posterior or CA-CP line), we performed standardised measurements of the paracentral lobule. Exact determination of its boundaries and morphological types was followed by digital morphometry of its extrasulcal surface using AutoCAD software. We found two distinct morphological types of the human paracentral lobule: continuous type, which was predominant (95.2%), and rare segmented type (4.8%). In hemispheres with segmented cingulate sulcus we also found the short transitional lobulo-limbic gyrus (13.1%). The mean extrasulcal surface of the left paracentral lobule was significantly larger, both in males (left 6.79 cm2 vs. right 5.76 cm2) and in females (left 6.05 cm2 vs. right 5.16 cm2). However, even larger average surfaces in males were not significantly different than the same in females. Reported morphological and quantitative data will be useful during diagnostics and treatment of pathologies affecting the human paracentral lobule, and in further studies of its cytoarchitectonic and functional parcellations.

  5. Quantitative morphometry of glomerulonephritis with crescents. Diagnostic and predictive value.

    PubMed

    Elfenbein, I B; Baluarte, H J; Cubillos-Rojas, M; Gruskin, A B; Coté, M; Cornfeld, D

    1975-01-01

    Histologic patterns in the glomerular tufts in "Glomerulonephritis with many crescents" take three main forms: (1) compression and sclerosis of glomeruli, (2) necrotizing glomerulitis, and (3) proliferation with or without exudation. In the third group, histologic differentiation between patients with poststreptococcal glomerulonephritis with many crescents (AGN) and those with nonstreptococcal rapidly progressive glomerulonephritis (RPGN) may be impossible. In a retrospective study, quantitative morphometry of glomeruli effectively separated three patients with AGN from two patients with RPGN after the usual histologic and electron microscopic observations had failed. Parameters studied were areas of tufts and crescents and total number of cells and granulocytes in tufts and crescents. Surface areas of tufts and crescents were separately determined by photographing glomeruli, projecting and tracing outlines of tufts and crescents, and cutting out and weighing the tracings. The cell density of glomerular tufts (cell per 1000-sq. mum. area) was significantly greater in AGN than in RPGN when either total cell densities (17.64 plus or minus 0.41 versus 13.63 plus or minus 0.30) or total cells minus granulocytes (16.39 plus or minus 0.50 versus 12.99 plus or minus 0.52) were compared. The cell density in the tufts was 120 and 70 per cent greater than controls in AGN and RPGN, respectively. Exudation of inflammatory cells is contributory but not the major cause of hypercellularity in AGN. Follow-up studies with biopsies showed marked resolution in two of three patients with AGN, with normal blood urea nitrogen levels and focal scarring in the third, whereas the two patients with RPGN had either extensive scarring and reduced renal function or required chronic hemodialysis.

  6. Partial airway obstruction following manufacturing defect in laryngeal mask airway (Laryngeal Mask Silken™).

    PubMed

    Jangra, Kiran; Malhotra, Surender Kumar; Saini, Vikas

    2014-10-01

    Laryngeal mask (LM) airway is commonly used for securing airway in day-care surgeries. Various problems have been described while using LM airway. Out of those, mechanical obstruction causing airway compromise is most common. Here, we describe a case report of 4-year-old child who had partial upper airway obstruction due to LM manufacturer's defect. There was a silicon band in upper one-third of shaft of LM airway. This band was made up of the same material as that of LM airway so it was not identifiable on external inspection of transparent shaft. We suggest that such as non-transparent laryngeal mask, a transparent LM airway should also be inspected looking inside the lumen with naked eyes or by using a probe to rule out any manufacturing defect before its insertion.

  7. Method for 3D Airway Topology Extraction

    PubMed Central

    Grothausmann, Roman; Kellner, Manuela; Heidrich, Marko; Lorbeer, Raoul-Amadeus; Ripken, Tammo; Meyer, Heiko; Kuehnel, Mark P.; Ochs, Matthias; Rosenhahn, Bodo

    2015-01-01

    In lungs the number of conducting airway generations as well as bifurcation patterns varies across species and shows specific characteristics relating to illnesses or gene variations. A method to characterize the topology of the mouse airway tree using scanning laser optical tomography (SLOT) tomograms is presented in this paper. It is used to test discrimination between two types of mice based on detected differences in their conducting airway pattern. Based on segmentations of the airways in these tomograms, the main spanning tree of the volume skeleton is computed. The resulting graph structure is used to distinguish between wild type and surfactant protein (SP-D) deficient knock-out mice. PMID:25767561

  8. Automated Lobe-Based Airway Labeling

    PubMed Central

    Gu, Suicheng; Wang, Zhimin; Siegfried, Jill M.; Wilson, David; Bigbee, William L.; Pu, Jiantao

    2012-01-01

    Regional quantitative analysis of airway morphological abnormalities is of great interest in lung disease investigation. Considering that pulmonary lobes are relatively independent functional unit, we develop and test a novel and efficient computerized scheme in this study to automatically and robustly classify the airways into different categories in terms of pulmonary lobe. Given an airway tree, which could be obtained using any available airway segmentation scheme, the developed approach consists of four basic steps: (1) airway skeletonization or centerline extraction, (2) individual airway branch identification, (3) initial rule-based airway classification/labeling, and (4) self-correction of labeling errors. In order to assess the performance of this approach, we applied it to a dataset consisting of 300 chest CT examinations in a batch manner and asked an image analyst to subjectively examine the labeled results. Our preliminary experiment showed that the labeling accuracy for the right upper lobe, the right middle lobe, the right lower lobe, the left upper lobe, and the left lower lobe is 100%, 99.3%, 99.3%, 100%, and 100%, respectively. Among these, only two cases are incorrectly labeled due to the failures in airway detection. It takes around 2 minutes to label an airway tree using this algorithm. PMID:23093951

  9. Anatomic Optical Coherence Tomography of Upper Airways

    NASA Astrophysics Data System (ADS)

    Chin Loy, Anthony; Jing, Joseph; Zhang, Jun; Wang, Yong; Elghobashi, Said; Chen, Zhongping; Wong, Brian J. F.

    The upper airway is a complex and intricate system responsible for respiration, phonation, and deglutition. Obstruction of the upper airways afflicts an estimated 12-18 million Americans. Pharyngeal size and shape are important factors in the pathogenesis of airway obstructions. In addition, nocturnal loss in pharyngeal muscular tone combined with high pharyngeal resistance can lead to collapse of the airway and periodic partial or complete upper airway obstruction. Anatomical optical coherence tomography (OCT) has the potential to provide high-speed three-dimensional tomographic images of the airway lumen without the use of ionizing radiation. In this chapter we describe the methods behind endoscopic OCT imaging and processing to generate full three dimensional anatomical models of the human airway which can be used in conjunction with numerical simulation methods to assess areas of airway obstruction. Combining this structural information with flow dynamic simulations, we can better estimate the site and causes of airway obstruction and better select and design surgery for patients with obstructive sleep apnea.

  10. Lake Morphometry for NHD Lakes in Souris Red Rainy Region 9 HUC

    EPA Pesticide Factsheets

    Lake morphometry metrics are known to influence productivity in lakes and are important for building various types of ecological and environmental models of lentic systems. The lake morphometry dataset included here contains estimates of Surface Area, Shoreline Length, Shoreline Development, Maximum Depth, Mean Depth, Lake Volume, Maximum Lake Length, Mean Lake Width, Maximum Lake Width, and Fetch for each of the ??lakepond?? waterbodies in the NHDPlus V2. The current release of the datasets is version 0.1 and future refinements to the data are expected.

  11. Nuclear morphometry in canine acanthomatous ameloblastomas and squamous cell carcinomas.

    PubMed

    Martano, M; Damiano, S; Restucci, B; Paciello, O; Russo, V; Maiolino, P

    2006-01-01

    The aim of this study was to evaluate whether morphometrical analysis can be of diagnostic value for canine acanthomatous ameloblastoma. We calculated, by means of an automated image analyser, some morphometric nuclear parameters, in particular: mean nuclear area (MNA), mean nuclear perimeter (MNP), maximum and minimum diameters (MDx and MDm) coefficient of variation of the nuclear area (NACV), largest to smallest dimension ratio (LS ratio), and form factor (FF), in 8 canine acanthomatous ameloblastomas, and we compared these morphometric data to those of 13 squamous cell carcinomas of canine gingiva. The results indicated a progressive increase of the MNA, NACV, MNP and MDm proceeding from acanthomatous ameloblastomas (MNA: 42.11+/-8.74; NACV: 28,36+/-7,23; MNP: 24.18+/- 2.68; MDm: 5.69+/-0.49) to squamous cell carcinomas (MNA:49,69+/-9,10; NACV: 30,89+/-7,75; MNP: 25.63+/-2.54; MDm: 6.64+/-0.73). On the contrary, the LS ratio and the FF resulted greater in acanthomatous ameloblastomas (LS ratio: 1,63+/-0,12; FF: 1,13+/-0,002) than in SCCs (LS ratio: 1,40+/-0,12; FF:0.91+/-0.38). Moreover, the MNA, MNP,MDx and MDm resulted similar (MNA: p=0.89; MNP: p=0,65; MDm: p=0,16; MDx: p=0,13) in a subset of four acanthomatous ameloblastomas with cellular atypia (MNA:49,01+/-6,88; MNP: 26,28+/-1,99; MDm: 6.08+/-0.41; MDx: 10.18+/-0.88) and in squamous cell carcinomas (MNA:49.69+/-9,10; MNP: 25.63+/-2.54; MDm: 6.64+/-0.73; MDx: 9.26+/-1.05). While the NACV values resulted higher in typical acanthomatous ameloblastoma (29,99+/-6,06) than in atypical acanthomatous ameloblastoma (26,74+/-8,84) and similar to those of the SCCs (30,89+/-7,75). These results seem to confirm that acanthomatous ameloblastoma is a malignant or potentially malignant lesion and emphasizes that nuclear morphometry analysis can be an useful diagnostic and prognostic method in canine oral pathology.

  12. Airway management: induced tension pneumoperitoneum

    PubMed Central

    Ahmed, Khedher; Amine, El Ghali Mohamed; Abdelbaki, Azouzi; Jihene, Ayachi; Khaoula, Meddeb; Yamina, Hamdaoui; Mohamed, Boussarsar

    2016-01-01

    Pneumoperitoneum is not always associated with hollow viscus perforation. Such condition is called non-surgical or spontaneous pneumoperitoneum. Intrathoracic causes remain the most frequently reported mechanism inducing this potentially life threatening complication. This clinical condition is associated with therapeutic dilemma. We report a case of a massive isolated pneumoperitoneum causing acute abdominal hypertension syndrome, in a 75 year female, which occurred after difficult airway management and mechanical ventilation. Emergent laparotomy yielded to full recovery. The recognition of such cases for whom surgical management can be avoided is primordial to avoid unnecessary laparotomy and its associated morbidity particularly in the critically ill.

  13. Airway smooth muscle dynamics: a common pathway of airway obstruction in asthma.

    PubMed

    An, S S; Bai, T R; Bates, J H T; Black, J L; Brown, R H; Brusasco, V; Chitano, P; Deng, L; Dowell, M; Eidelman, D H; Fabry, B; Fairbank, N J; Ford, L E; Fredberg, J J; Gerthoffer, W T; Gilbert, S H; Gosens, R; Gunst, S J; Halayko, A J; Ingram, R H; Irvin, C G; James, A L; Janssen, L J; King, G G; Knight, D A; Lauzon, A M; Lakser, O J; Ludwig, M S; Lutchen, K R; Maksym, G N; Martin, J G; Mauad, T; McParland, B E; Mijailovich, S M; Mitchell, H W; Mitchell, R W; Mitzner, W; Murphy, T M; Paré, P D; Pellegrino, R; Sanderson, M J; Schellenberg, R R; Seow, C Y; Silveira, P S P; Smith, P G; Solway, J; Stephens, N L; Sterk, P J; Stewart, A G; Tang, D D; Tepper, R S; Tran, T; Wang, L

    2007-05-01

    Excessive airway obstruction is the cause of symptoms and abnormal lung function in asthma. As airway smooth muscle (ASM) is the effecter controlling airway calibre, it is suspected that dysfunction of ASM contributes to the pathophysiology of asthma. However, the precise role of ASM in the series of events leading to asthmatic symptoms is not clear. It is not certain whether, in asthma, there is a change in the intrinsic properties of ASM, a change in the structure and mechanical properties of the noncontractile components of the airway wall, or a change in the interdependence of the airway wall with the surrounding lung parenchyma. All these potential changes could result from acute or chronic airway inflammation and associated tissue repair and remodelling. Anti-inflammatory therapy, however, does not "cure" asthma, and airway hyperresponsiveness can persist in asthmatics, even in the absence of airway inflammation. This is perhaps because the therapy does not directly address a fundamental abnormality of asthma, that of exaggerated airway narrowing due to excessive shortening of ASM. In the present study, a central role for airway smooth muscle in the pathogenesis of airway hyperresponsiveness in asthma is explored.

  14. Mechanisms of inflammation-mediated airway smooth muscle plasticity and airways remodeling in asthma.

    PubMed

    Halayko, Andrew J; Amrani, Yassine

    2003-09-16

    Recent evidence points to progressive structural change in the airway wall, driven by chronic local inflammation, as a fundamental component for development of irreversible airway hyperresponsiveness. Acute and chronic inflammation is orchestrated by cytokines from recruited inflammatory cells, airway myofibroblasts and myocytes. Airway myocytes exhibit functional plasticity in their capacity for contraction, proliferation, and synthesis of matrix protein and cytokines. This confers a principal role in driving different components of the airway remodeling process, and mediating constrictor hyperresponsiveness. Functional plasticity of airway smooth muscle (ASM) is regulated by an array of environmental cues, including cytokines, which mediate their effects through receptors and a number of intracellular signaling pathways. Despite numerous studies of the cellular effects of cytokines on cultured airway myocytes, few have identified how intracellular signaling pathways modulate or induce these cellular responses. This review summarizes current understanding of these concepts and presents a model for the effects of inflammatory mediators on functional plasticity of ASM in asthma.

  15. 21 CFR 868.5110 - Oropharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oropharyngeal airway. 868.5110 Section 868.5110 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5110 Oropharyngeal airway....

  16. 21 CFR 868.5100 - Nasopharyngeal airway.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Nasopharyngeal airway. 868.5100 Section 868.5100 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5100 Nasopharyngeal airway....

  17. SUBCHRONIC ENDOTOXIN INHALATION CAUSES PERSISTENT AIRWAY DISEASE

    EPA Science Inventory

    ABSTRACT

    The endotoxin component of organic dusts causes acute reversible airflow obstruction and airway inflammation. To test the hypothesis that endotoxin alone causes airway remodeling, we have compared the response of two inbred mouse strains to subchronic endotoxin ...

  18. Upper airway resistance: species-related differences.

    PubMed

    Kirschvink, N; Reinhold, P

    2010-07-01

    In veterinary medicine, upper airway resistance deserves a particular attention in equines athletes and brachycephalic dogs. Due to the anatomical peculiarities of the upper airway and/or pathological conditions, significant alterations of performance and/or well being might occur in horses and dogs. Physiological specificities and pathological changes of the lower respiratory tract deserve a major attention in other species.

  19. Airway and Extracellular Matrix Mechanics in COPD

    PubMed Central

    Bidan, Cécile M.; Veldsink, Annemiek C.; Meurs, Herman; Gosens, Reinoud

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is one of the most common lung diseases worldwide, and is characterized by airflow obstruction that is not fully reversible with treatment. Even though airflow obstruction is caused by airway smooth muscle contraction, the extent of airway narrowing depends on a range of other structural and functional determinants that impact on active and passive tissue mechanics. Cells and extracellular matrix in the airway and parenchymal compartments respond both passively and actively to the mechanical stimulation induced by smooth muscle contraction. In this review, we summarize the factors that regulate airway narrowing and provide insight into the relative contributions of different constituents of the extracellular matrix and their biomechanical impact on airway obstruction. We then review the changes in extracellular matrix composition in the airway and parenchymal compartments at different stages of COPD, and finally discuss how these changes impact airway narrowing and the development of airway hyperresponsiveness. Finally, we position these data in the context of therapeutic research focused on defective tissue repair. As a conclusion, we propose that future works should primarily target mild or early COPD, prior to the widespread structural changes in the alveolar compartment that are more characteristic of severe COPD. PMID:26696894

  20. Difficult Airway Response Team: A Novel Quality Improvement Program for Managing Hospital-Wide Airway Emergencies

    PubMed Central

    Mark, Lynette J.; Herzer, Kurt R.; Cover, Renee; Pandian, Vinciya; Bhatti, Nasir I.; Berkow, Lauren C.; Haut, Elliott R.; Hillel, Alexander T.; Miller, Christina R.; Feller-Kopman, David J.; Schiavi, Adam J.; Xie, Yanjun J.; Lim, Christine; Holzmueller, Christine; Ahmad, Mueen; Thomas, Pradeep; Flint, Paul W.; Mirski, Marek A.

    2015-01-01

    Background Difficult airway cases can quickly become emergencies, increasing the risk of life-threatening complications or death. Emergency airway management outside the operating room is particularly challenging. Methods We developed a quality improvement program—the Difficult Airway Response Team (DART)—to improve emergency airway management outside the operating room. DART was implemented by a team of anesthesiologists, otolaryngologists, trauma surgeons, emergency medicine physicians, and risk managers in 2005 at The Johns Hopkins Hospital in Baltimore, Maryland. The DART program had three core components: operations, safety, and education. The operations component focused on developing a multidisciplinary difficult airway response team, standardizing the emergency response process, and deploying difficult airway equipment carts throughout the hospital. The safety component focused on real-time monitoring of DART activations and learning from past DART events to continuously improve system-level performance. This objective entailed monitoring the paging system, reporting difficult airway events and DART activations to a web-based registry, and using in situ simulations to identify and mitigate defects in the emergency airway management process. The educational component included development of a multispecialty difficult airway curriculum encompassing case-based lectures, simulation, and team building/communication to ensure consistency of care. Educational materials were also developed for non-DART staff and patients to inform them about the needs of patients with difficult airways and ensure continuity of care with other providers after discharge. Results Between July 2008 and June 2013, DART managed 360 adult difficult airway events comprising 8% of all code activations. Predisposing patient factors included body mass index > 40, history of head and neck tumor, prior difficult intubation, cervical spine injury, airway edema, airway bleeding, and previous

  1. Supremacy of modern morphometry in typing renal oncocytoma and malignant look-alikes.

    PubMed

    Erlmeier, Franziska; Feuchtinger, Annette; Borgmann, Daniela; Rudelius, Martina; Autenrieth, Michael; Walch, Axel Karl; Weirich, Gregor

    2015-08-01

    In the era of tumour type-specific therapies, the correct typing of renal tumours is of prime importance. As immunotyping and genotyping approaches are laborious and fall short of standardization, we used whole-scale computer-assisted morphometry instead. Three different types of renal tumours with different prognoses and therapies, notoriously prone to mistyping, were analysed . The sample of 335 tumours included clear cell renal cell carcinoma, chromophobe renal cell carcinoma and renal oncocytoma. The sample was analysed using H&E stains of tissue microarrrays in combination with an image-scanning software. Nuclear and cytoplasmic features were registered with the aid of computer-assisted morphometry. Features included shape, texture, colour and colour intensity for different cell compartments, e.g. nuclei and cytoplasm. The software passed several training steps for final validation. Using morphometry, we were able to classify the three renal tumour types correctly, with a 100 % specificity compared to the WHO typing. Nuclear features dominated the typing of chromophobe renal cell carcinoma, whereas cytoplasmic features were the leading classificators for renal oncocytoma. The grading of clear cell renal cell carcinoma attained a specificity of 80 %. In conclusion, modern morphometry may serve as a tool for typing renal epithelial tumours and additionally draws the attention to future nuclear research in chromophobe renal cell carcinoma.

  2. Annual Research Review: Progress in Using Brain Morphometry as a Clinical Tool for Diagnosing Psychiatric Disorders

    ERIC Educational Resources Information Center

    Haubold, Alexander; Peterson, Bradley S.; Bansal, Ravi

    2012-01-01

    Brain morphometry in recent decades has increased our understanding of the neural bases of psychiatric disorders by localizing anatomical disturbances to specific nuclei and subnuclei of the brain. At least some of these disturbances precede the overt expression of clinical symptoms and possibly are endophenotypes that could be used to diagnose an…

  3. Neural Correlates of Communication Skill and Symptom Severity in Autism: A Voxel-Based Morphometry Study

    ERIC Educational Resources Information Center

    Parks, Lauren K.; Hill, Dina E.; Thoma, Robert J.; Euler, Matthew J.; Lewine, Jeffrey D.; Yeo, Ronald A.

    2009-01-01

    Although many studies have compared the brains of normal controls and individuals with autism, especially older, higher-functioning individuals with autism, little is known of the neural correlates of the vast clinical heterogeneity characteristic of the disorder. In this study, we used voxel-based morphometry (VBM) to examine gray matter…

  4. STATISTICAL APPROACH TO BRAIN MORPHOMETRY DATA REQUIRED IN DEVELOPMENTAL NEUROTOXICITY (DNT) TESTING GUIDELINES: PROFILE ANALYSIS.

    EPA Science Inventory

    Brain morphometry measurements are required in test guidelines proposed by the USEPA to screen chemicals for developmental neurotoxicity. Because the DNT is a screening battery, the analysis of this data should be sensitive to dose-related changes in the pattern of brain growt...

  5. The critical airway in adults: The facts

    PubMed Central

    Bonanno, Fabrizio Giuseppe

    2012-01-01

    An algorithm on the indications and timing for a surgical airway in emergency as such cannot be drawn due to the multiplicity of variables and the inapplicability in the context of life-threatening critical emergency, where human brain elaborates decisions better in cluster rather than in binary fashion. In particular, in emergency or urgent scenarios, there is no clear or established consensus as to specifically who should receive a tracheostomy as a life-saving procedure; and more importantly, when. The two classical indications for emergency tracheostomy (laryngeal injury and failure to secure airway with endotracheal intubation or cricothyroidotomy) are too generic and encompass a broad spectrum of possibilities. In literature, specific indications for emergency tracheostomy are scattered and are biased, partially comprehensive, not clearly described or not homogeneously gathered. The review highlights the indications and timing for an emergency surgical airway and gives recommendations on which surgical airway method to use in critical airway. PMID:22787346

  6. Investigating the geometry of pig airways using computed tomography

    NASA Astrophysics Data System (ADS)

    Mansy, Hansen A.; Azad, Md Khurshidul; McMurray, Brandon; Henry, Brian; Royston, Thomas J.; Sandler, Richard H.

    2015-03-01

    Numerical modeling of sound propagation in the airways requires accurate knowledge of the airway geometry. These models are often validated using human and animal experiments. While many studies documented the geometric details of the human airways, information about the geometry of pig airways is scarcer. In addition, the morphology of animal airways can be significantly different from that of humans. The objective of this study is to measure the airway diameter, length and bifurcation angles in domestic pigs using computed tomography. After imaging the lungs of 3 pigs, segmentation software tools were used to extract the geometry of the airway lumen. The airway dimensions were then measured from the resulting 3 D models for the first 10 airway generations. Results showed that the size and morphology of the airways of different animals were similar. The measured airway dimensions were compared with those of the human airways. While the trachea diameter was found to be comparable to the adult human, the diameter, length and branching angles of other airways were noticeably different from that of humans. For example, pigs consistently had an early airway branching from the trachea that feeds the superior (top) right lung lobe proximal to the carina. This branch is absent in the human airways. These results suggested that the human geometry may not be a good approximation of the pig airways and may contribute to increasing the errors when the human airway geometric values are used in computational models of the pig chest.

  7. Intrathoracic airway measurement: ex-vivo validation

    NASA Astrophysics Data System (ADS)

    Reinhardt, Joseph M.; Raab, Stephen A.; D'Souza, Neil D.; Hoffman, Eric A.

    1997-05-01

    High-resolution x-ray CT (HRCT) provides detailed images of the lungs and bronchial tree. HRCT-based imaging and quantitation of peripheral bronchial airway geometry provides a valuable tool for assessing regional airway physiology. Such measurements have been sued to address physiological questions related to the mechanics of airway collapse in sleep apnea, the measurement of airway response to broncho-constriction agents, and to evaluate and track the progression of disease affecting the airways, such as asthma and cystic fibrosis. Significant attention has been paid to the measurements of extra- and intra-thoracic airways in 2D sections from volumetric x-ray CT. A variety of manual and semi-automatic techniques have been proposed for airway geometry measurement, including the use of standardized display window and level settings for caliper measurements, methods based on manual or semi-automatic border tracing, and more objective, quantitative approaches such as the use of the 'half-max' criteria. A recently proposed measurements technique uses a model-based deconvolution to estimate the location of the inner and outer airway walls. Validation using a plexiglass phantom indicates that the model-based method is more accurate than the half-max approach for thin-walled structures. In vivo validation of these airway measurement techniques is difficult because of the problems in identifying a reliable measurement 'gold standard.' In this paper we report on ex vivo validation of the half-max and model-based methods using an excised pig lung. The lung is sliced into thin sections of tissue and scanned using an electron beam CT scanner. Airways of interest are measured from the CT images, and also measured with using a microscope and micrometer to obtain a measurement gold standard. The result show no significant difference between the model-based measurements and the gold standard; while the half-max estimates exhibited a measurement bias and were significantly

  8. Studying ventricular abnormalities in mild cognitive impairment with hyperbolic Ricci flow and tensor-based morphometry.

    PubMed

    Shi, Jie; Stonnington, Cynthia M; Thompson, Paul M; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C; Reiman, Eric M; Caselli, Richard J; Wang, Yalin

    2015-01-01

    Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer's disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD.

  9. STUDYING VENTRICULAR ABNORMALITIES IN MILD COGNITIVE IMPAIRMENT WITH HYPERBOLIC RICCI FLOW AND TENSOR-BASED MORPHOMETRY

    PubMed Central

    Shi, Jie; Stonnington, Cynthia M.; Thompson, Paul M.; Chen, Kewei; Gutman, Boris; Reschke, Cole; Baxter, Leslie C.; Reiman, Eric M.; Caselli, Richard J.; Wang, Yalin

    2014-01-01

    Mild Cognitive Impairment (MCI) is a transitional stage between normal aging and dementia and people with MCI are at high risk of progression to dementia. MCI is attracting increasing attention, as it offers an opportunity to target the disease process during an early symptomatic stage. Structural magnetic resonance imaging (MRI) measures have been the mainstay of Alzheimer’s disease (AD) imaging research, however, ventricular morphometry analysis remains challenging because of its complicated topological structure. Here we describe a novel ventricular morphometry system based on the hyperbolic Ricci flow method and tensor-based morphometry (TBM) statistics. Unlike prior ventricular surface parameterization methods, hyperbolic conformal parameterization is angle-preserving and does not have any singularities. Our system generates a one-to-one diffeomorphic mapping between ventricular surfaces with consistent boundary matching conditions. The TBM statistics encode a great deal of surface deformation information that could be inaccessible or overlooked by other methods. We applied our system to the baseline MRI scans of a set of MCI subjects from the Alzheimer’s Disease Neuroimaging Initiative (ADNI: 71 MCI converters vs. 62 MCI stable). Although the combined ventricular area and volume features did not differ between the two groups, our fine-grained surface analysis revealed significant differences in the ventricular regions close to the temporal lobe and posterior cingulate, structures that are affected early in AD. Significant correlations were also detected between ventricular morphometry, neuropsychological measures, and a previously described imaging index based on fluorodeoxyglucose positron emission tomography (FDG-PET) scans. This novel ventricular morphometry method may offer a new and more sensitive approach to study preclinical and early symptomatic stage AD. PMID:25285374

  10. Morphometry and Morphology of Fresh Craters on Titan

    NASA Astrophysics Data System (ADS)

    Kirk, R. L.; Wood, C. A.; Neish, C.; Lucas, A.; Hayes, A. G.; Cassini Radar Team

    2011-12-01

    Cassini RADAR imagery obtained on Titan flyby T77 revealed a 40-km diameter fresh impact crater at 11.6° N 44.6° W. This is only the 8th crater identified with high confidence (Wood et al., 2010, Icarus 206, 334), and the 3rd (after Sinlap D=79 km and Ksa D=30 km) for which the depth can be estimated by comparing the foreshortening of the near and far walls. This "autostereo" technique yields an estimated depth of 680 m. The T77 image forms a stereo pair with the T17 discovery image of Ksa from which we estimate the depth of Ksa at 750-800 m, in close agreement with SARTopo data. The depth of Sinlap is 760 m based on SARTopo. Depth-diameter ratios for these craters thus range from 0.01 to 0.025 and the depths are comparable to but 200-400 m shallower than fresh craters of the same size on Ganymede (Bray et al., 2008, Met. Planet Sci. 43, 1979). The depth differences could be explained by initial crater morphometry, by relaxation in a different thermal environment, or (perhaps most plausibly given the bland floors of even the freshest Titan craters) to sedimentary infill. In contrast, the 18x36 km elliptical depression at Sotra Facula is much deeper than Ganymede craters of similar size (d=1500 m from stereo), supporting the conclusion that it is not an impact crater. All three craters exhibit a relatively radar-bright annulus around the outer edge of the floor, possibly as the result of mass wasting of blocky materials from the crater walls. The central part of each crater is darker. The central darker floor of the new crater is symmetrical and featureless, whereas Ksa has a bright central ring 7 km in diameter. Stereo spot heights indicate the ring is 350±100 m above the outer floor. This height is in close agreement with the scaling for Ganymede crater central peaks from Bray et al. (2008). The darker floor area of Sinlap is substantially asymmetrical with a small bright central spot whose elevation is unknown. The new crater has continuous, radar

  11. Glutathione redox regulates airway hyperresponsiveness and airway inflammation in mice.

    PubMed

    Koike, Yoko; Hisada, Takeshi; Utsugi, Mitsuyoshi; Ishizuka, Tamotsu; Shimizu, Yasuo; Ono, Akihiro; Murata, Yukie; Hamuro, Junji; Mori, Masatomo; Dobashi, Kunio

    2007-09-01

    Glutathione is the major intracellular redox buffer. We have shown that glutathione redox status, which is the balance between intracellular reduced (GSH) and oxidized (GSSG) glutathione, in antigen-presenting cells (APC) regulates the helper T cell type 1 (Th1)/Th2 balance due to the production of IL-12. Bronchial asthma is a typical Th2 disease. Th2 cells and Th2 cytokines are characteristic of asthma and trigger off an inflammation. Accordingly, we studied the effects of the intracellular glutathione redox status on airway hyperresponsiveness (AHR) and allergen-induced airway inflammation in a mouse model of asthma. We used gamma-Glutamylcysteinylethyl ester (gamma-GCE), which is a membrane-permeating GSH precursor, to elevate the intracellular GSH level and GSH/GSSG ratio of mice. In vitro, gamma-GCE pretreatment of human monocytic THP-1 cells elevated the GSH/GSSG ratio and enhanced IL-12(p70) production induced by LPS. In the mouse asthma model, intraperitoneal injection of gamma-GCE elevated the GSH/GSSG ratio of lung tissue and reduced AHR. gamma-GCE reduced levels of IL-4, IL-5, IL-10, and the chemokines eotaxin and RANTES (regulated on activation, normal T cell expressed and secreted) in bronchoalveolar lavage fluid, whereas it enhanced the production of IL-12 and IFN-gamma. Histologically, gamma-GCE suppressed eosinophils infiltration. Interestingly, we also found that gamma-GCE directly inhibited chemokine-induced eosinophil chemotaxis without affecting eotaxin receptor chemokine receptor 3 (CCR3) expressions. Taken together, these findings suggest that changing glutathione redox balance, increase in GSH level, and the GSH/GSSG ratio by gamma-GCE, ameliorate bronchial asthma by altering the Th1/Th2 imbalance through IL-12 production from APC and suppressing chemokine production and eosinophil migration itself.

  12. Educating the Educator: Teaching Airway Adjunct Techniques in Athletic Training

    ERIC Educational Resources Information Center

    Berry, David C.; Seitz, S. Robert

    2011-01-01

    The 5th edition of the "Athletic Training Education Competencies" ("Competencies") now requires athletic training educators (ATEs) to introduce into the curriculum various types of airway adjuncts including: (1) oropharyngeal airways (OPA), (2) nasopharyngeal airways (NPA), (3) supraglottic airways (SGA), and (4) suction. The addition of these…

  13. Airway adequacy, head posture, and craniofacial morphology.

    PubMed

    Solow, B; Siersbaek-Nielsen, S; Greve, E

    1984-09-01

    Previous studies of different samples have demonstrated associations between craniocervical angulation and craniofacial morphology, between airway obstruction by adenoids and craniofacial morphology, and between airway obstruction and craniocervical angulation. A hypothesis to account for the different sets of associations was suggested by Solow and Kreiborg in 1977. In the present study, the three sets of associations were examined in a single group of nonpathologic subjects with no history of airway obstruction. Cephalometric radiographs taken in the natural head position and rhinomanometric recordings were obtained from twenty-four children 7 to 9 years of age. Correlations were calculated between twenty-seven morphologic, eight postural, and two airway variables. A large craniocervical angle was, on the average, seen in connection with small mandibular dimensions, mandibular retrognathism, and a large mandibular inclination. Obstructed nasopharyngeal airways (defined as a small pm-ad 2 radiographic distance and a large nasal respiratory resistance, NRR, determined rhinomanometrically) were, on the average, seen in connection with a large craniocervical angle and with small mandibular dimensions, mandibular retrognathism, a large mandibular inclination, and retroclination of the upper incisors. The observed correlations were in agreement with the predicted pattern of associations between craniofacial morphology, craniocervical angulation, and airway resistance, thus suggesting the simultaneous presence of such associations in the sample of nonpathologic subjects with no history of airway obstruction.

  14. Comparison of analysis methods for airway quantification

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.

    2012-03-01

    Diseased airways have been known for several years as a possible contributing factor to airflow limitation in Chronic Obstructive Pulmonary Diseases (COPD). Quantification of disease severity through the evaluation of airway dimensions - wall thickness and lumen diameter - has gained increased attention, thanks to the availability of multi-slice computed tomography (CT). Novel approaches have focused on automated methods of measurement as a faster and more objective means that the visual assessment routinely employed in the clinic. Since the Full-Width Half-Maximum (FWHM) method of airway measurement was introduced two decades ago [1], several new techniques for quantifying airways have been detailed in the literature, but no approach has truly become a standard for such analysis. Our own research group has presented two alternative approaches for determining airway dimensions, one involving a minimum path and the other active contours [2, 3]. With an increasing number of techniques dedicated to the same goal, we decided to take a step back and analyze the differences of these methods. We consequently put to the test our two methods of analysis and the FWHM approach. We first measured a set of 5 airways from a phantom of known dimensions. Then we compared measurements from the three methods to those of two independent readers, performed on 35 airways in 5 patients. We elaborate on the differences of each approach and suggest conclusions on which could be defined as the best one.

  15. Airway smooth muscle growth in asthma: proliferation, hypertrophy, and migration.

    PubMed

    Bentley, J Kelley; Hershenson, Marc B

    2008-01-01

    Increased airway smooth muscle mass is present in fatal and non-fatal asthma. However, little information is available regarding the cellular mechanism (i.e., hyperplasia vs. hypertrophy). Even less information exists regarding the functional consequences of airway smooth muscle remodeling. It would appear that increased airway smooth muscle mass would tend to increase airway narrowing and airflow obstruction. However, the precise effects of increased airway smooth muscle mass on airway narrowing are not known. This review will consider the evidence for airway smooth muscle cell proliferation and hypertrophy in asthma, potential functional effects, and biochemical mechanisms.

  16. Myeloid sarcoma causing airway obstruction

    PubMed Central

    Krause, John R.

    2017-01-01

    Myeloid sarcoma is an extramedullary collection of blasts of the myeloid series that partially or totally effaces the architecture of the tissue in which it is found. These tumors have been described in many sites of the body, but the skin, lymph nodes, gastrointestinal tract, bone, soft tissue, and testes are most common. They can arise in a patient following the diagnosis of acute myeloid leukemia, but they may also be precursors of leukemia and should be considered diagnostic for acute myeloid leukemia. The differential diagnosis of this neoplasm includes malignant lymphoma, with which it is often mistaken, leading to diagnostic and therapeutic delays. We present the case of an 84-year-old African American man with a history of renal disease secondary to hypertension and coronary artery disease without any prior history of malignancies who presented with airway obstruction. He was diagnosed with a myeloid sarcoma of the mediastinum compressing his trachea.

  17. The Development and Application of Airway Devices in China

    PubMed Central

    Chen, Xiangdong; Ma, Wuhua; Liu, Renyu; Yao, Shanglong

    2017-01-01

    Airway management is one of the most important tasks for anesthesiologists. Anesthesiologists are experts in airway management and have made tremendous contribution to the development of the airway devices. Chinese anesthesiologists have made significant contribution in introducing advanced airway management and developing innovative techniques and devices for airway management in China. This article overviews the development and application of airway devices in China as well as the dedication and contribution of Chinese experts in the development of novel airway devices. With the development of science and technology accompanied by the advanced knowledge in airway management, more effective and safe artificial airways will be developed for clinical practice. The authors believe that Chinese experts will continue their outstanding contribution to the development of innovative airway devices, systems and knowledge. PMID:28191485

  18. Pharmacology of airway afferent nerve activity

    PubMed Central

    Undem, Bradley J; Carr, Michael J

    2001-01-01

    Afferent nerves in the airways serve to regulate breathing pattern, cough, and airway autonomic neural tone. Pharmacologic agents that influence afferent nerve activity can be subclassified into compounds that modulate activity by indirect means (e.g. bronchial smooth muscle spasmogens) and those that act directly on the nerves. Directly acting agents affect afferent nerve activity by interacting with various ion channels and receptors within the membrane of the afferent terminals. Whether by direct or indirect means, most compounds that enter the airspace will modify afferent nerve activity, and through this action alter airway physiology. PMID:11686889

  19. Firefighting acutely increases airway responsiveness.

    PubMed

    Sherman, C B; Barnhart, S; Miller, M F; Segal, M R; Aitken, M; Schoene, R; Daniell, W; Rosenstock, L

    1989-07-01

    The acute effects of the products of combustion and pyrolysis on airway responsiveness among firefighters are poorly documented. To study this relationship, spirometry and methacholine challenge testing (MCT) were performed on 18 active Seattle firefighters before and 5 to 24 h after firefighting. Body plethysmography was used to measure changes in specific airway conductance (SGaw), and results of MCT were analyzed using PD35-SGaw, the cumulative dose causing a 35% decrease in SGaw. Subjects who did not react by the end of the protocol were assigned a value of 640 inhalational units, the largest cumulative dose. Fire exposure was defined as the total time (hours) spent without a self-contained breathing apparatus at the firesite and was categorized as mild (less than 1 h, n = 7), moderate (1 to 2 h, n = 5), or severe (greater than 2 h, n = 6). Mean age of the 18 firefighters was 36.7 +/- 6.7 yr (range, 25 to 51), with a mean of 9.1 +/- 7.9 active years in the trade (range, zero to 22). None was known to be asthmatic. After firefighting, FEV1 % predicted (%pred) and FEF25-75 %pred significantly decreased by means of 3.4 +/- 1.1% and 5.6 +/- 2.6%, respectively. The mean decline in PD35-SGaw after firefighting was 184.5 +/- 53.2 units (p = 0.003). This observed decline in PD35-SGaw could not be explained by decrements in prechallenge SGaw, FEV1, or FVC.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  1. Airway management for cervical spine surgery.

    PubMed

    Farag, Ehab

    2016-03-01

    Cervical spine surgery is one of the most commonly performed spine surgeries in the United States, and 90% of the cases are related to degenerative cervical spine disease (the rest to cervical spine trauma and/or instability). The airway management for cervical spine surgery represents a crucial step in the anesthetic management to avoid injury to the cervical cord. The crux for upper airway management for cervical spine surgery is maintaining the neck in a neutral position with minimal neck movement during endotracheal intubation. Therefore, the conventional direct laryngoscopy (DL) can be unsuitable for securing the upper airway in cervical spine surgery, especially in cases of cervical spine instability and myelopathy. This review discusses the most recent evidence-based facts of the main advantages and limitations of different techniques available for upper airway management for cervical spine surgery.

  2. Therapeutic bronchoscopic interventions for malignant airway obstruction

    PubMed Central

    Dalar, Levent; Özdemir, Cengiz; Abul, Yasin; Karasulu, Levent; Sökücü, Sinem Nedime; Akbaş, Ayşegül; Altın, Sedat

    2016-01-01

    Abstract There is no definitive consensus about the factors affecting the choice of interventional bronchoscopy in the management of malignant airway obstruction. The present study defines the choice of the interventional bronchoscopic modality and analyzes the factors influencing survival in patients with malignant central airway obstruction. Totally, over 7 years, 802 interventional rigid bronchoscopic procedures were applied in 547 patients having malignant airway obstruction. There was a significant association between the type of stent and the site of the lesion in the present study. Patients with tracheal involvement and/or involvement of the main bronchi had the worst prognosis. The sites of the lesion and endobronchial treatment modality were independent predictors of survival in the present study. The selection of different types of airway stents can be considered on the base of site of the lesion. Survival can be estimated based on the site of the lesion and endobronchial brochoscopic modality used. PMID:27281104

  3. Morphometry and average temperature affect lake stratification responses to climate change

    NASA Astrophysics Data System (ADS)

    Kraemer, Benjamin M.; Anneville, Orlane; Chandra, Sudeep; Dix, Margaret; Kuusisto, Esko; Livingstone, David M.; Rimmer, Alon; Schladow, S. Geoffrey; Silow, Eugene; Sitoki, Lewis M.; Tamatamah, Rashid; Vadeboncoeur, Yvonne; McIntyre, Peter B.

    2015-06-01

    Climate change is affecting lake stratification with consequences for water quality and the benefits that lakes provide to society. Here we use long-term temperature data (1970-2010) from 26 lakes around the world to show that climate change has altered lake stratification globally and that the magnitudes of lake stratification changes are primarily controlled by lake morphometry (mean depth, surface area, and volume) and mean lake temperature. Deep lakes and lakes with high average temperatures have experienced the largest changes in lake stratification even though their surface temperatures tend to be warming more slowly. These results confirm that the nonlinear relationship between water density and water temperature and the strong dependence of lake stratification on lake morphometry makes lake temperature trends relatively poor predictors of lake stratification trends.

  4. Examining population differences in cerebral morphometry between Chinese and Indian undergraduate students.

    PubMed

    Lu, Jieru; Peng, Bo; Saxena, Aditya; Zhou, Zhiyong; Zhou, Zhe; Zhang, Tao; Tong, Baotong; Wang, Suhong; Dai, Yakang

    2017-01-01

    The aim of this study is to examine potential population differences in brain morphometry using magnetic resonance imaging (MRI). Thirty-six Chinese and thirty-two Indian undergraduate students are included in this study. All images are processed using BrainLab toolbox to obtain the morphometric values of gray matter volume, cortical thickness, and cortical surface area in each region of interest (ROI). We use ROI-based analysis to investigate ethnic differences using the three types of measurements. Cerebral variations of the brain between Chinese and Indian groups are mostly distributed in the frontal lobe, temporal lobe, and occipital lobe. Subgroup analysis reveals sex differences between the two groups. Our study demonstrates population-related differences in brain morphometry (gray matter volume, cortical thickness, and cortical surface area) between Chinese and Indian undergraduates.

  5. Taste Receptors in Upper Airway Immunity.

    PubMed

    Carey, Ryan M; Lee, Robert J; Cohen, Noam A

    2016-01-01

    Taste receptors are well known for their role in communicating information from the tongue to the brain about nutritional value or potential toxicity of ingested substances. More recently, it has been shown that taste receptors are expressed in other locations throughout the body, including the airway, gastrointestinal tract, brain and pancreas. The roles of some 'extraoral' taste receptors are largely unknown, but emerging research suggests that bitter and sweet taste receptors in the airway are capable of sensing bacteria and modulating innate immunity. This chapter focuses on the role of bitter and sweet taste receptors in human airway innate immunity and their clinical relevance to rhinosinusitis. The bitter taste receptor T2R38 expressed in sinonasal cilia detects bitter bacterial quorum-sensing molecules and activates a nitric oxide-dependent innate immune response; moreover, there are polymorphisms in T2R38 that underlie susceptibility to chronic rhinosinusitis (CRS). Bitter and sweet receptors in sinonasal solitary chemosensory cells control secretion of antimicrobial peptides in the upper airway and may have a profound impact on airway infections in patients with CRS and diabetes. Future research on taste receptors in the airway has enormous potential to expand our understanding of host-pathogen immune interactions and provide novel therapeutic targets.

  6. Sensory nerves in lung and airways.

    PubMed

    Lee, Lu-Yuan; Yu, Jerry

    2014-01-01

    Sensory nerves innervating the lung and airways play an important role in regulating various cardiopulmonary functions and maintaining homeostasis under both healthy and disease conditions. Their activities conducted by both vagal and sympathetic afferents are also responsible for eliciting important defense reflexes that protect the lung and body from potential health-hazardous effects of airborne particulates and chemical irritants. This article reviews the morphology, transduction properties, reflex functions, and respiratory sensations of these receptors, focusing primarily on recent findings derived from using new technologies such as neural immunochemistry, isolated airway-nerve preparation, cultured airway neurons, patch-clamp electrophysiology, transgenic mice, and other cellular and molecular approaches. Studies of the signal transduction of mechanosensitive afferents have revealed a new concept of sensory unit and cellular mechanism of activation, and identified additional types of sensory receptors in the lung. Chemosensitive properties of these lung afferents are further characterized by the expression of specific ligand-gated ion channels on nerve terminals, ganglion origin, and responses to the action of various inflammatory cells, mediators, and cytokines during acute and chronic airway inflammation and injuries. Increasing interest and extensive investigations have been focused on uncovering the mechanisms underlying hypersensitivity of these airway afferents, and their role in the manifestation of various symptoms under pathophysiological conditions. Several important and challenging questions regarding these sensory nerves are discussed. Searching for these answers will be a critical step in developing the translational research and effective treatments of airway diseases.

  7. Regulation of Airway Mucin Gene Expression

    PubMed Central

    Thai, Philip; Loukoianov, Artem; Wachi, Shinichiro; Wu, Reen

    2015-01-01

    Mucins are important components that exert a variety of functions in cell-cell interaction, epidermal growth factor receptor signaling, and airways protection. In the conducting airways of the lungs, mucins are the major contributor to the viscoelastic property of mucous secretion, which is the major barrier to trapping inhaled microbial organism, particulates, and oxidative pollutants. The homeostasis of mucin production is an important feature in conducting airways for the maintenance of mucociliary function. Aberrant mucin secretion and accumulation in airway lumen are clinical hallmarks associated with various lung diseases, such as asthma, chronic obstructive pulmonary disease, cystic fibrosis, emphysema, and lung cancer. Among 20 known mucin genes identified, 11 of them have been verified at either the mRNA and/or protein level in airways. The regulation of mucin genes is complicated, as are the mediators and signaling pathways. This review summarizes the current view on the mediators, the signaling pathways, and the transcriptional units that are involved in the regulation of airway mucin gene expression. In addition, we also point out essential features of epigenetic mechanisms for the regulation of these genes. PMID:17961085

  8. Nitrogen Dioxide Exposure and Airway Responsiveness in ...

    EPA Pesticide Factsheets

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway responsiveness of individuals with asthma. However, no meta-analysis has provided a comprehensive assessment of clinical relevance of changes in airway responsiveness, the potential for methodological biases in the original papers, and the distribution of responses. This paper provides analyses showing that a statistically significant fraction, 70% of individuals with asthma exposed to NO2 at rest, experience increases in airway responsiveness following 30-minute exposures to NO2 in the range of 200 to 300 ppb and following 60-minute exposures to 100 ppb. The distribution of changes in airway responsiveness is log-normally distributed with a median change of 0.75 (provocative dose following NO2 divided by provocative dose following filtered air exposure) and geometric standard deviation of 1.88. About a quarter of the exposed individuals experience a clinically relevant reduction in their provocative dose due to NO2 relative to air exposure. The fraction experiencing an increase in responsiveness was statistically significant and robust to exclusion of individual studies. Results showed minimal change in airway responsiveness for individuals exposed to NO2 during exercise. A variety of fa

  9. Mechanical Properties of the Upper Airway

    PubMed Central

    Strohl, Kingman P.; Butler, James P.; Malhotra, Atul

    2013-01-01

    The importance of the upper airway (nose, pharynx, and larynx) in health and in the pathogenesis of sleep apnea, asthma, and other airway diseases, discussed elsewhere in the Comprehensive Physiology series, prompts this review of the biomechanical properties and functional aspects of the upper airway. There is a literature based on anatomic or structural descriptions in static circumstances, albeit studied in limited numbers of individuals in both health and disease. As for dynamic features, the literature is limited to studies of pressure and flow through all or parts of the upper airway and to the effects of muscle activation on such features; however, the links between structure and function through airway size, shape, and compliance remain a topic that is completely open for investigation, particularly through analyses using concepts of fluid and structural mechanics. Throughout are included both historically seminal references, as well as those serving as signposts or updated reviews. This article should be considered a resource for concepts needed for the application of biomechanical models of upper airway physiology, applicable to understanding the pathophysiology of disease and anticipated results of treatment interventions. PMID:23723026

  10. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits

    PubMed Central

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na+/K+-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm2; P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm2; > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities. PMID:28018231

  11. Slowly Adapting Sensory Units Have More Receptors in Large Airways than in Small Airways in Rabbits.

    PubMed

    Liu, Jun; Song, Nana; Guardiola, Juan; Roman, Jesse; Yu, Jerry

    2016-01-01

    Sensory units of pulmonary slowly adapting receptors (SARs) are more active in large airways than in small airways. However, there is no explanation for this phenomenon. Although sensory structures in large airways resemble those in small airways, they are bigger and more complex. Possibly, a larger receptor provides greater surface area for depolarization, and thus has a lower activating threshold and/or a higher sensitivity to stretch, leading to more nerve electrical activities. Recently, a single sensory unit has been reported to contain multiple receptors. Therefore, sensory units in large airways may contain more SARs, which may contribute to high activities. To test this hypothesis, we used a double staining technique to identify sensory receptor sizes. We labeled the sensory structure with Na(+)/K(+)-ATPase antibodies and the myelin sheath with myelin basic protein (MBP) antibodies. A SAR can be defined as the end formation beyond MBP labeling. Thus, we are able to compare sizes of sensory structures and SARs in large (trachea and bronchi) vs. small (bronchioles <500 μm in diameter) airways in the rabbit. We found that even though the sensory structure was bigger in large airways than in small airways (3340 ± 223 vs. 1168 ± 103 μm(2); P < 0.0001), there was no difference in receptor sizes (349 ± 14 vs. 326 ± 16 μm(2); > 0.05). However, the sensory structure contains more SARs in large airways than in small airways (9.6 ± 0.6 vs. 3.6 ± 0.3; P < 0.0001). Thus, our data support the hypothesis that greater numbers of SARs in sensory units of large airways may contribute to higher activities.

  12. A review of recent developments and applications of morphometry/stereology in lung research.

    PubMed

    Mühlfeld, Christian; Hegermann, Jan; Wrede, Christoph; Ochs, Matthias

    2015-09-15

    Design-based stereology is the gold standard of morphometry in lung research. Here, we analyze the current use of morphometric and stereological methods in lung research and provide an overview on recent methodological developments and biological observations made by the use of stereology. Based on this analysis we hope to provide useful recommendations for a good stereological practice to further the use of advanced and unbiased stereological methods.

  13. A reexamination of age-related variation in body weight and morphometry of Maryland nutria

    USGS Publications Warehouse

    Sherfy, M.H.; Mollett, T.A.; McGowan, K.R.; Daugherty, S.L.

    2006-01-01

    Age-related variation in morphometry has been documented for many species. Knowledge of growth patterns can be useful for modeling energetics, detecting physiological influences on populations, and predicting age. These benefits have shown value in understanding population dynamics of invasive species, particularly in developing efficient control and eradication programs. However, development and evaluation of descriptive and predictive models is a critical initial step in this process. Accordingly, we used data from necropsies of 1,544 nutria (Myocastor coypus) collected in Maryland, USA, to evaluate the accuracy of previously published models for prediction of nutria age from body weight. Published models underestimated body weights of our animals, especially for ages <3. We used cross-validation procedures to develop and evaluate models for describing nutria growth patterns and for predicting nutria age. We derived models from a randomly selected model-building data set (n = 192-193 M, 217-222 F) and evaluated them with the remaining animals (n = 487-488 M, 642-647 F). We used nonlinear regression to develop Gompertz growth-curve models relating morphometric variables to age. Predicted values of morphometric variables fell within the 95% confidence limits of their true values for most age classes. We also developed predictive models for estimating nutria age from morphometry, using linear regression of log-transformed age on morphometric variables. The evaluation data set corresponded with 95% prediction intervals from the new models. Predictive models for body weight and length provided greater accuracy and less bias than models for foot length and axillary girth. Our growth models accurately described age-related variation in nutria morphometry, and our predictive models provided accurate estimates of ages from morphometry that will be useful for live-captured individuals. Our models offer better accuracy and precision than previously published models

  14. Multivariate Tensor-based Morphometry on Surfaces: Application to Mapping Ventricular Abnormalities in HIV/AIDS

    PubMed Central

    Wang, Yalin; Zhang, Jie; Gutman, Boris; Chan, Tony F.; Becker, James T.; Aizenstein, Howard J.; Lopez, Oscar L.; Tamburo, Robert J.; Toga, Arthur W.; Thompson, Paul M.

    2010-01-01

    Here we developed a new method, called multivariate tensor-based surface morphometry (TBM), and applied it to study lateral ventricular surface differences associated with HIV/AIDS. Using concepts from differential geometry and the theory of differential forms, we created mathematical structures known as holomorphic one-forms, to obtain an efficient and accurate conformal parameterization of the lateral ventricular surfaces in the brain. The new meshing approach also provides a natural way to register anatomical surfaces across subjects, and improves on prior methods as it handles surfaces that branch and join at complex 3D junctions. To analyze anatomical differences, we computed new statistics from the Riemannian surface metrics - these retain multivariate information on local surface geometry. We applied this framework to analyze lateral ventricular surface morphometry in 3D MRI data from 11 subjects with HIV/AIDS and 8 healthy controls. Our method detected a 3D profile of surface abnormalities even in this small sample. Multivariate statistics on the local tensors gave better effect sizes for detecting group differences, relative to other TBM-based methods including analysis of the Jacobian determinant, the largest and smallest eigenvalues of the surface metric, and the pair of eigenvalues of the Jacobian matrix. The resulting analysis pipeline may improve the power of surface-based morphometry studies of the brain. PMID:19900560

  15. A New Method for Automated Identification and Morphometry of Myelinated Fibers Through Light Microscopy Image Analysis.

    PubMed

    Novas, Romulo Bourget; Fazan, Valeria Paula Sassoli; Felipe, Joaquim Cezar

    2016-02-01

    Nerve morphometry is known to produce relevant information for the evaluation of several phenomena, such as nerve repair, regeneration, implant, transplant, aging, and different human neuropathies. Manual morphometry is laborious, tedious, time consuming, and subject to many sources of error. Therefore, in this paper, we propose a new method for the automated morphometry of myelinated fibers in cross-section light microscopy images. Images from the recurrent laryngeal nerve of adult rats and the vestibulocochlear nerve of adult guinea pigs were used herein. The proposed pipeline for fiber segmentation is based on the techniques of competitive clustering and concavity analysis. The evaluation of the proposed method for segmentation of images was done by comparing the automatic segmentation with the manual segmentation. To further evaluate the proposed method considering morphometric features extracted from the segmented images, the distributions of these features were tested for statistical significant difference. The method achieved a high overall sensitivity and very low false-positive rates per image. We detect no statistical difference between the distribution of the features extracted from the manual and the pipeline segmentations. The method presented a good overall performance, showing widespread potential in experimental and clinical settings allowing large-scale image analysis and, thus, leading to more reliable results.

  16. Morphometry and mixing regime of a tropical lake: Lake Nova (Southeastern Brazil).

    PubMed

    Gonçalves, Monica A; Garcia, Fábio C; Barroso, Gilberto F

    2016-09-01

    Lake Nova (15.5 km2) is the second largest lake in the Lower Doce River Valley (Southeastern Brazil). A better understanding of ecosystem structure and functioning requires knowledge about lake morphometry, given that lake basin form influences water column stratification. The present study aims to contribute to the understanding of relationship between morphometry and mixing patterns of deep tropical lakes in Brazil. Water column profiles of temperature and dissolved oxygen were taken on four sampling sites along the lake major axis during 2011, 2012 and 2013. The bathymetric survey was carried out in July 2011, along 131.7 km of hydrographic tracks yield 51,692 depth points. Morphometric features of lake size and form factors describe the relative deep subrectangular elongated basin with maximum length of 15.7 km, shoreline development index 5.0, volume of 0.23 km3, volume development of 1.3, and maximum, mean and relative depths of 33.9 m, 14.7 m and 0.7 %, respectively. The deep basin induces a monomictic pattern, with thermal stratification during the wet/warm season associated with anoxic bottom waters (1/3 of lake volume), and mixing during dry and cool season. Based on in situ measurements of tributary river discharges, theoretical retention time (RT) has been estimated in 13.4 years. The morphometry of Lake Nova promote long water RT and the warm monomictic mixing pattern, which is in accordance to the deep tropical lakes in Brazil.

  17. Morphometry of boar sperm head and flagellum in semen backflow after insemination.

    PubMed

    García-Vázquez, Francisco Alberto; Hernández-Caravaca, Iván; Yánez-Quintana, Wellington; Matás, Carmen; Soriano-Úbeda, Cristina; Izquierdo-Rico, María José

    2015-09-01

    Once deposited in the female reproductive system, sperm begin their competition and undergo a selection to reach the site of fertilization. Little is known about the special characteristics of sperm that reach the oviduct and are able to fertilize, with even less information on the role of sperm dimension and shape in transport and fertilization. Here, we examine whether sperm morphometry could be involved in their journey within the uterus. For this purpose, sperm head dimension (length, width, area, and perimeter) and shape (shape factor, ellipticity, elongation, and regularity), and flagellum length were analyzed in the backflow at different times after insemination (0-15, 16-30, and 31-60 minutes). Sperm morphometry in the backflow was also analyzed taking into account the site of semen deposition (cervical vs. intrauterine). Finally, flagellum length was measured at the uterotubal junction. Sperm analyzed in the backflow were small (head and flagellum) with different head shapes compared with sperm observed in the dose before insemination. The site of deposition influenced head morphometry and tail size both being smaller in the backflow after cervical insemination compared with intrauterine insemination. Mean tail length of sperm collected in the backflow was smaller than that in the insemination dose and at the uterotubal junction. Overall, our results suggest that sperm size may be involved in sperm transport either because of environment or through sperm selection and competence on their way to encounter the female gamete.

  18. Promotion of airway anastomotic microvascular regeneration and alleviation of airway ischemia by deferoxamine nanoparticles

    PubMed Central

    Tian, Wen; Sung, Yon K.; Sun, Wenchao; Hsu, Joe L.; Manickam, Sathish; Wagh, Dhananjay; Joubert, Lydia-Marie; Semenza, Gregg L.; Rajadas, Jayakumar; Nicolls, Mark R.

    2014-01-01

    Airway tissue ischemia and hypoxia in human lung transplantation is a consequence of the sacrifice of the bronchial circulation during the surgical procedure and is a major risk factor for the development of airway anastomotic complications. Augmented expression of hypoxia-inducible factor (HIF)-1α promotes microvascular repair and alleviates allograft ischemia and hypoxia. Deferoxamine mesylate (DFO) is an FDA-approved iron chelator which has been shown to upregulate cellular HIF-1α. Here, we developed a nanoparticle formulation of DFO that can be topically applied to airway transplants at the time of surgery. In a mouse orthotopic tracheal transplant (OTT) model, the DFO nanoparticle was highly effective in enhancing airway microvascular perfusion following transplantation through the production of the angiogenic factors, placental growth factor (PLGF) and stromal cell-derived factor (SDF)-1. The endothelial cells in DFO treated airways displayed higher levels of p-eNOS and Ki67, less apoptosis, and decreased production of perivascular reactive oxygen species (ROS) compared to vehicle-treated airways. In summary, a DFO formulation topically-applied at the time of surgery successfully augmented airway anastomotic microvascular regeneration and the repair of alloimmune-injured microvasculature. This approach may be an effective topical transplant-conditioning therapy for preventing airway complications following clinical lung transplantation. PMID:24161166

  19. Airway smooth muscle in airway reactivity and remodeling: what have we learned?

    PubMed Central

    2013-01-01

    It is now established that airway smooth muscle (ASM) has roles in determining airway structure and function, well beyond that as the major contractile element. Indeed, changes in ASM function are central to the manifestation of allergic, inflammatory, and fibrotic airway diseases in both children and adults, as well as to airway responses to local and environmental exposures. Emerging evidence points to novel signaling mechanisms within ASM cells of different species that serve to control diverse features, including 1) [Ca2+]i contractility and relaxation, 2) cell proliferation and apoptosis, 3) production and modulation of extracellular components, and 4) release of pro- vs. anti-inflammatory mediators and factors that regulate immunity as well as the function of other airway cell types, such as epithelium, fibroblasts, and nerves. These diverse effects of ASM “activity” result in modulation of bronchoconstriction vs. bronchodilation relevant to airway hyperresponsiveness, airway thickening, and fibrosis that influence compliance. This perspective highlights recent discoveries that reveal the central role of ASM in this regard and helps set the stage for future research toward understanding the pathways regulating ASM and, in turn, the influence of ASM on airway structure and function. Such exploration is key to development of novel therapeutic strategies that influence the pathophysiology of diseases such as asthma, chronic obstructive pulmonary disease, and pulmonary fibrosis. PMID:24142517

  20. Airway pressure with chest compressions versus Heimlich manoeuvre in recently dead adults with complete airway obstruction.

    PubMed

    Langhelle, A; Sunde, K; Wik, L; Steen, P A

    2000-04-01

    In a previous case report a standard chest compression successfully removed a foreign body from the airway after the Heimlich manoeuvre had failed. Based on this case, standard chest compressions and Heimlich manoeuvres were performed by emergency physicians on 12 unselected cadavers with a simulated complete airway obstruction in a randomised crossover design. The mean peak airway pressure was significantly lower with abdominal thrusts compared to chest compressions, 26.4+/-19.8 cmH(2)O versus 40.8+/-16.4 cmH(2)O, respectively (P=0.005, 95% confidence interval for the mean difference 5.3-23.4 cmH(2)O). Standard chest compressions therefore have the potential of being more effective than the Heimlich manoeuvre for the management of complete airway obstruction by a foreign body in an unconscious patient. Removal of the Heimlich manoeuvre from the resuscitation algorithm for unconscious patients with suspected airway obstruction will also simplify training.

  1. Deletion of airway cilia results in noninflammatory bronchiectasis and hyperreactive airways

    PubMed Central

    Gilley, Sandra K.; Stenbit, Antine E.; Pasek, Raymond C.; Sas, Kelli M.; Steele, Stacy L.; Amria, May; Bunni, Marlene A.; Estell, Kimberly P.; Schwiebert, Lisa M.; Flume, Patrick; Gooz, Monika; Haycraft, Courtney J.; Yoder, Bradley K.; Miller, Caroline; Pavlik, Jacqueline A.; Turner, Grant A.; Sisson, Joseph H.

    2013-01-01

    The mechanisms for the development of bronchiectasis and airway hyperreactivity have not been fully elucidated. Although genetic, acquired diseases and environmental influences may play a role, it is also possible that motile cilia can influence this disease process. We hypothesized that deletion of a key intraflagellar transport molecule, IFT88, in mature mice causes loss of cilia, resulting in airway remodeling. Airway cilia were deleted by knockout of IFT88, and airway remodeling and pulmonary function were evaluated. In IFT88− mice there was a substantial loss of airway cilia on respiratory epithelium. Three months after the deletion of cilia, there was clear evidence for bronchial remodeling that was not associated with inflammation or apparent defects in mucus clearance. There was evidence for airway epithelial cell hypertrophy and hyperplasia. IFT88− mice exhibited increased airway reactivity to a methacholine challenge and decreased ciliary beat frequency in the few remaining cells that possessed cilia. With deletion of respiratory cilia there was a marked increase in the number of club cells as seen by scanning electron microscopy. We suggest that airway remodeling may be exacerbated by the presence of club cells, since these cells are involved in airway repair. Club cells may be prevented from differentiating into respiratory epithelial cells because of a lack of IFT88 protein that is necessary to form a single nonmotile cilium. This monocilium is a prerequisite for these progenitor cells to transition into respiratory epithelial cells. In conclusion, motile cilia may play an important role in controlling airway structure and function. PMID:24213915

  2. Preparation of the patient and the airway for awake intubation

    PubMed Central

    Ramkumar, Venkateswaran

    2011-01-01

    Awake intubation is usually performed electively in the presence of a difficult airway. A detailed airway examination is time-consuming and often not feasible in an emergency. A simple 1-2-3 rule for airway examination allows one to identify potential airway difficulty within a minute. A more detailed airway examination can give a better idea about the exact nature of difficulty and the course of action to be taken to overcome it. When faced with an anticipated difficult airway, the anaesthesiologist needs to consider securing the airway in an awake state without the use of anaesthetic agents or muscle relaxants. As this can be highly discomforting to the patient, time and effort must be spent to prepare such patients both psychologically and pharmacologically for awake intubation. Psychological preparation is best initiated by an anaesthesiologist who explains the procedure in simple language. Sedative medications can be titrated to achieve patient comfort without compromising airway patency. Additional pharmacological preparation includes anaesthetising the airway through topical application of local anaesthetics and appropriate nerve blocks. When faced with a difficult airway, one should call for the difficult airway cart as well as for help from colleagues who have interest and expertise in airway management. Preoxygenation and monitoring during awake intubation is important. Anxious patients with a difficult airway may need to be intubated under general anaesthesia without muscle relaxants. Proper psychological and pharmacological preparation of the patient by an empathetic anaesthesiologist can go a long way in making awake intubation acceptable for all concerned. PMID:22174458

  3. Macrophage adaptation in airway inflammatory resolution.

    PubMed

    Kaur, Manminder; Bell, Thomas; Salek-Ardakani, Samira; Hussell, Tracy

    2015-09-01

    Bacterial and viral infections (exacerbations) are particularly problematic in those with underlying respiratory disease, including post-viral infection, asthma, chronic obstructive pulmonary disease and pulmonary fibrosis. Patients experiencing exacerbations tend to be at the more severe end of the disease spectrum and are often difficult to treat. Most of the unmet medical need remains in this patient group. Airway macrophages are one of the first cell populations to encounter airborne pathogens and, in health, exist in a state of reduced responsiveness due to interactions with the respiratory epithelium and specific factors found in the airway lumen. Granulocyte-macrophage colony-stimulating factor, interleukin-10, transforming growth factor-β, surfactant proteins and signalling via the CD200 receptor, for example, all raise the threshold above which airway macrophages can be activated. We highlight that following severe respiratory inflammation, the airspace microenvironment does not automatically re-set to baseline and may leave airway macrophages more restrained than they were at the outset. This excessive restraint is mediated in part by the clearance of apoptotic cells and components of extracellular matrix. This implies that one strategy to combat respiratory exacerbations would be to retune airway macrophage responsiveness to allow earlier bacterial recognition.

  4. Acoustic simulation of a patient's obstructed airway.

    PubMed

    van der Velden, W C P; van Zuijlen, A H; de Jong, A T; Lynch, C T; Hoeve, L J; Bijl, H

    2016-01-01

    This research focuses on the numerical simulation of stridor; a high pitched, abnormal noise, resulting from turbulent airflow and vibrating tissue through a partially obstructed airway. Characteristics of stridor noise are used by medical doctors as indication for location and size of the obstruction. The relation between type of stridor and the various diseases associated with airway obstruction is unclear; therefore, simply listening to stridor is an unreliable diagnostic tool. The overall aim of the study is to better understand the relationship between characteristics of stridor noise and localization and size of the obstruction. Acoustic analysis of stridor may then in future simplify the diagnostic process, and reduce the need for more invasive procedures such as laryngoscopy under general anesthesia. In this paper, the feasibility of a coupled flow, acoustic and structural model is investigated to predict the noise generated by the obstruction as well as the propagation of the noise through the airways, taking into account a one-way coupled fluid, structure, and acoustic interaction components. The flow and acoustic solver are validated on a diaphragm and a simplified airway model. A realistic airway model of a patient suffering from a subglottic stenosis, derived from a real computed tomography scan, is further analyzed. Near the mouth, the broadband noise levels at higher frequencies increased with approximately 15-20 dB comparing the stridorous model with the healthy model, indicating stridorous sound.

  5. Silibinin attenuates allergic airway inflammation in mice

    SciTech Connect

    Choi, Yun Ho; Jin, Guang Yu; Guo, Hui Shu; Piao, Hong Mei; Li, Liang chang; Li, Guang Zhao; Lin, Zhen Hua; Yan, Guang Hai

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer Silibinin diminishes ovalbumin-induced inflammatory reactions in the mouse lung. Black-Right-Pointing-Pointer Silibinin reduces the levels of various cytokines into the lung of allergic mice. Black-Right-Pointing-Pointer Silibinin prevents the development of airway hyperresponsiveness in allergic mice. Black-Right-Pointing-Pointer Silibinin suppresses NF-{kappa}B transcriptional activity. -- Abstract: Allergic asthma is a chronic inflammatory disease regulated by coordination of T-helper2 (Th2) type cytokines and inflammatory signal molecules. Silibinin is one of the main flavonoids produced by milk thistle, which is reported to inhibit the inflammatory response by suppressing the nuclear factor-kappa B (NF-{kappa}B) pathway. Because NF-{kappa}B activation plays a pivotal role in the pathogenesis of allergic inflammation, we have investigated the effect of silibinin on a mouse ovalbumin (OVA)-induced asthma model. Airway hyperresponsiveness, cytokines levels, and eosinophilic infiltration were analyzed in bronchoalveolar lavage fluid and lung tissue. Pretreatment of silibinin significantly inhibited airway inflammatory cell recruitment and peribronchiolar inflammation and reduced the production of various cytokines in bronchoalveolar fluid. In addition, silibinin prevented the development of airway hyperresponsiveness and attenuated the OVA challenge-induced NF-{kappa}B activation. These findings indicate that silibinin protects against OVA-induced airway inflammation, at least in part via downregulation of NF-{kappa}B activity. Our data support the utility of silibinin as a potential medicine for the treatment of asthma.

  6. SPONTANEOUS AIRWAY HYPERRESPONSIVENESS IN ESTROGEN RECEPTOR-A DEFICIENT MICE

    EPA Science Inventory

    Rationale: Airway hyperresponsiveness is a critical feature of asthma. Substantial epidemiologic evidence supports a role for female sex hormones in modulating lung function and airway hyperresponsiveness in humans. Objectives: To examine the role of estrogen receptors in modulat...

  7. The Three A’s in Asthma – Airway Smooth Muscle, Airway Remodeling & Angiogenesis

    PubMed Central

    Keglowich, L.F; Borger, P

    2015-01-01

    Asthma affects more than 300 million people worldwide and its prevalence is still rising. Acute asthma attacks are characterized by severe symptoms such as breathlessness, wheezing, tightness of the chest, and coughing, which may lead to hospitalization or death. Besides the acute symptoms, asthma is characterized by persistent airway inflammation and airway wall remodeling. The term airway wall remodeling summarizes the structural changes in the airway wall: epithelial cell shedding, goblet cell hyperplasia, hyperplasia and hypertrophy of the airway smooth muscle (ASM) bundles, basement membrane thickening and increased vascular density. Airway wall remodeling starts early in the pathogenesis of asthma and today it is suggested that remodeling is a prerequisite for other asthma pathologies. The beneficial effect of bronchial thermoplasty in reducing asthma symptoms, together with the increased potential of ASM cells of asthmatics to produce inflammatory and angiogenic factors, indicate that the ASM cell is a major effector cell in the pathology of asthma. In the present review we discuss the ASM cell and its role in airway wall remodeling and angiogenesis. PMID:26106455

  8. Host-microbe interactions in distal airways: relevance to chronic airway diseases.

    PubMed

    Martin, Clémence; Burgel, Pierre-Régis; Lepage, Patricia; Andréjak, Claire; de Blic, Jacques; Bourdin, Arnaud; Brouard, Jacques; Chanez, Pascal; Dalphin, Jean-Charles; Deslée, Gaetan; Deschildre, Antoine; Gosset, Philippe; Touqui, Lhousseine; Dusser, Daniel

    2015-03-01

    This article is the summary of a workshop, which took place in November 2013, on the roles of microorganisms in chronic respiratory diseases. Until recently, it was assumed that lower airways were sterile in healthy individuals. However, it has long been acknowledged that microorganisms could be identified in distal airway secretions from patients with various respiratory diseases, including cystic fibrosis (CF) and non-CF bronchiectasis, chronic obstructive pulmonary disease, asthma and other chronic airway diseases (e.g. post-transplantation bronchiolitis obliterans). These microorganisms were sometimes considered as infectious agents that triggered host immune responses and contributed to disease onset and/or progression; alternatively, microorganisms were often considered as colonisers, which were considered unlikely to play roles in disease pathophysiology. These concepts were developed at a time when the identification of microorganisms relied on culture-based methods. Importantly, the majority of microorganisms cannot be cultured using conventional methods, and the use of novel culture-independent methods that rely on the identification of microorganism genomes has revealed that healthy distal airways display a complex flora called the airway microbiota. The present article reviews some aspects of current literature on host-microbe (mostly bacteria and viruses) interactions in healthy and diseased airways, with a special focus on distal airways.

  9. MicroRNA in United Airway Diseases

    PubMed Central

    Liu, Zheng; Zhang, Xin-Hao; Callejas-Díaz, Borja; Mullol, Joaquim

    2016-01-01

    The concept of united airway diseases (UAD) has received increasing attention in recent years. Sustained and increased inflammation is a common feature of UAD, which is inevitably accompanied with marked gene modification and tight gene regulation. However, gene regulation in the common inflammatory processes in UAD remains unclear. MicroRNA (miRNA), a novel regulator of gene expression, has been considered to be involved in many inflammatory diseases. Although there are an increasing number of studies of miRNAs in inflammatory upper and lower airway diseases, few miRNAs have been identified that directly link the upper and lower airways. In this article, therefore, we reviewed the relevant studies available in order to improve the understanding of the roles of miRNAs in the interaction and pathogenesis of UAD. PMID:27187364

  10. Electrical stimulation of upper airway musculature.

    PubMed

    Smith, P L; Eisele, D W; Podszus, T; Penzel, T; Grote, L; Peter, J H; Schwartz, A R

    1996-12-01

    Investigators have postulated that pharyngeal collapse during sleep in patients with obstructive sleep apnea (OSA) may be alleviated by stimulating the genioglossus. The effect of electrical stimulation (ES) of the genioglossus on pharyngeal patency was examined in an isolated feline upper airway preparation and in apneic humans during sleep. We found that stimulation of the genioglossus (n = 8) and of the hypoglossal nerve (n = 1) increased maximum airflow through the isolated feline upper airway in humans during sleep. Additional findings in the isolated feline upper airway suggest that such increases in airflow were due to decreases in pharyngeal collapsibility. The evidence suggests that improvements in airflow dynamics with electrical stimulation are due to selective recruitment of the genioglossus, rather than due to nonspecific activation of the pharyngeal musculature or arousal from sleep. The implications of these results for future therapy with ES are discussed.

  11. Laser applications in pediatric airway surgery

    NASA Astrophysics Data System (ADS)

    Karamzadeh, Amir M.; Ahuja, Gurpreet S.; Nguyen, John D.; Crumley, Roger

    2003-06-01

    The smaller anatomy and limited access to instrumentation pose a challenge to the pediatric airway surgeon. The enhanced precision and ability to photocoagulate tissue while operating with the laser enhances the surgeon"s ability to successfully treat unique pediatric conditions such subglottic hemangiomas, congenital cysts, respiratory papillomatosis, and laryngeal or tracheal stenosis. Due to its shallow tissue penetration and thermal effect, the carbon dioxide (CO2) laser is generally considered the laser of choice for pediatric airway applications. The potential for increased scarring and damage to underlying tissue caused by the greater penetration depth and thermal effect of the Nd:YAG and KTP lasers preclude their use in this population. In this review, we will describe the specific advantages of using lasers in airway surgery, the current technology and where the current technology is deficient.

  12. Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function

    PubMed Central

    Smolker, H. R.; Reineberg, A. E.; Orr, J. M.; Banich, M. T.

    2015-01-01

    Although the relationship between structural differences within the prefrontal cortex (PFC) and executive function (EF) has been widely explored in cognitively impaired populations, little is known about this relationship in healthy young adults. Using optimized voxel-based morphometry (VBM), surface-based morphometry (SBM), and fractional anisotropy (FA) we determined the association between regional PFC grey matter (GM) morphometry and white matter tract diffusivity with performance on tasks that tap different aspects of EF as drawn from Miyake et al.’s three-factor model of EF. Reductions in both GM volume (VBM) and cortical folding (SBM) in the ventromedial PFC (vmPFC), ventrolateral PFC (vlPFC), and dorsolateral PFC (dlPFC) predicted better common EF, shifting-specific, and updating-specific performance, respectively. Despite capturing different components of GM morphometry, voxel- and surface-based findings were highly related, exhibiting regionally overlapping relationships with EF. Increased white matter FA in fiber tracts that connect the vmPFC and vlPFC with posterior regions of the brain also predicted better common EF and shifting-specific performance, respectively. These results suggest that the neural mechanisms supporting distinct aspects of EF may differentially rely on distinct regions of the PFC, and at least in healthy young adults, are influenced by regional morphometry of the PFC and the FA of major white matter tracts that connect the PFC with posterior cortical and subcortical regions. PMID:24562372

  13. Cold weather exercise and airway cytokine expression.

    PubMed

    Davis, Michael S; Malayer, Jerry R; Vandeventer, Lori; Royer, Christopher M; McKenzie, Erica C; Williamson, Katherine K

    2005-06-01

    Athletes who perform repeated exercise while breathing cold air have a high prevalence of asthmalike chronic airway disease, but the mechanism linking such activity to airway inflammation is unknown. We used a novel animal model (exercising horses) to test the hypothesis that exercise-induced chronic airway disease is caused by exposure of intrapulmonary airways to unconditioned air, resulting in the upregulation of cytokine expression. Bronchoalveolar lavage fluid (BALF) was obtained from eight horses 5 h after submaximal exercise while they breathed room temperature or subfreezing air in a random crossover design. BALF total and differential nucleated cell counts were determined, and relative cytokine mRNA expression in BALF nucleated cells was quantified by real-time RT-PCR using primer and probe sequences specific for equine targets. There were no significant changes in total or differential cell concentrations between BALF recovered after warm and cold air exercise, although there was a strong trend toward increased concentrations of airway epithelial cells after cold air exercise (P = 0.0625). T(H)2 cytokines IL-4, IL-5, and IL-10 were preferentially upregulated after cold air exercise 12-, 9-, and 10-fold, respectively, compared with warm air exercise. Other cytokines (IL-2 and IL-6) were upregulated to a lesser extent (6- and 3-fold, respectively) or not at all (IL-1, IL-8, IFN-gamma, and TNF-alpha). These results suggest that cold weather exercise can lead to asthmalike airway disease through the local induction of cytokines typical of the T(H)2 phenotype.

  14. Airway epithelium stimulates smooth muscle proliferation.

    PubMed

    Malavia, Nikita K; Raub, Christopher B; Mahon, Sari B; Brenner, Matthew; Panettieri, Reynold A; George, Steven C

    2009-09-01

    Communication between the airway epithelium and stroma is evident during embryogenesis, and both epithelial shedding and increased smooth muscle proliferation are features of airway remodeling. Hence, we hypothesized that after injury the airway epithelium could modulate airway smooth muscle proliferation. Fully differentiated primary normal human bronchial epithelial (NHBE) cells at an air-liquid interface were co-cultured with serum-deprived normal primary human airway smooth muscle cells (HASM) using commercially available Transwells. In some co-cultures, the NHBE were repeatedly (x4) scrape-injured. An in vivo model of tracheal injury consisted of gently denuding the tracheal epithelium (x3) of a rabbit over 5 days and then examining the trachea by histology 3 days after the last injury. Our results show that HASM cell number increases 2.5-fold in the presence of NHBE, and 4.3-fold in the presence of injured NHBE compared with HASM alone after 8 days of in vitro co-culture. In addition, IL-6, IL-8, monocyte chemotactic protein (MCP)-1 and, more markedly, matrix metalloproteinase (MMP)-9 concentration increased in co-culture correlating with enhanced HASM growth. Inhibiting MMP-9 release significantly attenuated the NHBE-dependent HASM proliferation in co-culture. In vivo, the injured rabbit trachea demonstrated proliferation in the smooth muscle (trachealis) region and significant MMP-9 staining, which was absent in the uninjured control. The airway epithelium modulates smooth muscle cell proliferation via a mechanism that involves secretion of soluble mediators including potential smooth muscle mitogens such as IL-6, IL-8, and MCP-1, but also through a novel MMP-9-dependent mechanism.

  15. Benign Nodular Goiter Causing Upper Airway Obstruction

    PubMed Central

    Başoğlu, Mahmut; Öztürk, Gürkan; Aydınlı, Bülent; Yıldırgan, M. İlhan; Atamanalp, S. Selçuk; Celebi, Fehmi

    2009-01-01

    Objective Benign nodular goiter (BNG) can cause narrowing of the upper airway. In some rare cases, obstruction of the upper airway also occurs. The following paper reports our experiences with regard to BNG patients who experienced obstruction of the upper airway. Materials and Methods. We retrospectively investigated the records of 13 patients with acute airway obstruction due to BNG who were admitted to the General Surgery Department of Ataturk University Medical School between January 2000 and December 2007. Results Thirteen patients with airway obstruction secondary to BNG were hospitalized during this period. There were two males and 11 females, and the mean age was 58.5 years (range 37–74 years). For all patients, the primary symptom upon admission was defined as respiratory distress; all patients had varying degrees of respiratory distress upon admission. Three of the patients underwent emergent endotracheal intubation in the emergency room. A preoperative radiological evaluation was performed with thyroid ultrasonography (US) and computed tomography (CT). There were retrosternal or substernal components of the BNG in nine patients. Twelve patients underwent operations, while one patient with mild respiratory distress elected not to be operated on. Ten patients underwent total thyroidectomies, while two patients underwent near-total thyroidectomies. One patient with retrosternal goiter also underwent a median sternotomy. Three patients received a tracheostomy after the operation. Suction drains were utilized in all operations. During the post-operative period, two patients suffered from voice impairment, and seven patients experienced hypocalcemia. Two patients died. Pathological examination of the thyroidectomy tissue revealed BNG in all cases. In addition, two patients had micropapillary carcinomas. Conclusion Although BNG causing upper airway obstruction is rare, it is an important clinical entity because of the need for emergent operation, the

  16. Cine CT technique for dynamic airway studies

    SciTech Connect

    Ell, S.R.; Jolles, H.; Keyes, W.D.; Galvin, J.R.

    1985-07-01

    The advent of cine CT scanning with its 50-msec data acquisition time promises a much wider range of dynamic CT studies. The authors describe a method for dynamic evaluation of the extrathoracic airway, which they believe has considerable potential application in nonfixed upper-airway disease, such as sleep apnea and stridor of unknown cause. Conventional CT is limited in such studies by long data acquisition time and can be used to study only prolonged maneuvers such as phonation. Fluoroscopy and digital subtraction studies are limited by relatively high radiation dose and inability to image all wall motions simultaneously.

  17. 21 CFR 868.5090 - Emergency airway needle.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Emergency airway needle. 868.5090 Section 868.5090 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED... provide an emergency airway during upper airway obstruction. (b) Classification. Class II...

  18. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  19. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  20. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  1. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  2. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  3. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  4. 21 CFR 868.2600 - Airway pressure monitor.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Airway pressure monitor. 868.2600 Section 868.2600...) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Monitoring Devices § 868.2600 Airway pressure monitor. (a) Identification. An airway pressure monitor is a device used to measure the pressure in a patient's upper...

  5. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  6. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  7. 21 CFR 868.1780 - Inspiratory airway pressure meter.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Inspiratory airway pressure meter. 868.1780... (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Diagnostic Devices § 868.1780 Inspiratory airway pressure meter. (a) Identification. An inspiratory airway pressure meter is a device used to measure the...

  8. The morphometry of Lake Palmas, a deep natural lake in Brazil.

    PubMed

    Barroso, Gilberto F; Gonçalves, Monica A; Garcia, Fábio da C

    2014-01-01

    Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern of a LDRV deep lake, Lake Palmas. A bathymetric survey carried out in 2011 and the analysis of hydrographic and wind data with a geographic information system allowed the calculation of several metrics of lake morphometry. The vertical profiling of physical and chemical variables in the water column during the wet/warm and dry/mild cold seasons of 2011 to 2013 has furnished a better understanding of the influence of the lake morphometry on its structure and function. The overdeepened basin has a subrectangular elongated shape and is aligned in a NW-SE direction in an alluvial valley with a maximum depth (Zmax) of 50.7 m, a volume of 2.2×10(8) m3 (0.22 km3) and a mean depth (Zmv) of 21.4m. These metrics suggest Lake Palmas as the deepest natural lake in Brazil. Water column profiling has indicated strong physical and chemical stratification during the wet/warm season, with a hypoxic/anoxic layer occupying one-half of the lake volume. The warm monomictic pattern of Lake Palmas, which is in an accordance to deep tropical lakes, is determined by water column mixing during the dry and mild cold season, especially under the influence of a high effective fetch associated with the incidence of cold fronts. Lake Palmas has a very long theoretical retention time, with a mean of 19.4 years. The changes observed in the hydrological flows of the tributary rivers may disturb the ecological resilience of Lake Palmas.

  9. Brain Morphometry on Congenital Hand Deformities based on Teichmüller Space Theory

    PubMed Central

    Peng, Hao; Wang, Xu; Duan, Ye; Frey, Scott H.; Gu, Xianfeng

    2016-01-01

    Congenital Hand Deformities (CHD) are usually occurred between fourth and eighth week after the embryo is formed. Failure of the transformation from arm bud cells to upper limb can lead to an abnormal appearing/functioning upper extremity which is presented at birth. Some causes are linked to genetics while others are affected by the environment, and the rest have remained unknown. CHD patients develop prehension through the use of their hands, which affect the brain as time passes. In recent years, CHD have gain increasing attention and researches have been conducted on CHD, both surgically and psychologically. However, the impacts of CHD on brain structure are not well-understood so far. Here, we propose a novel approach to apply Teichmüller space theory and conformal welding method to study brain morphometry in CHD patients. Conformal welding signature reflects the geometric relations among different functional areas on the cortex surface, which is intrinsic to the Riemannian metric, invariant under conformal deformation, and encodes complete information of the functional area boundaries. The computational algorithm is based on discrete surface Ricci flow, which has theoretic guarantees for the existence and uniqueness of the solutions. In practice, discrete Ricci flow is equivalent to a convex optimization problem, therefore has high numerically stability. In this paper, we compute the signatures of contours on general 3D surfaces with surface Ricci flow method, which encodes both global and local surface contour information. Then we evaluated the signatures of pre-central and post-central gyrus on healthy control and CHD subjects for analyzing brain cortical morphometry. Preliminary experimental results from 3D MRI data of CHD/control data demonstrate the effectiveness of our method. The statistical comparison between left and right brain gives us a better understanding on brain morphometry of subjects with Congenital Hand Deformities, in particular, missing

  10. The Morphometry of Lake Palmas, a Deep Natural Lake in Brazil

    PubMed Central

    Barroso, Gilberto F.; Gonçalves, Monica A.; Garcia, Fábio da C.

    2014-01-01

    Lake Palmas (A = 10.3km2) is located in the Lower Doce River Valley (LDRV), on the southeastern coast of Brazil. The Lake District of the LDRV includes 90 lakes, whose basic geomorphology is associated with the alluvial valleys of the Barreiras Formation (Cenozoic, Neogene) and with the Holocene coastal plain. This study aimed to investigate the relationship of morphometry and thermal pattern of a LDRV deep lake, Lake Palmas. A bathymetric survey carried out in 2011 and the analysis of hydrographic and wind data with a geographic information system allowed the calculation of several metrics of lake morphometry. The vertical profiling of physical and chemical variables in the water column during the wet/warm and dry/mild cold seasons of 2011 to 2013 has furnished a better understanding of the influence of the lake morphometry on its structure and function. The overdeepened basin has a subrectangular elongated shape and is aligned in a NW-SE direction in an alluvial valley with a maximum depth (Zmax) of 50.7m, a volume of 2.2×108 m3 (0.22km3) and a mean depth (Zmv) of 21.4m. These metrics suggest Lake Palmas as the deepest natural lake in Brazil. Water column profiling has indicated strong physical and chemical stratification during the wet/warm season, with a hypoxic/anoxic layer occupying one-half of the lake volume. The warm monomictic pattern of Lake Palmas, which is in an accordance to deep tropical lakes, is determined by water column mixing during the dry and mild cold season, especially under the influence of a high effective fetch associated with the incidence of cold fronts. Lake Palmas has a very long theoretical retention time, with a mean of 19.4 years. The changes observed in the hydrological flows of the tributary rivers may disturb the ecological resilience of Lake Palmas. PMID:25406062

  11. Automated airway evaluation system for multi-slice computed tomography using airway lumen diameter, airway wall thickness and broncho-arterial ratio

    NASA Astrophysics Data System (ADS)

    Odry, Benjamin L.; Kiraly, Atilla P.; Novak, Carol L.; Naidich, David P.; Lerallut, Jean-Francois

    2006-03-01

    Pulmonary diseases such as bronchiectasis, asthma, and emphysema are characterized by abnormalities in airway dimensions. Multi-slice computed tomography (MSCT) has become one of the primary means to depict these abnormalities, as the availability of high-resolution near-isotropic data makes it possible to evaluate airways at oblique angles to the scanner plane. However, currently, clinical evaluation of airways is typically limited to subjective visual inspection only: systematic evaluation of the airways to take advantage of high-resolution data has not proved practical without automation. We present an automated method to quantitatively evaluate airway lumen diameter, wall thickness and broncho-arterial ratios. In addition, our method provides 3D visualization of these values, graphically illustrating the location and extent of disease. Our algorithm begins by automatic airway segmentation to extract paths to the distal airways, and to create a map of airway diameters. Normally, airway diameters decrease as paths progress distally; failure to taper indicates abnormal dilatation. Our approach monitors airway lumen diameters along each airway path in order to detect abnormal profiles, allowing even subtle degrees of pathologic dilatation to be identified. Our method also systematically computes the broncho-arterial ratio at every terminal branch of the tree model, as a ratio above 1 indicates potentially abnormal bronchial dilatation. Finally, the airway wall thickness is computed at corresponding locations. These measurements are used to highlight abnormal branches for closer inspection, and can be summed to compute a quantitative global score for the entire airway tree, allowing reproducible longitudinal assessment of disease severity. Preliminary tests on patients diagnosed with bronchiectasis demonstrated rapid identification of lack of tapering, which also was confirmed by corresponding demonstration of elevated broncho-arterial ratios.

  12. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    NASA Astrophysics Data System (ADS)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  13. Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrological conditions

    NASA Astrophysics Data System (ADS)

    Frumkin, Amos; Fischhendler, Itay

    2005-04-01

    Isolated caves are a special cave type common in most karst terrains, formed by prolonged slow water flow where aggressivity is locally boosted. The morphometry and distribution of isolated caves are used here to reconstruct the paleohydrology of a karstic mountain range. Within a homogenous karstic rock sequence, two main types of isolated caves are distinguished, and each is associated with a special hydrogeologic setting: maze caves form by rising water in the confined zone of the aquifer, under the Mt. Scopus Group (Israel) confinement, while chamber caves are formed in phreatic conditions, apparently by lateral flow mixing with a vadose input from above.

  14. Kinetic of magnetic nanoparticles uptake evaluated by morphometry of mice peritoneal cells

    NASA Astrophysics Data System (ADS)

    Silva, L. P.; Kuckelhaus, S.; Guedes, M. H. A.; Lacava, Z. G. M.; Tedesco, A. C.; Morais, P. C.; Azevedo, R. B.

    2005-03-01

    The development of magnetic fluids (MFs) has led to a wide range of new biomedical applications. Nevertheless, few studies have examined the kinetics of the magnetic nanoparticles (MNPs) internalization by phagocytes. In this study, we present morphometry as a method to quantify the cell surface covered by MNPs. The maximum cell surface covered by MNPs aggregates was 32.5% (8.5 min), 18.3% (24.1 min), and 18.0% (20.2 min) in DMSA, citric acid and dextran-coated MNPs, respectively. We concluded that the phagocytosis process of MNPs is strongly dependent upon the coating species.

  15. Prehospital endotracheal tube airway or esophageal gastric tube airway: a critical comparison.

    PubMed

    Shea, S R; MacDonald, J R; Gruzinski, G

    1985-02-01

    This study compares two similar groups of patients in cardiopulmonary arrest with ventricular fibrillation (VF). In the survival study group of 296 patients, 148 patients received an endotracheal tube airway (ETA) and 148 patients received an esophageal gastric tube airway (EGTA), the improved version of the esophageal obturator airway (EOA). Survival rates, both short term (ETA = 35.8%, EGTA = 39.1%) and long term (ETA = 11.5%, EGTA = 16.2%), and neurological sequelae of survivors showed no statistically significant difference between the two groups (P greater than .05). In addition, we found that success and complication rates of intubation were similar. Training time was longer for the ETA. We conclude that both airways have a place in the prehospital setting.

  16. Expression of ligands for Siglec-8 and Siglec-9 in human airways and airway cells

    PubMed Central

    Jia, Yi; Yu, Huifeng; Fernandes, Steve M.; Wei, Yadong; Gonzalez-Gil, Anabel; Motari, Mary G.; Vajn, Katarina; Stevens, Whitney W.; Peters, Anju T.; Bochner, Bruce S.; Kern, Robert C.; Schleimer, Robert P.; Schnaar, Ronald L.

    2015-01-01

    Background Balanced activation and inhibition of the immune system ensures pathogen clearance while avoiding hyperinflammation. Siglecs, sialic acid binding proteins found on subsets of immune cells, often inhibit inflammation: Siglec-8 on eosinophils and Siglec-9 on neutrophils engage sialoglycan ligands on airways to diminish ongoing inflammation. The identities of human siglec ligands and their expression during inflammation are largely unknown. Objective The histological distribution, expression and molecular characteristics of siglec ligands were explored in healthy and inflamed human upper airways and in a cellular model of airway inflammation. Methods Normal and chronically inflamed upper airway tissues were stained for siglec ligands. The ligands were extracted from normal and inflamed tissues and from human Calu-3 cells for quantitative analysis by siglec blotting and isolation by siglec capture. Results Siglec-8 ligands were expressed on a subpopulation of submucosal gland cells of human inferior turbinate, whereas Siglec-9 ligands were expressed more broadly (submucosal glands, epithelium, connective tissue); both were significantly upregulated in chronic rhinosinusitis patients. Human airway (Calu-3) cells expressed Siglec-9 ligands on mucin 5B under inflammatory control via the NF-κB pathway, and mucin 5B carried sialoglycan ligands of Siglec-9 on human upper airway tissue. Conclusion Inflammation results in upregulation of immune inhibitory Siglec-8 and Siglec-9 sialoglycan ligands on human airways. Siglec-9 ligands were upregulated via the NF-κB pathway resulting in their enhanced expression on mucin 5B. Siglec sialoglycan ligand expression in inflamed cells and tissues may contribute to the control of airway inflammation. PMID:25747723

  17. Complications of upper airway surgery in companion animals.

    PubMed

    Mercurio, Andrew

    2011-09-01

    Surgery of the upper airway is performed in dogs for the correction of brachycephalic airway syndrome and laryngeal paralysis and for temporary or permanent tracheostomy. Although technically simple to perform, upper airway surgeries can lead to the development of significant postoperative complications. This article reviews complications associated with common surgical conditions of the upper airway. It involves a discussion of brachycephalic airway syndrome and associated respiratory and gastrointestinal complications. It also covers laryngeal paralysis with a focus on unilateral arytenoid lateralization and the complication of aspiration pneumonia. The condition of acquired laryngeal webbing/stenosis and potential treatment options is also discussed. Finally, tracheostomies and associated complications in dogs and cats are reviewed.

  18. Techniques of assessing small airways dysfunction

    PubMed Central

    McNulty, William; Usmani, Omar S.

    2014-01-01

    The small airways are defined as those less than 2 mm in diameter. They are a major site of pathology in many lung diseases, not least chronic obstructive pulmonary disease (COPD) and asthma. The small airways are frequently involved early in the course of these diseases, with significant pathology demonstrable often before the onset of symptoms or changes in spirometry and imaging. Despite their importance, they have proven relatively difficult to study. This is in part due to their relative inaccessibility to biopsy and their small size which makes their imaging difficult. Traditional lung function tests may only become abnormal once there is a significant burden of disease within them. This has led to the term ‘the quiet zone’ of the lung. In recent years, more specialised tests have been developed which may detect these changes earlier, perhaps offering the possibility of earlier diagnosis and intervention. These tests are now moving from the realms of clinical research laboratories into routine clinical practice and are increasingly useful in the diagnosis and monitoring of respiratory diseases. This article gives an overview of small airways physiology and some of the routine and more advanced tests of airway function. PMID:26557240

  19. Reproducibility of airway wall thickness measurements

    NASA Astrophysics Data System (ADS)

    Schmidt, Michael; Kuhnigk, Jan-Martin; Krass, Stefan; Owsijewitsch, Michael; de Hoop, Bartjan; Peitgen, Heinz-Otto

    2010-03-01

    Airway remodeling and accompanying changes in wall thickness are known to be a major symptom of chronic obstructive pulmonary disease (COPD), associated with reduced lung function in diseased individuals. Further investigation of this disease as well as monitoring of disease progression and treatment effect demand for accurate and reproducible assessment of airway wall thickness in CT datasets. With wall thicknesses in the sub-millimeter range, this task remains challenging even with today's high resolution CT datasets. To provide accurate measurements, taking partial volume effects into account is mandatory. The Full-Width-at-Half-Maximum (FWHM) method has been shown to be inappropriate for small airways1,2 and several improved algorithms for objective quantification of airway wall thickness have been proposed.1-8 In this paper, we describe an algorithm based on a closed form solution proposed by Weinheimer et al.7 We locally estimate the lung density parameter required for the closed form solution to account for possible variations of parenchyma density between different lung regions, inspiration states and contrast agent concentrations. The general accuracy of the algorithm is evaluated using basic tubular software and hardware phantoms. Furthermore, we present results on the reproducibility of the algorithm with respect to clinical CT scans, varying reconstruction kernels, and repeated acquisitions, which is crucial for longitudinal observations.

  20. Airway-parenchyma uncoupling in nocturnal asthma.

    PubMed

    Irvin, C G; Pak, J; Martin, R J

    2000-01-01

    Airway flow resistance is well known to be dependent upon lung volume. The rise in lung volume that occurs in asthma is therefore thought to be an important mechanism that defends airway patency. The purpose of the current study was to investigate the interdependence or mechanical coupling between airways and lung parenchyma during the inflammatory processes that occur in the patient with nocturnal asthma. Five patients with documented nocturnal asthma were studied in both a vertical and a horizontal body plethysmograph. Lung volume was altered with continuous negative pressure as applied to the chest wall with a poncho cuirass in different postures and during sleep. We found during the awake phase that an increase in lung volume decreased lower pulmonary resistance (Rlp); however, within 30 min of sleep onset, functional residual capacity (FRC) fell and Rlp rose more than would be expected for the fall in FRC. Restoring FRC to presleep values either at an early (half-hour) or a late (3-h) time point did not cause Rlp to significantly fall. A second phase of the study showed that the loss of Rlp dependence on lung volume was not due to the assumption of the supine posture. Indirect measurements of lung compliance were consistent with a stiffening of the lung. We conclude that with sleep there is an immediate uncoupling of the parenchyma to the airway, resulting in a loss of interdependence that persists throughout sleep and may contribute to the morbidity and mortality associated with nocturnal asthma.

  1. Quercetin Blocks Airway Epithelial Cell Chemokine Expression

    PubMed Central

    Nanua, Suparna; Zick, Suzanna M.; Andrade, Juan E.; Sajjan, Umadevi S.; Burgess, John R.; Lukacs, Nicholas W.; Hershenson, Marc B.

    2006-01-01

    Quercetin (3,3′,4′,5,7-pentahydroxyflavone), a dietary flavonoid, is an inhibitor of phosphatidylinositol (PI) 3-kinase and potent antioxidant. We hypothesized that quercetin blocks airway epithelial cell chemokine expression via PI 3-kinase–dependent mechanisms. Pretreatment with quercetin and the PI 3–kinase inhibitor LY294002 each reduced TNF-α–induced IL-8 and monocyte chemoattractant protein (MCP)-1 (also called CCL2) expression in cultured human airway epithelial cells. Quercetin also inhibited TNF-α–induced PI 3-kinase activity, Akt phosphorylation, intracellular H2O2 production, NF-κB transactivation, IL-8 promoter activity, and steady-state mRNA levels, consistent with the notion that quercetin inhibits chemokine expression by attenuating NF-κB transactivation via a PI 3-kinase/Akt-dependent pathway. Quercetin also reduced TNF-α–induced chemokine secretion in the presence of the transcriptional inhibitor actinomycin D, while inducing phosphorylation of eukaryotic translation initiation factor (eIF)-2α, suggesting that quercetin attenuates chemokine expression by post-transcriptional as well as transcriptional mechanisms. Finally, we tested the effects of quercetin in cockroach antigen–sensitized and –challenged mice. These mice show MCP-1–dependent airways hyperresponsiveness and inflammation. Quercetin significantly reduced lung MCP-1 and methacholine responsiveness. We conclude that quercetin blocks airway cell chemokine expression via transcriptional and post-transcriptional pathways. PMID:16794257

  2. COLCHICINE DECREASES AIRWAY HYPERACTIVITY AFTER PHOSGENE EXPOSURE

    EPA Science Inventory

    Phosgene (COCl(2)) exposure affects an influx of inflammatory cells into the lung, which can be reduced in an animal model by pretreatment with colchicine. Inflammation in the respiratory tract can be associated with an increase in airway hyperreactivity. We tested the hypotheses...

  3. Osmotic regulation of airway reactivity by epithelium.

    PubMed

    Fedan, J S; Yuan, L X; Chang, V C; Viola, J O; Cutler, D; Pettit, L L

    1999-05-01

    Inhalation of nonisotonic solutions can elicit pulmonary obstruction in asthmatic airways. We evaluated the hypothesis that the respiratory epithelium is involved in responses of the airways to nonisotonic solutions using the guinea pig isolated, perfused trachea preparation to restrict applied agents to the mucosal (intraluminal) or serosal (extraluminal) surface of the airway. In methacholine-contracted tracheae, intraluminally applied NaCl or KCl equipotently caused relaxation that was unaffected by the cyclo-oxygenase inhibitor, indomethacin, but was attenuated by removal of the epithelium and Na+ and Cl- channel blockers. Na+-K+-2Cl- cotransporter and nitric oxide synthase blockers caused a slight inhibition of relaxation, whereas Na+,K+-pump inhibition produced a small potentiation. Intraluminal hyperosmolar KCl and NaCl inhibited contractions in response to intra- or extraluminally applied methacholine, as well as neurogenic cholinergic contractions elicited with electric field stimulation (+/- indomethacin). Extraluminally applied NaCl and KCl elicited epithelium-dependent relaxation (which for KCl was followed by contraction). In contrast to the effects of hyperosmolarity, intraluminal hypo-osmolarity caused papaverine-inhibitable contractions (+/- epithelium). These findings suggest that the epithelium is an osmotic sensor which, through the release of epithelium-derived relaxing factor, can regulate airway diameter by modulating smooth muscle responsiveness and excitatory neurotransmission.

  4. Quantitative analysis of airway abnormalities in CT

    NASA Astrophysics Data System (ADS)

    Petersen, Jens; Lo, Pechin; Nielsen, Mads; Edula, Goutham; Ashraf, Haseem; Dirksen, Asger; de Bruijne, Marleen

    2010-03-01

    A coupled surface graph cut algorithm for airway wall segmentation from Computed Tomography (CT) images is presented. Using cost functions that highlight both inner and outer wall borders, the method combines the search for both borders into one graph cut. The proposed method is evaluated on 173 manually segmented images extracted from 15 different subjects and shown to give accurate results, with 37% less errors than the Full Width at Half Maximum (FWHM) algorithm and 62% less than a similar graph cut method without coupled surfaces. Common measures of airway wall thickness such as the Interior Area (IA) and Wall Area percentage (WA%) was measured by the proposed method on a total of 723 CT scans from a lung cancer screening study. These measures were significantly different for participants with Chronic Obstructive Pulmonary Disease (COPD) compared to asymptomatic participants. Furthermore, reproducibility was good as confirmed by repeat scans and the measures correlated well with the outcomes of pulmonary function tests, demonstrating the use of the algorithm as a COPD diagnostic tool. Additionally, a new measure of airway wall thickness is proposed, Normalized Wall Intensity Sum (NWIS). NWIS is shown to correlate better with lung function test values and to be more reproducible than previous measures IA, WA% and airway wall thickness at a lumen perimeter of 10 mm (PI10).

  5. Access to the Airways: Rationale and Applications.

    ERIC Educational Resources Information Center

    Hanks, William; Longini, Peter

    Current movements toward greater public access to the airways are discussed. Traditional practices have limited access to journalists employed by stations and to those who purchase time and have allowed only limited responses to station-initiated editorials. Legal arguments that support citizen demands for more access arise from the First…

  6. Upper Airway Variation and Frequent Alcohol Consumption Can Affect Compliance With Continuous Positive Airway Pressure

    PubMed Central

    Jeong, Jong In; Kim, Hyo Yeol; Hong, Sang Duk; Ryu, Gwanghui; Kim, Su Jin; Lee, Kyung Eun; Dhong, Hun-Jong; Chung, Seung-Kyu

    2016-01-01

    Objectives Compliance with continuous positive airway pressure (CPAP) treatment remains a primary concern for improving treatment outcomes of obstructive sleep apnea. There are few studies that have considered the role of upper airway anatomy on the compliance with CPAP. We hypothesized that upper airway anatomy would influence the compliance with CPAP. Methods One hundred out of 161 consecutive patients were enrolled in this study. The following possible determinants were tested against CPAP use: demographic and anthropometric data, minimal cross-sectional area on acoustic rhinometry, cephalometric and polysomnographic data, questionnaires of Epworth sleepiness scale and Beck depression index, and histories of previous upper airway surgery, degree of nasal obstruction, daily cigarette consumption, and weekly frequency of alcohol intake. Results Univariate analysis showed that histories of previous upper airway surgery and less frequent alcohol consumption, and longer mandibular plane-hyoid length (MP-H) on cephalometry were associated with longer average daily CPAP use. After adjustment for the confounding factors with multiple linear regression analysis, alcohol consumption and MP-H were still associated with the compliance with CPAP significantly. Conclusion To improve compliance with CPAP, careful evaluations of upper airway problems and life style are important before initiating CPAP. PMID:27334512

  7. Estimation of airway obstruction using oximeter plethysmograph waveform data

    PubMed Central

    Arnold, Donald H; Spiro, David M; Desmond, Renee' A; Hagood, James S

    2005-01-01

    Background Validated measures to assess the severity of airway obstruction in patients with obstructive airway disease are limited. Changes in the pulse oximeter plethysmograph waveform represent fluctuations in arterial flow. Analysis of these fluctuations might be useful clinically if they represent physiologic perturbations resulting from airway obstruction. We tested the hypothesis that the severity of airway obstruction could be estimated using plethysmograph waveform data. Methods Using a closed airway circuit with adjustable inspiratory and expiratory pressure relief valves, airway obstruction was induced in a prospective convenience sample of 31 healthy adult subjects. Maximal change in airway pressure at the mouthpiece was used as a surrogate measure of the degree of obstruction applied. Plethysmograph waveform data and mouthpiece airway pressure were acquired for 60 seconds at increasing levels of inspiratory and expiratory obstruction. At each level of applied obstruction, mean values for maximal change in waveform area under the curve and height as well as maximal change in mouth pressure were calculated for sequential 7.5 second intervals. Correlations of these waveform variables with mouth pressure values were then performed to determine if the magnitude of changes in these variables indicates the severity of airway obstruction. Results There were significant relationships between maximal change in area under the curve (P < .0001) or height (P < 0.0001) and mouth pressure. Conclusion The findings suggest that mathematic interpretation of plethysmograph waveform data may estimate the severity of airway obstruction and be of clinical utility in objective assessment of patients with obstructive airway diseases. PMID:15985171

  8. Deposition of Graphene Nanoparticles in Human Upper Airways

    PubMed Central

    Su, Wei-Chung; Ku, Bon-Ki; Kulkarni, Pramod; Cheng, Yung Sung

    2016-01-01

    Graphene nanomaterials have attracted wide attention in recent years on their application to state-of-the-art technology due to their outstanding physical properties. On the other hand, the nanotoxicity of graphene materials also has rapidly become a serious concern especially in occupational health. Graphene materials inevitably could become airborne in the workplace during manufacturing processes. The inhalation and subsequent deposition of graphene nanoparticles in the human respiratory tract could potentially result in adverse health effects to exposed workers. Therefore, investigating the deposition of graphene nanoparticles in the human airways is considered essential for an integral graphene occupational health study. For this reason, this study carried out a series of airway replica deposition experiments to obtain original data of graphene nanoparticle airway deposition. In this study, size classified graphene nanoparticles were delivered into human airway replicas (both nasal and oral-to-lung airways). The deposition fraction and efficiency of graphene nanoparticle in the airway were obtained by a novel experimental approach. The experimental results acquired showed that the fractional deposition of graphene nanoparticles in airway sections studied were all less than 4%, and the deposition efficiencies in each airway section were generally lower than 0.03. These results implies that the majority of the graphene nanoparticles inhaled into the human respiratory tract could easily penetrate through the head airways as well as the upper part of the tracheobronchial airways and then transit down to the lower lung airways, where undesired biological responses might be induced. PMID:26317666

  9. Airway evaluation in obstructive sleep apnea.

    PubMed

    Stuck, Boris A; Maurer, Joachim T

    2008-12-01

    As the interest in sleep-disordered breathing has increased, various attempts have been made to assess upper airway anatomy in patients with this relatively frequent disorder. The aim is not only to reveal potential differences in upper airway anatomy to better understand origin and pathophysiology of the disease but also to improve patient management and treatment success. The present review is based on a systematic literature search with regard to upper airway evaluation in sleep-disordered breathing; the articles were selected and discussed in light of our clinical experiences. Based on clinical assessment including endoscopy during wakefulness, the value of the Mueller Maneuver, static radiologic imaging techniques (X-ray cephalometry, computed tomography (CT) scanning and magnetic resonance imaging (MRI)), dynamic scanning protocols (e.g. ultrafast CT or cine MRI), upper airway endoscopy during sleep and sedated sleep, pressure measurements and the assessment of the critical closing pressure are discussed. Each technique itself and its history in the field of sleep medicine are briefly reviewed and problems of standardization and interpretation are discussed when appropriate. Insights into the pathophysiology of the disease gained with the help of the investigational techniques are presented and the impact of the techniques on patient management is reported. Although all these additional techniques for upper airway assessment have substantially improved our understanding of sleep-disordered breathing, their significance in daily practice is limited. In contrast to the widespread use of the Mueller maneuver and sedated endoscopy, convincing data supporting their use in terms of treatment outcome are lacking. So far, there is only very limited evidence that selected techniques improve treatment outcome for selected indications. In general, there is not enough evidence that these techniques are superior to the routine clinical assessment.

  10. The Diagnosis and Management of Airway Complications Following Lung Transplantation.

    PubMed

    Mahajan, Amit K; Folch, Erik; Khandhar, Sandeep J; Channick, Colleen L; Santacruz, Jose F; Mehta, Atul C; Nathan, Steven D

    2017-03-05

    Airway complications following lung transplantation result in considerable morbidity and are associated with a mortality of 2-4 percent. The incidence of lethal and non-lethal airway complications has decreased since the early experiences with double- and single-lung transplantation. The most common risk factor associated with post-lung transplant airway complications is anastomotic ischemia. Airway complications include development of exophytic granulation tissue, bronchial stenosis, bronchomalacia, airway fistula, endobronchial infection, and anastomotic dehiscence. The broadening array of bronchoscopic therapies has enhanced treatment options for lung transplant recipients with airway complications. This article reviews the risk factors, clinical manifestations, and treatments of airway complications following lung transplantation, and provides our expert opinion where evidence is lacking.

  11. BLUNTING AIRWAYS EOSINOPHILIC INFLAMMATION RESULTS IN A DECREASED AIRWAY NEUTROPHIL RESPONSE TO INHALED LPS IN ATOPIC ASTHMATICS A ROLE FOR CD-14

    EPA Science Inventory

    Recent data demonstrate that atopic inflammation might enhance airway responses to inhaled LPS in individuals with atopic asthma by increasing CD14 expression on airway macrophages. We sought to determine whether blunting airway eosinophilic inflammation decreases CD14 expressio...

  12. In vivo lung morphometry with hyperpolarized 3He diffusion MRI: Theoretical background

    NASA Astrophysics Data System (ADS)

    Sukstanskii, A. L.; Yablonskiy, D. A.

    2008-02-01

    MRI-based study of 3He gas diffusion in lungs may provide important information on lung microstructure. Lung acinar airways can be described in terms of cylinders covered with alveolar sleeve [Haefeli-Bleuer, Weibel, Anat. Rec. 220 (1988) 401]. For relatively short diffusion times (on the order of a few ms) this geometry allows description of the 3He diffusion attenuated MR signal in lungs in terms of two diffusion coefficients—longitudinal (D) and transverse (D) with respect to the individual acinar airway axis [Yablonskiy et al., PNAS 99 (2002) 3111]. In this paper, empirical relationships between D and D and the geometrical parameters of airways and alveoli are found by means of computer Monte Carlo simulations. The effects of non-Gaussian signal behavior (dependence of D and D on b-value) are also taken into account. The results obtained are quantitatively valid in the physiologically important range of airway parameters characteristic of healthy lungs and lungs with mild emphysema. In lungs with advanced emphysema, the results provide only "apparent" characteristics but still could potentially be used to evaluate emphysema progression. This creates a basis for in vivo lung morphometry—evaluation of the geometrical parameters of acinar airways from hyperpolarized 3He diffusion MRI, despite the airways being too small to be resolved by direct imaging. These results also predict a rather substantial dependence of 3He ADC on the experimentally-controllable diffusion time, Δ. If Δ is decreased from 3 ms to 1 ms, the ADC in normal human lungs may increase by almost 50%. This effect should be taken into account when comparing experimental data obtained with different pulse sequences.

  13. Magnetic resonance morphometry of the loss of gray matter volume in Parkinson's disease patients

    PubMed Central

    Xia, Jianguo; Wang, Juan; Tian, Weizhong; Ding, Hongbin; Wei, Qilin; Huang, Huanxin; Wang, Jun; Zhao, Jinli; Gu, Hongmei; Tang, Lemin

    2013-01-01

    Voxel-based morphometry can be used to quantitatively compare structural differences and func-tional changes of gray matter in subjects. In the present study, we compared gray matter images of 32 patients with Parkinson's disease and 25 healthy controls using voxel-based morphometry based on 3.0 T high-field magnetic resonance T1-weighted imaging and clinical neurological scale scores. Results showed that the scores in Mini-Mental State Examination and Montreal Cognitive Assessment were lower in patients compared with controls. In particular, the scores of visuospa-tial/executive function items in Montreal Cognitive Assessment were significantly reduced, but mean scores of non-motor symptoms significantly increased, in patients with Parkinson's disease. In dition, gray matter volume was significantly diminished in Parkinson's disease patients compared with normal controls, including bilateral temporal lobe, bilateral occipital lobe, bilateral parietal lobe, bilateral frontal lobe, bilateral insular lobe, bilateral parahippocampal gyrus, bilateral amygdale, right uncus, and right posterior lobe of the cerebellum. These findings indicate that voxel-based phometry can accurately and quantitatively assess the loss of gray matter volume in patients with Parkinson' disease, and provide essential neuroimaging evidence for multisystem pathological mechanisms involved in Parkinson's disease. PMID:25206566

  14. Recreational marijuana use impacts white matter integrity and subcortical (but not cortical) morphometry.

    PubMed

    Orr, Joseph M; Paschall, Courtnie J; Banich, Marie T

    2016-01-01

    A recent shift in legal and social attitudes toward marijuana use has also spawned a surge of interest in understanding the effects of marijuana use on the brain. There is considerable evidence that an adolescent onset of marijuana use negatively impacts white matter coherence. On the other hand, a recent well-controlled study demonstrated no effects of marijuana use on the morphometry of subcortical or cortical structures when users and non-users were matched for alcohol use. Regardless, most studies have involved small, carefully selected samples, so the ability to generalize to larger populations is limited. In an attempt to address this issue, we examined the effects of marijuana use on white matter integrity and cortical and subcortical morphometry using data from the Human Connectome Project (HCP) consortium. The HCP data consists of ultra-high resolution neuroimaging data from a large community sample, including 466 adults reporting recreational marijuana use. Rather than just contrasting two groups of individuals who vary significantly in marijuana usage as typifies prior studies, we leveraged the large sample size provided by the HCP data to examine parametric effects of recreational marijuana use. Our results indicate that the earlier the age of onset of marijuana use, the lower was white matter coherence. Age of onset also also affected the shape of the accumbens, while the number of lifetime uses impacted the shape of the amygdala and hippocampus. Marijuana use had no effect on cortical volumes. These findings suggest subtle but significant effects of recreational marijuana use on brain structure.

  15. Pathology and morphometry of Hystrichis acanthocephalicus (Nematoda) from Phimosus infuscatus (Pelecaniformes) in southern Brazil.

    PubMed

    Scheer, Simone; Macedo, Márcia Raquel Pegoraro; Soares, Mauro Pereira; Schramm, Camila Costa; Muller, Gertrud

    2017-01-26

    Species of Hystrichis are parasite nematodes of the digestive tract of aquatic birds in South America, Europe and Asia. In Brazil, Hystrichis acanthocephalicus has been reported in Phimosus infuscatus. There are few data on the morphometry of this species and there are no reports on pathological conditions that it causes. Therefore, the purpose of this study was to report morphometric data from H. acanthocephalicus and describe the pathological effects of this parasite on the Phimosus infuscatus proventriculus. Thirty gastrointestinal tracts of P. infuscatus were examined to search for nematodes and H. acanthocephalicus occurred in 83% of hosts. Were measured the total length and body width of males and females, and of their respective cuticular spines, esophagus, spicules and eggs, and the internal and external diameter of copulatory bursa. Histopathological examination revealed parasitic structures in the proventriculus from the lumen (anterior end) to the outer layers of the organ (intermediate and posterior parts), in which we observed inflammatory reaction with infiltration of heterophils, hemorrhage and hemosiderin. The results of this study of histopathology, morphometry and parasitological indices are the first ones reported to H. acanthocephalicus and should contribute to the identification and recognition in cases of outbreaks in the Neotropical region.

  16. Cortical morphometry in frontoparietal and default mode networks in math-gifted adolescents.

    PubMed

    Navas-Sánchez, Francisco J; Carmona, Susana; Alemán-Gómez, Yasser; Sánchez-González, Javier; Guzmán-de-Villoria, Juan; Franco, Carolina; Robles, Olalla; Arango, Celso; Desco, Manuel

    2016-05-01

    Math-gifted subjects are characterized by above-age performance in intelligence tests, exceptional creativity, and high task commitment. Neuroimaging studies reveal enhanced functional brain organization and white matter microstructure in the frontoparietal executive network of math-gifted individuals. However, the cortical morphometry of these subjects remains largely unknown. The main goal of this study was to compare the cortical morphometry of math-gifted adolescents with that of an age- and IQ-matched control group. We used surface-based methods to perform a vertex-wise analysis of cortical thickness and surface area. Our results show that math-gifted adolescents present a thinner cortex and a larger surface area in key regions of the frontoparietal and default mode networks, which are involved in executive processing and creative thinking, respectively. The combination of reduced cortical thickness and larger surface area suggests above-age neural maturation of these networks in math-gifted individuals. Hum Brain Mapp 37:1893-1902, 2016. © 2016 Wiley Periodicals, Inc.

  17. Analysis of shallow landslides by morphometry parameters derived from terrestrial laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Mayr, A.; Rutzinger, M.; Bremer, M.; Wiegand, C.; Kringer, K.; Geitner, C.

    2012-04-01

    Erosion by shallow landslides is a widespread and growing phenomenon in mountainous areas. The major consequences are loss of soil and regolith as well as damages on infrastructure and provision of unconsolidated material for secondary processes such as mudflows. In this study we present a concept for extracting morphometry parameters from terrestrial laser scanning (TLS) point clouds in order to investigate the relation between slope surface structure and regolith depth. TLS is used to collect high-resolution point cloud data of an affected slope in the Schmirn Valley (Tyrol, Austria). Regolith depth is considered to be one of the important factors for the development of shallow landslides. However, direct field measurements are labour- and time-consuming. In this study we developed an approach, to investigate the relation between regolith depth and surface morphometry parameters. The reference regolith depth information is derived from lightweight dynamic cone penetrometer tests (DCPT) within the test site. The suggested approach integrates spatial analysis of Geographic Information Systems and point cloud processing algorithms. It will help to enhance the prediction of shallow landslide occurrence by (i) deriving high resolution 3D morphometric parameters and (ii) determining regolith depth with a reasonable effort due to automation. In future we want to be able to contribute with this concept to the detailed modelling of shallow landslide susceptibility on alpine slopes.

  18. Lake morphometry and wind exposure may shape the plankton community structure in acidic mining lakes.

    PubMed

    Weithoff, Guntram; Moser, Michael; Kamjunke, Norbert; Gaedke, Ursula; Weisse, Thomas

    2010-05-01

    Acidic mining lakes (pH <3) are specific habitats exhibiting particular chemical and biological characteristics. The species richness is low and mixotrophy and omnivory are common features of the plankton food web in such lakes. The plankton community structure of mining lakes of different morphometry and mixing type but similar chemical characteristics (Lake 130, Germany and Lake Langau, Austria) was investigated. The focus was laid on the species composition, the trophic relationship between the phago-mixotrophic flagellate Ochromonas sp. and bacteria and the formation of a deep chlorophyll maximum along a vertical pH-gradient. The shallow wind-exposed Lake 130 exhibited a higher species richness than Lake Langau. This increase in species richness was made up mainly by mero-planktic species, suggesting a strong benthic/littoral - pelagic coupling. Based on the field data from both lakes, a nonlinear, negative relation between bacteria and Ochromonas biomass was found, suggesting that at an Ochromonas biomass below 50 μg C L(-1), the grazing pressure on bacteria is low and with increasing Ochromonas biomass bacteria decline. Furthermore, in Lake Langau, a prominent deep chlorophyll maximum was found with chlorophyll concentrations ca. 50 times higher than in the epilimnion which was build up by the euglenophyte Lepocinclis sp. We conclude that lake morphometry, and specific abiotic characteristics such as mixing behaviour influence the community structure in these mining lakes.

  19. Computer-assisted sperm morphometry fluorescence-based analysis has potential to determine progeny sex

    PubMed Central

    Santolaria, Pilar; Pauciullo, Alfredo; Silvestre, Miguel A; Vicente-Fiel, Sandra; Villanova, Leyre; Pinton, Alain; Viruel, Juan; Sales, Ester; Yániz, Jesús L

    2016-01-01

    This study was designed to determine the ability of computer-assisted sperm morphometry analysis (CASA-Morph) with fluorescence to discriminate between spermatozoa carrying different sex chromosomes from the nuclear morphometrics generated and different statistical procedures in the bovine species. The study was divided into two experiments. The first was to study the morphometric differences between X- and Y-chromosome-bearing spermatozoa (SX and SY, respectively). Spermatozoa from eight bulls were processed to assess simultaneously the sex chromosome by FISH and sperm morphometry by fluorescence-based CASA-Morph. SX cells were larger than SY cells on average (P < 0.001) although with important differences between bulls. A simultaneous evaluation of all the measured features by discriminant analysis revealed that nuclear area and average fluorescence intensity were the variables selected by stepwise discriminant function analysis as the best discriminators between SX and SY. In the second experiment, the sperm nuclear morphometric results from CASA-Morph in nonsexed (mixed SX and SY) and sexed (SX) semen samples from four bulls were compared. FISH allowed a successful classification of spermatozoa according to their sex chromosome content. X-sexed spermatozoa displayed a larger size and fluorescence intensity than nonsexed spermatozoa (P < 0.05). We conclude that the CASA-Morph fluorescence-based method has the potential to find differences between X- and Y-chromosome-bearing spermatozoa in bovine species although more studies are needed to increase the precision of sex determination by this technique. PMID:27624989

  20. Generalized tensor-based morphometry of HIV/AIDS using multivariate statistics on deformation tensors.

    PubMed

    Lepore, N; Brun, C; Chou, Y Y; Chiang, M C; Dutton, R A; Hayashi, K M; Luders, E; Lopez, O L; Aizenstein, H J; Toga, A W; Becker, J T; Thompson, P M

    2008-01-01

    This paper investigates the performance of a new multivariate method for tensor-based morphometry (TBM). Statistics on Riemannian manifolds are developed that exploit the full information in deformation tensor fields. In TBM, multiple brain images are warped to a common neuroanatomical template via 3-D nonlinear registration; the resulting deformation fields are analyzed statistically to identify group differences in anatomy. Rather than study the Jacobian determinant (volume expansion factor) of these deformations, as is common, we retain the full deformation tensors and apply a manifold version of Hotelling's $T(2) test to them, in a Log-Euclidean domain. In 2-D and 3-D magnetic resonance imaging (MRI) data from 26 HIV/AIDS patients and 14 matched healthy subjects, we compared multivariate tensor analysis versus univariate tests of simpler tensor-derived indices: the Jacobian determinant, the trace, geodesic anisotropy, and eigenvalues of the deformation tensor, and the angle of rotation of its eigenvectors. We detected consistent, but more extensive patterns of structural abnormalities, with multivariate tests on the full tensor manifold. Their improved power was established by analyzing cumulative p-value plots using false discovery rate (FDR) methods, appropriately controlling for false positives. This increased detection sensitivity may empower drug trials and large-scale studies of disease that use tensor-based morphometry.

  1. Detection of Upper Airway Status and Respiratory Events by a Current Generation Positive Airway Pressure Device

    PubMed Central

    Li, Qing Yun; Berry, Richard B.; Goetting, Mark G.; Staley, Bethany; Soto-Calderon, Haideliza; Tsai, Sheila C.; Jasko, Jeffrey G.; Pack, Allan I.; Kuna, Samuel T.

    2015-01-01

    Study Objectives: To compare a positive airway pressure (PAP) device's detection of respiratory events and airway status during device-detected apneas with events scored on simultaneous polysomnography (PSG). Design: Prospective PSGs of patients with sleep apnea using a new-generation PAP device. Settings: Four clinical and academic sleep centers. Patients: Forty-five patients with obstructive sleep apnea (OSA) and complex sleep apnea (Comp SA) performed a PSG on PAP levels adjusted to induce respiratory events. Interventions: None. Measurements and Results: PAP device data identifying the type of respiratory event and whether the airway during a device-detected apnea was open or obstructed were compared to time-synced, manually scored respiratory events on simultaneous PSG recording. Intraclass correlation coefficients between device-detected and PSG scored events were 0.854 for apnea-hypopnea index (AHI), 0.783 for apnea index, 0.252 for hypopnea index, and 0.098 for respiratory event-related arousals index. At a device AHI (AHIFlow) of 10 events/h, area under the receiver operating characteristic curve was 0.98, with sensitivity 0.92 and specificity 0.84. AHIFlow tended to overestimate AHI on PSG at values less than 10 events/h. The device detected that the airway was obstructed in 87.4% of manually scored obstructive apneas. Of the device-detected apneas with clear airway, a minority (15.8%) were manually scored as obstructive apneas. Conclusions: A device-detected apnea-hypopnea index (AHIFlow) < 10 events/h on a positive airway pressure device is strong evidence of good treatment efficacy. Device-detected airway status agrees closely with the presumed airway status during polysomnography scored events, but should not be equated with a specific type of respiratory event. Citation: Li QY, Berry RB, Goetting MG, Staley B, Soto-Calderon H, Tsai SC, Jasko JG, Pack AI, Kuna ST. Detection of upper airway status and respiratory events by a current generation positive

  2. Syk Regulates Neutrophilic Airway Hyper-Responsiveness in a Chronic Mouse Model of Allergic Airways Inflammation

    PubMed Central

    Juvet, Stephen; Scott, Jeremy A.; Chow, Chung-Wai

    2017-01-01

    Background Asthma is a chronic inflammatory disease characterized by airways hyper-responsiveness (AHR), reversible airway obstruction, and airway inflammation and remodeling. We previously showed that Syk modulates methacholine-induced airways contractility in naïve mice and in mice with allergic airways inflammation. We hypothesize that Syk plays a role in the pathogenesis of AHR; this was evaluated in a chronic 8-week mouse model of house dust mite (HDM)-induced allergic airways inflammation. Methods We used the Sykflox/flox//rosa26CreERT2 conditional Syk knock-out mice to assess the role of Syk prior to HDM exposure, and treated HDM-sensitized mice with the Syk inhibitor, GSK143, to evaluate its role in established allergic airways inflammation. Respiratory mechanics and methacholine (MCh)-responsiveness were assessed using the flexiVent® system. Lungs underwent bronchoalveolar lavage to isolate inflammatory cells or were frozen for determination of gene expression in tissues. Results MCh-induced AHR was observed following HDM sensitization in the Syk-intact (Sykflox/flox) and vehicle-treated BALB/c mice. MCh responsiveness was reduced to control levels in HDM-sensitized Sykdel/del mice and in BALB/c and Sykflox/flox mice treated with GSK143. Both Sykdel/del and GSK143-treated mice mounted appropriate immune responses to HDM, with HDM-specific IgE levels that were comparable to Sykflox/flox and vehicle-treated BALB/c mice. HDM-induced increases in bronchoalveolar lavage cell counts were attenuated in both Sykdel/del and GSK143-treated mice, due primarily to decreased neutrophil recruitment. Gene expression analysis of lung tissues revealed that HDM-induced expression of IL-17 and CXCL-1 was significantly attenuated in both Sykdel/del and GSK143-treated mice. Conclusion Syk inhibitors may play a role in the management of neutrophilic asthma. PMID:28107345

  3. Does the length dependency of airway smooth muscle force contribute to airway hyperresponsiveness?

    PubMed

    Lee-Gosselin, Audrey; Pascoe, Chris D; Couture, Christian; Paré, Peter D; Bossé, Ynuk

    2013-11-01

    Airway wall remodeling and lung hyperinflation are two typical features of asthma that may alter the contractility of airway smooth muscle (ASM) by affecting its operating length. The aims of this study were as follows: 1) to describe in detail the "length dependency of ASM force" in response to different spasmogens; and 2) to predict, based on morphological data and a computational model, the consequence of this length dependency of ASM force on airway responsiveness in asthmatic subjects who have both remodeled airway walls and hyperinflated lungs. Ovine tracheal ASM strips and human bronchial rings were isolated and stimulated to contract in response to increasing concentrations of spasmogens at three different lengths. Ovine tracheal strips were more sensitive and generated greater force at longer lengths in response to acetylcholine (ACh) and K(+). Equipotent concentrations of ACh were approximately a log less for ASM stretched by 30% and approximately a log more for ASM shortened by 30%. Similar results were observed in human bronchi in response to methacholine. Morphometric and computational analyses predicted that the ASM of asthmatic subjects may be elongated by 6.6-10.4% (depending on airway generation) due to remodeling and/or hyperinflation, which could increase ACh-induced force by 1.8-117.8% (depending on ASM length and ACh concentration) and enhance the increased resistance to airflow by 0.4-4,432.8%. In conclusion, elongation of ASM imposed by airway wall remodeling and/or hyperinflation may allow ASM to operate at a longer length and to consequently generate more force and respond to lower concentration of spasmogens. This phenomenon could contribute to airway hyperresponsiveness.

  4. Airway acidification initiates host defense abnormalities in cystic fibrosis mice

    PubMed Central

    Shah, Viral S.; Meyerholz, David K.; Tang, Xiao Xiao; Reznikov, Leah; Alaiwa, Mahmoud Abou; Ernst, Sarah E.; Karp, Philip H.; Wohlford-Lenane, Christine L.; Heilmann, Kristopher P.; Leidinger, Mariah R.; Allen, Patrick D.; Zabner, Joseph; McCray, Paul B.; Ostedgaard, Lynda S.; Stoltz, David A.; Randak, Christoph O.; Welsh, Michael J.

    2016-01-01

    Cystic fibrosis (CF) is caused by mutations in the gene that encodes the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel. In humans and pigs, the loss of CFTR impairs respiratory host defenses, causing airway infection. But CF mice are spared. We found that in all three species, CFTR secreted bicarbonate into airway surface liquid. In humans and pigs lacking CFTR, unchecked H+ secretion by the nongastric H+/K+ adenosine triphosphatase (ATP12A) acidified airway surface liquid, which impaired airway host defenses. In contrast, mouse airways expressed little ATP12A and secreted minimal H+; consequently, airway surface liquid in CF and non-CF mice had similar pH. Inhibiting ATP12A reversed host defense abnormalities in human and pig airways. Conversely, expressing ATP12A in CF mouse airways acidified airway surface liquid, impaired defenses, and increased airway bacteria. These findings help explain why CF mice are protected from infection and nominate ATP12A as a potential therapeutic target for CF. PMID:26823428

  5. Dynamics of Surfactant Liquid Plugs at Bifurcating Lung Airway Models

    NASA Astrophysics Data System (ADS)

    Tavana, Hossein

    2013-11-01

    A surfactant liquid plug forms in the trachea during surfactant replacement therapy (SRT) of premature babies. Under air pressure, the plug propagates downstream and continuously divides into smaller daughter plugs at continuously branching lung airways. Propagating plugs deposit a thin film on airway walls to reduce surface tension and facilitate breathing. The effectiveness of SRT greatly depends on the final distribution of instilled surfactant within airways. To understand this process, we investigate dynamics of splitting of surfactant plugs in engineered bifurcating airway models. A liquid plug is instilled in the parent tube to propagate and split at the bifurcation. A split ratio, R, is defined as the ratio of daughter plug lengths in the top and bottom daughter airway tubes and studied as a function of the 3D orientation of airways and different flow conditions. For a given Capillary number (Ca), orienting airways farther away from a horizontal position reduced R due to the flow of a larger volume into the gravitationally favored daughter airway. At each orientation, R increased with 0.0005 < Ca < 0.05. This effect diminished by decrease in airways diameter. This approach will help elucidate surfactant distribution in airways and develop effective SRT strategies.

  6. Airway Inflammation and Hypersensitivity Induced by Chronic Smoking

    PubMed Central

    Kou, Yu Ru; Kwong, Kevin; Lee, Lu-Yuan

    2011-01-01

    Airway hypersensitivity, characterized by enhanced excitability of airway sensory nerves, is a prominent pathophysiological feature in patients with airway inflammatory diseases. Although the underlying pathogenic mechanism is not fully understood, chronic airway inflammation is believed to be primarily responsible. Cigarette smoking is known to cause chronic airway inflammation, accompanied by airway hyperresponsiveness. Experimental evidence indicates that enhanced excitability of vagal bronchopulmonary sensory nerves and increased tachykinin synthesis in these nerves resulting from chronic inflammation are important contributing factors to the airway hyperresponsiveness. Multiple inflammatory mediators released from various types of structural and inflammatory cells are involved in the smoking-induced airway inflammation, which is mainly regulated by redox-sensitive signaling pathways and transcription factors. Furthermore, recent studies have reported potent sensitizing and stimulatory effects of these inflammatory mediators such as prostanoids and reactive oxygen species on these sensory nerves. In summary, these studies using cigarette smoking as an experimental approach have identified certain potentially important cell signaling pathways and underlying mechanisms of the airway hypersensitivity induced by chronic airway inflammation. PMID:21397052

  7. Dyslexia and Voxel-Based Morphometry: Correlations between Five Behavioural Measures of Dyslexia and Gray and White Matter Volumes

    ERIC Educational Resources Information Center

    Tamboer, Peter; Scholte, H. Steven; Vorst, Harrie C. M.

    2015-01-01

    In voxel-based morphometry studies of dyslexia, the relation between causal theories of dyslexia and gray matter (GM) and white matter (WM) volume alterations is still under debate. Some alterations are consistently reported, but others failed to reach significance. We investigated GM alterations in a large sample of Dutch students (37 dyslexics…

  8. Quantification and Comparison of Anti-Fibrotic Therapies by Polarized SRM and SHG-Based Morphometry in Rat UUO Model

    PubMed Central

    Weldon, Steve M.; Matera, Damian; Lee, ChungWein; Yang, Haichun; Fryer, Ryan M.; Fogo, Agnes B.; Reinhart, Glenn A.

    2016-01-01

    Renal interstitial fibrosis (IF) is an important pathologic manifestation of disease progression in a variety of chronic kidney diseases (CKD). However, the quantitative and reproducible analysis of IF remains a challenge, especially in experimental animal models of progressive IF. In this study, we compare traditional polarized Sirius Red morphometry (SRM) to novel Second Harmonic Generation (SHG)-based morphometry of unstained tissues for quantitative analysis of IF in the rat 5 day unilateral ureteral obstruction (UUO) model. To validate the specificity of SHG for detecting fibrillar collagen components in IF, co-localization studies for collagens type I, III, and IV were performed using IHC. In addition, we examined the correlation, dynamic range, sensitivity, and ability of polarized SRM and SHG-based morphometry to detect an anti-fibrotic effect of three different treatment regimens. Comparisons were made across three separate studies in which animals were treated with three mechanistically distinct pharmacologic agents: enalapril (ENA, 15, 30, 60 mg/kg), mycophenolate mofetil (MMF, 2, 20 mg/kg) or the connective tissue growth factor (CTGF) neutralizing antibody, EX75606 (1, 3, 10 mg/kg). Our results demonstrate a strong co-localization of the SHG signal with fibrillar collagens I and III but not non-fibrillar collagen IV. Quantitative IF, calculated as percent cortical area of fibrosis, demonstrated similar response profile for both polarized SRM and SHG-based morphometry. The two methodologies exhibited a strong correlation across all three pharmacology studies (r2 = 0.89–0.96). However, compared with polarized SRM, SHG-based morphometry delivered a greater dynamic range and absolute magnitude of reduction of IF after treatment. In summary, we demonstrate that SHG-based morphometry in unstained kidney tissues is comparable to polarized SRM for quantitation of fibrillar collagens, but with an enhanced sensitivity to detect treatment-induced reductions in

  9. The Diacetyl-exposed Human Airway Epithelial Secretome: New Insights Into Flavoring Induced Airways Disease.

    PubMed

    Brass, David M; Gwinn, William M; Valente, Ashlee M; Kelly, Francine L; Brinkley, Christie D; Nagler, Andrew E; Moseley, M Arthur; Morgan, Daniel L; Palmer, Scott M; Foster, Matthew W

    2017-03-01

    Bronchiolitis obliterans (BO) is an increasingly important lung disease characterized by fibroproliferative airway lesions and decrements in lung function. Occupational exposure to the artificial food flavoring ingredient diacetyl, commonly used to impart a buttery flavor to microwave popcorn, has been associated with BO development. In the occupational setting, diacetyl vapor is first encountered by the airway epithelium. To better understand the effects of diacetyl vapor on the airway epithelium we used an unbiased proteomic approach to characterize both the apical and basolateral secretomes of air liquid interface cultures of primary human airway epithelial cells from four unique donors after exposure to an occupationally relevant ~1100 ppm of diacetyl vapor or PBS as a control on alternating days. Basolateral and apical supernatants collected 48 hours after the third exposure were analyzed using one-dimensional liquid chromatography tandem mass spectrometry. Paired t-tests adjusted for multiple comparisons were used to assess differential expression between diacetyl and PBS exposure. Of the significantly differentially expressed proteins identified, 61 were unique to the apical secretome, 81 were unique to the basolateral secretome and there were an additional 11 present in both. Pathway enrichment analysis using publicly available databases reveals that proteins associated with matrix remodeling including degradation, assembly and new matrix organization were over-represented in the data sets. Similarly, protein modifiers of epidermal growth factor receptor signaling were significantly altered. The ordered changes in protein expression suggest that the airway epithelial response to diacetyl may contribute to BO pathogenesis.

  10. Comparison of laryngeal mask airway vs tracheal intubation: a systematic review on airway complications.

    PubMed

    van Esch, Babette F; Stegeman, Inge; Smit, Adriana L

    2017-02-01

    To determine whether the laryngeal mask airway (LMA) has advantages over the tracheal tube (TT) in terms of incidence of cough, sore throat, laryngospasm, dysphagia, dysphonia, and blood staining. This is a systematic literature review performed at the Universtity Medical Center of Utrecht. The online databases PubMed, Embase, and the Cochrane Library were searched for relevant randomized controlled trials. Two independent reviewers selected relevant articles after title, abstract, and full text screening. Articles were assessed on risk of bias in accordance with the Cochrane risk of bias tool. Study results of the LMA and the TT were related to the method of selection of the device size and the method for cuff inflation. Of the 1718 unique articles, we included 19 studies which used the LMA Classic, the LMA Proseal, the Flexible Reinforced LMA, and the LMA Supreme compared with TT. After methodological inspection, data could not be pooled due to heterogeneity among the selected studies. Overall, no clear advantage of the LMA over the TT was found but the LMA Supreme was related to the lowest incidence of airway complications. In this review, no clear difference in incidence of postoperative airway complications could be demonstrated between LMA and TT. The LMA Supreme may reduce the incidence of airway complication in comparison to the TT but high quality randomized trials are recommended to further objectify if use of the LMA decreases the risk on postoperative airway complications.

  11. Advances in upper airway cough syndrome.

    PubMed

    Yu, Li; Xu, Xianghuai; Lv, Hanjing; Qiu, Zhongmin

    2015-05-01

    Upper airway cough syndrome (UACS), previously referred to as postnasal drip syndrome, is one of the most common causes of chronic cough. However, the pathogenesis of UACS/postnasal drip syndrome remains unclear, and physicians in countries throughout the world have different definitions and ways of treating this disease. The various proposed pathogeneses of UACS include the early postnasal drip theory, subsequent chronic airway inflammation theory, and a recent sensory neural hypersensitivity theory. Additionally, some researchers suggest that UACS is a clinical phenotype of cough hypersensitivity syndrome. While the general principles involved in treating UACS are similar throughout the world, the specific details of treatment differ. This review summarizes the various definitions, pathogenic mechanisms, treatments, and other aspects of UACS, to aid clinicians in expanding their knowledge of how to diagnose and treat this syndrome.

  12. When continuous positive airway pressure (CPAP) fails

    PubMed Central

    Virk, Jagdeep S.

    2016-01-01

    Obstructive sleep apnoea (OSA) is increasingly prevalent, particularly in the context of the obesity epidemic, and is associated with a significant social, health and economic impact. The gold standard of treatment for moderate to severe OSA is continuous positive airway pressure (CPAP). However compliance rates can be low. Methodology to improve patient tolerance to CPAP alongside with alternative, non-surgical and surgical, management strategies are discussed. All patients that fail CPAP therapy would benefit from formal upper airway evaluation by the otolaryngologist to identify any obvious causes and consider site-specific surgical therapies. Patient selection is integral to ensuring successful outcomes. A multidisciplinary team is needed to manage these patients. PMID:27867577

  13. Silencing nociceptor neurons reduces allergic airway inflammation

    PubMed Central

    Talbot, Sébastien; Abdulnour, Raja-Elie E.; Burkett, Patrick R.; Lee, Seungkyu; Cronin, Shane J.F.; Pascal, Maud A.; Laedermann, Cedric; Foster, Simmie L.; Tran, Johnathan V.; Lai, Nicole; Chiu, Isaac M.; Ghasemlou, Nader; DiBiase, Matthew; Roberson, David; Von Hehn, Christian; Agac, Busranour; Haworth, Oliver; Seki, Hiroyuki; Penninger, Josef M.; Kuchroo, Vijay K.; Bean, Bruce P.; Levy, Bruce D.; Woolf, Clifford J.

    2015-01-01

    Summary Lung nociceptors initiate cough and bronchoconstriction. To elucidate if these fibers also contribute to allergic airway inflammation we stimulated lung nociceptors with capsaicin and observed increased neuropeptide release and immune cell infiltration. In contrast, ablating Nav1.8+ sensory neurons or silencing them with QX-314, a charged sodium channel inhibitor that enters via large pore ion channels to specifically block nociceptors, substantially reduced ovalbumin or house dust mite-induced airway inflammation and bronchial hyperresponsiveness. We also discovered that IL-5, a cytokine produced by activated immune cells, acts directly on nociceptors to induce release of vasoactive intestinal peptide (VIP). VIP then stimulates CD4+ and resident innate lymphoid type 2 cells, creating an inflammatory signaling loop that promotes allergic inflammation. Our results indicate that nociceptors amplify pathological adaptive immune responses and that silencing these neurons with QX-314 interrupts this neuro-immune interplay, revealing a potential new therapeutic strategy for asthma. PMID:26119026

  14. Mechanically patterning the embryonic airway epithelium.

    PubMed

    Varner, Victor D; Gleghorn, Jason P; Miller, Erin; Radisky, Derek C; Nelson, Celeste M

    2015-07-28

    Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo.

  15. Endoscopic low coherence interferometry in upper airways

    NASA Astrophysics Data System (ADS)

    Delacrétaz, Yves; Boss, Daniel; Lang, Florian; Depeursinge, Christian

    2009-07-01

    We introduce Endoscopic Low Coherence Interferometry to obtain topology of upper airways through commonly used rigid endoscopes. Quantitative dimensioning of upper airways pathologies is crucial to provide maximum health recovery chances, for example in order to choose the correct stent to treat endoluminal obstructing pathologies. Our device is fully compatible with procedures used in day-to-day examinations and can potentially be brought to bedside. Besides this, the approach described here can be almost straightforwardly adapted to other endoscopy-related field of interest, such as gastroscopy and arthroscopy. The principle of the method is first exposed, then filtering procedure used to extract the depth information is described. Finally, demonstration of the method ability to operate on biological samples is assessed through measurements on ex-vivo pork bronchi.

  16. Mechanically patterning the embryonic airway epithelium

    PubMed Central

    Varner, Victor D.; Gleghorn, Jason P.; Miller, Erin; Radisky, Derek C.; Nelson, Celeste M.

    2015-01-01

    Collections of cells must be patterned spatially during embryonic development to generate the intricate architectures of mature tissues. In several cases, including the formation of the branched airways of the lung, reciprocal signaling between an epithelium and its surrounding mesenchyme helps generate these spatial patterns. Several molecular signals are thought to interact via reaction-diffusion kinetics to create distinct biochemical patterns, which act as molecular precursors to actual, physical patterns of biological structure and function. Here, however, we show that purely physical mechanisms can drive spatial patterning within embryonic epithelia. Specifically, we find that a growth-induced physical instability defines the relative locations of branches within the developing murine airway epithelium in the absence of mesenchyme. The dominant wavelength of this instability determines the branching pattern and is controlled by epithelial growth rates. These data suggest that physical mechanisms can create the biological patterns that underlie tissue morphogenesis in the embryo. PMID:26170292

  17. Liquid secretion properties of airway submucosal glands

    PubMed Central

    Ballard, Stephen T; Inglis, Sarah K

    2004-01-01

    The tracheobronchial submucosal glands secrete liquid that is important for hydrating airway surfaces, supporting mucociliary transport, and serving as a fluid matrix for numerous secreted macromolecules including the gel-forming mucins. This review details the essential structural elements of airway glands and summarizes what is currently known regarding the ion transport processes responsible for producing the liquid component of gland secretion. Liquid secretion most likely arises from serous cells and is principally under neural control with muscarinic agonists, substance P, and vasoactive intestinal peptide (VIP) functioning as effective secretogogues. Liquid secretion is driven by the active transepithelial secretion of both Cl− and HCO3− and at least a portion of this process is mediated by the cystic fibrosis transmembrane conductance regulator (CFTR), which is highly expressed in glands. The potential role of submucosal glands in cystic fibrosis lung disease is discussed. PMID:14660706

  18. Airway inflammation in aluminium potroom asthma

    PubMed Central

    Sjaheim, T; Halstensen, T; Lund, M; Bjortuft, O; Drablos, P; Malterud, D; Kongerud, J

    2004-01-01

    Aims: To examine whether asthma induced by exposure to aluminium potroom emissions (potroom asthma) is associated with inflammatory changes in the airways. Methods: Bronchial biopsy specimens from 20 asthmatic workers (8 non-smokers and 12 smokers), 15 healthy workers (8 non-smokers and 7 smokers), and 10 non-exposed controls (all non-smokers) were analysed. Immunohistofluorescent staining was performed to identify mucosal total leucocytes (CD45+ leucocytes), neutrophils, and mast cells. Results: Median RBM thickness was significantly increased in both asthmatic workers (8.2 µm) and healthy workers (7.4 µm) compared to non-exposed controls (6.7 µm). Non-smoking asthmatic workers had significantly increased median density of lamina propria CD45+ leucocytes (1519 cells/mm2v 660 and 887 cells/mm2) and eosinophils (27 cells/mm2v 10 and 3 cells/mm2) and significantly increased concentrations of exhaled NO (18.1 ppb v 6.5 and 5.1 ppb) compared to non-smoking healthy workers and non-exposed controls. Leucocyte counts and exhaled NO concentrations varied with smoking habits and fewer leucocytes were observed in asthmatic smokers than in non-smokers Asthmatic smokers had significantly increased numbers of eosinophils in lamina propria compared to non-exposed controls (10 v 3 cells/mm2). Both eosinophilic and non-eosinophilic phenotypes of asthma were recognised in the potroom workers and signs of airway inflammation were also observed in healthy workers. Conclusions: Airway inflammation is a central feature of potroom asthma and exposure to potroom emissions induces pathological alterations similar to those described in other types of asthma. Cigarette smoking seems to affect the underlying mechanisms involved in asthma, as the cellular composition of airway mucosa appears different in asthmatic smokers and non-smokers. PMID:15317920

  19. Airway wall stiffening increases peak wall shear stress: a fluid-structure interaction study in rigid and compliant airways.

    PubMed

    Xia, Guohua; Tawhai, Merryn H; Hoffman, Eric A; Lin, Ching-Long

    2010-05-01

    The airflow characteristics in a computed tomography (CT) based human airway bifurcation model with rigid and compliant walls are investigated numerically. An in-house three-dimensional (3D) fluid-structure interaction (FSI) method is applied to simulate the flow at different Reynolds numbers and airway wall stiffness. As the Reynolds number increases, the airway wall deformation increases and the secondary flow becomes more prominent. It is found that the peak wall shear stress on the rigid airway wall can be five times stronger than that on the compliant airway wall. When adding tethering forces to the model, we find that these forces, which produce larger airway deformation than without tethering, lead to more skewed velocity profiles in the lower branches and further reduced wall shear stresses via a larger airway lumen. This implies that pathologic changes in the lung such as fibrosis or remodeling of the airway wall-both of which can serve to restrain airway wall motion-have the potential to increase wall shear stress and thus can form a positive feed-back loop for the development of altered flow profiles and airway remodeling. These observations are particularly interesting as we try to understand flow and structural changes seen in, for instance, asthma, emphysema, cystic fibrosis, and interstitial lung disease.

  20. Catheter-Based Sensing In The Airways

    NASA Astrophysics Data System (ADS)

    Fouke, J. M.; Saunders, K. G.

    1988-04-01

    Studies attempting to define the role of the respiratory tract in heating and humidifying inspired air point to the need for sensing many variables including airway wall and airstream temperatures, humidity, and surface fluid pH and osmolarity. In order to make such measurements in vivo in human volunteers, catheter based technologies must be exploited both to assure subject safety and subject comfort. Miniturization of the electrodes or sensors becomes a top priority. This paper describes the use of thin-film microelectronic technology to fabricate a miniature, flexible sensor which can be placed directly onto the surface of the airway to measure the electrical conductance of the fluids present. From this information the osmolarity of the surface fluid was calculated. Physiologic evaluation of the device and corroboration of the calculations was performed in mongrel dogs. We also describe the successful application of current thermistor technology for the thermal mapping of the airways in humans in order to characterize the dynamic intrathoracic events that occur during breathing. The thermal probe consisted of a flexible polyvinyl tube that contained fourteen small thermistors fixed into the catheter. Data have been obtained in dozens of people, both normal subjects and asthmatic patients, under a variety of interventions. These data have substantively advanced the study of asthma, a particularly troublesome chronic obstructive pulmonary disorder.

  1. Techniques of endoscopic airway tumor treatment

    PubMed Central

    Mhanna, Laurent; Droneau, Sylvain; Plat, Gavin; Didier, Alain; Mazieres, Julien; Hermant, Christophe

    2016-01-01

    Interventional bronchoscopy has a predominant role in the management of both early and advanced-stage airway tumors. Given the very poor prognosis of lung cancer, there is a need for new tools to improve early detection and bronchoscopic treatment of endo-bronchial precancerous lesions. In more advanced stages, interventional bronchoscopy plays an important role, as nearly a third of lung cancers lead to proximal airway obstruction. This will cause great discomfort or even life-threatening symptoms related to local extension, such as dyspnea, post-obstructive pneumonia, and hemoptysis. Surgery for very locally advanced disease is only effective for a limited number of patients and the effects of conventional antitumor therapies, like radiation therapy or chemotherapy, are inconstant and are too delayed in a palliative context. In this review, we aim to provide pulmonologists with an exhaustive technical overview of (I) the bronchoscopic management of benign endobronchial lesions; (II) the bronchoscopic management of malignant tumors, including the curative treatment of localized lesions and palliative management of malignant proximal airway stenosis; and (III) descriptions of the emerging endoscopic techniques used to treat peripheral lung tumors. PMID:28066616

  2. Resting calcium influx in airway smooth muscle.

    PubMed

    Montaño, Luis M; Bazán-Perkins, Blanca

    2005-01-01

    Plasma membrane Ca2+ leak remains the most uncertain of the cellular Ca2+ regulation pathways. During passive Ca2+ influx in non-stimulated smooth muscle cells, basal activity of constitutive Ca2+ channels seems to be involved. In vascular smooth muscle, the 3 following Ca2+ entry pathways contribute to this phenomenon: (i) via voltage-dependent Ca2+ channels, (ii) receptor gated Ca2+ channels, and (iii) store operated Ca2+ channels, although, in airway smooth muscle it seems only 2 passive Ca2+ influx pathways are implicated, one sensitive to SKF 96365 (receptor gated Ca2+ channels) and the other to Ni2+ (store operated Ca2+ channels). Resting Ca2+ entry could provide a sufficient amount of Ca2+ and contribute to resting intracellular Ca2+ concentration ([Ca2+]i), maintenance of the resting membrane potential, myogenic tone, and sarcoplasmic reticulum-Ca2+ refilling. However, further research, especially in airway smooth muscle, is required to better explore the physiological role of this passive Ca2+ influx pathway as it could be involved in airway hyperresponsiveness.

  3. Surgery of the airway: historic notes

    PubMed Central

    2016-01-01

    Prior to the 20th century, the need for surgical procedures on the airway was infrequent and consisted mainly of tracheostomy to relieve airway obstruction or repair of tracheal injuries such as lacerations. Even the ability of tracheal suture lines to heal primarily was viewed with concern due to the rigidity of the tracheal wall, its precarious blood supply and uncertainty as to whether the cartilage components could heal without complications. In the 20th century the evolution of tracheal procedures on major airways evolved to meet the challenges provided by the expanding fields of thoracic surgery and advent of mechanical respiratory support with its associated complications. In the first half of the century lobar and lung resections done for tuberculosis and lung cancer required methods for safe closure of the resulting bronchial stumps and end-to-end bronchial anastomosis in the case of sleeve resections of the lung. Beginning in mid-century the advent of respiratory care units for the treatment of polio and for the expanding fields of thoracic and cardiac surgery resulted in a significant number of post-intubation tracheal stenosis requiring resection and primary repair. In the last 20 years of the century the development of lung transplantation with its requirement for successful bronchial anastomoses between the donor and recipient bronchi, created unique challenges including ischemia of the donor bronchus the adverse effects of immunosuppression, donor lung preservation and diagnosis and management of post-transplant infection and rejection. PMID:26981261

  4. Voxel classification based airway tree segmentation

    NASA Astrophysics Data System (ADS)

    Lo, Pechin; de Bruijne, Marleen

    2008-03-01

    This paper presents a voxel classification based method for segmenting the human airway tree in volumetric computed tomography (CT) images. In contrast to standard methods that use only voxel intensities, our method uses a more complex appearance model based on a set of local image appearance features and Kth nearest neighbor (KNN) classification. The optimal set of features for classification is selected automatically from a large set of features describing the local image structure at several scales. The use of multiple features enables the appearance model to differentiate between airway tree voxels and other voxels of similar intensities in the lung, thus making the segmentation robust to pathologies such as emphysema. The classifier is trained on imperfect segmentations that can easily be obtained using region growing with a manual threshold selection. Experiments show that the proposed method results in a more robust segmentation that can grow into the smaller airway branches without leaking into emphysematous areas, and is able to segment many branches that are not present in the training set.

  5. Airway mucus: From production to secretion.

    PubMed

    Williams, Olatunji W; Sharafkhaneh, Amir; Kim, Victor; Dickey, Burton F; Evans, Christopher M

    2006-05-01

    Mucus hypersecretion is a phenotype associated with multiple obstructive lung diseases. However, in spite of its nefarious reputation under pathologic conditions, there are significant benefits to having low levels of mucus present in the airways at baseline, such as the ability to trap and eliminate inhaled particles and to prevent desiccation of airway surfaces. Mucins are high-molecular-weight glycoproteins that are the chief components that render viscoelastic and gel-forming properties to mucus. Recent advances in animal models and in vitro systems have provided a wealth of information regarding the identification of the mucin genes that are expressed in the lungs, the signal transduction pathways that regulate the expression of these mucins, and the secretory pathways that mediate their release into the airways. In addition, the clinical and pathologic literature has corroborated many of the basic laboratory findings. As a result, mucin overproduction and hypersecretion are moving away from being markers of disease and toward being testable as functional components of lung disease processes.

  6. Exercise and airway injury in athletes.

    PubMed

    Couto, Mariana; Silva, Diana; Delgado, Luis; Moreira, André

    2013-01-01

    Olympic level athletes present an increased risk for asthma and allergy, especially those who take part in endurance sports, such as swimming or running, and in winter sports. Classical postulated mechanisms behind EIA include the osmotic, or airway-drying, hypothesis. Hyperventilation leads to evaporation of water and the airway surface liquid becomes hyperosmolar, providing a stimulus for water to move from any cell nearby, which results in the shrinkage of cells and the consequent release of inflammatory mediators that cause airway smooth muscle contraction. But the exercise-induced asthma/bronchoconstriction explanatory model in athletes probably comprises the interaction between environmental training factors, including allergens and ambient conditions such as temperature, humidity and air quality; and athlete's personal risk factors, such as genetic and neuroimmuneendocrine determinants. After the stress of training and competitions athletes experience higher rate of upper respiratory tract infections (URTI), compared with lesser active individuals. Increasing physical activity in non-athletes is associated with a decreased risk of URTI. Heavy exercise induces marked immunodepression which is multifactorial in origin. Prolonged, high intensity exercise temporarily impairs the immune competence while moderate activity may enhance immune function. The relationship between URTI and exercise is affected by poorly known individual determinants such genetic susceptibility, neurogenic mediated immune inflammation and epithelial barrier dysfunction. Further studies should better define the aetiologic factors and mechanisms involved in the development of asthma in athletes, and propose relevant preventive and therapeutic measures.

  7. Oral airway flow dynamics in healthy humans.

    PubMed

    Amis, T C; O'Neill, N; Wheatley, J R

    1999-02-15

    1. Oral airway resistance (RO) is an important determinant of oro-nasal partitioning of airflow (e.g. during exercise and sleep); however, little is known of factors influencing its magnitude and measurement. 2. We developed a non-invasive standardized technique for measuring RO (based on a modification of posterior rhinomanometry) and examined inspiratory RO in 17 healthy male subjects (age, 36 +/- 2 years (mean +/- s.e.m.); height, 177 +/- 2 cm; weight, 83 +/- 3 kg). 3. Inspiratory RO (at 0.4 l s-1) was 0.86 +/- 0.23 cmH2O l-1 s-1 during resting mouthpiece breathing in the upright posture. RO was unaffected by assumption of the supine posture, tended to decrease with head and neck extension and increased to 1.22 +/- 0.19 cmH2O l-1 s-1 (n = 10 subjects, P < 0.01) with 40-45 deg of head and neck flexion. When breathing via a mouth-mask RO was 2.98 +/- 0.42 cmH2O l-1 s-1 (n = 7) and not significantly different from nasal airway resistance. 4. Thus, in awake healthy male subjects with constant jaw position, RO is unaffected by body posture but increases with modest degrees of head and neck flexion. This influence on upper airway patency may be important when oral route breathing is associated with alterations in head and neck position, e.g. during sleep.

  8. Airways obstruction, coal mining, and disability.

    PubMed Central

    Lapp, N L; Morgan, W K; Zaldivar, G

    1994-01-01

    It has recently been suggested that the inhalation of coal in the absence of complicated coal workers' pneumoconiosis (CWP) or smoking can lead to disabling airways obstruction. The cause of such obstruction has been variously attributed to emphysema or bronchitis. The frequency of significant airways obstruction in a group of United States coal miners seeking compensation for occupationally induced pulmonary impairment was therefore determined. In a sample of 611 "Black Lung" claimants there was only one subject who was a non-smoker and who in the absence of other non-occupationally related diseases,--for example, asthma and bronchiectasis--had sufficient airways obstruction to render it difficult for him to carry out hard labour. An alternative explanation for his reduced ventilatory capacity other than coal dust or smoking may be available. If the inhalation of coal dust in the absence of smoking and complicated CWP ever induces sufficient ventilatory impairment to preclude a miner from working, it is indeed rare. PMID:8199664

  9. Impact of airway morphological changes on pulmonary flows in scoliosis

    NASA Astrophysics Data System (ADS)

    Farrell, James; Garrido, Enrique; Valluri, Prashant

    2016-11-01

    The relationship between thoracic deformity in scoliosis and lung function is poorly understood. In a pilot study, we reviewed computed tomography (CT) routine scans of patients undergoing scoliosis surgery. The CT scans were processed to segment the anatomy of the airways, lung and spine. A three-dimensional model was created to study the anatomical relationship. Preliminary analysis showed significant airway morphological differences depending on the anterior position of the spine. A computational fluid dynamics (CFD) study was also conducted on the airway geometry using the inspiratory scans. The CFD model assuming non-compliant airway walls was capable of showing pressure drops in areas of high airway resistance, but was unable to predict regional ventilation differences. Our results indicate a dependence between the dynamic deformation of the airway during breathing and lung function. Dynamic structural deformation must therefore be incorporated within any modelling approaches to guide clinicians on the decision to perform surgical correction of the scoliosis.

  10. A framework for understanding shared substrates of airway protection

    PubMed Central

    TROCHE, Michelle Shevon; BRANDIMORE, Alexandra Essman; GODOY, Juliana; HEGLAND, Karen Wheeler

    2014-01-01

    Deficits of airway protection can have deleterious effects to health and quality of life. Effective airway protection requires a continuum of behaviors including swallowing and cough. Swallowing prevents material from entering the airway and coughing ejects endogenous material from the airway. There is significant overlap between the control mechanisms for swallowing and cough. In this review we will present the existing literature to support a novel framework for understanding shared substrates of airway protection. This framework was originally adapted from Eccles' model of cough28 (2009) by Hegland, et al.42 (2012). It will serve to provide a basis from which to develop future studies and test specific hypotheses that advance our field and ultimately improve outcomes for people with airway protective deficits. PMID:25141195

  11. Central airway tumors: interventional bronchoscopy in diagnosis and management

    PubMed Central

    Lin, Chun-Yu

    2016-01-01

    The diagnosis of central airway tumors is usually challenging because of the vague presentations. Advances in visualization technology in bronchoscopy aid early detection of bronchial lesion. Cryotechnology has great impact on endobronchial lesion sampling and provides better diagnostic yield. Airway tumor involvements result in significant alteration in life quality and lead to poor life expectancy. Timely and efficiently use ablation techniques by heat or cold energy provide symptoms relief for central airway obstruction. Prostheses implantation is effective in maintaining airway patency after ablative procedure or external compression. Combined interventional bronchoscopy modalities and other adjunctive therapies have improvement in quality of life and further benefit in survival. This review aims to provide a diagnostic approach to central airway tumors and an overview of currently available techniques of interventional bronchoscopy in managing symptomatic central airway obstruction. PMID:27867582

  12. An anterior mediastinal mass: delayed airway compression and using a double lumen tube for airway patency.

    PubMed

    Lee, Jeounghyuk; Rim, Yong Chul; In, Junyong

    2014-06-01

    Perioperative management of patients with an anterior mediastinal mass is difficult. We present a 35-year-old woman who showed delayed compression of the carina and left main bronchus despite no preoperative respiratory signs, symptoms, or radiologic findings due to an anterior mediastinal mass and uneventful stepwise induction of general anesthesia. Even use of a fiberoptic bronchoscope (FB) after induction of anesthesia was not helpful to predict delayed compression of the airway. Therefore, the anesthesiologist and the cardiothoracic surgeon must prepare for unexpected delayed compression of the airway, even in low risk patients who are asymptomatic or mildly symptomatic without postural symptoms or radiographic evidence of significant compression of structures. We also describe successful management for the compressed carina and left main bronchus with a double lumen tube (DLT) as a stent during surgery. FB guided DLT intubation is a possible solution to maintain airway patency.

  13. Airway Epithelial Expression Quantitative Trait Loci Reveal Genes Underlying Asthma and Other Airway Diseases

    PubMed Central

    Luo, Wei; Obeidat, Ma’en; Di Narzo, Antonio Fabio; Chen, Rong; Sin, Don D.; Paré, Peter D.

    2016-01-01

    Genome-wide association studies (GWASs) have identified loci that are robustly associated with asthma and related phenotypes; however, the molecular mechanisms underlying these associations need to be explored. The most relevant tissues to study the functional consequences of asthma are the airways. We used publically available data to derive expression quantitative trait loci (eQTLs) for human epithelial cells from small and large airways and applied the eQTLs in the interpretation of GWAS results of asthma and related phenotypes. For the small airways (n = 105), we discovered 660 eQTLs at a 10% false discovery rate (FDR), among which 315 eQTLs were not previously reported in a large-scale eQTL study of whole lung tissue. A large fraction of the identified eQTLs is supported by data from Encyclopedia of DNA Elements (ENCODE) showing that the eQTLs reside in regulatory elements (57.5 and 67.6% of cis- and trans-eQTLs, respectively). Published pulmonary GWAS hits were enriched as airway epithelial eQTLs (9.2-fold). Further, genes regulated by asthma GWAS loci in epithelium are significantly enriched in immune response pathways, such as IL-4 signaling (FDR, 5.2 × 10−4). The airway epithelial eQTLs described in this study are complementary to previously reported lung eQTLs and represent a powerful resource to link GWAS-associated variants to their regulatory function and thus elucidate the molecular mechanisms underlying asthma and airway-related conditions. PMID:26102239

  14. Thick airway surface liquid volume and weak mucin expression in pendrin-deficient human airway epithelia

    PubMed Central

    Lee, Hyun Jae; Yoo, Jee Eun; Namkung, Wan; Cho, Hyung-Ju; Kim, Kyubo; Kang, Joo Wan; Yoon, Joo-Heon; Choi, Jae Young

    2015-01-01

    Pendrin is an anion exchanger whose mutations are known to cause hearing loss. However, recent data support the linkage between pendrin expression and airway diseases, such as asthma. To evaluate the role of pendrin in the regulation of the airway surface liquid (ASL) volume and mucin expression, we investigated the function and expression of pendrin and ion channels and anion exchangers. Human nasal epithelial cells were cultured from 16 deaf patients carrying pendrin mutations (DFNB4) and 17 controls. The cells were treated with IL-13 to induce mucus hypersecretion. Airway surface liquid thickness was measured and real-time polymerase chain reaction was performed targeting various transporters and MUC5AC. Anion exchanger activity was measured using a pH-sensitive fluorescent probe. Periodic acid-Schiff staining was performed on the cultured cells and inferior turbinate tissues. The ASL layer of the nasal epithelia from DFNB4 subjects was thicker than the controls, and the difference became more prominent following IL-13 stimulation. There was no difference in anion exchange activity after IL-13 treatment in the cells from DFNB4 patients, while it increased in the controls. Goblet cell metaplasia induced by IL-13 treatment seen in the controls was not observed in the DFNB4 cells. Furthermore, the periodic acid-Schiff staining-positive area was lesser in the inferior turbinate tissues from DFNB4 patients that those from controls. Pendrin plays a critical role in ASL volume regulation and mucin expression as pendrin-deficient airway epithelial cells are refractory to stimulation with IL-13. Specific blockers targeting pendrin in the airways may therefore have therapeutic potential in the treatment of allergic airway diseases. PMID:26243215

  15. Air-Q intubating laryngeal airway: A study of the second generation supraglottic airway device

    PubMed Central

    Attarde, Viren Bhaskar; Kotekar, Nalini; Shetty, Sarika M

    2016-01-01

    Background and Aims: Air-Q intubating laryngeal mask airway (ILA) is used as a supraglottic airway device and as a conduit for endotracheal intubation. This study aims to assess the efficacy of the Air-Q ILA regarding ease of insertion, adequacy of ventilation, rate of successful intubation, haemodynamic response and airway morbidity. Methods: Sixty patients presenting for elective surgery at our Medical College Hospital were selected. Following adequate premedication, baseline vital parameters, pulse rate and blood pressure were recorded. Air-Q size 3.5 for patients 50-70 kg and size 4.5 for 70-100 kg was selected. After achieving adequate intubating conditions, Air-Q ILA was introduced. Confirming adequate ventilation, appropriate sized endotracheal tube was advanced through the Air-Q blindly to intubate the trachea. Placement of the endotracheal tube in trachea was confirmed. Results: Air-Q ILA was successfully inserted in 88.3% of patients in first attempt and 11.7% patients in second attempt. Ventilation was adequate in 100% of patients. Intubation was successful in 76.7% of patients with Air-Q ILA. 23.3% of patients were intubated by direct laryngoscopy following failure with two attempts using Air-Q ILA. Post-intubation the change in heart rate was statistically significant (P < 0.0001). 10% of patients were noted to have a sore throat and 5% of patients had mild airway trauma. Conclusion: Air-Q ILA is a reliable device as a supraglottic airway ensuring adequate ventilation as well as a conduit for endotracheal intubation. It benefits the patient by avoiding the stress of direct laryngoscopy and is also superior alternative device for use in a difficult airway. PMID:27212722

  16. Improving the safety of remote site emergency airway management.

    PubMed

    Wijesuriya, Julian; Brand, Jonathan

    2014-01-01

    Airway management, particularly in non-theatre settings, is an area of anaesthesia and critical care associated with significant risk of morbidity & mortality, as highlighted during the 4th National Audit Project of the Royal College of Anaesthetists (NAP4). A survey of junior anaesthetists at our hospital highlighted a lack of confidence and perceived lack of safety in emergency airway management, especially in non-theatre settings. We developed and implemented a multifaceted airway package designed to improve the safety of remote site airway management. A Rapid Sequence Induction (RSI) checklist was developed; this was combined with new advanced airway equipment and drugs bags. Additionally, new carbon dioxide detector filters were procured in order to comply with NAP4 monitoring recommendations. The RSI checklists were placed in key locations throughout the hospital and the drugs and advanced airway equipment bags were centralised in the Intensive Care Unit (ICU). It was agreed with the senior nursing staff that an appropriately trained ICU nurse would attend all emergency situations with new airway resources upon request. Departmental guidelines were updated to include details of the new resources and the on-call anaesthetist's responsibilities regarding checks and maintenance. Following our intervention trainees reported higher confidence levels regarding remote site emergency airway management. Nine trusts within the Northern Region were surveyed and we found large variations in the provision of remote site airway management resources. Complications in remote site airway management due lack of available appropriate drugs, equipment or trained staff are potentially life threatening and completely avoidable. Utilising the intervention package an anaesthetist would be able to safely plan and prepare for airway management in any setting. They would subsequently have the drugs, equipment, and trained assistance required to manage any difficulties or complications

  17. Toll-like Receptor 7 Rapidly Relaxes Human Airways

    PubMed Central

    Scott, Gregory D.; Proskocil, Becky J.; Fryer, Allison D.; Jacoby, David B.; Kaufman, Elad H.

    2013-01-01

    Rationale: Toll-like receptors (TLRs) 7 and 8 detect respiratory virus single-stranded RNA and trigger an innate immune response. We recently described rapid TLR7-mediated bronchodilation in guinea pigs. Objectives: To characterize TLR7 expression and TLR7-induced airway relaxation in humans and in eosinophilic airway inflammation in guinea pigs. To evaluate the relaxant effects of other TLRs. Methods: Human airway smooth muscle strips were contracted with methacholine in vitro, and responses to TLR7 and TLR8 agonists were assessed. TLR7-mediated nitric oxide production was measured using a fluorescent indicator, and TLR7 expression was characterized using immunofluorescence. TLR7 signaling was also evaluated in ovalbumin-challenged guinea pigs. Measurements and Main Results: The TLR7 agonist imiquimod (R837) caused rapid dose-dependent relaxation of methacholine-contracted human airways in vitro. This was blocked by the TLR7 antagonist IRS661 and by inhibiting nitric oxide production but not by inhibiting prostaglandin production. TLR7 activation markedly increased fluorescence of a nitric oxide detector. TLR7 was expressed on airway nerves, but not airway smooth muscle, implicating airway nerves as the source of TLR7-induced nitric oxide production. TLR7-mediated relaxation persisted in inflamed guinea pigs airways in vivo. The TLR8 agonists polyuridylic acid and polyadenylic acid also relaxed human airways, and this was not blocked by the TLR7 antagonist or by blocking nitric oxide or prostaglandin production. No other TLRs relaxed the airways. Conclusions: TLR7 is expressed on airway nerves and mediates relaxation of human and animal airways through nitric oxide production. TLR7-mediated bronchodilation may be a new therapeutic strategy in asthma. PMID:23924358

  18. Voxel based morphometry in optical coherence tomography: validation and core findings

    NASA Astrophysics Data System (ADS)

    Antony, Bhavna J.; Chen, Min; Carass, Aaron; Jedynak, Bruno M.; Al-Louzi, Omar; Solomon, Sharon D.; Saidha, Shiv; Calabresi, Peter A.; Prince, Jerry L.

    2016-03-01

    Optical coherence tomography (OCT) of the human retina is now becoming established as an important modality for the detection and tracking of various ocular diseases. Voxel based morphometry (VBM) is a long standing neuroimaging analysis technique that allows for the exploration of the regional differences in the brain. There has been limited work done in developing registration based methods for OCT, which has hampered the advancement of VBM analyses in OCT based population studies. Following on from our recent development of an OCT registration method, we explore the potential benefits of VBM analysis in cohorts of healthy controls (HCs) and multiple sclerosis (MS) patients. Specifically, we validate the stability of VBM analysis in two pools of HCs showing no significant difference between the two populations. Additionally, we also present a retrospective study of age and sex matched HCs and relapsing remitting MS patients, demonstrating results consistent with the reported literature while providing insight into the retinal changes associated with this MS subtype.

  19. Evaluation of Pre-Malignant and Malignant Lesions in Cervico Vaginal (PAP) Smears by Nuclear Morphometry

    PubMed Central

    Rani M.N, Divya; Kumar ML, Harendra; SR, Sheela

    2014-01-01

    Background: Cervical cancer is the second most common cancer occurring among women worldwide, with almost half a million new cases each year. Normal cells gradually transform to form cancer cells through several stages. So, the changes occurring during the transformational stages need to be assessed. Aim: Our aim was to study various nuclear parameters useful in evaluating pre-malignant and malignant cervico-vaginal pap smears. Materials and Methods: Bethesda System was used to categorize cervical pap smears into premalignant and malignant lesions. Nuclear parameters were calculated using J 1.44C morphometric software. Several nuclear size parameters were analysed. Results: The nuclear area, perimeter, diameter were found to be statistically significant (p<0.05) parameters in differentiating premalignant from malignant cervical smears. Conclusion: Nuclear morphometry was thus a useful objective tool in differentiating premalignant from malignant cervical smears. PMID:25584229

  20. Voxel-based morphometry in patients with cryptogenic occipital epilepsies. Preliminary data.

    PubMed

    Bilo, L; De Leva, M F; Meo, R; Tortora, F; Esposito, F; Aragri, A; Elefante, A

    2010-03-01

    We evaluated the differences in grey matter concentration (GMC) by voxel-based morphometry (VBM) in patients with cryptogenic occipital epilepsies. VBM analysis was performed in 11 patients with cryptogenic occipital epilepsies compared to 11 healthy controls. VBM analysis in patients revealed focal areas of reduced GMC in the occipital cortex and, more interestingly, increased GMC in the midbrain tegmentum and basal ganglia (globus pallidus and thalamus). VBM may disclose slight structural abnormalities in the brain of cryptogenic epilepsy patients, not evident with standard MRI. To the best of our knowledge, this is the first literature report describing areas of altered GMC in patients with occipital epilepsy. We hypothesize that these findings might be related to epileptic discharges and/or their diffusion and suggest that midbrain, globus pallidus and thalamus may be part of a functional network originating from the occipital areas.

  1. Voxel-based morphometry predicts shifts in dendritic spine density and morphology with auditory fear conditioning.

    PubMed

    Keifer, O P; Hurt, R C; Gutman, D A; Keilholz, S D; Gourley, S L; Ressler, K J

    2015-07-07

    Neuroimaging has provided compelling data about the brain. Yet the underlying mechanisms of many neuroimaging techniques have not been elucidated. Here we report a voxel-based morphometry (VBM) study of Thy1-YFP mice following auditory fear conditioning complemented by confocal microscopy analysis of cortical thickness, neuronal morphometric features and nuclei size/density. Significant VBM results included the nuclei of the amygdala, the insula and the auditory cortex. There were no significant VBM changes in a control brain area. Focusing on the auditory cortex, confocal analysis showed that fear conditioning led to a significantly increased density of shorter and wider dendritic spines, while there were no spine differences in the control area. Of all the morphology metrics studied, the spine density was the only one to show significant correlation with the VBM signal. These data demonstrate that learning-induced structural changes detected by VBM may be partially explained by increases in dendritic spine density.

  2. Persistent Homology in Sparse Regression and Its Application to Brain Morphometry

    PubMed Central

    Hanson, Jamie L.; Ye, Jieping; Davidson, Richard J.; Pollak, Seth D.

    2015-01-01

    Sparse systems are usually parameterized by a tuning parameter that determines the sparsity of the system. How to choose the right tuning parameter is a fundamental and difficult problem in learning the sparse system. In this paper, by treating the the tuning parameter as an additional dimension, persistent homological structures over the parameter space is introduced and explored. The structures are then further exploited in drastically speeding up the computation using the proposed soft-thresholding technique. The topological structures are further used as multivariate features in the tensor-based morphometry (TBM) in characterizing white matter alterations in children who have experienced severe early life stress and maltreatment. These analyses reveal that stress-exposed children exhibit more diffuse anatomical organization across the whole white matter region. PMID:25823032

  3. Volumetric and voxel-based morphometry findings in autism subjects with and without macrocephaly.

    PubMed

    Bigler, Erin D; Abildskov, Tracy J; Petrie, Jo Ann; Johnson, Michael; Lange, Nicholas; Chipman, Jonathan; Lu, Jeffrey; McMahon, William; Lainhart, Janet E

    2010-01-01

    This study sought to replicate Herbert et al. (2003a), which found increased overall white matter (WM) volume in subjects with autism, even after controlling for head size differences. To avoid the possibility that greater WM volume in autism is merely an epiphenomena of macrocephaly overrepresentation associated with the disorder, the current study included control subjects with benign macrocephaly. The control group also included subjects with a reading disability to insure cognitive heterogeneity. WM volume in autism was significantly larger, even when controlling for brain volume, rate of macrocephaly, and other demographic variables. Autism and controls differed little on whole-brain WM voxel-based morphometry (VBM) analyses suggesting that the overall increase in WM volume was non-localized. Autism subjects exhibited a differential pattern of IQ relationships with brain volumetry findings from controls. Current theories of brain overgrowth and their importance in the development of autism are discussed in the context of these findings.

  4. Vorhersage des Krankheitsverlaufes von leichten kognitiven Beeinträchtigungen durch automatisierte MRT Morphometrie

    NASA Astrophysics Data System (ADS)

    Fritzsche, Klaus H.; Schlindwein, Sarah; Stieltjes, Bram; Essig, Marco; Meinzer, Hans-Peter

    Die leichte kognitive Beeinträchtigung (LKB) gilt als Anzeichen für ein erhöhtes Risiko der Entwicklung einer Alzheimerdemenz. Eine fundierte klinische Prognose für den Krankheitsverlauf kann aber bis dato nicht gegeben werden. Das Ziel dieser Arbeit besteht darin, eine möglichst präzise Vorhersage mittels automatisierter Morphometrie des Hippokampus im MRT-Bild zu treffen. In einer Studie mit 18 Probanden mit LKB wurde eine Prädiktionsgenauigkeit für die Entwicklung einer späteren Demenz von 83.3% erzielt. Eine manuelle Vergleichsmethode erreichte mit 55.6% Trefferquote keine signifikante Vorhersagegenauigkeit. Das automatische Verfahren erfüllt viele wichtige Voraussetzungen für den routinemäßigen klinischen Einsatz mit dem Potential, die klinische Vorhersage des Krankheitsverlaufes bei der LKB zu verbessern.

  5. Volumetric and Voxel-Based Morphometry Findings in Autism Subjects With and Without Macrocephaly

    PubMed Central

    Bigler, Erin D.; Abildskov, Tracy J.; Petrie, Jo Ann; Johnson, Michael; Lange, Nicholas; Chipman, Jonathan; Lu, Jeffrey; McMahon, William; Lainhart, Janet E.

    2015-01-01

    This study sought to replicate Herbert et al. (2003a), which found increased overall white matter (WM) volume in subjects with autism, even after controlling for head size differences. To avoid the possibility that greater WM volume in autism is merely an epiphenomena of macrocephaly over-representation associated with the disorder, the current study included control subjects with benign macrocephaly. The control group also included subjects with a reading disability to insure cognitive heterogeneity. WM volume in autism was significantly larger, even when controlling for brain volume, rate of macrocephaly, and other demographic variables. Autism and controls differed little on whole-brain WM voxel-based morphometry (VBM) analyses suggesting that the overall increase in WM volume was non-localized. Autism subjects exhibited a differential pattern of IQ relationships with brain volumetry findings from controls. Current theories of brain overgrowth and their importance in the development of autism are discussed in the context of these findings. PMID:20446133

  6. APPLYING SPARSE CODING TO SURFACE MULTIVARIATE TENSOR-BASED MORPHOMETRY TO PREDICT FUTURE COGNITIVE DECLINE

    PubMed Central

    Zhang, Jie; Stonnington, Cynthia; Li, Qingyang; Shi, Jie; Bauer, Robert J.; Gutman, Boris A.; Chen, Kewei; Reiman, Eric M.; Thompson, Paul M.; Ye, Jieping; Wang, Yalin

    2016-01-01

    Alzheimer’s disease (AD) is a progressive brain disease. Accurate diagnosis of AD and its prodromal stage, mild cognitive impairment, is crucial for clinical trial design. There is also growing interests in identifying brain imaging biomarkers that help evaluate AD risk presymptomatically. Here, we applied a recently developed multivariate tensor-based morphometry (mTBM) method to extract features from hippocampal surfaces, derived from anatomical brain MRI. For such surface-based features, the feature dimension is usually much larger than the number of subjects. We used dictionary learning and sparse coding to effectively reduce the feature dimensions. With the new features, an Adaboost classifier was employed for binary group classification. In tests on publicly available data from the Alzheimers Disease Neuroimaging Initiative, the new framework outperformed several standard imaging measures in classifying different stages of AD. The new approach combines the efficiency of sparse coding with the sensitivity of surface mTBM, and boosts classification performance. PMID:27499829

  7. Taxonomic Identity of the Invasive Fruit Fly Pest, Bactrocera invadens: Concordance in Morphometry and DNA Barcoding

    PubMed Central

    Khamis, Fathiya M.; Masiga, Daniel K.; Mohamed, Samira A.; Salifu, Daisy; de Meyer, Marc; Ekesi, Sunday

    2012-01-01

    In 2003, a new fruit fly pest species was recorded for the first time in Kenya and has subsequently been found in 28 countries across tropical Africa. The insect was described as Bactrocera invadens, due to its rapid invasion of the African continent. In this study, the morphometry and DNA Barcoding of different populations of B. invadens distributed across the species range of tropical Africa and a sample from the pest's putative aboriginal home of Sri Lanka was investigated. Morphometry using wing veins and tibia length was used to separate B. invadens populations from other closely related Bactrocera species. The Principal component analysis yielded 15 components which correspond to the 15 morphometric measurements. The first two principal axes contributed to 90.7% of the total variance and showed partial separation of these populations. Canonical discriminant analysis indicated that only the first five canonical variates were statistically significant. The first two canonical variates contributed a total of 80.9% of the total variance clustering B. invadens with other members of the B. dorsalis complex while distinctly separating B. correcta, B. cucurbitae, B. oleae and B. zonata. The largest Mahalanobis squared distance (D2 = 122.9) was found to be between B. cucurbitae and B. zonata, while the lowest was observed between B. invadens populations against B. kandiensis (8.1) and against B. dorsalis s.s (11.4). Evolutionary history inferred by the Neighbor-Joining method clustered the Bactrocera species populations into four clusters. First cluster consisted of the B. dorsalis complex (B. invadens, B. kandiensis and B. dorsalis s. s.), branching from the same node while the second group was paraphyletic clades of B. correcta and B. zonata. The last two are monophyletic clades, consisting of B. cucurbitae and B. oleae, respectively. Principal component analysis using the genetic distances confirmed the clustering inferred by the NJ tree. PMID:23028649

  8. Fully automated corneal endothelial morphometry of images captured by clinical specular microscopy

    NASA Astrophysics Data System (ADS)

    Bucht, Curry; Söderberg, Per; Manneberg, Göran

    2010-02-01

    The corneal endothelium serves as the posterior barrier of the cornea. Factors such as clarity and refractive properties of the cornea are in direct relationship to the quality of the endothelium. The endothelial cell density is considered the most important morphological factor of the corneal endothelium. Pathological conditions and physical trauma may threaten the endothelial cell density to such an extent that the optical property of the cornea and thus clear eyesight is threatened. Diagnosis of the corneal endothelium through morphometry is an important part of several clinical applications. Morphometry of the corneal endothelium is presently carried out by semi automated analysis of pictures captured by a Clinical Specular Microscope (CSM). Because of the occasional need of operator involvement, this process can be tedious, having a negative impact on sampling size. This study was dedicated to the development and use of fully automated analysis of a very large range of images of the corneal endothelium, captured by CSM, using Fourier analysis. Software was developed in the mathematical programming language Matlab. Pictures of the corneal endothelium, captured by CSM, were read into the analysis software. The software automatically performed digital enhancement of the images, normalizing lights and contrasts. The digitally enhanced images of the corneal endothelium were Fourier transformed, using the fast Fourier transform (FFT) and stored as new images. Tools were developed and applied for identification and analysis of relevant characteristics of the Fourier transformed images. The data obtained from each Fourier transformed image was used to calculate the mean cell density of its corresponding corneal endothelium. The calculation was based on well known diffraction theory. Results in form of estimated cell density of the corneal endothelium were obtained, using fully automated analysis software on 292 images captured by CSM. The cell density obtained by the

  9. Diffuse Decreased Gray Matter in Patients with Idiopathic Craniocervical Dystonia: A Voxel-Based Morphometry Study

    PubMed Central

    Piccinin, Camila C.; Piovesana, Luiza G.; Santos, Maria C. A.; Guimarães, Rachel P.; De Campos, Brunno M.; Rezende, Thiago J. R.; Campos, Lidiane S.; Torres, Fabio R.; Amato-Filho, Augusto C.; França, Marcondes C.; Lopes-Cendes, Iscia; Cendes, Fernando; D’Abreu, Anelyssa

    2015-01-01

    Background: Recent studies have addressed the role of structures other than the basal ganglia in the pathophysiology of craniocervical dystonia (CCD). Neuroimaging studies have attempted to identify structural abnormalities in CCD but a clear pattern of alteration has not been established. We performed whole-brain evaluation using voxel-based morphometry (VBM) to identify patterns of gray matter (GM) changes in CCD. Methods: We compared 27 patients with CCD matched in age and gender to 54 healthy controls. VBM was used to compare GM volumes. We created a two-sample t-test corrected for subjects’ age, and we tested with a level of significance of p < 0.001 and false discovery rate (FDR) correction (p < 0.05). Results: Voxel-based morphometry demonstrated significant reductions of GM using p < 0.001 in the cerebellar vermis IV/V, bilaterally in the superior frontal gyrus, precuneus, anterior cingulate and paracingulate, insular cortex, lingual gyrus, and calcarine fissure; in the left hemisphere in the supplementary motor area, inferior frontal gyrus, inferior parietal gyrus, temporal pole, supramarginal gyrus, rolandic operculum, hippocampus, middle occipital gyrus, cerebellar lobules IV/V, superior, and middle temporal gyri; in the right hemisphere, the middle cingulate and precentral gyrus. Our study did not report any significant result using the FDR correction. We also detected correlations between GM volume and age, disease duration, duration of botulinum toxin treatment, and the Marsden–Fahn dystonia scale scores. Conclusion: We detected large clusters of GM changes chiefly in structures primarily involved in sensorimotor integration, motor planning, visuospatial function, and emotional processing. PMID:25620953

  10. APPLYING TENSOR-BASED MORPHOMETRY TO PARAMETRIC SURFACES CAN IMPROVE MRI-BASED DISEASE DIAGNOSIS

    PubMed Central

    Wang, Yalin; Yuan, Lei; Shi, Jie; Greve, Alexander; Ye, Jieping; Toga, Arthur W.; Reiss, Allan L.; Thompson, Paul M.

    2013-01-01

    Many methods have been proposed for computer-assisted diagnostic classification. Full tensor information and machine learning with 3D maps derived from brain images may help detect subtle differences or classify subjects into different groups. Here we develop a new approach to apply tensor-based morphometry to parametric surface models for diagnostic classification. We use this approach to identify cortical surface features for use in diagnostic classifiers. First, with holomorphic 1-forms, we compute an efficient and accurate conformal mapping from a multiply connected mesh to the so-called slit domain. Next, the surface parameterization approach provides a natural way to register anatomical surfaces across subjects using a constrained harmonic map. To analyze anatomical differences, we then analyze the full Riemannian surface metric tensors, which retain multivariate information on local surface geometry. As the number of voxels in a 3D image is large, sparse learning is a promising method to select a subset of imaging features and to improve classification accuracy. Focusing on vertices with greatest effect sizes, we train a diagnostic classifier using the surface features selected by an ℓ1-norm based sparse learning method. Stability selection is applied to validate the selected feature sets. We tested the algorithm on MRI-derived cortical surfaces from 42 subjects with genetically confirmed Williams syndrome and 40 age-matched controls, multivariate statistics on the local tensors gave greater effect sizes for detecting group differences relative to other TBM-based statistics including analysis of the Jacobian determinant and the largest eigenvalue of the surface metric. Our method also gave reasonable classification results relative to the Jacobian determinant, the pair of eigenvalues of the Jacobian matrix and volume features. This analysis pipeline may boost the power of morphometry studies, and may assist with image-based classification. PMID:23435208

  11. Morphometry of distal end radius in the Indian population: A radiological study

    PubMed Central

    Mishra, Pankaj Kumar; Nagar, Manoj; Gaur, Suresh Chandra; Gupta, Anuj

    2016-01-01

    Introduction: The morphometry of distal end radius (DER) comprises the four necessary parameters: radial inclination, palmer tilt, radial height, and ulnar variance. The unblemished intellect about the morphometry is urged for the management of fracture of DER. The goal of our study was to determine the values of morphometric parameters of the DER from the adult Indian. Materials and Methods: It was a single hospital- based observational cross-sectional, prospective study. Radial inclination, radial height, and ulnar variance were measured on posteroanterior view, and the measurement of palmer tilt was accomplished on the lateral view. All the statistical analysis was done by Microsoft XL 2007 (data add in function were installed for data analysis). T-test was used for comparing the means of the parameters. Results: Two hundred and forty two (n = 242) X-rays were included in this study to analyze. The mean value (n = 242) of radial inclination was 23.27°± (standard deviation [SD]) 7.42° (range: 11.3–42.1°), palmer tilt 10.07° ± (SD) 5.28° (range: 1–16.9°), radial height 11.31 mm ± (SD) 4.9 mm (range: 7.1–30.4 mm), and ulnar variance 0.66 mm ± (SD) 2.46 mm (range: −2.4 to +4.1). Conclusion: This study may provide an inauguratory plinth to prosecute the further analytical research in the Indian population. Moreover, the data may also be used as a reference data for the anatomical alignment while treating the injuries of the DER in the Indian population. PMID:27904215

  12. Influence of staining and sampling procedures on goat sperm morphometry using the Sperm Class Analyzer.

    PubMed

    Hidalgo, Manuel; Rodríguez, Inmaculada; Dorado, Jesús

    2006-09-01

    Computer-assisted sperm morphometry analysis (ASMA) has improved the assessment of sperm morphology, but the results depend on the use of adequate sampling and staining procedures of spermatozoa from individual species. In this study, the Sperm Class Analyzer ASMA system was used for the morphometric analysis of goat sperm heads. Semen samples, obtained from four bucks, were used to evaluate the influence of three staining procedures (Diff-Quik, Hemacolor and Harris' Haematoxylin) on the accuracy of image processing and sperm morphometry, the effect of the number of cells analysed and the repeatability of the method. These experiments were performed to obtain objective, accurate and reliable sperm morphometric measurements of goat spermatozoa. Diff-Quik and Harris' Haematoxylin were significantly (p<0.05) more accurate than Hemacolor. However, Diff-Quik obtained the highest proportion of correctly analysed sperm heads (86.06%) and the lowest coefficients of variation on the image processing and morphometric measurements. The staining methods affected significantly the sperm dimensions (p<0.001) with increased values from Diff-Quik than Hemacolor and Harris' Haematoxylin, respectively (Diff-Quik>Hemacolor>Harris' Haematoxylin). No differences in morphometric parameters were found when 100, 150, 175 or 200 spermatozoa were analysed. The repeatability of results obtained was very high since no differences were found when measuring the same sperm on multiple attempts. In conclusion, to obtain objective, accurate and repeatable sperm morphometric measurements by the Sperm Class Analyzer system in goats, the analysis of 100 spermatozoa from slides which have been previously stained with Diff-Quik is recommended.

  13. Reproducibility of Brain Morphometry from Short-Term Repeat Clinical MRI Examinations: A Retrospective Study

    PubMed Central

    Liu, Hon-Man; Chen, Shan-Kai; Chen, Ya-Fang; Lee, Chung-Wei; Yeh, Lee-Ren

    2016-01-01

    Purpose To assess the inter session reproducibility of automatic segmented MRI-derived measures by FreeSurfer in a group of subjects with normal-appearing MR images. Materials and Methods After retrospectively reviewing a brain MRI database from our institute consisting of 14,758 adults, those subjects who had repeat scans and had no history of neurodegenerative disorders were selected for morphometry analysis using FreeSurfer. A total of 34 subjects were grouped by MRI scanner model. After automatic segmentation using FreeSurfer, label-wise comparison (involving area, thickness, and volume) was performed on all segmented results. An intraclass correlation coefficient was used to estimate the agreement between sessions. Wilcoxon signed rank test was used to assess the population mean rank differences across sessions. Mean-difference analysis was used to evaluate the difference intervals across scanners. Absolute percent difference was used to estimate the reproducibility errors across the MRI models. Kruskal-Wallis test was used to determine the across-scanner effect. Results The agreement in segmentation results for area, volume, and thickness measurements of all segmented anatomical labels was generally higher in Signa Excite and Verio models when compared with Sonata and TrioTim models. There were significant rank differences found across sessions in some labels of different measures. Smaller difference intervals in global volume measurements were noted on images acquired by Signa Excite and Verio models. For some brain regions, significant MRI model effects were observed on certain segmentation results. Conclusions Short-term scan-rescan reliability of automatic brain MRI morphometry is feasible in the clinical setting. However, since repeatability of software performance is contingent on the reproducibility of the scanner performance, the scanner performance must be calibrated before conducting such studies or before using such software for retrospective

  14. Multi-functionality of computer-aided quantitative vertebral fracture morphometry analyses

    PubMed Central

    Oei, Ling; Ly, Felisia; El Saddy, Salih; Makurthou, Ater A.; Hofman, Albert; van Rooij, Frank J. A.; Uitterlinden, André G.; Zillikens, M. Carola; Rivadeneira, Fernando

    2013-01-01

    Osteoporotic vertebral fractures are an increasingly active area of research. Oftentimes assessments are performed by software-assisted quantitative morphometry. Here, we will discuss multi-functionality of these data for research purposes. A team of trained research assistants processed lateral spine radiographs from the population-based Rotterdam Study with SpineAnalyzer® software (Optasia Medical Ltd, Cheadle, UK). Next, the raw coordinate data of the two upper corners of Th5 and the two lower corners of Th12 were extracted to calculate the Cobb’s kyphosis angle. In addition, two readers performed independent manual measurements of the Cobb’s kyphosis angle between Th5 and Th12 for a sample (n=99). The mean kyphosis angle and its standard deviation were 53° and 10° for the SpineAnalyzer® software measurements and 54° and 12° by manual measurements, respectively. The Pearson’s correlation coefficient was 0.65 [95% confidence interval (CI): 0.53-0.75; P=2×10–13]. There was a substantial intraclass correlation with a coefficient of 0.64 (95% CI: 0.51-0.74). The mean difference between methods was 1° (95% CI: –2°-4°), with 95% limits of agreement of –20°-17° and there were no systematic biases. In conclusion, vertebral fracture morphometry data can be used to derive the Cobb’s kyphosis angle. Even more quantitative measures could be derived from the raw data, such as vertebral wedging, intervertebral disc space, spondylolisthesis and the lordosis angle. These measures may be of interest for research into musculoskeletal disorders such as osteoporosis, degenerative disease or Scheuermann’s disease. Large-scale studies may benefit from efficient capture of multiple quantitative measures in the spine. PMID:24273742

  15. Human Spine Morphometry In The Post-Somitic Phase : Study Of 9 Embryos.

    NASA Astrophysics Data System (ADS)

    Le Floch-Prigent, Patrice P.; Mandarim de Lacerda, Carlos A.; Hureau, Jacques; Hidden, Genevieve

    1986-07-01

    The volume of the spine was measured in 9 embryos from 8 to 31 mm crown-rump length (complete series of sagittal sections). Spine morphometry was performed by planimetrical point counting of horizontal projections on a 5 mm square grid. Total spine volume was integrated by multiplication of the thickness by the area : V = t ET=1 Si. The integrated volumes (including the base of the skull around the foramen magnum) were aligned on the diagram semi-logarithmic volume v.s. linear crown-rump length. The correlation between the spine volume and the total weight of the spine is very high (r=0,94 ; p<0,01). The spine growth of the embryos during the post-somitic phase corresponds to the general laws for this period (particularly acceleration in the second half), one of the most interesting for morphometry during the uterine life. The vertebral morphology is perfecting between the two extremities of the observed period with a nearby adult disposition at 31 mm. Datation of the 9 embryos was determined from their C-R length by means of the table published by MOORE and al. (1981) from 641 staged embryos of the Carnegie Institute, thus establishing their stage with actual admitted criteria. There was no important variation of the unique spine curvature during the postsomitic phase. Linear measurements of maximal width on the entire embryos and their spine were determined from the total number of sections and those where the vertebrae could be observed. The two widths reported to crown-rump length, drew linear curvatures with a slight irregularity, emphasized by plotting the values of three indices. These variations could be dued to the imprecision in section thickness and to the individual variation during the spinal growth for this embryonic phase. In contrast with linear data, the morphometrical method applied to the spine volume has proved to be very effective in quantitative studies for embryos of the post-somitic phase.

  16. Quantitative computed tomography imaging of airway remodeling in severe asthma

    PubMed Central

    Fetita, Catalin I.; Brillet, Pierre-Yves

    2016-01-01

    Asthma is a heterogeneous condition and approximately 5–10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively. PMID:26981458

  17. KyoT2 downregulates airway remodeling in asthma.

    PubMed

    Hu, Mei; Ou-Yang, Hai-Feng; Han, Xing-Peng; Ti, Xin-Yu; Wu, Chang-Gui

    2015-01-01

    The typical pathological features of asthma are airway remodeling and airway hyperresponsiveness (AHR). KyoT2, a negative modulator of Notch signaling, has been linked to asthma in several previous studies. However, whether KyoT2 is involved in the regulation of airway remodeling or the modulation of airway resistance in asthma is unclear. In this study, we aimed to evaluate the therapeutic potential of KyoT2 in preventing asthma-associated airway remodeling and AHR. BALB/c mice were used to generate a mouse model of asthma. Additionally, the expression of Hes1 and Notch1 in airway was analyzed using Immunofluorescence examination. The asthmatic mice were intranasally administered adenovirus expressing KyoT2 and were compared to control groups. Furthermore, subepithelial fibrosis and other airway remodeling features were analyzed using hematoxylin and eosin staining, Van Gieson's staining and Masson's trichrome staining. AHR was also evaluated. This study revealed that KyoT2 downregulated the expression of Hes1, repressed airway remodeling, and alleviated AHR in asthmatic mice. It is reasonable to assume that KyoT2 downregulates airway remodeling and resistance in asthmatic mice through a Hes1-dependent mechanism. Therefore, KyoT2 is a potential clinical treatment strategy for asthma.

  18. Quantitative computed tomography imaging of airway remodeling in severe asthma.

    PubMed

    Grenier, Philippe A; Fetita, Catalin I; Brillet, Pierre-Yves

    2016-02-01

    Asthma is a heterogeneous condition and approximately 5-10% of asthmatic subjects have severe disease associated with structure changes of the airways (airway remodeling) that may develop over time or shortly after onset of disease. Quantitative computed tomography (QCT) imaging of the tracheobronchial tree and lung parenchyma has improved during the last 10 years, and has enabled investigators to study the large airway architecture in detail and assess indirectly the small airway structure. In severe asthmatics, morphologic changes in large airways, quantitatively assessed using 2D-3D airway registration and recent algorithms, are characterized by airway wall thickening, luminal narrowing and bronchial stenoses. Extent of expiratory gas trapping, quantitatively assessed using lung densitometry, may be used to assess indirectly small airway remodeling. Investigators have used these quantitative imaging techniques in order to attempt severity grading of asthma, and to identify clusters of asthmatic patients that differ in morphologic and functional characteristics. Although standardization of image analysis procedures needs to be improved, the identification of remodeling pattern in various phenotypes of severe asthma and the ability to relate airway structures to important clinical outcomes should help target treatment more effectively.

  19. Strategies and algorithms for management of the difficult airway.

    PubMed

    Heidegger, Thomas; Gerig, Hans J; Henderson, John J

    2005-12-01

    Management of the difficult airway is the most important patient safety issue in the practice of anaesthesia. Many national societies have developed algorithms and guidelines for management of the difficult airway. The key issues of this chapter are definition of terms, the advantages and disadvantages of the use of guidelines, and a comparison of different algorithms and guidelines for management of the most important clinical airway scenarios. Although there is no strong evidence of benefit for any specific strategy or algorithm for management of the difficult airway, there is strong agreement that a pre-planned strategy may lead to improved outcome.

  20. AIRWAY HYPERRESPONSIVENESS IN MICE FOLLOWING ANTIGEN AND PARTICULATE MATTER EXPOSURE IS VAGALLY MEDIATED

    EPA Science Inventory

    Sensory nerves within the airways can initiate a variety of protective reflexes. We hypothesized that insults such as exposure to antigen and particulate matter (PM) might dysregulate airway sensory nerve function, thereby contributing to enhanced airway inflammation and hyperre...

  1. NEUROTROPHIN MEDIATION OF ALLERGIC AIRWAYS RESPONSES TO INHALED DIESEL PARTICLES IN MICE

    EPA Science Inventory

    Neurotrophins, including nerve growth factor (NGF) partially mediate many features of allergic airways disease including airway hyper-responsiveness. Diesel exhaust particulates (DEP) associated with the combustion of diesel fuel exacerbate many of these allergic airways respons...

  2. Effect of P2X4R on airway inflammation and airway remodeling in allergic airway challenge in mice

    PubMed Central

    CHEN, HONGXIA; XIA, QINGQING; FENG, XIAOQIAN; CAO, FANGYUAN; YU, HANG; SONG, YINLI; NI, XIUQIN

    2016-01-01

    P2X4 receptor (P2X4R) is the most widely expressed subtype of the P2XRs in the purinergic receptor family. Adenosine triphosphate (ATP), a ligand for this receptor, has been implicated in the pathogenesis of asthma. ATP-P2X4R signaling is involved in pulmonary vascular remodeling, and in the proliferation and differentiation of airway and alveolar epithelial cell lines. However, the role of P2X4R in asthma remains to be elucidated. This aim of the present study was to investigate the effects of P2X4R in a murine experimental asthma model. The asthmatic model was established by the inhalation of ovalbumin (OVA) in BALB/c mice. The mice were treated with P2X4R-specific agonists and antagonists to investigate the role of this receptor in vivo. Pathological changes in the bronchi and lung tissues were examined using hematoxylin and eosin staining, Masson's trichrome staining and Alcian blue staining. The inflammatory cells in the bronchoalveolar lavage fluid were counted, and the expression levels of P2X4R, α-smooth muscle actin (α-SMA) and proliferating cell nuclear antigen (PCNA) were detected using western blotting. In the OVA-challenged mice, inflammation, infiltration, collagen deposition, mucus production, and the expression levels of P2X4R and PCNA were all increased; however, the expression of α-SMA was decreased, compared with the mice in the control group. Whereas treatment with the P2X4R agonist, ATP, enhanced the allergic reaction, treatment with the P2X4R antagonist, 5-BDBD, attenuated the allergic reaction. The results suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma in mice. PMID:26648454

  3. Morphological and morphometric studies of the airways of sheep with acute airway hypersensitivity to inhaled Ascaris suum.

    PubMed

    Chen, W; Alley, M R; Manktelow, B W

    1991-10-01

    The airways of 12 sheep with naturally-occurring allergic airway hypersensitivity, six of which had changes in both airway resistance and dynamic lung compliance (Group A) and six of which had changes in only dynamic lung compliance (Group B), were compared quantitatively with six non-reacting sheep (Group C) in order to examine the relation between airway hypersensitivity and various morphological features thought to be related to airway hypersensitivity. Compared to the non-reacting sheep (Group C), the hypersensitive sheep (Groups A and B) had a thinner epithelium in medium bronchi and bronchioles, fewer goblet cells in bronchioles, and greater gland area at most airway levels. The differences of the gland dimensions and the types of mucosubstance between hypersensitive and non-reacting animals were more variable. No significant differences between the three groups were noted with regard to luminal occlusion or epithelial sloughing and squamous metaplasia. Although there was a positive association between epithelial thickness and goblet cell density in the small airways, the development of allergic airway hypersensitivity in sheep may occur in the absence of major morphological changes in the airway epithelium.

  4. Severe micrognathia: indications for EXIT-to-Airway.

    PubMed

    Morris, Lee M; Lim, Foong-Yen; Elluru, Ravindhra G; Hopkin, Robert J; Jaekle, Ronald K; Polzin, William J; Crombleholme, Timothy M

    2009-01-01

    The ex utero intrapartum treatment (EXIT) procedure has become an important management option in cases of fetal airway obstruction. Select cases of severe micrognathia may be candidates for EXIT-to-Airway due to high-risk of airway obstruction at birth. Here we present three successful EXIT-to-Airway procedures for the management of congenital micrognathia in its most severe manifestations. CASE 1: A 23-year-old G3P1011 with a pregnancy complicated by severe micorgnathia, jaw index <5th percentile, as well as polyhydramnios. At 36 weeks EXIT-to-Airway was performed utilizing a bronchoscopically positioned laryngeal mask airway (LMA) during 23 min of uteroplacental support followed by tracheostomy. CASE 2: A 26-year-old G4P0120 with a pregnancy complicated by severe micrognathia, jaw index <5th percentile, and an obstructed oropharynx associated with polyhydramnios. At 37 weeks EXIT-to-Airway was performed with placement of tracheostomy. CASE 3: A 36-year-old G6P3023 with fetal magnetic resonance imaging (MRI) revealing esophageal atresia, polyhydramnios, and severe micrognathia with a jaw index <5th percentile. At 35 weeks the patient underwent EXIT-to-Airway with formal tracheostomy during 35 min of uteroplacental bypass. In the most severe cases of fetal micrognathia, EXIT-to-Airway provides time to evaluate and secure the fetal airway prior to delivery. We propose indications for EXIT-to-Airway in micrognathia to include a jaw index <5%, with indirect evidence of aerodigestive tract obstruction such as polyhydramnios, glossoptosis or an absent stomach bubble.

  5. Measurement of intraindividual airway tone heterogeneity and its importance in asthma

    PubMed Central

    Togias, Alkis

    2016-01-01

    While airways have some degree of baseline tone, the level and variability of this tone is not known. It is also unclear whether there is a difference in airway tone or in the variability of airway tone between asthmatic and healthy individuals. This study examined airway tone and intraindividual airway tone heterogeneity (variance of airway tone) in vivo in 19 individuals with asthma compared with 9 healthy adults. All participants underwent spirometry, body plethysmography, and high-resolution computed tomography at baseline and after maximum bronchodilation with albuterol. Airway tone was defined as the percent difference in airway diameter after albuterol at total lung capacity compared with baseline. The amount of airway tone in each airway varied both within and between subjects. The average airway tone did not differ significantly between the two groups (P = 0.09), but the intraindividual airway tone heterogeneity did (P = 0.016). Intraindividual airway tone heterogeneity was strongly correlated with airway tone (r = 0.78, P < 0.0001). Also, it was negatively correlated with the magnitude of the distension of the airways from functional residual capacity to total lung capacity at both baseline (r = −0.49, P = 0.03) and after maximum bronchodilation (r = −0.51, P = 0.02) in the asthma, but not the healthy group. However, we did not find any relationship between intraindividual airway tone heterogeneity and conventional lung function outcomes. Intraindividual airway tone heterogeneity appears to be an important characteristic of airway pathophysiology in asthma. PMID:27103654

  6. Baicalein Reduces Airway Injury in Allergen and IL-13 Induced Airway Inflammation

    PubMed Central

    Mabalirajan, Ulaganathan; Ahmad, Tanveer; Rehman, Rakhshinda; Leishangthem, Geeta Devi; Dinda, Amit Kumar; Agrawal, Anurag; Ghosh, Balaram; Sharma, Surendra Kumar

    2013-01-01

    Background Baicalein, a bioflavone present in the dry roots of Scutellaria baicalensis Georgi, is known to reduce eotaxin production in human fibroblasts. However, there are no reports of its anti-asthma activity or its effect on airway injury. Methodology/Principal Findings In a standard experimental asthma model, male Balb/c mice that were sensitized with ovalbumin (OVA), treated with baicalein (10 mg/kg, ip) or a vehicle control, either during (preventive use) or after OVA challenge (therapeutic use). In an alternate model, baicalein was administered to male Balb/c mice which were given either IL-4 or IL-13 intranasally. Features of asthma were determined by estimating airway hyperresponsiveness (AHR), histopathological changes and biochemical assays of key inflammatory molecules. Airway injury was determined with apoptotic assays, transmission electron microscopy and assessing key mitochondrial functions. Baicalein treatment reduced AHR and inflammation in both experimental models. TGF-β1, sub-epithelial fibrosis and goblet cell metaplasia, were also reduced. Furthermore, baicalein treatment significantly reduced 12/15-LOX activity, features of mitochondrial dysfunctions, and apoptosis of bronchial epithelia. Conclusion/Significance Our findings demonstrate that baicalein can attenuate important features of asthma, possibly through the reduction of airway injury and restoration of mitochondrial function. PMID:23646158

  7. Effects of continuous negative airway pressure-related lung deflation on upper airway collapsibility.

    PubMed

    Sériès, F; Marc, I

    1993-09-01

    Continuous negative airway pressure (CNAP) causes a decrease in lung volume, which is known to increase upper airway resistance by itself. We studied how this lung volume change could modify upper airway collapsibility with five normal awake subjects. In a first trial, pressure in a nasal mask (Pm) was progressively decreased in 3- to 5-cmH2O steps (CNAP). In a second trial, changes in lung volumes resulting from CNAP were prevented by applying simultaneously an equivalent level of negative extrathoracic pressure into a poncho-type respirator [isovolumetric CNAP (CNAPisovol)]. For each trial, we examined the relationship between the maximal inspiratory airflow of each flow-limited inspiratory cycle and the corresponding Pm by least-squares linear regression analysis and determined the critical pressure. We also determined the Pm threshold corresponding to the first Pm value below which flow limitation occurred. Flow limitation was observed in each subject with CNAP but in only two subjects with CNAPisovol. In these two subjects, the Pm threshold values were -20 and -9 cmH2O with CNAP and -39 and -16 cmH2O with CNAPisovol, respectively. Critical pressures for the same two subjects were -161 and -96 cmH2O with CNAP and -202 and -197 cmH2O with CNAPisovol, respectively. We conclude that CNAP-induced decreases in lung volume increase upper airway collapsibility.

  8. Restoring airway epithelial barrier dysfunction: a new therapeutic challenge in allergic airway disease.

    PubMed

    Steelant, B; Seys, S F; Boeckxstaens, G; Akdis, C A; Ceuppens, J L; Hellings, P W

    2016-09-01

    An intact functional mucosal barrier is considered to be crucial for the maintenance of airway homeostasis as it protects the host immune system from exposure to allergens and noxious environmental triggers. Recent data provided evidence for the contribution of barrier dysfunction to the development of inflammatory diseases in the airways, skin and gut. A defective barrier has been documented in chronic rhinosinusitis, allergic rhinitis, asthma, atopic dermatitis and inflammatory bowel diseases. However, it remains to be elucidated to what extent primary (genetic) versus secondary (inflammatory) mechanisms drive barrier dysfunction. The precise pathogenesis of barrier dysfunction in patients with chronic mucosal inflammation and its implications on tissue inflammation and systemic absorption of exogenous particles are only partly understood. Since epithelial barrier defects are linked with chronicity and severity of airway inflammation, restoring the barrier integrity may become a useful approach in the treatment of allergic diseases. We here provide a state-of-the-art review on epithelial barrier dysfunction in upper and lower airways as well as in the intestine and the skin and on how barrier dysfunction can be restored from a therapeutic perspective.

  9. New insights into upper airway innate immunity

    PubMed Central

    Hariri, Benjamin M.

    2016-01-01

    Background: Protecting the upper airway from microbial infection is an important function of the immune system. Proper detection of these pathogens is paramount for sinonasal epithelial cells to be able to prepare a defensive response. Toll-like receptors and, more recently, bitter taste receptors and sweet taste receptors have been implicated as sensors able to detect the presence of these pathogens and certain compounds that they secrete. Activation of these receptors also triggers innate immune responses to prevent or counteract infection, including mucociliary clearance and the production and secretion of antimicrobial compounds (e.g., defensins). Objective: To provide an overview of the current knowledge of the role of innate immunity in the upper airway, the mechanisms by which it is carried out, and its clinical relevance. Methods: A literature review of the existing knowledge of the role of innate immunity in the human sinonasal cavity was performed. Results: Clinical and basic science studies have shown that the physical epithelial cell barrier, mucociliary clearance, and antimicrobial compound secretion play pivotal innate immune roles in defending the sinonasal cavity from infection. Clinical findings have also linked dysfunction of these defense mechanisms with diseases, such as chronic rhinosinusitis and cystic fibrosis. Recent discoveries have elucidated the significance of bitter and sweet taste receptors in modulating immune responses in the upper airway. Conclusion: Numerous innate immune mechanisms seem to work in a concerted fashion to keep the sinonasal cavity free of infection. Understanding sinonasal innate immune function and dysfunction in health and disease has important implications for patients with respiratory ailments, such as chronic rhinosinusitis and cystic fibrosis. PMID:27657896

  10. MOEBIUS SYNDROME: CHALLENGES OF AIRWAY MANAGEMENT.

    PubMed

    Budić, Ivana; Šurdilović, Dušan; Slavković, Anđelka; Marjanović, Vesna; Stević, Marija; Simić, Dušica

    2016-03-01

    Moebius syndrome is a rare nonprogressive congenital neurological disorder with a wide range of severity and variability of symptoms. This diversity is a consequence of dysfunction of different cranial nerves (most often facial and abducens nerves), accompanying orofacial abnormalities, musculoskeletal malformations, congenital cardiac diseases, as well as specific associations of Moebius and other syndromes. The authors present anesthesia and airway management during the multiple tooth extraction surgery in a 10-year-old girl with Moebius syndrome associated with Poland and trigeminal trophic syndromes.

  11. Mucoactive agents for airway mucus hypersecretory diseases.

    PubMed

    Rogers, Duncan F

    2007-09-01

    Airway mucus hypersecretion is a feature of a number of severe respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF). However, each disease has a different airway inflammatory response, with consequent, and presumably linked, mucus hypersecretory phenotype. Thus, it is possible that optimal treatment of the mucus hypersecretory element of each disease should be disease-specific. Nevertheless, mucoactive drugs are a longstanding and popular therapeutic option, and numerous compounds (eg, N-acetylcysteine, erdosteine, and ambroxol) are available for clinical use worldwide. However, rational recommendation of these drugs in guidelines for management of asthma, COPD, or CF has been hampered by lack of information from well-designed clinical trials. In addition, the mechanism of action of most of these drugs is unknown. Consequently, although it is possible to categorize them according to putative mechanisms of action, as expectorants (aid and/or induce cough), mucolytics (thin mucus), mucokinetics (facilitate cough transportability), and mucoregulators (suppress mechanisms underlying chronic mucus hypersecretion, such as glucocorticosteroids), it is likely that any beneficial effects are due to activities other than, or in addition to, effects on mucus. It is also noteworthy that the mucus factors that favor mucociliary transport (eg, thin mucus gel layer, "ideal" sol depth, and elasticity greater than viscosity) are opposite to those that favor cough effectiveness (thick mucus layer, excessive sol height, and viscosity greater than elasticity), which indicates that different mucoactive drugs would be required for treatment of mucus obstruction in proximal versus distal airways, or in patients with an impaired cough reflex. With the exception of mucoregulatory agents, whose primary action is unlikely to be directed against mucus, well-designed clinical trials are required to unequivocally determine the

  12. A 'Good' muscle in a 'Bad' environment: the importance of airway smooth muscle force adaptation to airway hyperresponsiveness.

    PubMed

    Bossé, Ynuk; Chapman, David G; Paré, Peter D; King, Gregory G; Salome, Cheryl M

    2011-12-15

    Asthma is characterized by airway inflammation, with a consequent increase in spasmogens, and exaggerated airway narrowing in response to stimuli, termed airway hyperresponsiveness (AHR). The nature of any relationship between inflammation and AHR is less clear. Recent ex vivo data has suggested a novel mechanism by which inflammation may lead to AHR, in which increased basal ASM-tone, due to the presence of spasmogens in the airways, may "strengthen" the ASM and ultimately lead to exaggerated airway narrowing. This phenomenon was termed "force adaptation" [Bossé, Y., Chin, L.Y., Paré, P.D., Seow, C.Y., 2009. Adaptation of airway smooth muscle to basal tone: relevance to airway hyperresponsiveness. Am. J. Respir. Cell Mol. Biol. 40, 13-18]. However, it is unknown whether the magnitude of the effect of force adaptation ex vivo could contribute to exaggerated airway narrowing in vivo. Our aim was to utilize a computational model of ASM shortening in order to quantify the potential effect of force adaptation on airway narrowing when all other mechanical factors were kept constant. The shortening in the model is dictated by a balance between physiological loads and ASM force-generating capacity at different lengths. The results suggest that the magnitude of the effect of force adaptation on ASM shortening would lead to substantially more airway narrowing during bronchial challenge at any given airway generation. We speculate that the increased basal ASM-tone in asthma, due to the presence of inflammation-derived spasmogens, produces an increase in the force-generating capacity of ASM, predisposing to AHR during subsequent challenge.

  13. Numerical analysis of respiratory flow patterns within human upper airway

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Yingxi; Sun, Xiuzhen; Yu, Shen; Gao, Fei

    2009-12-01

    A computational fluid dynamics (CFD) approach is used to study the respiratory airflow dynamics within a human upper airway. The airway model which consists of the airway from nasal cavity, pharynx, larynx and trachea to triple bifurcation is built based on the CT images of a healthy volunteer and the Weibel model. The flow characteristics of the whole upper airway are quantitatively described at any time level of respiratory cycle. Simulation results of respiratory flow show good agreement with the clinical measures, experimental and computational results in the literature. The air mainly passes through the floor of the nasal cavity in the common, middle and inferior nasal meatus. The higher airway resistance and wall shear stresses are distributed on the posterior nasal valve. Although the airways of pharynx, larynx and bronchi experience low shear stresses, it is notable that relatively high shear stresses are distributed on the wall of epiglottis and bronchial bifurcations. Besides, two-dimensional fluid-structure interaction models of normal and abnormal airways are built to discuss the flow-induced deformation in various anatomy models. The result shows that the wall deformation in normal airway is relatively small.

  14. External airway splint to treat tracheomalacia following laryngotracheal reconstruction.

    PubMed

    Hsueh, Wayne D; Smith, Lee P

    2017-03-01

    This observation reports the use of an external airway splint to treat tracheomalacia in a pediatric patient. The patient underwent a double stage laryngotracheal reconstruction however was unable to be decannulated due to severe tracheomalacia. Our purpose is to further support the use of external splinting in the treatment of tracheomalacia in a unique case involving isolated nighttime airway obstruction following laryngotracheal reconstruction.

  15. Repair of damaged supraglottic airway devices: A novel method

    PubMed Central

    2010-01-01

    Damage of laryngeal mask airway and other supraglottic airway devices has always been a matter of concern. Although manufacturer recommends maximum 40 uses of LMA (and its congeners) but damage before 40 uses needs to be evaluated. We hereby, describe a novel method of repair of supraglottic devices when damage occurs at mask inflation line or pilot balloon valve assembly. PMID:20565731

  16. Nitrogen Dioxide Exposure and Airway Responsiveness in Individuals with Asthma

    EPA Science Inventory

    Controlled human exposure studies evaluating the effect of inhaled NO2 on the inherent responsiveness of the airways to challenge by bronchoconstricting agents have had mixed results. In general, existing meta-analyses show statistically significant effects of NO2 on the airway r...

  17. Has the airway microbiome been overlooked in respiratory disease?

    PubMed

    Salami, Olawale; Marsland, Benjamin J

    2015-01-01

    The respiratory disease field is changing because of recent advances in our understanding of the airway microbiome. Central to this is dysbiosis, an imbalance of microbial communities that can lead to and flag inflammation in the airways. The increasing momentum of research in this area holds promise for novel treatment strategies.

  18. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2012-10-01

    blind design was used to compare between the effects of pretreatments with ipratropium bromide and placebo aerosols on the airway responses to HA... ipratropium completely prevented the WA- induced bronchoconstriction in asthmatics. In conclusion, bronchoconstriction induced by increasing airway...patients was completely prevented by pretreatment with ipratropium aerosol, indicating an involvement of cholinergic reflex. Accompanying the

  19. FSTL1 PROMOTES ASTHMATIC AIRWAY REMODELING BY INDUCING ONCOSTATIN M

    PubMed Central

    Miller, Marina; Beppu, Andrew; Rosenthal, Peter; Pham, Alexa; Das, Sudipta; Karta, Maya; Song, Dae Jin; Vuong, Christine; Doherty, Taylor; Croft, Michael; Zuraw, Bruce; Zhang, Xu; Gao, Xiang; Aceves, Seema; Chouiali, Fazila; Hamid, Qutayba; Broide, David H.

    2016-01-01

    Chronic asthma is associated with airway remodeling and decline in lung function. Here we show that follistatin like 1 (Fstl1), a mediator not previously associated with asthma is highly expressed by macrophages in the lungs of severe human asthmatics. Chronic allergen challenged Lys-Cretg/Fstl1Δ/Δ mice in whom Fstl1 is inactivated in macrophages/myeloid cells had significantly reduced airway remodeling and reduced levels of oncostatin M (OSM) a cytokine previously not known to be regulated by Fstl1. The importance of the Fstl1 induction of OSM to airway remodeling was demonstrated in murine studies in which administration of Fstl1 induced airway remodeling and increased OSM, while administration of an anti-OSM antibody blocked the effect of Fstl1 on inducing airway remodeling, eosinophilic airway inflammation, and airway hyperresponsiveness all cardinal features of asthma. Overall, these studies demonstrate that the Fstl1/oncostatin M pathway may be a novel pathway to inhibit airway remodeling in severe human asthma. PMID:26355153

  20. Mechanosensitive ATP Release Maintains Proper Mucus Hydration of Airways

    PubMed Central

    Button, Brian; Okada, Seiko F.; Frederick, Charles Brandon; Thelin, William R.; Boucher, Richard C.

    2013-01-01

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal auto-crine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis. PMID:23757023

  1. Mechanosensitive ATP release maintains proper mucus hydration of airways.

    PubMed

    Button, Brian; Okada, Seiko F; Frederick, Charles Brandon; Thelin, William R; Boucher, Richard C

    2013-06-11

    The clearance of mucus from the airways protects the lungs from inhaled noxious and infectious materials. Proper hydration of the mucus layer enables efficient mucus clearance through beating of cilia on airway epithelial cells, and reduced clearance of excessively concentrated mucus occurs in patients with chronic obstructive pulmonary disease and cystic fibrosis. Key steps in the mucus transport process are airway epithelia sensing and responding to changes in mucus hydration. We reported that extracellular adenosine triphosphate (ATP) and adenosine were important luminal autocrine and paracrine signals that regulated the hydration of the surface of human airway epithelial cultures through their action on apical membrane purinoceptors. Mucus hydration in human airway epithelial cultures was sensed by an interaction between cilia and the overlying mucus layer: Changes in mechanical strain, proportional to mucus hydration, regulated ATP release rates, adjusting fluid secretion to optimize mucus layer hydration. This system provided a feedback mechanism by which airways maintained mucus hydration in an optimum range for cilia propulsion. Understanding how airway epithelia can sense and respond to changes in mucus properties helps us to understand how the mucus clearance system protects the airways in health and how it fails in lung diseases such as cystic fibrosis.

  2. Computed tomography of nonanesthetized cats with upper airway obstruction.

    PubMed

    Stadler, Krystina; O'Brien, Robert

    2013-01-01

    Upper airway obstruction is a potentially life-threatening problem in cats and for which a noninvasive, sensitive method rapid diagnosis is needed. The purposes of this prospective study were to describe a computed tomography (CT) technique for nonanesthetized cats with upper airway obstruction, CT characteristics of obstructive diseases, and comparisons between CT findings and findings from other diagnostic tests. Ten cats with clinical signs of upper airway obstruction were recruited for the study. Four cats with no clinical signs of upper airway obstruction were recruited as controls. All cats underwent computed tomography imaging without sedation or anesthesia, using a 16-slice helical CT scanner and a previously described transparent positional device. Three-dimensional (3D) internal volume rendering was performed on all CT image sets and 3D external volume rendering was also performed on cats with evidence of mass lesions. Confirmation of upper airway obstruction was based on visual laryngeal examination, endoscopy, fine-needle aspirate, biopsy, or necropsy. Seven cats were diagnosed with intramural upper airway masses, two with laryngotracheitis, and one with laryngeal paralysis. The CT and 3D volume-rendered images identified lesions consistent with upper airway disease in all cats. In cats with mass lesions, CT accurately identified the mass and location. Findings from this study supported the use of CT imaging as an effective technique for diagnosing upper airway obstruction in nonanesthetized cats.

  3. Cytological Study of Breast Carcinoma Before and After Oncotherapy with Special Reference to Morphometry and Proliferative Activity.

    PubMed

    Koley, Sananda; Chakrabarti, Srabani; Pathak, Swapan; Manna, Asim Kumar; Basu, Siddhartha

    2015-12-01

    Our study was done to assess the cytological changes due to oncotherapy in breast carcinoma especially on morphometry and proliferative activity. Cytological aspirates were collected from a total of 32 cases of invasive ductal carcinoma both before and after oncotherapy. Morphometry was done on the stained cytological smears to assess the different morphological parameters of cell dimension by using the ocular morphometer and the software AutoCAD 2007. Staining was done with Ki-67 and proliferating cell nuclear antigen (PCNA) as proliferative markers. Different morphological parameters were compared before and after oncotherapy by unpaired Student's t test. Statistically significant differences were found in morphometric parameters, e.g., mean nuclear diameter, mean nuclear area, mean cell diameter, and mean cell area, and in the expression of proliferative markers (Ki-67 and PCNA). Statistical analysis was done by obtaining p values. There are statistically significant differences between morphological parameter of breast carcinoma cells before and after oncotherapy.

  4. Corticosteroids and cromolyn sodium as modulators of airway inflammation.

    PubMed

    McFadden, E R

    1988-07-01

    Heightened airway reactivity is a cardinal feature of asthma and correlates with many clinical features of the illness, such as the acute response to bronchodilator drugs, the magnitude of diurnal fluctuations in lung function, and the amount of therapy required to control symptoms. Data have accumulated indicating that a reduction in airway reactivity can decrease asthma morbidity, and many advocate treating asthmatic patients prophylactically to prevent acute exacerbations from developing, rather than responding to them after they have occurred. This approach is particularly effective if it is used when the airways are being exposed to stimuli to which they are sensitive. A number of drugs have been purported to reduce airway reactivity, but the most convincing evidence supports the effects of cromolyn and inhaled and oral steroids. Although each type of drug has its own advantages and disadvantages and different modes of action, the common denominator is believed to be a reduction in the state of airway inflammation.

  5. The difficult airway: mechanisms for effective dissemination of critical information.

    PubMed

    Mark, L J; Beattie, C; Ferrell, C L; Trempy, G; Dorman, T; Schauble, J F

    1992-01-01

    The perioperative management and dissemination of critical information regarding a patient with an unexpected difficult intubation, including successful application of a difficult airway algorithm (Figure 1), are described. Documentation and dissemination of critical information include entry of patient data into an in-hospital computerized Difficult Airway/Intubation Registry, simultaneous application of a highly visible Difficult Airway/Intubation Patient Wrist Band (coded for access to computer registry), summary reports distributed to health care providers, and enrollment of the patient in the Medic Alert Foundation International's newly established category difficult airway/intubation for 24-hour access. We postulate that the widespread use of the procedures described in this report may reduce the contribution of unexpected difficult airway/intubation to anesthetic morbidity and mortality.

  6. GPCRs and arrestins in airways: implications for asthma

    PubMed Central

    Penn, Raymond B.; Bond, Richard A.; Walker, Julia K. L.

    2015-01-01

    The obstructive lung disease asthma is treated by drugs that target, either directly or indirectly, G protein-coupled receptors (GPCRs). GPCRs coupled to Gq are the primary mediators of airway smooth muscle (ASM) contraction and increased airway resistance, whereas the Gs-coupled beta-2-adrenoceptor (β2AR) promotes pro-relaxant signaling in and relaxation of ASM resulting in greater airway patency and reversal of life-threatening bronchoconstriction. In additions, GPCR-mediated functions in other cell types, including airway epithelium and hematopoietic cells, are involved in control of lung inflammation that causes most asthma. The capacity of arrestins to regulate GPCR signaling, via either control of GPCR desensitization/resensitization, or via G protein-independent signaling, renders arrestins an intriguing therapeutic target for asthma and other obstructive lung diseases. This review will focus on the potential role of arrestins in those GPCR-mediated airway cell functions that are dysregulated in asthma. PMID:24292841

  7. Airway obstruction among Latino poultry processing workers in North Carolina.

    PubMed

    Mirabelli, Maria C; Chatterjee, Arjun B; Mora, Dana C; Arcury, Thomas A; Blocker, Jill N; Chen, Haiying; Grzywacz, Joseph G; Marín, Antonio J; Schulz, Mark R; Quandt, Sara A

    2015-01-01

    This analysis was conducted to evaluate the prevalence of airway obstruction among Latino poultry processing workers. Data were collected from 279 poultry processing workers and 222 other manual laborers via spirometry and interviewer-administered questionnaires. Participants employed in poultry processing reported the activities they perform at work. Participants with forced expiratory volume in 1 second (FEV1) or FEV1/forced expiratory volume (FVC) below the lower limits of normal were categorized as having airway obstruction. Airway obstruction was identified in 13% of poultry processing workers and 12% of the comparison population. Among poultry processing workers, the highest prevalence of airway obstruction (21%) occurred among workers deboning chickens (prevalence ratio: 1.75; 95% confidence interval: 0.97, 3.15). These findings identify variations in the prevalence of airway obstruction across categories of work activities.

  8. Study of nuclear morphometry on cytology specimens of benign and malignant breast lesions: A study of 122 cases

    PubMed Central

    Kashyap, Anamika; Jain, Manjula; Shukla, Shailaja; Andley, Manoj

    2017-01-01

    Background: Breast cancer has emerged as a leading site of cancer among women in India. Fine needle aspiration cytology (FNAC) has been routinely applied in assessment of breast lesions. Cytological evaluation in breast lesions is subjective with a “gray zone” of 6.9–20%. Quantitative evaluation of nuclear size, shape, texture, and density parameters by morphometry can be of diagnostic help in breast tumor. Aims: To apply nuclear morphometry on cytological breast aspirates and assess its role in differentiating between benign and malignant breast lesions with derivation of suitable cut-off values between the two groups. Settings and Designs: The present study was a descriptive cross-sectional hospital-based study of nuclear morphometric parameters of benign and malignant cases. Materials and Methods: The study included 50 benign breast disease (BBD), 8 atypical ductal hyperplasia (ADH), and 64 carcinoma cases. Image analysis was performed on Papanicolaou-stained FNAC slides by Nikon Imaging Software (NIS)–Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included 5 nuclear size, 2 shape, 4 texture, and 2 density parameters. Results: Nuclear morphometry could differentiate between benign and malignant aspirates with a gradually increasing nuclear size parameters from BBD to ADH to carcinoma. Cut-off values of 31.93 μm2, 6.325 μm, 5.865 μm, 7.855 μm, and 21.55 μm for mean nuclear area, equivalent diameter, minimum feret, maximum ferret, and perimeter, respectively, were derived between benign and malignant cases, which could correctly classify 7 out of 8 ADH cases. Conclusion: Nuclear morphometry is a highly objective tool that could be used to supplement FNAC in differentiating benign from malignant lesions, with an important role in cases with diagnostic dilemma. PMID:28182052

  9. Changes in airway permeability and responsiveness after exposure to ozone. [Sheep

    SciTech Connect

    Abraham, W.M.; Delehunt, J.C.; Yerger, L.; Marchette, B.; Oliver, W. Jr.

    1984-06-01

    The relationship between airway responsiveness and the permeability of histamine through the airways in conscious sheep after exposure to ozone (O/sub 3/ was examined). Airway responsiveness was assessed by measuring the change from baseline in mean pulmonary flow resistance following a controlled 2-min inhalation challenge with 1% histamine, containing 200 ..mu..Ci/ml of (/sup 3/H)histamine. The rate of appearance of the (/sup 3/H)histamine in the plasma during inhalation challenge was used to estimate airway permeability. To perturb the airways, conscious sheep were exposed to either 0.5 or 1.0 ppm O/sub 3/ for 2 hr via an endotracheal tube. Airway responsiveness and airway permeability were measured prior to and 1 day after exposure. In six sheep exposed to 0.5 ppm O/sub 3/, increased airway responsiveness and airway permeability were obseved 1 day after exposure. Four of seven sheep exposed to 1.0 ppm O/sub 3/ had enhanced airway responsiveness and airway permeability, while the remaining three sheep showed corresponding decreases in airway responsiveness and airway permeability. Since the O/sub 3/-induced directional changes in airway responsiveness paralleled the directional changes in airway permeability in both the positive and negative directions, it was concluded that changes in airway responsiveness to inhaled histamine following exposure to O/sub 3/ may be related to concomitant changes in airway permeability to this agent.

  10. Rhinovirus infections in the upper airway.

    PubMed

    Winther, Birgit

    2011-03-01

    The majority of cold and flulike illnesses are caused by human rhinoviruses (HRVs). Improved detection of HRV has shown that HRVs are also associated with more serious illness, such as exacerbation of asthma, wheezing illnesses in children, chronic obstructive pulmonary disease, cardiopulmonary disease, and fatal pneumonia in immune-compromised patients. HRV is a major cause of acute viral respiratory tract infections in hospitalized children and is among the leading causes of childhood mortality worldwide. Detection of the HRV genome by reverse transcriptase-polymerase chain reaction and genomic sequencing has brought to light a new clade, HRV-C, to the already recognized HRV-A and HRV-B clades. The clinical complications related to all rhinovirus infections include acute otitis media, acute sinusitis, and acute bronchitis. The enormous public health implications from those diseases far overshadow those of the common cold. This article provides an overview of the pathogenesis of rhinovirus infection in the upper airways. Most research has been done in young healthy adults with self-limiting experimental and natural rhinovirus infections, and this may set the stage for understanding rhinovirus infections in the ear, sinus, and lower airways.

  11. Deposition of charged particles on lung airways.

    PubMed

    Cohen, B S; Xiong, J Q; Fang, C P; Li, W

    1998-05-01

    The effect of a single electric charge on the efficiency with which ultrafine particles deposit in human airways has been investigated. When inhaled short-lived radon progeny are attached to electrically neutral particles their deposition efficiency is controlled by diffusion. But most ambient particles carry one, or a few, charges. We measured and compared the deposition (DE) of singly charged, charge-neutralized, and zero-charge 20-nm and 125-nm particles in hollow-cast models of human airways. These particle sizes were selected because they are about where modal peaks occur for the activity of the short-lived radon progeny in indoor air. For singly charged 20-nm particles deposition (+/- standard error) in the casts was 3.4 +/- 0.3 times that for charge neutralized aerosols and 5.3 +/- 0.3 times the amount deposited for zero-charged particles. Corresponding ratios for the 125-nm particles were 2.3 +/- 0.3 and 6.2 +/- 0.7. Since most ambient particles are charged this effect must be considered when models are used to predict dose from inhaled ultrafine particles.

  12. Delivery of Alpha-1 Antitrypsin to Airways.

    PubMed

    Griese, Matthias; Scheuch, Gerhard

    2016-08-01

    Treatment with exogenous alpha-1 antitrypsin (AAT), a potent serine protease inhibitor, was developed originally for chronic obstructive pulmonary disease associated with AAT deficiency; however, other lung conditions involving neutrophilic inflammation and proteolytic tissue injury related to neutrophil elastase and other serine proteases may also be considered for AAT therapy. These conditions include bronchiectasis caused by primary ciliary dyskinesia, cystic fibrosis, and other diseases associated with an increased free elastase activity in the airways. Inhaled AAT may be a viable option to counteract proteolytic tissue damage. This form of treatment requires efficient drug delivery to the targeted pulmonary compartment. Aerosol technology meeting this requirement is currently available and offers an alternative therapeutic approach to systemic AAT administration. To date, early studies in humans have shown biochemical efficacy and have established the safety of inhaled AAT. However, to bring aerosol AAT therapy to patients, large phase 3 protocols in carefully selected patient populations (i.e., subgroups of patients with AAT deficiency, cystic fibrosis, or other lung diseases with bronchiectasis) will be needed with clinical end points in addition to the measurement of proteolytic activity in the airway. The outcomes likely will have to include lung function, lung structure assessed by computed tomography imaging, disease exacerbations, health status, and mortality.

  13. The cystic fibrosis lower airways microbial metagenome

    PubMed Central

    Moran Losada, Patricia; Chouvarine, Philippe; Dorda, Marie; Hedtfeld, Silke; Mielke, Samira; Schulz, Angela; Wiehlmann, Lutz

    2016-01-01

    Chronic airway infections determine most morbidity in people with cystic fibrosis (CF). Herein, we present unbiased quantitative data about the frequency and abundance of DNA viruses, archaea, bacteria, moulds and fungi in CF lower airways. Induced sputa were collected on several occasions from children, adolescents and adults with CF. Deep sputum metagenome sequencing identified, on average, approximately 10 DNA viruses or fungi and several hundred bacterial taxa. The metagenome of a CF patient was typically found to be made up of an individual signature of multiple, lowly abundant species superimposed by few disease-associated pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, as major components. The host-associated signatures ranged from inconspicuous polymicrobial communities in healthy subjects to low-complexity microbiomes dominated by the typical CF pathogens in patients with advanced lung disease. The DNA virus community in CF lungs mainly consisted of phages and occasionally of human pathogens, such as adeno- and herpesviruses. The S. aureus and P. aeruginosa populations were composed of one major and numerous minor clone types. The rare clones constitute a low copy genetic resource that could rapidly expand as a response to habitat alterations, such as antimicrobial chemotherapy or invasion of novel microbes. PMID:27730195

  14. The cystic fibrosis lower airways microbial metagenome.

    PubMed

    Moran Losada, Patricia; Chouvarine, Philippe; Dorda, Marie; Hedtfeld, Silke; Mielke, Samira; Schulz, Angela; Wiehlmann, Lutz; Tümmler, Burkhard

    2016-04-01

    Chronic airway infections determine most morbidity in people with cystic fibrosis (CF). Herein, we present unbiased quantitative data about the frequency and abundance of DNA viruses, archaea, bacteria, moulds and fungi in CF lower airways. Induced sputa were collected on several occasions from children, adolescents and adults with CF. Deep sputum metagenome sequencing identified, on average, approximately 10 DNA viruses or fungi and several hundred bacterial taxa. The metagenome of a CF patient was typically found to be made up of an individual signature of multiple, lowly abundant species superimposed by few disease-associated pathogens, such as Pseudomonas aeruginosa and Staphylococcus aureus, as major components. The host-associated signatures ranged from inconspicuous polymicrobial communities in healthy subjects to low-complexity microbiomes dominated by the typical CF pathogens in patients with advanced lung disease. The DNA virus community in CF lungs mainly consisted of phages and occasionally of human pathogens, such as adeno- and herpesviruses. The S. aureus and P. aeruginosa populations were composed of one major and numerous minor clone types. The rare clones constitute a low copy genetic resource that could rapidly expand as a response to habitat alterations, such as antimicrobial chemotherapy or invasion of novel microbes.

  15. Regional aerosol deposition in human upper airways

    SciTech Connect

    Swift, D.L.

    1990-11-01

    During the current reporting period experimental studies of aerosol deposition in replicate NOPL airways have carried out. A replicate model of a 4 week old infant nasal passage was constructed from MR scans. The model completes the age range from newborn'' to 4 years, there now being one child model for 4 different ages. Deposition studies have been performed with unattached radon progeny aerosols in collaboration with ITRI, Albuquerque, NM and NRPB, Chilton, UK. Overall measurements have been performed in adult and child nasal airways indicating that the child nasal passage was slightly more efficient than the adult in removing 1 nm particles at corresponding flow rates. A similar weak dependence on flow rate was observed. Local deposition studies in an adult nasal model indicated predominant deposition in the anterior region during inspiratory flow, but measurable deposition was found throughout the model. The deposition pattern during expiration was reverse, greater deposition being observed in the posterior region. Local deposition studies of attached progeny aerosol size (100--200 nm) were performed in adult and child nasal models using technigas'' and a gamma scintillation camera. Similar to the unattached size, deposition occurred throughout the models, but was greater in the anterior region.

  16. Airway responsiveness to psychological processes in asthma and health

    PubMed Central

    Ritz, Thomas

    2012-01-01

    Psychosocial factors have been found to impact airway pathophysiology in respiratory disease with considerable consistency. Influences on airway mechanics have been studied particularly well. The goal of this article is to review the literature on airway responses to psychological stimulation, discuss potential pathways of influence, and present a well-established emotion-induction paradigm to study airway obstruction elicited by unpleasant stimuli. Observational studies have found systematic associations between lung function and daily mood changes. The laboratory-based paradigm of bronchoconstrictive suggestion has been used successfully to elicit airway obstruction in a substantial proportion of asthmatic individuals. Other studies have demonstrated modulation of airway responses to standard airway challenges with exercise, allergens, or pharmacological agents by psychological factors. Standardized emotion-induction techniques have consistently shown airway constriction during unpleasant stimulation, with surgery, blood, and injury stimuli being particularly powerful. Findings with various forms of stress induction have been more mixed. A number of methodological factors may account for variability across studies, such as choice of measurement technique, temporal association between stimulation and measurement, and the specific quality and intensity of the stimulus material, in particular the extent of implied action-orientation. Research has also begun to elucidate physiological processes associated with psychologically induced airway responses, with vagal excitation and ventilatory influences being the most likely candidate pathways, whereas the role of specific central nervous system pathways and inflammatory processes has been less studied. The technique of emotion-induction using films has the potential to become a standardized challenge paradigm for the further exploration of airway hyperresponsiveness mediated by central nervous system processes. PMID

  17. What does airway resistance tell us about lung function?

    PubMed

    Kaminsky, David A

    2012-01-01

    Spirometry is considered the primary method to detect the air flow limitation associated with obstructive lung disease. However, air flow limitation is the end-result of many factors that contribute to obstructive lung disease. One of these factors is increased airway resistance. Airway resistance is traditionally measured by relating air flow and driving pressure using body plethysmography, thus deriving airway resistance (R(aw)), specific airway resistance (sR(aw)), and specific airway conductance (sG(aw)). Other methods to measure airway resistance include the forced oscillation technique (FOT), which allows calculation of respiratory system resistance (R(RS)) and reactance (X(RS)), and the interrupter technique, which allows calculation of interrupter resistance (R(int)). An advantage of these other methods is that they may be easier to perform than spirometry, making them particularly suited to patients who cannot perform spirometry, such as young children, patients with neuromuscular disorders, or patients on mechanical ventilation. Since spirometry also requires a deep inhalation, which can alter airway resistance, these alternative methods may provide more sensitive measures of airway resistance. Furthermore, the FOT provides unique information about lung mechanics that is not available from analysis using spirometry, body plethysmography, or the interrupter technique. However, it is unclear whether any of these measures of airway resistance contribute clinically important information to the traditional measures derived from spirometry (FEV(1), FVC, and FEV(1)/FVC). The purpose of this paper is to review the physiology and methodology of these measures of airway resistance, and then focus on their clinical utility in relation to each other and to spirometry.

  18. Nonlinear Compliance Modulates Dynamic Bronchoconstriction in a Multiscale Airway Model

    PubMed Central

    Hiorns, Jonathan E.; Jensen, Oliver E.; Brook, Bindi S.

    2014-01-01

    The role of breathing and deep inspirations (DI) in modulating airway hyperresponsiveness remains poorly understood. In particular, DIs are potent bronchodilators of constricted airways in nonasthmatic subjects but not in asthmatic subjects. Additionally, length fluctuations (mimicking DIs) have been shown to reduce mean contractile force when applied to airway smooth muscle (ASM) cells and tissue strips. However, these observations are not recapitulated on application of transmural pressure (PTM) oscillations (that mimic tidal breathing and DIs) in isolated intact airways. To shed light on this paradox, we have developed a biomechanical model of the intact airway, accounting for strain-stiffening due to collagen recruitment (a large component of the extracellular matrix (ECM)), and dynamic actomyosin-driven force generation by ASM cells. In agreement with intact airway studies, our model shows that PTM fluctuations at particular mean transmural pressures can lead to only limited bronchodilation. However, our model predicts that moving the airway to a more compliant point on the static pressure-radius relationship (which may involve reducing mean PTM), before applying pressure fluctuations, can generate greater bronchodilation. This difference arises from competition between passive strain-stiffening of ECM and force generation by ASM yielding a highly nonlinear relationship between effective airway stiffness and PTM, which is modified by the presence of contractile agonist. Effectively, the airway at its most compliant may allow for greater strain to be transmitted to subcellular contractile machinery. The model predictions lead us to hypothesize that the maximum possible bronchodilation of an airway depends on its static compliance at the PTM about which the fluctuations are applied. We suggest the design of additional experimental protocols to test this hypothesis. PMID:25517167

  19. Emergency surgical airway in life-threatening acute airway emergencies--why are we so reluctant to do it?

    PubMed

    Greenland, K B; Acott, C; Segal, R; Goulding, G; Riley, R H; Merry, A F

    2011-07-01

    'Can't intubate, can't oxygenate' scenarios are rare but are often poorly managed, with potentially disastrous consequences. In our opinion, all doctors should be able to create a surgical airway if necessary. More practically, at least all anaesthetists should have this ability. There should be a change in culture to one that encourages and facilitates the performance of a life-saving emergency surgical airway when required. In this regard, an understanding of the human factors that influence the decision to perform an emergency surgical airway is as important as technical skill. Standardisation of difficult airway equipment in areas where anaesthesia is performed is a step toward ensuring that an emergency surgical airway will be performed appropriately Information on the incidence and clinical management of 'can't intubate, can't oxygenate' scenarios should be compiled through various sources, including national coronial inquest databases and anaesthetic critical incident reporting systems. A systematic approach to teaching and maintaining human factors in airway crisis management and emergency surgical airway skills to anaesthetic trainees and specialists should be developed: in our opinion participation should be mandatory. Importantly, the view that performing an emergency surgical airway is an admission of anaesthetist failure should be strongly countered.

  20. Targeted expression of IL-11 in the murine airway causes lymphocytic inflammation, bronchial remodeling, and airways obstruction.

    PubMed Central

    Tang, W; Geba, G P; Zheng, T; Ray, P; Homer, R J; Kuhn, C; Flavell, R A; Elias, J A

    1996-01-01

    Interleukin-11 is a pleotropic cytokine produced by lung stromal cells in response to respiratory viruses, cytokines, and histamine. To further define its potential effector functions, the Clara cell 10-kD protein promoter was used to express IL-11 and the airways of the resulting transgene mice were characterized. In contrast to transgene (-) littermates, the airways of IL-11 transgene (+) animals manifest nodular peribronchiolar mononuclear cell infiltrates and impressive airways remodeling with subepithelial fibrosis. The inflammatory foci contained large numbers of B220(+) and MHC Class II(+) cells and lesser numbers of CD3(+), CD4(+), and CD8(+) cells. The fibrotic response contained increased amounts of types III and I collagen, increased numbers of alpha smooth muscle actin and desmin-containing cells and a spectrum of stromal elements including fibroblasts, myofibroblasts, and smooth muscle cells. Physiologic evaluation also demonstrated that 2-mo-old transgene (+) mice had increased airways resistance and non-specific airways hyperresponsiveness to methacholine when compared with their transgene (-) littermates. These studies demonstrate that the targeted expression of IL-11 in the mouse airway causes a B and T cell-predominant inflammatory response, airway remodeling with increased types III and I collagen, the local accumulation of fibroblasts, myofibroblasts, and myocytes, and obstructive physiologic dysregulation. IL-11 may play an important role in the inflammatory and fibrotic responses in viral and/or nonviral human airway disorders. PMID:8981933

  1. Salt sensitivity of the morphometry of Artemia franciscana during development: a demonstration of 3D critical windows.

    PubMed

    Mueller, Casey A; Willis, Eric; Burggren, Warren W

    2016-02-01

    A 3D conceptual framework of 'critical windows' was used to examine whether the morphometry of Artemia franciscana is altered by salinity exposure during certain key periods of development. Artemia franciscana were hatched at 20 ppt (designated control salinity) and were then exposed to 10, 30, 40 or 50 ppt either chronically (days 1-15) or only on days 1-6, 7-9, 10-12 or 13-15. On day 15, maturity was assessed and morphometric characteristics, including mass, total body length, tail length and width, length of the third swimming appendage and eye diameter, were measured. Maturation and morphometry on day 15 were influenced by the exposure window and salinity dose. Artemia franciscana were generally larger following exposure to 10 and 40 ppt during days 1-6 and 7-9 when compared with days 10-12 and 13-15, in part due to a higher percentage of mature individuals. Exposure to different salinities on days 1-6 produced the greatest differences in morphometry, and thus this appears to be a period in development when A. franciscana is particularly sensitive to salinity. Viewing the developmental window as three-dimensional allowed more effective visualization of the complex interactions between exposure window, stressor dose and the magnitude of morphometric changes in A. franciscana.

  2. Comparison of DXA Scans and Conventional X-rays for Spine Morphometry and Bone Age Determination in Children.

    PubMed

    Hoyer-Kuhn, Heike; Knoop, Kai; Semler, Oliver; Kuhr, Kathrin; Hellmich, Martin; Schoenau, Eckhard; Koerber, Friederike

    2016-01-01

    Conventional lateral spine and hand radiographs are the standard tools to evaluate vertebral morphometry and bone age in children. Beside bone mineral density analyses, dual-energy X-ray absorptiometry (DXA) measurements with lower radiation exposure provide high-resolution scans which are not approved for diagnostic purposes. Data about the comparability of conventional radiographs and DXA in children are missing yet. The purpose of the trial was to evaluate whether conventional hand and spine radiographs can be replaced by DXA scans to diminish radiation exposure. Thirty-eight children with osteogenesis imperfecta or secondary osteoporosis or short stature (male, n=20; age, 5.0-17.0 yr) were included and assessed once by additional DXA (GE iDXA) of the spine or the left hand. Intraclass correlation coefficients (ICCs) were used to express agreement between X-ray and iDXA assessment. Evaluation of the spine morphometry showed reasonable agreement between iDXA and radiography (ICC for fish-shape, 0.75; for wedge-shape, 0.65; and for compression fractures, 0.70). Bone age determination showed excellent agreement between iDXA and radiography (ICC, 0.97). IDXA-scans of the spine in a pediatric population should be used not only to assess bone mineral density but also to evaluate anatomic structures and vertebral morphometry. Therefore, iDXA can replace some radiographs in children with skeletal diseases.

  3. Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications

    NASA Astrophysics Data System (ADS)

    Leibrandt, Sébastien; Le Pennec, Jean-Luc

    2015-05-01

    The morphometry of volcanic ash produced by explosive eruptions yields ample information on fragmentation processes (e.g. magmatic vs magma-water interactions), and on transport and sedimentation mechanisms. Most previous works on volcanic clast morphometry focused on the Apparent (2D-)Projected shape of ASH grains, here termed APASH, to infer processes and eruptive styles. However, textural analyses of ash grains has remained a long and tedious task that made such approaches inappropriate for eruption surveillance duties. In this work we show that new technological advances on automated dispersion of granular materials imaged with a camera-coupled microscope and enhanced computer capabilities enable fast and high resolution image acquisition of thousands of ash grains that resolve this limitation. With a morpho-grainsizer designed for such fast and routine measurements we perform a series of APASH analyses on selected ash fractions of tephra deposits from known eruptive styles. We record the size, aspect ratio, circularity and convexity of APASH images and assess resolution, reproducibility, minimum population size, and total analytical duration, and offer recommendations for the reporting of APASH data for inter-laboratory comparisons. To avoid fractal geometry concerns, our analyses are carried out at constant size range (250-300 μm) and optical magnification (× 5) on ~ 3000 grains per samples collected from homogenized samples. Results from the andesitic 1999-ongoing eruption of Tungurahua volcano (Ecuador) show that ash particles from the moderate 2001 phase are relatively equant and convex in shape, while the stronger 2006 subplinian phase produced ash grains with more elongated, less circular and less convex APASH signatures. Ash grains from a basaltic scoria cone-forming eruption show even more ragged APASH characteristics. Overall, our protocol allows obtaining accurate and reproducible morphometric measurements that reveal subtle variations of the

  4. Towards fast and routine analyses of volcanic ash morphometry for eruption surveillance applications

    NASA Astrophysics Data System (ADS)

    Leibrandt, Sébastien; Le Pennec, Jean-Luc

    2015-04-01

    The morphometry of volcanic ash produced by explosive eruptions yields ample information on fragmentation processes (e.g. magmatic vs magma-water interactions), and on transport and sedimentation mechanisms. Most previous works on volcanic clast morphometry focused on the Apparent (2D-)Projected shape of ASH grains, here called APASH, to infer processes and eruptive styles. However, textural analyses of ash grains has remained a long and tedious task that made such approaches inappropriate for eruption surveillance duties. In this work we show that new technological advances on automated dispersion of granular materials imaged with a camera-coupled microscope and enhanced computer capabilities enable fast and high resolution image acquisition of thousands of ash grains that solve this limitation. With a morpho-grainsizer designed for such fast and routine measurements we perform a series of APASH analyses on selected ash fractions of tephra deposits from known eruptive styles. We record the size, aspect ratio, circularity and convexity of APASH images and assess resolution, reproducibility, minimum population size, and total analytical duration, and offer recommendations for the reporting of APASH data for interlaboratory comparisons. To avoid fractal geometry concerns, our analyses are carried out at constant size range (250-300 um) and optical magnification (x5) on ~3000 grains/samples collected from homogenized samples. Results from the andesitic 1999-ongoing eruption of Tungurahua volcano (Ecuador) show that ash particles from the moderate 2001 phase are relatively equant and convex in shape, while the stronger 2006 subplinian phase produced ash grains with more elongated, less circular and less convex APASH signatures. Ash grains from a basaltic scoria cone-forming eruption show even more ragged APASH characteristics. Overall, our protocol allows obtaining accurate and reproducible morphometric measurements that reveal subtle variations of the morphological

  5. Preclinical evaluation of nuclear morphometry and tissue topology for breast carcinoma detection and margin assessment.

    PubMed

    Nyirenda, Ndeke; Farkas, Daniel L; Ramanujan, V Krishnan

    2011-04-01

    Prevention and early detection of breast cancer are the major prophylactic measures taken to reduce the breast cancer related mortality and morbidity. Clinical management of breast cancer largely relies on the efficacy of the breast-conserving surgeries and the subsequent radiation therapy. A key problem that limits the success of these surgeries is the lack of accurate, real-time knowledge about the positive tumor margins in the surgically excised tumors in the operating room. This leads to tumor recurrence and, hence, the need for repeated surgeries. Current intraoperative techniques such as frozen section pathology or touch imprint cytology severely suffer from poor sampling and non-optimal detection sensitivity. Even though histopathology analysis can provide information on positive tumor margins post-operatively (~2-3 days), this information is of no immediate utility in the operating rooms. In this article, we propose a novel image analysis method for tumor margin assessment based on nuclear morphometry and tissue topology and demonstrate its high sensitivity/specificity in preclinical animal model of breast carcinoma. The method relies on imaging nuclear-specific fluorescence in the excised surgical specimen and on extracting nuclear morphometric parameters (size, number, and area fraction) from the spatial distribution of the observed fluorescence in the tissue. We also report the utility of tissue topology in tumor margin assessment by measuring the fractal dimension in the same set of images. By a systematic analysis of multiple breast tissues specimens, we show here that the proposed method is not only accurate (~97% sensitivity and 96% specificity) in thin sections, but also in three-dimensional (3D) thick tissues that mimic the realistic lumpectomy specimens. Our data clearly precludes the utility of nuclear size as a reliable diagnostic criterion for tumor margin assessment. On the other hand, nuclear area fraction addresses this issue very

  6. Carinal and tubular airway particle concentrations in the large airways of non-smokers in the general population: evidence for high particle concentration at airway carinas.

    PubMed Central

    Churg, A; Vedal, S

    1996-01-01

    OBJECTIVE: To evaluate the extent to which human airway carinas accumulate ambient atmospheric particles, a newly developed technique was used to micro-dissect and analyse particle concentration in tubular segments and carinas of the large airways of 10 necropsy lungs from non-smokers from the general population of Vancouver. METHODS: Ratios of the particle concentrations on the carinas to the tubular segment immediately preceding it were measured with analytical electron microscopy for the mainstem bronchus, upper and lower lobe bronchi, and four different segmental or subsegmental bronchi--that is, Weibel generations 1 to about 5. A total of 119 carinal-tubular pairs was evaluated. RESULTS: Over all cases, both carinal and tubular particle concentrations increased with increasing airway generation; the median ratio of carinal to tubular particle concentration was 9:1 and did not show any trend with airway generation. The ratio was > 5 in 71% of carinal-tubular pairs, > 10 in 42% of pairs, > 20 in 31% of pairs, and > 100 in 9% of pairs. Some subjects showed a notable tendency to high ratios, with many ratios > 100, and other subjects had a tendency toward low ratios. The predominant mineral species in both carinas and tubular airway segments was crystalline silica and the relative proportion was similar in both sites; however, mean particle diameter was consistently less in the carinal tissues. CONCLUSIONS: These findings suggest that the ratio of carinal to tubular retained particles in the large airways in non-smokers is higher than might be supposed from data generated in airway casts, and that there is considerable variation in this ratio between subjects. This finding is of potential interest in models of carcinogen, toxin, and dose of fibrogenic agent to the large airways as it suggests high and sometimes extreme concentrations of toxic particles at carinas, and thus reinforces the notion that carinas may be sites of initiation of disease. PMID:8983467

  7. The Tulip GT® airway versus the facemask and Guedel airway: a randomised, controlled, cross-over study by Basic Life Support-trained airway providers in anaesthetised patients.

    PubMed

    Shaikh, A; Robinson, P N; Hasan, M

    2016-03-01

    We performed a randomised, controlled, cross-over study of lung ventilation by Basic Life Support-trained providers using either the Tulip GT® airway or a facemask with a Guedel airway in 60 anaesthetised patients. Successful ventilation was achieved if the provider produced an end-tidal CO2 > 3.5 kPa and a tidal volume > 250 ml in two of the first three breaths, within 60 sec and within two attempts. Fifty-seven (95%) providers achieved successful ventilation using the Tulip GT compared with 35 (58%) using the facemask (p < 0.0001). Comparing the Tulip GT and facemask, the mean (SD) end-tidal CO2 was 5.0 (0.7) kPa vs 2.5 (1.5) kPa, tidal volume was 494 (175) ml vs 286 (186) ml and peak inspiratory pressure was 18.3 (3.4) cmH2 O vs 13.6 (7) cmH2 O respectively (all p < 0.0001). Forty-seven (78%) users favoured the Tulip GT airway. These results are similar to a previous manikin study using the same protocol, suggesting a close correlation between human and manikin studies for this airway device. We conclude that the Tulip GT should be considered as an adjunct to airway management both within and outside hospitals when ventilation is being undertaken by Basic Life Support-trained airway providers.

  8. Hyperresponsiveness in the human nasal airway: new targets for the treatment of allergic airway disease.

    PubMed Central

    Turner, P J; Foreman, J C

    1999-01-01

    Allergic rhinitis is a condition which affects over 15% of the population in the United Kingdom. The pathological process involves two stages: nasal inflammation, and the development of nasal airway hyperresponsiveness (AHR) to allergen and a number of other stimuli. This results in the amplification of any subsequent allergic reaction, contributing to the chronic allergic state. A number of different hypotheses have been proposed to explain the underlying mechanism of AHR, including a role for eosinophil-derived proteins, free radicals and neuropeptides. While there may be a number of independent pathways which can result in AHR, evidence obtained from both animal models and in vivo experiments in humans indicate that some mediators may interact with one another, resulting in AHR. Further research into these interactions may open new avenues for the pharmacological treatment of chronic allergic rhinitis, and possibly other allergic airway diseases. PMID:10704051

  9. Spatial structuring of Triatoma infestans (Hemiptera, Reduviidae) populations from northwestern Argentina using wing geometric morphometry.

    PubMed

    Schachter-Broide, Judith; Dujardin, Jean-Pierre; Kitron, Uriel; Gürtler, Ricardo E

    2004-07-01

    Wing geometric morphometry was used to study the spatial structuring of populations of Triatoma infestans from different villages, ecotopes, and sites within a village in northwestern Argentina. A total of 308 male and 197 female wings of T. infestans collected from peridomestic and domestic ecotopes in March 2000 was analyzed. On average, female bugs had a significantly larger wing size than males. Triatomines collected from domiciles or structures associated with chickens had larger wings than bugs collected from goat or pig corrals. The wing size of bugs did not differ significantly between villages. Discriminant analyses of wing shape showed significant divergence between villages, ecotopes, and individual collection sites. The study of metric variation of males between sites belonging to the same ecotope also revealed significant heterogeneity. Indeed, within the same section of the village the difference between two goat corrals was sometimes greater than that between neighboring goat and pig corrals. Thus, morphometric heterogeneity within villages may be the result not only of ecotope and host associations, but also of physical isolation between subunits. The strong structuring of T. infestans populations in the study area indicates that recolonization could be traced back to a small geographic source.

  10. Spatial Structuring of Triatoma infestans (Hemiptera, Reduviidae) Populations from Northwestern Argentina Using Wing Geometric Morphometry

    PubMed Central

    SCHACHTER-BROIDE, JUDITH; DUJARDIN, JEAN-PIERRE; KITRON, URIEL; GÜRTLER, RICARDO E.

    2005-01-01

    Wing geometric morphometry was used to study the spatial structuring of populations of Triatoma infestans from different villages, ecotopes, and sites within a village in northwestern Argentina. A total of 308 male and 197 female wings of T. infestans collected from peridomestic and domestic ecotopes in March 2000 was analyzed. On average, female bugs had a significantly larger wing size than males. Triatomines collected from domiciles or structures associated with chickens had larger wings than bugs collected from goat or pig corrals. The wing size of bugs did not differ significantly between villages. Discriminant analyses of wing shape showed significant divergence between villages, ecotopes, and individual collection sites. The study of metric variation of males between sites belonging to the same ecotope also revealed significant heterogeneity. Indeed, within the same section of the village the difference between two goat corrals was sometimes greater than that between neighboring goat and pig corrals. Thus, morphometric heterogeneity within villages may be the result not only of ecotope and host associations, but also of physical isolation between subunits. The strong structuring of T. infestans populations in the study area indicates that recolonization could be traced back to a small geographic source. PMID:15311455

  11. In Vivo Lung Morphometry with Accelerated Hyperpolarized 3He Diffusion MRI: A Preliminary Study

    PubMed Central

    Chang, Yulin V.; Quirk, James D.; Yablonskiy, Dmitriy A.

    2014-01-01

    Purpose Parallel imaging can be used to reduce imaging time and to increase the spatial coverage in hyperpolarized gas MRI of the lung. In this proof-of-concept study we investigate the effects of parallel imaging on the morphometric measurement of lung microstructure using diffusion MRI with hyperpolarized 3He. Methods Fully sampled and under-sampled multi-b diffusion data were acquired from human subjects using an 8-channel 3He receive coil. A parallel imaging reconstruction technique (GRAPPA) was used to reconstruct under-sampled k-space data. The morphometric results of the GRAPPA-reconstructed data were compared with the results of fully sampled data for three types of subjects: healthy volunteers, mild, and moderate COPD patients. Results Morphometric measurements varied only slightly at mild acceleration factors. The results were largely well preserved compared to fully sampled data for different lung conditions. Conclusion Parallel imaging, given sufficient signal-to-noise ratio, provides a reliable means to accelerate hyperpolarized-gas MRI with no significant difference in the measurement of lung morphometry from the fully sampled images. GRAPPA is a promising technique to significantly reduce imaging time and/or to improve the spatial coverage for the morphometric measurement with hyperpolarized gases. PMID:24799044

  12. Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Sassa, Yuko; Hashizume, Hiroshi; Sekiguchi, Atsushi; Fukushima, Ai; Kawashima, Ryuta

    2011-09-01

    Emotional Intelligence (EI) is the ability to monitor one's own and others' emotions and the ability to use the gathered information to guide one's thinking and action. EI is thought to be important for social life making it a popular subject of research. However, despite the existence of previous functional imaging studies on EI, the relationship between regional gray matter morphology and EI has never been investigated. We used voxel-based morphometry (VBM) and a questionnaire (Emotional Intelligence Scale) to measure EI to identify the gray matter correlates of each factor of individual EI (Intrapersonal factor, Interpersonal factor, Situation Management factor). We found significant negative relationships between the Intrapersonal factor and regional gray matter density (rGMD) (1-a) in an anatomical cluster that included the right anterior insula, (1-b) in the right cerebellum, (1-c) in an anatomical cluster that extends from the cuneus to the precuneus, (1-d) and in an anatomical cluster that extends from the medial prefrontal cortex to the left lateral fronto-polar cortex. We also found significant positive correlations between the Interpersonal factor and rGMD in the right superior temporal sulcus, and significant negative correlations between the Situation Management factor and rGMD in the ventromedial prefrontal cortex. These findings suggest that each factor of EI in healthy young people is related to the specific brain regions known to be involved in the networks of social cognition and self-related recognition, and in the somatic marker circuitry.

  13. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia

    PubMed Central

    Pinaya, Walter H. L.; Gadelha, Ary; Doyle, Orla M.; Noto, Cristiano; Zugman, André; Cordeiro, Quirino; Jackowski, Andrea P.; Bressan, Rodrigo A.; Sato, João R.

    2016-01-01

    Neuroimaging-based models contribute to increasing our understanding of schizophrenia pathophysiology and can reveal the underlying characteristics of this and other clinical conditions. However, the considerable variability in reported neuroimaging results mirrors the heterogeneity of the disorder. Machine learning methods capable of representing invariant features could circumvent this problem. In this structural MRI study, we trained a deep learning model known as deep belief network (DBN) to extract features from brain morphometry data and investigated its performance in discriminating between healthy controls (N = 83) and patients with schizophrenia (N = 143). We further analysed performance in classifying patients with a first-episode psychosis (N = 32). The DBN highlighted differences between classes, especially in the frontal, temporal, parietal, and insular cortices, and in some subcortical regions, including the corpus callosum, putamen, and cerebellum. The DBN was slightly more accurate as a classifier (accuracy = 73.6%) than the support vector machine (accuracy = 68.1%). Finally, the error rate of the DBN in classifying first-episode patients was 56.3%, indicating that the representations learned from patients with schizophrenia and healthy controls were not suitable to define these patients. Our data suggest that deep learning could improve our understanding of psychiatric disorders such as schizophrenia by improving neuromorphometric analyses. PMID:27941946

  14. Accurate Measurement of Brain Changes in Longitudinal MRI Scans using Tensor-Based Morphometry

    PubMed Central

    Hua, Xue; Gutman, Boris; Boyle, Christina; Rajagopalan, Priya; Leow, Alex D.; Yanovsky, Igor; Kumar, Anand R.; Toga, Arthur W.; Jack, Clifford R.; Schuff, Norbert; Alexander, Gene E.; Chen, Kewei; Reiman, Eric M.; Weiner, Michael W.; Thompson, Paul M.

    2011-01-01

    This paper responds to Thompson and Holland (2011), who challenged our tensor-based morphometry (TBM) method for estimating rates of brain changes in serial MRI from 431 subjects scanned every 6 months, for 2 years. Thompson and Holland noted an unexplained jump in our atrophy rate estimates: an offset between 0-6 months that may bias clinical trial power calculations. We identified why this jump occurs and propose a solution. By enforcing inverse-consistency in our TBM method, the offset dropped from 1.4% to 0.28%, giving plausible anatomical trajectories. Transitivity error accounted for the minimal remaining offset. Drug trial sample size estimates with the revised TBM-derived metrics are highly competitive with other methods, though higher than previously reported sample size estimates by a factor of 1.6 to 2.4. Importantly, estimates are far below those given in the critique. To demonstrate a 25% slowing of atrophic rates with 80% power, 62 AD and 129 MCI subjects would be required for a 2-year trial, and 91 AD and 192 MCI subjects for a 1-year trial. PMID:21320612

  15. Gray matter correlates of creative potential: A latent variable voxel-based morphometry study

    PubMed Central

    Jauk, Emanuel; Neubauer, Aljoscha C.; Dunst, Beate; Fink, Andreas; Benedek, Mathias

    2015-01-01

    There is increasing research interest in the structural and functional brain correlates underlying creative potential. Recent investigations found that interindividual differences in creative potential relate to volumetric differences in brain regions belonging to the default mode network, such as the precuneus. Yet, the complex interplay between creative potential, intelligence, and personality traits and their respective neural bases is still under debate. We investigated regional gray matter volume (rGMV) differences that can be associated with creative potential in a heterogeneous sample of N = 135 individuals using voxel-based morphometry (VBM). By means of latent variable modeling and consideration of recent psychometric advancements in creativity research, we sought to disentangle the effects of ideational originality and fluency as two independent indicators of creative potential. Intelligence and openness to experience were considered as common covariates of creative potential. The results confirmed and extended previous research: rGMV in the precuneus was associated with ideational originality, but not with ideational fluency. In addition, we found ideational originality to be correlated with rGMV in the caudate nucleus. The results indicate that the ability to produce original ideas is tied to default-mode as well as dopaminergic structures. These structural brain correlates of ideational originality were apparent throughout the whole range of intellectual ability and thus not moderated by intelligence. In contrast, structural correlates of ideational fluency, a quantitative marker of creative potential, were observed only in lower intelligent individuals in the cuneus/lingual gyrus. PMID:25676914

  16. Possible application of CT morphometry of the calcaneus and talus in forensic anthropological identification.

    PubMed

    Inamori-Kawamoto, Osamu; Ishikawa, Takaki; Michiue, Tomomi; Mustafa, Asmaa Mohammed Hishmat; Sogawa, Nozomi; Kanou, Tetsuya; Oritani, Shigeki; Maeda, Hitoshi

    2016-03-01

    Computed tomography (CT) data provide information for volumetric and radiographic density analysis. The present study investigated the application of virtual CT volumetry of the tarsal bones to estimation of the sex, stature, and body weight using postmortem CT (PMCT) data of forensic autopsy cases. Three-dimensional (3D) images of the bilateral foot bones of intact Japanese subjects after adolescence (age ≥ 15 years, n = 179, 100 males and 79 females) were reconstructed on an automated CT image analyzer system. Measured parameters were mass volume, mean CT value (HU), and total CT value of the talus and calcaneus. Mean CT values of these bones showed age-dependent decreases in elderly subjects over 60 years of age for both sexes, with significant sex-related differences especially in the elderly. The mass volumes and total CT values of the talus and calcaneus showed significant sex-related differences, and also moderate correlations with body height and weight for bilateral bones in all cases (r = 0.58-0.78, p < 0.0001); however, the correlations of these parameters of the female talus with body weight were insufficient (r = 0.41-0.61, p < 0.0001). These observations indicate the applicability of virtual CT morphometry of the talus and calcaneus using an automated analyzer to estimate the sex and stature in forensic identification; however, greater variations should be considered in body weight estimations of females.

  17. Progression of brain atrophy in spinocerebellar ataxia type 2: a longitudinal tensor-based morphometry study.

    PubMed

    Mascalchi, Mario; Diciotti, Stefano; Giannelli, Marco; Ginestroni, Andrea; Soricelli, Andrea; Nicolai, Emanuele; Aiello, Marco; Tessa, Carlo; Galli, Lucia; Dotti, Maria Teresa; Piacentini, Silvia; Salvatore, Elena; Toschi, Nicola

    2014-01-01

    Spinocerebellar ataxia type 2 (SCA2) is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI) to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years) and 16 age- and gender-matched healthy controls (mean interval 3.3 years) on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM) to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM) and cortical gray matter (GM) in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials.

  18. Parahippocampal gray matter alterations in Spinocerebellar Ataxia Type 2 identified by voxel based morphometry.

    PubMed

    Mercadillo, Roberto E; Galvez, Víctor; Díaz, Rosalinda; Hernández-Castillo, Carlos Roberto; Campos-Romo, Aurelio; Boll, Marie-Catherine; Pasaye, Erick H; Fernandez-Ruiz, Juan

    2014-12-15

    Spinocerebellar Ataxia Type 2 (SCA2) is a genetic disorder causing cerebellar degeneration that result in motor and cognitive alterations. Voxel-based morphometry (VBM) analyses have found neurodegenerative patterns associated to SCA2, but they show some discrepancies. Moreover, behavioral deficits related to non-cerebellar functions are scarcely discussed in those reports. In this work we use behavioral and cognitive tests and VBM to identify and confirm cognitive and gray matter alterations in SCA2 patients compared with control subjects. Also, we discuss the cerebellar and non-cerebellar functions affected by this disease. Our results confirmed gray matter reduction in the cerebellar vermis, pons, and insular, frontal, parietal and temporal cortices. However, our analysis also found unreported loss of gray matter in the parahippocampal gyrus bilaterally. Motor performance test ratings correlated with total gray and white matter reductions, but executive performance and clinical features such as CAG repetitions and disease progression did not show any correlation. This pattern of cerebellar and non-cerebellar morphological alterations associated with SCA2 has to be considered to fully understand the motor and non-motor deficits that include language production and comprehension and some social skill changes that occur in these patients.

  19. Occurrence of the Foramen of Vesalius and Its Morphometry Relevant to Clinical Consideration

    PubMed Central

    Chaisuksunt, Vipavadee; Kwathai, Lanaprai; Namonta, Kritsana; Rungruang, Thanaporn; Apinhasmit, Wandee; Chompoopong, Supin

    2012-01-01

    All 377 dry skulls were examined for the occurrence and morphometry of the foramen of Vesalius (FV) both in the middle cranial fossa and at the extracranial view of the skull base. There were 25.9% and 10.9% of FV found at the extracranial view of the skull base and in the middle cranial fossa, respectively. Total patent FV were 16.1% (11.9% unilaterally and 4.2% bilaterally). Most FV were found in male and on the left side. Comparatively, FV at the extracranial view of the skull base had a larger maximum diameter. The distance between FV and the foramen ovale (FO) was as short as 2.05 ± 1.09 mm measured at the extracranial view of the skull base. In conclusion, although the existence of FV is inconstant, its occurrence could not be negligible. The proximity of FV to FO should remind neurosurgeons to be cautious when performing the surgical approach through FO. PMID:22629207

  20. Structural correlates of formal thought disorder in schizophrenia: An ultra-high field multivariate morphometry study

    PubMed Central

    Palaniyappan, Lena; Mahmood, Jenaid; Balain, Vijender; Mougin, Olivier; Gowland, Penny A.; Liddle, Peter F.

    2015-01-01

    Background Persistent formal thought disorder (FTD) is one of the most characteristic features of schizophrenia. Several neuroimaging studies report spatially distinct neuroanatomical changes in association with FTD. Given that most studies so far have employed a univariate localisation approach that obscures the study of covarying interregional relationships, the present study focussed on the multivariate systemic pattern of anatomical changes that contribute to FTD. Methods Speech samples from nineteen medicated clinically stable schizophrenia patients and 20 healthy controls were evaluated for subtle formal thought disorder. Ultra high-field (7 T) anatomical Magnetic Resonance Imaging scans were obtained from all subjects. Multivariate morphometric patterns were identified using an independent component approach (source based morphometry). Using multiple regression analysis, the morphometric patterns predicting positive and negative FTD scores were identified. Results Morphometric variations in grey matter predicted a substantial portion of inter-individual variance in negative but not positive FTD. A pattern of concomitant striato-insular/precuneus reduction along with frontocingular grey matter increase had a significant association with negative FTD. Conclusions These results suggest that concomitant increase and decrease in grey matter occur in association with persistent negative thought disorder in clinically stable individuals with schizophrenia. PMID:26232240

  1. Regional brain structural abnormality in ischemic stroke patients: a voxel-based morphometry study

    PubMed Central

    Wu, Ping; Zhou, Yu-mei; Zeng, Fang; Li, Zheng-jie; Luo, Lu; Li, Yong-xin; Fan, Wei; Qiu, Li-hua; Qin, Wei; Chen, Lin; Bai, Lin; Nie, Juan; Zhang, San; Xiong, Yan; Bai, Yu; Yin, Can-xin; Liang, Fan-rong

    2016-01-01

    Our previous study used regional homogeneity analysis and found that activity in some brain areas of patients with ischemic stroke changed significantly. In the current study, we examined structural changes in these brain regions by taking structural magnetic resonance imaging scans of 11 ischemic stroke patients and 15 healthy participants, and analyzing the data using voxel-based morphometry. Compared with healthy participants, patients exhibited higher gray matter density in the left inferior occipital gyrus and right anterior white matter tract. In contrast, gray matter density in the right cerebellum, left precentral gyrus, right middle frontal gyrus, and left middle temporal gyrus was less in ischemic stroke patients. The changes of gray matter density in the middle frontal gyrus were negatively associated with the clinical rating scales of the Fugl-Meyer Motor Assessment (r = –0.609, P = 0.047) and the left middle temporal gyrus was negatively correlated with the clinical rating scales of the nervous functional deficiency scale (r = –0.737, P = 0.010). Our findings can objectively identify the functional abnormality in some brain regions of ischemic stroke patients. PMID:27857744

  2. Brain correlates of pro-social personality traits: a voxel-based morphometry study.

    PubMed

    Coutinho, Joana F; Sampaio, Adriana; Ferreira, Miguel; Soares, José M; Gonçalves, Oscar F

    2013-09-01

    Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.

  3. Structural Correlates of Functional Language Dominance: A Voxel-Based Morphometry Study

    PubMed Central

    Deppe, Michael; Kanowski, Martin; Ölschläger, Christian; Albers, Johannes M.; Schlaug, Gottfried; Knecht, Stefan

    2015-01-01

    BACKGROUND AND PURPOSE The goal of this study was to explore the structural correlates of functional language dominance by directly comparing the brain morphology of healthy subjects with left- and right-hemisphere language dominance. METHODS Twenty participants were selected based on their language dominance from a cohort of subjects with known language lateralization. Structural differences between both groups were assessed by voxel-based morphometry, a technique that automatically identifies differences in the local gray matter volume between groups using high-resolution T1-weighted magnetic resonance images. RESULTS The main findings can be summarized as follows: (1) Subjects with right-hemisphere language dominance had significantly larger gray matter volume in the right hippocampus than subjects with left-hemisphere language dominance. (2) Leftward structural asymmetries in the posterior superior temporal cortex, including the planum temporale (PT), were observed in both groups. CONCLUSIONS Our study does not support the still prevalent view that asymmetries of the PT are related in a direct way to functional language lateralization. The structural differences found in the hippocampus underline the importance of the medial temporal lobe in the neural language network. They are discussed in the context of recent findings attributing a critical role of the hippocampus in the development of language lateralization. PMID:19453831

  4. Spatiotemporal morphometry of adjacent tissue layers with application to the study of sulcal formation

    PubMed Central

    Rajagopalan, Vidya; Scott, Julia; Habas, Piotr A.; Kim, Kio; Rousseau, Francois; Glenn, Orit A.; Barkovich, A. James; Studholme, Colin

    2012-01-01

    The process of brain growth involves the expansion of tissue at different rates at different points within the brain. As the layers within the developing brain evolve they can thicken or increase in area as the brain surface begins to fold. In this work we propose a new spatiotemporal formulation of tensor based volume morphometry that is derived in relation to tissue boundaries. This allows the study of the directional properties of tissue growth by separately characterizing the changes in area and thickness of the adjacent layers. The approach uses temporally weighted, local regression across a population of anatomies with different ages to model changes in components of the growth radial and tangential to the boundary between tissue layers. The formulation is applied to the study of sulcal formation from in-utero MR imaging of human fetal brain anatomy. Results show that the method detects differential growth of tissue layers adjacent to the cortical surface, particularly at sulcal locations, as early as 22 gestational weeks. PMID:21995063

  5. Voxel-based Morphometry of Brain MRI in Normal Aging and Alzheimer's Disease.

    PubMed

    Matsuda, Hiroshi

    2013-02-01

    Voxel-based morphometry (VBM) using structural brain MRI has been widely used for assessment of normal aging and Alzheimer's disease (AD). VBM of MRI data comprises segmentation into gray matter, white matter, and cerebrospinal fluid partitions, anatomical standardization of all the images to the same stereotactic space using linear affine transformation and further non-linear warping, smoothing, and finally performing a statistical analysis. Two techniques for VBM are commonly used, optimized VBM using statistical parametric mapping (SPM) 2 or SPM5 with non-linear warping based on discrete cosine transforms and SPM8 plus non-linear warping based on diffeomorphic anatomical registration using exponentiated Lie algebra (DARTEL). In normal aging, most cortical regions prominently in frontal and insular areas have been reported to show age-related gray matter atrophy. In contrast, specific structures such as amygdala, hippocampus, and thalamus have been reported to be preserved in normal aging. On the other hand, VBM studies have demonstrated progression of atrophy mapping upstream to Braak's stages of neurofibrillary tangle deposition in AD. The earliest atrophy takes place in medial temporal structures. Stand-alone VBM software using SPM8 plus DARTEL running on Windows has been newly developed as an adjunct to the clinical assessment of AD. This software provides a Z-score map as a consequence of comparison of a patient's MRI with a normal database.

  6. Morphometry, Bite-Force, and Paleobiology of the Late Miocene Caiman Purussaurus brasiliensis

    PubMed Central

    Aureliano, Tito; Ghilardi, Aline M.; Guilherme, Edson; Souza-Filho, Jonas P.; Cavalcanti, Mauro; Riff, Douglas

    2015-01-01

    Purussaurus brasiliensis thrived in the northwestern portion of South America during the Late Miocene. Although substantial material has been recovered since its early discovery, this fossil crocodilian can still be considered as very poorly understood. In the present work, we used regression equations based on modern crocodilians to present novel details about the morphometry, bite-force and paleobiology of this species. According to our results, an adult Purussaurus brasiliensis was estimated to reach around 12.5 m in length, weighing around 8.4 metric tons, with a mean daily food intake of 40.6 kg. It was capable of generating sustained bite forces of 69,000 N (around 7 metric tons-force). The extreme size and strength reached by this animal seems to have allowed it to include a wide range of prey in its diet, making it a top predator in its ecosystem. As an adult, it would have preyed upon large to very large vertebrates, and, being unmatched by any other carnivore, it avoided competition. The evolution of a large body size granted P. brasiliensis many advantages, but it may also have led to its vulnerability. The constantly changing environment on a large geological scale may have reduced its long-term survival, favoring smaller species more resilient to ecological shifts. PMID:25689140

  7. Registration-Based Morphometry for Shape Analysis of the Bones of the Human Wrist.

    PubMed

    Joshi, Anand A; Leahy, Richard M; Badawi, Ramsey D; Chaudhari, Abhijit J

    2016-02-01

    We present a method that quantifies point-wise changes in surface morphology of the bones of the human wrist. The proposed method, referred to as Registration-based Bone Morphometry (RBM), consists of two steps: an atlas selection step and an atlas warping step. The atlas for individual wrist bones was selected based on the shortest ℓ2 distance to the ensemble of wrist bones from a database of a healthy population of subjects. The selected atlas was then warped to the corresponding bones of individuals in the population using a non-linear registration method based on regularized ℓ2 distance minimization. The displacement field thus calculated showed local differences in bone shape that then were used for the analysis of group differences. Our results indicate that RBM has potential to provide a standardized approach to shape analysis of bones of the human wrist. We demonstrate the performance of RBM for examining group differences in wrist bone shapes based on sex and between those of the right and left wrists in healthy individuals. We also present data to show the application of RBM for tracking bone erosion status in rheumatoid arthritis.

  8. A comparison between pre- and posthibernation morphometry, hematology, and blood chemistry in viperid snakes.

    PubMed

    Dutton, Christopher J; Taylor, Peter

    2003-03-01

    Snakes from temperate climates are often made to hibernate in zoos to stimulate reproduction. Unfortunately, deaths have occurred during and after hibernation. This study evaluated the health status, pre- and posthibernation, of 31 adult viperid snakes. It included morphometric measurements, hematology, and blood chemistry. No differences were seen in body weights and weight to length ratios between pre- and posthibernation examinations, suggesting that the overall condition of the snakes did not change. No differences were seen in hematologic and blood chemistry parameters, except that bile acids (3alpha-hydroxybile acids) decreased, the implications of which are unknown. Three individuals had markedly high plasma uric acid levels posthibernation; of these, two individuals died from extensive visceral gout and one recovered with fluid therapy. Viperid snakes should be clinically healthy, well hydrated, and in good body condition when they are put into hibernation. They should be maintained in an environment with sufficient humidity and should have access to water. Blood samples should be collected on arousal for measuring plasma uric acid levels. Changes in morphometry, hematology, and blood chemistry appear to be abnormal and should be investigated thoroughly.

  9. MANDIBULAR MORPHOMETRY APPLIED TO ANESTHETIC BLOCKAGE IN THE MANED WOLF (CHRYSOCYON BRACHYURUS).

    PubMed

    de Souza Junior, Paulo; de Moraes, Flavio Machado; de Carvalho, Natan da Cruz; Canelo, Evandro Alves; Thiesen, Roberto; Santos, André Luiz Quagliatto

    2016-03-01

    Chrysocyon brachyurus (maned wolf) is the biggest South American canid and has a high frequency of dental injuries, both in the wild and in captivity. Thus, veterinary procedures are necessary to preserve the feeding capacity of hundreds of captive specimens worldwide. The aim of this study was to investigate the mandibular morphometry of the maned wolf with emphasis on the establishment of anatomic references for anesthetic block of the inferior alveolar and mental nerves. Therefore, 16 measurements in 22 mandibles of C. brachyurus adults were taken. For extraoral block of the inferior alveolar nerve at the level of the mandibular foramen, the needle should be advanced close to the medial face of the mandibular ramus for 11.4 mm perpendicular to the palpable concavity. In another extraoral approach, the needle may be introduced for 30.4 mm from the angular process at a 20-25° angle to the ventral margin. For blocking only the mental nerve, the needle should be inserted for 10 mm from ventral border, close to the labial surface of the mandibular body, at the level of the lower first premolar. The mandibular foramen showed similar position, size, and symmetry in the maned wolf specimens examined. Comparison of the data observed here with those available for other carnivores indicates the need to determine these anatomic references specifically for each species.

  10. Morphometry of small recent impact craters on Mars: Size and terrain dependence, short-term modification

    NASA Astrophysics Data System (ADS)

    Watters, W. A.; Geiger, L. M.; Fendrock, M.; Gibson, R.

    2015-02-01

    Most recent studies of crater morphometry on Mars have addressed large craters (D>5 km) using elevation models derived from laser altimetry. In the present work, we examine a global population of small (25 m ≤D≤5 km), relatively well-preserved simple impact craters using HiRISE stereo-derived elevation models. We find that scaling laws from prior studies of large simple craters generally overestimate the depth and volume at small diameters. We show that crater rim curvature exhibits a strong diameter dependence that is well-described by scaling laws for D<1 km. Above this diameter, upper rim slopes begin to exceed typical repose angles and crater rims sharpen significantly. This transition is likely the result of gravity-driven collapse of the upper cavity walls during crater formation or short-term modification. In addition, we identify a tendency for small craters (D<500m) to be more conical than large craters, and we show that the average cavity cross section is well-described by a power law with exponent ˜1.75 (neither conical nor paraboloidal). We also conduct a statistical comparison of crater subpopulations to illuminate trends with increasing modification and target strength. These results have important implications for describing the "initial condition" of simple crater shape as a function of diameter and geological setting and for understanding how impact craters are modified on the Martian surface over time.

  11. Grey matter volume alterations in CADASIL: a voxel-based morphometry study.

    PubMed

    Rossi Espagnet, Maria Camilla; Romano, Andrea; Carducci, Filippo; Calabria, Luigi Fausto; Fiorillo, Martina; Orzi, Francesco; Bozzao, Alessandro

    2012-04-01

    CADASIL is a hereditary disease characterized by cerebral subcortical microangiopathy leading to early onset cerebral strokes and progressive severe cognitive impairment. Until now, only few studies have investigated the extent and localization of grey matter (GM) involvement. The purpose of our study was to evaluate GM volume alterations in CADASIL patients compared to healthy subjects. We also looked for correlations between global and regional white matter (WM) lesion load and GM volume alterations. 14 genetically proved CADASIL patients and 12 healthy subjects were enrolled in our study. Brain MRI (1.5 T) was acquired in all subjects. Optimized-voxel based morphometry method was applied for the comparison of brain volumes between CADASIL patients and controls. Global and lobar WM lesion loads were calculated for each patient and used as covariate-of-interest for regression analyses with SPM-8. Compared to controls, patients showed GM volume reductions in bilateral temporal lobes (p < 0.05; FDR-corrected). Regression analysis in the patient group revealed a correlation between total WM lesion load and temporal GM atrophy (p < 0.05; uncorrected), not between temporal lesion load and GM atrophy. Temporal GM volume reduction was demonstrated in CADASIL patients compared to controls; it was related to WM lesion load involving the whole brain but not to lobar and, specifically, temporal WM lesion load. Complex interactions between sub-cortical and cortical damage should be hypothesized.

  12. Regional gray matter density is associated with achievement motivation: evidence from voxel-based morphometry.

    PubMed

    Takeuchi, Hikaru; Taki, Yasuyuki; Nouchi, Rui; Sekiguchi, Atsushi; Kotozaki, Yuka; Miyauchi, Carlos Makoto; Yokoyama, Ryoichi; Iizuka, Kunio; Hashizume, Hiroshi; Nakagawa, Seishu; Kunitoki, Keiko; Sassa, Yuko; Kawashima, Ryuta

    2014-01-01

    Achievement motivation can be defined as a recurrent need to improve one's past performance. Despite previous functional imaging studies on motivation-related functional activation, the relationship between regional gray matter (rGM) morphology and achievement motivation has never been investigated. We used voxel-based morphometry and a questionnaire (achievement motivation scale) to measure individual achievement motivation and investigated the association between rGM density (rGMD) and achievement motivation [self-fulfillment achievement motivation (SFAM) and competitive achievement motivation (CAM) across the brain in healthy young adults (age 21.0 ± 1.8 years, men (n = 94), women (n = 91)]. SFAM and rGMD significantly and negatively correlated in the orbitofrontal cortex (OFC). CAM and rGMD significantly and positively correlated in the right putamen, insula, and precuneus. These results suggest that the brain areas that play central roles in externally modulated motivation (OFC and putamen) also contribute to SFAM and CAM, respectively, but in different ways. Furthermore, the brain areas in which rGMD correlated with CAM are related to cognitive processes associated with distressing emotions and social cognition, and these cognitive processes may characterize CAM.

  13. Different brain structures associated with artistic and scientific creativity: a voxel-based morphometry study

    PubMed Central

    Shi, Baoguo; Cao, Xiaoqing; Chen, Qunlin; Zhuang, Kaixiang; Qiu, Jiang

    2017-01-01

    Creativity is the ability to produce original and valuable ideas or behaviors. In real life, artistic and scientific creativity promoted the development of human civilization; however, to date, no studies have systematically investigated differences in the brain structures responsible for artistic and scientific creativity in a large sample. Using voxel-based morphometry (VBM), this study identified differences in regional gray matter volume (GMV) across the brain between artistic and scientific creativity (assessed by the Creative Achievement Questionnaire) in 356 young, healthy subjects. The results showed that artistic creativity was significantly negatively associated with the regional GMV of the supplementary motor area (SMA) and anterior cingulate cortex (ACC). In contrast, scientific creativity was significantly positively correlated with the regional GMV of the left middle frontal gyrus (MFG) and left inferior occipital gyrus (IOG). Overall, artistic creativity was associated with the salience network (SN), whereas scientific creativity was associated with the executive attention network and semantic processing. These results may provide an effective marker that can be used to predict and evaluate individuals’ creative performance in the fields of science and art. PMID:28220826

  14. Gray Matter Volume Decreases in Elderly Patients with Schizophrenia: A Voxel-based Morphometry Study

    PubMed Central

    Schuster, Caroline; Schuller, Anne Marie; Paulos, Carlos; Namer, Izzie; Pull, Charles; Danion, Jean Marie; Foucher, Jack René

    2012-01-01

    Background: Aged patients (>50 years old) with residual schizophrenic symptoms differ from young patients. They represent a subpopulation with a more unfavorable Kraepelinian course and have an increased risk (up to 30%) for dementia of unknown origin. However, our current understanding of age-related brain changes in schizophrenia is derived from studies that included less than 17% of patients who were older than 50 years of age. This study investigated the anatomical distribution of gray matter (GM) brain deficits in aged patients with ongoing schizophrenia. Methods: Voxel-based morphometry was applied to 3D-T1 magnetic resonance images obtained from 27 aged patients with schizophrenia (mean age of 60 years) and 40 age-matched normal controls. Results: Older patients with schizophrenia showed a bilateral reduction of GM volume in the thalamus, the prefrontal cortex, and in a large posterior region centered on the occipito-temporo-parietal junction. Only the latter region showed accelerated GM volume loss with increasing age. None of these results could be accounted for by institutionalization, antipsychotic medication, or cognitive scores. Conclusions: This study replicated most common findings in patients with schizophrenia with regard to thalamic and frontal GM deficits. However, it uncovered an unexpected large region of GM atrophy in the posterior tertiary cortices. The latter observation may be specific to this aged and chronically symptomatic subpopulation, as atrophy in this region is rarely reported in younger patients and is accelerated with age. PMID:21205677

  15. Source-based morphometry reveals distinct patterns of aberrant brain volume in delusional infestation.

    PubMed

    Wolf, Robert Ch; Huber, Markus; Lepping, Peter; Sambataro, Fabio; Depping, Malte S; Karner, Martin; Freudenmann, Roland W

    2014-01-03

    Little is known about the neural correlates of delusional infestation (DI), the delusional belief to be infested with pathogens. So far, evidence comes mainly from case reports and case series. We investigated brain morphology in 16 DI patients and 16 healthy controls using structural magnetic resonance imaging and a multivariate data analysis technique, i.e. source-based morphometry (SBM). In addition, we explored differences in brain structure in patient subgroups based on disease aetiology. SBM revealed two patterns exhibiting significantly (p<0.05, Bonferroni-corrected) lower grey and higher white matter volume in DI patients compared to controls. Lower grey matter volume was found in medial prefrontal cortex, anterior cingulate cortex, medial temporal lobe structures (parahippocampus and hippocampus), sensorimotor cortices, bilateral insula and thalamus and inferior parietal regions. Higher white matter volume was found in medial and middle frontal and temporal cortices, left insula and lentiform nucleus. Grey matter volume was abnormal in both "psychiatric" (primary DI and DI associated with an affective disorder) and "organic" DI (DI due to a medical condition). In contrast, aberrant white matter volume was only confirmed for the "organic" DI patient subgroup. These results suggest prefrontal, temporal, parietal, insular, thalamic and striatal dysfunction underlying DI. Moreover, the data suggest that aetiologically distinct presentations of DI share similar patterns of abnormal grey matter volume, whereas aberrant white matter volume appears to be restricted to organic cases.

  16. Tensor-based morphometry with stationary velocity field diffeomorphic registration: Application to ADNI

    PubMed Central

    Bossa, Matias; Zacur, Ernesto; Olmos, Salvador

    2010-01-01

    Tensor-based morphometry (TBM) is an analysis technique where anatomical information is characterized by means of the spatial transformations mapping a customized template with the observed images. Therefore, accurate inter-subject non-rigid registration is an essential prerequisite for both template estimation and image warping. Subsequent statistical analysis on the spatial transformations is performed to highlight voxel-wise differences. Most of previous TBM studies did not explore the influence of the registration parameters, such as the parameters defining the deformation and the regularization models. In this work performance evaluation of TBM using stationary velocity field (SVF) diffeomorphic registration was performed in a subset of subjects from Alzheimer’s Disease Neuroimaging Initiative (ADNI) study. A wide range of values of the registration parameters that define the transformation smoothness and the balance between image matching and regularization were explored in the evaluation. The proposed methodology provided brain atrophy maps with very detailed anatomical resolution and with a high significance level compared with results recently published on the same data set using a non-linear elastic registration method. PMID:20211269

  17. Surface-based morphometry reveals the neuroanatomical basis of the five-factor model of personality.

    PubMed

    Riccelli, Roberta; Toschi, Nicola; Nigro, Salvatore; Terracciano, Antonio; Passamonti, Luca

    2017-01-24

    The five-factor model (FFM) is a widely used taxonomy of human personality; yet its neuro anatomical basis remains unclear. This is partly because past associations between gray-matter volume and FFM were driven by different surface-based morphometry (SBM) indices (i.e. cortical thickness, surface area, cortical folding or any combination of them). To overcome this limitation, we used Free-Surfer to study how variability in SBM measures was related to the FFM in n = 507 participants from the Human Connectome Project.Neuroticism was associated with thicker cortex and smaller area and folding in prefrontal-temporal regions. Extraversion was linked to thicker pre-cuneus and smaller superior temporal cortex area. Openness was linked to thinner cortex and greater area and folding in prefrontal-parietal regions. Agreeableness was correlated to thinner prefrontal cortex and smaller fusiform gyrus area. Conscientiousness was associated with thicker cortex and smaller area and folding in prefrontal regions. These findings demonstrate that anatomical variability in prefrontal cortices is linked to individual differences in the socio-cognitive dispositions described by the FFM. Cortical thickness and surface area/folding were inversely related each others as a function of different FFM traits (neuroticism, extraversion and consciousness vs openness), which may reflect brain maturational effects that predispose or protect against psychiatric disorders.

  18. Role of morphometry in the cytological differentiation of benign and malignant thyroid lesions

    PubMed Central

    Khatri, Pallavi; Choudhury, Monisha; Jain, Manjula; Thomas, Shaji

    2017-01-01

    Context: Thyroid nodules represent a common problem, with an estimated prevalence of 4–7%. Although fine needle aspiration cytology (FNAC) has been accepted as a first line diagnostic test, the rate of false negative reports of malignancy is still high. Nuclear morphometry is the measurement of nuclear parameters by image analysis. Image analysis can merge the advantages of morphologic interpretation with those of quantitative data. Aims: To evaluate the nuclear morphometric parameters in fine needle aspirates of thyroid lesions and to study its role in differentiating benign from malignant thyroid lesions. Material and Methods: The study included 19 benign and 16 malignant thyroid lesions. Image analysis was performed on Giemsa-stained FNAC slides by Nikon NIS-Elements Advanced Research software (Version 4.00). Nuclear morphometric parameters analyzed included nuclear size, shape, texture, and density parameters. Statistical Analysis: Normally distributed continuous variables were compared using the unpaired t-test for two groups and analysis of variance was used for three or more groups. Tukey or Tamhane's T2 multiple comparison test was used to assess the differences between the individual groups. Categorical variables were analyzed using the chi square test. Results and Conclusion: Five out of the six nuclear size parameters as well as all the texture and density parameters studied were significant in distinguishing between benign and malignant thyroid lesions (P < 0.05). Cut-off values were derived to differentiate between benign and malignant cases. PMID:28182069

  19. Registration-based Bone Morphometry for Shape Analysis of the Bones of the Human Wrist

    PubMed Central

    Joshi, Anand A.; Leahy, Richard M.; Badawi, Ramsey D.; Chaudhari, Abhijit J.

    2015-01-01

    We present a method that quantifies point-wise changes in surface morphology of the bones of the human wrist. The proposed method, referred to as Registration-based Bone Morphometry (RBM), consists of two steps: an atlas selection step and an atlas warping step. The atlas for individual wrist bones was selected based on the shortest l2 distance to the ensemble of wrist bones from a database of a healthy population of subjects. The selected atlas was then warped to the corresponding bones of individuals in the population using a non-linear registration method based on regularized l2 distance minimization. The displacement field thus calculated showed local differences in bone shape that then were used for the analysis of group differences. Our results indicate that RBM has potential to provide a standardized approach to shape analysis of bones of the human wrist. We demonstrate the performance of RBM for examining group differences in wrist bone shapes based on sex and between those of the right and left wrists in healthy individuals. We also present data to show the application of RBM for tracking bone erosion status in rheumatoid arthritis. PMID:26353369

  20. Effect of Experimental Thyrotoxicosis on Brain Gray Matter: A Voxel-Based Morphometry Study

    PubMed Central

    Göbel, Anna; Heldmann, Marcus; Göttlich, Martin; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F.

    2015-01-01

    Background Hyper-as well hypothyroidism have an effect on behavior and brain function. Moreover, during development thyroid hormones influence brain structure. Objectives This study aimed to demonstrate an effect of experimentally induced hyperthyroidism on brain gray matter in healthy adult humans. Methods High-resolution 3D T1-weighted images were acquired in 29 healthy young subjects prior to as well as after receiving 250 µg of T4 per day for 8 weeks. Voxel-based morphometry analysis was performed using Statistical Parametric Mapping 8 (SPM8). Results Laboratory testing confirmed the induction of hyperthyroidism. In the hyperthyroid condition, gray matter volumes were increased in the right posterior cerebellum (lobule VI) and decreased in the bilateral visual cortex and anterior cerebellum (lobules I-IV) compared to the euthyroid condition. Conclusions Our study provides evidence that short periods of hyperthyroidism induce distinct alterations in brain structures of cerebellar regions that have been associated with sensorimotor functions as well as working memory in the literature. PMID:26601082

  1. Sperm morphometry: a tool for detecting biophysical changes associated with viability in cryopreserved bovine spermatozoa.

    PubMed

    García-Herreros, M; Leal, C L V

    2014-09-01

    The aim of this study was to determine whether computerised sperm head morphometric analysis can be used as a diagnostic tool for detecting biophysical changes associated with sperm viability in frozen-thawed bovine spermatozoa. Ejaculates from five bulls (4 ejaculates/bull) were pooled and processed for computerised morphometric analysis, and SYBR-14 green/ethidium homodimer-1 fluorescence-based live/dead viability assay was used simultaneously to confirm the viability index of frozen-thawed spermatozoa. Sperm samples were assigned to three experimental groups. The first group was enriched in live spermatozoa (after a double Percoll selection), the second group was enriched in dead spermatozoa (after a refreeze-thaw procedure), and the last group was a 50 : 50 pool of live/dead spermatozoa (from first and second group samples). There were significant differences (P < 0.001) related to sperm morphometric dimensional parameters among the three groups analysed, being the lowest overall sperm head dimension found in the second (dead spermatozoa) group. In conclusion, sperm head morphometry can be used as a potential diagnostic tool for detecting biophysical changes associated with sperm viability in frozen-thawed bovine spermatozoa.

  2. Regional gray matter abnormalities in patients with schizophrenia determined with optimized voxel-based morphometry

    NASA Astrophysics Data System (ADS)

    Guo, XiaoJuan; Yao, Li; Jin, Zhen; Chen, Kewei

    2006-03-01

    This study examined regional gray matter abnormalities across the whole brain in 19 patients with schizophrenia (12 males and 7 females), comparing with 11 normal volunteers (7 males and 4 females). The customized brain templates were created in order to improve spatial normalization and segmentation. Then automated preprocessing of magnetic resonance imaging (MRI) data was conducted using optimized voxel-based morphometry (VBM). The statistical voxel based analysis was implemented in terms of two-sample t-test model. Compared with normal controls, regional gray matter concentration in patients with schizophrenia was significantly reduced in the bilateral superior temporal gyrus, bilateral middle frontal and inferior frontal gyrus, right insula, precentral and parahippocampal areas, left thalamus and hypothalamus as well as, however, significant increases in gray matter concentration were not observed across the whole brain in the patients. This study confirms and extends some earlier findings on gray matter abnormalities in schizophrenic patients. Previous behavior and fMRI researches on schizophrenia have suggested that cognitive capacity decreased and self-conscious weakened in schizophrenic patients. These regional gray matter abnormalities determined through structural MRI with optimized VBM may be potential anatomic underpinnings of schizophrenia.

  3. Predictive model of synovial membrane degradation using semi-automated morphometry and artificial neural networks.

    PubMed

    Rogoveanu, Otilia Constantina; Kamal, Diana; Trăistaru, Magdalena Rodica; Streba, Costin Teodor

    2016-01-01

    Gonarthrosis is a degenerative disease that affects mainly older people, but whose incidence has increased significantly in the last decade in population under the age of 65. The main objective of this study was developing a predictive model of synovial membrane degradation in relation to local nerve structures in patients with knee osteoarthritis, based on advanced morphometry and artificial neural networks (ANNs). We present here a pilot test of the method, describing preliminary findings in analyzing a pre-set number of images. We tested the system on a pre-defined set of 50 images from patients suffering of gonarthrosis in different stages. Biological material used for the histological study was synovial membrane fragments. We included 50 anonymized images from 25 consecutive patients. We found significant differences between mean fractal dimensions (FDs) of histological elements of normal and pathological tissues. In the case of immunohistochemistry, we found statistically relevant differences for mean FDs of all antibodies. We fed the data to the ANN system designed to recognize pathological regions of the examined tissue. We believe that further study will have an important contribution to the development and will bring new local targeted therapies. These could slow or reverse joint damage and pain relief in patients with osteoarthritis.

  4. The correlation between gray matter volume and perceived social support: a voxel-based morphometry study.

    PubMed

    Che, XianWei; Wei, DongTao; Li, WenFu; Li, HaiJiang; Qiao, Lei; Qiu, Jiang; Zhang, QingLin; Liu, YiJun

    2014-01-01

    Social support refers to interpersonal exchanges that include the combinations of aid, affirmation and affection. Perceived social support is a kind of subjective judgment of one's availability of social support. In spite of the importance of perceived social support to health, however, its neural substrate remains unknown. To address this question, voxel-based morphometry was employed to investigate the neural bases of individual differences in responses to the Perceived Social Support Scale (PSSS) in healthy volunteers (144 men and 203 women; mean age = 19.9; SD = 1.33, age range : 17-27). As a result, multiple regression analysis revealed that the PSSS scores were significantly and positively correlated with gray matter volume in a cluster that mainly included areas in posterior parts of posterior cingulate cortex, bilateral lingual cortex, left occipital lobe and cuneus. Highly-supported individuals had larger gray matter volume in these brain regions, implying a relatively high level of ability to engage in self-referential processes and social cognition. Our results provide a biological basis for exploring perceived social support particularly in relationship to various health parameters and outcomes.

  5. Neural correlates of post-conventional moral reasoning: a voxel-based morphometry study.

    PubMed

    Prehn, Kristin; Korczykowski, Marc; Rao, Hengyi; Fang, Zhuo; Detre, John A; Robertson, Diana C

    2015-01-01

    Going back to Kohlberg, moral development research affirms that people progress through different stages of moral reasoning as cognitive abilities mature. Individuals at a lower level of moral reasoning judge moral issues mainly based on self-interest (personal interests schema) or based on adherence to laws and rules (maintaining norms schema), whereas individuals at the post-conventional level judge moral issues based on deeper principles and shared ideals. However, the extent to which moral development is reflected in structural brain architecture remains unknown. To investigate this question, we used voxel-based morphometry and examined the brain structure in a sample of 67 Master of Business Administration (MBA) students. Subjects completed the Defining Issues Test (DIT-2) which measures moral development in terms of cognitive schema preference. Results demonstrate that subjects at the post-conventional level of moral reasoning were characterized by increased gray matter volume in the ventromedial prefrontal cortex and subgenual anterior cingulate cortex, compared with subjects at a lower level of moral reasoning. Our findings support an important role for both cognitive and emotional processes in moral reasoning and provide first evidence for individual differences in brain structure according to the stages of moral reasoning first proposed by Kohlberg decades ago.

  6. Short Latency Gray Matter Changes in Voxel-Based Morphometry following High Frequent Visual Stimulation

    PubMed Central

    Theysohn, Nina; Diener, Hans-Christoph; Katsarava, Zaza; Obermann, Mark; Holle, Dagny

    2017-01-01

    Magnetic resonance imaging studies using voxel-based morphometry (VBM) detected structural changes in the human brain within periods of months or weeks. The underlying molecular mechanisms of VBM findings remain unresolved. We showed that simple visual stimulation by an alternating checkerboard leads to instant, short-lasting alterations of the primary and secondary visual cortex detected by VBM. The rapidness of occurrence (i.e., within 10 minutes) rather excludes most of the proposed physiological mechanism such as neural or glial cell genesis/degeneration or synapse turnover. We therefore favour cerebral fluid shifts to be the underlying correlate of the here observed VBM gray matter changes. Fast onset gray matter changes might be one important explanation for the inconsistency of VBM study results that often raise concern in regard to the validity of presented data. This study shows that changes detectable by VBM may occur within a few minutes after physiological stimulation and must be considered in future VBM experiments to avoid misinterpretation of results. PMID:28293437

  7. Seasonal morphometry of the vomeronasal organ in the marsupial mouse, Antechinus subtropicus

    PubMed Central

    Gosden, Edward; Bradley, Adrian J.

    2016-01-01

    ABSTRACT The vomeronasal system consists of a peripheral organ and the connected central neuronal networks. The central connections are sexually dimorphic in rodents, and in some species, parameters of the vomeronasal organ (VNO) vary with sex, hormonal exposure, body size and seasonality. The VNO of the dasyurid marsupial mouse, Antechinus subtropicus is presumed to be functional. The unusual life history (male semelparity) is marked by distinct seasonality with differences in hormonal environments both between males and females, and in males at different time points. Body size parameters (e.g., length, weight) display sexual dimorphism and, in males, a pronounced weight gain before breeding is followed by a rapid decline during the single, short reproductive season. VNO morphometry was investigated in male and female A. subtropicus to identify possible life cycle associated activity. The overall length of the VNO is positively correlated with the size of the animal. The amount of sensory epithelium exhibits a negative correlation, decreasing with increasing size of the animal. The effects of sex and breeding condition are not obvious, although they do suggest that sensory vomeronasal epithelium mass declines in the breeding period. The VNO may be more important in A. subtropicus before breeding when it may participate in synchronising reproduction and in the development of the male stress response. J. Morphol. 277:1517–1530, 2016. © 2016 Wiley Periodicals, Inc. PMID:27641160

  8. Normal morphometry of the thoracic aorta in the german shepherd dog: a computed tomographic study.

    PubMed

    Dabanoglu, I

    2007-06-01

    Computed tomographic images of the thoracic aorta of 14 German shepherd dogs were examined in order to determine the morphometry of the thoracic aorta. Examinations were carried out in the transverse plane at both intervertebral and mid-vertebral levels of each thoracic vertebra between T(5) and T(13). The dorsoventral and transversal diameters as well as cross-section area of the thoracic aorta were measured. The widest transversal diameter was observed at T(4-5), whereas the largest dorsoventral diameter was detected at T(5). The maximum cross-section area was detected at T(4-5). When dorsoventral and transversal diameters were compared between males and females, the aortic diameter was found to be smaller in males than in females. Although the shape of the thoracic aorta was transversal oval in the majority of the examined females, the shape of the thoracic aorta was dorsoventral oval in the majority of the males. There were significant differences between all levels measured for transversal (P < 0.001), dorsoventral (P < 0.001) diameters and cross-section area (P < 0.001) of the thoracic aorta. And there was a significant correlation between the three parameters examined. However, the correlation coefficient was highest in females.

  9. Voxel-based morphometry evaluation of patients with photosensitive juvenile myoclonic epilepsy.

    PubMed

    Lin, Katia; Jackowski, Andrea Parolin; Carrete, Henrique; de Araújo Filho, Gerardo Maria; Silva, Henrique Hattori; Guaranha, Mirian Salvadori Bittar; Guilhoto, Laura Maria Figueiredo Ferreira; Bressan, Rodrigo Affonseca; Yacubian, Elza Márcia Targas

    2009-10-01

    We aim to investigate structural brain abnormalities in juvenile myoclonic epilepsy (JME) patients with photosensitivity (PS). Sixty JME patients, 19 (32%) of whom were photosensitive, were submitted to 1.5T magnetic resonance voxel-based morphometry (VBM). The control group (CTL) consisted of 30 sex-matched healthy volunteers. JME patients with (JME-PS) and without (JME-NPS) PS did not differ in their duration of disease, treatment or seizure control. VBM revealed significantly reduced bilateral gray matter volume (GMV) in thalami, insula cortices and cerebellar hemispheres; while significantly increased GMV was observed in the right superior frontal, orbitofrontal and medial frontal gyri of the JME group compared to CTL. JME-PS had reduced bilateral GMV of visual cortices when compared with CTL; while it was not seen among JME-NPS patients. Reduced left hippocampus and left inferior frontal gyrus volume was observed among JME-PS compared with JME-NPS. This study demonstrates structural abnormalities beyond the limits of the frontal lobes and provides evidence for the role of the occipital cortex in human PS, reinforcing the existence of functional-anatomic ictogenic networks in JME and the concept of 'system epilepsies'.

  10. The application of control charts to determine the effect of grid cell size on landform morphometry

    NASA Astrophysics Data System (ADS)

    Napieralski, Jacob; Nalepa, Nick

    2010-02-01

    Geoscientists have become increasingly dependent on digital elevation models (DEMs) to delineate and measure landforms and landscapes. However, the DEM grid cell size available may not be the optimum resolution; this can mask subtle changes in measurements and lead to erroneous results. This paper presents a standardized statistical technique (i.e. statistical process control charts (SPCC)) for determining the optimum DEM resolution (i.e. the coarsest resolution in which detail is not sacrificed) for landforms (e.g. drumlins). For this study, forty-four DEM resolutions, ranging from 1 to 80 m, were used to assess the effect of resolution on drumlin size, shape, and centroid. The results indicate that the optimum resolution for the size variables (width and length) was coarser than the optimum resolution for shape indices (elongation and rose curve). Drumlin location tends to drift in a predictable direction and rate as grid cell size coarsens above particular thresholds. The results prove that resolution plays a critical role in correctly evaluating drumlin morphometry and that care must be taken when utilizing DEMs to summarize drumlin characteristics. The creation of a standardized technique to describe drumlins will allow for scrutiny of previous work and straightforward comparative analyses between studies, while utilizing the optimum resolution will help decipher landform patterns, reveal relationships, and provide more insight into landform evolution.

  11. Automatic identification and quantitative morphometry of unstained spinal nerve using molecular hyperspectral imaging technology.

    PubMed

    Li, Qingli; Chen, Zenggan; He, Xiaofu; Wang, Yiting; Liu, Hongying; Xu, Qintong

    2012-12-01

    Quantitative observation of nerve fiber sections is often complemented by morphological analysis in both research and clinical condition. However, existing manual or semi-automated methods are tedious and labour intensive, fully automated morphometry methods are complicated as the information of color or gray images captured by traditional microscopy is limited. Moreover, most of the methods are time-consuming as the nerve sections need to be stained with some reagents before observation. To overcome these shortcomings, a molecular hyperspectral imaging system is developed and used to observe the spinal nerve sections. The molecular hyperspectral images contain both the structural and biochemical information of spinal nerve sections which is very useful for automatic identification and quantitative morphological analysis of nerve fibers. This characteristic makes it possible for researchers to observe the unstained spinal nerve and live cells in their native environment. To evaluate the performance of the new method, the molecular hyperspectral images were captured and the improved spectral angle mapper algorithm was proposed and used to segment the myelin contours. Then the morphological parameters such as myelin thickness and myelin area were calculated and evaluated. With these morphological parameters, the three dimension surface view images were drawn to help the investigators observe spinal nerve at different angles. The experiment results show that the hyperspectral based method has the potential to identify the spinal nerve more accurate than the traditional method as the new method contains both the spectral and spatial information of nerve sections.

  12. Computational Morphometry for Detecting Changes in Brain Structure Due to Development, Aging, Learning, Disease and Evolution

    PubMed Central

    Mietchen, Daniel; Gaser, Christian

    2009-01-01

    The brain, like any living tissue, is constantly changing in response to genetic and environmental cues and their interaction, leading to changes in brain function and structure, many of which are now in reach of neuroimaging techniques. Computational morphometry on the basis of Magnetic Resonance (MR) images has become the method of choice for studying macroscopic changes of brain structure across time scales. Thanks to computational advances and sophisticated study designs, both the minimal extent of change necessary for detection and, consequently, the minimal periods over which such changes can be detected have been reduced considerably during the last few years. On the other hand, the growing availability of MR images of more and more diverse brain populations also allows more detailed inferences about brain changes that occur over larger time scales, way beyond the duration of an average research project. On this basis, a whole range of issues concerning the structures and functions of the brain are now becoming addressable, thereby providing ample challenges and opportunities for further contributions from neuroinformatics to our understanding of the brain and how it changes over a lifetime and in the course of evolution. PMID:19707517

  13. High-Dimensional Medial Lobe Morphometry: An Automated MRI Biomarker for the New AD Diagnostic Criteria

    PubMed Central

    Valdivia, Fernando

    2014-01-01

    Introduction. Medial temporal lobe atrophy assessment via magnetic resonance imaging (MRI) has been proposed in recent criteria as an in vivo diagnostic biomarker of Alzheimer's disease (AD). However, practical application of these criteria in a clinical setting will require automated MRI analysis techniques. To this end, we wished to validate our automated, high-dimensional morphometry technique to the hypothetical prediction of future clinical status from baseline data in a cohort of subjects in a large, multicentric setting, compared to currently known clinical status for these subjects. Materials and Methods. The study group consisted of 214 controls, 371 mild cognitive impairment (147 having progressed to probable AD and 224 stable), and 181 probable AD from the Alzheimer's Disease Neuroimaging Initiative, with data acquired on 58 different 1.5 T scanners. We measured the sensitivity and specificity of our technique in a hierarchical fashion, first testing the effect of intensity standardization, then between different volumes of interest, and finally its generalizability for a large, multicentric cohort. Results. We obtained 73.2% prediction accuracy with 79.5% sensitivity for the prediction of MCI progression to clinically probable AD. The positive predictive value was 81.6% for MCI progressing on average within 1.5 (0.3 s.d.) year. Conclusion. With high accuracy, the technique's ability to identify discriminant medial temporal lobe atrophy has been demonstrated in a large, multicentric environment. It is suitable as an aid for clinical diagnostic of AD. PMID:25254139

  14. Voxel-Based Morphometry ALE meta-analysis of Bipolar Disorder

    NASA Astrophysics Data System (ADS)

    Magana, Omar; Laird, Robert

    2012-03-01

    A meta-analysis was performed independently to view the changes in gray matter (GM) on patients with Bipolar disorder (BP). The meta-analysis was conducted on a Talairach Space using GingerALE to determine the voxels and their permutation. In order to achieve the data acquisition, published experiments and similar research studies were uploaded onto the online Voxel-Based Morphometry database (VBM). By doing so, coordinates of activation locations were extracted from Bipolar disorder related journals utilizing Sleuth. Once the coordinates of given experiments were selected and imported to GingerALE, a Gaussian was performed on all foci points to create the concentration points of GM on BP patients. The results included volume reductions and variations of GM between Normal Healthy controls and Patients with Bipolar disorder. A significant amount of GM clusters were obtained in Normal Healthy controls over BP patients on the right precentral gyrus, right anterior cingulate, and the left inferior frontal gyrus. In future research, more published journals could be uploaded onto the database and another VBM meta-analysis could be performed including more activation coordinates or a variation of age groups.

  15. Progression of Brain Atrophy in Spinocerebellar Ataxia Type 2: A Longitudinal Tensor-Based Morphometry Study

    PubMed Central

    Mascalchi, Mario; Diciotti, Stefano; Giannelli, Marco; Ginestroni, Andrea; Soricelli, Andrea; Nicolai, Emanuele; Aiello, Marco; Tessa, Carlo; Galli, Lucia; Dotti, Maria Teresa; Piacentini, Silvia; Salvatore, Elena; Toschi, Nicola

    2014-01-01

    Spinocerebellar ataxia type 2 (SCA2) is the second most frequent autosomal dominant inherited ataxia worldwide. We investigated the capability of magnetic resonance imaging (MRI) to track in vivo progression of brain atrophy in SCA2 by examining twice 10 SCA2 patients (mean interval 3.6 years) and 16 age- and gender-matched healthy controls (mean interval 3.3 years) on the same 1.5 T MRI scanner. We used T1-weighted images and tensor-based morphometry (TBM) to investigate volume changes and the Inherited Ataxia Clinical Rating Scale to assess the clinical deficit. With respect to controls, SCA2 patients showed significant higher atrophy rates in the midbrain, including substantia nigra, basis pontis, middle cerebellar peduncles and posterior medulla corresponding to the gracilis and cuneatus tracts and nuclei, cerebellar white matter (WM) and cortical gray matter (GM) in the inferior portions of the cerebellar hemisphers. No differences in WM or GM volume loss were observed in the supratentorial compartment. TBM findings did not correlate with modifications of the neurological deficit. In conclusion, MRI volumetry using TBM is capable of demonstrating the progression of pontocerebellar atrophy in SCA2, supporting a possible role of MRI as biomarker in future trials. PMID:24586758

  16. Adolescent drinking and brain morphometry: A co-twin control analysis.

    PubMed

    Wilson, Sylia; Malone, Stephen M; Thomas, Kathleen M; Iacono, William G

    2015-12-01

    Developmental changes in structure and functioning are thought to make the adolescent brain particularly sensitive to the negative effects of alcohol. Although alcohol use disorders are relatively rare in adolescence, the initiation of alcohol use, including problematic use, becomes increasingly prevalent during this period. The present study examined associations between normative drinking (alcohol initiation, binge drinking, intoxication) and brain morphometry in a sample of 96 adolescent monozygotic twins. A priori regions of interest included 11 subcortical and 20 cortical structures implicated in the existing empirical literature as associated with normative alcohol use in adolescence. In addition, co-twin control analyses were used to disentangle risk for alcohol use from consequences of alcohol exposure on the developing brain. Results indicated significant associations reflecting preexisting vulnerability toward problematic alcohol use, including reduced volume of the amygdala, increased volume of the cerebellum, and reduced cortical volume and thickness in several frontal and temporal regions, including the superior and middle frontal gyri, pars triangularis, and middle and inferior temporal gyri. Results also indicated some associations consistent with a neurotoxic effect of alcohol exposure, including reduced volume of the ventral diencephalon and the middle temporal gyrus.

  17. A useful programme in BASIC for axonal morphometry with introduction of new cytoskeletal parameters.

    PubMed

    Fernández, E; Cuenca, N; De Juan, J

    1991-10-01

    Interest in the structure of axons and quantification of their components has been growing over the last years. However, the existing literature contains few reports of available computer programmes to facilitate such studies. This paper presents a fully comprehensive BASIC programme for the morphometric analysis of electron micrographs of cross-sectional nerve fibres. From drawings of fibre and axonal contours and dots of the microtubules and neurofilaments, the programme calculates the following parameters: area, diameter and form factor of the fibres and axons, number and density of microtubules and neurofilaments, proportion between microtubules and neurofilaments (R-proportion), myelin thickness and the diameter of the axon relative to its sheath (g-ratio). The programme also introduces three new parameters to analyse the degree of uniformity of microtubule and neurofilament distribution: distances between microtubules and between neurofilaments, equilateral index and cytoskeletal intermingling index. The programme is written in Microsoft BASIC Interpreter for Apple Macintosh (Microsoft Corporation) but can be used on other computers. Although the programme has been tested on adult rat optic nerve fibres, it can be used for different projects concerning axonal morphometry.

  18. Giant panda (Ailuropoda melanoleuca) sperm morphometry and function after repeated freezing and thawing.

    PubMed

    Santiago-Moreno, J; Esteso, M C; Pradiee, J; Castaño, C; Toledano-Díaz, A; O'Brien, E; Lopez-Sebastián, A; Martínez-Nevado, E; Delclaux, M; Fernández-Morán, J; Zhihe, Z

    2016-05-01

    This work examines the effects of subsequent cycles of freezing-thawing on giant panda (Ailuropoda melanoleuca) sperm morphometry and function, and assesses whether density-gradient centrifugation (DGC) can increase the number of freezing-thawing cycles this sperm can withstand. A sperm sample was collected by electroejaculation from a mature giant panda and subjected to five freezing-thawing cycles. Although repeated freezing-thawing negatively affected (P < 0.05) sperm motility and membrane integrity, in both nonselected and DCG-selected sperm samples, >60% of the sperm cells in both treatments showed acrosome integrity even after the fifth freezing cycle. In fresh semen, the sperm head length was 4.7 μm, the head width 3.6 μm, area 14.3 μm(2) and perimeter length 14.1 μm. The present results suggest that giant panda sperm trends to be resistant to repeated freezing-thawing, even without DGC selection.

  19. Normozoospermic versus teratozoospermic domestic cats: differential testicular volume, sperm morphometry, and subpopulation structure during epididymal maturation

    PubMed Central

    Gutiérrez-Reinoso, Miguel Angel; García-Herreros, Manuel

    2016-01-01

    Teratozoospermia (<40% morphologically normal spermatozoa/ejaculate) is a frequent phenomenon in feline species. This research was carried out to study the possible differences in testicular volume, differential sperm morphometric traits, and potential differences regarding the sperm subpopulational structure during epididymal sperm maturation in teratozoospermic feline donors. Epididymal sperm samples were collected from the caput (R1), corpus (R2), and cauda (R3) epididymidis in two donor groups (N: normozoospermic; T: teratozoospermic). Aliquots were assessed for concentration, viability, motility, and acrosomal integrity. Sperm morphometric descriptors from CASA-Morph analysis were analyzed by the Principal Component Analysis (PCA) and clustering analyses. Irrespective of the group analyzed, PCA revealed two Principal Components (PCs) for each epididymal region explaining more than the 93% of the variance. Surprisingly, the number of subpopulations remained constant in regions R1-R2-R3 irrespective of the donor group analyzed. However, the distribution of these subpopulations was found to be structurally different and strongly influenced by the epididymal region and the donor group. In conclusion, testicular morphometry and the sperm subpopulation structure were different in N and T donors. The alterations in subpopulations during epididymal maturation could be used as a potential clinical indicator of teratozoospermic individuals since an important influence of teratozoospermia on sperm subpopulation structure has been demonstrated. PMID:27624990

  20. Noninvasive evaluation of nuclear morphometry in breast lesions using multispectral diffuse optical tomography.

    PubMed

    Hajihashemi, Mohammad Reza; Grobmyer, Stephen R; Al-Quran, Samer Z; Jiang, Huabei

    2012-01-01

    Breast cancer is the most prevalent cancer and the main cause of cancer-related death in women worldwide. There are limitations associated with the existing clinical tools for breast cancer detection and alternative modalities for early detection and classification of breast cancer are urgently needed. Here we describe an optical imaging technique, called multispectral diffuse optical tomography (DOT), and demonstrate its ability of non-invasively evaluating nuclear morphometry for differentiating benign from malignant lesions. Photon densities along the surface of the breast were measured to allow for the extraction of three statistical parameters including the size, elongation and density of nuclei inside the breast tissue. The results from 14 patients (4 malignant and 10 benign lesions) show that there exist significant contrasts between the diseased and surrounding normal nuclei and that the recovered nuclear morphological parameters agree well the pathological findings. We found that the nuclei of cancer cells were less-spherical compared with those of surrounding normal cells, while the nuclear density or volume fraction provided the highest contrast among the three statistical parameters recovered. This pilot study demonstrates the potential of multispectral DOT as a cellular imaging method for accurate determination of breast cancer.

  1. Nuclear morphometry and molecular biomarkers of actinic keratosis, sun-damaged, and nonexposed skin.

    PubMed

    Carpenter, Philip M; Linden, Kenneth G; McLaren, Christine E; Li, Kuo-Tung; Arain, Shehla; Barr, Ronald J; Hite, Pamela; Sun, Joannie D; Meyskens, Frank L

    2004-12-01

    Computer-assisted image analysis is useful for quantifying the histologic and molecular changes of sun-induced squamous cell carcinoma progression. We used the CAS 200 image analysis system to measure nuclear morphometric parameters, p53 expression, and proliferation markers in actinic keratosis (AK), sun-exposed, and normal skin in 51 patients. Nuclear morphometry revealed significant increases in nuclear absorbance, irregularity of nuclear shape, and nuclear size in AK compared with normal and sun-damaged skin. These parameters showed significantly greater variability in AK nuclei. Argyrophyllic nucleolar organizer area and number were also significantly greater in AK compared with sun-damaged skin and normal skin. Ki67 and p53 expressions were both increased in sun-damaged skin relative to normal and greater still in AK. These data are evidence that sun damage induces proliferation and p53 abnormalities before the appearance of nuclear abnormalities and their associated DNA instability. Following these changes during a skin cancer chemopreventative trial can then help assess the efficacy of the agent and help determine where in the progression of neoplastic changes it exerts its biological effects.

  2. Neurostructural correlates of two subtypes of specific phobia: a voxel-based morphometry study.

    PubMed

    Hilbert, Kevin; Evens, Ricarda; Maslowski, Nina Isabel; Wittchen, Hans-Ulrich; Lueken, Ulrike

    2015-02-28

    The animal and blood-injection-injury (BII) subtypes of specific phobia are both characterized by subjective fear but distinct autonomic reactions to threat. Previous functional neuroimaging studies have related these characteristic responses to shared and non-shared neural underpinnings. However, no comparative structural data are available. This study aims to fill this gap by comparing the two subtypes and also comparing them with a non-phobic control group. Gray and white matter data of 33 snake phobia subjects (SP), 26 dental phobia subjects (DP), and 37 healthy control (HC) subjects were analyzed with voxel-based morphometry. Especially DP differed from HC and SP by showing significantly increased grey matter volumes in widespread areas including the right subgenual anterior cingulate gyrus, left insula, left orbitofrontal and left prefrontal (PFC) cortices. In addition, white matter volume was significantly increased in the left PFC in DP compared with SP. These results are in line with functional changes observed in dental phobia and point toward those brain circuits associated with emotional processing and regulation. Future studies should aim to further delineate functional and structural connectivity alterations in specific phobia.

  3. Morphometry of eyes, antennae and wings in three species of Siagona(Coleoptera, Carabidae)

    PubMed Central

    Talarico, Federica; Brandmayr, Pietro; Giglio, Anita; Massolo, Alessandro; Brandmayr, Tullia Zetto

    2011-01-01

    Abstract In carabid beetles, physiological and behavioural characteristics reflect specific habitat demands and there is a strong correlation between body form and habit in species with different life style. In this study, we compared the morphometry and compound eye characteristics of three species of the genus Siagona: Siagona jenissoni, Siagona dejeani and Siagona europaea. These carabids have a stenotopic lifestyle in Mediterranean clayey soils, inhabiting the ground fissure system formed during the dry season. All species have a Mediterranean distribution and are nocturnal olfactory hunters, and are strict ant predators. For morphometric measurements, we considered body length (mm), wing length (mm), antenna length (mm), head width (mm), trochanter length (mm), number of ommatidia, eye surface area (mm2), ommatidia density (number of ommatidia/mm2 of eye surface area), head height (mm), thorax height (mm) and abdomen height (mm). The data revealed intersexual and interspecific differences. The three species differ in relative length of the antennae, density and number of ommatidia and relative trochanter length. Significant differences occurred in wing sizes, which are well developed in Siagona europaea, the only species capable of flight. When eye size is compared with other ground beetles of various lifestyles, Siagona shows pronounced “microphthalmy” an adaptation to subterranean life in clayey crevices of tropical and subtropical climates with a marked dry season. PMID:21738413

  4. Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia

    NASA Astrophysics Data System (ADS)

    Pinaya, Walter H. L.; Gadelha, Ary; Doyle, Orla M.; Noto, Cristiano; Zugman, André; Cordeiro, Quirino; Jackowski, Andrea P.; Bressan, Rodrigo A.; Sato, João R.

    2016-12-01

    Neuroimaging-based models contribute to increasing our understanding of schizophrenia pathophysiology and can reveal the underlying characteristics of this and other clinical conditions. However, the considerable variability in reported neuroimaging results mirrors the heterogeneity of the disorder. Machine learning methods capable of representing invariant features could circumvent this problem. In this structural MRI study, we trained a deep learning model known as deep belief network (DBN) to extract features from brain morphometry data and investigated its performance in discriminating between healthy controls (N = 83) and patients with schizophrenia (N = 143). We further analysed performance in classifying patients with a first-episode psychosis (N = 32). The DBN highlighted differences between classes, especially in the frontal, temporal, parietal, and insular cortices, and in some subcortical regions, including the corpus callosum, putamen, and cerebellum. The DBN was slightly more accurate as a classifier (accuracy = 73.6%) than the support vector machine (accuracy = 68.1%). Finally, the error rate of the DBN in classifying first-episode patients was 56.3%, indicating that the representations learned from patients with schizophrenia and healthy controls were not suitable to define these patients. Our data suggest that deep learning could improve our understanding of psychiatric disorders such as schizophrenia by improving neuromorphometric analyses.

  5. Predicting human age using regional morphometry and inter-regional morphological similarity

    NASA Astrophysics Data System (ADS)

    Wang, Xun-Heng; Li, Lihua

    2016-03-01

    The goal of this study is predicting human age using neuro-metrics derived from structural MRI, as well as investigating the relationships between age and predictive neuro-metrics. To this end, a cohort of healthy subjects were recruited from 1000 Functional Connectomes Project. The ages of the participations were ranging from 7 to 83 (36.17+/-20.46). The structural MRI for each subject was preprocessed using FreeSurfer, resulting in regional cortical thickness, mean curvature, regional volume and regional surface area for 148 anatomical parcellations. The individual age was predicted from the combination of regional and inter-regional neuro-metrics. The prediction accuracy is r = 0.835, p < 0.00001, evaluated by Pearson correlation coefficient between predicted ages and actual ages. Moreover, the LASSO linear regression also found certain predictive features, most of which were inter-regional features. The turning-point of the developmental trajectories in human brain was around 40 years old based on regional cortical thickness. In conclusion, structural MRI could be potential biomarkers for the aging in human brain. The human age could be successfully predicted from the combination of regional morphometry and inter-regional morphological similarity. The inter-regional measures could be beneficial to investigating human brain connectome.

  6. Modeling and analysis of 3-D elongated shapes with applications to long bone morphometry

    SciTech Connect

    Burdin, V.; Roux, C.; Lefevre, C.; Stindel, E.

    1996-02-01

    This paper presents a geometric model to be used as a framework for the description and analysis of three-dimensional (3-D) elongated shapes. Elongated shapes can be decomposed into two different parts: a 3-D curve (the central axis) and a 3-D surface (the straight surface). The central axis is described in terms of curvature and torsion. A novel concept of torsion image is introduced which allows the user to study the torsion of some relevant 3-D structures such as the medulla of long bones, without computing the third derivative. The description of the straight surface is based on an ordered set of Fourier Descriptors (FD`s), each set representing a 2-D slice of the structure. These descriptors possess completeness, continuity, and stability properties, and some geometrical invariancies. A polar diagram is built which contains the anatomical information of the straight surface and can be used as a tool for the analysis and discrimination of 3-D structures. A technique for the reconstruction of the 3-D surface from the model`s two components is presented. Various applications to the analysis of long bone structures, such as the ulna and radius, are derived from the model, namely, data compression, comparison of 3-D shapes, segmentation into 3-D primitives, and torsion and curvature analysis. The relevance of the method to morphometry and to clinical applications is discussed.

  7. Detecting Brain Growth Patterns in Normal Children using Tensor-Based Morphometry

    PubMed Central

    Hua, Xue; Leow, Alex D.; Levitt, Jennifer G.; Caplan, Rochelle; Thompson, Paul M.; Toga, Arthur W.

    2010-01-01

    Previous magnetic resonance imaging (MRI)-based volumetric studies have shown age-related increases in the volume of total white matter and decreases in the volume of total gray matter of normal children. Recent adaptations of image analysis strategies enable the detection of human brain growth with improved spatial resolution. In this article, we further explore the spatio-temporal complexity of adolescent brain maturation with tensor-based morphometry. By utilizing a novel non-linear elastic intensity-based registration algorithm on the serial structural MRI scans of 13 healthy children, individual Jacobian growth maps are generated and then registered to a common anatomical space. Statistical analyses reveal significant tissue growth in cerebral white matter, contrasted with gray matter loss in parietal, temporal, and occipital lobe. In addition, a linear regression with age and gender suggests a slowing down of the growth rate in regions with the greatest white matter growth. We demonstrate that a tensor-based Jacobian map is a sensitive and reliable method to detect regional tissue changes during development. PMID:18064588

  8. The brain structure correlates of individual differences in trait mindfulness: a voxel-based morphometry study.

    PubMed

    Lu, H; Song, Y; Xu, M; Wang, X; Li, X; Liu, J

    2014-07-11

    Mindfulness is the state of being attentive to and aware of what is taking place in the present, which is beneficial for reducing stress-related symptoms and improving mental and physical health. Previous studies have demonstrated that meditation practice can improve individuals' mindfulness through modifying functions and structures of multiple brain regions, including the anterior cingulate cortex (ACC), insula, fronto-limbic network, posterior cingulate cortex (PCC), and temporal-parietal junction. However, little is known about the neuroanatomical correlates of trait mindfulness. In the current study, we used voxel-based morphometry to investigate the neural correlates of individual differences in trait mindfulness by correlating the gray matter (GM) volume of each voxel across the whole brain with trait mindfulness measured by the Mindful Attention Awareness Scale in a large sample of young adults (N=247). We found that individuals who were more mindful of the present had greater GM volume in the right hippocampus/amygdala and bilateral ACC, but less GM volume in bilateral PCC and the left orbitofrontal cortex. These results suggest that trait mindfulness is associated with brain regions involved in executive attention, emotion regulation, and self-referential processing, through which mindfulness may exert its beneficial effects on psychological and physical well-being.

  9. LONGITUDINAL VOLUMETRIC CHANGES FOLLOWING TRAUMATIC BRAIN INJURY: A TENSOR BASED MORPHOMETRY STUDY

    PubMed Central

    Farbota, Kimberly D. M.; Sodhi, Aparna; Bendlin, Barbara B.; McLaren, Donald G.; Xu, Guofan; Rowley, Howard A.; Johnson, Sterling C.

    2013-01-01

    After traumatic injury the brain undergoes a prolonged period of degenerative change that is paradoxically accompanied by cognitive recovery. The spatiotemporal pattern of atrophy and the specific relationships of atrophy to cognitive changes are ill understood. The present study used tensor based morphometry and neuropsychological testing to examine brain volume loss in 17 TBI patients and 13 controls over a four year period. Patients were scanned at two months, one year and four years post-injury. High-dimensional warping procedures were used to create change maps of each subject’s brain for each of the two intervals. TBI patients experienced volume loss in both cortical areas and white matter regions during the first interval. We also observed continuing volume loss in extensive regions of white matter during the second interval. Neuropsychological correlations indicated that cognitive tasks were associated with subsequent volume loss in task-relevant regions. The extensive volume loss in brain white matter observed well beyond the first year post-injury suggests that the injured brain remains malleable for an extended period, and the neuropsychological relationships suggest that this volume loss may be associated with subtle cognitive improvements. PMID:22883443

  10. Comparison of template registration methods for multi-site meta-analysis of brain morphometry

    NASA Astrophysics Data System (ADS)

    Faskowitz, Joshua; de Zubicaray, Greig I.; McMahon, Katie L.; Wright, Margaret J.; Thompson, Paul M.; Jahanshad, Neda

    2016-03-01

    Neuroimaging consortia such as ENIGMA can significantly improve power to discover factors that affect the human brain by pooling statistical inferences across cohorts to draw generalized conclusions from populations around the world. Voxelwise analyses such as tensor-based morphometry also allow an unbiased search for effects throughout the brain. Even so, such consortium-based analyses are limited by a lack of high-powered methods to harmonize voxelwise information across study populations and scanners. While the simplest approach may be to map all images to a single standard space, the benefits of cohort-specific templates have long been established. Here we studied methods to pool voxel-wise data across sites using templates customized for each cohort but providing a meaningful common space across all studies for voxelwise comparisons. As non-linear 3D MRI registrations represent mappings between images at millimeter resolution, we need to consider the reliability of these mappings. To evaluate these mappings, we calculated test-retest statistics on the volumetric maps of expansion and contraction. Further, we created study-specific brain templates for ten T1-weighted MRI datasets, and a common space from four study-specific templates. We evaluated the efficacy of using a two-step registration framework versus a single standard space. We found that the two-step framework more reliably mapped subjects to a common space.

  11. An automatic framework for quantitative validation of voxel based morphometry measures of anatomical brain asymmetry.

    PubMed

    Pepe, Antonietta; Dinov, Ivo; Tohka, Jussi

    2014-10-15

    The study of anatomical brain asymmetries has been a topic of great interest in the neuroimaging community in the past decades. However, the accuracy of brain asymmetry measurements has been rarely investigated. In this study, we propose a fully automatic methodology for the quantitative validation of brain tissue asymmetries as measured by Voxel Based Morphometry (VBM) from structural magnetic resonance (MR) images. Starting from a real MR image, the methodology generates simulated 3D MR images with a known and realistic pattern of inter-hemispheric asymmetry that models the left-occipital right-frontal petalia of a normal brain and the related rightward bending of the inter-hemispheric fissure. As an example, we generated a dataset of 64 simulated MR images and applied this dataset for the quantitative validation of optimized VBM measures of asymmetries in brain tissue composition. Our results suggested that VBM analysis strongly depended on the spatial normalization of the individual brain images, the selected template space, and the amount of spatial smoothing applied. The most accurate asymmetry detections were achieved by 9-degrees of freedom registration to the symmetrical template space with 4 to 8mm spatial smoothing.

  12. Response of Thalassia Testudinum Morphometry and Distribution to Environmental Drivers in a Pristine Tropical Lagoon.

    PubMed

    Medina-Gómez, Israel; Madden, Christopher J; Herrera-Silveira, Jorge; Kjerfve, Björn

    2016-01-01

    This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS) of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 ("La Niña") which is associated with a wetter dry season and following a strong storm (Hurricane Dean). The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system's salinity gradient and external nutrients supply from the coastal wetland.

  13. Early airway infection, inflammation, and lung function in cystic fibrosis

    PubMed Central

    Nixon, G; Armstrong, D; Carzino, R; Carlin, J; Olinsky, A; Robertson, C; Grimwood, K

    2002-01-01

    Aims: To determine the relation between lower airway infection and inflammation, respiratory symptoms, and lung function in infants and young children with cystic fibrosis (CF). Methods: A prospective study of children with CF aged younger than 3 years, diagnosed by a newborn screening programme. All were clinically stable and had testing as outpatients. Subjects underwent bronchial lavage (BL) and lung function testing by the raised volume rapid thoracoabdominal compression technique under general anaesthesia. BL fluid was cultured and analysed for neutrophil count, interleukin 8, and neutrophil elastase. Lung function was assessed by forced expiratory volume in 0.5, 0.75, and 1 second. Results: Thirty six children with CF were tested on 54 occasions. Lower airway infection shown by BL was associated with a 10% reduction in FEV0.5 compared with subjects without infection. No relation was identified between airway inflammation and lung function. Daily moist cough within the week before testing was reported on 20/54 occasions, but in only seven (35%) was infection detected. Independent of either infection status or airway inflammation, those with daily cough had lower lung function than those without respiratory symptoms at the time of BL (mean adjusted FEV0.5 195 ml and 236 ml respectively). Conclusions: In young children with CF, both respiratory symptoms and airway infection have independent, additive effects on lung function, unrelated to airway inflammation. Further studies are needed to understand the mechanisms of airway obstruction in these young patients. PMID:12244003

  14. Three-dimensional reconstruction of upper airways from MDCT

    NASA Astrophysics Data System (ADS)

    Perchet, Diane; Fetita, Catalin; Preteux, Francoise

    2005-03-01

    Under the framework of clinical respiratory investigation, providing accurate modalities for morpho-functional analysis is essential for diagnosis improvement, surgical planning and follow-up. This paper focuses on the upper airways investigation and develops an automated approach for 3D mesh reconstruction from MDCT acquisitions. In order to overcome the difficulties related to the complex morphology of the upper airways and to the image gray level heterogeneity of the airway lumens and thin bony septa, the proposed 3D reconstruction methodology combines 2D segmentation and 3D surface regularization approaches. The segmentation algorithm relies on mathematical morphology theory and provides airway lumen robust discrimination from the surrounding tissues, while preserving the connectivity relationship between the different anatomical structures. The 3D regularization step uses an energy-based modeling in order to achieve a smooth and well-fitted 3D surface of the upper airways. An accurate 3D mesh representation of the reconstructed airways makes it possible to develop specific clinical applications such as virtual endoscopy, surgical planning and computer assisted intervention. In addition, building up patient-specific 3D models of upper airways is highly valuable for the study and design of inhaled medication delivery via computational fluid dynamics (CFD) simulations.

  15. FAMM Flap in Reconstructing Postsurgical Nasopharyngeal Airway Stenosis

    PubMed Central

    Nangole, Ferdinand Wanjala; Khainga, Stanley Ominde

    2014-01-01

    Introduction. Postsurgical nasopharyngeal airway stenosis can be a challenge to manage. The stenosis could be as a result of any surgical procedure in the nasopharyngeal region that heals extensive scarring and fibrosis. Objective. To evaluate patients with nasopharyngeal stenosis managed with FAMM flap. Study Design. Prospective study of patients with nasopharyngeal stenosis at the Kenyatta National Hospital between 2010 and 2013 managed with FAMM flap. Materials and Methods. Patients with severe nasopharyngeal airway stenosis were reviewed and managed with FAMM flaps at the Kenyatta National Hospital. Postoperatively they were assessed for symptomatic improvement in respiratory distress, patency of the nasopharyngeal airway, and donor site morbidity. Results. A total of 8 patients were managed by the authors in a duration of 4 years with nasopharyngeal stenosis. Five patients were managed with unilateral FAMM flaps in a two-staged surgical procedure. Four patients had complete relieve of the airway obstruction with a patent airway created. One patient had a patent airway created though with only mild improvement in airway obstruction. Conclusion. FAMM flap provides an alternative in the management of postsurgical severe nasopharyngeal stenosis. It is a reliable flap that is easy to raise and could provide adequate epithelium for the stenosed pharynx. PMID:25328699

  16. The usefulness of biomarkers of airway inflammation in managing asthma.

    PubMed

    Patil, Sarita U; Long, Aidan A

    2010-01-01

    The goal of managing asthma is to maintain disease control. Current approaches to assessment of control do not include measurement of airway inflammation. This study was designed to assess the usefulness of biomarkers of airway inflammation in guiding asthma management decisions. A literature review was performed. Bronchial biopsy is a direct measure of airway inflammation but not practical for routine use. Enumeration of sputum eosinophils is very useful in guiding changes in controller medication to decrease asthma exacerbations, whereas measurement of exhaled nitric oxide has not proven to be useful in this regard. Serial measurement of airway hyperreactivity as a guide to asthma management yields inconclusive results. Use of indirect stimuli for bronchial challenge offers both practical and theoretical advantages in the assessment of airway hyperreactivity. Data on the analysis of exhaled breath condensate have not yet been studied adequately in guiding management decisions. Enumeration of sputum cell counts appears to be the most useful biomarker of airway inflammation in guiding asthma management decisions. Combined approaches using simple methods of measuring airway hyperreactivity and obtaining sputum samples hold promise for the future, particularly if rapid analysis of cellular products in sputum can be developed.

  17. Coupled cellular therapy and magnetic targeting for airway regeneration.

    PubMed

    Ordidge, Katherine L; Gregori, Maria; Kalber, Tammy L; Lythgoe, Mark F; Janes, Sam M; Giangreco, Adam

    2014-06-01

    Airway diseases including COPD (chronic obstructive pulmonary disease), cystic fibrosis and lung cancer are leading causes of worldwide morbidity and mortality, with annual healthcare costs of billions of pounds. True regeneration of damaged airways offers the possibility of restoring lung function and protecting against airway transformation. Recently, advances in tissue engineering have allowed the development of cadaveric and biosynthetic airway grafts. Although these have produced encouraging results, the ability to achieve long-term functional airway regeneration remains a major challenge. To promote regeneration, exogenously delivered stem and progenitor cells are being trialled as cellular therapies. Unfortunately, current evidence suggests that only small numbers of exogenously delivered stem cells engraft within lungs, thereby limiting their utility for airway repair. In other organ systems, magnetic targeting has shown promise for improving long-term robust cell engraftment. This technique involves in vitro cell expansion, magnetic actuation and magnetically guided cell engraftment to sites of tissue damage. In the present paper, we discuss the utility of coupling stem cell-mediated cellular therapy with magnetic targeting for improving airway regeneration.

  18. Mitochondrial Transplantation Attenuates Airway Hyperresponsiveness by Inhibition of Cholinergic Hyperactivity

    PubMed Central

    Su, Yuan; Zhu, Liping; Yu, Xiangyuan; Cai, Lei; Lu, Yankai; Zhang, Jiwei; Li, Tongfei; Li, Jiansha; Xia, Jingyan; Xu, Feng; Hu, Qinghua

    2016-01-01

    Increased cholinergic activity has been highlighted in the pathogenesis of airway hyperresponsiveness, and alternations of mitochondrial structure and function appear to be involved in many lung diseases including airway hyperresponsiveness. It is crucial to clarify the cause-effect association between mitochondrial dysfunction and cholinergic hyperactivity in the pathogenesis of airway hyperresponsiveness. Male SD rats and cultured airway epithelial cells were exposed to cigarette smoke plus lipopolysaccharide administration; mitochondria isolated from airway epithelium were delivered into epithelial cells in vitro and in vivo. Both the cigarette smoke plus lipopolysaccharide-induced cholinergic hyperactivity in vitro and the airway hyperresponsiveness to acetylcholine in vivo were reversed by the transplantation of exogenous mitochondria. The rescue effects of exogenous mitochondria were imitated by the elimination of excessive reactive oxygen species or blockage of muscarinic M3 receptor, but inhibited by M receptor enhancer. Mitochondrial transplantation effectively attenuates cigarette smoke plus lipopolysaccharide-stimulated airway hyperresponsiveness through the inhibition of ROS-enhanced epithelial cholinergic hyperactivity. PMID:27279915

  19. Long-Acting Beta Agonists Enhance Allergic Airway Disease

    PubMed Central

    Knight, John M.; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O.; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A.; Milner, Joshua D.; Zhang, Yuan; Mandal, Pijus K.; Luong, Amber; Kheradmand, Farrah

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6. PMID:26605551

  20. Long-Acting Beta Agonists Enhance Allergic Airway Disease.

    PubMed

    Knight, John M; Mak, Garbo; Shaw, Joanne; Porter, Paul; McDermott, Catherine; Roberts, Luz; You, Ran; Yuan, Xiaoyi; Millien, Valentine O; Qian, Yuping; Song, Li-Zhen; Frazier, Vincent; Kim, Choel; Kim, Jeong Joo; Bond, Richard A; Milner, Joshua D; Zhang, Yuan; Mandal, Pijus K; Luong, Amber; Kheradmand, Farrah; McMurray, John S; Corry, David B

    2015-01-01

    Asthma is one of the most common of medical illnesses and is treated in part by drugs that activate the beta-2-adrenoceptor (β2-AR) to dilate obstructed airways. Such drugs include long acting beta agonists (LABAs) that are paradoxically linked to excess asthma-related mortality. Here we show that LABAs such as salmeterol and structurally related β2-AR drugs such as formoterol and carvedilol, but not short-acting agonists (SABAs) such as albuterol, promote exaggerated asthma-like allergic airway disease and enhanced airway constriction in mice. We demonstrate that salmeterol aberrantly promotes activation of the allergic disease-related transcription factor signal transducer and activator of transcription 6 (STAT6) in multiple mouse and human cells. A novel inhibitor of STAT6, PM-242H, inhibited initiation of allergic disease induced by airway fungal challenge, reversed established allergic airway disease in mice, and blocked salmeterol-dependent enhanced allergic airway disease. Thus, structurally related β2-AR ligands aberrantly activate STAT6 and promote allergic airway disease. This untoward pharmacological property likely explains adverse outcomes observed with LABAs, which may be overcome by agents that antagonize STAT6.

  1. Inhibition of airway surface fluid absorption by cholinergic stimulation

    PubMed Central

    Joo, Nam Soo; Krouse, Mauri E.; Choi, Jae Young; Cho, Hyung-Ju; Wine, Jeffrey J.

    2016-01-01

    In upper airways airway surface liquid (ASL) depth and clearance rates are both increased by fluid secretion. Secretion is opposed by fluid absorption, mainly via the epithelial sodium channel, ENaC. In static systems, increased fluid depth activates ENaC and decreased depth inhibits it, suggesting that secretion indirectly activates ENaC to reduce ASL depth. We propose an alternate mechanism in which cholinergic input, which causes copious airway gland secretion, also inhibits ENaC-mediated absorption. The conjoint action accelerates clearance, and the increased transport of mucus out of the airways restores ASL depth while cleansing the airways. We were intrigued by early reports of cholinergic inhibition of absorption by airways in some species. To reinvestigate this phenomenon, we studied inward short-circuit currents (Isc) in tracheal mucosa from human, sheep, pig, ferret, and rabbit and in two types of cultured cells. Basal Isc was inhibited 20–70% by the ENaC inhibitor, benzamil. Long-lasting inhibition of ENaC-dependent Isc was also produced by basolateral carbachol in all preparations except rabbit and the H441 cell line. Atropine inhibition produced a slow recovery or prevented inhibition if added before carbachol. The mechanism for inhibition was not determined and is most likely multi-factorial. However, its physiological significance is expected to be increased mucus clearance rates in cholinergically stimulated airways. PMID:26846701

  2. Protein tyrosine phosphatase SHP2 regulates TGF-β1 production in airway epithelia and asthmatic airway remodeling in mice

    PubMed Central

    Qin, X.-J.; Zhang, G.-S.; Zhang, X.; Qiu, Z.-W.; Wang, P.-L.; Li, Y.-W.; Li, W.; Xie, Q.-M.; Ke, Y.-H.; Lee, J. J.; Shen, H.-H.

    2014-01-01

    Background Transforming growth factor (TGF)-β1 produced in airway epithelia has been suggested as a contributor to the airway remodeling observed in asthma patients. The protein tyrosine phosphatase SHP2 is a demonstrable modulator of TGF-β1 production and thus a potential regulator of airway remodeling. Objectives To define the signal event by which SHP2 regulates asthmatic responses in airway epithelial cells by using a mouse model of experimental OVA-induced airway remodeling. Methods The airways of Shp2flox/flox mice were infected with recombinant adenovirus vectors expressing a Cre recombinase–green fluorescence protein (GFP) fusion protein as part of allergen provocation studies using mice sensitized with ovalbumin (OVA) and repeatedly challenged with OVA. Several endpoint pathologies were assessed, including airway hyper-responsiveness (AHR), lung inflammatory score, peribronchial collagen deposition, and α-smooth muscle actin (SMA) hyperplasia. In vitro studies using airway epithelial cells (BEAS-2B) were used to investigate the role of SHP2 in the regulation of pulmonary remodeling events, including the expression of collagen, α-SMA, and TGF-β1. Results Chronic OVA challenges in wild-type mice resulted in airway remodeling and lung dysfunction (e.g., increased inflammatory scores, collagen deposition (fibrosis), smooth muscle hyperplasia, and a significant increase in AHR). These endpoint pathology metrics were each significantly attenuated by conditional shp2 gene knockdown in airway epithelia. In vitro studies using BEAS-2B cells also demonstrated that the level of TGF-β1 production by these cells correlated with the extent of shp2 gene expression. Conclusions SHP2 activities in airway epithelial cells appear to modulate TGF-β1 production and, in turn, regulate allergic airway remodeling following allergen provocation. Clinical Implications Our findings identify SHP2 as a previously underappreciated contributor to the airway remodeling and lung

  3. Classification of pulmonary airway disease based on mucosal color analysis

    NASA Astrophysics Data System (ADS)

    Suter, Melissa; Reinhardt, Joseph M.; Riker, David; Ferguson, John Scott; McLennan, Geoffrey

    2005-04-01

    Airway mucosal color changes occur in response to the development of bronchial diseases including lung cancer, cystic fibrosis, chronic bronchitis, emphysema and asthma. These associated changes are often visualized using standard macro-optical bronchoscopy techniques. A limitation to this form of assessment is that the subtle changes that indicate early stages in disease development may often be missed as a result of this highly subjective assessment, especially in inexperienced bronchoscopists. Tri-chromatic CCD chip bronchoscopes allow for digital color analysis of the pulmonary airway mucosa. This form of analysis may facilitate a greater understanding of airway disease response. A 2-step image classification approach is employed: the first step is to distinguish between healthy and diseased bronchoscope images and the second is to classify the detected abnormal images into 1 of 4 possible disease categories. A database of airway mucosal color constructed from healthy human volunteers is used as a standard against which statistical comparisons are made from mucosa with known apparent airway abnormalities. This approach demonstrates great promise as an effective detection and diagnosis tool to highlight potentially abnormal airway mucosa identifying a region possibly suited to further analysis via airway forceps biopsy, or newly developed micro-optical biopsy strategies. Following the identification of abnormal airway images a neural network is used to distinguish between the different disease classes. We have shown that classification of potentially diseased airway mucosa is possible through comparative color analysis of digital bronchoscope images. The combination of the two strategies appears to increase the classification accuracy in addition to greatly decreasing the computational time.

  4. Transcriptional Regionalization of the Fruit Fly’s Airway Epithelium

    PubMed Central

    Faisal, Muhammad N.; Hoffmann, Julia; El-Kholy, Samar; Kallsen, Kimberley; Wagner, Christina; Bruchhaus, Iris; Fink, Christine; Roeder, Thomas

    2014-01-01

    Although airway epithelia are primarily devoted to gas exchange, they have to fulfil a number of different tasks including organ maintenance and the epithelial immune response to fight airborne pathogens. These different tasks are at least partially accomplished by specialized cell types in the epithelium. In addition, a proximal to distal gradient mirroring the transition from airflow conduction to real gas exchange, is also operative. We analysed the airway system of larval Drosophila melanogaster with respect to region-specific expression in the proximal to distal axis. The larval airway system is made of epithelial cells only. We found differential expression between major trunks of the airways and more distal ones comprising primary, secondary and terminal ones. A more detailed analysis was performed using DNA-microarray analysis to identify cohorts of genes that are either predominantly expressed in the dorsal trunks or in the primary/secondary/terminal branches of the airways. Among these differentially expressed genes are especially those involved in signal transduction. Wnt-signalling associated genes for example are predominantly found in secondary/terminal airways. In addition, some G-protein coupled receptors are differentially expressed between both regions of the airways, exemplified by those activated by octopamine or tyramine, the invertebrate counterparts of epinephrine and norepinephrine. Whereas the OAMB is predominantly found in terminal airway regions, the oct3βR has higher expression levels in dorsal trunks. In addition, we observed a significant association of both, genes predominantly expressed in dorsal trunks or in primary to terminal branches branches with those regulated by hypoxia. Taken together, this observed differential expression is indicative for a proximal to distal transcriptional regionalization presumably reflecting functional differences in these parts of the fly’s airway system. PMID:25020150

  5. CT Metrics of Airway Disease and Emphysema in Severe COPD

    PubMed Central

    Kim, Woo Jin; Silverman, Edwin K.; Hoffman, Eric; Criner, Gerard J.; Mosenifar, Zab; Sciurba, Frank C.; Make, Barry J.; Carey, Vincent; Estépar, Raúl San José; Diaz, Alejandro; Reilly, John J.; Martinez, Fernando J.; Washko, George R.

    2009-01-01

    Background: CT scan measures of emphysema and airway disease have been correlated with lung function in cohorts of subjects with a range of COPD severity. The contribution of CT scan-assessed airway disease to objective measures of lung function and respiratory symptoms such as dyspnea in severe emphysema is less clear. Methods: Using data from 338 subjects in the National Emphysema Treatment Trial (NETT) Genetics Ancillary Study, densitometric measures of emphysema using a threshold of −950 Hounsfield units (%LAA-950) and airway wall phenotypes of the wall thickness (WT) and the square root of wall area (SRWA) of a 10-mm luminal perimeter airway were calculated for each subject. Linear regression analysis was performed for outcome variables FEV1 and percent predicted value of FEV1 with CT scan measures of emphysema and airway disease. Results: In univariate analysis, there were significant negative correlations between %LAA-950 and both the WT (r = −0.28, p = 0.0001) and SRWA (r = −0.19, p = 0.0008). Airway wall thickness was weakly but significantly correlated with postbronchodilator FEV1% predicted (R = −0.12, p = 0.02). Multivariate analysis showed significant associations between either WT or SRWA (β = −5.2, p = 0.009; β = −2.6, p = 0.008, respectively) and %LAA-950 (β = −10.6, p = 0.03) with the postbronchodilator FEV1% predicted. Male subjects exhibited significantly thicker airway wall phenotypes (p = 0.007 for WT and p = 0.0006 for SRWA). Conclusions: Airway disease and emphysema detected by CT scanning are inversely related in patients with severe COPD. Airway wall phenotypes were influenced by gender and associated with lung function in subjects with severe emphysema. PMID:19411295

  6. Angiogenesis and airway reactivity in asthmatic Brown Norway rats.

    PubMed

    Wagner, Elizabeth M; Jenkins, John; Schmieder, Anne; Eldridge, Lindsey; Zhang, Qiong; Moldobaeva, Aigul; Zhang, Huiying; Allen, John S; Yang, Xiaoxia; Mitzner, Wayne; Keupp, Jochen; Caruthers, Shelton D; Wickline, Samuel A; Lanza, Gregory M

    2015-01-01

    Expanded and aberrant bronchial vascularity, a prominent feature of the chronic asthmatic airway, might explain persistent airway wall edema and sustained leukocyte recruitment. Since it is well established that there are causal relationships between exposure to house dust mite (HDM) and the development of asthma, determining the effects of HDM in rats, mammals with a bronchial vasculature similar to humans, provides an opportunity to study the effects of bronchial angiogenesis on airway function directly. We studied rats exposed bi-weekly to HDM (Der p 1; 50 μg/challenge by intranasal aspiration, 1, 2, 3 weeks) and measured the time course of appearance of increased blood vessels within the airway wall. Results demonstrated that within 3 weeks of HDM exposure, the number of vessels counted within airway walls of bronchial airways (0.5-3 mm perimeter) increased significantly. These vascular changes were accompanied by increased airway responsiveness to methacholine. A shorter exposure regimen (2 weeks of bi-weekly exposure) was insufficient to cause a significant increase in functional vessels or reactivity. Yet, 19F/1H MR imaging at 3T following αvβ3-targeted perfluorocarbon nanoparticle infusion revealed a significant increase in 19F signal in rat airways after 2 weeks of bi-weekly HDM, suggesting earlier activation of the process of neovascularization. Although many antigen-induced mouse models exist, mice lack a bronchial vasculature and consequently lack the requisite human parallels to study bronchial edema. Overall, our results provide an important new model to study the impact of bronchial angiogenesis on chronic inflammation and airways hyperreactivity.

  7. Upper airway segmentation and measurement in MRI using fuzzy connectedness

    NASA Astrophysics Data System (ADS)

    Liu, Jianguo; Udupa, Jayaram K.; Odhner, Dewey; McDonough, Joe M.; Arens, Raanan

    2002-04-01

    The purpose of this work is to build a computerized system for the delineation of upper airway structures via MRI and to evaluate its effectiveness for routine clinical use in aiding diagnosis of upper airway disorders in children. We use two MRI protocols, axial T1 and T2, to gather information about different aspects of the airway and its surrounding soft tissue structures including adenoid, tonsils, tongue and soft palate. These images are processed and segmented to compute the architectural parameters of the airway such as its surface description, volume, central (medial) line, and cross-sectional areas at planes orthogonal to the central line. We have built a software package based on 3DVIEWNIX and running on a 450 MHz Pentium PC under Linux system (and on a Sun workstation under Unix) for the various operations of visualization, segmentation, registration, prefiltering, interpolation, standardization, and quantitative analysis of the airway. The system has been tested utilizing 40 patient studies. For every study, the system segmented and displayed a smooth 3D rendition of the airway, its central line and a plot of the cross-sectional area of the airway orthogonal to the central line as a function of the distance from one end of the central line. The tests indicate 97% precision and accuracy for segmentation. The mean time taken per study is about 4 minutes for the airway. This includes operator interaction time and processing time. This method provides a robust and fast means of assessing the airway size, shape, and places of restriction, as well as providing a structural data set suitable for use in modeling studies of airflow and mechanics.

  8. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics

    PubMed Central

    Blankman, Elizabeth; Jensen, Christopher C.; Krishnan, Ramaswamy; James, Alan L.; Elliot, John G.; Green, Francis H.; Liu, Jeffrey C.; Seow, Chun Y.; Park, Jin-Ah; Beckerle, Mary C.; Paré, Peter D.; Fredberg, Jeffrey J.; Smith, Mark A.

    2017-01-01

    Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI) whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM) cells to stretch, but underlying molecular mechanisms–and their failure in asthma–remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma. PMID:28278518

  9. The actin regulator zyxin reinforces airway smooth muscle and accumulates in airways of fatal asthmatics.

    PubMed

    Rosner, Sonia R; Pascoe, Christopher D; Blankman, Elizabeth; Jensen, Christopher C; Krishnan, Ramaswamy; James, Alan L; Elliot, John G; Green, Francis H; Liu, Jeffrey C; Seow, Chun Y; Park, Jin-Ah; Beckerle, Mary C; Paré, Peter D; Fredberg, Jeffrey J; Smith, Mark A

    2017-01-01

    Bronchospasm induced in non-asthmatic human subjects can be easily reversed by a deep inspiration (DI) whereas bronchospasm that occurs spontaneously in asthmatic subjects cannot. This physiological effect of a DI has been attributed to the manner in which a DI causes airway smooth muscle (ASM) cells to stretch, but underlying molecular mechanisms-and their failure in asthma-remain obscure. Using cells and tissues from wild type and zyxin-/- mice we report responses to a transient stretch of physiologic magnitude and duration. At the level of the cytoskeleton, zyxin facilitated repair at sites of stress fiber fragmentation. At the level of the isolated ASM cell, zyxin facilitated recovery of contractile force. Finally, at the level of the small airway embedded with a precision cut lung slice, zyxin slowed airway dilation. Thus, at each level zyxin stabilized ASM structure and contractile properties at current muscle length. Furthermore, when we examined tissue samples from humans who died as the result of an asthma attack, we found increased accumulation of zyxin compared with non-asthmatics and asthmatics who died of other causes. Together, these data suggest a biophysical role for zyxin in fatal asthma.

  10. Airway management evolution - in a search for an ideal extraglottic airway device.

    PubMed

    Michálek, Pavel; Miller, Donald M

    2014-01-01

    Extraglottic airway devices (EADs) are commonly used equipment for airway maintenance during elective procedures under general anaesthesia. They may be used also in other indications such as conduit for tracheal intubation or rescue airway device in prehospital medicine. Current classifications of the EADs lack systematic approach and therefore classification according to the sealing sites and sealing mechanisms is suggested in this review article. Modern EADs are disposable, latex-free devices made of plastic materials most commonly from polyvinylchloride (PVC). The bowl of uncuffed sealers is manufactured from different materials such as thermoplastic elastomers or ethylene-vinyl-acetate co-polymer. EADs create various physical forces exerted on the adjacent tissues which may contribute to different sealing characteristic of particular device or to variable incidence of postoperative complications. Desired features of an ideal EAD involve easy insertion, high insertion success rate even by inexperienced users, protection against aspiration of gastric contents and low incidence of postoperative complications such as sore throat, hoarseness, cough or swallowing difficulties.

  11. Non-malignant central airway obstruction.

    PubMed

    Barros Casas, David; Fernández-Bussy, Sebastian; Folch, Erik; Flandes Aldeyturriaga, Javier; Majid, Adnan

    2014-08-01

    The most common causes of non-malignant central airway obstruction are post-intubation and post-tracheostomytracheal stenosis, followed by the presence of foreign bodies, benign endobronchial tumours and tracheobronchomalacia. Other causes, such as infectious processes or systemic diseases, are less frequent. Despite the existence of numerous classification systems, a consensus has not been reached on the use of any one of them in particular. A better understanding of the pathophysiology of this entity has allowed us to improve diagnosis and treatment. For the correct diagnosis of nonspecific clinical symptoms, pulmonary function tests, radiological studies and, more importantly, bronchoscopy must be performed. Treatment must be multidisciplinary and tailored to each patient, and will require surgery or endoscopic intervention using thermoablative and mechanical techniques.

  12. Liquid and surfactant delivery into pulmonary airways

    PubMed Central

    Halpern, David; Fujioka, Hideki; Takayama, Shuichi; Grotberg, James B.

    2008-01-01

    We describe the mechanisms by which liquids and surfactants can be delivered into the pulmonary airways. These are instilled and transported throughout the lung in clinical therapies such as surfactant replacement therapy, partial liquid ventilation and drug delivery. The success of these treatments is contingent on the liquid distribution and the delivery to targeted regions of the lung. The targeting of a liquid plug can be influenced by a variety of factors such as the physical properties of the liquid, the interfacial activity, the gravitational orientation, instillation method and propagation speed. We provide a review of experimental and theoretical studies that examine these effects in single tubes or channels, in tubes with single bifurcations and in the whole lung. PMID:18585985

  13. Airway Reflux, Cough and Respiratory Disease

    PubMed Central

    Molyneux, Ian D.; Morice, Alyn H.

    2011-01-01

    It is increasingly accepted that the effects of gastro-oesophageal reflux are not limited to the gastrointestinal tract. The adjacent respiratory structures are also at risk from material ejected from the proximal oesophagus as a result of the failure of anatomical and physiological barriers. There is evidence of the influence of reflux on several respiratory and otorhinological conditions and although in many cases the precise mechanism has yet to be elucidated, the association alone opens potential novel avenues of therapy to clinicians struggling to treat patients with apparently intractable respiratory complaints. This review provides a description of the airway reflux syndrome, its effects on the lung and current and future therapeutic options. PMID:23251752

  14. Airway Management in a Patient with Wolf-Hirschhorn Syndrome

    PubMed Central

    Udani, Andrea G.

    2016-01-01

    We present a case of a 3-month-old female with Wolf-Hirschhorn syndrome (WHS) undergoing general anesthesia for laparoscopic gastrostomy tube placement with a focus on airway management. WHS is a rare 4p microdeletion syndrome resulting in multiple congenital abnormalities, including craniofacial deformities. Microcephaly, micrognathia, and glossoptosis are common features in WHS patients and risk factors for a pediatric airway that is potentially difficult to intubate. We discuss anesthesia strategies for airway preparation and management in a WHS patient requiring general anesthesia with endotracheal intubation. PMID:27752382

  15. Airways microbiota: Hidden Trojan horses in asbestos exposed individuals?

    PubMed

    Magouliotis, Dimitrios E; Tasiopoulou, Vasiliki S; Molyvdas, Paschalis-Adam; Gourgoulianis, Konstantinos I; Hatzoglou, Chrissi; Zarogiannis, Sotirios G

    2014-11-01

    Malignant pleura mesothelioma (MPM) is a rare type of cancer with devastating prognosis, which develops in the pleural cavity from transformed mesothelium. MPM has been directly associated with asbestos exposure however there are aspects of the pathophysiology involved in the translocation of asbestos fibers in the pleura that remain unclear. Here, we propose and discuss that certain proteins secreted by airways symbiotic microbiota create membrane pores to the airway epithelial cells, through which asbestos fibers can penetrate the lung parenchyma and reach the sub-pleural areas. We evaluate this hypothesis using data from the published literature regarding the airways microbiota toxins such as cholesterol-dependent cytolysins (CDCs).

  16. Airway Microbiota and the Implications of Dysbiosis in Asthma.

    PubMed

    Durack, Juliana; Boushey, Homer A; Lynch, Susan V

    2016-07-01

    The mucosal surfaces of the human body are typically colonized by polymicrobial communities seeded in infancy and are continuously shaped by environmental exposures. These communities interact with the mucosal immune system to maintain homeostasis in health, but perturbations in their composition and function are associated with lower airway diseases, including asthma, a developmental and heterogeneous chronic disease with various degrees and types of airway inflammation. This review will summarize recent studies examining airway microbiota dysbioses associated with asthma and their relationship with the pathophysiology of this disease.

  17. Inhaled Antibiotics for Lower Airway Infections

    PubMed Central

    Quon, Bradley S.; Goss, Christopher H.

    2014-01-01

    Inhaled antibiotics have been used to treat chronic airway infections since the 1940s. The earliest experience with inhaled antibiotics involved aerosolizing antibiotics designed for parenteral administration. These formulations caused significant bronchial irritation due to added preservatives and nonphysiologic chemical composition. A major therapeutic advance took place in 1997, when tobramycin designed for inhalation was approved by the U.S. Food and Drug Administration (FDA) for use in patients with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infection. Attracted by the clinical benefits observed in CF and the availability of dry powder antibiotic formulations, there has been a growing interest in the use of inhaled antibiotics in other lower respiratory tract infections, such as non-CF bronchiectasis, ventilator-associated pneumonia, chronic obstructive pulmonary disease, mycobacterial disease, and in the post–lung transplant setting over the past decade. Antibiotics currently marketed for inhalation include nebulized and dry powder forms of tobramycin and colistin and nebulized aztreonam. Although both the U.S. Food and Drug Administration and European Medicines Agency have approved their use in CF, they have not been approved in other disease areas due to lack of supportive clinical trial evidence. Injectable formulations of gentamicin, tobramycin, amikacin, ceftazidime, and amphotericin are currently nebulized “off-label” to manage non-CF bronchiectasis, drug-resistant nontuberculous mycobacterial infections, ventilator-associated pneumonia, and post-transplant airway infections. Future inhaled antibiotic trials must focus on disease areas outside of CF with sample sizes large enough to evaluate clinically important endpoints such as exacerbations. Extrapolating from CF, the impact of eradicating organisms such as P. aeruginosa in non-CF bronchiectasis should also be evaluated. PMID:24673698

  18. Nrf2 protects against airway disorders

    SciTech Connect

    Cho, Hye-Youn; Kleeberger, Steven R.

    2010-04-01

    Nuclear factor-erythroid 2 related factor 2 (Nrf2) is a ubiquitous master transcription factor that regulates antioxidant response elements (AREs)-mediated expression of antioxidant enzyme and cytoprotective proteins. In the unstressed condition, Kelch-like ECH-associated protein 1 (Keap1) suppresses cellular Nrf2 in cytoplasm and drives its proteasomal degradation. Nrf2 can be activated by diverse stimuli including oxidants, pro-oxidants, antioxidants, and chemopreventive agents. Nrf2 induces cellular rescue pathways against oxidative injury, abnormal inflammatory and immune responses, apoptosis, and carcinogenesis. Application of Nrf2 germ-line mutant mice has identified an extensive range of protective roles for Nrf2 in experimental models of human disorders in the liver, gastrointestinal tract, airway, kidney, brain, circulation, and immune or nerve system. In the lung, lack of Nrf2 exacerbated toxicity caused by multiple oxidative insults including supplemental respiratory therapy (e.g., hyperoxia, mechanical ventilation), cigarette smoke, allergen, virus, bacterial endotoxin and other inflammatory agents (e.g., carrageenin), environmental pollution (e.g., particles), and a fibrotic agent bleomycin. Microarray analyses and bioinformatic studies elucidated functional AREs and Nrf2-directed genes that are critical components of signaling mechanisms in pulmonary protection by Nrf2. Association of loss of function with promoter polymorphisms in NRF2 or somatic and epigenetic mutations in KEAP1 and NRF2 has been found in cohorts of patients with acute lung injury/acute respiratory distress syndrome or lung cancer, which further supports the role for NRF2 in these lung diseases. In the current review, we address the role of Nrf2 in airways based on emerging evidence from experimental oxidative disease models and human studies.

  19. Ultrasonography - A viable tool for airway assessment

    PubMed Central

    Reddy, Preethi B; Punetha, Pankaj; Chalam, Kolli S

    2016-01-01

    Background and Aims: Accurate prediction of the Cormack-Lehane (CL) grade preoperatively can help in better airway management of the patient during induction of anaesthesia. Our aim was to determine the utility of ultrasonography in predicting CL grade. Methods: We studied 100 patients undergoing general endotracheal anaesthesia. Mallampati (MP) class, thyromental distance (TMD) and sternomental distance (SMD) were noted. Ultrasound measurements of the anterior neck soft tissue thickness at the level of the hyoid (ANS-Hyoid), anterior neck soft tissue thickness at the level of the vocal cords (ANS-VC) and ratio of the depth of the pre-epiglottic space (Pre-E) to the distance from the epiglottis to the mid-point of the distance between the vocal cords (E-VC) were obtained. CL grade was noted during intubation. Chi-square test was employed to determine if there was any statistical difference in the measurements of patients with different CL grades. Sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy were calculated for the various parameters. Results: The incidence of difficult intubation was 14%. An ANS-VC >0.23 cm had a sensitivity of 85.7% in predicting a CL Grade of 3 or 4, which was higher than that of MP class, TMD and SMD. However, the specificity, PPV and accuracy were lower than the physical parameters. The NPV was comparable. Conclusion: Ultrasound is a useful tool in airway assessment. ANS-VC >0.23 cm is a potential predictor of difficult intubation. ANS-Hyoid is not indicative of difficult intubation. The ratio Pre-E/E-VC has a low to moderate predictive value. PMID:27942053

  20. CD38 and airway hyper-responsiveness: studies on human airway smooth muscle cells and mouse models.

    PubMed

    Guedes, Alonso G P; Deshpande, Deepak A; Dileepan, Mythili; Walseth, Timothy F; Panettieri, Reynold A; Subramanian, Subbaya; Kannan, Mathur S

    2015-02-01

    Asthma is an inflammatory disease in which altered calcium regulation, contractility, and airway smooth muscle (ASM) proliferation contribute to airway hyper-responsiveness and airway wall remodeling. The enzymatic activity of CD38, a cell-surface protein expressed in human ASM cells, generates calcium mobilizing second messenger molecules such as cyclic ADP-ribose. CD38 expression in human ASM cells is augmented by cytokines (e.g., TNF-α) that requires the activation of MAP kinases and the transcription factors, NF-κB and AP-1, and is post-transcriptionally regulated by miR-140-3p and miR-708 by binding to 3' Untranslated Region of CD38 as well as by modulating the activation of signaling mechanisms involved in its regulation. Mice deficient in Cd38 exhibit reduced airway responsiveness to inhaled methacholine relative to the response in wild-type mice. Intranasal challenge of Cd38-deficient mice with TNF-α or IL-13, or the environmental fungus Alternaria alternata, causes significantly attenuated methacholine responsiveness compared with wild-type mice, with comparable airway inflammation. Reciprocal bone marrow transfer studies revealed partial restoration of airway hyper-responsiveness to inhaled methacholine in the Cd38-deficient mice. These studies provide evidence for CD38 involvement in the development of airway hyper-responsiveness; a hallmark feature of asthma. Future studies aimed at drug discovery and delivery targeting CD38 expression and (or) activity are warranted.

  1. Deposition of aerosol particles and flow resistance in mathematical and experimental airway models.

    PubMed

    Kim, C S; Brown, L K; Lewars, G G; Sackner, M A

    1983-07-01

    Aerosol deposition and flow resistance in obstructed airways were determined from five mathematical and experimental airway models. The first three models were theoretical and based upon Weibel's symmetrical lung model with 1) uniform reduction of airway diameter in various groups of airway generations; 2) obstruction of a few major airways such that a severe uneven flow distribution occurs in the lung; 3) focal constriction of selected large airways. In model 3, an empirical formula was utilized to assess deposition and resistance in the constricted airways. The remaining two models were tested experimentally; 4) oscillation of a compliant wall in a straight tube and 5) two-phase gas-liquid flow utilizing human sputum in a rigid branching tube. In models 1, 2, and 3, airway resistance increased to a greater extent than did the increase of aerosol deposition except when small airways were obstructed in model 1. Here, the increase of aerosol deposition was slightly higher than the rise in airway resistance. A sharp increase of aerosol deposition with a minimal increase of flow resistance was demonstrated in models 4 and 5. These data indicate that aerosol deposition may be a more sensitive indicator of airway abnormalities than overall airway resistance in small airways obstruction, during oscillation of large and medium airway walls, and when excessive secretions within the airways move with a wave or slug motion.

  2. Pressure-volume behaviour of the rat upper airway: effects of tongue muscle activation

    PubMed Central

    Bailey, E Fiona; Fregosi, Ralph F

    2003-01-01

    Our hypothesis was that the simultaneous activation of tongue protrudor and retractor muscles (co-activation) would constrict and stiffen the pharyngeal airway more than the independent activation of tongue protrudor muscles. Upper airway stiffness was determined by injecting known volumes of air into the sealed pharyngeal airway of the anaesthetized rat while measuring nasal pressure under control (no-stimulus) and stimulus conditions (volume paired with hypoglossal (XII) nerve stimulation). Stimulation of the whole XII nerves (co-activation) or the medial XII branches (protrudor activation) effected similar increases in total pharyngeal airway stiffness. Importantly, co-activation produced volume compression (airway narrowing) at large airway volumes (P < 0.05), but had no effect on airway dimension at low airway volumes. In comparison, protrudor activation resulted in significant volume expansion (airway dilatation) at low airway volumes and airway narrowing at high airway volumes (P < 0.05). In conclusion, both co-activation and independent protrudor muscle activation increase airway stiffness. However, their effects on airway size are complex and depend on the condition of the airway at the time of activation. PMID:12640023

  3. The role of bronchoscopy in the diagnosis of airway disease

    PubMed Central

    Dixon, Jennifer; Tieu, Brandon H.

    2016-01-01

    Endoscopy of the airway is a valuable tool for the evaluation and management of airway disease. It can be used to evaluate many different bronchopulmonary diseases including airway foreign bodies, tumors, infectious and inflammatory conditions, airway stenosis, and bronchopulmonary hemorrhage. Traditionally, options for evaluation were limited to flexible and rigid bronchoscopy. Recently, more sophisticated technology has led to the development of endobronchial ultrasound (EBUS) and electromagnetic navigational bronchoscopy (ENB). These technological advances, combined with increasing provider experience have resulted in a higher diagnostic yield with endoscopic biopsies. This review will focus on the role of bronchoscopy, including EBUS, ENB, and rigid bronchoscopy in the diagnosis of bronchopulmonary diseases. In addition, it will cover the anesthetic considerations, equipment, diagnostic yield, and potential complications. PMID:28149583

  4. Innate Immune Signaling Activated by MDR Bacteria in the Airway.

    PubMed

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2016-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation.

  5. Innate Immune Signaling Activated by MDR Bacteria in the Airway

    PubMed Central

    Parker, Dane; Ahn, Danielle; Cohen, Taylor; Prince, Alice

    2015-01-01

    Health care-associated bacterial pneumonias due to multiple-drug resistant (MDR) pathogens are an important public health problem and are major causes of morbidity and mortality worldwide. In addition to antimicrobial resistance, these organisms have adapted to the milieu of the human airway and have acquired resistance to the innate immune clearance mechanisms that normally prevent pneumonia. Given the limited efficacy of antibiotics, bacterial clearance from the airway requires an effective immune response. Understanding how specific airway pathogens initiate and regulate innate immune signaling, and whether this response is excessive, leading to host-induced pathology may guide future immunomodulatory therapy. We will focus on three of the most important causes of health care-associated pneumonia, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae, and review the mechanisms through which an inappropriate or damaging innate immune response is stimulated, as well as describe how airway pathogens cause persistent infection by evading immune activation. PMID:26582515

  6. Airway reopening: Steadily propagating bubbles in buckled elastic tubes

    NASA Astrophysics Data System (ADS)

    Heil, Matthias; Hazel, Andrew L.

    2001-11-01

    Many pulmonary diseases result in the collapse and occlusion of parts of the lung by viscous fluid. The subsequent airway reopening is generally assumed to occur via the propagation of an air finger into the collapsed, fluid-filled part of the airway. The problem has some similarity to the scenario of the `first breath' when air has to enter the fluid-filled lungs of a newborn baby for the first time. We have developed the first three-dimensional computational model of airway reopening, based on a finite-element solution of the free-surface Stokes equations, fully coupled to the equations of large-displacement shell theory. Following a brief discussion of the numerical method, we will present results that illustrate the 3D flow field by which the steadily propagating air finger reopens the non-axisymmetrically collapsed airway. Finally, we will contrast the system's behaviour to predictions from earlier two-dimensional models.

  7. Mechanics of airflow in the human nasal airways.

    PubMed

    Doorly, D J; Taylor, D J; Schroter, R C

    2008-11-30

    The mechanics of airflow in the human nasal airways is reviewed, drawing on the findings of experimental and computational model studies. Modelling inevitably requires simplifications and assumptions, particularly given the complexity of the nasal airways. The processes entailed in modelling the nasal airways (from defining the model, to its production and, finally, validating the results) is critically examined, both for physical models and for computational simulations. Uncertainty still surrounds the appropriateness of the various assumptions made in modelling, particularly with regard to the nature of flow. New results are presented in which high-speed particle image velocimetry (PIV) and direct numerical simulation are applied to investigate the development of flow instability in the nasal cavity. These illustrate some of the improved capabilities afforded by technological developments for future model studies. The need for further improvements in characterising airway geometry and flow together with promising new methods are briefly discussed.

  8. Rapid remodeling of airway vascular architecture at birth.

    PubMed

    Ni, Amy; Lashnits, Erin; Yao, Li-Chin; Baluk, Peter; McDonald, Donald M

    2010-09-01

    Recent advances have documented the development of lung vasculature before and after birth, but less is known of the growth and maturation of airway vasculature. We sought to determine whether airway vasculature changes during the perinatal period and when the typical adult pattern develops. On embryonic day 16.5 mouse tracheas had a primitive vascular plexus unlike the adult airway vasculature, but instead resembling the yolk sac vasculature. Soon after birth (P0), the primitive vascular plexus underwent abrupt and extensive remodeling. Blood vessels overlying tracheal cartilage rings regressed from P1 to P3 but regrew from P4 to P7 to form the hierarchical, segmented, ladder-like adult pattern. Hypoxia and HIF-1α were present in tracheal epithelium over vessels that survived but not where they regressed. These findings reveal the plasticity of airway vasculature after birth and show that these vessels can be used to elucidate factors that promote postnatal vascular remodeling and maturation.

  9. Maternal Diesel Inhalation Increases Airway Hyperreactivity in Ozone Exposed Offspring

    EPA Science Inventory

    Air pollutant exposure is linked with childhood asthma incidence and exacerbations, and maternal exposure to airborne pollutants during pregnancy increases airway hyperreactivity (ARR) in offspring. To determine if exposure to diesel exhaust during pregnancy worsened postnatal oz...

  10. Airway dysfunction in elite swimmers: prevalence, impact, and challenges.

    PubMed

    Lomax, Mitch

    2016-01-01

    The prevalence of airway dysfunction in elite swimmers is among the highest in elite athletes. The traditional view that swimmers naturally gravitate toward swimming because of preexisting respiratory disorders has been challenged. There is now sufficient evidence that the higher prevalence of bronchial tone disorders in elite swimmers is not the result of a natural selection bias. Rather, the combined effects of repeated chlorine by-product exposure and chronic endurance training can lead to airway dysfunction and atopy. This review will detail the underpinning causes of airway dysfunction observed in elite swimmers. It will also show that airway dysfunction does not prevent success in elite level swimming. Neither does it inhibit lung growth and might be partially reversible when elite swimmers retire from competition.

  11. Airway dysfunction in elite swimmers: prevalence, impact, and challenges

    PubMed Central

    Lomax, Mitch

    2016-01-01

    The prevalence of airway dysfunction in elite swimmers is among the highest in elite athletes. The traditional view that swimmers naturally gravitate toward swimming because of preexisting respiratory disorders has been challenged. There is now sufficient evidence that the higher prevalence of bronchial tone disorders in elite swimmers is not the result of a natural selection bias. Rather, the combined effects of repeated chlorine by-product exposure and chronic endurance training can lead to airway dysfunction and atopy. This review will detail the underpinning causes of airway dysfunction observed in elite swimmers. It will also show that airway dysfunction does not prevent success in elite level swimming. Neither does it inhibit lung growth and might be partially reversible when elite swimmers retire from competition. PMID:27274324

  12. Control of local immunity by airway epithelial cells.

    PubMed

    Weitnauer, M; Mijošek, V; Dalpke, A H

    2016-03-01

    The lung is ventilated by thousand liters of air per day. Inevitably, the respiratory system comes into contact with airborne microbial compounds, most of them harmless contaminants. Airway epithelial cells are known to have innate sensor functions, thus being able to detect microbial danger. To avoid chronic inflammation, the pulmonary system has developed specific means to control local immune responses. Even though airway epithelial cells can act as proinflammatory promoters, we propose that under homeostatic conditions airway epithelial cells are important modulators of immune responses in the lung. In this review, we discuss epithelial cell regulatory functions that control reactivity of professional immune cells within the microenvironment of the airways and how these mechanisms are altered in pulmonary diseases. Regulation by epithelial cells can be divided into two mechanisms: (1) mediators regulate epithelial cells' innate sensitivity in cis and (2) factors are produced that limit reactivity of immune cells in trans.

  13. Fractal branching pattern of the monopodial canine airway.

    PubMed

    Wang, Ping M; Kraman, Steve S

    2004-06-01

    Unlike the human lung, monopodial canine airway branching follows an irregular dichotomized pattern with fractal features. We studied three canine airway molds and found a self-similarity feature from macro- to microscopic scales, which formed a fractal set up to seven scales in the airways. At each fractal scale, lateral branches evenly lined up along an approximately straight main trunk to form three to four two-dimensional structures, and each lateral branch was the monopodial main trunk of the next fractal scale. We defined this pattern as the fractal main lateral-branching pattern, which exhibited similar structures from macro- to microscopic scales, including lobes, sublobes, sub-sublobes, etc. We speculate that it, rather than a mother-daughter pattern, could better describe the actual asymmetrical architecture of the monopodial canine airway.

  14. Airway cooling and mucosal injury during cold weather exercise.

    PubMed

    Davis, M S; Lockard, A J; Marlin, D J; Freed, A N

    2002-09-01

    In human subjects that exercise strenuously in cold weather, there is evidence that hyperventilation with cold air leads to peripheral airway cooling, desiccation and mucosal injury. Our hypothesis was that hyperventilation with cold air can result in penetration of unconditioned air (air that is not completely warmed and humidified) into the peripheral airways of exercising horses, resulting in peripheral airway mucosal injury. To test this hypothesis, a thermister-tipped catheter was inserted through the midcervical trachea and advanced into a sublobar bronchus in three horses that cantered on a treadmill at 6.6 m/s while breathing cold (5 degrees C) air. The mean (+/- s.e.) intra-airway temperature during cantering was 33.3 +/- 0.4 degrees C, a value comparable to the bronchial lumen temperatures measured in man during maximal exercise while breathing subfreezing dry air. In a second experiment, 6 fit Thoroughbred racehorses with satisfactory performance were used to determine whether strenuous exercise in cold conditions can produce airway injury. Horses were assigned to Exercise (E) or Control (C) groups in a random crossover design. Samples of bronchoalveolar lavage fluid (BALF) in the E treatment were recovered within 30 min of galloping exercise in 4 degrees C, 100% relative humidity (E), while in C BALF samples were obtained when the horses had not performed any exercise for at least 48 h prior. Ciliated epithelial cells in BALF were higher in E than in the C treatment. Similar results have been found in human athletes and laboratory animal models of cold weather exercise. These results support the hypothesis that, similar to man, horses that exercise in cold weather experience peripheral airway mucosal injury due to the penetration of unconditioned air. Furthermore, these results suggest that airway cooling and desiccation may be a factor in airway inflammation commonly found in equine athletes.

  15. Airway hyperresponsiveness in asthma: mechanisms, clinical significance, and treatment.

    PubMed

    Brannan, John D; Lougheed, M Diane

    2012-01-01

    Airway hyperresponsiveness (AHR) and airway inflammation are key pathophysiological features of asthma. Bronchial provocation tests (BPTs) are objective tests for AHR that are clinically useful to aid in the diagnosis of asthma in both adults and children. BPTs can be either "direct" or "indirect," referring to the mechanism by which a stimulus mediates bronchoconstriction. Direct BPTs refer to the administration of pharmacological agonist (e.g., methacholine or histamine) that act on specific receptors on the airway smooth muscle. Airway inflammation and/or airway remodeling may be key determinants of the response to direct stimuli. Indirect BPTs are those in which the stimulus causes the release of mediators of bronchoconstriction from inflammatory cells (e.g., exercise, allergen, mannitol). Airway sensitivity to indirect stimuli is dependent upon the presence of inflammation (e.g., mast cells, eosinophils), which responds to treatment with inhaled corticosteroids (ICS). Thus, there is a stronger relationship between indices of steroid-sensitive inflammation (e.g., sputum eosinophils, fraction of exhaled nitric oxide) and airway sensitivity to indirect compared to direct stimuli. Regular treatment with ICS does not result in the complete inhibition of responsiveness to direct stimuli. AHR to indirect stimuli identifies individuals that are highly likely to have a clinical improvement with ICS therapy in association with an inhibition of airway sensitivity following weeks to months of treatment with ICS. To comprehend the clinical utility of direct or indirect stimuli in either diagnosis of asthma or monitoring of therapeutic intervention requires an understanding of the underlying pathophysiology of AHR and mechanisms of action of both stimuli.

  16. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2016-01-01

    selection of more suitable animal models for studying various airway diseases in humans. A continuing growth of our knowledge about the physiological and...rats, but not in control rats. Chronic airway inflammation in sensitized animals is likely a major contributing factor in causing this response. 3) A...C-fibers. 4) In an animal model of asthma (Brown-Norway rats sensitized by ovalbumin), chronic allergic inflammation sensitization increases the

  17. CO2 laser excision of pediatric airway lesions.

    PubMed

    Bagwell, C E

    1990-11-01

    Treatment of life-threatening pediatric airway lesions has been greatly enhanced by development of the CO2 laser. Using this modality, endoscopic access and precise tissue destruction are possible with minimal local inflammation and subsequent edema of the narrow airway. From October 1986 through October 1988, 26 patients underwent 96 laser procedures for excision of airway lesions, in 23 patients via bronchoscopy and in three patients via microlaryngoscopy. Ages ranged from 1 day to 20 years, with most patients under 2 years of age. Diagnoses included: laryngeal cysts (1); cystic hygroma (3); tumor (neurofibroma, 1) subglottic hemangioma (1); excision of airway granulation tissue (8); and tracheal stenosis (13, including subglottic stenosis in 9). Therapy of the offending lesion required from one to eight laser procedures (mean, 2.8), excluding one patient with congenital long-segment tracheal stenosis who required 24 laser treatments for repeated excision of tracheal granulation tissue. Most lesions responded to only one or two laser treatments. No bleeding or perforation occurred secondary to laser use. Use of the laser was responsible for salvaging the airway or simplifying management of the airway in 21 of the 26 patients. In three patients with cystic hygroma affecting the laryngeal structures as well as soft tissues of the neck, laser excision was performed to maintain upper airway patency with a tracheostomy for airway control. Two patients with critical subglottic stenosis initially responded to laser excision, but moved away from the area and developed recurrence of their subglottic stenosis requiring tracheostomy, because further laser treatment was either unavailable or was deferred in their new locale.(ABSTRACT TRUNCATED AT 250 WORDS)

  18. Pulmonary Stress Induced by Hyperthermia: Role of Airway Sensory Nerves

    DTIC Science & Technology

    2011-10-01

    cough , bronchoconstriction, and other cardiopulmonary reflex responses (1). Recent studies conducted in our lab have established the first evidence...dyspnea, airway constriction, cough , etc) in healthy volunteers, and in patients with mild asthma, allergic rhinitis and post upper respiratory...cmH2O/L/sec (P>0.05). Furthermore, increasing airway temperature also consistently elicited bouts of cough in asthmatic patients, but not in healthy

  19. Modeling the Nonlinear Motion of the Rat Central Airways.

    PubMed

    Ibrahim, G; Rona, A; Hainsworth, S V

    2016-01-01

    Advances in volumetric medical imaging techniques allowed the subject-specific modeling of the bronchial flow through the first few generations of the central airways using computational fluid dynamics (CFD). However, a reliable CFD prediction of the bronchial flow requires modeling of the inhomogeneous deformation of the central airways during breathing. This paper addresses this issue by introducing two models of the central airways motion. The first model utilizes a node-to-node mapping between the discretized geometries of the central airways generated from a number of successive computed tomography (CT) images acquired dynamically (without breath hold) over the breathing cycle of two Sprague-Dawley rats. The second model uses a node-to-node mapping between only two discretized airway geometries generated from the CT images acquired at end-exhale and at end-inhale along with the ventilator measurement of the lung volume change. The advantage of this second model is that it uses just one pair of CT images, which more readily complies with the radiation dosage restrictions for humans. Three-dimensional computer aided design geometries of the central airways generated from the dynamic-CT images were used as benchmarks to validate the output from the two models at sampled time-points over the breathing cycle. The central airway geometries deformed by the first model showed good agreement to the benchmark geometries within a tolerance of 4%. The central airway geometry deformed by the second model better approximated the benchmark geometries than previous approaches that used a linear or harmonic motion model.

  20. Airway Science Curriculum Demonstration Project: Summary of Initial Evaluation Findings

    DTIC Science & Technology

    1988-10-01

    DEMONSTRATION PROJECT: Or C988 SUMMARY OF INITIAL EVALUATION FINDINGS 8. Performn 9 Organ zaton Report No. 7. Author’ s$ Debora L. Clough 9...Airway Science project objectives for which data were available. Two limitations associated with the project evaluation at this time were described... EVALUATION FINDINGS INTRODUCTION The Airway Science Curriculum Demonstration Project was designed to investigate the effectiveness of an alternative approach

  1. Airway hyperresponsiveness; smooth muscle as the principal actor

    PubMed Central

    Lauzon, Anne-Marie; Martin, James G.

    2016-01-01

    Airway hyperresponsiveness (AHR) is a defining characteristic of asthma that refers to the capacity of the airways to undergo exaggerated narrowing in response to stimuli that do not result in comparable degrees of airway narrowing in healthy subjects. Airway smooth muscle (ASM) contraction mediates airway narrowing, but it remains uncertain as to whether the smooth muscle is intrinsically altered in asthmatic subjects or is responding abnormally as a result of the milieu in which it sits. ASM in the trachea or major bronchi does not differ in its contractile characteristics in asthmatics, but the more pertinent peripheral airways await complete exploration. The mass of ASM is increased in many but not all asthmatics and therefore cannot be a unifying hypothesis for AHR, although when increased in mass it may contribute to AHR. The inability of a deep breath to reverse or prevent bronchial narrowing in asthma may reflect an intrinsic difference in the mechanisms that lead to softening of contracted ASM when subjected to stretch. Cytokines such as interleukin-13 and tumor necrosis factor-α promote a more contractile ASM phenotype. The composition and increased stiffness of the matrix in which ASM is embedded promotes a more proliferative and pro-inflammatory ASM phenotype, but the expected dedifferentiation and loss of contractility have not been shown. Airway epithelium may drive ASM proliferation and/or molecular remodeling in ways that may lead to AHR. In conclusion, AHR is likely multifactorial in origin, reflecting the plasticity of ASM properties in the inflammatory environment of the asthmatic airway. PMID:26998246

  2. Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma

    PubMed Central

    Singhania, Akul; Rupani, Hitasha; Jayasekera, Nivenka; Lumb, Simon; Hales, Paul; Gozzard, Neil; Davies, Donna E.

    2017-01-01

    Management of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study. Differences between central and peripheral airways were evaluated using transcriptomic analysis (Affymetrix HG U133 plus 2.0 GeneChips) of epithelial brushings obtained from severe asthma patients (N = 17) and healthy volunteers (N = 23). Results were validated in an independent cohort (N = 10) by real-time quantitative PCR. The IL-13 disease signature that is associated with an asthmatic phenotype was upregulated in severe asthmatics compared to healthy controls but was predominantly evident within the peripheral airways, as were genes related to mast cell presence. The gene expression response associated with glucocorticosteroid therapy (i.e. FKBP5) was also upregulated in severe asthmatics compared to healthy controls but, in contrast, was more pronounced in central airways. Moreover, an altered epithelial repair response (e.g. FGFBP1) was evident across both airway sites reflecting a significant aspect of disease in severe asthma unadressed by current therapies. A transcriptomic approach to understand epithelial activation in severe asthma has thus highlighted the need for better-targeted therapy to the peripheral airways in severe asthma, where the IL-13 disease signature persists despite treatment with currently available therapy. PMID:28045928

  3. Altered Epithelial Gene Expression in Peripheral Airways of Severe Asthma.

    PubMed

    Singhania, Akul; Rupani, Hitasha; Jayasekera, Nivenka; Lumb, Simon; Hales, Paul; Gozzard, Neil; Davies, Donna E; Woelk, Christopher H; Howarth, Peter H

    2017-01-01

    Management of severe asthma remains a challenge despite treatment with glucocorticosteroid therapy. The majority of studies investigating disease mechanisms in treatment-resistant severe asthma have previously focused on the large central airways, with very few utilizing transcriptomic approaches. The small peripheral airways, which comprise the majority of the airway surface area, remain an unexplored area in severe asthma and were targeted for global epithelial gene expression profiling in this study. Differences between central and peripheral airways were evaluated using transcriptomic analysis (Affymetrix HG U133 plus 2.0 GeneChips) of epithelial brushings obtained from severe asthma patients (N = 17) and healthy volunteers (N = 23). Results were validated in an independent cohort (N = 10) by real-time quantitative PCR. The IL-13 disease signature that is associated with an asthmatic phenotype was upregulated in severe asthmatics compared to healthy controls but was predominantly evident within the peripheral airways, as were genes related to mast cell presence. The gene expression response associated with glucocorticosteroid therapy (i.e. FKBP5) was also upregulated in severe asthmatics compared to healthy controls but, in contrast, was more pronounced in central airways. Moreover, an altered epithelial repair response (e.g. FGFBP1) was evident across both airway sites reflecting a significant aspect of disease in severe asthma unadressed by current therapies. A transcriptomic approach to understand epithelial activation in severe asthma has thus highlighted the need for better-targeted therapy to the peripheral airways in severe asthma, where the IL-13 disease signature persists despite treatment with currently available therapy.

  4. Brain volumetric abnormalities in patients with anorexia and bulimia nervosa: a voxel-based morphometry study.

    PubMed

    Amianto, Federico; Caroppo, Paola; D'Agata, Federico; Spalatro, Angela; Lavagnino, Luca; Caglio, Marcella; Righi, Dorico; Bergui, Mauro; Abbate-Daga, Giovanni; Rigardetto, Roberto; Mortara, Paolo; Fassino, Secondo

    2013-09-30

    Recent studies focussing on neuroimaging features of eating disorders have observed that anorexia nervosa (AN) is characterized by significant grey matter (GM) atrophy in many brain regions, especially in the cerebellum and anterior cingulate cortex. To date, no studies have found GM atrophy in bulimia nervosa (BN) or have directly compared patients with AN and BN. We used voxel-based morphometry (VBM) to characterize brain abnormalities in AN and BN patients, comparing them with each other and with a control group, and correlating brain volume with clinical features. We recruited 17 AN, 13 BN and 14 healthy controls. All subjects underwent high-resolution magnetic resonance imaging (MRI) with a T1-weighted 3D image. VBM analysis was carried out with the FSL-VBM 4.1 tool. We found no global atrophy, but regional GM reduction in AN with respect to controls and BN in the cerebellum, fusiform area, supplementary motor area, and occipital cortex, and in the caudate in BN compared to AN and controls. Both groups of patients had a volumetric increase bilaterally in somatosensory regions with respect to controls, in areas that are typically involved in the sensory-motor integration of body stimuli and in mental representation of the body image. Our VBM study documented, for the first time in BN patients, the presence of volumetric alterations and replicated previous findings in AN patients. We evidenced morphological differences between AN and BN, demonstrating in the latter atrophy of the caudate nucleus, a region involved in reward mechanisms and processes of self-regulation, perhaps involved in the genesis of the binge-eating behaviors of this disorder.

  5. Association between Internal Carotid Artery Morphometry and Posterior Communicating Artery Aneurysm

    PubMed Central

    Kim, Dae-Won

    2007-01-01

    Purpose The goal of this study was to directly measure the association between the internal carotid artery (ICA) morphometry and the presence of ICA-posterior communicating artery (PCOM) aneurysm. Materials and Methods The authors intraoperatively measured the length of the supraclinoid ICA because it is impossible to radiologically determine the exact location of the anterior clinoid process. We used an image analyzer with a CT angiogram to measure the angle between the skull midline and the terminal segment of the ICA (ICA angle), as well as the diameter of the ICA. The lengths and diameters of the supraclinoid ICA and the ICA angle were compared among PCOM aneurysms, anterior communicating artery (ACOM) aneurysms, and middle cerebral artery (MCA) bifurcation aneurysms (n = 27 each). Additionally, the lengths and the diameters of M1 and A1 were compared for each aneurysm. Results The lengths of the supraclinoid ICA were 11.9 ± 2.3mm. The lengths of the supraclinoid ICA in patients with ICA-PCOM aneurysms (9.7 ± 2.8mm) were shorter than those of patients with ACOM aneurysms (13.8 ± 2.2mm, Student's t-test, p < 0.001) and with MCA bifurcation aneurysms (12.2 ± 1.9 mm, Student's t-test, p < 0.001). The diameters of the supraclinoid ICA and A1 in patients with ACOM aneurysms were larger than those in patients with MCA bifurcation aneurysms (Student's t-test, p < 0.05). There were no significant differences in the lengths of M1 and A1, ICA angle, or diameter of M1 for each aneurysm. Conclusion These results suggest that the relatively shorter length of the supraclinoid ICA may be a novel risk factor for the development of ICA-PCOM aneurysm with higher hemodynamic stress. PMID:17722235

  6. Brain morphometry shows effects of long-term musical practice in middle-aged keyboard players

    PubMed Central

    Gärtner, H.; Minnerop, M.; Pieperhoff, P.; Schleicher, A.; Zilles, K.; Altenmüller, E.; Amunts, K.

    2013-01-01

    To what extent does musical practice change the structure of the brain? In order to understand how long-lasting musical training changes brain structure, 20 male right-handed, middle-aged professional musicians and 19 matched controls were investigated. Among the musicians, 13 were pianists or organists with intensive practice regimes. The others were either music teachers at schools or string instrumentalists, who had studied the piano at least as a subsidiary subject, and practiced less intensively. The study was based on T1-weighted MR images, which were analyzed using deformation-based morphometry. Cytoarchitectonic probabilistic maps of cortical areas and subcortical nuclei as well as myeloarchitectonic maps of fiber tracts were used as regions of interest to compare volume differences in the brains of musicians and controls. In addition, maps of voxel-wise volume differences were computed and analyzed. Musicians showed a significantly better symmetric motor performance as well as a greater capability of controlling hand independence than controls. Structural MRI-data revealed significant volumetric differences between the brains of keyboard players, who practiced intensively and controls in right sensorimotor areas and the corticospinal tract as well as in the entorhinal cortex and the left superior parietal lobule. Moreover, they showed also larger volumes in a comparable set of regions than the less intensively practicing musicians. The structural changes in the sensory and motor systems correspond well to the behavioral results, and can be interpreted in terms of plasticity as a result of intensive motor training. Areas of the superior parietal lobule and the entorhinal cortex might be enlarged in musicians due to their special skills in sight-playing and memorizing of scores. In conclusion, intensive and specific musical training seems to have an impact on brain structure, not only during the sensitive period of childhood but throughout life. PMID

  7. Automated Cell Detection and Morphometry on Growth Plate Images of Mouse Bone

    PubMed Central

    Ascenzi, Maria-Grazia; Du, Xia; Harding, James I; Beylerian, Emily N; de Silva, Brian M; Gross, Ben J; Kastein, Hannah K; Wang, Weiguang; Lyons, Karen M; Schaeffer, Hayden

    2014-01-01

    Microscopy imaging of mouse growth plates is extensively used in biology to understand the effect of specific molecules on various stages of normal bone development and on bone disease. Until now, such image analysis has been conducted by manual detection. In fact, when existing automated detection techniques were applied, morphological variations across the growth plate and heterogeneity of image background color, including the faint presence of cells (chondrocytes) located deeper in tissue away from the image’s plane of focus, and lack of cell-specific features, interfered with identification of cell. We propose the first method of automated detection and morphometry applicable to images of cells in the growth plate of long bone. Through ad hoc sequential application of the Retinex method, anisotropic diffusion and thresholding, our new cell detection algorithm (CDA) addresses these challenges on bright-field microscopy images of mouse growth plates. Five parameters, chosen by the user in respect of image characteristics, regulate our CDA. Our results demonstrate effectiveness of the proposed numerical method relative to manual methods. Our CDA confirms previously established results regarding chondrocytes’ number, area, orientation, height and shape of normal growth plates. Our CDA also confirms differences previously found between the genetic mutated mouse Smad1/5CKO and its control mouse on fluorescence images. The CDA aims to aid biomedical research by increasing efficiency and consistency of data collection regarding arrangement and characteristics of chondrocytes. Our results suggest that automated extraction of data from microscopy imaging of growth plates can assist in unlocking information on normal and pathological development, key to the underlying biological mechanisms of bone growth. PMID:25525552

  8. Neuroanatomical Correlates of Developmental Dyscalculia: Combined Evidence from Morphometry and Tractography

    PubMed Central

    Rykhlevskaia, Elena; Uddin, Lucina Q.; Kondos, Leeza; Menon, Vinod

    2009-01-01

    Poor mathematical abilities adversely affect academic and career opportunities. The neuroanatomical basis of developmental dyscalculia (DD), a specific learning deficit with prevalence rates exceeding 5%, is poorly understood. We used structural MRI and diffusion tensor imaging (DTI) to examine macro- and micro-structural impairments in 7- to 9-year-old children with DD, compared to a group of typically developing (TD) children matched on age, gender, intelligence, reading abilities and working memory capacity. Voxel-based morphometry (VBM) revealed reduced grey matter (GM) bilaterally in superior parietal lobule, intra-parietal sulcus, fusiform gyrus, parahippocampal gyrus and right anterior temporal cortex in children with DD. VBM analysis also showed reduced white matter (WM) volume in right temporal-parietal cortex. DTI revealed reduced fractional anisotropy (FA) in this WM region, pointing to significant right hemisphere micro-structural impairments. Furthermore, FA in this region was correlated with numerical operations but not verbal mathematical reasoning or word reading. Atlas-based tract mapping identified the inferior longitudinal fasciculus, inferior fronto-occipital fasciculus and caudal forceps major as key pathways impaired in DD. DTI tractography suggests that long-range WM projection fibers linking the right fusiform gyrus with temporal-parietal WM are a specific source of vulnerability in DD. Network and classification analysis suggest that DD in children may be characterized by multiple dysfunctional circuits arising from a core WM deficit. Our findings link GM and WM abnormalities in children with DD and they point to macro- and micro-structural abnormalities in right hemisphere temporal-parietal WM, and pathways associated with it, as key neuroanatomical correlates of DD. PMID:20046827

  9. Morphometry and subpopulation structure of Holstein bull spermatozoa: variations in ejaculates and cryopreservation straws.

    PubMed

    Valverde, Anthony; Arenán, Héctor; Sancho, María; Contell, Jesús; Yániz, Jesús; Fernández, Alejandro; Soler, Carles

    2016-01-01

    Sperm quality is evaluated for the calculation of sperm dosage in artificial reproductive programs. The most common parameter used is motility, but morphology has a higher potential as a predictor of genetic quality. Morphometry calculations from CASA-Morph technology improve morphological evaluation and allow mathematical approaches to the problem. Semen from 28 Holstein bulls was collected by artificial vagina, and several ejaculates were studied. After general evaluation, samples were diluted, packaged in 0.25 ml straws, and stored in liquid nitrogen. Two straws per sample were thawed, and slides were processed and stained with Diff-Quik. Samples were analyzed by a CASA-Morph system for eight morphometric parameters. In addition to the "classical" statistical approach, based on variance analysis (revealing differences between animals, ejaculates, and straws), principal component (PC) analysis showed that the variables were grouped into PC1, related to size, and PC2 to shape. Subpopulation structure analysis showed four groups, namely, big, small, short, and narrow from their dominant characteristics, representing 31.0%, 27.3%, 24.1%, and 17.7% of the total population, respectively. The distributions varied between animals and ejaculates, but between straws, there were no differences in only four animals. This modern approach of considering an ejaculate sperm population as divided into subpopulations reflecting quantifiable parameters generated by CASA-Morph systems technology opens a new view on sperm function. This is the first study applying this approach to evaluate different ejaculates and straws from the same individual. More work must be done to improve seminal dose calculations in assisted reproductive programs.

  10. Structural neural correlates of multitasking: A voxel-based morphometry study.

    PubMed

    Zhang, Rui-Ting; Yang, Tian-Xiao; Wang, Yi; Sui, Yuxiu; Yao, Jingjing; Zhang, Chen-Yuan; Cheung, Eric F C; Chan, Raymond C K

    2016-12-01

    Multitasking refers to the ability to organize assorted tasks efficiently in a short period of time, which plays an important role in daily life. However, the structural neural correlates of multitasking performance remain unclear. The present study aimed at exploring the brain regions associated with multitasking performance using global correlation analysis. Twenty-six healthy participants first underwent structural brain scans and then performed the modified Six Element Test, which required participants to attempt six subtasks in 10 min while obeying a specific rule. Voxel-based morphometry of the whole brain was used to detect the structural correlates of multitasking ability. Grey matter volume of the anterior cingulate cortex (ACC) was positively correlated with the overall performance and time monitoring in multitasking. In addition, white matter volume of the anterior thalamic radiation (ATR) was also positively correlated with time monitoring during multitasking. Other related brain regions associated with multitasking included the superior frontal gyrus, the inferior occipital gyrus, the lingual gyrus, and the inferior longitudinal fasciculus. No significant correlation was found between grey matter volume of the prefrontal cortex (Brodmann Area 10) and multitasking performance. Using a global correlation analysis to examine various aspects of multitasking performance, this study provided new insights into the structural neural correlates of multitasking ability. In particular, the ACC was identified as an important brain region that played both a general and a specific time-monitoring role in multitasking, extending the role of the ACC from lesioned populations to healthy populations. The present findings also support the view that the ATR may influence multitasking performance by affecting time-monitoring abilities.

  11. Lake morphometry and resource polymorphism determine niche segregation between cool- and cold-water-adapted fish.

    PubMed

    Hayden, Brian; Harrod, Chris; Kahilaineni, Kimmo K

    2014-02-01

    Climate change is increasing ambient temperatures in Arctic and subarctic regions, facilitating latitudinal range expansions of freshwater fishes adapted to warmer water temperatures. The relative roles of resource availability and interspecific interactions between resident and invading species in determining the outcomes of such expansions has not been adequately evaluated. Ecological interactions between a cool-water adapted fish, the perch (Perca fluviatilis), and the cold-water adapted European whitefish (Coregonus lavaretus), were studied in both shallow and deep lakes with fish communities dominated by (1) monomorphic whitefish, (2) monomorphic whitefish and perch, and (3) polymorphic whitefish and perch. A combination of stomach content, stable-isotope, and invertebrate prey availability data were used to identify resource use and niche overlap among perch, the trophic generalist large sparsely rakered (LSR) whitefish morph, and the pelagic specialist densely rakered (DR) whitefish morph in 10 subarctic lakes at the contemporary distribution limit of perch in northern Scandinavia. Perch utilized its putative preferred littoral niche in all lakes. LSR whitefish utilized both littoral and pelagic resources in monomorphic whitefish-dominated lakes. When found in sympatry with perch, LSR whitefish exclusively utilized pelagic prey in deep lakes, but displayed niche overlap with perch in shallow littoral lakes. DR whitefish was a specialist zooplanktivore, relegating LSR whitefish from pelagic habitats, leading to an increase in niche overlap between LSR whitefish and perch in deep lakes. Our results highlight how resource availability (lake depth and fish community) governs ecological interactions between native and invading species, leading to different outcomes even at the same latitudes. These findings suggest that lake morphometry and fish community structure data should be included in bioclimate envelope-based models of species distribution shifts

  12. Sports and brain morphology - a voxel-based morphometry study with endurance athletes and martial artists.

    PubMed

    Schlaffke, L; Lissek, S; Lenz, M; Brüne, M; Juckel, G; Hinrichs, T; Platen, P; Tegenthoff, M; Schmidt-Wilcke, T

    2014-02-14

    Physical exercises and motor skill learning have been shown to induce changes in regional brain morphology, this has been demonstrated for various activities and tasks. Also individuals with special skills show differences in regional brain morphology. This has been indicated for professional musicians, London taxi drivers, as well as for athletes like dancers, golfers and judokas. However little is known about whether sports with different metabolic profiles (aerobic vs. anaerobic) are associated with different patterns of altered brain morphology. In this cross-sectional study we investigated two groups of high-performance athletes, one group performing sports that are thought to be mainly aerobic, and one group performing sports known to have intermittent phases of anaerobic metabolism. Using high-resolution structural imaging and voxel-based morphometry (VBM), we investigated a group of 26 male athletes consisting of 13 martial artists and 13 endurance athletes as well as a group of non-exercising men (n=13). VBM analyses revealed higher gray matter (GM) volumes in the supplementary motor area/dorsal premotor cortex (BA 6) in both athlete groups as compared to the control group. In addition, endurance athletes showed significantly higher GM volume in the medial temporal lobe (MTL), specifically in the hippocampus and parahippocampal gyrus, which was not seen in the martial arts group. Our data suggest that high-performance sports are associated with changes in regional brain morphology in areas implicated in motor planning and motor learning. In addition high-level endurance sports seem to affect MTL structures, areas that have previously been shown to be modulated by aerobic exercise.

  13. Neuroanatomical phenotype of Klinefelter syndrome in childhood: a voxel-based morphometry study.

    PubMed

    Bryant, Daniel M; Hoeft, Fumiko; Lai, Song; Lackey, John; Roeltgen, David; Ross, Judith; Reiss, Allan L

    2011-05-04

    Klinefelter syndrome (KS) is a genetic disorder characterized by a supernumerary X chromosome. As such, KS offers a naturally occurring human model for the study of both X-chromosome gene expression and androgen on brain development. Previous neuroimaging studies have revealed neuroanatomical variations associated with KS, but have differed widely with respect to subject inclusion criteria, including mosaicism, pubertal status, and history of testosterone replacement therapy (TRT), all factors likely to influence neurodevelopment. We conducted a voxel-based morphometry study of regional gray and white matter (GM and WM, respectively) volumes in 31 KS males (mean age, 9.69 ± 1.70 years) and 36 typically developing (TD) male controls (10.99 ± 1.72 years). None of the participants with KS had received TRT, and all were prepubertal and had nonmosaic 47,XXY karyotypes. After controlling for age, males with KS showed trends (0.05 < p < 0.10) for significantly reduced total gray matter volume (TGMV) and total white matter volume (TWMV), relative to TD males. After controlling for TGMV and age, the KS group had significantly increased sensorimotor and parietal-occipital GM and significantly reduced amygdalar, hippocampal, insular, temporal, and inferior frontal GM relative to TD controls. After controlling for TWMV and age, the KS group had significantly increased left parietal WM as well as significantly reduced frontal and temporal WM. These findings are indicative of a characteristic prepubertal neuroanatomical phenotype that may be associated with cognitive-behavioral features of KS. This work offers new insight into the relationships among X-chromosome gene expression, neuroanatomy, and cognitive-behavioral functions impaired in KS, including language and attention.

  14. Morphometry and subpopulation structure of Holstein bull spermatozoa: variations in ejaculates and cryopreservation straws

    PubMed Central

    Valverde, Anthony; Arenán, Héctor; Sancho, María; Contell, Jesús; Yániz, Jesús; Fernández, Alejandro; Soler, Carles

    2016-01-01

    Sperm quality is evaluated for the calculation of sperm dosage in artificial reproductive programs. The most common parameter used is motility, but morphology has a higher potential as a predictor of genetic quality. Morphometry calculations from CASA-Morph technology improve morphological evaluation and allow mathematical approaches to the problem. Semen from 28 Holstein bulls was collected by artificial vagina, and several ejaculates were studied. After general evaluation, samples were diluted, packaged in 0.25 ml straws, and stored in liquid nitrogen. Two straws per sample were thawed, and slides were processed and stained with Diff-Quik. Samples were analyzed by a CASA-Morph system for eight morphometric parameters. In addition to the “classical” statistical approach, based on variance analysis (revealing differences between animals, ejaculates, and straws), principal component (PC) analysis showed that the variables were grouped into PC1, related to size, and PC2 to shape. Subpopulation structure analysis showed four groups, namely, big, small, short, and narrow from their dominant characteristics, representing 31.0%, 27.3%, 24.1%, and 17.7% of the total population, respectively. The distributions varied between animals and ejaculates, but between straws, there were no differences in only four animals. This modern approach of considering an ejaculate sperm population as divided into subpopulations reflecting quantifiable parameters generated by CASA-Morph systems technology opens a new view on sperm function. This is the first study applying this approach to evaluate different ejaculates and straws from the same individual. More work must be done to improve seminal dose calculations in assisted reproductive programs. PMID:27678464

  15. Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry

    PubMed Central

    Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D.; Botteron, Kelly N.; Miller, Michael I.; Ratnanather, J. Tilak

    2013-01-01

    It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease. PMID:24133482

  16. 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry

    PubMed Central

    Chiang, Ming-Chang; Dutton, Rebecca A.; Hayashi, Kiralee M.; Lopez, Oscar L.; Aizenstein, Howard J.; Toga, Arthur W.; Becker, James T.; Thompson, Paul M.

    2011-01-01

    35% of HIV-infected patients have cognitive impairment, but the profile of HIV-induced brain damage is still not well understood. Here we used tensor-based morphometry (TBM) to visualize brain deficits and clinical/anatomical correlations in HIV/AIDS. To perform TBM, we developed a new MRI-based analysis technique that uses fluid image warping, and a new α-entropy-based information-theoretic measure of image correspondence, called the Jensen–Rényi divergence (JRD). Methods 3D T1-weighted brain MRIs of 26 AIDS patients (CDC stage C and/or 3 without HIV-associated dementia; 47.2 ± 9.8 years; 25M/1F; CD4+ T-cell count: 299.5 ± 175.7/µl; log10 plasma viral load: 2.57 ± 1.28 RNA copies/ml) and 14 HIV-seronegative controls (37.6 ± 12.2 years; 8M/6F) were fluidly registered by applying forces throughout each deforming image to maximize the JRD between it and a target image (from a control subject). The 3D fluid registration was regularized using the linearized Cauchy–Navier operator. Fine-scale volumetric differences between diagnostic groups were mapped. Regions were identified where brain atrophy correlated with clinical measures. Results Severe atrophy (~15–20% deficit) was detected bilaterally in the primary and association sensorimotor areas. Atrophy of these regions, particularly in the white matter, correlated with cognitive impairment (P=0.033) and CD4+ T-lymphocyte depletion (P=0.005). Conclusion TBM facilitates 3D visualization of AIDS neuropathology in living patients scanned with MRI. Severe atrophy in frontoparietal and striatal areas may underlie early cognitive dysfunction in AIDS patients, and may signal the imminent onset of AIDS dementia complex. PMID:17035049

  17. Determination of the Relationship between Hydrologic Processes and Basin Morphometry - The Lamos Basin (Mersin, Turkey)

    NASA Astrophysics Data System (ADS)

    Yıldırım, Ümit; Güler, Cüneyt

    2016-04-01

    This study has been carried out to determine the relationship between hydrologic processes and basin morphometry in the Lamos Basin, which is located at the northern part of the Mersin (SE Turkey). The morphometric parameters of the basin was derived from the 1:25K scale topographic map sheets that were digitized using ArcGIS 9.3.1 geographic information system (GIS) software. Morphometric parameters considered in this study include basin area, basin length, basin perimeter length, stream order, stream number, stream length, mean stream length, basin relief, drainage density, stream frequency, drainage texture, bifurcation ratio, form factor, elongation ratio, overland flow length, relief ratio, and hypsometric integral. The results have shown that there are 1252 individual stream reaches with a total length of 1414.1 km in the Lamos basin, which covers an area of 1358 km2 and has a length of 103 km in the N-S direction. Furthermore, the basin has a medium drainage density of 1.04 1/km with a stream frequency and drainage texture values of 0.92 and 4.33, respectively. The basin can be classified as elongated because of the low values of elongation ratio (0.48) and form factor (0.12). The hypsometric integral of the basin (0.58) indicates that it is in the youth period and thus reasonably sensitive to erosion. The values of drainage texture, drainage density, and stream frequency indicate that the Lamos basin is moderately well drained, therefore overland flow in the basin is not expected to be so quick. Thus, in case of occurrence of sudden peak flows, sensitivity to the land sliding and erosion may increase further. As a result, it is suggested that human activities in the basin should be limited in areas in fairly close proximity to the present day stream network to prevent or reduce the risk to life and property.

  18. Surface morphology and morphometry of rat alveolar macrophages after ozone exposure

    SciTech Connect

    Dormans, J.A.; Rombout, P.J.; van Loveren, H. )

    1990-09-01

    As the ultrastructural data on the effects of ozone on pulmonary alveolar macrophages (PAM) are lacking, transmission (TEM) and scanning (SEM) electron microscopy were performed on rat PAM present in alveolar lavages following exposure to ozone. Rats were continuously exposed for 7 d to ozone concentrations ranging from 0.25 to 1.50 mg/m3 for 7 d followed by a 5-d recovery period. Additionally, morphometry on lung sections was performed to quantitate PAM. In a second experiment rats were continuously exposed to 1.50 mg O3/m3 for 1, 3, 5, or 7 d. To study the influence of concurrent ozone exposure and lung infection, due to Listeria monocytogenes, rats were exposed for 7 d to 1.50 mg O3/m3 after a Listeria infection. The surface area of lavaged control PAM was uniformly covered with ruffles as shown by SEM and TEM. Exposure to 0.5 mg ozone/m3 for 7 d resulted in cells partly covered with microvilli and blebs in addition to normal ruffles. The number of large size PAM increased with an increase in ozone concentration. After 1 d of exposure, normal-appearing as well as many small macrophages with ruffles and scattered lymphocytes were seen. Lavage samples taken after 5 or 7 d of exposure showed an identical cell composition to that taken after 3 d of exposure. After Listeria infection alone, lavage samples consisted of mainly lymphocytes and some macrophages. Small quantitative changes, such as an increase in the number of polymorphonuclear neutrophils and large-size PAM, occurred in lavages after ozone exposure and infection with L. monocytogenes. Morphometric examination of lung sections revealed a concentration-related increase in the number of PAM, even in animals exposed to 0.25 mg ozone/m3 for 7 d. Centriacinar regions were more severely affected than other regions of lung tissue.

  19. Nuclear Morphometry Identifies a Distinct Aggressive Cellular Phenotype in Cutaneous Squamous Cell Carcinoma

    PubMed Central

    Glazer, Evan S.; Bartels, Peter H.; Prasad, Anil R.; Yozwiak, Michael L.; Bartels, Hubert G.; Einspahr, Janine G.; Alberts, David S.; Krouse, Robert S.

    2011-01-01

    By identifying aggressive cutaneous squamous cell carcinoma (cSCC) in patients who are at high risk for recurrences or second primaries after resection, intensive surveillance and therapy may decrease morbidity and mortality. We investigated the role of nuclear morphometry (karyometry) in differentiating between aggressive and nonaggressive cSCC. We retrospectively analyzed cSCC lesions from 40 male patients. 22 patients had evidence of aggressive cSCC (local/regional recurrence or a second primary cSCC), and 18 patients were identified with similar ages and sites of disease as control patients with nonaggressive cSCC (no evidence of recurrence, metastasis, or second primary). We performed karyometric analysis to identify nuclear features that discriminate between aggressive and nonaggressive cSCC nuclei. We used statistically significant differences (Kruskal-Wallis test P < 0.0001) to compose a quantitative aggressive classification score (proportion of aggressive nuclei from 0% to 100%). For comparisons, we used Fisher’s exact test or Student t test. The mean age was 79 ± 7 years for aggressive cSCC and 80 ± 9 years for nonaggressive cSCC (P = 0.66). We analyzed a mean of 96 nuclei in each group. The mean classification score for aggressive cSCC was significantly higher (69% ± 6%) than for nonaggressive cSCC (28% ± 5%, P = 0.00002). Overall, the classification score accurately categorized 80% of our patients (P = 0.0004). In most patients, karyometry differentiated between aggressive and nonaggressive cSCC. We found that classification scores, which provide information on individual lesions, could be used for risk stratification. PMID:21636541

  20. Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging

    NASA Astrophysics Data System (ADS)

    Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.

    2016-06-01

    Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.

  1. Response of Thalassia Testudinum Morphometry and Distribution to Environmental Drivers in a Pristine Tropical Lagoon

    PubMed Central

    2016-01-01

    This study was undertaken to determine the relationships between the biomass, morphometry, and density of short shoots (SS) of the tropical seagrass Thalassia testudinum and the physical-environmental forcing in the region. Seasonal sampling surveys were undertaken four times in Bahia de la Ascension, a shallow estuary in the western Mexican Caribbean, to measure plant morphology and environmental variables. The estuary has a fresh water-influenced inner bay, a large central basin and a marine zone featuring a barrier reef at the seaward margin. Leaf size was positively correlated with increasing salinity, but total biomass was not, being similar across most of the sites. Aboveground biomass exhibited seasonal differences in dry and rainy seasons along the bay, most markedly in the brackish inner bay where an abrupt decline in biomass coincided with the rainy season. The relationship between nutrients and biomass indicates that the aboveground/belowground biomass ratio increases as nutrient availability increases. Areal cover was inversely correlated with SS density during both dry and rainy seasons. Maximum SS recruitment coincided with the rainy season. Peaks in SS density were recorded in the freshwater-influenced inner bay during an ENSO cold phase in 2007 (“La Niña”) which is associated with a wetter dry season and following a strong storm (Hurricane Dean). The onset of the rainy season influences both shoot density and T. testudinum biomass by controlling the freshwater input to the bay and thus, the system’s salinity gradient and external nutrients supply from the coastal wetland. PMID:27736904

  2. SU-E-QI-12: Morphometry Based Measurements of the Structural Response to Whole Brain Radiation

    SciTech Connect

    Fuentes, D; Castillo, R; Castillo, E; Guerrero, T

    2014-06-15

    Purpose: Although state of the art radiation therapy techniques for treating intracranial malignancies have eliminated acute brain injury, cognitive impairment occurs in 50–90% of patients who survive >6mo post irradiation. Quantitative characterization of therapy response is needed to facilitate therapeutic strategies to minimize radiation induced cognitive impairment [1]. Deformation based morphometry techniques [2, 3] are presented as a quantitative imaging biomarker of therapy response in patients receiving whole brain radiation for treating medulloblastoma. Methods: Post-irradiation magnetic resonance imaging (MRI) data sets were retrospectively analyzed in N=15 patients, >60 MR image datasets. As seen in Fig 1(a), volume changes at multiple time points post-irradiation were quantitatively measured in the cerebrum and ventricles with respect to pre-irradiation MRI. A high resolution image Template, was registered to the pre-irradiation MRI of each patient to create a brain atlas for the cerebrum, cerebellum, and ventricles. Skull stripped images for each patient were registered to the initial pre-treatment scan. Average volume changes in the labeled regions were measured using the determinant of the displacement field Jacobian. Results: Longitudinal measurements, Fig 1(b-c), show a negative correlation p=.06, of the cerebral volume change with the time interval from irradiation. A corresponding positive correlation, p=.01, between ventricular volume change and time interval from irradiation is seen. One sample t-test for correlations were computed using a Spearman method. An average decrease in cerebral volume, p=.08, and increase in ventricular volume, p<.001, was observed. The radiation dose was seen directly proportional to the induced volume changes in the cerebrum, r=−.44, p<.001, Fig 1(d). Conclusion: Results indicate that morphometric monitoring of brain tissue volume changes may potentially be used to quantitatively assess toxicity and response to

  3. Regional Grey Matter Structure Differences between Transsexuals and Healthy Controls—A Voxel Based Morphometry Study

    PubMed Central

    Simon, Lajos; Kozák, Lajos R.; Simon, Viktória; Czobor, Pál; Unoka, Zsolt; Szabó, Ádám; Csukly, Gábor

    2013-01-01

    Gender identity disorder (GID) refers to transsexual individuals who feel that their assigned biological gender is incongruent with their gender identity and this cannot be explained by any physical intersex condition. There is growing scientific interest in the last decades in studying the neuroanatomy and brain functions of transsexual individuals to better understand both the neuroanatomical features of transsexualism and the background of gender identity. So far, results are inconclusive but in general, transsexualism has been associated with a distinct neuroanatomical pattern. Studies mainly focused on male to female (MTF) transsexuals and there is scarcity of data acquired on female to male (FTM) transsexuals. Thus, our aim was to analyze structural MRI data with voxel based morphometry (VBM) obtained from both FTM and MTF transsexuals (n = 17) and compare them to the data of 18 age matched healthy control subjects (both males and females). We found differences in the regional grey matter (GM) structure of transsexual compared with control subjects, independent from their biological gender, in the cerebellum, the left angular gyrus and in the left inferior parietal lobule. Additionally, our findings showed that in several brain areas, regarding their GM volume, transsexual subjects did not differ significantly from controls sharing their gender identity but were different from those sharing their biological gender (areas in the left and right precentral gyri, the left postcentral gyrus, the left posterior cingulate, precuneus and calcarinus, the right cuneus, the right fusiform, lingual, middle and inferior occipital, and inferior temporal gyri). These results support the notion that structural brain differences exist between transsexual and healthy control subjects and that majority of these structural differences are dependent on the biological gender. PMID:24391851

  4. Voxel-based morphometry and intellectual assessment in patients with congenital bilateral perisylvian syndrome.

    PubMed

    Yasuda, Clarissa L; Guimarães, Catarina A; Guerreiro, Marilisa M; Boscariol, Mirela; Oliveira, Ecila P M; Teixeira, Karine C; Costa, André L F; Beltramini, Guilherme C; Cendes, Fernando

    2014-07-01

    Congenital bilateral perisylvian syndrome (CBPS) presents with heterogeneous clinical manifestations such as pseudobulbar palsy, language disorder, variable cognitive deficits, epilepsy, and perisylvian abnormalities (most frequently polymicrogyria) on imaging studies. We investigated the relationship between seizures and extent of gray matter (GM) and white matter (WM) abnormalities using voxel-based morphometry (VBM) of brain magnetic resonance imaging (MRI) as well the association between seizures, structural abnormalities and cognitive ability. In this cross-sectional study, we evaluated 51 healthy volunteers and 18 patients with CBPS with epilepsy (seizure group, n = 7) and without (non-seizure group, n = 11). We used VBM (SPM8/DARTEL) to investigate areas with excess and atrophy of both gray and white matter, comparing groups of patients with controls. Intellectual ability of patients was assessed by the WISC-III or WAIS-III. Both groups with CBPS and the control group were homogeneous with respect to gender (p = 0.07) and age (p = 0.065). Besides perisylvian polymicrogyria, the seizure group exhibited areas with GM and WM reduction including temporal, frontal, parietal and occipital lobes. In contrast, we identified fewer areas with GM and WM reduction in the non-seizure group. The seizure group presented worse intellectual performance (performance IQ and global IQ) than the non-seizure group. The seizure group presented with a more widespread pattern of cortical and sub-cortical abnormalities, as well as worse cognition. Our results suggest that patients with CBPS and epilepsy appear to have widespread neuronal damage that goes beyond the areas with MRI-visible perisylvian polymicrogyria.

  5. Brain structure in post-traumatic stress disorder: A voxel-based morphometry analysis.

    PubMed

    Tan, Liwen; Zhang, Li; Qi, Rongfeng; Lu, Guangming; Li, Lingjiang; Liu, Jun; Li, Weihui

    2013-09-15

    This study compared the difference in brain structure in 12 mine disaster survivors with chronic post-traumatic stress disorder, 7 cases of improved post-traumatic stress disorder symptoms, and 14 controls who experienced the same mine disaster but did not suffer post-traumatic stress disorder, using the voxel-based morphometry method. The correlation between differences in brain structure and post-traumatic stress disorder symptoms was also investigated. Results showed that the gray matter volume was the highest in the trauma control group, followed by the symptoms-improved group, and the lowest in the chronic post-traumatic stress disorder group. Compared with the symptoms-improved group, the gray matter volume in the lingual gyrus of the right occipital lobe was reduced in the chronic post-traumatic stress disorder group. Compared with the trauma control group, the gray matter volume in the right middle occipital gyrus and left middle frontal gyrus was reduced in the symptoms-improved group. Compared with the trauma control group, the gray matter volume in the left superior parietal lobule and right superior frontal gyrus was reduced in the chronic post-traumatic stress disorder group. The gray matter volume in the left superior parietal lobule was significantly positively correlated with the State-Trait Anxiety Inventory subscale score in the symptoms-improved group and chronic post-traumatic stress disorder group (r = 0.477, P = 0.039). Our findings indicate that (1) chronic post-traumatic stress disorder patients have gray matter structural damage in the prefrontal lobe, occipital lobe, and parietal lobe, (2) after post-traumatic stress, the disorder symptoms are improved and gray matter structural damage is reduced, but cannot recover to the trauma-control level, and (3) the superior parietal lobule is possibly associated with chronic post-traumatic stress disorder. Post-traumatic stress disorder patients exhibit gray matter abnormalities.

  6. Sperm ultrastructure, morphometry, and abnormal morphology in American black bears (Ursus americanus).

    PubMed

    Brito, L F C; Sertich, P L; Stull, G B; Rives, W; Knobbe, M

    2010-11-01

    The objective of this study was to describe sperm ultrastructure, morphometry, and abnormal morphology in American black bears. Electroejaculation was successful in 53.8% (7/13) of the attempts, but urine contamination was common. Epididymal sperm samples were also obtained from five bears. Sperm had a paddle-like head shape and the ultrastructure was similar to that of most other mammals. The most striking particularity of black bear sperm ultrastructure was a tightening of the nucleus in the equatorial region. Although the differences were not significant in all bears, the overall decrease in sperm nucleus dimensions during transport from the caput epididymis to the cauda suggested increasing compaction of the nucleus during maturation. For ejaculated sperm, nucleus length, width, and base width were 4.9, 3.7, and 1.8 μm, respectively, whereas sperm head length, width, and base width were 6.6, 4.8, and 2.3 μm, and midpiece, tail (including midpiece), and total sperm lengths were 9.8, 68.8, and 75.3 μm. Evaluation of sperm cytoplasmic droplets in the epididymis revealed that proximal droplets start migrating toward a distal position in the caput epididymis and that the process was mostly completed by the time sperm reached the cauda epididymis. The proportion of morphologically normal sperm in the ejaculate was 35.6%; the most prevalent sperm defects were distal cytoplasmic droplets and bent/coiled tails. The morphology of abnormal sperm and the underlying ultrastructural defects were similar to that in other large domestic animals thus suggesting similar underlying pathogenesis of specific sperm defects and similar effects on fertility.

  7. Micro-RNA expression in muscle and fiber morphometry in myotonic dystrophy type 1.

    PubMed

    Fritegotto, Chiara; Ferrati, Chiara; Pegoraro, Valentina; Angelini, Corrado

    2017-04-01

    We aimed to explore the cellular action of micro-RNAs that are non-coding-RNAs modulating gene expression, whose expression is dysregulated in myotonic dystrophy (DM1). Basic procedure was to measure the levels of muscle-specific myo-miRNAs (miR-1, miR-133a/b, miR-206) in muscle of 12 DM1 patients. Muscle fiber morphometry and a new grading of histopathological severity score were used to compare specific myo-miRNA level and fiber atrophy. We found that the levels of miR-1 and miR-133a/b were significantly decreased, while miR-206 was significantly increased as compared to controls. The histopathological score did not significantly correlate with the levels of myo-miRNAs, even if the lowest levels of miRNA-1 and miRNA-133a/b, and the highest levels of miRNA-206 were observed in patients with either severe histopathological scores or long disease duration. The histopathological score was inversely correlated with disease duration. Nowadays that DM1 muscle biopsies are scanty, since patients are usually diagnosed by genetic analysis, our study offers a unique opportunity to present miRNA expression profiles in muscle and correlate them to muscle morphology in this rare multisystem disorder. Our molecular and morphologic data suggest a post-transcriptional regulatory action of myo-miRNA in DM1, highlighting their potential role as biomarkers of muscle plasticity.

  8. Morphometry of Human Insular Cortex and Insular Volume Reduction in Williams syndrome

    PubMed Central

    Cohen, Jeremy D.; Mock, Jeffrey R.; Nichols, Taylor; Zadina, Janet; Corey, David M.; Lemen, Lisa; Bellugi, Ursula; Galaburda, Albert; Reiss, Allan; Foundas, Anne L.

    2009-01-01

    Functional imaging in humans and anatomical data in monkeys have implicated the insula as a multimodal sensory integrative brain region. The topography of insular connections is organized by its cytoarchitectonic regions. Previous attempts to measure the insula have utilized either indirect or automated methods. This study was designed to develop a reliable method for obtaining volumetric magnetic resonance imaging (MRI) measurements of the human insular cortex, and to validate that method by examining the anatomy of insular cortex in adults with Williams syndrome (WS) and healthy age-matched controls. Statistical reliability was obtained among three raters for this method, supporting its reproducibility not only across raters, but within different software packages. The procedure described here utilizes native-space morphometry as well as a method for dividing the insula into connectivity-based sub-regions estimated from cytoarchitectonics. Reliability was calculated in both ANALYZE (n=3) and BrainImageJava (N=10) where brain scans were measured once in each hemisphere by each rater. This highly reliable method revealed total, anterior, and posterior insular volume reduction bilaterally (all p’s < .002) in WS, after accounting for reduced total brain volumes in these participants. Although speculative, the reduced insular volumes in WS may represent a neural risk for the development of hyperaffiliative social behavior with increased specific phobias, and implicate the insula as a critical limbic integrative region. Native-space quantification of the insula may be valuable in the study of neurodevelopmental or neuropsychiatric disorders related to anxiety and social behavior. PMID:19660766

  9. Drainage basin morphometry controls on the active depositional area of debris flow fans

    NASA Astrophysics Data System (ADS)

    Mihir, Monika; Wasklewicz, Thad; Malamud, Bruce

    2015-04-01

    A majority of the research on understanding the connection between alluvial fans and drainage basins to date has focused on coarse-scale relations between total fan area and drainage basin area. Here we take a new approach where we assess relationships between active fan depositional area and drainage basin morphometry using 52 debris flow fans (32 from the White Mountains and 20 from the Inyo Mountains) on the eastern side of Owens Valley, California, USA. The boundaries for fans, drainage basin and active depositional areas were delineated from 10m digital elevation models and 1 m aerial photographs. We examined the relationships between the normalised active depositional area of the fan (Afad/Af, where Afad is the fan active depositional area and Af the entire fan area) and the following four variables for drainage basin: (i) area (Adb), (ii) total stream length (Ls), (iii) relief (BHH), (iv) roughness (R). We find a statistically significant (r2 > 0.40) inverse power-law relationship between recent sediment contribution to the fan and drainage basin area (Afad/Af = 0.29Adb-0.167) drainage network length (Afad/Af = 0.39Ls-0.161) and basin relief (Afad/Af = 3.90BHH-0.401), and a statistically weak (r2 = 0.22) inverse power law with basin roughness (Afad/Af = 0.32R0.5441). Drainage basin size combined with other morphometric variables may largely determine efficiency in sediment transport and delivery to the fan surface. A large proportion of the total fan area of smaller fans are flooded by debris flow indicating less sediment storage in the drainage basins and greater efficiency in sediment delivery. The findings signify the importance of coarse-scale relationships to both long- and short-term fan evolution.

  10. Effects of HIV and childhood trauma on brain morphometry and neurocognitive function.

    PubMed

    Spies, Georgina; Ahmed-Leitao, Fatima; Fennema-Notestine, Christine; Cherner, Mariana; Seedat, Soraya

    2016-04-01

    A wide spectrum of neurocognitive deficits characterises HIV infection in adults. HIV infection is additionally associated with morphological brain abnormalities affecting neural substrates that subserve neurocognitive function. Early life stress (ELS) also has a direct influence on brain morphology. However, the combined impact of ELS and HIV on brain structure and neurocognitive function has not been examined in an all-female sample with advanced HIV disease. The present study examined the effects of HIV and childhood trauma on brain morphometry and neurocognitive function. Structural data were acquired using a 3T Magnetom MRI scanner, and a battery of neurocognitive tests was administered to 124 women: HIV-positive with ELS (n = 32), HIV-positive without ELS (n = 30), HIV-negative with ELS (n = 31) and HIV-negative without ELS (n = 31). Results revealed significant group volumetric differences for right anterior cingulate cortex (ACC), bilateral hippocampi, corpus callosum, left and right caudate and left and right putamen. Mean regional volumes were lowest in HIV-positive women with ELS compared to all other groups. Although causality cannot be inferred, findings also suggest that alterations in the left frontal lobe, right ACC, left hippocampus, corpus callosum, left and right amygdala and left caudate may be associated with poorer neurocognitive performance in the domains of processing speed, attention/working memory, abstraction/executive functions, motor skills, learning and language/fluency with these effects more pronounced in women living with both HIV and childhood trauma. This study highlights the potential contributory role of childhood trauma to brain alterations and neurocognitive decline in HIV-infected individuals.

  11. Effects of HIV and childhood trauma on brain morphometry and neurocognitive function

    PubMed Central

    Spies, Georgina; Ahmed-Leitao, Fatima; Fennema-Notestine, Christine; Cherner, Mariana; Seedat, Soraya

    2016-01-01

    A wide spectrum of neurocognitive deficits characterise HIV infection in adults. HIV infection is additionally associated with morphological brain abnormalities affecting neural substrates that subserve neurocognitive function. Early life stress (ELS) also has a direct influence on brain morphology. However, the combined impact of ELS and HIV on brain structure and neurocognitive function has not been examined in an all-female sample with advanced HIV disease. The present study examined the effects of HIV and childhood trauma on brain morphometry and neurocognitive function. Structural data were acquired using a 3T Magnetom MRI scanner and a battery of neurocognitive tests was administered to 124 women; HIV positive with ELS (n = 32), HIV positive without ELS (n = 30), HIV negative with ELS (n = 31), HIV negative without ELS (n = 31). Results revealed significant group volumetric differences for right anterior cingulate cortex (ACC), bilateral hippocampi, corpus callosum, left and right caudate, and left and right putamen. Mean regional volumes were lowest in HIV positive women with ELS compared to all other groups. Although causality cannot be inferred, findings also suggest that alterations in the left frontal lobe, right ACC, left hippocampus, corpus callosum, left and right amygdala, and left caudate may be associated with poorer neurocognitive performance in the domains of processing speed, attention/working memory, abstraction/executive functions, motor skills, learning, and language/fluency with these effects more pronounced in women living with both HIV and childhood trauma. This study highlights the potential contributory role of childhood trauma to brain alterations and neurocognitive decline in HIV infected individuals. PMID:26424107

  12. How lake morphometry reflects environmental conditions in the permafrost-dominated Lena Delta

    NASA Astrophysics Data System (ADS)

    Morgenstern, A.; Grosse, G.; Schirrmeister, L.

    2007-12-01

    Numerous lakes characterize the landscape of the northeast Siberian Lena Delta, which is situated in the zone of continuous permafrost. We provide a detailed lake inventory of this largest Arctic delta. The inventory is based on Landsat-7 ETM+ image data and spatial analysis in ArcGIS. Several morphometric lake attributes were determined from the resulting data set and statistically analysed regarding the lakes' association with one of the three geomorphological main units of the Lena delta. Significant differences in the morphometric lake characteristics allowed the distinction of a mean lake type for each main unit. The lake types reflect the special lithological and cryolithological conditions and geomorphologic processes prevailing on each terrace. The first main unit, which represents the modern active delta, is characterized by small lakes of irregular shape, like meander scrolls and oxbow lakes. Large oriented lakes dominate on the second terrace that consists of Late Pleistocene to Early Holocene sands. On the third terrace, which is represented by relics of a Late Pleistocene accumulation plain with fine-grained and ice-rich deposits, typical thermokarst lakes with regular, circular shorelines prevail. Most studied lakes are thermokarst lakes by their nature, as they have been or still are expanding by thermoabrasion of shore banks and deepening of the lake basin. However, a distinction between primary and secondary thermokarst lakes can be made. Primary lakes are those initially formed by thaw subsidence, i.e. the third terrace lakes. Secondary thermokarst lakes are typically formed by other processes, e.g. the change of the fluvial channel network on the first terrace. The role of lakes on the second terrace is still debated. They appear to be typical thermokarst lakes by morphometry, but their primary initiation might have been related to inter-dune or old fluvial water bodies.

  13. Tensor-Based Morphometry Reveals Volumetric Deficits in Moderate=Severe Pediatric Traumatic Brain Injury

    PubMed Central

    Hua, Xue; Villalon-Reina, Julio; Moran, Lisa M.; Kernan, Claudia; Babikian, Talin; Mink, Richard; Babbitt, Christopher; Johnson, Jeffrey; Giza, Christopher C.; Thompson, Paul M.; Asarnow, Robert F.

    2016-01-01

    Abstract Traumatic brain injury (TBI) can cause widespread and prolonged brain degeneration. TBI can affect cognitive function and brain integrity for many years after injury, often with lasting effects in children, whose brains are still immature. Although TBI varies in how it affects different individuals, image analysis methods such as tensor-based morphometry (TBM) can reveal common areas of brain atrophy on magnetic resonance imaging (MRI), secondary effects of the initial injury, which will differ between subjects. Here we studied 36 pediatric moderate to severe TBI (msTBI) participants in the post-acute phase (1–6 months post-injury) and 18 msTBI participants who returned for their chronic assessment, along with well-matched controls at both time-points. Participants completed a battery of cognitive tests that we used to create a global cognitive performance score. Using TBM, we created three-dimensional (3D) maps of individual and group differences in regional brain volumes. At both the post-acute and chronic time-points, the greatest group differences were expansion of the lateral ventricles and reduction of the lingual gyrus in the TBI group. We found a number of smaller clusters of volume reduction in the cingulate gyrus, thalamus, and fusiform gyrus, and throughout the frontal, temporal, and parietal cortices. Additionally, we found extensive associations between our cognitive performance measure and regional brain volume. Our results indicate a pattern of atrophy still detectable 1-year post-injury, which may partially underlie the cognitive deficits frequently found in TBI. PMID:26393494

  14. Longitudinal stability of MRI for mapping brain change using tensor-based morphometry.

    PubMed

    Leow, Alex D; Klunder, Andrea D; Jack, Clifford R; Toga, Arthur W; Dale, Anders M; Bernstein, Matt A; Britson, Paula J; Gunter, Jeffrey L; Ward, Chadwick P; Whitwell, Jennifer L; Borowski, Bret J; Fleisher, Adam S; Fox, Nick C; Harvey, Danielle; Kornak, John; Schuff, Norbert; Studholme, Colin; Alexander, Gene E; Weiner, Michael W; Thompson, Paul M

    2006-06-01

    Measures of brain change can be computed from sequential MRI scans, providing valuable information on disease progression, e.g., for patient monitoring and drug trials. Tensor-based morphometry (TBM) creates maps of these brain changes, visualizing the 3D profile and rates of tissue growth or atrophy, but its sensitivity depends on the contrast and geometric stability of the images. As part of the Alzheimer's Disease Neuroimaging Initiative (ADNI), 17 normal elderly subjects were scanned twice (at a 2-week interval) with several 3D 1.5 T MRI pulse sequences: high and low flip angle SPGR/FLASH (from which Synthetic T1 images were generated), MP-RAGE, IR-SPGR (N = 10) and MEDIC (N = 7) scans. For each subject and scan type, a 3D deformation map aligned baseline and follow-up scans, computed with a nonlinear, inverse-consistent elastic registration algorithm. Voxelwise statistics, in ICBM stereotaxic space, visualized the profile of mean absolute change and its cross-subject variance; these maps were then compared using permutation testing. Image stability depended on: (1) the pulse sequence; (2) the transmit/receive coil type (birdcage versus phased array); (3) spatial distortion corrections (using MEDIC sequence information); (4) B1-field intensity inhomogeneity correction (using N3). SPGR/FLASH images acquired using a birdcage coil had least overall deviation. N3 correction reduced coil type and pulse sequence differences and improved scan reproducibility, except for Synthetic T1 images (which were intrinsically corrected for B1-inhomogeneity). No strong evidence favored B0 correction. Although SPGR/FLASH images showed least deviation here, pulse sequence selection for the ADNI project was based on multiple additional image analyses, to be reported elsewhere.

  15. Wogonin Induces Eosinophil Apoptosis and Attenuates Allergic Airway Inflammation

    PubMed Central

    Dorward, David A.; Sharma, Sidharth; Rennie, Jillian; Felton, Jennifer M.; Alessandri, Ana L.; Duffin, Rodger; Schwarze, Jurgen; Haslett, Christopher; Rossi, Adriano G.

    2015-01-01

    Rationale: Eosinophils are key effector cells in allergic diseases, including allergic rhinitis, eczema, and asthma. Their tissue presence is regulated by both recruitment and increased longevity at inflamed sites. Objectives: To investigate the ability of the flavone wogonin to induce eosinophil apoptosis in vitro and attenuate eosinophil-dominant allergic inflammation in vivo in mice. Methods: Human and mouse eosinophil apoptosis in response to wogonin was investigated by cellular morphology, flow cytometry, mitochondrial membrane permeability, and pharmacological caspase inhibition. Allergic lung inflammation was modeled in mice sensitized and challenged with ovalbumin. Bronchoalveolar lavage (BAL) and lung tissue were examined for inflammation, mucus production, and inflammatory mediator production. Airway hyperresponsiveness to aerosolized methacholine was measured. Measurements and Main Results: Wogonin induced time- and concentration-dependent human and mouse eosinophil apoptosis in vitro. Wogonin-induced eosinophil apoptosis occurred with activation of caspase-3 and was inhibited by pharmacological caspase inhibition. Wogonin administration attenuated allergic airway inflammation in vivo with reductions in BAL and interstitial eosinophil numbers, increased eosinophil apoptosis, reduced airway mucus production, and attenuated airway hyperresponsiveness. This wogonin-induced reduction in allergic airway inflammation was prevented by concurrent caspase inhibition in vivo. Conclusions: Wogonin induces eosinophil apoptosis and attenuates allergic airway inflammation, suggesting that it has therapeutic potential for the treatment of allergic inflammation in humans. PMID:25629436

  16. Effect of aerosol propellants and surfactants on airway resistance

    PubMed Central

    Sterling, G. M.; Batten, J. C.

    1969-01-01

    The effects on the airways of inhalation of the vehicles used in two commercial pressurized bronchodilator aerosols were studied in 20 normal and seven asthmatic subjects. Changes in bronchial calibre due to bronchoconstriction were measured as changes in airway resistance using a constant volume whole body plethysmograph, and results were expressed as changes in the ratio Airway conductance/Thoracic gas volume (=specific airway conductance). The aerosols caused very slight bronchoconstriction in the normal subjects, with a mean decrease of 5·3% in specific airway conductance after inhalation of a spray containing sorbitol trioleate as a surface tension lowering agent, and of 9·7% after inhalation of a spray containing lecithin. This effect was prevented by prior inhalation of atropine methonitrate, and its mechanism was therefore probably a vagally mediated reflex. The bronchoconstriction was also reversed by the addition of isoprenaline to the aerosol. The asthmatic subjects showed larger mean reductions in specific airway conductance of 13% and 21% after sorbitol and lecithin respectively: the response was again prevented by atropine. We conclude that, although the aerosol vehicles cause slight bronchoconstriction, this is unlikely to be a clinical danger since it is insufficient to cause symptoms of wheezing, and is less than that caused by inhalation of a single cigarette. Moreover, the constriction is regularly converted to dilatation in both normal and asthmatic subjects by the addition of atropine or isoprenaline to the aerosol. PMID:5821624

  17. Airway epithelial IL-15 transforms monocytes into dendritic cells.

    PubMed

    Regamey, Nicolas; Obregon, Carolina; Ferrari-Lacraz, Sylvie; van Leer, Coretta; Chanson, Marc; Nicod, Laurent P; Geiser, Thomas

    2007-07-01

    IL-15 has recently been shown to induce the differentiation of functional dendritic cells (DCs) from human peripheral blood monocytes. Since DCs lay in close proximity to epithelial cells in the airway mucosa, we investigated whether airway epithelial cells release IL-15 in response to inflammatory stimuli and thereby induce differentiation and maturation of DCs. Alveolar (A549) and bronchial (BEAS-2B) epithelial cells produced IL-15 spontaneously and in a time- and dose-dependent manner after stimulation with IL-1beta, IFN-gamma, or TNF-alpha. Airway epithelial cell supernatants induced an increase of IL-15Ralpha gene expression in ex vivo monocytes, and stimulated DCs enhanced their IL-15Ralpha gene expression up to 300-fold. Airway epithelial cell-conditioned media induced the differentiation of ex vivo monocytes into partially mature DCs (HLA-DR+, DC-SIGN+, CD14+, CD80-, CD83+, CD86+, CCR3+, CCR6(+), CCR7-). Based on their phenotypic (CD123+, BDCA2+, BDCA4+, BDCA1(-), CD1a-) and functional properties (limited maturation upon stimulation with LPS and limited capacity to induce T cell proliferation), these DCs resembled plasmacytoid DCs. The effects of airway epithelial cell supernatants were largely blocked by a neutralizing monoclonal antibody to IL-15. Thus, our results demonstrate that airway epithelial cell-conditioned media have the capacity to differentiate monocytes into functional DCs, a process substantially mediated by epithelial-derived IL-15.

  18. Small airways involvement in coal mine dust lung disease.

    PubMed

    Long, Joshua; Stansbury, Robert C; Petsonk, Edward L

    2015-06-01

    Inhalation of coal mine dust results in a spectrum of symptoms, dysfunction, and pathological changes in the respiratory tract that collectively have been labeled coal mine dust lung disease. Recent reports from periodic health surveillance among underground and surface coal miners in the United States have demonstrated an increasing prevalence and severity of dust diseases, and have also documented that some miners experience rapid disease progression. The coal macule is an inflammatory lesion associated with deposited dust, and occurs in the region of the most distal conducting airways and proximal respiratory bronchioles. Inflammatory changes in the small airways have long been recognized as the signature lung pathology among coal miners. Human and laboratory studies have suggested oxidant injury, and increased recruitment and activity of macrophages play important roles in dust-induced lung injury. However, the functional importance of the small airway changes was debated for many years. We reviewed published literature that documents a pervasive occurrence of both physiologic and structural abnormalities in small airways among coal miners and other workers exposed to airborne particulates. There is increasing evidence supporting an important association of abnormalities in the small peripheral airways with the development of respiratory symptoms, deficits in spirometry values, and accelerated declines in ventilatory lung function. Pathologic changes associated with mineral dust deposition in the small airways may be of particular importance in contemporary miners with rapidly progressive respiratory impairment.

  19. Progenitor Cells in Proximal Airway Epithelial Development and Regeneration

    PubMed Central

    Lynch, Thomas J.; Engelhardt, John F.

    2015-01-01

    Multiple distinct epithelial domains are found throughout the airway that are distinguishable by location, structure, function, and cell-type composition. Several progenitor cell populations in the proximal airway have been identified to reside in confined microenvironmental niches including the submucosal glands (SMGs), which are embedded in the tracheal connective tissue between the surface epithelium and cartilage, and basal cells that reside within the surface airway epithelium (SAE). Current research suggests that regulatory pathways that coordinate development of the proximal airway and establishment of progenitor cell niches may overlap with pathways that control progenitor cell responses during airway regeneration following injury. SMGs have been shown to harbor epithelial progenitor cells, and this niche is dysregulated in diseases such as cystic fibrosis. However, mechanisms that regulate progenitor cell proliferation and maintenance within this glandular niche are not completely understood. Here we discuss glandular progenitor cells during development and regeneration of the proximal airway and compare properties of glandular progenitors to those of basal cell progenitors in the SAE. Further investigation into glandular progenitor cell control will provide a direction for interrogating therapeutic interventions to correct aberrant conditions affecting the SMGs in diseases such as cystic fibrosis, chronic bronchitis, and asthma. PMID:24818588

  20. Morphometry and land cover based multi-criteria analysis for assessing the soil erosion susceptibility of the western Himalayan watershed.

    PubMed

    Altaf, Sadaff; Meraj, Gowhar; Romshoo, Shakil Ahmad

    2014-12-01

    Complex mountainous environments such as Himalayas are highly susceptibility to natural hazards particular those that are triggered by the action of water such as floods, soil erosion, mass movements and siltation of the hydro-electric power dams. Among all the natural hazards, soil erosion is the most implicit and the devastating hazard affecting the life and property of the millions of people living in these regions. Hence to review and devise strategies to reduce the adverse impacts of soil erosion is of utmost importance to the planners of watershed management programs in these regions. This paper demonstrates the use of satellite based remote sensing data coupled with the observational field data in a multi-criteria analytical (MCA) framework to estimate the soil erosion susceptibility of the sub-watersheds of the Rembiara basin falling in the western Himalaya, using geographical information system (GIS). In this paper, watershed morphometry and land cover are used as an inputs to the MCA framework to prioritize the sub-watersheds of this basin on the basis of their different susceptibilities to soil erosion. Methodology included the derivation of a set of drainage and land cover parameters that act as the indicators of erosion susceptibility. Further the output from the MCA resulted in the categorization of the sub-watersheds into low, medium, high and very high erosion susceptibility classes. A detailed prioritization map for the susceptible sub-watersheds based on the combined role of land cover and morphometry is finally presented. Besides, maps identifying the susceptible sub-watersheds based on morphometry and land cover only are also presented. The results of this study are part of the watershed management program in the study area and are directed to instigate appropriate measures to alleviate the soil erosion in the study area.

  1. Pelvic Belt Effects on Pelvic Morphometry, Muscle Activity and Body Balance in Patients with Sacroiliac Joint Dysfunction

    PubMed Central

    Soisson, Odette; Lube, Juliane; Germano, Andresa; Hammer, Karl-Heinz; Josten, Christoph; Sichting, Freddy; Winkler, Dirk; Milani, Thomas L.; Hammer, Niels

    2015-01-01

    Introduction The sacroiliac joint (SIJ) is frequently involved in low back and pelvic girdle pain. However, morphometrical and functional characteristics related to SIJ pain are poorly defined. Pelvic belts represent one treatment option, but evidence still lacks as to their pain-reducing effects and the mechanisms involved. Addressing these two issues, this case-controlled study compares morphometric, functional and clinical data in SIJ patients and healthy controls and evaluates the effects of short-term pelvic belt application. Methods Morphometric and functional data pertaining to pelvic belt effects were compared in 17 SIJ patients and 17 controls. Lumbar spine and pelvis morphometries were obtained from 3T magnetic resonance imaging. Functional electromyography data of pelvis and leg muscles and center of pressure excursions were measured in one-leg stance. The numerical rating scale was used to evaluate immediate pain-reducing effects. Results Pelvic morphometry was largely unaltered in SIJ patients and also by pelvic belt application. The angle of lumbar lateral flexion was significantly larger in SIJ patients without belt application. Muscle activity and center of pressure were unaffected by SIJ pain or by belt application in one-leg stance. Nine of 17 patients reported decreased pain intensities under moderate belt application, four reported no change and four reported increased pain intensity. For the entire population investigated here, this qualitative description was not confirmed on a statistical significant level. Discussion Minute changes were observed in the alignment of the lumbar spine in the frontal plane in SIJ patients. The potential pain-decreasing effects of pelvic belts could not be attributed to altered muscle activity, pelvic morphometry or body balance in a static short-term application. Long-term belt effects will therefore be of prospective interest. PMID:25781325

  2. Effect of neonatal or adult heat acclimation on testicular and epididymal morphometry and sperm production in rats.

    PubMed

    Kurowicka, B; Dietrich, G J; Kotwica, G

    2015-03-01

    The accessory gland weight, testicular and epididymal morphometry and sperm production were analyzed in four groups of rats housed at 20 or 34°C: (1) control rats (CR) kept at 20°C from birth to day 90; (2) adult heat-acclimated rats (AHA) kept at 20°C from birth to day 45 followed by 34°C to day 90; (3) neonatal heat-acclimated rats (NHA) kept at 34°C from birth to day 90 and (4) de-acclimated rats (DA) kept at 34°C from birth to day 45 followed by 20°C to day 90. In NHA and DA rats, accessory gland weight was higher than in controls. Despite the lack of differences in testicular and epididymal morphometry, curvilinear velocity of spermatozoa was lower in the NHA group compared to controls. Areas of seminiferous tubules were lower in the DA than in CR and NHA groups, however, sperm concentration and motility were not affected by the treatment in this group. In AHA rats, epithelium of approximately 20% of seminiferous tubules was degenerated and Sertoli cell number was lower in the remaining tubules. In contrast to sperm motility, epididymal duct area, area of the duct occupied by spermatozoa and cauda epididymis sperm concentration were lower in AHA rats than in the other groups. In conclusion, neonatal heat acclimation did not affect the testicular morphometry and epididymal sperm concentration, suggesting adjustment to high ambient temperature. On the contrary, adult heat acclimation of rats affected the examined parameters, leading to decreased sperm concentration.

  3. Structural Differences in Gray Matter between Glider Pilots and Non-Pilots. A Voxel-Based Morphometry Study

    PubMed Central

    Ahamed, Tosif; Kawanabe, Motoaki; Ishii, Shin; Callan, Daniel E.

    2014-01-01

    Glider flying is a unique skill that requires pilots to control an aircraft at high speeds in three dimensions and amidst frequent full-body rotations. In the present study, we investigated the neural correlates of flying a glider using voxel-based morphometry. The comparison between gray matter densities of 15 glider pilots and a control group of 15 non-pilots exhibited significant gray matter density increases in left ventral premotor cortex, anterior cingulate cortex, and the supplementary eye field. We posit that the identified regions might be associated with cognitive and motor processes related to flying, such as joystick control, visuo-vestibular interaction, and oculomotor control. PMID:25506339

  4. Morphometry for alpha particle hits of critical targets in the lungs. Final technical report

    SciTech Connect

    Mercer, R.R.

    1998-11-01

    The objective of this study is to provide detailed data on the number, location and type of critical target cells in the airspaces and to use these data in order to make risk assessments of the health effects of radon and radon progeny in the lungs. This will be done by quantitative morphometric study of the distribution of the various cell types and mucous lining layers in the lungs. The results provide anatomically correct models for dosimetry in the rate and human airways which significantly improve the ability to do risk assessment for radon exposures by providing quantitative data for specific cell types and provide a basis for mechanism based comparison between data available in animal exposures and human epidemiology.

  5. Topical airway anesthesia for awake fiberoptic intubation: Comparison between airway nerve blocks and nebulized lignocaine by ultrasonic nebulizer

    PubMed Central

    Gupta, Babita; Kohli, Santvana; Farooque, Kamran; Jalwal, Gopal; Gupta, Deepak; Sinha, Sumit; Chandralekha

    2014-01-01

    Overview: Awake fiberoptic bronchoscope (FOB) guided intubation is the gold standard of airway management in patients with cervical spine injury. It is essential to sufficiently anesthetize the upper airway before the performance of awake FOB guided intubation in order to ensure patient comfort and cooperation. This randomized controlled study was performed to compare two methods of airway anesthesia, namely ultrasonic nebulization of local anesthetic and performance of airway blocks. Materials and Methods: A total of 50 adult patients with cervical spine injury were randomly allocated into two groups. Group L received airway anesthesia through ultrasonic nebulization of 10 ml of 4% lignocaine and Group NB received airway blocks (bilateral superior laryngeal and transtracheal recurrent laryngeal) each with 2 ml of 2% lignocaine and viscous lignocaine gargles. FOB guided orotracheal intubation was then performed. Hemodynamic variables at baseline and during the procedure, patient recall, vocal cord visibility, ease of intubation, coughing/gagging episodes, and signs of lignocaine toxicity were noted. Results: The observations did not reveal any significant differences in demographics or hemodynamic parameters at any time during the study. However, the time taken for intubation was significantly lower in Group NB as compared with the Group L. Group L had an increased number of coughing/gagging episodes as compared with Group NB. Vocal cord visibility and ease of intubation were better in patients who received airway blocks and hence the amount of supplemental lignocaine used was less in this group. Overall patient comfort was better in Group NB with fewer incidences of unpleasant recalls as compared with Group L. Conclusion: Upper airway blocks provide better quality of anesthesia than lignocaine nebulization as assessed by patient recall of procedure, coughing/gagging episodes, ease of intubation, vocal cord visibility, and time taken to intubate. PMID:25538514

  6. Small airway impairment in moderate to severe asthmatics without significant proximal airway obstruction.

    PubMed

    Perez, Thierry; Chanez, Pascal; Dusser, Daniel; Devillier, Philippe

    2013-11-01

    Asthma is a disease characterized by inflammation which affects both proximal and distal airways. We evaluated the prevalence of small airway obstruction (SAO) in a group of clinically stable asthmatics with both normal forced expiratory volume in the first second (FEV1) and normal FEV1/forced vital capacity (FVC) and treated with an association of inhaled corticosteroids (ICSs) and long acting β2-agonists (LABAs). Clinical evaluation included the measurement of dyspnea, asthma control test and drug compliance. The prevalence of SAO was estimated by spirometry and plethysmography and defined by the presence of one or more of the following criteria: functional residual capacity (FRC) > 120% predicted (pred), residual volume (RV) > pred + 1.64 residual standard deviation (RSD), RV/total lung capacity (TLC) > pred + 1.64 RSD, forced expiratory flow (FEF)25-75% < pred - 1.64 RSD, FEF50% < pred - 1.64 RSD, slow vital capacity (SVC) - FVC > 10%. Among the 441 patients who were included, 222 had normal FEV1 and FEV1/FVC. At least one criteria of SAO was found in 115 (52%) mainly lung hyperinflation (39% based on high FRC, RV or RV/TLC) and more rarely distal airflow limitation (15% based on FEF25-75% or FEF50%) or expiratory trapping (10% based on increased SVC - FVC). In the patients with only SAO (no PAO), there was no relationship between SAO, asthma history and the scores of dyspnea, asthma control or drug compliance. These results suggest that in asthmatics with normal FEV1 and FEV1/FVC, treated with ICSs and LABAs, SAO is found in more than half of the patients indicating that the routinely used lung function tests can underestimate dysfunctions occurring in the small airways.

  7. Role of IRE1α/XBP-1 in Cystic Fibrosis Airway Inflammation

    PubMed Central

    Ribeiro, Carla M. P.; Lubamba, Bob A.

    2017-01-01

    Cystic fibrosis (CF) pulmonary disease is characterized by chronic airway infection and inflammation. The infectious and inflamed CF airway environment impacts on the innate defense of airway epithelia and airway macrophages. The CF airway milieu induces an adaptation in these cells characterized by increased basal inflammation and a robust inflammatory response to inflammatory mediators. Recent studies have indicated that these responses depend on activation of the unfolded protein response (UPR). This review discusses the contribution of airway epithelia and airway macrophages to CF airway inflammatory responses and specifically highlights the functional importance of the UPR pathway mediated by IRE1/XBP-1 in these processes. These findings suggest that targeting the IRE1/XBP-1 UPR pathway may be a therapeutic strategy for CF airway disease. PMID:28075361

  8. AANA journal course: update for nurse anesthetists. The SLAM Emergency Airway Flowchart: a new guide for advanced airway practitioners.

    PubMed

    Rich, James M; Mason, Andrew M; Ramsay, Michael A E

    2004-12-01

    Advanced airway practitioners in anesthesiology, emergency medicine, and prehospital care can suddenly and unexpectedly face difficult airway situations that can surface without warning during mask ventilation or tracheal intubation. Although tracheal intubation remains the "gold standard" in airway management, it is not always achievable, and, when it proves impossible, appropriate alternative interventions must be used rapidly to avoid serious morbidity or mortality. The SLAM Emergency Airway Flowchart (SEAF) is intended to prevent the 3 reported primary causes of adverse respiratory events (ie, inadequate ventilation, undetected esophageal intubation, and difficult intubation). The 5 pathways of the SEAF include primary ventilation, rapid-sequence intubation, difficult intubation, rescue ventilation, and cricothyrotomy. It is intended for use with adult patients by advanced airway practitioners competent in direct laryngoscopy, tracheal intubation, administration of airway drugs, rescue ventilation, and cricothyrotomy. The SEAF has limitations (eg, suitable only for use with adult patients, cannot be used by certain categories of rescue personnel, and depends heavily on assessment of Spo2). A unique benefit is provision of simple alternative techniques that can be used when another technique fails.

  9. Computational Flow Modeling of Human Upper Airway Breathing

    NASA Astrophysics Data System (ADS)

    Mylavarapu, Goutham

    Computational modeling of biological systems have gained a lot of interest in biomedical research, in the recent past. This thesis focuses on the application of computational simulations to study airflow dynamics in human upper respiratory tract. With advancements in medical imaging, patient specific geometries of anatomically accurate respiratory tracts can now be reconstructed from Magnetic Resonance Images (MRI) or Computed Tomography (CT) scans, with better and accurate details than traditional cadaver cast models. Computational studies using these individualized geometrical models have advantages of non-invasiveness, ease, minimum patient interaction, improved accuracy over experimental and clinical studies. Numerical simulations can provide detailed flow fields including velocities, flow rates, airway wall pressure, shear stresses, turbulence in an airway. Interpretation of these physical quantities will enable to develop efficient treatment procedures, medical devices, targeted drug delivery etc. The hypothesis for this research is that computational modeling can predict the outcomes of a surgical intervention or a treatment plan prior to its application and will guide the physician in providing better treatment to the patients. In the current work, three different computational approaches Computational Fluid Dynamics (CFD), Flow-Structure Interaction (FSI) and Particle Flow simulations were used to investigate flow in airway geometries. CFD approach assumes airway wall as rigid, and relatively easy to simulate, compared to the more challenging FSI approach, where interactions of airway wall deformations with flow are also accounted. The CFD methodology using different turbulence models is validated against experimental measurements in an airway phantom. Two case-studies using CFD, to quantify a pre and post-operative airway and another, to perform virtual surgery to determine the best possible surgery in a constricted airway is demonstrated. The unsteady

  10. Multiscale Analysis of a Collapsible Respiratory Airway

    NASA Astrophysics Data System (ADS)

    Ghadiali, Samir; Bell, E. David; Swarts, J. Douglas

    2006-11-01

    The Eustachian tube (ET) is a collapsible respiratory airway that connects the nasopharynx with the middle ear (ME). The ET normally exists in a collapsed state and must be periodically opened to maintain a healthy and sterile ME. Although the inability to open the ET (i.e. ET dysfunction) is the primary etiology responsible for several common ME diseases (i.e. Otitis Media), the mechanisms responsible for ET dysfunction are not well established. To investigate these mechanisms, we developed a multi-scale model of airflow in the ET and correlated model results with experimental data obtained in healthy and diseased subjects. The computational models utilized finite-element methods to simulate fluid-structure interactions and molecular dynamics techniques to quantify the adhesive properties of mucus glycoproteins. Results indicate that airflow in the ET is highly sensitive to both the dynamics of muscle contraction and molecular adhesion forces within the ET lumen. In addition, correlation of model results with experimental data obtained in diseased subjects was used to identify the biomechanical mechanisms responsible for ET dysfunction.

  11. Liquid Therapy Delivery Models Using Microfluidic Airways

    NASA Astrophysics Data System (ADS)

    Mulligan, Molly K.; Grotberg, James B.; Waisman, Dan; Filoche, Marcel; Sznitman, Josué

    2013-11-01

    The propagation and break-up of viscous and surfactant-laden liquid plugs in the lungs is an active area of research in view of liquid plug installation in the lungs to treat a host of different pulmonary conditions. This includes Infant Respiratory Distress Syndrome (IRDS) the primary cause of neonatal death and disability. Until present, experimental studies of liquid plugs have generally been restricted to low-viscosity Newtonian fluids along a single bifurcation. However, these fluids reflect poorly the actual liquid medication therapies used to treat pulmonary conditions. The present work attempts to uncover the propagation, rupture and break-up of liquid plugs in the airway tree using microfluidic models spanning three or more generations of the bronchiole tree. Our approach allows the dynamics of plug propagation and break-up to be studied in real-time, in a one-to-one scale in vitro model, as a function of fluid rheology, trailing film dynamics and bronchial tree geometry. Understanding these dynamics are a first and necessary step to deliver more effectively boluses of liquid medication to the lungs while minimizing the injury caused to epithelial cells lining the lungs from the rupture of such liquid plugs.

  12. NOX ENZYMES IN ALLERGIC AIRWAY INFLAMMATION

    PubMed Central

    van der Vliet, Albert

    2011-01-01

    Chronic airway diseases such as asthma are linked to oxidative environmental factors and are commonly associated with increased production of reactive oxygen species (ROS). Therefore, it is commonly assumed that oxidative stress is an important contributing factor to asthma disease pathogenesis and that antioxidant strategies may be useful in treatment of asthma. A primary source of ROS production in biological systems is NADPH oxidase (NOX), originally associated primarily with inflammatory cells but currently widely appreciated as an important enzyme system in many cell types, which a wide array of functional properties ranging from antimicrobial host defense to immune regulation and cell proliferation, differentiation and apoptosis. Given the complex nature of asthma disease pathology, with the involvement of many lung cell types that all express NOX homologs, it is not surprising that the contributions of NOX-derived ROS to various aspects of asthma development and progression are highly diverse and multifactorial. It is the purpose of the present review to summarize the current knowledge with respect to the functional aspects of NOX enzymes in various pulmonary cell types, and to discuss their potential importance in asthma pathogenesis. PMID:21397663

  13. Intravital Computer Morphometry on Protozoa: A Method for Monitoring of the Morphofunctional Disorders in Cells Exposed in the Cell Phone Communication Electromagnetic Field.

    PubMed

    Uskalova, D V; Igolkina, Yu V; Sarapultseva, E I

    2016-08-01

    Morphofunctional disorders in unicellular aquatic protozoa - Spirostomum ambiguum infusorians after 30-, 60-, and 360-min exposure in electromagnetic field at a radiation frequency of 1 GHz and energy flow density of 50 μW/cm(2) were analyzed by intravital computer morphometry. Significant disorders in morphometric values correlated with low mobility of the protozoa. The results suggested the use of intravital computer morphometry on the protozoa for early diagnosis of radiation-induced effects of the mobile communication electromagnetic field, for example, low mobility of spermatozoa.

  14. Multidetector computed tomography of